WorldWideScience

Sample records for tissue lipid components

  1. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    Science.gov (United States)

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids

    DEFF Research Database (Denmark)

    Wei, Wei; Lu, Xiaonan; Wang, Zegao

    2017-01-01

    HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect the......-probe sonication method had a micelle structure with fenofibrate incorporated into a lipid monolayer. This study provides an insight into the systematic development of novel amphiphilic lipids for solid lipid-based drug delivery system.......HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect...... using the lipolysis model. The structure and drug distribution of the nanocarriers were studied using AFM and TEM. FINDINGS: Both the polar head group of the molecules and the preparation methods affect the particle size and size distribution. Nanocarriers prepared with sorbitol mono-behenates showed...

  3. Effects of Apollo 12 lunar material on lipid levels of tobacco tissue and slash pine cultures

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Investigations of the lipid components of pine tissues (Pinus elloitii) are discussed, emphasizing fatty acids and steroids. The response by slash pine tissue cultures to growth in contact with Apollo lunar soil, earth basalt, and Iowa soil is studied. Tissue cultures of tobacco grown for 12 weeks in contact with lunar material from Apollo 12 flight contained 21 to 35 percent more total pigment than control tissues. No differences were noted in the fresh or dry weight of the experimental and control samples.

  4. Comparison of pinniped and cetacean prey tissue lipids with lipids of their elasmobranch predator.

    Science.gov (United States)

    Davidson, Bruce; Cliff, Geremy

    2014-01-01

    The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.

  5. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect

    Science.gov (United States)

    Olsztyńska-Janus, S.; Pietruszka, A.; Kiełbowicz, Z.; Czarnecki, M. A.

    2018-01-01

    In this work we report the studies of the effect of temperature on skin components, such as lipids, proteins and water. Modifications of lipids structure induced by increasing temperature (from 20 to 90 °C) have been studied using ATR-IR (Attenuated Total Reflectance Infrared) spectroscopy, which is a powerful tool for characterization of the molecular structure and properties of tissues, such as skin. Due to the small depth of penetration (0.6-5.6 μm), ATR-IR spectroscopy probes only the outermost layer of the skin, i.e. the stratum corneum (SC). The assignment of main spectral features of skin components allows for the determination of phase transitions from the temperature dependencies of band intensities [e.g. νas(CH2) and νs(CH2)]. The phase transitions were determined by using two methods: the first one was based on the first derivative of the Boltzmann function and the second one employed tangent lines of sigmoidal, aforementioned dependencies. The phase transitions in lipids were correlated with modifications of the structure of water and proteins.

  6. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV infected men

    Science.gov (United States)

    He, Qing; Engelson, Ellen S.; Ionescu, Gabriel; Glesby, Marshall J.; Albu, Jeanine B.; Kotler, Donald P.

    2010-01-01

    Background A large proportion of HIV-infected subjects on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. Design and methods We performed a cross-sectional analysis of baseline data from twenty-three HIV-infected participants in 3 prospective clinical studies. Magnetic resonance spectroscopy was applied to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole body adipose tissue compartments, i.e., subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes as well as inter-muscular adipose tissue (IMAT) subcompartment, and omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. Homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Results Hepatic lipid content correlated significantly with total VAT (r=0.62, p=0.0014) but not with SAT (r=0.053, p=0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r=0.67, p=0.0004) and RPAT (r=0.53, p=0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r=0.61, p=0.057 and 0.68, p=0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Conclusion Hepatic lipid content is associated with VAT volume, especially the omental-mesenteric subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men. PMID:18572755

  7. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV-infected men.

    Science.gov (United States)

    He, Qing; Engelson, Ellen S; Ionescu, Gabriel; Glesby, Marshall J; Albu, Jeanine B; Kotler, Donald P

    2008-01-01

    A large proportion of HIV-infected patients on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. We performed a cross-sectional analysis of baseline data from 23 HIV-infected participants in three prospective clinical studies. Magnetic resonance spectroscopy was used to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole-body adipose tissue compartments: that is, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes, as well as the intermuscular adipose tissue (IMAT) subcompartment and the omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. The homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Hepatic lipid content correlated significantly with total VAT (r = 0.62, P = 0.0014), but not with SAT (r = 0.053, P = 0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r = 0.67, P = 0.0004) and RPAT (r = 0.53, P = 0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r = 0.61, P = 0.057 and r = 0.68, P = 0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Hepatic lipid content is associated with VAT volume, especially the OMAT subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men.

  8. Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

    Science.gov (United States)

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2016-07-01

    Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation. © 2014 American Society for Parenteral and Enteral Nutrition.

  9. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition

    Science.gov (United States)

    Palm, Wilhelm; Sampaio, Julio L.; Brankatschk, Marko; Carvalho, Maria; Mahmoud, Ali; Shevchenko, Andrej; Eaton, Suzanne

    2012-01-01

    Interorgan lipid transport occurs via lipoproteins, and altered lipoprotein levels correlate with metabolic disease. However, precisely how lipoproteins affect tissue lipid composition has not been comprehensively analyzed. Here, we identify the major lipoproteins of Drosophila melanogaster and use genetics and mass spectrometry to study their assembly, interorgan trafficking, and influence on tissue lipids. The apoB-family lipoprotein Lipophorin (Lpp) is the major hemolymph lipid carrier. It is produced as a phospholipid-rich particle by the fat body, and its secretion requires Microsomal Triglyceride Transfer Protein (MTP). Lpp acquires sterols and most diacylglycerol (DAG) at the gut via Lipid Transfer Particle (LTP), another fat body-derived apoB-family lipoprotein. The gut, like the fat body, is a lipogenic organ, incorporating both de novo–synthesized and dietary fatty acids into DAG for export. We identify distinct requirements for LTP and Lpp-dependent lipid mobilization in contributing to the neutral and polar lipid composition of the brain and wing imaginal disc. These studies define major routes of interorgan lipid transport in Drosophila and uncover surprising tissue-specific differences in lipoprotein lipid utilization. PMID:22844248

  10. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance.

    Science.gov (United States)

    Błachnio-Zabielska, Agnieszka U; Baranowski, Marcin; Hirnle, Tomasz; Zabielski, Piotr; Lewczuk, Anna; Dmitruk, Iwona; Górski, Jan

    2012-12-01

    Obesity is a risk factor for metabolic diseases. Intramuscular lipid accumulation of ceramides, diacylglycerols, and long chain acyl-CoA is responsible for the induction of insulin resistance. These lipids are probably implicated in obesity-associated insulin resistance not only in skeletal muscle but also in fat tissue. Only few data are available about ceramide content in human subcutaneous adipose tissue. However, there are no data on DAG and LCACoA content in adipose tissue. The aim of our study was to measure the lipids content in human SAT and epicardial adipose tissue we sought to determine the bioactive lipids content by LC/MS/MS in fat tissue from lean non-diabetic, obese non-diabetic, and obese diabetic subjects and test whether the lipids correlate with HOMA-IR. We found, that total content of measured lipids was markedly higher in OND and OD subjects in both types of fat tissue (for all p lipids content is greater in subcutaneous and epicardial fat tissue and the particular lipids content positively correlates with HOMA-IR.

  11. Broiler meat quality: Proteins and lipids of muscle tissue ...

    African Journals Online (AJOL)

    Proteins and lipids of muscle tissue are important meat quality parameters. They contribute substantially to the nutritional characteristics of meat. A number of studies has been conducted on the effect of different factors on the protein and lipid content of broiler meat. Given the above, the subject matter of the present paper ...

  12. Measurement of the incorporation of orally administered arachidonic acid into tissue lipids

    International Nuclear Information System (INIS)

    Kulmacz, R.J.; Sivarajan, M.; Lands, W.E.

    1986-01-01

    The applicability of a stable isotope method to monitor the mixing of dietary arachidonic acid with endogenous arachidonic acid in tissue lipids was evaluated. Rats were fed octadeuterated arachidonic acid during a 20-day period, and the entry of the dietary acid into lipid esters of various tissues was examined by gas chromatography-mass spectrometric (GC-MS) analysis of their fatty acids. The rats were maintained on a fat-free diet from weaning until 63 days old to enhance the ratio of the dietary acid to endogenous arachidonate. Three separate forms of eicosatetraenoic acid in the tissue lipids could be distinguished by GC-MS: octadeuterated arachidonic acid (recent dietary origin), unlabeled arachidonic acid (maternal origin) and unlabeled 4,7,10,13-eicosatetraenoic acid (originating from palmitoleic acid). The total eicosatetraenoic acid in the tissue lipids contained about 90% arachidonate from recent dietary origin in lung, kidney, heart and fat, 70% in muscle and liver and 27% in brain. The n-7 isomer of eicosatetraenoic acid was estimated to make up 6% or less of the total eicosatetraenoic acid in lung, kidney, brain, muscle and heart tissue lipids, but it comprised around 15% of the total eicosatetraenoic acid in liver. The unlabeled arachidonic acid of maternal origin thus comprised only about 10% of the eicosatetraenoic acid in all tissues examined except muscle and brain, where it was 24% and 70% of the eicosatetraenoic acid, respectively

  13. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  14. Lipid and bile acid analysis

    NARCIS (Netherlands)

    Argmann, Carmen A.; Houten, Sander M.; Champy, Marie-France; Auwerx, Johan

    2006-01-01

    Lipids are important body constituents that are vital for cellular, tissue, and whole-body homeostasis. Lipids serve as crucial membrane components, constitute the body's main energy reservoir, and are important signaling molecules. As a consequence of these pleiotropic functions, many common

  15. Molecular imaging of lipids in cells and tissues

    Science.gov (United States)

    Borner, Katrin; Malmberg, Per; Mansson, Jan-Eric; Nygren, Hakan

    2007-02-01

    The distribution pattern of lipid species in biological tissues was analyzed with imaging mass spectrometry (TOF-SIMS; time-of-flight secondary ion mass spectrometry). The first application shows distribution of a glycosphingolipid, the galactosylceramide-sulfate (sulfatide) with different hydrocarbon chain lengths and the fatty acids palmitate and oleate in rat cerebellum. Sulfatides were seen localized in regions suggested as paranodal areas of rat cerebellar white matter as well as in the granular layer, with highest concentrations at the borders of the white matter. Different distribution patterns could be shown for the fatty acid C16:0 palmitate and C18:1 oleate in rat cerebellum, which seem to origin partly from the hydrocarbon chains of phosphatidylcholine. Results were shown for two different tissue preparation methods, which were plunge-freezing and cryostat sectioning as well as high-pressure freezing, freeze-fracturing and freeze-drying. The second application shows TOF-SIMS analysis on a biological trial of choleratoxin treatment in mouse intestine. The effect of cholera toxin on lipids in the intestinal epithelium was shown by comparing control and cholera toxin treated mouse intestine samples. A significant increase of the cholesterol concentration was seen after treatment. Cholesterol was mainly localized to the brush border of enterocytes of the intestinal villi, which could be explained by the presence of cholesterol-rich lipid rafts present on the microvilli or by relations to cholesterol uptake. After cholera toxin exposure, cholesterol was seen increased in the nuclei of enterocytes and apparently in the interstitium of the villi. We find that imaging TOF-SIMS is a powerful tool for studies of lipid distributions in cells and tissues, enabling the elucidation of their role in cell function and biology.

  16. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  17. Electrosprayed core–shell polymer–lipid nanoparticles for active component delivery

    International Nuclear Information System (INIS)

    Eltayeb, Megdi; Edirisinghe, Mohan; Stride, Eleanor

    2013-01-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core–shell polymer–lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core–shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core–shell form. (paper)

  18. Alcohol, Adipose Tissue and Lipid Dysregulation

    Directory of Open Access Journals (Sweden)

    Jennifer L. Steiner

    2017-02-01

    Full Text Available Chronic alcohol consumption perturbs lipid metabolism as it increases adipose tissue lipolysis and leads to ectopic fat deposition within the liver and the development of alcoholic fatty liver disease. In addition to the recognition of the role of adipose tissue derived fatty acids in liver steatosis, alcohol also impacts other functions of adipose tissue and lipid metabolism. Lipid balance in response to long‐term alcohol intake favors adipose tissue loss and fatty acid efflux as lipolysis is upregulated and lipogenesis is either slightly decreased or unchanged. Study of the lipolytic and lipogenic pathways has identified several regulatory proteins modulated by alcohol that contribute to these effects. Glucose tolerance of adipose tissue is also impaired by chronic alcohol due to decreased glucose transporter‐4 availability at the membrane. As an endocrine organ, white adipose tissue (WAT releases several adipokines that are negatively modulated following chronic alcohol consumption including adiponectin, leptin, and resistin. When these effects are combined with the enhanced expression of inflammatory mediators that are induced by chronic alcohol, a proinflammatory state develops within WAT, contributing to the observed lipodystrophy. Lastly, while chronic alcohol intake may enhance thermogenesis of brown adipose tissue (BAT, definitive mechanistic evidence is currently lacking. Overall, both WAT and BAT depots are impacted by chronic alcohol intake and the resulting lipodystrophy contributes to fat accumulation in peripheral organs, thereby enhancing the pathological state accompanying chronic alcohol use disorder.

  19. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  20. Tissue Trace Elements and Lipid Peroxidation in Breeding Female Bank Voles Myodes glareolus.

    Science.gov (United States)

    Bonda-Ostaszewska, Elżbieta; Włostowski, Tadeusz; Łaszkiewicz-Tiszczenko, Barbara

    2018-04-27

    Recent studies have demonstrated that reproduction reduces oxidative damage in various tissues of small mammal females. The present work was designed to determine whether the reduction of oxidative stress in reproductive bank vole females was associated with changes in tissue trace elements (iron, copper, zinc) that play an essential role in the production of reactive oxygen species. Lipid peroxidation (a marker of oxidative stress) and iron concentration in liver, kidneys, and skeletal muscles of reproducing bank vole females that weaned one litter were significantly lower than in non-reproducing females; linear regression analysis confirmed a positive relation between the tissue iron and lipid peroxidation. The concentrations of copper were significantly lower only in skeletal muscles of reproductive females and correlated positively with lipid peroxidation. No changes in tissue zinc were found in breeding females when compared with non-breeding animals. These data indicate that decreases in tissue iron and copper concentrations may be responsible for the reduction of oxidative stress in reproductive bank vole females.

  1. Effects of thiosulfonates on the lipid composition of rat tissues

    Directory of Open Access Journals (Sweden)

    A. Z. Pylypets

    2017-12-01

    Full Text Available Thiosulfonates are synthetic analogs of organic sulfur-containing compounds isolated from plants. Recent studies have shown that these substances lowering cholesterol content in the body, are effective against hyperlipidemia. Therefore, the aim of our investigation was to study the effect of synthesized thiosulfonates on the content of lipids and their spectrum in rats blood, liver and kidney. The amount of total lipids and their fractional profile were determined by thin-layer chromatography. The administration of methyl-, ethyl-, and allylthiosulfonates at a dose of 300 mg/kg of body weight did not cause significant changes in the content of total lipids and phospholipids, but led to the redistribution of their classes in the examined tissues. The content of triacylglycerols in the blood plasma under the action of ethyl- and allylthiosulfonates was decreased by 29.14 and 23.19% (P < 0.05-0.01, respectively, whereas the injection with methyl- and ethylthiosulfonates was accompanied by a significant decrease in mono-, di-, triglycerides and free fatty acids in the liver compared to control. The most significant changes in the lipid profile of kidney tissue were detected under the action of methylthiosulfonate.

  2. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    Science.gov (United States)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  3. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  4. The effect of hypokinesia on lipid metabolism in adipose tissue

    Science.gov (United States)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  5. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    DEFF Research Database (Denmark)

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    , a subcutaneous abdominal vein and a femoral vein. Adipose tissue metabolism and skeletal muscle (leg) metabolism were measured using Fick's principle. The results show that the lipolytic rate in adipose tissue during exercise was the same in each experiment. Post-exercise, there was a very fast decrease......One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...... metabolism during a 3 h post-exercise period. Six subjects were studied twice. In one experiment, they exercised for 90 min at 40% of maximal O2 consumption (VO2,max) and in the other experiment they exercised at 60% VO2,max for 60 min. For both experiments, catheters were inserted in an artery...

  6. Characterization of the Lateral Distribution of Fluorescent Lipid in Binary-Constituent Lipid Monolayers by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    István P. Sugár

    2010-01-01

    Full Text Available Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.

  7. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols.

    Science.gov (United States)

    Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S

    2013-12-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Nonspecific Organelle-Targeting Strategy with Core-Shell Nanoparticles of Varied Lipid Components/Ratios.

    Science.gov (United States)

    Zhang, Lu; Sun, Jiashu; Wang, Yilian; Wang, Jiancheng; Shi, Xinghua; Hu, Guoqing

    2016-07-19

    We report a nonspecific organelle-targeting strategy through one-step microfluidic fabrication and screening of a library of surface charge- and lipid components/ratios-varied lipid shell-polymer core nanoparticles. Different from the common strategy relying on the use of organelle-targeted moieties conjugated onto the surface of nanoparticles, here, we program the distribution of hybrid nanoparticles in lysosomes or mitochondria by tuning the lipid components/ratios in shell. Hybrid nanoparticles with 60% 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 20% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) can intracellularly target mitochondria in both in vitro and in vivo models. While replacing DOPE with the same amount of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the nanoparticles do not show mitochondrial targeting, indicating an incremental effect of cationic and fusogenic lipids on lysosomal escape which is further studied by molecular dynamics simulations. This work unveils the lipid-regulated subcellular distribution of hybrid nanoparticles in which target moieties and complex synthetic steps are avoided.

  9. Equilibrium Passive Sampling of POP in Lipid-Rich and Lean Fish Tissue: Quality Control Using Performance Reference Compounds.

    Science.gov (United States)

    Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe

    2017-10-03

    Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.

  10. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Johan W.E. Jocken

    2014-10-01

    Full Text Available With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocytes. Recent evidence suggests involvement of several hormones, membrane receptors, and intracellular signalling cascades, which has added complexity to the regulation of cytosolic lipolysis. Interestingly, a specific form of autophagy, called lipophagy, has been implicated as alternative lipolytic pathway. Defective regulation of cytosolic lipolysis and lipophagy might have substantial effects on lipid metabolism, thereby contributing to adipose tissue dysfunction, insulin resistance, and related cardiometabolic (cMet diseases. This review will discuss recent advances in our understanding of classical lipolysis and lipophagy in adipocyte lipid metabolism under normal and pathological conditions. Furthermore, the question of whether modulation of adipocyte lipolysis and lipophagy might be a potential therapeutic target to combat cMet disorders will be addressed.

  11. High-throughput simultaneous analysis of RNA, protein, and lipid biomarkers in heterogeneous tissue samples.

    Science.gov (United States)

    Reiser, Vladimír; Smith, Ryan C; Xue, Jiyan; Kurtz, Marc M; Liu, Rong; Legrand, Cheryl; He, Xuanmin; Yu, Xiang; Wong, Peggy; Hinchcliffe, John S; Tanen, Michael R; Lazar, Gloria; Zieba, Renata; Ichetovkin, Marina; Chen, Zhu; O'Neill, Edward A; Tanaka, Wesley K; Marton, Matthew J; Liao, Jason; Morris, Mark; Hailman, Eric; Tokiwa, George Y; Plump, Andrew S

    2011-11-01

    With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.

  12. Formation of Poultry Meat Flavor by Heating Process and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Maijon Purba

    2014-09-01

    Full Text Available Flavor is an important factor in the acceptance of food. Flavor of poultry meat is naturally formed through a specific process of heating, where various chemical reactions complex occurred among nonvolatile precursors in fatty tissue or in lean tissue. The main flavor in the form of volatile and nonvolatile components play a major influence on the acceptance of various processed meat, especially the taste. Removal of sulfur components decreases meat flavor (meaty, while removal of carbonyl compounds decrease the specific flavor and increases common flavor of the meat. Poultry meat has a fairly high fat content that easily generates lipid oxidation. Lipid oxidation in poultry meat is a sign that the meat was damaged and caused off odor. Addition of antioxidants in the diet can inhibit lipid oxidation in the meat. Lipids interaction with proteins and carbohydrates is unavoidable during the thermal processing of food, causing the appearance of volatile components. The main reaction in meat flavor formation mechanism is Maillard reaction followed by Stecker reaction and degradation of lipids and thiamine. They involve in the reaction between carbonyl and amine components to form flavor compounds, which enhance the flavor of poultry meat.

  13. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  14. Lipid metabolism in rat tissues exposed to the chronic effects of γ-irradiation and ubiquinone Q9

    International Nuclear Information System (INIS)

    Novoselova, E.G.

    1992-01-01

    Chronic γ-irradiation of rats with the daily dose of 0.129 Gy activates the synthesis of various classes of lipids in the thymus, spleen and bone marrow cells and induces lipid accumulation in these tissues. Feeding of rats with the antioxidant, ubiquinone Q-9, under conditions of chronic irradiation causes a considerable normalization of lipogenesis and levels of the lipid concentration in the tissues of animals irradiated with the dose of 20 Gy

  15. Methodological issues in protein and lipidic expressions in brain tissue exposed to Co60 based on DESI/MALDI-MS

    International Nuclear Information System (INIS)

    Soares, Matheus F.; Campos, Tarcísio P.R.; Augusti, Rodinei; Eberlin, Marcos N.; Vendramini, Pedro H.

    2017-01-01

    The present paper attempts to present some issues in the methodology of identifying lipid and protein changes in brain tissue induced by radiation. The goal was to address the analysis of the methodology and to investigate the feasibility of the generation of lipid/protein profiles of irradiated brain tissue, in order to identify radioinduced changes. Lipids and proteins are biomolecules with diverse structures and functionalities that participate in important intracellular processes. Changes in the lipid and the tissue protein profiles may indicate a cellular response to an external stimulus as well as the emergence of neoplasms or neurodegenerative diseases such as Alzheimer's. DESI-MS is a convenient method for identifying lipids and their spatial distribution in tissue beyond analytical quantification. DESI-MS allows the creation of an image of several low lipid m/z classes. MALDI-MS has already been a method used in the study of macromolecules as structural, membrane, hormone, neuromediator and immunological peptides. Through a full-scan matrix scan, with a m/z spectrum between 500-1000 for lipids and with a mass spectrum of 1000-15000 Da for proteins, the molecular profile can be analyzed. Generated pixel shape 2D chemical image. The produced image allows to associate the tissue distribution of the lipids and proteins with their chemical profile identified, allowing the verification of the changes radioinduced. Radiation triggers intense oxidative stress by increasing reactive oxygen species (ROS) and free radicals, causing DNA damage with consequent alterations in proteomics and cellular lipid explaining such changes in the lipid and protein expressions. The cellular morphophysiological changes are responsible for both the clonogenic inhibition and the induction of the apoptotic process. The images's production was directly dependent on the rigorous execution of the methodological procedures. Innumerable interferences could impair the image

  16. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Crowe, J.H.

    2003-01-01

    Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphaticlylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers....... The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable...... ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating...

  17. Perfil lipídico tecidual de ratos alimentados com diferentes fontes lipídicas Tissue lipid profile of rats fed with different lipid sources

    Directory of Open Access Journals (Sweden)

    Martha Elisa Ferreira de Almeida

    2009-02-01

    Full Text Available OBJETIVO:Determinar se fontes lipídicas com diferentes razões de ácidos graxos insaturados e saturados (PUFA+MUFA/SFA na dieta altera o perfil lipídico tecidual, a concentração de lipídios (mg/g dos tecidos hepáticos e mesentérico e a digestibilidade lipídica. MÉTODOS: Foi realizada cromatografia gasosa para determinar o perfil de ácidos graxos nos tecidos hepático e adiposo de ratos alimentados com diferentes fontes lipídicas. O coeficiente de digestibilidade foi determinado a partir da relação entre a quantidade de lipídios consumidos e a quantidade fecal excretada. RESULTADOS:Diferentes fontes lipídicas (óleo de soja, manteiga, margarina e gorduras de porco e de peixe não alteraram o coeficiente de digestibilidade e o peso hepático, mas alteraram a deposição de lipídios em todos os tecidos adiposos estudados. Não foi possível fazer a correlação direta entre o perfil dietário dos ácidos graxos não essenciais e sua deposição nos tecidos estudados, visto que a lipogênese de novo impede a identificação dos ácidos graxos dietários. CONCLUSÃO:Não foi constatada uma relação direta entre o perfil dietário dos ácidos graxos e sua deposição nos tecidos estudados, exceto para os ácidos graxos trans e linoléico (C18:2 que não são sintetizados no rato. Esses ácidos graxos apresentaram uma concentração tecidual diretamente proporcional àquela das fontes dietárias. Quanto à razão (PUFA+MUFA/SFA, encontrada no tecido hepático dos diferentes grupos, observa-se que esta foi diretamente proporcional aos valores apresentados pelas fontes lipídicas dietárias. Entretanto, essa associação não foi observada nos tecidos adiposos analisados.OBJECTIVE:To determine if lipid sources with different unsaturated to saturated fatty acid ratios, (PUFA+MUFA/SFA in the diet alter the lipid profile of tissues, the lipid concentration (mg/g of the hepatic and mesenteric tissues and the lipid digestibility. METHODS

  18. Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Weiqin Chen

    Full Text Available Mutations in BSCL2 underlie human congenital generalized lipodystrophy type 2 disease. We previously reported that Bscl2 (-/- mice develop lipodystrophy of white adipose tissue (WAT due to unbridled lipolysis. The residual epididymal WAT (EWAT displays a browning phenotype with much smaller lipid droplets (LD and higher expression of brown adipose tissue marker proteins. Here we used targeted lipidomics and gene expression profiling to analyze lipid profiles as well as genes involved in lipid metabolism in WAT of wild-type and Bscl2(-/- mice. Analysis of total saponified fatty acids revealed that the residual EWAT of Bscl2(-/- mice contained a much higher proportion of oleic 18:1n9 acid concomitant with a lower proportion of palmitic 16:0 acid, as well as increased n3- polyunsaturated fatty acids (PUFA remodeling. The acyl chains in major species of triacylglyceride (TG and diacylglyceride (DG in the residual EWAT of Bscl2(-/- mice were also enriched with dietary fatty acids. These changes could be reflected by upregulation of several fatty acid elongases and desaturases. Meanwhile, Bscl2(-/- adipocytes from EWAT had increased gene expression in lipid uptake and TG synthesis but not de novo lipogenesis. Both mitochondria and peroxisomal β-oxidation genes were also markedly increased in Bscl2(-/- adipocytes, highlighting that these machineries were accelerated to shunt the lipolysis liberated fatty acids through uncoupling to dissipate energy. The residual subcutaneous white adipose tissue (ScWAT was not browning but displays similar changes in lipid metabolism. Overall, our data emphasize that, other than being essential for adipocyte differentiation, Bscl2 is also important in fatty acid remodeling and energy homeostasis.

  19. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A

    2005-01-01

    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  20. Methodological issues in protein and lipidic expressions in brain tissue exposed to Co{sup 60} based on DESI/MALDI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Matheus F.; Campos, Tarcísio P.R.; Augusti, Rodinei, E-mail: matheus.soares@gmail.com, E-mail: tprcampos@pq.cnpq.br, E-mail: augusti.rodinei@gmail.com, E-mail: augusti@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil); Eberlin, Marcos N.; Vendramini, Pedro H., E-mail: eberlin@iqm.unicamp.br, E-mail: ph_vendramini@yahoo.com.br [Universidade de Campinas (UNICAMP), SP (Brazil). Thompson Mass Spectroscopy Laboratory

    2017-07-01

    The present paper attempts to present some issues in the methodology of identifying lipid and protein changes in brain tissue induced by radiation. The goal was to address the analysis of the methodology and to investigate the feasibility of the generation of lipid/protein profiles of irradiated brain tissue, in order to identify radioinduced changes. Lipids and proteins are biomolecules with diverse structures and functionalities that participate in important intracellular processes. Changes in the lipid and the tissue protein profiles may indicate a cellular response to an external stimulus as well as the emergence of neoplasms or neurodegenerative diseases such as Alzheimer's. DESI-MS is a convenient method for identifying lipids and their spatial distribution in tissue beyond analytical quantification. DESI-MS allows the creation of an image of several low lipid m/z classes. MALDI-MS has already been a method used in the study of macromolecules as structural, membrane, hormone, neuromediator and immunological peptides. Through a full-scan matrix scan, with a m/z spectrum between 500-1000 for lipids and with a mass spectrum of 1000-15000 Da for proteins, the molecular profile can be analyzed. Generated pixel shape 2D chemical image. The produced image allows to associate the tissue distribution of the lipids and proteins with their chemical profile identified, allowing the verification of the changes radioinduced. Radiation triggers intense oxidative stress by increasing reactive oxygen species (ROS) and free radicals, causing DNA damage with consequent alterations in proteomics and cellular lipid explaining such changes in the lipid and protein expressions. The cellular morphophysiological changes are responsible for both the clonogenic inhibition and the induction of the apoptotic process. The images's production was directly dependent on the rigorous execution of the methodological procedures. Innumerable interferences could impair the image

  1. Combination of 1H nuclear magnetic resonance spectroscopy and principal component analysis to evaluate the lipid fluidity of flutamide-encapsulated lipid nanoemulsions.

    Science.gov (United States)

    Takegami, Shigehiko; Ueyama, Keita; Konishi, Atsuko; Kitade, Tatsuya

    2018-06-06

    The lipid fluidity of various lipid nanoemulsions (LNEs) without and with flutamide (FT) and containing one of two neutral lipids, one of four phosphatidylcholines as a surfactant, and sodium palmitate as a cosurfactant was investigated by the combination of 1 H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA). In the 1 H NMR spectra, the peaks from the methylene groups of the neutral lipids and surfactants for all LNE preparations showed downfield shifts with increasing temperature from 20 to 60 °C. PCA was applied to the 1 H NMR spectral data obtained for the LNEs. The PCA resulted in a model in which the first two principal components (PCs) extracted 88% of the total spectral variation; the first PC (PC-1) axis and second PC (PC-2) axis accounted for 73 and 15%, respectively, of the total spectral variation. The Score-1 values for PC-1 plotted against temperature revealed the existence of two clusters, which were defined by the neutral lipid of the LNE preparations. Meanwhile, the Score-2 values decreased with rising temperature and reflected the increase in lipid fluidity of each LNE preparation, consistent with fluorescence anisotropy measurements. In addition, the changes of Score-2 values with temperature for LNE preparations with FT were smaller than those for LNE preparations without FT. This indicates that FT encapsulated in LNE particles markedly suppressed the increase in lipid fluidity of LNE particles with rising temperature. Thus, PCA of 1 H NMR spectra will become a powerful tool to analyze the lipid fluidity of lipid nanoparticles. Graphical abstract ᅟ.

  2. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    Science.gov (United States)

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  3. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Carroll

    Full Text Available The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue, using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219 in the striatum to 12% (25/212 in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219 of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224 in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and

  4. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  5. ToF-SIMS and principal component analysis of lipids and amino acids from inflamed and dysplastic human colonic mucosa.

    Science.gov (United States)

    Urbini, Marco; Petito, Valentina; de Notaristefani, Francesco; Scaldaferri, Franco; Gasbarrini, Antonio; Tortora, Luca

    2017-10-01

    Here, time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis were combined to study the role of ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), in the colon cancer progression. ToF-SIMS was used to obtain mass spectra and chemical maps from the mucosal surface of human normal (NC), inflamed (IC), and dysplastic (DC) colon tissues. Chemical mapping with a lateral resolution of ≈ 1 μm allowed to evaluate zonation of fatty acids and amino acids as well as the morphological condition of the intestinal glands. High mass resolution ToF-SIMS spectra showed chemical differences in lipid and amino acid composition as a function of pathological state. In positive ion mode, mono- (MAG), di- (DAG), and triacylglycerol (TAG) signals were detected in NC tissues, while in IC and DC tissues, the only cholesterol was present as lipid class representative. Signals from fatty acids, collected in negative ion mode, were subjected to principal component analysis (PCA). PCA showed a strict correlation between IC and DC samples, due to an increase of stearic, arachidonic, and linoleic acid. In the same way, differences in the amino acid composition were highlighted through multivariate analysis. PCA revealed that glutamic acid, leucine/isoleucine, and valine fragments are related to IC tissues. On the other hand, tyrosine, methionine, and tryptophan peaks contributed highly to the separation of DC tissues. Finally, a classification of NC, IC, and DC patients was also achieved through hierarchical cluster analysis of amino acid fragments. In this case, human colonic inflammation showed a stronger relationship with normal than dysplastic condition. Graphical Abstract ᅟ.

  6. Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluation of the effects of tissue processing and dewaxing

    Science.gov (United States)

    Ali, Syed M.; Bonnier, Franck; Tfayli, Ali; Lambkin, Helen; Flynn, Kathleen; McDonagh, Vincent; Healy, Claragh; Clive Lee, T.; Lyng, Fiona M.; Byrne, Hugh J.

    2013-06-01

    Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections and the effects of tissue processing. Both hand and thigh sections of human cadavers were analyzed in their unprocessed and formalin-fixed, paraffin-processed (FFPP), and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum (SC), intermediate underlying epithelium, and dermal layers for sections from both anatomical sites. The SC is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that of the dermis is dominated by the characteristics of collagen. For a given anatomical site, little difference in layer structure and biochemistry is observed between samples from different cadavers. However, the hand and thigh sections are consistently differentiated for all cadavers, largely based on lipidic profiles. In dewaxed FFPP samples, while the SC, intermediate, and dermal layers are clearly differentiated by KMCA of Raman maps of tissue sections, the lipidic contributions to the spectra are significantly reduced, with the result that respective skin layers from different anatomical sites become indistinguishable. While efficient at removing the fixing wax, the tissue processing also efficiently removes the structurally similar lipidic components of the skin layers. In studies of dermatological processes in which lipids play an important role, such as wound healing, dewaxed samples are therefore not appropriate. Removal of the lipids does however accentuate the spectral features of the cellular and protein components, which may be more appropriate for retrospective analysis of disease progression and biochemical analysis using tissue banks.

  7. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.

    Science.gov (United States)

    Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A

    2010-03-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.

  8. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  9. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins

    DEFF Research Database (Denmark)

    Pattison, David I; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Oxidation of low-density lipoproteins (LDL) is believed to contribute to the increased uptake of LDL by macrophages, which is an early event in atherosclerosis. Hypochlorous acid (HOCl) has been implicated as one of the major oxidants involved in these processes. In a previous study, the rates...... of reaction of HOCl with the reactive sites in proteins were investigated (Pattison, D. I., and Davies, M. J. (2001) Chem. Res. Toxicol. 14, 1453-1464). The work presented here expands on those studies to determine absolute second-order rate constants for the reactions of HOCl with various lipid components...... nitrogen- and carbon-centered radicals. Subsequent reactions of these species may induce oxidation of the LDL lipid component. In contrast, phosphoryl-choline reacted much more slowly (k Reaction of HOCl with 3-pentenoic acid was used as a model of lipid double bonds...

  10. Predictions of Phase Separation in Three-Component Lipid Membranes by the MARTINI Force Field

    DEFF Research Database (Denmark)

    Davis, Ryan S.; Sunil Kumar, P. B.; Sperotto, Maria Maddalena

    2013-01-01

    The phase behavior of the coarse-grained MARTINI model for three-component lipid bilayers composed of dipalmytoyl-phosphatidylcholine (DPPC), cholesterol (Chol), and an unsaturated phosphatidylcholine (PC) was systematically investigated by molecular dynamics simulations. The aim of this study...... is to understand which types of unsaturated PC induce the formation of thermodynamically stable coexisting phases when added to mixtures of DPPC and Chol and to unravel the mechanisms that drive phase separation in such three-component mixtures. Our simulations indicate that the currently used MARTINI force field...... PCs, such as dilinoleyl-phosphatidylcholine (DUPC) and diarachidonoyl-phosphatidylcholine (DAPC). Through systematic tweaking of the interactions between the hydrophobic groups of the PC molecules, we show that the appearance of phase separation in three-component lipid bilayers, as modeled through...

  11. Dietary fat composition influences tissue lipid profile and gene expression in Fischer-344 rats.

    Science.gov (United States)

    Zhou, Albert L; Hintze, Korry J; Jimenez-Flores, Rafael; Ward, Robert E

    2012-12-01

    The AIN-76A diet causes fatty liver in rodents when fed for long periods of time. The aim of this study was to utilize fatty acid analysis and transcriptomics to investigate the effects of different fat sources in the AIN-76A diet on tissue lipid profiles and gene expression in male, weanling Fischer-344 rats. Animals were fed isocaloric diets that differed only in the fat source: (1) corn oil (CO) (2) anhydrous milk fat (AMF), and (3) AMF supplemented with 10% phospholipids from the milk fat globule membrane (AMF-MFGM). There were no differences in food intake, body weight, growth rate, or body fat composition among the groups, and the fatty acid compositions of red blood cells (RBC), plasma, muscle, and visceral adipose tissues reflected the dietary fat sources. Modifying the fat source resulted in 293 genes differentially regulated in skeletal muscle, 1,124 in adipose, and 831 in liver as determined by analysis of variance (ANOVA). Although tissue fatty acid profiles mostly reflected the diet, there were several quantitative differences in lipid classes in the liver and plasma. The AMF diet resulted in the highest level of hepatic triacylglycerols, but the lowest level in plasma. The CO diet resulted in significant accumulation of hepatic unesterified fatty acids and decreased DGAT expression and activity, a potential trigger for steatohepatitis. These results indicate that the fatty acid composition and presence of polar lipids in the AIN-76A diets have significant effects on lipid partitioning, gene expression, and potentially the development of liver pathology.

  12. Vitamins C and E attenuate lipid dystrophy in tissues of rats ...

    African Journals Online (AJOL)

    To investigate the effects of aluminum chloride (AlCl3) in the deviation of tissue lipid profiles and ways to reduce its effect using antioxidant vitamins C and E, thirty-six male albino rats (120-150g) were divided into six groups with six rats each. Group (1) received normal saline and served as control, Group (2) was ...

  13. Rab32 is important for autophagy and lipid storage in Drosophila.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid droplet-associated proteins have been identified, including Rab small GTPases. Rab proteins are known to participate in many intracellular membranous events; however, their exact role in lipid droplets is largely unexplored. Here we systematically investigate the roles of Drosophila Rab family proteins in lipid storage in the larval adipose tissue, fat body. Rab32 and several other Rabs were found to affect the size of lipid droplets as well as lipid levels. Further studies showed that Rab32 and Rab32 GEF/Claret may be involved in autophagy, consequently affecting lipid storage. Loss-of-function mutants of several components in the autophagy pathway result in similar effects on lipid storage. These results highlight the potential functions of Rabs in regulating lipid metabolism.

  14. Fatty acids of polar lipids in heart tissue are good taxonomic markers ...

    African Journals Online (AJOL)

    The fatty acid profiles in total, neutral and polar lipids in the heart tissues of five freshwater fish species (Nile perch Lates niloticus, Nile tilapia Oreochromis niloticus, marbled lungfish Protopterus aethiopicus, Bagrus docmak and African catfish Clarias gariepinus) from Lakes Victoria and Kyoga were determined ...

  15. Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose

    DEFF Research Database (Denmark)

    Bülow, J; Simonsen, L; Wiggins, D

    1999-01-01

    The integration of lipid metabolism in the splanchnic bed and in subcutaneous adipose tissue before and after ingestion of a 75 g glucose load was studied by Fick's principle in seven healthy subjects. Six additional subjects were studied during a hyperinsulinemic euglycemic clamp. Release of non...

  16. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... by affecting the preferential adsorption of whey protein components at the interface. The aim of the study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared with 1% whey protein having either a high concentration of α-lactalbumin, a high concentration of β-lactoglobulin or equal...... amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative...

  17. Increased lipids in non-lipogenic tissues are indicators of the severity of type 2 diabetes in mice

    DEFF Research Database (Denmark)

    Campbell-Tofte, J.; Hansen, H.S.; Mu, Huiling

    2007-01-01

    We hypothesised that the molecular changes triggered in type 2 diabetes might cause phenotypic changes in the lipid fraction of tissues. We compared tissue lipid profiles of inbred lean B6-Bom with those of the obese B6-ob/ob and diabetic BKS-db/db mice and found that genetically diabetic mice...... significantly accumulate fat (especially monounsaturated fatty acids, MUFA) in non-lipogenic tissues such as the eye (MUFA, 2-fold), skeletal muscle (MUFA, 13-fold) and pancreas (MUFA, 16-fold). In contrast, the B6-ob/ob mice which manifest a milder form of type 2 diabetes use the liver as their predominant...

  18. Platform for Lipid Based Nanocarriers' Formulation Components and their Potential Effects: A Literature Review.

    Science.gov (United States)

    Farid, Ragwa Mohamed; Youssef, Nancy Abdel Hamid Abou; Kassem, Abeer Ahmed

    2017-11-27

    Lipid based nanocarriers have gained recently enormous interest for pharmaceutical application. They have the potential to provide controlled drug release and to target the drug to a specific area. In addition, lipid based nanocarriers can improve the bioavailability of drugs suffering from high hepatic first-pass metabolism, by enhancing their transport via the lymphatic system. The main components of lipid based nanocarriers are lipids and surfactants. Both have great influence on the prepared lipid based systems characteristics. The criteria for their selection are much related to physicochemical properties of the drug and the required administration route. This work gives an overview on the effect of both the type and amount of lipids and surfactants used in the manufacture of lipid based nanocarriers on their behavior and characteristics. Recent studies revealed that the properties of the final product including; particle size, homogeneity, drug loading capacity, zeta potential, drug release profile, stability, permeability, pharmacokinetic properties, crystallinity and cytotoxicity, may be significantly influenced not only by the type but also the amount of the lipids and/or surfactants included in the formulation of the lipid based nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs

    OpenAIRE

    Bee , Giuseppe

    2001-01-01

    International audience; Dietary conjugated linoleic acids (CLA) have been reported to profoundly affect lipid metabolism and to act as repartitioning agents. Currently, little is known about their effect on the fatty acid profile of tissue lipids in pigs. In the present study we determined the lipid composition of the backfat inner (BFI) and outer layer (BFO), omental fat (OF) and intramuscular fat (IMF) of the longissimus dorsi muscle in 24 Swiss Large White pigs fed diets supplemented eithe...

  20. Lipid imaging by mass spectrometry - a review.

    Science.gov (United States)

    Gode, David; Volmer, Dietrich A

    2013-03-07

    Mass spectrometry imaging (MSI) has proven to be extremely useful for applications such as the spatial analysis of peptides and proteins in biological tissue, the performance assessment of drugs in vivo or the measurement of protein or metabolite expression as tissue classifiers or biomarkers from disease versus control tissue comparisons. The most popular MSI technique is MALDI mass spectrometry. First invented by Richard Caprioli in the mid-1990s, it is the highest performing MSI technique in terms of spatial resolution, sensitivity for intact biomolecules and application range today. The unique ability to identify and spatially resolve numerous compounds simultaneously, based on m/z values has inter alia been applied to untargeted and targeted chemical mapping of biological compartments, revealing changes of physiological states, disease pathologies and metabolic faith and distribution of xenobiotics. Many MSI applications focus on lipid species because of the lipids' diverse roles as structural components of cell membranes, their function in the surfactant cycle, and their involvement as second messengers in signalling cascades of tissues and cells. This article gives a comprehensive overview of lipid imaging techniques and applications using established MALDI and SIMS methods but also other promising MSI techniques such as DESI.

  1. Glutathione protects liver and kidney tissue from cadmium- and lead-provoked lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Jasmina M.

    2013-01-01

    Full Text Available Cd and Pb represent a serious ecological problem due to their soluble nature, their mobility and ability to accumulate in the soil. The exposure to these heavy metals can originate from different sources (drinking water, food, air, and they can make their way into the human body through the respiratory and digestive system. We investigated the effects of glutathione on Cd and Pb accumulation and lipid peroxidation effects in the liver and kidneys of heavy metal intoxicated rats. The content of the marker of lipid peroxidation - malondialdehyde was increased several fold the in tissues of exposed animals, the effects being more pronounced in liver. The treatment of intoxicated animals with glutathione drastically suppressed lipid peroxidation. Our results imply that the application of glutathione may have protective role in heavy metal intoxication by inhibiting lipid peroxidation. However, precaution should be made when it comes to Cd, since it seems that glutathione promoted Cd accumulation in the liver.

  2. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  3. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    Science.gov (United States)

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  4. Lipid composition of hepatic and adipose tissues from normal cats and from cats with idiopathic hepatic lipidosis.

    Science.gov (United States)

    Hall, J A; Barstad, L A; Connor, W E

    1997-01-01

    The purpose of this study was to characterize the lipid classes in hepatic and adipose tissues from cats with idiopathic hepatic lipidosis (IHL). Concentrations of triglyceride, phospholipid phosphorus, and free and total cholesterol were determined in lipid extracts of liver homogenates from 5 cats with IHL and 5 healthy control cats. Total fatty acid composition of liver and adipose tissue was also compared. Triglyceride accounted for 34% of liver by weight in cats with IHL (338 +/- 38 mg/g wet liver) versus 1% in control cats (9.9 +/- 1.0 mg/g wet liver, P hepatic tissue in the 2 groups differed; palmitate was higher (19.5 +/- 1.1% of total fatty acids in cats with IHL versus 9.2 +/- 2.7% in controls, P hepatic triglyceride in cats with IHL is the mobilization of fatty acids from adipose tissue.

  5. Dietary L-Carnitine and energy and lipid metabolism in African catfish (Clarias gariepinus) juveniles

    NARCIS (Netherlands)

    A. Ozório, de R.O.

    2001-01-01

    As the lipid content of the diet increases so does the requirement for certain components involved in lipid metabolism. Carnitine is a normal constituent of animal tissues and plasma, which is required for the transport of long-chain fatty acids (LCFAs) to the site of

  6. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  7. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  8. Detection of cancer in cervical tissue biopsies using mobile lipid resonances measured with diffusion-weighted (1)H magnetic resonance spectroscopy.

    Science.gov (United States)

    Zietkowski, D; Davidson, R L; Eykyn, T R; De Silva, S S; Desouza, N M; Payne, G S

    2010-05-01

    The purpose of this study was to implement a diffusion-weighted sequence for visualisation of mobile lipid resonances (MLR) using high resolution magic angle spinning (HR-MAS) (1)H MRS and to evaluate its use in establishing differences between tissues from patients with cervical carcinoma that contain cancer from those that do not. A stimulated echo sequence with bipolar gradients was modified to allow T(1) and T(2) measurements and optimised by recording signal loss in HR-MAS spectra as a function of gradient strength in model lipids and tissues. Diffusion coefficients, T(1) and apparent T(2) relaxation times were measured in model lipid systems. MLR profiles were characterised in relation to T(1) and apparent T(2) relaxation in human cervical cancer tissue samples. Diffusion-weighted (DW) spectra of cervical biopsies were quantified and peak areas analysed using linear discriminant analysis (LDA). The optimised sequence reduced spectral overlap by suppressing signals originating from low molecular weight metabolites and non-lipid contributions. Significantly improved MLR visualisation allowed visualisation of peaks at 0.9, 1.3, 1.6, 2.0, 2.3, 2.8, 4.3 and 5.3 ppm. MLR analysis of DW spectra showed at least six peaks arising from saturated and unsaturated lipids and those arising from triglycerides. Significant differences in samples containing histologically confirmed cancer were seen for peaks at 0.9 (p Operating Characteristic (ROC) curves and calculated area under the curve (0.962) validated high sensitivity and specificity of the technique. Diffusion-weighting of HR-MAS spectroscopic sequences is a useful method for characterising MLR in cancer tissues and displays an accumulation of lipids arising during tumourigenesis and an increase in the unsaturated lipid and triglyceride peaks with respect to saturated MLR. Copyright © 2009 John Wiley & Sons, Ltd.

  9. Chronic consumption of fructose rich soft drinks alters tissue lipids of rats

    Directory of Open Access Journals (Sweden)

    Botezelli Jose D

    2010-06-01

    Full Text Available Abstract Background Fructose-based diets are apparently related to the occurrence of several metabolic dysfunctions, but the effects of the consumption of high amounts of fructose on body tissues have not been well described. The aim of this study was to analyze the general characteristics and the lipid content of different tissues of rats after chronic ingestion of a fructose rich soft drink. Methods Forty-five Wistar rats were used. The rats were divided into three groups (n = 15 and allowed to consume water (C, light Coca Cola ® (L or regular Coca Cola® (R as the sole source of liquids for eight weeks. Results The R group presented significantly higher daily liquid intake and significantly lower food intake than the C and L groups. Moreover, relative to the C and L groups, the R group showed higher triglyceride concentrations in the serum and liver. However, the L group animals presented lower values of serum triglycerides and cholesterol than controls. Conclusions Based on the results, it can be concluded that daily ingestion of a large amount of fructose- rich soft drink resulted in unfavorable alterations to the lipid profile of the rats.

  10. The effect of O-acetylsalicylic acid on lipid synthesis by guinea pig gastric mucosa in vitro

    International Nuclear Information System (INIS)

    Spohn, M.; McColl, I.

    1987-01-01

    The aim of this work was to investigate the involvement of lipids as possible components of the gastric mucosal barrier by studying the synthesis and secretion of lipids by the epithelial cell lining of gastric mucosa and the effect of salicylate on these processes. O-Acetylsalicylic acid reversibly reduced in vitro incorporation of (U- 14 C) and of DL-(2- 14 C) mevalonic acid into lipids by isolated epithelial cells and by intact mucosa of guinea pig stomach, indicating reversible inhibition of lipid synthesis by the tissue in the presence of the drug. Inhibition of incorporation of both precursors into total lipids, into their fatty acid components, and into cholesterol is demonstrated

  11. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Zhang, Jiliang; Zhang, Chunnuan; Ma, Dongdong; Liu, Min; Huang, Shuntao

    2017-12-01

    Tributyltin (TBT) is reported to induce adipogenesis in fish, which might affect nutritional qualities and health status. Muscle tissues account for the majority of body mass, and have been described as a major site of fat deposition and an immunologically active organ. Therefore, the present study aims to evaluate whether chronic exposures of TBT, at environmental concentrations of 1, 10 and 100 ng/L, affects lipid accumulation, oxidative stress and immune status in muscle tissues of rare minnow (Gobiocypris rarus). After 60 d of exposure, TBT increased contents of total lipid, total cholesterol, triglyceride and fatty acids in muscle tissues. Interestingly, TBT exposure disrupted fatty acid composition and increased contents of unsaturated fatty acids (such as eicosapentaenoic acid and docosahexaenoic acid) in muscle tissues, which might be a response to preserve membrane functions from TBT exposure. Meanwhile, the concentrations of hepatic fatty acid desaturase 2 (Δ6-desaturase) and stearoyl-CoA desaturase (Δ9-desaturase) were increased after TBT exposure, which might contribute the increase of unsaturated fatty acids. Furthermore, TBT increased muscle lipid peroxidation products, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), and the expression of immune-related molecules (tumor necrosis factor alpha, interleukin 1 beta and nuclear factor kappa B) in muscle tissues. The disruption of TBT on the lipid accumulation, oxidative stress and immune-toxic effects in muscle tissues of fish might reduce nutritional qualities, and affect growth and health status, which might pose a constant and serious threat to fish and result in economic loss in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Directory of Open Access Journals (Sweden)

    Arumugam Muthu

    2016-11-01

    Full Text Available Abiotic stress in oleaginous microalgae enhances lipid accumulation and is stored in a specialised organelle called lipid droplets (LDs. Both the LDs and body are enriched with major lipid droplet protein (MLDP. It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of S. quadricauda under the salt stress of 10mM concentration is about 0.174μ and in control, the SGR is 0.241μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17. The dry biomass content also decreased drastically at 50mM salt-treated cells (129mg/L compared to control (236mg/L on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  13. Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages.

    Science.gov (United States)

    Rombaldova, Martina; Janovska, Petra; Kopecky, Jan; Kuda, Ondrej

    2017-08-26

    It is becoming increasingly apparent that mutual interactions between adipocytes and immune cells are key to the integrated control of adipose tissue inflammation and lipid metabolism in obesity, but little is known about the non-inflammatory functions of adipose tissue macrophages (ATMs) and how they might be impacted by neighboring adipocytes. In the current study we used metabolipidomic analysis to examine the adaptations to lipid overload of M1 or M2 polarized macrophages co-incubated with adipocytes and explored potential benefits of omega-3 polyunsaturated fatty acids (PUFA). Macrophages adjust their metabolism to process excess lipids and M2 macrophages in turn modulate lipolysis and fatty acids (FA) re-esterification of adipocytes. While M1 macrophages tend to store surplus FA as triacylglycerols and cholesteryl esters in lipid droplets, M2 macrophages channel FA toward re-esterification and β-oxidation. Dietary omega-3 PUFA enhance β-oxidation in both M1 and M2. Our data document that ATMs contribute to lipid trafficking in adipose tissue and that omega-3 PUFA could modulate FA metabolism of ATMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Gema Medina-Gomez

    2007-04-01

    Full Text Available Peroxisome proliferator activated receptor gamma 2 (PPARg2 is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2(-/- Lep(ob/Lep(ob (POKO mouse, resulted in decreased fat mass, severe insulin resistance, beta-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the beta-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a promoting adipose tissue expansion, (b increasing the lipid-buffering capacity of peripheral organs, and (c facilitating the adaptive proliferative response of beta-cells to insulin resistance.

  15. A diet enriched with Mugil cephalus processed roes modulates the tissue lipid profile in healthy rats: a biochemical and chemometric assessment.

    Science.gov (United States)

    Rosa, A; Atzeri, A; Putzu, D; Scano, P

    2016-01-01

    The effect of a diet enriched with mullet bottarga on the lipid profile (total lipids, total cholesterol, unsaturated fatty acids, α-tocopherol, and hydroperoxides) of plasma, liver, kidney, brain, and perirenal adipose tissues of healthy rats was investigated. Rats fed a 10% bottarga enriched-diet for 5 days showed body weights and tissue total lipid and cholesterol levels similar to those of animals fed control diet. Univariate and multivariate results showed that bottarga enriched-diet modified the fatty acid profile in all tissues, except brain. Significant increases of n-3 PUFA, particularly EPA, were observed together with a 20:4 n-6 decrease in plasma, liver, and kidney. Perirenal adipose tissue showed a fat accumulation that reflected the diet composition. The overall data suggest that mullet bottarga may be considered as a natural bioavailable source of n-3 PUFA and qualify it as a traditional food product with functional properties and a potential functional ingredient for preparation of n-3 PUFA enriched foods.

  16. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue.

    Science.gov (United States)

    Löfgren, Lars; Forsberg, Gun-Britt; Ståhlman, Marcus

    2016-06-10

    In this study we present a simple and rapid method for tissue lipid extraction. Snap-frozen tissue (15-150 mg) is collected in 2 ml homogenization tubes. 500 μl BUME mixture (butanol:methanol [3:1]) is added and automated homogenization of up to 24 frozen samples at a time in less than 60 seconds is performed, followed by a 5-minute single-phase extraction. After the addition of 500 μl heptane:ethyl acetate (3:1) and 500 μl 1% acetic acid a 5-minute two-phase extraction is performed. Lipids are recovered from the upper phase by automated liquid handling using a standard 96-tip robot. A second two-phase extraction is performed using 500 μl heptane:ethyl acetate (3:1). Validation of the method showed that the extraction recoveries for the investigated lipids, which included sterols, glycerolipids, glycerophospholipids and sphingolipids were similar or better than for the Folch method. We also applied the method for lipid extraction of liver and heart and compared the lipid species profiles with profiles generated after Folch and MTBE extraction. We conclude that the BUME method is superior to the Folch method in terms of simplicity, through-put, automation, solvent consumption, economy, health and environment yet delivering lipid recoveries fully comparable to or better than the Folch method.

  17. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue

    Science.gov (United States)

    Löfgren, Lars; Forsberg, Gun-Britt; Ståhlman, Marcus

    2016-06-01

    In this study we present a simple and rapid method for tissue lipid extraction. Snap-frozen tissue (15-150 mg) is collected in 2 ml homogenization tubes. 500 μl BUME mixture (butanol:methanol [3:1]) is added and automated homogenization of up to 24 frozen samples at a time in less than 60 seconds is performed, followed by a 5-minute single-phase extraction. After the addition of 500 μl heptane:ethyl acetate (3:1) and 500 μl 1% acetic acid a 5-minute two-phase extraction is performed. Lipids are recovered from the upper phase by automated liquid handling using a standard 96-tip robot. A second two-phase extraction is performed using 500 μl heptane:ethyl acetate (3:1). Validation of the method showed that the extraction recoveries for the investigated lipids, which included sterols, glycerolipids, glycerophospholipids and sphingolipids were similar or better than for the Folch method. We also applied the method for lipid extraction of liver and heart and compared the lipid species profiles with profiles generated after Folch and MTBE extraction. We conclude that the BUME method is superior to the Folch method in terms of simplicity, through-put, automation, solvent consumption, economy, health and environment yet delivering lipid recoveries fully comparable to or better than the Folch method.

  18. Adipose Tissue Redistribution and Ectopic Lipid Deposition in Active Acromegaly and Effects of Surgical Treatment

    Science.gov (United States)

    Reyes-Vidal, Carlos M.; Mojahed, Hamed; Shen, Wei; Jin, Zhezhen; Arias-Mendoza, Fernando; Fernandez, Jean Carlos; Gallagher, Dympna; Bruce, Jeffrey N.; Post, Kalmon D.

    2015-01-01

    Context: GH and IGF-I have important roles in the maintenance of substrate metabolism and body composition. However, when in excess in acromegaly, the lipolytic and insulin antagonistic effects of GH may alter adipose tissue (AT) deposition. Objectives: The purpose of this study was to examine the effect of surgery for acromegaly on AT distribution and ectopic lipid deposition in liver and muscle. Design: This was a prospective study before and up to 2 years after pituitary surgery. Setting: The setting was an academic pituitary center. Patients: Participants were 23 patients with newly diagnosed, untreated acromegaly. Main Outcome Measures: We determined visceral (VAT), subcutaneous (SAT), and intermuscular adipose tissue (IMAT), and skeletal muscle compartments by total-body magnetic resonance imaging, intrahepatic and intramyocellular lipid by proton magnetic resonance spectroscopy, and serum endocrine, metabolic, and cardiovascular risk markers. Results: VAT and SAT masses were lower than predicted in active acromegaly, but increased after surgery in male and female subjects along with lowering of GH, IGF-I, and insulin resistance. VAT and SAT increased to a greater extent in men than in women. Skeletal muscle mass decreased in men. IMAT was higher in active acromegaly and decreased in women after surgery. Intrahepatic lipid increased, but intramyocellular lipid did not change after surgery. Conclusions: Acromegaly may present a unique type of lipodystrophy characterized by reduced storage of AT in central depots and a shift of excess lipid to IMAT. After surgery, this pattern partially reverses, but differentially in men and women. These findings have implications for understanding the role of GH in body composition and metabolic risk in acromegaly and other clinical settings of GH use. PMID:26037515

  19. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    Science.gov (United States)

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  20. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    Science.gov (United States)

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; pbrain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects.

  1. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    International Nuclear Information System (INIS)

    Chen, Qi-Liang; Luo, Zhi; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-01-01

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  2. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi-Liang; Luo, Zhi, E-mail: luozhi99@yahoo.com.cn; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-07-15

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  3. Assessing the Functional Limitations of Lipids and Fatty Acids for Diet Determination: The Importance of Tissue Type, Quantity, and Quality

    Directory of Open Access Journals (Sweden)

    Lauren Meyer

    2017-11-01

    Full Text Available Lipid and fatty acid (FA analysis is commonly used to describe the trophic ecology of an increasing number of taxa. However, the applicability of these analyses is contingent upon the collection and storage of sufficient high quality tissue, the limitations of which are previously unexplored in elasmobranchs. Using samples from 110 white sharks, Carcharodon carcharias, collected throughout Australia, we investigated the importance of tissue type, sample quantity, and quality for reliable lipid class and FA analysis. We determined that muscle and sub-dermal tissue contain distinct lipid class and FA profiles, and were not directly comparable. Muscle samples as small as 12 mg dry weight (49 mg wet weight, provided reliable and consistent FA profiles, while sub-dermal tissue samples of 40 mg dry weight (186 mg wet weight or greater were required to yield consistent profiles. This validates the suitability of minimally invasive sampling methods such as punch biopsies. The integrity of FA profiles in muscle was compromised after 24 h at ambient temperature (~20°C, making these degraded samples unreliable for accurate determination of dietary sources, yet sub-dermal tissue retained stable FA profiles under the same conditions, suggesting it may be a more robust tissue for trophic ecology work with potentially degraded samples. However, muscle samples archived for up to 16 years in −20°C retain their FA profiles, highlighting that tissue from museum or private collections can yield valid insights into the trophic ecology of marine elasmobranchs.

  4. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    Directory of Open Access Journals (Sweden)

    Angela Maria Rizzo

    Full Text Available Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  5. The role of lipids in host microbe interactions.

    Science.gov (United States)

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  6. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils.

    Science.gov (United States)

    Perona, Javier S

    2017-09-01

    The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Oscillations of serum and tissue lipids in rats X-irradiated at different times of day

    International Nuclear Information System (INIS)

    Ahlers, I.; Ahlersova, E.; Toropila, M.; Smajda, B.; Praslicka, M.

    1983-01-01

    Young male Wistar rats (mean body mass 200 g) adapted to a 12:12 h light:dark regimen (7 a.m. to 7 p.m., 7 p.m. to 7 a.m.) were X-irradiated at 3-h intervals during one day with doses of 2.39 or 14.25 Gy and were killed 48 or 24 h afterwards. Nonesterified fatty acids were determined in their serum and white and brown adipose tissue, and triacylglycerols, phospholipids and total cholesterol in their serum and liver. The reaction of serum and tissue lipids during the day varied after both non-lethal and lethal irradiation. After non-lethal exposure, most of the curves, as regards their course, the presence of rhythm and their oscillation properties, concurred with the lipid indicator curves in the control series and indicated that the organism's response is dependent on the time of day. Circadian variation of serum and adipose tissue nonesterified fatty acid levels, the liver triacylglycerol concentration and the adrenal cholesterol concentration in lethally irradiated animals showed no significant dependence on the time of application of the stimulus. An analysis of circadian variation of the effectiveness of a stimulus facilitates understanding of the organism's reactivity better than a single examination in the morning. (author)

  8. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naidu, Parim Brahma; Ponmurugan, Ponnusamy; Begum, Mustapha Sabana; Mohan, Karthick; Meriga, Balaji; RavindarNaik, Ramavat; Saravanan, Ganapathy

    2015-12-01

    Diabetes is often connected with significant morbidity, mortality and also has a pivotal role in the development of cardiovascular diseases. Diet intervention, particularly naturaceutical antioxidants have anti-diabetic potential and avert oxidative damage linked with diabetic pathogenesis. The present study investigated the effects of diosgenin, a saponin from fenugreek, on the changes in lipid profile in plasma, liver, heart and brain in high-fat diet-streptozotocin (HFD-STZ)-induced diabetic rats. Diosgenin was administered to HFD-STZ induced diabetic rats by orally at 60 mg kg(-1) body weight for 30 days to assess its effects on body weight gain, glucose, insulin, insulin resistance and cholesterol, triglycerides, free fatty acids and phospholipids in plasma, liver, heart and brain. The levels of body weight, glucose, insulin, insulin resistance, cholesterol, triglycerides, free fatty acids, phospholipids, VLDL-C and LDL-C were increased significantly (P rats. Administration of diosgenin to HFD-STZ diabetic rats caused a decrease in body weight gain, blood glucose, insulin, insulin resistance and also it modulated lipid profile in plasma and tissues. The traditional plant fenugreek and its constituents mediate its anti-diabetic potential through mitigating hyperglycaemic status, altering insulin resistance by alleviating metabolic dysregulation of lipid profile in both plasma and tissues. © 2014 Society of Chemical Industry.

  9. Appearance of circulating and tissue 14C-lipids after oral 14C-tripalmitate administration in the late pregnant rat

    International Nuclear Information System (INIS)

    Argiles, J.; Herrera, E.

    1989-01-01

    Studies were performed to determine whether and/or how dietary lipids participate in maternal hypertriglyceridemia during late gestation in the rat. After oral administration of glycerol-tri(1-14C)-palmitate, total radioactivity in plasma increased more rapidly in 20-day pregnant rats than in either 19-day pregnant rats or virgin controls. At the peak of plasma radioactivity, four hours after the tracer was administered, most of the plasma label corresponded to 14C-lipids in triglyceride-rich lipoproteins (d less than 1.006), and when expressed per micromol of triglyceride, values were higher in pregnant than in virgin rats. The difference was less after 24 hours, although at this time the level of 14C-lipids in d less than 1.006 lipoproteins was still higher in 20-day pregnant rats than in virgins. Tissue 14C-lipids, as expressed per gram of fresh weight, were similar in pregnant and virgin rats, but the values in mammary glands were much higher in the former group. Estimated recovery of administered radioactivity four hours after tracer in total white adipose tissue, mammary glands, and plasma lipids was higher in pregnant than in virgin rats. No difference was found between 20-day pregnant and virgin rats either in the label retained in the gastrointestinal tract or in that exhaled as 14C-CO2 during the first four hours following oral administration of 14C-tripalmitate. These findings plus the known maternal hyperphagia, indicate that in the rat at late pregnancy triglyceride intestinal absorption is unchanged or even enhanced and that dietary lipids actively contribute to both maternal hypertriglyceridemia and lipid uptake by the mammary gland

  10. Effects of Loud Noise on Oxidation and Lipid peroxidation Variations of Liver Tissue of Rabbit

    Directory of Open Access Journals (Sweden)

    Mirzaei Ramazan

    2009-06-01

    Full Text Available Background: In today's world, noise is one of the major physical pollutants. The exact mechanism leading to tissue damage in loud noise is not clear. There are increasing evidences that show damage to cochlear tissue by noise is linked to cell injury induced by free radical species. The aim of this study was to investigate the relationship between change in liver tissue glutathione (anti- oxidant and malondialdehyde (one metabolite of lipid oxidation levels that occur in rabbits which were exposed to continuous loud noise.Materials and Methods: This experimental study was performed on 12 white Newzeland male rabbits in Tarbiat Modarres University in 2004. The rabbits were assigned to the following two groups: control, and exposed to continuous loud noise for 96 hours (8 h/day for 12 days, SPL=110dBA and 250Hz to 20 KHz. The concentration of malondialdehyde (MDA and glutathione (GSH in liver tissue samples were measured in rabbits after exposure to noise. Thiobarbituric acid reacting substance, Ellman's reagent and spectrophotometry techniques were used for this measurement. The data were statically analyzed by SPSS software and 2 groups were compared by t-test. Differences at the level of P<0.05 were considered statistically significant.Results: Comparison of the biochemical parameters of GSH and MDA measured in treated group with control indicated that antioxidant and lipid peroxidants parameters were suppressed in treated group compared to control group (p<0.05.Conclusion: Possible similarities between rabbit and human biological system indicate the possible role of noise in causation of oxidative stress in context with liver tissue impairm

  11. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components.

    Science.gov (United States)

    Rhoades, Elizabeth R; Geisel, Rachel E; Butcher, Barbara A; McDonough, Sean; Russell, David G

    2005-05-01

    The chronic inflammatory response to Mycobacterium generates complex granulomatous lesions that balance containment with destruction of infected tissues. To study the contributing factors from host and pathogen, we developed a model wherein defined mycobacterial components and leukocytes are delivered in a gel, eliciting a localized response that can be retrieved and analysed. We validated the model by comparing responses to the cell wall lipids from Mycobacterium bovis bacillus Calmette-Guerin (BCG) to reported activities in other models. BCG lipid-coated beads and bone marrow-derived macrophages (input macrophages) were injected intraperitoneally into BALB/c mice. Input macrophages and recruited peritoneal exudate cells took up fluorescently tagged BCG lipids, and matrix-associated macrophages and neutrophils produced tumor necrosis factor, interleukin-1alpha, and interleukin-6. Leukocyte numbers and cytokine levels were greater in BCG lipid-bearing matrices than matrices containing non-coated or phosphatidylglycerol-coated beads. Leukocytes arrived in successive waves of neutrophils, macrophages and eosinophils, followed by NK and T cells (CD4(+), CD8(+), or gammadelta) at 7 days and B cells within 12 days. BCG lipids also predisposed matrices for adherence and vascularization, enhancing cellular recruitment. We submit that the matrix model presents pertinent features of the murine granulomatous response that will prove to be an adaptable method for study of this complex response.

  12. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  13. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    Science.gov (United States)

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  14. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    Science.gov (United States)

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. LipidPedia: a comprehensive lipid knowledgebase.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  16. High-resolution multicontrast-weighted MR imaging from human carotid endarterectomy specimens to assess carotid plaque components

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, Sebastiano; Mancino, Stefano; Stefanini, Matteo; Chiocchi, Marcello; Simonetti, Giovanni [University ' ' Tor Vergata' ' , Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology, Nuclear Medicine and Radiotherapy, Rome (Italy); Mauriello, Alessandro; Spagnoli, Luigi Giusto [University ' ' Tor Vergata' ' , Department of Biopathology and Image Diagnostics, Institute of Anatomic Pathology, Rome (Italy)

    2008-12-15

    The American Heart Association modified classification for atherosclerotic plaque lesions has defined vulnerable plaques as those prone to rupture. The aim of our study was to assess the sensitivity and specificity of 1.5-T magnetic resonance imaging (MRI) in the evaluation of the characteristics of plaque components. Twelve carotid endarterectomy specimens were imaged by ex-vivo high-resolution 1.5-T MRI. Thirty-four cross-section axial images were selected for pixel-by-pixel basis analysis to demonstrate the most significant tissue features. Data were then submitted for histopathological examination and each specimen analysed in the light of the histological components (lipid core, fibrous tissue, fibrous/loose connective tissue, calcifications). The overall sensitivity and specificity rates for each tissue type were, respectively, 92% and 74% for the lipid core, 82% and 94% for the fibrous tissue, 72% and 87% for the fibrous/loose connective tissue, and 98% and 99% for calcification. The use of 1.5-T MRI appears to be a reliable tool to characterise plaque components and could help in the screening of patients with high risk of plaque rupture. The possibility of applying MRI in clinical daily practice may change the non-invasive approach to carotid artery diagnostic imaging, thus allowing an early identification of patients with vulnerable plaques. (orig.)

  17. Hypericin-mediated selective photomodification of connective tissues

    International Nuclear Information System (INIS)

    Hovhannisyan, V.; Guo, H. W.; Chen, Y. F.; Hovhannisyan, A.; Ghukasyan, V.; Dong, C. Y.

    2014-01-01

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues

  18. Hypericin-mediated selective photomodification of connective tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hovhannisyan, V., E-mail: hovv@phys.ntu.edu.tw; Guo, H. W.; Chen, Y. F., E-mail: yfchen@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Hovhannisyan, A. [Multimedia and Programming, European Regional Education Academy, Yerevan 0037 (Armenia); Ghukasyan, V. [Neuroscience Center, University of North Carolina at Chapel Hill, North Carolina 27514 (United States); Dong, C. Y., E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2014-12-29

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.

  19. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue.

    Science.gov (United States)

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-08-28

    Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFalpha) values showed overexpression (198%). Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  20. Single-component supported lipid bilayers probed using broadband nonlinear optics.

    Science.gov (United States)

    Olenick, Laura L; Chase, Hilary M; Fu, Li; Zhang, Yun; McGeachy, Alicia C; Dogangun, Merve; Walter, Stephanie R; Wang, Hong-Fei; Geiger, Franz M

    2018-01-31

    Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm -1 , which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm -1 and another at ∼2880 cm -1 . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H 2 O-D 2 O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

  1. Metabolism of 15(p123I iodophenyl-)pentadecanoic acid in heart muscle and noncardiac tissues

    International Nuclear Information System (INIS)

    Reske, S.N.; Sauer, W.; Winkler, C.; Machulla, H.J.; Knust, J.

    1985-01-01

    The uptake and turnover of W(p 123 I iodophenyl-)pentadecanoic acid (I-PPA), a radioiodinated free-fatty-acid analog, was examined in the heart, lung, liver, kidneys, spleen, and skeletal muscle of rats. At 2 min post injection, a high cardiac uptake of 4.4% dose per gram had already been achieved; this was followed by a rapid, two-component, tracer clearance. The kinetics of tissue concentrations of labeled hydrophilic catabolites indicated a rapid oxidation of I-PPA and the subsequent washout of I-PPA catabolites from heart-muscle tissue. The fractional distribution of the labeled cardiac lipids compared favorably with previously reported values for 3 H-oleic- or 14 C-palmitic-acid-labeled myocardial lipids. Typical patterns of I-PPA metabolism were observed in tissues; dedpending on primary fatty-acid oxidation, lipid metabolism regulation, or I-PPA-catabolite excretion. The tissue concentrations and kinetics of I-PPA and its metabolites in the heart muscle indicated that general pathways of cardiac-lipid metabolism are traced by this new γ-emitting isotope-labeled radiopharmaceutical. (orig.)

  2. Effect of fenitrothion and disulfoton on lipid metabolism in tissues of white leghorn chicks (Gallus domesticus)

    International Nuclear Information System (INIS)

    Gopal, P.K.; Chopra, Arvind; Ahuja, S.P.

    1990-01-01

    The effects of acute and chronic toxicity due to Disulfoton (diethyl S-(2-ehtyl thio) ethyl phosphorothionate) and Fenitrothion (dimethyl P-3-methyl-4 nitrophenyl phosphorothionate) on the lipid metabolism in tissues of white leghorn chicks (Gallus domesticus) was studied by using 32 P-phosphate, 2- 14 C-acetate and U- 14 C-glucose as precursors. During acute toxicity, the biosynthesis of fatty acids and aerobic oxidation of glucose appear to be inhibited in nervous tissues. However, during chronic toxicity, the biosynthesis of fatty acids is not inhibited. The biosynthesis of phospholipids is depressed in certain tissues due to decreased availability of diglyceride precursors during acute toxicity. During chronic toxicity, the formation of diglyceride from phosphatidic acid appears to be inhibited. (author). 14 refs., 4 tabs

  3. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (

    Directory of Open Access Journals (Sweden)

    Janine Donaldson

    2017-05-01

    Full Text Available Objective The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion Thus, despite the various high-fat diets modifying the fatty acid profile of the birds’ tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.

  4. Analysis of lipid raft molecules in the living brain slices.

    Science.gov (United States)

    Kotani, Norihiro; Nakano, Takanari; Ida, Yui; Ito, Rina; Hashizume, Miki; Yamaguchi, Arisa; Seo, Makoto; Araki, Tomoyuki; Hojo, Yasushi; Honke, Koichi; Murakoshi, Takayuki

    2017-08-24

    Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  6. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    Directory of Open Access Journals (Sweden)

    Remesar Xavier

    2007-08-01

    Full Text Available Abstract Background Short-term OE (oleoyl-estrone treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL were decreased by 52%, those of Fatty Acid Synthase (FAS by 95%, those of Hormone Sensible Lipase (HSL by 32%, those of Acetyl CoA Carboxylase (ACC by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b by 45%, and those of Fatty Acid Transport Protein 1 (FATP1 and Adipocyte Fatty Acid Binding Protein (FABP4 by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα values showed overexpression (198%. Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  7. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and components. 864.2220 Section 864.2220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture...

  8. On the role of catalase in the oxidation of tissue fatty acids

    International Nuclear Information System (INIS)

    Crane, D.; Masters, C.

    1984-01-01

    The role of catalase in lipid metabolism has been studied by means of a comparison of the turnover characteristics of the major lipid classes in the normal mouse with those of animals in which the catalase activity had been inhibited and blocked by aminotriazole and allylisopropylacetamide. Double isotope ratios were determined in the lipid fractions of several tissues following the injection of labeled glycerol, and a number of significant differences were identified between these treatments. Since catalase is recognized as an integral component of the peroxisomal pathway of fatty acid oxidation, these results may be taken as indicating that interruption of the process of peroxisomal beta-oxidation in this manner cause extensive perturbations of lipid metabolism in the living animal, and these perturbations extend well beyond those tissues where the predominant localization of these organelles occurs. The concept which derives from these data--that of a significant regulatory role of peroxisomes in relation to the overall balance of lipid metabolism in the animal body--is described and discussed

  9. Lipid mobilization from human abdominal, subcutaneous adipose tissue is independent of sex during steady-state exercise

    DEFF Research Database (Denmark)

    Bülow, Jens; Gjeraa, Kirsten; Enevoldsen, Lotte Hahn

    2006-01-01

    The aim of the study was to elucidate whether there are sex differences of significant biological importance in the human abdominal, subcutaneous adipose tissue lipid metabolism when studied by Fick's Principle during rest and exercise in steady-state conditions. The net mobilization of fatty acids...... intensity, and for another 60 min during post-exercise recovery. The results show that there are not significant sex differences with respect to the steady-state fatty acid and glycerol mobilizations neither during resting condition nor during exercise....... and glycerol from the abdominal, subcutaneous adipose tissue was measured by arterio-venous catheterizations and simultaneous measurements of adipose tissue blood flow with the local Xe-clearance technique in 16 healthy, young normal weight men and women during rest, during 1 h of exercise at moderate...

  10. The Flexibility of Ectopic Lipids

    Directory of Open Access Journals (Sweden)

    Hannah Loher

    2016-09-01

    Full Text Available In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL, skeletal (intramyocellular lipids; IMCL or cardiac muscle cells (intracardiomyocellular lipids; ICCL. Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass, insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  11. Effect of gender, age, diet and smoking status on chronomics of circulating plasma lipid components in healthy Indians.

    Science.gov (United States)

    Singh, Ranjana; Sharma, Sumita; Singh, Rajesh K; Mahdi, Abbas A; Singh, Raj K; Lee Gierke, Cathy; Cornelissen, Germaine

    2016-08-01

    Circulating lipid components were studied under near-normal tropical conditions (around Lucknow) in 162 healthy volunteers - mostly medical students, staff members and members of their families (103 males and 59 females; 7 to 75y), subdivided into 4 age groups: A (7-20y; N=42), B (21-40y; N=60), C (41-60y; N=35) and D (61-75y; N=25). Blood samples were collected from each subject every 6h for 24h (4 samples). Plasma was separated and total cholesterol, high-density-lipoprotein (HDL) cholesterol, phospholipids and total lipids were measured spectrophotometrically. Data from each subject were analyzed by cosinor. We examined by multiple-analysis of variance how the MESOR (Midline Estimating Statistic Of Rhythm, a rhythm-adjusted mean) and the circadian amplitude of these variables is affected by gender, age, diet (vegetarian vs. omnivore), and smoking status. In addition to effects of gender and age, diet and smoking were found to affect the MESOR of circulating plasma lipid components in healthy Indians residing in northern India. Age also affected the circadian amplitude of these variables. These results indicate the possibility of using non-pharmacological interventions to improve a patient's metabolic profile before prescribing medication under near normal tropical conditions. They also add information that may help refine cut-off values in the light of factors shown here to affect blood lipids. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. TOF-SIMS analysis of adipose tissue from patients with chronic kidney disease

    Science.gov (United States)

    Sjövall, Peter; Johansson, Björn; Belazi, Dalila; Stenvinkel, Peter; Lindholm, Bengt; Lausmaa, Jukka; Schalling, Martin

    2008-12-01

    In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used for detecting systematic variations in the spatial and compositional distributions of lipids in human tissue samples. Freeze-dried sections of subcutaneous adipose tissue from six chronic kidney disease (CKD) patients and six control subjects were analysed by TOF-SIMS using 25 keV Bi 3+ primary ions. Principal component analysis of signal intensities from different fatty acids, diacylglycerol and triacylglycerol ions showed evidence for systematic variations in the lipid distributions between different samples. The main observed difference in the spectra was a concerted variation in the signal intensities from the saturated lipids relative to the unsaturated lipids, while variations in the fatty acid chain lengths were considerably weaker. Furthermore, the three samples showing the lowest degree of saturation came from CKD patients, while three of the four samples with the highest degree of saturation were from control subjects, indicating that low saturation levels in the glycerol lipid distribution may be more frequent in patients with CKD. Systematic differences in the spatial distributions between saturated and unsaturated glycerol lipids were observed in several analysed areas.

  13. Genetic variation in lipid desaturases and its impact on the development of human disease.

    Science.gov (United States)

    Merino, Diana M; Ma, David W L; Mutch, David M

    2010-06-18

    Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2) and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management.

  14. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue.

    Directory of Open Access Journals (Sweden)

    Jialin Xu

    Full Text Available AIMS: The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD, regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting. METHODS AND RESULTS: Male C57BL/6 (WT and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36 and Fatty acid transport protein (FATP 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. CONCLUSION: Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.

  15. A Diurnal Rhythm in Brown Adipose Tissue Causes Rapid Clearance and Combustion of Plasma Lipids at Wakening

    DEFF Research Database (Denmark)

    van den Berg, Rosa; Kooijman, Sander; Noordam, Raymond

    2018-01-01

    -amplitude rhythm in fatty acid uptake by BAT that synchronized with the light/dark cycle. Highest uptake was found at the onset of the active period, which coincided with high lipoprotein lipase expression and low angiopoietin-like 4 expression by BAT. Diurnal rhythmicity in BAT activity determined the rate...... the therapeutic potential of promoting BAT activity. van den Berg et al. show a strong circadian rhythm in fatty acid uptake by brown adipose tissue that peaks at wakening regardless of the light exposure period. Consequently, postprandial lipid handling by brown adipose tissue is highest at wakening, resulting...

  16. Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning

    DEFF Research Database (Denmark)

    van Engelen, Arna; van Dijk, Anouk C; Truijman, Martine T.B.

    2015-01-01

    implementation of supervised methods. In this paper we segment carotid plaque components of clinical interest (fibrous tissue, lipid tissue, calcification and intraplaque hemorrhage) in a multicenter MRI study. We perform voxelwise tissue classification by traditional same-center training, and compare results...... not yield significant differences from that reference. We conclude that both extensive feature normalization and transfer learning can be valuable for the development of supervised methods that perform well on different types of datasets.......Automated segmentation of plaque components in carotid artery MRI is important to enable large studies on plaque vulnerability, and for incorporating plaque composition as an imaging biomarker in clinical practice. Especially supervised classification techniques, which learn from labeled examples...

  17. Changes in the content of edible and non-edible components and distribution of tissue components in cockerels and capons

    Directory of Open Access Journals (Sweden)

    Magdalena Zawacka

    2018-04-01

    Full Text Available The aim of this study was to determine the effects of castration and age on the content of edible and non-edible components, and the distribution of tissue components in the carcasses of cockerels and capons. The study was conducted on 200 birds (Green-legged Partridge, divided into two sex categories (with 5 replications per group and 20 birds per replication, raised to 28 wk of age. At 8 wk of age, 100 birds were surgically castrated and afterwards at 12 wk of age and at four-wk intervals, 10 intact cockerels and 10 capons were selected randomly and slaughtered. Cockerels, compared with capons, were characterized by a higher proportion of edible components at 24 and 28 wk of age, and a more desirable carcass tissue composition due to a higher content of lean meat in total body weight (BW. Capons had higher abdominal fat content than cockerels, which resulted in a higher percentage of non-edible components in their BW at 24 and 28 wk of age. Differences in the distribution of lean meat in the carcass were noted from 20 wk of age in both castrated and intact birds. The content of breast muscles increased in capons, and the content of leg muscles (thigh and drumstick increased in cockerels. The results of this study indicate that in view of the optimal lean meat content of the carcass and the optimal distribution of major tissue components, Green-legged Partridge capons should be fattened for a maximum period of 24 wk.

  18. Changes in the content of edible and non-edible components and distribution of tissue components in cockerels and capons

    International Nuclear Information System (INIS)

    Zawacka, M.; Gesek, M.; Michalik, D.; Murawska, D.

    2018-01-01

    The aim of this study was to determine the effects of castration and age on the content of edible and non-edible components, and the distribution of tissue components in the carcasses of cockerels and capons. The study was conducted on 200 birds (Green-legged Partridge), divided into two sex categories (with 5 replications per group and 20 birds per replication), raised to 28 wk of age. At 8 wk of age, 100 birds were surgically castrated and afterwards at 12 wk of age and at four-wk intervals, 10 intact cockerels and 10 capons were selected randomly and slaughtered. Cockerels, compared with capons, were characterized by a higher proportion of edible components at 24 and 28 wk of age, and a more desirable carcass tissue composition due to a higher content of lean meat in total body weight (BW). Capons had higher abdominal fat content than cockerels, which resulted in a higher percentage of non-edible components in their BW at 24 and 28 wk of age. Differences in the distribution of lean meat in the carcass were noted from 20 wk of age in both castrated and intact birds. The content of breast muscles increased in capons, and the content of leg muscles (thigh and drumstick) increased in cockerels. The results of this study indicate that in view of the optimal lean meat content of the carcass and the optimal distribution of major tissue components, Green-legged Partridge capons should be fattened for a maximum period of 24 wk.

  19. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    Science.gov (United States)

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements.

  20. Detection of Connective Tissue Disorders from 3D Aortic MR Images Using Independent Component Analysis

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Zhao, Fei; Zhang, Honghai

    2006-01-01

    A computer-aided diagnosis (CAD) method is reported that allows the objective identification of subjects with connective tissue disorders from 3D aortic MR images using segmentation and independent component analysis (ICA). The first step to extend the model to 4D (3D + time) has also been taken....... ICA is an effective tool for connective tissue disease detection in the presence of sparse data using prior knowledge to order the components, and the components can be inspected visually. 3D+time MR image data sets acquired from 31 normal and connective tissue disorder subjects at end-diastole (R......-wave peak) and at 45\\$\\backslash\\$% of the R-R interval were used to evaluate the performance of our method. The automated 3D segmentation result produced accurate aortic surfaces covering the aorta. The CAD method distinguished between normal and connective tissue disorder subjects with a classification...

  1. Extraction of lipid components from hibiscus seeds by supercritical carbon dioxide and ethanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Holser, Ronald A.; King, J. W. (Jerry W.); Bost, G.

    2002-01-01

    The genus Hibiscus exhibits great diversity in the production of natural materials with edible and industrial applications. The seeds of twelve varieties of Hibiscus were investigated as a source for triglycerides and phospholipids that could be used in functional foods. Lipid components were extracted from seed samples ground to a nominal particle diameter of 0.1 mm. Extractions were performed with an ISCO model 3560 supercritical fluid extractor using carbon dioxide and a mixture of carbon dioxide modified with ethanol. The neutral lipids were extracted with carbon dioxide at 80 C and 5370 MPa for 45 min. Polar lipids were subsequently extracted with a mixture of carbon dioxide and 15% ethanol at the same temperature and pressure. High performance liquid chromatography (HPLC) was used to analyze extracts for major neutral and polar lipid classes. A silica column was used with a solvent gradient of hexane/isopropanol/ water and ultraviolet (UV) and evaporative light scattering detectors (ELSD). An aliquot of each triglyceride fraction was trans-methylated with sodium methoxide and analyzed by gas chromatography to obtain the corresponding fatty acid methyl esters. The total lipids extracted ranged from 8.5% for a variety indigenous to Madagascar (H. calyphyllus) to 20% for a hybrid species (Georgia Rose). The average oil yield was 11.4% for the other varieties tested. The fatty acid methyl ester analysis displayed a high degree of unsaturation for all varieties tested, e. g., 75 ' 83%. Oleic, linoleic, and linolenic fatty acids were the predominate unsaturated fatty acids with only minor amounts of C14, C18, and C20 saturated fatty acids measured. Palmitic acid was identified as the predominate saturated fatty acid. The distribution of the major phospholipids, i. e., phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylcholine, and lysophosphatidylcholine, was found to vary significantly among the hibiscus species examined

  2. Bone tissue, blood lipids and inflammatory profiles in adolescent male athletes from sports contrasting in mechanical load.

    Science.gov (United States)

    Agostinete, Ricardo R; Duarte, João P; Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Tavares, Oscar M; Conde, Jorge M; Fontes-Ribeiro, Carlos A; Condello, Giancarlo; Capranica, Laura; Caires, Suziane U; Fernandes, Rômulo A

    2017-01-01

    Exploring the effect of non-impact and impact sports is particular relevant to understand the interaction between skeletal muscle and bone health during growth. The current study aimed to compare total and regional bone and soft-tissue composition, in parallel to measurements of blood lipid and inflammatory profiles between adolescent athletes and non-athletes. Anthropometry, biological maturity, dual energy X-ray absorptiometry (DXA) scans, training load and lipid and inflammatory profiles were assessed in a cross-sectional sample of 53 male adolescents (20 non-athletes, 15 swimmers and 18 basketball players) aged 12-19 years. Multiple comparisons between groups were performed using analysis of variance, covariance and magnitude effects (ES-r and Cohen's d). The comparisons of controls with other groups were very large for high-sensitivity C-reactive protein (d range: 2.17-2.92). The differences between sports disciplines, regarding tissue outputs obtained from DXA scan were moderate for all variables except fat tissue (d = 0.4). It was possible to determine small differences (ES-r = 0.17) between controls and swimmers for bone area at the lower limbs (13.0%). In parallel, between swimmers and basketball players, the gradient of the differences was small (ES-r range: 0.15-0.23) for bone mineral content (24.6%), bone area (11.3%) and bone mineral density (11.1%) at the lower limbs, favoring the basketball players. These observations highlight that youth male athletes presented better blood and soft tissues profiles with respect to controls. Furthermore, sport-specific differences emerged for the lower limbs, with basketball players presenting higher bone mineral content, area and density than swimmers.

  3. Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals

    International Nuclear Information System (INIS)

    Hudak, K.A.; Thompson, J.E.

    1997-01-01

    Pulse-chase labeling of carnation (Dianthus caryophyllus L. cv Improved White Sim) petals with [14C]acetate has provided evidence for a hydrophobic subcompartment of lipid-protein particles within the cytosol that resemble oil bodies, are formed by blebbing from membranes, and are enriched in lipid metabolites (including fragrance volatiles) derived from membrane fatty acids. Fractionation of the petals during pulse-chase labeling revealed that radiolabeled fatty acids appear first in microsomal membranes and subsequently in cytosolic lipid-protein particles, indicating that the particles originate from membranes. This interpretation is supported by the finding that the cytosolic lipid-protein particles contain phospholipid as well as the same fatty acids found in microsomal membranes. Radiolabeled polar lipid metabolites (methanol/ water-soluble) were detectable in both in situ lipid-protein particles isolated from the cytosol and those generated in vitro from isolated radiolabeled microsomal membranes. The lipid-protein particles were also enriched in hexanal, trans-2-hexenal, 1-hexanol, 3-hexen-1-ol, and 2-hexanol, volatiles of carnation flower fragrance that are derived from membrane fatty acids through the lipoxygenase pathway. Therefore, secondary lipid metabolites, including components of fragrance, appear to be formed within membranes of petal tissue and are subsequently released from the membrane bilayers into the cytosol by blebbing of lipid-protein particles

  4. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations......Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...

  5. Cell type-specific modulation of lipid mediator's formation in murine adipose tissue by omega-3 fatty acids

    Czech Academy of Sciences Publication Activity Database

    Kuda, Ondřej; Rombaldová, Martina; Janovská, Petra; Flachs, Pavel; Kopecký, Jan

    2016-01-01

    Roč. 469, č. 3 (2016), s. 731-736 ISSN 0006-291X R&D Projects: GA ČR(CZ) GP13-04449P; GA ČR(CZ) GA13-00871S; GA MŠk(CZ) LH14040 Institutional support: RVO:67985823 Keywords : adipose tissue macrophages * omega-3 PUFA * protectin D1 * lipid mediators * lipidomics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.466, year: 2016

  6. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy.

    Science.gov (United States)

    Olsztyńska-Janus, Sylwia; Szymborska-Małek, Katarzyna; Gąsior-Głogowska, Marlena; Walski, Tomasz; Komorowska, Małgorzata; Witkiewicz, Wojciech; Pezowicz, Celina; Kobielarz, Magdalena; Szotek, Sylwia

    2012-01-01

    Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.

  7. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  8. Supported Lipid Bilayers with Phosphatidylethanolamine as the Major Component.

    Science.gov (United States)

    Sendecki, Anne M; Poyton, Matthew F; Baxter, Alexis J; Yang, Tinglu; Cremer, Paul S

    2017-11-21

    Phosphatidylethanolamine (PE) is notoriously difficult to incorporate into model membrane systems, such as fluid supported lipid bilayers (SLBs), at high concentrations because of its intrinsic negative curvature. Using fluorescence-based techniques, we demonstrate that having fewer sites of unsaturation in the lipid tails leads to high-quality SLBs because these lipids help to minimize the curvature. Moreover, shorter saturated chains can help maintain the membranes in the fluid phase. Using these two guidelines, we find that up to 70 mol % PE can be incorporated into SLBs at room temperature and up to 90 mol % PE can be incorporated at 37 °C. Curiously, conditions under which three-dimensional tubules project outward from the planar surface as well as conditions under which domain formation occurs can be found. We have employed these model membrane systems to explore the ability of Ni 2+ to bind to PE. It was found that this transition metal ion binds 1000-fold tighter to PE than to phosphatidylcholine lipids. In the future, this platform could be exploited to monitor the binding of other transition metal ions or the binding of antimicrobial peptides. It could also be employed to explore the physical properties of PE-containing membranes, such as phase domain behavior and intermolecular hydrogen bonding.

  9. Jiao Tai Wan Attenuates Hepatic Lipid Accumulation in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhaoyi Huang

    2013-01-01

    Full Text Available Jiao Tai Wan (JTW, a Chinese herbal formula containing Rhizoma Coptidis and Cortex Cinnamomi, has been used for diabetic treatment for many years. The aim of this study was to determine the main components in JTW and to investigate the effects of JTW on hepatic lipid accumulation in diabetic rats and humans. JTW extract was prepared and the main components were assayed by HPLC. An animal model of diabetes mellitus was established and JTW was administered intragastrically. In the clinical study, diabetic patients with poor glycemic control were treated with JTW. Blood glucose and lipid parameters, liver histology, hepatic triglyceride content and lipogenic gene expression were examined. Our data demonstrated that JTW significantly improved hyperglycemia, hyperlipidemia and hepatic lipid accumulation in diabetic rats. This was accompanied by the down-regulation of acetyl coenzyme A carboxylase (ACC and fatty acid synthase (FAS protein expressions, and the up-regulation of AMP-activated protein kinase (AMPK and phosphorylated-ACC (pACC protein expressions in the liver tissues. Diabetic patients also exhibited decreases in their hepatic triglyceride content. The results suggest that JTW attenuates hepatic lipid accumulation in diabetic rats and humans. These beneficial effects are possibly associated with the inhibition of lipogenic gene expression in the liver.

  10. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Directory of Open Access Journals (Sweden)

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  11. Lipidomics: the function of vital lipids in embryogenesis preventing autism spectrum disorders, treating sterile inflammatory diatheses with a lymphopoietic central nervous system component.

    Science.gov (United States)

    Tallberg, Thomas; Dabek, Jan; Hallamaa, Raija; Atroshi, Faik

    2011-01-01

    The central role performed by billions of vital central nervous system (CNS) lipids "lipidomics" in medical physiology is usually overlooked. A metabolic deficiency embracing these vital lipids can form the aetiology for a variety of diseases. CNS lipids regulate embryogenesis, cell induction, mental balance by preventing autism spectrum disorders, depression, burn-out syndromes like posttraumatic stress disease PTSD, by guarding normal immunity, treating sterile inflammatory diatheses with a titanium containing lymphopoietic CNS lipid component. The propaganda driving for unphysiological fat-free diets is dangerous and can cause serious health problems for a whole generation. This article presents a broad list of various mental and motor bodily functions of which the healthy function depends on these vital CNS lipids. A rigorous fat-free diet can provoke these metabolic lipid deficiencies but they can fortunately be compensated by dietary supplementation, but not by pharmacologic treatment.

  12. Visual and chemical tissue markers for bovine carcass components

    International Nuclear Information System (INIS)

    Lary, R.Y.; Byers, F.M.; Cross, H.R.; Schelling, G.T.; Petersen, H.D.

    1988-01-01

    A two-component, nontoxic, quantifiable animal/carcass tracing system was developed using riboflavin as an on-premises, initial carcass identifier visible under longwave ultraviolet (UV) light and deuterium oxide (D 2 O) as a tracer analytically quantified via fixed wavelength infrared spectrophotometry. Twenty-four cull cows and heifers were allocated into eight antemortem treatment groups (1, 12, 24, 48, 72, 96, 120, 144 h) for evaluation of the efficacy of riboflavin and D 2 O as tissue tracers in postmortem meat tissues. All cattle were slaughtered using conventional procedures and inspection. To study postmortem riboflavin marker changes due to constant light exposure over time, fluorescence and emission intensity scores were obtained by a trained panel 24, 48, and 168 h postslaughter. The riboflavin marker intensity rating means for UV fluorescence were classified as identifiable on all carcasses when evaluated under UV light, but were classified as not identifiable when evaluated under ambient light. Deuterium oxide levels in all tissue water samples, regardless of antemortem infusion group, contained D 2 O concentrations at least 2.5 times greater than those found in background water. Deuterium oxide was shown to disperse rapidly throughout living tissues. Correlations within animals for D 2 O levels from blood and muscle were all highly significant (r = .99)

  13. Lipidomics: The Function of Vital Lipids in Embryogenesis Preventing Autism Spectrum Disorders, Treating Sterile Inflammatory Diatheses with a Lymphopoietic Central Nervous System Component

    Directory of Open Access Journals (Sweden)

    Thomas Tallberg

    2011-01-01

    Full Text Available The central role performed by billions of vital central nervous system (CNS lipids “lipidomics” in medical physiology is usually overlooked. A metabolic deficiency embracing these vital lipids can form the aetiology for a variety of diseases. CNS lipids regulate embryogenesis, cell induction, mental balance by preventing autism spectrum disorders, depression, burn-out syndromes like posttraumatic stress disease PTSD, by guarding normal immunity, treating sterile inflammatory diatheses with a titanium containing lymphopoietic CNS lipid component. The propaganda driving for unphysiological fat-free diets is dangerous and can cause serious health problems for a whole generation. This article presents a broad list of various mental and motor bodily functions of which the healthy function depends on these vital CNS lipids. A rigorous fat-free diet can provoke these metabolic lipid deficiencies but they can fortunately be compensated by dietary supplementation, but not by pharmacologic treatment.

  14. Lysosomal lipid storage diseases.

    Science.gov (United States)

    Schulze, Heike; Sandhoff, Konrad

    2011-06-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.

  15. Dietary n-3 long-chain polyunsaturated fatty acids modify phosphoenolpyruvate carboxykinase activity and lipid synthesis from glucose in adipose tissue of rats fed a high-sucrose diet.

    Science.gov (United States)

    Londero, Lisiane G; Rieger, Débora K; Hansen, Fernanda; Silveira, Simone L; Martins, Tiago L; Lulhier, Francisco; da Silva, Roselis S; Souza, Diogo O; Perry, Marcos L S; de Assis, Adriano M

    2013-12-01

    Long-chain polyunsaturated n-3 fatty acids (n-3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep-AT) and liver were investigated. Male rats were fed a high-sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU-FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n-3 LCPUFAs prevented sucrose-induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n-3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep-AT of rats fed the SU-FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n-3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Electron paramagnetic resonance (EPR spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    2013-01-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.

  17. Net energy levels on the lipid profile of pork

    Directory of Open Access Journals (Sweden)

    Stephan Alexander da Silva Alencar

    2017-09-01

    Full Text Available ABSTRACT: This study was conducted to evaluate the effects of net energy levels on the lipid profile of adipose tissue and muscle of swines. A total of 90 animals, with initial weight of 71.94±4.43kg, were used, and distributed in a randomized block design in five net energy levels (2,300, 2,425, 2,550, 2,675, and 2,800Kcal kg-1 feed, with nine replicates and two animals per experimental unit. Lipid profiles of adipose tissue and muscle were analyzed using gas chromatography. Increasing the levels of net energy using soybean oil, improved the lipid profile of adipose tissue and muscle, increased linearly (P<0.05 the concentrations of polyunsaturated fatty acids, especially linoleic and α-linolenic acid, reduced linearly (P<0.05 the monounsaturated and saturated fatty acids and omega 6: omega 3. In adipose tissue was observed linear reduction (P<0.05 of atherogenic and thrombogenic indexes. In conclusion, increasing the level of net energy of the diet using soybean oil improved the lipid profile of adipose tissue and muscle.

  18. Preliminary study on health-related lipid components of bakery products.

    Science.gov (United States)

    Cercaci, Luisito; Conchillo, Ana; Rodriguez-Estrada, Maria Teresa; Ansorena, Diana; Astiasarán, Iciar; Lercker, Giovanni

    2006-06-01

    The purpose of this study was to evaluate the presence of health-related lipid components, in particular trans fatty acids and sterol oxidation products, in four bakery products. Both types of components are known for their adverse biological effects, especially the increase of atherogenic risk, and therefore it is advisable to monitor their presence in food products. Trans fatty acids were determined by silver-ion thin-layer chromatography-gas chromatography, whereas sterol oxidation was assessed by gas chromatography and gas chromatography-mass spectrometry determination of 7-keto derivatives (tracers of sterol oxidation). The amount of trans fatty acids (0.02 to 3.13 g/100 g of product), sterols (34.9 to 128.3 mg/100 g of product), and 7-keto derivatives of sterols (1.88 to 3.14 mg/kg of product) varied considerably among samples. The supply of phytosterols (22.5 to 64.0 mg/100 g of product) was not significant, and the extent of oxidation of most phytosterols to its corresponding 7-keto derivative was low (0.29 to 0.84%), except for that of brassicasterol (2.01 to 3.11%). The quality of ingredients and raw materials seems to have greatly influenced the fatty acid profile, stability, safety, and quality of the final product; these ingredients should be chosen with extreme care to decrease their potential negative health effects and to increase safety of these products.

  19. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

    Science.gov (United States)

    Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N

    2014-06-01

    Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Using Heavy Metal Content and Lipid Peroxidation Indicators in the Tissues of the Mussel Crenomytilus grayanus for Pollution Assessment After Marine Environmental Remediation.

    Science.gov (United States)

    Belcheva, Nina; Istomina, Alexandra; Dovzhenko, Nadezhda; Lishavskaya, Tatiana; Chelomin, Victor

    2015-10-01

    We examined the effects of environmental remediation on the heavy metal concentration and lipid peroxidation activity in the digestive gland and gills of the marine mussel Crenomytilus grayanus. Changes in heavy metal concentrations and lipid peroxidation biomarkers in the tissues of mussels collected at a contaminated site were compared with those obtained from a reference site. Prior to remediation the concentration of Pb, Cu, Cd, Fe and Zn and the levels of malondialdehyde, conjugated dienes and lipofuscin in mussels collected from the contaminated site were significantly increased compared with those obtained from the reference site. Three years after remediation, these parameters did not significantly exceed the reference site parameters, except Pb, whose concentration, though markedly decreased, yet was much higher than in tissues of mussels from the reference site.

  1. Fat & fabulous: bifunctional lipids in the spotlight.

    Science.gov (United States)

    Haberkant, Per; Holthuis, Joost C M

    2014-08-01

    Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein-protein and protein-nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues-so-called bifunctional lipids-as novel chemical tools that enable a global profiling of lipid-protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats

    NARCIS (Netherlands)

    Janssens, Sharon; Jonkers, Richard A. M.; Groen, Albert K.; Nicolay, Klaas; van Loon, Luc J. C.; Prompers, Jeanine J.

    2015-01-01

    Insulin resistance is associated with ectopic lipid accumulation. Physical activity improves insulin sensitivity, but the impact of exercise on lipid handling in insulin-resistant tissues remains to be elucidated. The present study characterizes the effects of acute exercise on lipid content and

  3. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA...

  4. [Extraction and analysis of chemical components of essential oil in Thymus vulgaris of tissue culture].

    Science.gov (United States)

    Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang

    2011-10-01

    To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.

  5. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  6. Apolipoprotein CIII overexpression exacerbates diet-induced obesity due to adipose tissue higher exogenous lipid uptake and retention and lower lipolysis rates.

    Science.gov (United States)

    Raposo, Helena F; Paiva, Adriene A; Kato, Larissa S; de Oliveira, Helena C F

    2015-01-01

    Hypertriglyceridemia is a common type of dyslipidemia found in obesity. However, it is not established whether primary hyperlipidemia can predispose to obesity. Evidences have suggested that proteins primarily related to plasma lipoprotein transport, such as apolipoprotein (apo) CIII and E, may significantly affect the process of body fat accumulation. We have previously observed an increased adiposity in response to a high fat diet (HFD) in mice overexpressing apoCIII. Here, we examined the potential mechanisms involved in this exacerbated response of apoCIII mice to the HFD. We measured body energy balance, tissue capacity to store exogenous lipids, lipogenesis and lipolysis rates in non-transgenic and apoCIII overexpressing mice fed a HFD during two months. Food intake, fat excretion and whole body CO2 production were similar in both groups. However, the adipose tissue mass (45 %) and leptin plasma levels (2-fold) were significantly greater in apoCIII mice. Lipogenesis rates were similar, while exogenous lipid retention was increased in perigonadal (2-fold) and brown adipose tissues (40 %) of apoCIII mice. In addition, adipocyte basal lipolysis (55 %) and in vivo lipolysis index (30 %) were significantly decreased in apoCIII mice. A fat tolerance test evidenced delayed plasma triglyceride clearance and greater transient availability of non-esterified fatty acids (NEFA) during the post-prandial state in the apoCIII mice plasma. Thus, apoCIII overexpression resulted in increased NEFA availability to adipose uptake and decreased adipocyte lipolysis, favoring lipid enlargement of adipose depots. We propose that plasma apoCIII levels represent a new risk factor for diet-induced obesity.

  7. Soybean polar lipids differently impact adipose tissue inflammation and the endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets.

    Science.gov (United States)

    Lecomte, Manon; Couëdelo, Leslie; Meugnier, Emmanuelle; Loizon, Emmanuelle; Plaisancié, Pascale; Durand, Annie; Géloën, Alain; Joffre, Florent; Vaysse, Carole; Michalski, Marie-Caroline; Laugerette, Fabienne

    2017-05-01

    Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    Science.gov (United States)

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P pregnancy and the lactation period promotes maternal fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.

  9. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    Science.gov (United States)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  10. Neuroimaging of Lipid Storage Disorders

    Science.gov (United States)

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  11. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses.

    Science.gov (United States)

    Zeituni, Erin M; Wilson, Meredith H; Zheng, Xiaobin; Iglesias, Pablo A; Sepanski, Michael A; Siddiqi, Mahmud A; Anderson, Jennifer L; Zheng, Yixian; Farber, Steven A

    2016-11-04

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses*

    Science.gov (United States)

    Zeituni, Erin M.; Wilson, Meredith H.; Zheng, Xiaobin; Iglesias, Pablo A.; Sepanski, Michael A.; Siddiqi, Mahmud A.; Anderson, Jennifer L.; Zheng, Yixian; Farber, Steven A.

    2016-01-01

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. PMID:27655916

  13. The Spectrophotometric Sulfo-Phospho-Vanillin Assessment of Total Lipids in Human Meibomian Gland Secretions

    Science.gov (United States)

    McMahon, Anne; Lu, Hua

    2013-01-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen. PMID:23345137

  14. THE ROLE OF GROWTH HORMONE IN LIPID METABOLISM

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Dewi Ratnayanti

    2013-04-01

    Full Text Available Growth hormone (GH is one of the hormones that regulate metabolism, including lipid metabolism. GH can regulate the amount of fat in the tissue and also the level of lipid profile. Growth hormone affects the lipid in the tissue and blood by modulating the lipid metabolism, especially through the regulation of synthesis, excretion and breakdown of internal lipids. Research showed that GH could consistently lower the level of total cholesterol and LDL, whereas its effect on triglyceride and HDL level showed varying results. Growth hormone induces lypolisis by stimulating the activity of HSL and LPL and thereby influenced the triglyceride level and tissue fat storage. Cholesterol and lipoprotein levels are controlled by regulating the synthesis of cholesterol by lowering the activity of HMGCoA reductase. The excretion of cholesterol through the bile is also enhanced by stimulating the activity of enzymes C7?OH. The breakdown of VLDL and LDL are enhanced by increasing the expression of LDL receptor and ApoE as well as affecting the editing of mRNA ApoB100. Increase activity of LPL is also known to be the important factor in the HDL metabolism

  15. Thyroid hormones and lipid phosphorus in mice

    Energy Technology Data Exchange (ETDEWEB)

    Thakare, U R; Ganatra, R D; Shah, D H [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1978-04-01

    In vivo studies in mice injected intravenously with /sup 125/I-triiodothyronine (T-3) showed a linear relationship between the uptake of the labelled hormone by the tissue and the lipid phosphorous content of the same tissue. However, studies with /sup 125/I-thyroxine failed to show a similar relationship between the lipid phosphorous content of the organ and the uptake of radioactive hormone by the same organ. In vitro studies using equilibrium dialysis technique with isolated lipid extracts of various organs and radioactive thyroid hormones (T-3 and T-4) did not show any relation between the lipid P and the uptake of labelled hormone. On the basis of the observed discrepancy between in vivo and in vitro studies, it is postulated that an organized lipoprotein structure at the cell membrane may be responsible for the entry of the thyroid hormones.

  16. Alterations in tissue lipids of rats subjected to whole-body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De, A K; Aiyar, A S [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1978-02-01

    Whole-body irradiation of rats at sublethal doses leads to hepatic lipid accumulation which reaches a maximum by the sixth day; this effect on lipid metabolism does not appear to be due to accompanying inanition but due to irradiation per se. The female rats show a greater and more consistent increase in liver lipids than males and this better response of the females is not abolished by prolonged administration of testosterone to these animals. An accumulation of triglycerides accounts for almost all the increases in total liver lipids, although smaller elevations in the levels of free fatty acids and cholesterol are also seen. Free fatty acids of liver show a marked decrease on the second day following irradiation. Serum lipids do not show any appreciable changes while adipose lipids progressively decrease reaching a minimum by the sixth day. Although an insufficiency of ATP may be responsible for lipid accumulation in the irradiated rat as in the case in rats treated with ethionine or orotic acid, adenine administration, which prevents fatty infiltration due to these chemical agents, does not protect against the radiation-induced increase in liver triglycerides.

  17. Non-Polar Lipid Components of Human Cerumen

    Czech Academy of Sciences Publication Activity Database

    Stránský, Karel; Valterová, Irena; Kofroňová, Edita; Urbanová, Klára; Zarevúcka, Marie; Wimmer, Zdeněk

    2011-01-01

    Roč. 46, č. 8 (2011), s. 781-788 ISSN 0024-4201 R&D Projects: GA ČR GAP502/10/1734; GA MŠk 2B06024; GA MŠk 2B06007; GA MŠk(CZ) OC10001 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : cerumen * ear wax * lipids * ECL values * ACL values Subject RIV: CC - Organic Chemistry Impact factor: 2.129, year: 2011

  18. Lipid Peroxidation: Pathophysiology and Pharmacological Implications in the Eye

    Directory of Open Access Journals (Sweden)

    Ya Fatou eNjie-Mbye

    2013-12-01

    Full Text Available Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy. Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2 and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker, in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release

  19. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser.

    Science.gov (United States)

    Buma, Takashi; Conley, Nicole C; Choi, Sang Won

    2018-01-01

    We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue between 1050-1714 nm using a pulsed supercontinuum laser based on a large-mode-area photonic crystal fiber. OR-PAM experiments of lipid-rich samples show the expected optical absorption peaks near 1210 and 1720 nm. These results show that pulsed supercontinuum lasers are promising for OR-PAM applications such as label-free histology of lipid-rich tissue and imaging small animal models of disease.

  20. Maternal transfer of dechloranes and their distribution among tissues in contaminated ducks.

    Science.gov (United States)

    Wu, Ping-Fan; Yu, Lian-Lian; Li, Long; Zhang, Yun; Li, Xing-Hong

    2016-05-01

    The tissue concentrations of dechlorane plus and its analogues were determined in ducks collected from several e-waste recycling villages of Taizhou, China. Compared with the published literature, the relatively high concentrations of these compounds were detected in ducks, indicating serious DP contamination. Since both the duck meat and eggs were important components for diet, this result reminded us of keeping a watchful eye on human dietary exposure to DP and its analogues in this study area. The wet-weight concentrations of DP and its analogues were significantly related to tissue lipid content (p ducks. On the basis of lipid adjustment, the significantly lower levels in brain than those in liver and blood, displayed the occurrence of liver sequestration and blood-brain barrier to DP and its analogues in the duck (p ducks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Detection of hydroxyapatite in calcified cardiovascular tissues.

    Science.gov (United States)

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    CERN Document Server

    Aamir, R; Bateman, C.J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.K.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; Ruiter, N.de; Gieseg, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P.J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S.J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.J.; Hodge, K.

    2014-01-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we ...

  3. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains.

    Science.gov (United States)

    Benseny-Cases, Núria; Klementieva, Oxana; Cotte, Marine; Ferrer, Isidre; Cladera, Josep

    2014-12-16

    Amyloid peptides are the main component of one of the characteristic pathological hallmarks of Alzheimer's disease (AD): senile plaques. According to the amyloid cascade hypothesis, amyloid peptides may play a central role in the sequence of events that leads to neurodegeneration. However, there are other factors, such as oxidative stress, that may be crucial for the development of the disease. In the present paper, we show that it is possible, by using Fourier tranform infrared (FTIR) microscopy, to co-localize amyloid deposits and lipid peroxidation in tissue slides from patients affected by Alzheimer's disease. Plaques and lipids can be analyzed in the same sample, making use of the characteristic infrared bands for peptide aggregation and lipid oxidation. The results show that, in samples from patients diagnosed with AD, the plaques and their immediate surroundings are always characterized by the presence of oxidized lipids. As for samples from non-AD individuals, those without amyloid plaques show a lower level of lipid oxidation than AD individuals. However, it is known that plaques can be detected in the brains of some non-AD individuals. Our results show that, in such cases, the lipid in the plaques and their surroundings display oxidation levels that are similar to those of tissues with no plaques. These results point to lipid oxidation as a possible key factor in the path that goes from showing the typical neurophatological hallmarks to suffering from dementia. In this process, the oxidative power of the amyloid peptide, possibly in the form of nonfibrillar aggregates, could play a central role.

  4. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    International Nuclear Information System (INIS)

    Shen Jie; Sun Minjie; Ping Qineng; Ying Zhi; Liu Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  5. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shen Jie; Sun Minjie; Ping Qineng; Ying Zhi; Liu Wen, E-mail: Pingqn2004@yahoo.com.cn [School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing (China)

    2010-01-15

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  6. Comparison of macro-gravimetric and micro-colorimetric lipid determination methods.

    Science.gov (United States)

    Inouye, Laura S; Lotufo, Guiherme R

    2006-10-15

    In order to validate a method for lipid analysis of small tissue samples, the standard macro-gravimetric method of Bligh-Dyer (1959) [E.G. Bligh, W.J. Dyer, Can. J. Biochem. Physiol. 37 (1959) 911] and a modification of the micro-colorimetric assay developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1 (1985) 302] were compared. No significant differences were observed for wet tissues of two species of fish. However, limited analysis of wet tissue of the amphipod, Leptocheirusplumulosus, indicated that the Bligh-Dyer gravimetric method generated higher lipid values, most likely due to the inclusion of non-lipid materials. Additionally, significant differences between the methods were observed with dry tissues, with the micro-colorimetric method consistently reporting calculated lipid values greater than as reported by the gravimetric method. This was most likely due to poor extraction of dry tissue in the standard Bligh-Dyer method, as no significant differences were found when analyzing a single composite extract. The data presented supports the conclusion that the micro-colorimetric method described in this paper is accurate, rapid, and minimizes time and solvent use.

  7. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2013-01-01

    Full Text Available Diclofenac sodium loaded solid lipid nanoparticles (SLNs were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG and plain carbopol gel containing drug (CG for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1 and stearic acid nanoparticle 1 (SAN-1 gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3 showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher Cmax than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile.

  8. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  9. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft

    Directory of Open Access Journals (Sweden)

    Naoki Takizawa

    2016-09-01

    Full Text Available The influenza glycoproteins, hemagglutinin (HA and neuraminidase (NA, which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1 in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  10. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft.

    Science.gov (United States)

    Takizawa, Naoki; Momose, Fumitaka; Morikawa, Yuko; Nomoto, Akio

    2016-09-10

    The influenza glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP) is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1) in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  11. The effect of pomegranate seed oil and grapeseed oil on cis-9, trans-11 CLA (rumenic acid), n-3 and n-6 fatty acids deposition in selected tissues of chickens.

    Science.gov (United States)

    Białek, A; Białek, M; Lepionka, T; Kaszperuk, K; Banaszkiewicz, T; Tokarz, A

    2018-04-23

    The aim of this study was to determine whether diet modification with different doses of grapeseed oil or pomegranate seed oil will improve the nutritive value of poultry meat in terms of n-3 and n-6 fatty acids, as well as rumenic acid (cis-9, trans-11 conjugated linoleic acid) content in tissues diversified in lipid composition and roles in lipid metabolism. To evaluate the influence of applied diet modification comprehensively, two chemometric methods were used. Results of cluster analysis demonstrated that pomegranate seed oil modifies fatty acids profile in the most potent way, mainly by an increase in rumenic acid content. Principal component analysis showed that regardless of type of tissue first principal component is strongly associated with type of deposited fatty acid, while second principal component enables identification of place of deposition-type of tissue. Pomegranate seed oil seems to be a valuable feed additive in chickens' feeding. © 2018 Blackwell Verlag GmbH.

  12. Determination of radiation-induced hydrocarbons in processed food and complex lipid matrices. A new solid phase extraction (SPE) method for detection of irradiated components in food

    International Nuclear Information System (INIS)

    Hartmann, M.; Ammon, J.; Berg, H.

    1997-01-01

    Detection of irradiated components in processed food with complex lipid matrices can be affected by two problems. First, the processed food may contain only a small amount of the irradiated component, and the radiation-induced hydrocarbons may be diluted throughout the lipid matrix of the whole food. Second, in complex lipid matrices, the detection of prior irradiation is often disturbed by fat-associated compounds. In these cases, common solid phase extraction (SPE) Florisil clean-up alone is inadequate in the detection of prior irradiation. Subsequent SPE argentation chromatography of the Florisil eluate allows the measurement of small amounts of irradiated lipid-containing ingredients in processed food as well as the detection of prior irradiation in complex lipid matrices such as paprika and chilli. SPE argetation chromatography is the first method available for the selective enrichment of radiation-specific hydrocarbons from even complex lipid matrices, thus enabling the detection of irradiation does as low as 0.025 kGy. Furthermore, by using radiation-induced hydrocarbons in the detection of prior irradiation of paprika and chilli powder, a second independent method, the first being measurement of thermoluminescence, is available for the analysis of these matrices. Such analysis could be achieved by using this highly sensitive, cheap and easy to perform combined SPE Florisil/argentation chromatography method, without the need for sophisticated techniques like SFE-GC/MS or LC-GC/MS, so that highly sensitive detection of prior irradiation colud be performed in almost every laboratory

  13. Polymorphism of lipid self-assembly systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  14. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    International Nuclear Information System (INIS)

    Felker, F.C.

    1990-01-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced [ 14 C]sucrose uptake into kernels. [ 14 C]Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-[ 14 C]glucose was absorbed much more slowly than D-[ 14 C]glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium

  15. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    Science.gov (United States)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (ppancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  16. Association between increased epicardial adipose tissue volume and coronary plaque composition

    OpenAIRE

    Yamashita, Kennosuke; Yamamoto, Myong Hwa; Ebara, Seitarou; Okabe, Toshitaka; Saito, Shigeo; Hoshimoto, Koichi; Yakushiji, Tadayuki; Isomura, Naoei; Araki, Hiroshi; Obara, Chiaki; Ochiai, Masahiko

    2013-01-01

    To assess the relationship between epicardial adipose tissue volume (EATV) and plaque vulnerability in significant coronary stenosis using a 40-MHz intravascular ultrasound (IVUS) imaging system (iMap-IVUS), we analyzed 130 consecutive patients with coronary stenosis who underwent dual-source computed tomography (CT) and cardiac catheterization. Culprit lesions were imaged by iMap-IVUS before stenting. The iMAP-IVUS system classified coronary plaque components as fibrous, lipid, necrotic, or ...

  17. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling.

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    Full Text Available A method of employing high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling was developed in this study to investigate the effects of alcohol exposure on lipid homeostasis at the white adipose tissue (WAT-liver axis in a mouse model of alcoholic fatty liver. In order to differentiate the liver lipids synthesized from the fatty acids that were transported back from adipose tissue and the lipids synthesized from other sources of fatty acids, a two-stage mouse feeding experiment was performed to incorporate deuterium into metabolites. Hepatic lipids extracted from mouse liver, epididymal white adipose tissue (eWAT and subcutaneous white adipose tissue (sWAT were analyzed. It was found that 13 and 10 triacylglycerols (TGs incorporated with a certain number of deuterium were significantly increased in alcohol induced fatty liver at two and four weeks of alcohol feeding periods, respectively. The concentration changes of these TGs ranged from 1.7 to 6.3-fold increase. A total of 14 deuterated TGs were significantly decreased in both eWAT and sWAT at the two and four weeks and the fold-change ranged from 0.19 to 0.77. The increase of deuterium incorporated TGs in alcohol-induced fatty liver and their decrease in both eWAT and sWAT indicate that alcohol exposure induces hepatic influx of fatty acids which are released from WATs. The results of time course analysis further indicate a mechanistic link between adipose fat loss and hepatic fat gain in alcoholic fatty liver.

  18. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  19. Spatial organization of lipids in the human retina and optic nerve by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Zemski Berry, Karin A; Gordon, William C; Murphy, Robert C; Bazan, Nicolas G

    2014-03-01

    MALDI imaging mass spectrometry (IMS) was used to characterize lipid species within sections of human eyes. Common phospholipids that are abundant in most tissues were not highly localized and observed throughout the accessory tissue, optic nerve, and retina. Triacylglycerols were highly localized in accessory tissue, whereas sulfatide and plasmalogen glycerophosphoethanolamine (PE) lipids with a monounsaturated fatty acid were found enriched in the optic nerve. Additionally, several lipids were associated solely with the inner retina, photoreceptors, or retinal pigment epithelium (RPE); a plasmalogen PE lipid containing DHA (22:6), PE(P-18:0/22:6), was present exclusively in the inner retina, and DHA-containing glycerophosphatidylcholine (PC) and PE lipids were found solely in photoreceptors. PC lipids containing very long chain (VLC)-PUFAs were detected in photoreceptors despite their low abundance in the retina. Ceramide lipids and the bis-retinoid, N-retinylidene-N-retinylethanolamine, was tentatively identified and found only in the RPE. This MALDI IMS study readily revealed the location of many lipids that have been associated with degenerative retinal diseases. Complex lipid localization within retinal tissue provides a global view of lipid organization and initial evidence for specific functions in localized regions, offering opportunities to assess their significance in retinal diseases, such as macular degeneration, where lipids have been implicated in the disease process.

  20. Influences of the Structure of Lipids on Thermal Stability of Lipid Membranes

    International Nuclear Information System (INIS)

    Hai Nan-Nan; Zhou Xin; Li Ming

    2015-01-01

    The binding free energy (BFE) of lipid to lipid bilayer is a critical factor to determine the thermal or mechanical stability of the bilayer. Although the molecular structure of lipids has significant impacts on BFE of the lipid, there lacks a systematic study on this issue. In this paper we use coarse-grained molecular dynamics simulation to investigate this problem for several typical phospholipids. We find that both the tail length and tail unsaturation can significantly affect the BFE of lipids but in opposite way, namely, BFE decreases linearly with increasing length, but increases linearly with addition of unsaturated bonds. Inspired by the specific structure of cholesterol which is a crucial component of biomembrane, we also find that introduction of carbo-ring-like structures to the lipid tail or to the bilayer may greatly enhance the stability of the bilayer. Our simulation also shows that temperature can influence the bilayer stability and this effect can be significant when the bilayer undergoes phase transition. These results may be helpful to the design of liposome or other self-assembled lipid systems. (paper)

  1. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Directory of Open Access Journals (Sweden)

    Soronen Jarkko

    2012-04-01

    Full Text Available Abstract Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934. Inflammatory pathways with complement components (inflammatory response, GO:0006954 and cytokines (chemotaxis, GO:0042330 were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1 and in genes involved in regulating lipolysis (ANGPTL4 between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.

  2. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    Science.gov (United States)

    Rodriguez-Canales, Jaime; Hanson, Jeffrey C; Hipp, Jason D; Balis, Ulysses J; Tangrea, Michael A; Emmert-Buck, Michael R; Bova, G Steven

    2013-01-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This updated chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high-quality, appropriately anatomically tagged scientific results. Improvement in this area will significantly increase life science quality and productivity. The chapter is divided into introduction, materials, protocols, and notes subheadings. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this chapter, readers are advised to read through the entire

  3. Glycine reduces tissue lipid peroxidation in hypoxia-reoxygenation-induced necrotizing enterocolitis in rats

    Directory of Open Access Journals (Sweden)

    Meyer Karine Furtado

    2006-01-01

    Full Text Available PURPOSE: To assess the protective effect of glycine in an experimental model of Neonatal Necrotizing Enterocolitis (NEC. METHODS: Fifty (50 neonatal Wistar rats, from a litter of six female rats and weighing 4 to 6 grams, were used. Five animals were cannibalized and the 45 remaining were distributed into three groups: the G1 normal control group (n=12; the G2 Group (n=16, of animals that underwent hypoxia-reoxygenation (HR; the G3 Group of animals (n=17 that underwent HR following a 5% intraperitoneal glycine infusion. The animals underwent hypoxia in a CO2 chamber receiving an air flow of 100% CO2 for 5 minutes and reoxygenation receiving an O2 flow at 100% for 5 minutes. One centimeter long small bowel and colon segments were prepared for histological analysis. The rest of the bowel was removed in a block and frozen at minus 80degreesC for homogenization and determination of tissue malondialdehyde (MDA. Tissue lesions were classified as Grade 0 to Grade 5, according to the level of damaged mucosa. RESULTS: The animals in Group G1 had levels of small bowel and colon lesion significantly smaller as compared to the animals in Groups G2 and G3. The G2 group had mean MDA values significantly higher than the animals in the G1 (p = .015 and G3 (p=0.021 groups. MDA values did not differ significantly (p = 0.992 for the animals in groups G1 and G3. CONCLUSION: Glycine reduces tissue MDA levels (a measurement of lipid peroxidation following HR in neonatal rats.

  4. 8-oxoguanine DNA glycosylase (OGG1 deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle.

    Directory of Open Access Journals (Sweden)

    Vladimir Vartanian

    Full Text Available Oxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1 recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion. Mice lacking the OGG1 gene product are prone to multiple features of the metabolic syndrome, including high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Here, we report that OGG1-deficient mice also display skeletal muscle pathologies, including increased muscle lipid deposition and alterations in genes regulating lipid uptake and mitochondrial fission in skeletal muscle. In addition, expression of genes of the TCA cycle and of carbohydrate and lipid metabolism are also significantly altered in muscle of OGG1-deficient mice. These tissue changes are accompanied by marked reductions in markers of muscle function in OGG1-deficient animals, including decreased grip strength and treadmill endurance. Collectively, these data indicate a role for skeletal muscle OGG1 in the maintenance of optimal tissue function.

  5. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats.

    Science.gov (United States)

    Roh, Jong Sung; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Park, Sun Dong; Shin, Soon Shik; Yoon, Michung

    2015-08-02

    Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Inhibitory Effect of Phragmanthera Incana (Schum.) Harvested from Cocoa (Theobroma Cacao) and Kolanut (Cola Nitida) Trees on Fe2+ induced Lipid Oxidative Stress in Some Rat Tissues - In Vitro

    Science.gov (United States)

    Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Akinyemi, A. J.

    2015-01-01

    Evidence in both experimental and clinical studies has shown the participation of oxidative stress in the development and progression of diabetes mellitus. This study therefore, sought to investigate the inhibitory effect of methanolic extract of Phragmanthera incana leaves, a mistletoe species harvested from Cocoa (Theobroma cacao) and Kolanut (Cola nitida) on FeSO4 induced lipid peroxidation in rat pancreas, liver, kidney, heart and brain in vitro. The methanolic extract was prepared with 90% methanol (v/v); subsequently, the antioxidant properties and inhibitory effect of the extract on Fe2+ induced lipid peroxidation in some rat tissues were determined in vitro. Incubation of the different rat tissues homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the tissues. However, the methanolic extracts of Phragmanthera incana leaves harvested from both Cocoa and Kolanut trees caused a significant decrease in the MDA contents of all the tissues tested in a dose-dependent manner. However, the extract of Phragmanthera incana leaves harvested from kolanut trees had a better inhibitory effect on Fe2+- induced lipid peroxidation in the rat tissues homogenates than that of Phragmanthera incana leaves harvested from cocoa trees. This higher inhibitory effect could be attributed to its significantly higher antioxidant properties as typified by their phenolic content, DPPH radical scavenging ability and reducing power. Therefore, oxidative stress associated with diabetes and its other complications could be potentially managed/prevented by harnessing Phragmanthera incana leaves as cheap nutraceuticals. However, Phragmanthera incana leaves harvested from kolanut trees exhibited better antioxidant properties.

  7. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.

    Science.gov (United States)

    Murugan, Pidaran; Pari, Leelavinothan

    2006-08-01

    Hyperlipidaemia is an associated complication of diabetes mellitus. We recently reported that tetrahydrocurcumin lowered the blood glucose in diabetic rats. In the present study, we have investigated the effect of tetrahydrocurcumin, one of the active metabolites of curcumin on lipid profile and lipid peroxidation in streptozotocin-nicotinamide-induced diabetic rats. Tetrahydrocurcumin 80 mg/kg body weight was administered orally to diabetic rats for 45 days, resulted a significant reduction in blood glucose and significant increase in plasma insulin in diabetic rats, which proved its antidiabetic effect. Tetrahydrocurcumin also caused a significant reduction in lipid peroxidation (thiobarbituric acid reactive substances and hydroperoxides) and lipids (cholesterol, triglycerides, free fatty acids and phospholipids) in serum and tissues, suggesting its role in protection against lipid peroxidation and its antihyperlipidemic effect. Tetrahydrocurcumin showed a better effect when compared with curcumin. Results of the present study indicate that tetrahydrocurcumin showed antihyperlipidaemic effect in addition to its antidiabetic effect in type 2 diabetic rats.

  8. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.

    Science.gov (United States)

    Anderson, J L; Carten, J D; Farber, S A

    2016-01-01

    Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    Science.gov (United States)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  10. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  11. Comparative evaluation of labelling patterns and turnover of lipids, tagged by 15 (p-123I-phenyl-)pentadecanoic and 1-14C-palmitic acid

    International Nuclear Information System (INIS)

    Reske, S.N.; Sauer, W.; Reichmann, K.; Winkler, C.; Machulla, H.J.; Knust, E.J.

    1984-01-01

    Uptake and turnover of chloroform/methanol extractable tissue lipids labelled in vivo simultaneously with 15(p- 123 I-phenyl-)pentadecanoic and 1- 14 C-palmitic acid were compared. Lipid turnover studies were performed in fasted pentobarbital-anaesthetized Wistar rats in tissues with highly varying free fatty acid turnover rates. In all tissues investigated, i.e. heart, lung, liver, spleen and kidney, both tracers labelled nearly identical lipid fractions. The main tracer uptake was found in free fatty acids, phospholipids, diglycerides and triglycerides. A highly significant correlation of uptake and turnover in main tissue lipid fractions indicated an essentially identical metabolic pathway of both tracers in intermediary tissue lipid metabolism. Concordant tracer uptake and turnover patterns in tissue of lipids with highly varying fatty acid metabolic rates suggested that intrinsic metabolic activity of the tissue and respective lipid fraction was the major determinant of metabolic handling of both iodophenyl fatty- and palmitic acid. Thus, the feasibility of iodophenylpentadecanoic acid as free fatty acid tracer for studying tissue lipid metabolism is demonstrated. (author)

  12. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Protective effect of morin on lipid peroxidation and lipid profile in ammonium chloride-induced hyperammonemic rats

    Directory of Open Access Journals (Sweden)

    S Subash

    2012-04-01

    Full Text Available Objective: To evaluated the protective effects of morin (3, 5, 7, 2', 4'-pentahydroxyflavone on lipid peroxidation and lipid levels during ammonium chloride (AC induced hyperammonemia in experimental rats. Methods: Thirty two male albino Wistar rats, which are weighing between 180-200 g were used for the study. The hyperammonemia was induced by administration of 100 mg/kg body weight (i.p. thrice in a week of AC for 8 weeks. Rats were treated with morin at dose (30 mg/kg body weight via intragastric intubations together with AC. At the end of experimental duration, blood ammonia, plasma urea, lipid peroxidation indices [thiobarbituric acid reactive substances, hydroperoxides and lipid levels (cholesterol, triglycerides, free fatty acids and phospholipids] in serum and tissues were analysed to evaluate the antiperoxidative and antilipidemic effects of morin. Results: Ammonia, urea, lipid peroxidative indices and lipid levels were significantly increased in AC administered group. Morin treatment resulted in positive modulation of ammonia, urea, lipid peroxidative indices and lipid levels. Morin administration to normal rats did not exhibit any significant changes in any of the parameters studied. Conclusions: It can be concluded that the beneficial effect of morin on ammonia, urea, lipid peroxidative indices and lipid levels could be due to its antioxidant property.

  14. Favorable effect of optimal lipid-lowering therapy on neointimal tissue characteristics after drug-eluting stent implantation: qualitative optical coherence tomographic analysis.

    Science.gov (United States)

    Jang, Ji-Yong; Kim, Jung-Sun; Shin, Dong-Ho; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo; Hong, Myeong-Ki

    2015-10-01

    Serial follow-up optical coherence tomography (OCT) was used to evaluate the effect of optimal lipid-lowering therapy on qualitative changes in neointimal tissue characteristics after drug-eluting stent (DES) implantation. DES-treated patients (n = 218) who received statin therapy were examined with serial follow-up OCT. First and second follow-up OCT evaluations were performed approximately 6 and 18 months after the index procedure, respectively. Patients were divided into two groups, based on the level of low-density lipoprotein-cholesterol (LDL-C), which was measured at the second follow-up. The optimal lipid-lowering group (n = 121) had an LDL-C reduction of ≥50% or an LDL-C level ≤70 mg/dL, and the conventional group (n = 97). Neointimal characteristics were qualitatively categorized as homogeneous or non-homogeneous patterns using OCT. The non-homogeneous group included heterogeneous, layered, or neoatherosclerosis patterns. Qualitative changes in neointimal tissue characteristics between the first and second follow-up OCT examinations were assessed. Between the first and second follow-up OCT procedures, the neointimal cross-sectional area increased more substantially in the conventional group (0.4 mm(2) vs. 0.2 mm(2) in the optimal lipid-lowering group, p = 0.01). The neointimal pattern changed from homogeneous to non-homogeneous less often in the optimal lipid-lowering group (1.3%, 1/77, p < 0.001) than in the conventional group (15.3%, 11/72, p = 0.44). Optimal LDL-C reduction was an independent predictor for the prevention of neointimal pattern change from homogeneous to non-homogeneous (odds ratio: 0.05, 95% confidence interval: 0.01∼0.46, p = 0.008). Our findings suggest that an intensive reduction in LDL-C levels can prevent non-homogeneous changes in the neointima and increases in neointimal cross-sectional area compared with conventional LDL-C controls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Polar lipid composition of mammalian hair.

    Science.gov (United States)

    Wix, M A; Wertz, P W; Downing, D T

    1987-01-01

    The types and amounts of polar lipids from the hair of monkey (Macacca fascicularis), dog (Canis familiaris), pig (Sus scrofa) and porcupine (Erethizon dorsatum) have been determined by quantitative thin-layer chromatography. The polar lipid content of the hair samples ranged from 0.6 to 1.6 wt%. Lipid compositions included ceramides (57-63% of the polar lipid by weight), glycosphingolipids (7-9%) and cholesteryl sulfate (22-29%). Several minor components (4-7%) remain unidentified. The results suggest that cholesteryl sulfate may be an important determinant of the cohesiveness of hair.

  16. Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages

    Czech Academy of Sciences Publication Activity Database

    Rombaldová, Martina; Janovská, Petra; Kopecký, Jan; Kuda, Ondřej

    2017-01-01

    Roč. 490, č. 3 (2017), s. 1080-1085 ISSN 0006-291X R&D Projects: GA ČR(CZ) GA16-05151S; GA MŠk(CZ) LTAUSA17173 Institutional support: RVO:67985823 Keywords : adipose tissue * macrophages * omega-3 PUFA * fatty acid re-esterification * lipolysis * lipid mediators Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition OBOR OECD: Endocrinology and metabolism (including diabetes, hormones) Impact factor: 2.466, year: 2016

  17. Lipids of Parasitic and Saprophytic Leptospires

    Science.gov (United States)

    Johnson, R. C.; Livermore, B. P.; Walby, Judith K.; Jenkin, H. M.

    1970-01-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of β-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola. PMID:16557833

  18. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    Science.gov (United States)

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular

  19. The role of the kidney in lipid metabolism

    DEFF Research Database (Denmark)

    Moestrup, Søren K; Nielsen, Lars Bo

    2005-01-01

    PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma...... proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid......-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential...

  20. The physiology of lipid storage and use in reptiles.

    Science.gov (United States)

    Price, Edwin R

    2017-08-01

    Lipid metabolism is central to understanding whole-animal energetics. Reptiles store most excess energy in lipid form, mobilise those lipids when needed to meet energetic demands, and invest lipids in eggs to provide the primary source of energy to developing embryos. Here, I review the mechanisms by which non-avian reptiles store, transport, and use lipids. Many aspects of lipid absorption, transport, and storage appear to be similar to birds, including the hepatic synthesis of lipids from glucose substrates, the transport of triglycerides in lipoproteins, and the storage of lipids in adipose tissue, although adipose tissue in non-avian reptiles is usually concentrated in abdominal fat bodies or the tail. Seasonal changes in fat stores suggest that lipid storage is primarily for reproduction in most species, rather than for maintenance during aphagic periods. The effects of fasting on plasma lipid metabolites can differ from mammals and birds due to the ability of non-avian reptiles to reduce their metabolism drastically during extended fasts. The effect of fasting on levels of plasma ketones is species specific: β-hydroxybutyrate concentration may rise or fall during fasting. I also describe the process by which the bulk of lipids are deposited into oocytes during vitellogenesis. Although this process is sometimes ascribed to vitellogenin-based transport in reptiles, the majority of lipid deposition occurs via triglycerides packaged in very-low-density lipoproteins (VLDLs), based on physiological, histological, biochemical, comparative, and genomic evidence. I also discuss the evidence for non-avian reptiles using 'yolk-targeted' VLDLs during vitellogenesis. The major physiological states - feeding, fasting, and vitellogenesis - have different effects on plasma lipid metabolites, and I discuss the possibilities and potential problems of using plasma metabolites to diagnose feeding condition in non-avian reptiles. © 2016 Cambridge Philosophical Society.

  1. Equilibrium sampling of environmental pollutants in fish: comparison with lipid-normalized concentrations and homogenization effects on chemical activity.

    Science.gov (United States)

    Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha; McLachlan, Michael S

    2011-07-01

    Equilibrium sampling of organic pollutants into the silicone polydimethylsiloxane (PDMS) has recently been applied in biological tissues including fish. Pollutant concentrations in PDMS can then be multiplied with lipid/PDMS distribution coefficients (D(Lipid,PDMS) ) to obtain concentrations in fish lipids. In the present study, PDMS thin films were used for equilibrium sampling of polychlorinated biphenyls (PCBs) in intact tissue of two eels and one salmon. A classical exhaustive extraction technique to determine lipid-normalized PCB concentrations, which assigns the body burden of the chemical to the lipid fraction of the fish, was additionally applied. Lipid-based PCB concentrations obtained by equilibrium sampling were 85 to 106% (Norwegian Atlantic salmon), 108 to 128% (Baltic Sea eel), and 51 to 83% (Finnish lake eel) of those determined using total extraction. This supports the validity of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher in the homogenates (statistically significant in 18 of 21 cases, p equilibrium sampling and partition coefficients determined using tissue homogenates. Copyright © 2011 SETAC.

  2. Adipose tissue conditioned media support macrophage lipid-droplet biogenesis by interfering with autophagic flux.

    Science.gov (United States)

    Bechor, Sapir; Nachmias, Dikla; Elia, Natalie; Haim, Yulia; Vatarescu, Maayan; Leikin-Frenkel, Alicia; Gericke, Martin; Tarnovscki, Tanya; Las, Guy; Rudich, Assaf

    2017-09-01

    Obesity promotes the biogenesis of adipose tissue (AT) foam cells (FC), which contribute to AT insulin resistance. Autophagy, an evolutionarily-conserved house-keeping process, was implicated in cellular lipid handling by either feeding and/or degrading lipid-droplets (LDs). We hypothesized that beyond phagocytosis of dead adipocytes, AT-FC biogenesis is supported by the AT microenvironment by regulating autophagy. Non-polarized ("M0") RAW264.7 macrophages exposed to AT conditioned media (AT-CM) exhibited a markedly enhanced LDs biogenesis rate compared to control cells (8.3 Vs 0.3 LDs/cells/h, p<0.005). Autophagic flux was decreased by AT-CM, and fluorescently following autophagosomes over time revealed ~20% decline in new autophagic vesicles' formation rate, and 60-70% decrease in autophagosomal growth rate, without marked alternations in the acidic lysosomal compartment. Suppressing autophagy by either targeting autophagosome formation (pharmacologically, with 3-methyladenine or genetically, with Atg12±Atg7-siRNA), decreased the rate of LD formation induced by oleic acid. Conversely, interfering with late autophago-lysosomal function, either pharmacologically with bafilomycin-A1, chloroquine or leupeptin, enhanced LD formation in macrophages without affecting LD degradation rate. Similarly enhanced LD biogenesis rate was induced by siRNA targeting Lamp-1 or the V-ATPase. Collectively, we propose that secreted products from AT interrupt late autophagosome maturation in macrophages, supporting enhanced LDs biogenesis and AT-FC formation, thereby contributing to AT dysfunction in obesity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Comparative evaluation of labelling patterns and turnover of lipids, tagged by 15 (p-/sup 123/I-phenyl-)pentadecanoic and 1-/sup 14/C-palmitic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Sauer, W.; Reichmann, K.; Winkler, C. (Bonn Univ. (Germany, F.R.). Inst. fuer Klinische und Experimentelle Nuklearmedizin); Machulla, H.J.; Knust, E.J. (Essen Univ. (Germany, F.R.). Inst. fuer Medizinische Strahlenphysik und Strahlenbiologie)

    1984-06-15

    Uptake and turnover of chloroform/methanol extractable tissue lipids labelled in vivo simultaneously with 15(p-/sup 123/I-phenyl-)pentadecanoic and 1-/sup 14/C-palmitic acid were compared. Lipid turnover studies were performed in fasted pentobarbital-anaesthetized Wistar rats in tissues with highly varying free fatty acid turnover rates. In all tissues investigated, i.e. heart, lung, liver, spleen and kidney, both tracers labelled nearly identical lipid fractions. The main tracer uptake was found in free fatty acids, phospholipids, diglycerides and triglycerides. A highly significant correlation of uptake and turnover in main tissue lipid fractions indicated an essentially identical metabolic pathway of both tracers in intermediary tissue lipid metabolism. Concordant tracer uptake and turnover patterns in tissue of lipids with highly varying fatty acid metabolic rates suggested that intrinsic metabolic activity of the tissue and respective lipid fraction was the major determinant of metabolic handling of both iodophenyl fatty- and palmitic acid. Thus, the feasibility of iodophenylpentadecanoic acid as free fatty acid tracer for studying tissue lipid metabolism is demonstrated. 21 refs.

  4. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change

    Science.gov (United States)

    Yang, Hongli; Ren, Ruojin; Lockwood, Howard; Williams, Galen; Libertiaux, Vincent; Downs, Crawford; Gardiner, Stuart K.; Burgoyne, Claude F.

    2015-01-01

    Purpose To characterize optic nerve head (ONH) connective tissue change within 21 monkey experimental glaucoma (EG) eyes, so as to identify its principal components. Methods Animals were imaged three to five times at baseline then every 2 weeks following chronic unilateral IOP elevation, and euthanized early through end-stage confocal scanning laser tomographic change. Optic nerve heads were serial-sectioned, three-dimensionally (3D) reconstructed, delineated, and quantified. Overall EG versus control eye differences were assessed by general estimating equations (GEE). Significant, animal-specific, EG eye change was required to exceed the maximum physiologic intereye differences in six healthy animals. Results Overall EG eye change was significant (P connective tissue components of ONH “cupping” in monkey EG which serve as targets for longitudinally staging and phenotyping ONH connective tissue alteration within all forms of monkey and human optic neuropathy. PMID:26641545

  5. The assay of estrogen receptors in three components of human breast cancer tissue

    International Nuclear Information System (INIS)

    Lu Hanping; Gui Zhining

    1992-01-01

    The binding capacities of estrogen receptors in nuclear matrix, nuclei and cytosol of human breast cancer tissue (EmR, EnR, EcR) were estimated with radioligand binding assay of receptors. The average B max values of these components in 21 breast cancer specimens are 417.54 ± 170.95, 147.75 ± 98.32, 7.34 ± 5.33 fmol/mg protein, and those in 10 normal breast tissue specimens are 42.33 ± 8.49, 25.05 ± 7.81, 5.91 ± 2.28 fmol/mg protein. Comparing the cancer and normal breast tissues, there is significant difference in B max values of EmR and EnR (P max values of EcR (P > 0.10). The EmR/EnR value of 21 breast cancer tissue is 0.65 ± 0.10, and that of 10 normal breast tissue is 0.42 ± 0.04. There is statistical difference between the cancer and normal. 10 of 13 (77%) patients, who are EcR-positive, have higher EmR/EnR values (≥0.50). The results suggest that estrogen receptors are mainly located at the nuclear matrix, ER levels in nucleus, especially in nuclear matrix of breast cancer tissue are valuable parameters and may be useful for predicting whether the patient will be responsible to endocrine therapy

  6. Research progress on polar lipids of deinococcus radiodurans

    International Nuclear Information System (INIS)

    Feng Qiong; Tian Bing; Hua Yuejin

    2013-01-01

    Deinococcus radiodurans is extremely resistant to radiation, desiccation, oxidizing agents and other extreme conditions. One of the unique lipids in Deinococcus radiodurans is the polar lipid phosphoglycolipid with alkylamine as the main component. Alkylamine derived from fatty acids. The composition characteristic of lipids is one of the classification criterias of Deinococcus. This article provided an overview of the main features of the Deinococcus radiodurans and introduced special polar lipids that have been found as well as the taxonomy significances of such lipids. The research progress of the relationship between lipids and their resistance mechanisms and the prospects of special lipids in Deinococcus radidurans have also been discussed. (authors)

  7. Radiation-induced organogenesis: effects of irradiated medium and its components on tobacco tissue culture

    International Nuclear Information System (INIS)

    Degani, N.

    1975-01-01

    Gamma irradiated medium induces the formation of buds in non-irradiated dark growth tobacco callus (Nicotiana tabacum Var. Wisconsin No.38). Experiments were conducted to determine the component(s) of the medium that is effective in this radiation-induced organogenesis. Fraction of medium were irradiated singly and in combination, then combined with non-irradiated fractions to form the complete growth medium. The results showed that irradiated indoleacetic acid (IAA) was not the effective component in the induction of organogensis. Omission of IAA from the medium resulted in the formation of buds, as expected. Irradiated myo-inositol induced organogenesis more consistently than the other irradiated components. The age of the inoculum tissue and its passage number from the tobacco stem affected the potency of the tobacco callus to organise. (author)

  8. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane.

    Science.gov (United States)

    Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri

    2007-06-29

    Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.

  9. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    Science.gov (United States)

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  10. Association between increased epicardial adipose tissue volume and coronary plaque composition.

    Science.gov (United States)

    Yamashita, Kennosuke; Yamamoto, Myong Hwa; Ebara, Seitarou; Okabe, Toshitaka; Saito, Shigeo; Hoshimoto, Koichi; Yakushiji, Tadayuki; Isomura, Naoei; Araki, Hiroshi; Obara, Chiaki; Ochiai, Masahiko

    2014-09-01

    To assess the relationship between epicardial adipose tissue volume (EATV) and plaque vulnerability in significant coronary stenosis using a 40-MHz intravascular ultrasound (IVUS) imaging system (iMap-IVUS), we analyzed 130 consecutive patients with coronary stenosis who underwent dual-source computed tomography (CT) and cardiac catheterization. Culprit lesions were imaged by iMap-IVUS before stenting. The iMAP-IVUS system classified coronary plaque components as fibrous, lipid, necrotic, or calcified tissue, based on the radiofrequency spectrum. Epicardial adipose tissue was measured as the tissue ranging from -190 to -30 Hounsfield units. EATV, calculated as the sum of the fat areas on short-axis images, was 85.0 ± 34.0 cm(3). There was a positive correlation between EATV and the percentage of necrotic plaque tissue (R (2) = 0.34, P EATV and the percentage of fibrous tissue (R (2) = 0.24, P EATV (β = 0.14, P = 0.02) were independently associated with the percentage of necrotic plaque tissue. An increase in EATV was associated with the development of coronary atherosclerosis and, potentially, with the most dangerous type of plaque.

  11. Symptomatic lipid storage in carriers for the PNPLA2 gene

    NARCIS (Netherlands)

    Janssen, M.C.H.; Engelen, B.G.M. van; Kapusta, L.; Lammens, M.M.; Dijk, M.; Fischer, J.; Graaf, M. van der; Wevers, R.A.; Fahrleitner, M.; Zimmermann, R.; Morava, E.

    2013-01-01

    Neutral lipid storage disease comprises a heterogeneous group of inherited disorders characterized by severe accumulation of cytoplasmic triglyceride droplets in several tissues and neutrophils. A novel type of autosomal recessive lipid myopathy due to PNPLA2 mutations was recently described with

  12. Minor lipid components of some Acacia species: potential dietary health benefits of the unexploited seeds

    Directory of Open Access Journals (Sweden)

    Nasri Nizar

    2012-05-01

    Full Text Available Abstract Background Oilseed samples from four Acacia species ( A. cyclops, A. ligulata, A. salicina and A. cyanophylla were analyzed in order to evaluate the potential nutritional value of their unexploited seeds. Methods Samples were collected from different Tunisian geographic locations. Seed oils were extracted and carotenoids, tocopherols and sterols were analyzed using chromatographic methods. Results The studied Acacia seeds seem to be quite rich in lipids (from 6% to 12%. All Acacia species contain mainly the xanthophylls zeaxanthin and lutein compounds: from ca. 38 mg.kg-1 of total lipids (A. cyclops to ca. 113 mg.kg-1 of total lipids (A. cyanophylla. Total tocopherols varied from ca. 221 mg.kg-1 of total lipids (A. cyclops to ca. 808 mg.kg-1 of total lipids (A. ligulata. Sterols are highly present and their contents ranged between ca. 7 g. kg-1 of total lipids (A. salicina and 11 g. kg-1 of total lipids (A. cyclops. Conclusion This study highlights that these unexploited seeds might have a potential nutritional value and encourages researchers to more explore and find developments for these plants for healthy purposes.

  13. Basic Components of Vascular Connective Tissue and Extracellular Matrix.

    Science.gov (United States)

    Halper, Jaroslava

    2018-01-01

    Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.

  14. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    Science.gov (United States)

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. PPARgamma-2 and ADRB3 polymorphisms in connective tissue diseases and lipid disorders

    Directory of Open Access Journals (Sweden)

    Grygiel-Górniak B

    2018-03-01

    Full Text Available Bogna Grygiel-Górniak,1 Iwona Ziółkowska-Suchanek,2 Elżbieta Kaczmarek,3 Maria Mosor,2 Jerzy Nowak,2 Mariusz Puszczewicz1 1Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland; 2Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland; 3Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland Background: The aim of the research genetic study was to investigate the association between variants (C1431T and Pro12Ala of the peroxisome proliferator-activated receptor (PPARgamma-2 gene, Trp64Arg polymorphism of the beta-3-adrenergic receptor gene and lipid profile in Polish population including group of 103 patients with connective tissue disease (CTD and 103 sex- and age-matched controls in context of statin use. Methods: Anthropometric and biochemical parameters were measured by routine methods, followed by genotyping (TagMan® Genotyping Assays, PCR-restriction fragment length polymorphism analysis. Nearly 30% of CTD patients used statins and 10% of the control group. Results: Although there were no differences between alleles and genotypes prevalence between CTD vs control groups, interesting lipid-gene associations were noted in this study. A higher level of triglycerides (TAG and TAG/high-density lipoprotein (HDL ratios was observed in CTD patients compared to controls. Similar differences were noted in CTD and control groups without statin treatment. Atherogenic markers: the atherogenic index of plasma, TAG/HDL and low-density lipoprotein/HDL ratio were low in the analyzed groups. Of the six analyzed polymorphisms, the Pro12Pro or C14131C or Trp64Trp genotypes were related to higher TAG and TAG/HDL ratios in patients with CTD; however, the highest TAG values were observed in the presence of the Trp64Trp genotype. Conclusion: Lipid disorders were present in both groups independent of statin treatment (mixed dyslipidemia and

  16. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York.

    Science.gov (United States)

    Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Rapaport, David P; Rodan, Bruce D

    2005-07-15

    Human adipose tissue samples (n=52) collected in New York City during 2003-2004 were analyzed for the presence of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). Concentrations of PBDEs in adipose tissues ranged from 17 to 9630 ng/g, lipid wt (median: 77; mean: 399 ng/g, lipid wt; sum all di- through hexaBDE congeners). Average PBDE concentrations in human adipose tissues from New York City were 10- to 100-times greater than those reported for European countries. A concentration of 9630 ng/g, lipid wt, found in a sample of adipose tissue, is one of the highest concentrations reported to date. PBDE 47 (2,2',4,4'-tetraBDE) was the major congener detected in human tissues, followed by PBDE congeners #99 (2,2',4,4',5-penta BDE), 100 (2,2',4,4',6-pentaBDE), and 153 (2,2',4,4',5,5'-hexaBDE). A few individuals contained PBDE 153 as the predominant congener in total PBDE concentrations, suggesting alternative exposure sources, possibly occupational. Principal component analysis of PBDE congener composition in human adipose tissues revealed the presence of five clusters, each characterized by varying composition. No significant difference was found in the concentrations of PBDEs between gender. Concentrations of PBDEs were, on average, similar to those for PCBs in human adipose tissues, and substantially higher when PBDE outliers were retained. PBDE and PCB concentrations were not correlated. PBDE concentrations did not increase with increasing age of the subjects, whereas concentrations of PCBs increased with increasing age in males but not in females in this study. These results suggest differences between PBDEs and PCBs in their sources or time course of exposure and disposition. The presence of comparable or greater concentrations of PBDEs, relative to PCBs, highlights the importance of recentvoluntary and regulatory effortsto cease production of commercial penta- and octa-BDE in North America, although these efforts do not address

  17. Lipoprotein lipase: genetics, lipid uptake, and regulation.

    Science.gov (United States)

    Merkel, Martin; Eckel, Robert H; Goldberg, Ira J

    2002-12-01

    Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.

  18. Effect of luminescence transport through adipose tissue on measurement of tissue temperature by using ZnCdS nanothermometers

    Science.gov (United States)

    Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2018-02-01

    The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.

  19. Deciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts

    Directory of Open Access Journals (Sweden)

    Tiina A. Salminen

    2018-01-01

    Full Text Available When plants conquered land, they developed specialized organs, tissues, and cells in order to survive in this new and harsh terrestrial environment. New cell polymers such as the hydrophobic lipid-based polyesters cutin, suberin, and sporopollenin were also developed for protection against water loss, radiation, and other potentially harmful abiotic factors. Cutin and waxes are the main components of the cuticle, which is the waterproof layer covering the epidermis of many aerial organs of land plants. Although the in vivo functions of the group of lipid binding proteins known as lipid transfer proteins (LTPs are still rather unclear, there is accumulating evidence suggesting a role for LTPs in the transfer and deposition of monomers required for cuticle assembly. In this review, we first present an overview of the data connecting LTPs with cuticle synthesis. Furthermore, we propose liverworts and mosses as attractive model systems for revealing the specific function and activity of LTPs in the biosynthesis and evolution of the plant cuticle.

  20. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  1. Studies on lipid peroxidation and anti-LPO chemicals

    International Nuclear Information System (INIS)

    Wang Chongdao; Qiang Yizhong; Lao Qinhua

    1995-02-01

    The contents of lipid peroxides (LPO) in sera and tissues were determined by the modified spectrophotometry of TBA, and the effects of three chemicals on lipid peroxidation induced by radiation were observed. The items studied included: (1) the normal values of LPO of sera in rats and adults: (2) the normal values in some tissues of rats; (3) the changes of LPO levels of sera in patients with some mental diseases and patients with malignant tumours before and after local gamma irradiation exposure; (4) the changes of LPO contents of some tissues in rats after whole-body gamma irradiation exposure; (5) the changes of LPO contents of some tissues in mice after internal exposure by Th(NO 3 ) 4 solution; (6) the effects of chinonin, tannic acid and squalene on lipid peroxidation induced by irradiation. The results were as follows: (1) the LPO contents in patients with some mental diseases dramatically increased; (2) there was marked difference between the LPO levels before and after local gamma irradiation exposure in patients with malignant tumours; (3) the LPO contents in some tissues of rats remarkably increased after whole-body gamma irradiation exposure; (4) the LPO contents in some tissues of mice dramatically increased and their protein contents markedly reduced after internal exposure, showing a negative correlation between them; (5) a gradual increase in LPO contents in some tissues of mice appeared with increasing dosage of whole-body gamma irradiation exposure at dose range from 0 to 4 Gy. A linear relationship between the dose and the LPO contents was observed; (6) all three chemicals could reduce the LPO levels in liver, spleen and kidney of the irradiated mice. The efficacy of chinonin was better than that of tannic acid and squalene. (5 tabs., 1 fig.)

  2. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    Science.gov (United States)

    Amaro, Helena M.; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B.; Sousa-Pinto, I.; Malcata, F. Xavier; Guedes, A. Catarina

    2015-01-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2•− and •NO−). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•−, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in •NO− assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  3. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1 and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    Directory of Open Access Journals (Sweden)

    Helena M. Amaro

    2015-10-01

    Full Text Available Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA, well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH• and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+• and biological reactive species (O2•- and •NO-. A eukaryotic microalga (Scenedesmus obliquus (M2-1 and a prokaryotic one (Gloeothece sp. were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2 and acetone extracts of Sc. obliquus (M2-1 were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•-, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2 extracts were the most interesting ones in •NO- assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs.

  4. Lipid storage myopathies.

    Science.gov (United States)

    Bruno, Claudio; Dimauro, Salvatore

    2008-10-01

    The aim of this review is to provide an update on disorders of lipid metabolism affecting skeletal muscle exclusively or predominantly and to summarize recent clinical, genetic, and therapeutic studies in this field. Over the past 5 years, new clinical phenotypes and genetic loci have been described, unusual pathogenic mechanisms have been elucidated, and novel pharmacological approaches have been developed. At least one genetic defect responsible for the myopathic form of CoQ10 deficiency has been identified, causing a disorder that is allelic with the late-onset riboflavine-responsive form of multiple acyl-coenzyme A dehydrogenation deficiency. Novel mechanisms involved in the lipolytic breakdown of cellular lipid depots have been described and have led to the identification of genes and mutations responsible for multisystemic neutral lipid storage disorders, characterized by accumulation of triglyceride in multiple tissues, including muscle. Defects in lipid metabolism can affect either the mitochondrial transport and oxidation of exogenous fatty acid or the catabolism of endogenous triglycerides. These disorders impair energy production and almost invariably involve skeletal muscle, causing progressive myopathy with muscle weakness, or recurrent acute episodes of rhabdomyolysis triggered by exercise, fasting, or infections. Clinical and genetic characterization of these disorders has important implications both for accurate diagnostic approach and for development of therapeutic strategies.

  5. High-dose recombinant apolipoprotein A-I(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization.

    Science.gov (United States)

    Shah, P K; Yano, J; Reyes, O; Chyu, K Y; Kaul, S; Bisgaier, C L; Drake, S; Cercek, B

    2001-06-26

    Repeated doses of recombinant apolipoprotein A-I(Milano) phospholipid complex (apoA-I(m)) reduce atherosclerosis and favorably change plaque composition in rabbits and mice. In this study, we tested whether a single high dose of recombinant apoA-I(m) could rapidly mobilize tissue cholesterol and reduce plaque lipid and macrophage content in apoE-deficient mice. High cholesterol-fed, 26-week-old apoE-deficient mice received a single intravenous injection of saline (n=16), 1080 mg/kg dipalmitoylphosphatidylcholine (DPPC; n=14), or 400 mg/kg of recombinant apoA-I(m) complexed with DPPC (1:2.7 weight ratio; n=18). Blood was sampled before and 1 and 48 hours after injection, and aortic root plaques were evaluated for lipid content and macrophage content after oil-red O and immunostaining, respectively. One hour after injection, the plasma cholesterol efflux-promoting capacity was nearly 2-fold higher in recombinant apoA-I(m)-treated mice compared with saline and DPPC-treated mice (P<0.01). Compared with baseline values, serum free cholesterol, an index of tissue cholesterol mobilization, increased 1.6-fold by 1 hour after recombinant apoA-I(m) injection, and it remained significantly elevated at 48 hours (P<0.01). Mice receiving recombinant apoA-I(m) had 40% to 50% lower lipid content (P<0.01) and 29% to 36% lower macrophage content (P<0.05) in their plaques compared with the saline- and DPPC-treated mice, respectively. A single high dose of recombinant apoA-I(m) rapidly mobilizes tissue cholesterol and reduces plaque lipid and macrophage content in apoE-deficient mice. These findings suggest that this strategy could rapidly change plaque composition toward a more stable phenotype.

  6. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  7. Hypoxia-Inducible Lipid Droplet-Associated Is Not a Direct Physiological Regulator of Lipolysis in Adipose Tissue

    DEFF Research Database (Denmark)

    Dijk, Wieneke; Mattijssen, Frits; de la Rosa Rodriguez, Montserrat

    2017-01-01

    Triglycerides are stored in specialized organelles called lipid droplets. Numerous proteins have been shown to be physically associated with lipid droplets and govern their function. Previously, the protein hypoxia-inducible lipid droplet-associated (HILPDA) was localized to lipid droplets and wa...

  8. Ethanol extract of Tetrapleura tetraptera fruit peels: Chemical characterization, and antioxidant potentials against free radicals and lipid peroxidation in hepatic tissues

    Directory of Open Access Journals (Sweden)

    Ochuko L. Erukainure

    2017-11-01

    Full Text Available The chemical and antioxidant properties of the ethanolic extract of Tetrapleura tetraptera fruit peels were investigated. Dried peels of T. tetraptera fruits were extracted with ethanol. The extract was subjected to preliminary phytochemical screening using standard procedures. GC–MS was used in identifying the secondary metabolites. The antioxidant properties of the extract were determined by its ferric reducing activity, 2,2′-diphenyl-1-picrylhydrazyl (DPPH and nitric oxide (NO radicals scavenging activities, and the inhibition of lipid peroxidation in hepatic tissues of albino male rats. Preliminary phytochemical screening revealed the presence of flavonoids, phenols, tannins, saponins, terpenoids and phlebotannin. GC–MS analysis revealed the presence of D-fructose, piperazine, octodrine, glycidol, glyceraldehydes, 6-octadecenoic acid and 9,12-octadecenoic acid, with D–fructose being the most predominant compound. The extract exhibited high antioxidant activities both in vitro and ex vivo, as indicated by its ability to scavenge DPPH and nitric oxide as well as inhibition of lipid peroxidation. This is further portrayed by its ferric reducing activity. These results suggest an antioxidant protective effect of the extract against oxidative hepatic damage and can be attributed to a synergetic action of the identified bioactive compounds. Keywords: Antioxidant, Lipid peroxidation, Phytochemicals, Secondary metabolites

  9. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  10. Co-existence of Gel and Fluid Lipid Domains in Single-component Phospholipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Clare L [McMaster University; Barrett, M [McMaster University; Toppozini, L [McMaster University; Yamani, Zahra [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratorie; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Katsaras, John [ORNL; Fragneto, Giovanna [Institut Laue-Langevin (ILL); Rheinstadter, Maikel C [McMaster University

    2012-01-01

    Lateral nanostructures in membranes, so-called rafts, are believed to strongly influence membrane properties and functions. The experimental observation of rafts has proven difficult as they are thought to be dynamic structures that likely fluctuate on nano- to microsecond time scales. Using neutron diffraction we present direct experimental evidence for the co-existence of gel and fluid lipid domains in a single-component phospholipid membrane made of DPPC as it undergoes its main phase transition. The coherence length of the neutron beam sets a lower limit for the size of structures that can be observed. Neutron coherence lengths between 30 and 242A used in this study were obtained by varying the incident neutron energy and the resolution of the neutron spectrometer. We observe Bragg peaks corresponding to co-existing nanometer sized structures, both in out-of-plane and in-plane scans, by tuning the neutron coherence length. During the main phase transition, instead of a continuous transition that shows a pseudo-critical behavior, we observe the co-existence of gel and fluid domains.

  11. Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA).

    Science.gov (United States)

    Bays, Harold; Kothari, Shanu N; Azagury, Dan E; Morton, John M; Nguyen, Ninh T; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures generally improve dyslipidemia, sometimes substantially so. Bariatric procedures also improve other major cardiovascular risk factors. This 2-part Scientific Statement examines the lipid effects of bariatric procedures and reflects contributions from authors representing the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and the Obesity Medicine Association (OMA). Part 1 was published in the Journal of Clinical Lipidology, and reviewed the impact of bariatric procedures upon adipose tissue endocrine and immune factors, adipose tissue lipid metabolism, as well as the lipid effects of bariatric procedures relative to bile acids and intestinal microbiota. This Part 2 reviews: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies, that may occur after bariatric procedures. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  12. Chilling-related cell damage of apple (Malus × domestica Borkh.) fruit cortical tissue impacts antioxidant, lipid and phenolic metabolism.

    Science.gov (United States)

    Leisso, Rachel S; Buchanan, David A; Lee, Jinwook; Mattheis, James P; Sater, Chris; Hanrahan, Ines; Watkins, Christopher B; Gapper, Nigel; Johnston, Jason W; Schaffer, Robert J; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R

    2015-02-01

    'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) β-d-glucoside and sitosteryl (6'-O-stearate) β-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, β-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl β-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder. © 2014 Scandinavian Plant Physiology Society.

  13. Neurotensin Is a Lipid-Induced Gastrointestinal Peptide Associated with Visceral Adipose Tissue Inflammation in Obesity.

    Science.gov (United States)

    Barchetta, Ilaria; Cimini, Flavia Agata; Capoccia, Danila; Bertoccini, Laura; Ceccarelli, Valentina; Chiappetta, Caterina; Leonetti, Frida; Di Cristofano, Claudio; Silecchia, Gianfranco; Orho-Melander, Marju; Melander, Olle; Cavallo, Maria Gisella

    2018-04-23

    Neurotensin (NT) is a 13-amino acid peptide localized in the neuroendocrine cells of the small intestine, which promotes fat absorption and fatty acids translocation in response to lipid ingestion. NT-knock-out mice fed with a high-fat diet are protected from obesity, fatty liver, and the development of insulin-resistance. In humans, higher plasma levels of pro-NT, which is the stable circulating precursor of NT, predict obesity, type 2 diabetes (T2D), and cardiovascular disease. In obesity, the presence of visceral adipose tissue (VAT) inflammation leads to unfavorable metabolic outcomes and is associated with the development of T2D and non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the relationship between plasma pro-NT levels and the presence of VAT inflammation in biopsies from 40 morbidly obese subjects undergoing bariatric surgery. We demonstrated that higher proNT levels are significantly associated with greater macrophages infiltration, HIF-1α, WISP-1, and UNC5B expression in VAT (all p < 0.01) due to the diagnosis of T2D and NAFLD. The overall results show that, in obesity, pro-NT is a biomarker of VAT inflammation and insulin-resistance. Additionally, NT may be involved in the development of dysmetabolic conditions likely mediated by increased gut fat absorption and the presence of a proinflammatory milieu in the adipose tissue.

  14. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach.

    Science.gov (United States)

    Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma

    2017-12-01

    Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.

  15. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  16. Lipid correction for carbon stable isotope analysis of fish tissue

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069–2077 DOI: 10.1002/rcm.7367. This dataset is associated...

  17. Final Report: 17th international Symposium on Plant Lipids

    Energy Technology Data Exchange (ETDEWEB)

    Christoph Benning

    2007-03-07

    This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.

  18. Exogenous lipid pneumonia

    International Nuclear Information System (INIS)

    Bernasconi, A.; Gavelli, G.; Zompatori, M.; Galleri, C.; Zanasi, A.; Fabbri, M.; Bazzocchi, F.

    1988-01-01

    Exogenous lipid pneumonia (ELP) is caused by the aspiration of animal, vegetal or, more often, mineral oils. Even though it may also be acute, ELP is most frequently a chronic disease, affecting people with predisposing factors, such as neuromuscular disorders, structural abnormalities and so on; very often exogenous lipid pneumonia is found in tracheotomized patients. The pathology of lipid pneumonia is a chronic inflammatory process evolving in foreign-body-like reaction, and eventually in ''end-stage lung'' condition. Clinically, most patients are asymptomatic; few cases only present with cough, dyspnea and chest pain. Eight cases of ELP, studied over the past 3 years, are described in this paper. All the patients were examined by chest radiographs and standard tomograms; 3 patients underwent CT. X-ray features were mono/bilateral consolidation of the lower zones, with air bronchogram and variable reduction in volume. CT density was not specific for fat tissue. In all cases the diagnosis was confirmed at biopsy. In 5 patients, followed for at least one year, clinical-radiological features showed no change. Thus, complications of ELP (especially malignant evolution) could be excluded. The authors conclude that lipid pneumonia must be considered in differential diagnosis of patients with history of usage of oils and compatible X-ray findings. The usefulness of an accurate follow-up is stressed

  19. [Effects of endophytic fungi from Dendrobium officinale on host growth and components metabolism of tissue culture seedlings].

    Science.gov (United States)

    Zhu, Bo; Liu, Jing-Jing; Si, Jin-Ping; Qin, Lu-Ping; Han, Ting; Zhao, Li; Wu, Ling-Shang

    2016-05-01

    The paper aims to study the effects of endophytic fungi from D. officinale cultivated on living trees on growth and components metabolism of tissue culture seedlings. Morphological characteristics and agronomic characters of tissue culture seedlings infected and uninfected by endophytic fungus were observed and measured. Polysaccharides and alcohol-soluble extracts contents were determined by phenol-sulfuric acid method and hot-dipmethod, respectively. Monosacchride composition of polysaccharides and alcohol-soluble extracts components were analyzed by pre-column derivatives HPLC and HPLC method, respectively. It showed that effects of turning to purple of stem nodes could be changed by endophytic fungus. Besides, the endophytic fungus could affect the contents and constitutions of polysaccharides and alcohol-soluble extracts. The strains tested, expect DO34, could promote growth and polysaccharides content of tissue culture seedlings. The strains tested, expect DO12, could promote the accumulation of mannose. Furthermore, DO18, DO19 and DO120 could increase alcohol-soluble extracts. On the basis, four superior strains were selected for mechanism research between endophytic fungus and their hosts and microbiology engineering. Copyright© by the Chinese Pharmaceutical Association.

  20. LIPID METHODOLOGY AND POLLUTANT NORMALIZATION RELATIONSHIPS FOR NEUTRAL NONPOLAR ORGANIC POLLUTANTS

    Science.gov (United States)

    This work compares the ability of hexane and chloroform with methanol (C/M) to extract lipid, polychlorinated biphenyls (PCBs), and p,p'-DDE from white croaker (Geneonus lineatus) muscle tissue. Hexane extracted on average 25% of the lipid and 73% of the PCB congeners that were e...

  1. Effect of Pistacia Atlantica Extract on Glutathione Peroxidase Tissue Levels and Total Oxidative Capacity of Liver and Plasma Lipid Profile of Rats

    Directory of Open Access Journals (Sweden)

    Parvin Farzanegi

    2013-11-01

    Full Text Available Background: Exercise causes increased oxygen consumption, leaving cells exposed to oxidative stress. Antioxidants may have a protective effect by inhibiting lipid peroxidation. Thus, this study aims to examine the effect of Pistacia atlantica extract on glutathione peroxidase levels and total oxidative capacity of liver and plasma lipid profile of rats. Materials and Methods: In this experimental study, 28 female rats’ weight 155.8±2.7 grams were randomly and equally divided into 4 groups of exercise-saline, control-saline, exercise-mastic, and control-mastic. The exercise groups exercised for 8 weeks (5 days per week, 60 minutes daily, 25 meters per minute, on a zero degree slope. The rats received equal volumes of mastic and saline orally for 4 weeks. Blood and tissue samples were taken 72 hours after the last exercise session. Data were analyzed using one-way variance analysis (ANOVA.Results: Consumption of Pistacia atlantica extract together with endurance exercising for 8 weeks did not significantly affect glutathione peroxidase concentration, total oxidative capacity, LDL, triglyceride, or cholesterol, but significantly reduced HDL (p=0.002.Conclusion: Results showed that antioxidant and lipid profile levels were not affected by consumption of supplements and endurance exercising. However, further studies are required to assess the long term effects of this herbal extract.

  2. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Glisezinski, I. de; Larrouy, D.; Bajzova, M.

    2009-01-01

    The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched...... of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean...... individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent...

  3. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  4. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P

  5. NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes

    DEFF Research Database (Denmark)

    He, Cuiwen; Weston, Thomas A; Jung, Rachel S

    2018-01-01

    , mice were given an injection of [2H]triglyceride-enriched TRLs, and the movement of 2H-labeled lipids across capillaries and into cardiomyocytes was examined by NanoSIMS. TRL processing and lipid movement in tissues were extremely rapid. Within 30 s, TRL-derived lipids appeared in the subendothelial...

  6. Positive Correlation of Serum Adiponectin with Lipid Profile in Patients with Type 2 Diabetes Mellitus is Affected by Metabolic Syndrome Status.

    Science.gov (United States)

    Eslamian, Mohammad; Mohammadinejad, Payam; Aryan, Zahra; Nakhjavani, Manouchehr; Esteghamati, Alireza

    2016-04-01

    Type-2 diabetes mellitus (DM) and Metabolic syndrome (MetS) are both associated with dyslipidemia which may lead to development of vascular complications. Adiponectin is an anti-inflammatory protein synthesized by the adipose tissue. There is controversy regarding the association of adiponectin with lipid profile. To evaluate the correlation between serum adiponectin concentration and metabolic profile in patients with type-2 DM. A single center cross-sectional study was conducted on 173 patients with type-2 DM (82 males and 91 females). Plasma adiponectin concentration, lipid profile, glucose profile, and anthropometric features were investigated. Insulin resistance was determined using Homeostasis model assessment (HOMA). Correlation of serum adiponectin with lipid profile of patients with type-2 DM was assessed. Adiponectin was negatively correlated with waist circumference (r = -0.16, P = 0.06) and positively with HbA1c (r = 0.19, P = 0.032), total cholesterol (r = 0.23, P = 0.017), LDL (r = 0.30, P = 0.001), SD-LDL (r = 0.41, P < 0.001), and SD-LDL/LDL (r = 0.22, P = 0.023). We found a positive correlation between adiponectin and total cholesterol (r = 0.27, P = 0.055), LDL (r = 0.34, P = 0.026) and SD-LDL (r = 0.41, P = 0.006) in patients with at least 3 components of MetS criteria. Correlation of adiponectin with LDL and SD-LDL remained positively significant with increasing the number of MetS components. In patients with 5 components of MetS, serum adiponectin was significantly correlated with serum triglyceride (r = 0.89). Significant interaction was observed between adiponectin and metabolic syndrome in relation to serum lipid profile. The results of the present study suggest that in patients with type-2 DM and MetS, lipid profile is strongly correlated with blood concentration of adiponectin. The strongest association was observed between serum adiponectin and LDL.

  7. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  8. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    International Nuclear Information System (INIS)

    Losev, Yu.P.; Amadyan, M.G.; Oganesyan, N.M.; Fedulov, A.S.; Abramyan, A.K.; Shagoyan, A.G.; Khachkavanktsyan, A.S.

    1999-01-01

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  9. A simple osmium post-fixation paraffin-embedment technique to identify lipid accumulation in fish liver using medaka (Oryziaslatipes) eggs and eleutheroembryos as lipid rich models

    International Nuclear Information System (INIS)

    Mondon, J.A.; Howitt, J.; Tosiano, M.; Kwok, K.W.H.; Hinton, D.E.

    2011-01-01

    Highlights: → Hepatic lipidosis in fish liver is often misdiagnosed or overlooked. → Specific histological fat stains and cryostat sections are not commonly used. → Standard paraffin processing removes lipid leaving vacuoles of unknown origin. → Osmium post-fixed paraffin-embedment is a cost effective alternative. → Medaka trials show suitability for lipid visualization in tissues from egg to adult. - Abstract: Hepatic lipidosis is a non-specific biomarker of effect from pollution exposure in fish. Fatty liver is often misdiagnosed or overlooked in histological assessments due to the decreasing application of specific fat procedures and stains. For example, ethanol dehydration in standard paraffin processing removes lipids, leaving vacuoles of which the precise nature is unknown. Lipids can be identified using osmium post-fixation in semi-thin resin sections or transmission electron microscopy. However, both are expensive and technically demanding procedures, often not available for routine environmental risk assessment and monitoring programs. The current emphasis to reduce and refine animal toxicity testing, requires refinement of the suite of histopathological techniques currently available to maximize information gained from using fish for toxicity testing and as bio-indicators of environmental quality. This investigation has successfully modified an osmium post-fixation technique to conserve lipids in paraffin-embedded tissues using medaka (Oryzias latipes) eleutheroembryos and eggs (embryos) as lipid rich models.

  10. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  11. Diagnosis of Connective Tissue Disorders based on Independent Component Analysis of Aortic Shape and Motion from 4D MR Images

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Zhao, Fei; Zhang, Honghai

    2006-01-01

    Independent component analysis (ICA) is employed for com\\$\\backslash\\$-puter-aided diagnosis (CAD) allowing objective identification of subjects with connective tissue disorder from 4D aortic MR images. Stationary independent components assist in the disease detection, which is the first...

  12. Effects of baked and raw salmon fillet on lipids and n-3 PUFAs in serum and tissues in Zucker fa/fa rats

    OpenAIRE

    Vikøren, Linn Anja Slåke; Drotningsvik, Aslaug; Bergseth, Marthe Tønder; Mjøs, Svein Are; Mola, Nazanin; Leh, Sabine Maria; Mellgren, Gunnar; Gudbrandsen, Oddrun Anita

    2017-01-01

    ABSTRACT Knowledge of the health impact of consuming heat-treated versus raw fish fillet is limited. To investigate effects of baked or raw salmon fillet intake on lipids and n-3 PUFAs in serum and tissues, obese Zucker fa/fa rats were fed diets containing 25% of protein from baked or raw salmon fillet and 75% of protein from casein, or casein as the sole protein source (control group) for four weeks. Salmon diets had similar composition of amino and fatty acids. Growth and energy intake were...

  13. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid...

  14. Effect of lipid extraction on analyses of stable carbon and stable nitrogen isotopes in coastal organisms of the Aleutian archipelago

    Science.gov (United States)

    Ricca, M.A.; Miles, A.K.; Anthony, R.G.; Deng, X.; Hung, S.S.O.

    2007-01-01

    We tested whether extracting lipids reduced confounding variation in ??13C and ??15N values by analyzing paired lipid-extracted (LE) and non-lipid-extracted (NLE) samples of bald eagle (Haliaeetus leucocephalus (L., 1766)) whole eggs, muscle tissue from nine seabird and one terrestrial bird species, muscle tissue from four marine fish species, and blue mussels (Mytilus edulis L., 1758) collected from the Aleutian archipelago, Alaska. Lipid extraction significantly increased ??13C by an average of 2.0??? in whole eggs, 0.8??? in avian muscle, 0.2??? in fish muscle, and 0.6??? in blue mussels. Lower ??13C values in NLE samples covaried positively with lipid content across all sample types. Lower ??13C values in NLE samples were not correlated with lipid content within bald eagle eggs and blue mussels, but covaried positively with percent lipid in avian and fish muscles. Neither lipid extraction nor percent lipid significantly changed ??15N values for any sample type. Lower ??13C values in most NLE avian and fish muscle tissues should not confound interpretation of pelagic versus nearshore sources of primary production, but lipid extraction may be necessary when highly precise estimates of ??13C are needed. Lipid extraction may not be necessary when only ??15N is of interest. ?? 2007 NRC.

  15. The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism

    Science.gov (United States)

    Talbot, Richard; Maddox, Jillian F.; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M.; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C.; Hourlier, Thibaut; Aken, Bronwen L.; Searle, Stephen M.J.; Adelson, David L.; Bian, Chao; Cam, Graham R.; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R.; Fu, Shaoyin; Guan, Rui; Highland, Margaret A.; Holder, Michael E.; Huang, Guodong; Ingham, Aaron B.; Jhangiani, Shalini N.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N.; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B.; Kristensen, Karsten; Gibbs, Richard A.; Flicek, Paul; Warkup, Christopher C.; Jones, Huw E.; Oddy, V. Hutton; Nicholas, Frank W.; McEwan, John C.; Kijas, James; Wang, Jun; Worley, Kim C.; Archibald, Alan L.; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P.

    2014-01-01

    Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals. PMID:24904168

  16. Lipid Raft: A Floating Island Of Death or Survival

    Science.gov (United States)

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  17. Characteristics of lipids and their feeding value in swine diets

    OpenAIRE

    Kerr, Brian J.; Kellner, Trey A.; Shurson, Gerald C.

    2015-01-01

    In livestock diets, energy is one of the most expensive nutritional components of feed formulation. Because lipids are a concentrated energy source, inclusion of lipids are known to affect growth rate and feed efficiency, but are also known to affect diet palatability, feed dustiness, and pellet quality. In reviewing the literature, the majority of research studies conducted on the subject of lipids have focused mainly on the effects of feeding presumably high quality lipids on growth perform...

  18. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  19. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects

    DEFF Research Database (Denmark)

    Asmar, M; Simonsen, L; Arngrim, N

    2013-01-01

    OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) appears to have a role in lipid metabolism. Recently, we showed that GIP in combination with hyperinsulinemia and hyperglycemia increases triglyceride uptake in abdominal, subcutaneous adipose tissue in lean humans. It has been suggested...... that increased GIP secretion in obesity will promote lipid deposition in adipose tissue. In light of the current attempts to employ GIP antagonists in the treatment and prevention of human obesity, the present experiments were performed in order to elucidate whether the adipose tissue lipid metabolism would...... to an oral glucose challenge: (i) NGT and (ii) IGT. Abdominal, subcutaneous adipose tissue lipid metabolism was studied by conducting measurements of arteriovenous concentrations of metabolites and regional adipose tissue blood flow (ATBF) during GIP (1.5 pmol kg(-1) min(-1)) in combination with a HI...

  20. Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Barbara L Mui

    2013-01-01

    Full Text Available Lipid nanoparticles (LNPs encapsulating short interfering RNAs that target hepatic genes are advancing through clinical trials, and early results indicate the excellent gene silencing observed in rodents and nonhuman primates also translates to humans. This success has motivated research to identify ways to further advance this delivery platform. Here, we characterize the polyethylene glycol lipid (PEG-lipid components, which are required to control the self-assembly process during formation of lipid particles, but can negatively affect delivery to hepatocytes and hepatic gene silencing in vivo. The rate of transfer from LNPs to plasma lipoproteins in vivo is measured for three PEG-lipids with dialkyl chains 14, 16, and 18 carbons long. We show that 1.5 mol % PEG-lipid represents a threshold concentration at which the chain length exerts a minimal effect on hepatic gene silencing but can still modify LNPs pharmacokinetics and biodistribution. Increasing the concentration to 2.5 and 3.5 mol % substantially compromises hepatocyte gene knockdown for PEG-lipids with distearyl (C18 chains but has little impact for shorter dimyristyl (C14 chains. These data are discussed with respect to RNA delivery and the different rates at which the steric barrier disassociates from LNPs in vivo.

  1. Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes

    International Nuclear Information System (INIS)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo

    2005-01-01

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPARα-specific activator. Phytol induced the increase in PPARα-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPARα. Moreover, the addition of phytol upregulated the expression of PPARα-target genes at both mRNA and protein levels in PPARα-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPARα ligand and that it stimulates the expression of PPARα-target genes in intact cells. Because PPARα activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism

  2. Qualitative composition of the lipids of the wood of scotch pine

    Energy Technology Data Exchange (ETDEWEB)

    Fuksman, I.L.; Pon' kina, N.A.

    1984-01-01

    The ether extract of Pinus sylvestris contained 87.43% neutral lipids and resin acids, 10.85% galacto lipids, and 1.71% phospholipids. The predominant component of phospholipids was phorphatidylcholine, accounting for 62.10% of the total. The other components of phospholipids were diphosphatidylethanolamine (14.00%), phosphatidylglycerol and phosphatidylethanolamine (together accounting for 14.64%), phosphatidylylinositol (5.78%), and phosphatidic acid (1.04%). The acid part of the extract was determined by gas-liquid chromatography to contain 52 carboxylic acids, of which 44 were fatty acids and 8 were resin acids. The composition of the lipids was determined by thin-layer chromatography.

  3. Computer Simulations of Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier F. Fernandez-Luengo

    2017-12-01

    Full Text Available Lipid nanoparticles (LNP are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications, the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

  4. Three-Dimensional Imaging of Lipids and Metabolites in Tissues by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Cha, Jeeyeon; Dey, Sudhansu K.; yang, Pengxiang; Prieto, Mari; Laskin, Julia

    2015-03-01

    Abstract Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI) – an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pre-treatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ~150 μm in less than 4.5 hours. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine – metabolites associated with cell growth – are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.

  5. The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN).

    Science.gov (United States)

    Sznitowska, Malgorzata; Wolska, Eliza; Baranska, Helena; Cal, Krzysztof; Pietkiewicz, Justyna

    2017-01-01

    Solid lipid microparticles (SLM) were produced by a two-step process that, firstly, involved the emulsification of the molten lipid phase in a heated aqueous phase and, secondly, the system cooling. Compritol 888 ATO and Precirol ATO 5, including their mixtures with Miglyol 812 or Witepsol H15 were used as lipid components (10-30% w/w). The average size of the SLM prepared with Compritol and Tween 80 as an emulsifier was 3-7μm and the influence of lipid concentration and thermal sterilization was not large. Dispersions of SLM with Precirol (10-20% w/w) gellified upon storage. SLM stabilized with another surfactant, Tego Care 450, were larger in size and measured 40μm on average. The use of the sonication step (5-15min) in hot formulations containing 5% w/w of Compritol resulted in the formation of the solid lipid nanoparticles (SLN) with average size 200-300nm. The smallest SLN size (below 100nm on average) was obtained in SLN that contained Tego Care and an antimicrobial agent Euxyl PE 9010; such combination evoked synergism between the surfactant and Euxyl components. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Production of fungal lipids : kinetic modeling and process design

    NARCIS (Netherlands)

    Meeuwse, P.

    2011-01-01

    Finding alternatives for fossil fuels is currently urgent. One of the new processes in this field is the production of biodiesel from lipids accumulated by microorganisms. Some yeasts and fungi accumulate lipids when a component needed for growth, usually the N-source, is limiting while the

  7. Characterising human atherosclerotic carotid plaque tissue composition and morphology using combined spectroscopic and imaging modalities.

    Science.gov (United States)

    Barrett, Hilary E; Mulvihill, John J; Cunnane, Eoghan M; Walsh, Michael T

    2015-01-01

    Calcification is a marked pathological component in carotid artery plaque. Studies have suggested that calcification may induce regions of high stress concentrations therefore increasing the potential for rupture. However, the mechanical behaviour of the plaque under the influence of calcification is not fully understood. A method of accurately characterising the calcification coupled with the associated mechanical plaque properties is needed to better understand the impact of calcification on the mechanical behaviour of the plaque during minimally invasive treatments. This study proposes a comparison of biochemical and structural characterisation methods of the calcification in carotid plaque specimens to identify plaque mechanical behaviour. Biochemical analysis, by Fourier Transform Infrared (FTIR) spectroscopy, was used to identify the key components, including calcification, in each plaque sample. However, FTIR has a finite penetration depth which may limit the accuracy of the calcification measurement. Therefore, this FTIR analysis was coupled with the identification of the calcification inclusions located internally in the plaque specimen using micro x-ray computed tomography (μX-CT) which measures the calcification volume fraction (CVF) to total tissue content. The tissue characterisation processes were then applied to the mechanical material plaque properties acquired from experimental circumferential loading of human carotid plaque specimen for comparison of the methods. FTIR characterised the degree of plaque progression by identifying the functional groups associated with lipid, collagen and calcification in each specimen. This identified a negative relationship between stiffness and 'lipid to collagen' and 'calcification to collagen' ratios. However, μX-CT results suggest that CVF measurements relate to overall mechanical stiffness, while peak circumferential strength values may be dependent on specific calcification geometries. This study

  8. PRDM1 expression on the epithelial component but not on ectopic lymphoid tissues of Warthin tumour.

    Science.gov (United States)

    Wang, Y; Zhou, J; Zhang, Y; Wang, L; Liu, Y; Fan, L; Zhu, J; Xu, X; Huang, G; Li, X; Xun, W

    2015-05-01

    To determine the role of PRDM1, a key molecule for modulating the immune cells, in Warthin tumour (WT) pathogenesis. Forty paraffin-embedded parotid tissues of patients (mean age: 62.08 ± 11.90) with WT were retrieved from the pathology archives of Qindu Hospital from January 2012 to December 2012. The PRDM1 expression was investigated in a cohort of WT by immunohistochemistry. PRDM1 was expressed only on the epithelial component but not on ectopic lymphoid tissue of the tumour. Statistically, PRDM1 expression rates between WT glandular epithelial cells (40/40 cases) and the tumour-adjacent tissues (0/9 cases), and WT germinal centres (0/34 cases) and tonsil tissues (10/10 cases) were significantly different (P < 0.001), respectively. The PRDM1 expression appeared to play an essential role in WT pathogenesis. A better understanding of it might give options for revealing possible novel management strategies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues.

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.

    2017-11-01

    The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.

  10. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice

    Science.gov (United States)

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia – before severe fat loss – in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34–42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition. PMID:25457061

  11. Clerodendron glandulosum Coleb., Verbenaceae, ameliorates high fat diet-induced alteration in lipid and cholesterol metabolism in rats

    Directory of Open Access Journals (Sweden)

    RN Jadeja

    Full Text Available The present study was undertaken to evaluate the efficacy of freeze dried extract of Clerodendron glandulosum Coleb., Verbenaceae, leaves (FECG on alteration in lipid and cholesterol metabolism in high fat diet fed hyperlipidemic rats. Plasma and hepatic lipid profiles, lipid and cholesterol metabolizing enzymes in target tissues and fecal total lipids and bile acid contents were evaluated in FECG treated normolipidemic and hyperlipidemic rats. These results were compared with synthetic hypolipidemic drug Lovastatin (LVS. Results indicate that FECG was able to positively regulate induced experimental hyperlipidemia by significant alteration in plasma and tissue lipid profiles. These results can be attributed to reduced absorption, effective elimination and augmented catabolism of lipids and cholesterol possibly due to high content of saponin and phytosterols in C. glandulosum. Use of C. glandulosum extract as a potential therapeutic agent against hypercholesterolemia and hypertriglyceridemia is indicated.

  12. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    Science.gov (United States)

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P glucose clearance rate (K) and lower glucose half-life (T½; P Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P glucose utilization and lipid oxidation of meat in fattening kid.

  13. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within

    Directory of Open Access Journals (Sweden)

    Valerio Chiurchiù

    2018-01-01

    Full Text Available Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids—namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids—in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.

  14. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Science.gov (United States)

    Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  15. Seasoning ingredients in a medium-fat diet regulate lipid metabolism in peripheral tissues via the hypothalamic-pituitary axis in growing rats.

    Science.gov (United States)

    Tanaka, Mitsuru; Yasuoka, Akihito; Yoshinuma, Haruka; Saito, Yoshikazu; Asakura, Tomiko; Tanabe, Soichi

    2018-03-01

    We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.

  16. No turnover in lens lipids for the entire human lifespan.

    Science.gov (United States)

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger J W

    2015-03-11

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases.

  17. Consistent thermodynamic properties of lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    different pressures, with azeotrope behavior observed. Available thermodynamic consistency tests for TPx data were applied before performing parameter regressions for Wilson, NRTL, UNIQUAC and original UNIFAC models. The relevance of enlarging experimental databank of lipids systems data in order to improve......Physical and thermodynamic properties of pure components and their mixtures are the basic requirement for process design, simulation, and optimization. In the case of lipids, our previous works[1-3] have indicated a lack of experimental data for pure components and also for their mixtures...... the performance of predictive thermodynamic models was confirmed in this work by analyzing the calculated values of original UNIFAC model. For solid-liquid equilibrium (SLE) data, new consistency tests have been developed [2]. Some of the developed tests were based in the quality tests proposed for VLE data...

  18. Role of charged lipids in membrane structures — Insight given by simulations

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Vattulainen, Ilpo

    2016-01-01

    Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids...... to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane...

  19. Automated, parallel mass spectrometry imaging and structural identification of lipids

    DEFF Research Database (Denmark)

    Ellis, Shane R.; Paine, Martin R.L.; Eijkel, Gert B.

    2018-01-01

    We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments....... This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue....

  20. RaftProt: mammalian lipid raft proteome database.

    Science.gov (United States)

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Radioprotective properties of detoxified lipid A

    International Nuclear Information System (INIS)

    Snyder, S.L.; Walden, T.L. Jr.; Patchen, M.L.

    1985-01-01

    Endotoxic lipopolysaccharide (LPS) has long been known to possess radioprotective properties. Nevertheless, the toxicity of LPS, or its principal bioactive component, Lipid A, has detracted from its potential use as a radioprotectant. Recently, a relatively non-toxic monophosphoryl Lipid A that retains many of the immunobiological properties of native LPS has been prepared from a polyaccharide-deficient and heptoseless Re mutant strain of S. minnesota. The authors conducted experiments that evaluated and compared the radioprotective efficiency of native endotoxin, as well as the mono (detoxified) and diphosphoryl (toxic) forms of Lipid A, in both responder (CD2F1 and C3H/HeN) and non-responder (C3H/HeJ) mice. It has been found that the optimal dose for the mono- and diphosphoryl Lipid A are approximately the same (800 μg/kg in CD2F1 mice), and that both compounds provide maximum protection when administered 24 h before exposure to an LD100 dose of cobalt - 60 gamma radiation. Possible mechanisms for the radioprotective action of detoxified Lipid A are suggested

  2. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    Science.gov (United States)

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on

  3. Dynamics of biochemical components, lipid classes and energy values on gonadal development of R. philippinarum associated with the temperature and ingestion rate.

    Science.gov (United States)

    Fernández-Reiriz, M J; Pérez-Camacho, A; Delgado, M; Labarta, U

    2007-08-01

    This study evaluates the effect of temperature, coupled with ingestion rate, on the dynamics of biochemical components and lipid classes in R. philippinarum. The data are discussed with regard to sexual development and energy balance. Experimental protocol developed in the present study used two groups of the clam R. philippinarum: L (temperatures of 14 degrees C and 18 degrees C) and H (temperatures of 18 degrees C and 22 degrees C). The intra-group ingestion level was similar, although the ingestion level of the clams in the group H was 2.4 times higher than group L. We observed that R. philippinarum conditioned at 18 degrees C (18L) shows higher protein content, furthermore an important loss of organic weight was observed after 48 days. In such a situation, the clams use their own reserves (carbohydrates and glycogen) for sexual development while in situations without food stress (positive energy balance) and low temperature (14 degrees C) an accumulation of reserves is produced. Strikingly dissimilar behaviour in biochemical composition was observed for the 18H and 22H treatments, both with a positive energy balance. Despite similar protein content, the highest levels of carbohydrates were observed at the lower temperature (18 degrees C). Glycogen was also higher for the 18 degrees C treatment, although the differences were significant only in the males. Although the total lipids in R. philippinarum showed no significant differences in any treatment, they became apparent and related to sex when considering the individual lipid classes. There was no variation in lipid classes in the males between the 14L and 22H treatments despite the large disparity in the degree of sexual development. However, in the females significant differences in lipid classes (phospholipids, triglycerides) were observed. The results of this study show that a positive energy balance permits R. philippinarum gonadal development and accumulation of reserves both in low and high temperature

  4. Equilibrium sampling of environmental pollutants in fish: Comparison with lipid- normalized concentrations and homogenization effects on chemical activity

    DEFF Research Database (Denmark)

    Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha

    2011-01-01

    of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher...... in the homogenates (statistically significant in 18 of 21 cases, phomogenization increased the chemical activity of the PCBs and decreased the fugacity capacity of the tissue. This observation has implications for equilibrium sampling and partition coefficients determined using tissue...... homogenates....

  5. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics

    Directory of Open Access Journals (Sweden)

    Zhao Li

    2017-11-01

    Full Text Available Background: The aim of this study was to characterize the disorder of lipid metabolism in hepatocellular carcinoma (HCC. HCC is a worldwide disease. The research into the disorder of lipid metabolism in HCC is very limited. Study of lipid metabolism in liver cancer tissue may have the potential to provide new insight into HCC mechanisms. Methods: A lipidomics study of HCC based on Ultra high performance liquid chromatography-electronic spray ionization-QTOF mass spectrometer (UPLC-ESI-QTOF MS and Matrix assisted laser desorption ionization-fourier transform ion cyclotron resonance mass spectrometer (MALDI-FTICR MS was performed. Results: Triacylglycerols (TAGs with the number of double bond (DB > 2 (except 56:5 and 56:4 TAG were significantly down-regulated; conversely, others (except 52:2 TAG were greatly up-regulated in HCC tissues. Moreover, the more serious the disease was, the higher the saturated TAG concentration and the lower the polyunsaturated TAG concentration were in HCC tissues. The phosphatidylcholine (PC, phosphatidylethanolamine (PE and phosphatidylinositol (PI were altered in a certain way. Sphingomyelin (SM was up-regulated and ceramide (Cer were down-regulated in HCC tissues. Conclusions: To our knowledge, this is the first such report showing a unique trend of TAG, PC, PE and PI. The use of polyunsaturated fatty acids, like eicosapentanoic and docosahexanoic acid, as supplementation, proposed for the treatment of Non-alcoholic steatohepatitis (NASH, may also be effective for the treatment of HCC.

  6. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  7. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    International Nuclear Information System (INIS)

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-01-01

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders

  8. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  9. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation.

    Science.gov (United States)

    Miller, Yury I; Shyy, John Y-J

    2017-02-01

    Oxidized low-density lipoprotein (OxLDL), which contains hundreds of different oxidized lipid molecules, is a hallmark of hyperlipidemia and atherosclerosis. The same oxidized lipids found in OxLDL are also formed in apoptotic cells, and are present in tissues as well as in the circulation under pathological conditions. In many disease contexts, oxidized lipids constitute damage signals, or patterns, that activate pattern-recognition receptors (PRRs) and significantly contribute to inflammation. Here, we review recent discoveries and emerging trends in the field of oxidized lipids and the regulation of inflammation, focusing on oxidation products of polyunsaturated fatty acids esterified into cholesteryl esters (CEs) and phospholipids (PLs). We also highlight context-dependent activation and biased agonism of Toll-like receptor-4 (TLR4) and the NLRP3 inflammasome, among other signaling pathways activated by oxidized lipids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.

    OpenAIRE

    Felgner, P L; Gadek, T R; Holm, M; Roman, R; Chan, H W; Wenz, M; Northrop, J P; Ringold, G M; Danielsen, M

    1987-01-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA, DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and eff...

  11. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition.

    Science.gov (United States)

    Zaloga, Gary P

    2015-09-01

    Phytosterols are plant-derived sterols that are structurally and functionally analogous to cholesterol in vertebrate animals. Phytosterols are found in many foods and are part of the normal human diet. However, absorption of phytosterols from the diet is minimal. Most lipid emulsions used for parenteral nutrition are based on vegetable oils. As a result, phytosterol administration occurs during intravenous administration of lipid. Levels of phytosterols in the blood and tissues may reach high levels during parenteral lipid administration and may be toxic to cells. Phytosterols are not fully metabolized by the human body and must be excreted through the hepatobiliary system. Accumulating scientific evidence suggests that administration of high doses of intravenous lipids that are high in phytosterols contributes to the development of parenteral nutrition-associated liver disease. In this review, mechanisms by which lipids and phytosterols may cause cholestasis are discussed. Human studies of the association of phytosterols with liver disease are reviewed. In addition, clinical studies of lipid/phytosterol reduction for reversing and/or preventing parenteral nutrition associated liver disease are discussed. © 2015 American Society for Parenteral and Enteral Nutrition.

  12. Cerebrotendinous xanthomatosis (a rare lipid storage disorder): a case report

    OpenAIRE

    Razi, Syed Mohd; Gupta, Abhinav Kumar; Gupta, Deepak Chand; Gutch, Manish; Gupta, Keshav Kumar; Usman, Syeda Iqra

    2016-01-01

    Background Cerebrotendinous xanthomatosis is a very rare autosomal recessive lipid storage disorder affecting bile acid biosynthesis. It is manifested by subtle neurological and non-neurological symptoms due to abnormal tissue lipid deposition. Diagnosis is usually delayed but early diagnosis and replacement therapy can prevent devastating neurological sequelae. Case presentation We present a case of a 25-year-old Asian Indian woman who presented with gait difficulty, fusiform swellings of bi...

  13. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    . Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...... NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  14. Advances and perspectives in tissue clearing using CLARITY

    DEFF Research Database (Denmark)

    Reveles Jensen, Kristian; Berg, Rune W.

    2017-01-01

    CLARITY is a tissue clearing method, which enables immunostaining and imaging of large volumes for 3D-reconstruction. The method was initially time-consuming, expensive and relied on electrophoresis to remove lipids to make the tissue transparent. Since then several improvements and simplifications...

  15. Preservation of uropygial gland lipids in a 48-million-year-old bird.

    Science.gov (United States)

    O'Reilly, Shane; Summons, Roger; Mayr, Gerald; Vinther, Jakob

    2017-10-25

    Although various kinds of organic molecules are known to occur in fossils and rocks, most soft tissue preservation in animals is attributed to melanin or porphyrins. Lipids are particularly stable over time-as diagenetically altered 'geolipids' or as major molecular constituents of kerogen or fossil 'geopolymers'-and may be expected to be preserved in certain vertebrate tissues. Here we analysed lipid residues from the uropygial gland of an early Eocene bird using pyrolysis gas chromatography mass spectroscopy. We found a pattern of aliphatic molecules in the fossil gland that was distinct from the host oil shale sediment matrix and from feathers of the same fossil. The fossil gland contained abundant n -alkenes, n -alkanes and alkylbenzenes with chain lengths greater than 20, as well as functionalized long-chain aldehydes, ketones, alkylnitriles and alkylthiophenes that were not detected in host sediment or fossil feathers. By comparison with modern bird uropygial gland wax esters, we show that these molecular fossils are likely derived from endogenous wax ester fatty alcohols and fatty acids that survived initial decay and underwent early diagenetic geopolymerization. These data demonstrate the high fidelity preservation of the uropygial gland waxes and showcase the resilience of lipids over geologic time and their potential role in the exceptional preservation of lipid-rich tissues of macrofossils. © 2017 The Author(s).

  16. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  17. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue.

    Science.gov (United States)

    Cederquist, Carly T; Lentucci, Claudia; Martinez-Calejman, Camila; Hayashi, Vanessa; Orofino, Joseph; Guertin, David; Fried, Susan K; Lee, Mi-Jeong; Cardamone, M Dafne; Perissi, Valentina

    2017-01-01

    Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo . As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin

  18. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells

    KAUST Repository

    Tirinato, Luca; Pagliari, Francesca; Limongi, Tania; Marini, Monica; Falqui, Andrea; Seco, J.; Candeloro, Patrizio; Liberale, Carlo; Di Fabrizio, Enzo M.

    2017-01-01

    For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes.

  19. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells

    KAUST Repository

    Tirinato, Luca

    2017-08-13

    For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes.

  20. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  1. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration

    Directory of Open Access Journals (Sweden)

    Fang M

    2012-10-01

    Full Text Available Min Fang, Yilin Jin, Wei Bao, Hui Gao, Mengjin Xu, Di Wang, Xia Wang, Ping Yao, Liegang LiuDepartment of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, People’s Republic of ChinaBackground: Curcumin has a variety of pharmacological effects. However, poor water solubility and low oral bioavailability limit its clinical utility. A delivery system for nanostructured lipid carriers has been reported to be a promising approach to enhancing the oral absorption of curcumin. The aim of the present study was to investigate the pharmacokinetics, tissue distribution, and relative bioavailability of curcumin in rats after a single intragastric dose of a nanostructured lipid curcumin carrier formulation.Methods: Nanostructured lipid curcumin carriers were prepared using the ethanol dripping method and characterized in terms of the particle size, polydispersity index, zeta potential, differential scanning calorimetry, drug-loading capacity, encapsulation efficiency, and in vitro release. The pharmacokinetics and tissue distribution of nanostructured lipid curcumin carriers and curcumin suspension were compared after intragastric administration.Results: Nanostructured lipid curcumin carriers showed a significantly higher peak plasma concentration (564.94 ± 14.98 ng/mL versus 279.43 ± 7.21 ng/mL, P < 0.01, a shorter time taken to reach peak plasma concentration (0.5 ± 0.01 hour versus 1.0 ± 0.12 hour, P < 0.01, and a greater AUC0–∞ (820.36 ± 25.11 mg × hour/L versus 344.11 ± 10.01 mg × hour/L, P < 0.05 compared with curcumin suspension. In the tissue distribution studies, curcumin could be detected in the spleen, heart, liver, kidneys, lungs, and brain. Following intragastric administration of the nanostructured lipid curcumin

  2. Lipidomic Adaptations in White and Brown Adipose Tissue in Response to Exercise Demonstrate Molecular Species-Specific Remodeling

    Directory of Open Access Journals (Sweden)

    Francis J. May

    2017-02-01

    Full Text Available Exercise improves whole-body metabolic health through adaptations to various tissues, including adipose tissue, but the effects of exercise training on the lipidome of white adipose tissue (WAT and brown adipose tissue (BAT are unknown. Here, we utilize MS/MSALL shotgun lipidomics to determine the molecular signatures of exercise-induced adaptations to subcutaneous WAT (scWAT and BAT. Three weeks of exercise training decrease specific molecular species of phosphatidic acid (PA, phosphatidylcholines (PC, phosphatidylethanolamines (PE, and phosphatidylserines (PS in scWAT and increase specific molecular species of PC and PE in BAT. Exercise also decreases most triacylglycerols (TAGs in scWAT and BAT. In summary, exercise-induced changes to the scWAT and BAT lipidome are highly specific to certain molecular lipid species, indicating that changes in tissue lipid content reflect selective remodeling in scWAT and BAT of both phospholipids and glycerol lipids in response to exercise training, thus providing a comprehensive resource for future studies of lipid metabolism pathways.

  3. Study of relationship of selenium concentration in blood components and tumor tissues of breast and GI tract cancers using neutron activation analysis technique

    International Nuclear Information System (INIS)

    Othman, I.; Bakir, M. A.; Yassine, T.; Sarhel, A.

    2001-12-01

    The purpose of this study was to investigate the relationship between selenium (Se) concentration in blood components and tumour tissues of breast and GI tract cancers using neutron activation analysis. red blood cell (RBC) and serum Se concentrations were determined in 50 healthy volunteers aged 25-84 years, 70 breast cancer patients aged 25-70 years and 34 GI tract cancer patients aged 31-85 years, Se levels were also determined in malignant and adjacent normal tissues from breast cancer and GI tract cancer patients. The results showed that Se concentrations in serum and RBC were significantly lower among breast and GI cancer compared to healthy volunteers. The results also showed that Se concentrations were significantly higher in the cancer tissues compared to adjacent normal tissues. These data have shown a relationship between selenium status in blood components and both cancer. selenium is enriched in cancer tissue, possibly in an effort of the body to inhibit the growth of tumours. (author)

  4. Atherosclerotic plaque component segmentation in combined carotid MRI and CTA data incorporating class label uncertainty

    DEFF Research Database (Denmark)

    van Engelen, Arna; Niessen, Wiro J.; Klein, Stefan

    2014-01-01

    Atherosclerotic plaque composition can indicate plaque vulnerability. We segment atherosclerotic plaque components from the carotid artery on a combination of in vivo MRI and CT-angiography (CTA) data using supervised voxelwise classification. In contrast to previous studies the ground truth...... for training is directly obtained from 3D registration with histology for fibrous and lipid-rich necrotic tissue, and with [Formula: see text]CT for calcification. This registration does, however, not provide accurate voxelwise correspondence. We therefore evaluate three approaches that incorporate uncertainty......), II) samples are weighted by the local contour distance of the lumen and outer wall between histology and in vivo data, and III) 10% of each class is rejected by Gaussian outlier rejection. Classification was evaluated on the relative volumes (% of tissue type in the vessel wall) for calcified...

  5. Adjusting membrane lipids under salt stress: the case of the moderate halophilic organism Halobacillus halophilus.

    Science.gov (United States)

    Lopalco, Patrizia; Angelini, Roberto; Lobasso, Simona; Köcher, Saskia; Thompson, Melanie; Müller, Volker; Corcelli, Angela

    2013-04-01

    The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid. Post decay source mass spectrometry analyses allowed the determination of acyl chains of main lipid components. On increasing the culture medium salinity, an increase in the shorter chains and the presence of chain unsaturations were observed. These changes in the lipid core structures might compensate for the increase in packing and rigidity of phospholipid and sulfoglycolipid polar heads in high-salt medium, therefore contributing to the homeostasis of membrane fluidity and permeability in salt stress conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    Directory of Open Access Journals (Sweden)

    Stelzle Florian

    2012-06-01

    Full Text Available Abstract Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA, followed by linear discriminant analysis (LDA. To assess the potential of tissue differentiation, area under the curve (AUC, sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%. However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85. Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the

  7. Elucidating the mechanism behind the lipid-raising effect of cafestol

    NARCIS (Netherlands)

    Boekschoten, M.V.

    2004-01-01

    The objective of this thesis was to identify genes that control the response of serum lipid levels to diet. To this end we used cafestol as model substance for a food component that affects serum lipids and therefore health. Cafestol is a cholesterol‑raising diterpene present in coffee beans and

  8. Effects of organic selenium in broiler feed on the content of selenium and fatty acid profile in lipids of thigh muscle tissue

    Directory of Open Access Journals (Sweden)

    Zlata Kralik

    2013-01-01

    Full Text Available The aim of our study was to determine the effects of selenium supplementation to broiler feed on the content of selenium, total fatty acids in lipids and on the oxidative stability of broiler thigh muscle tissue. The experiment involved 40 broilers fattened for 42 days. During the first three weeks, all broilers consumed starter diet containing 22% crude protein. After three weeks, broilers were divided into two groups and fed finisher diets containing 18% crude protein and supplemented with 3% sunflower oil and 3% linseed oil. Group 1 was not administered artificial selenium; Group 2 was supplemented with organic selenium at the amount of 0.5 mg Se/kg of feed. Significantly higher (P P P > 0.05 and increase of linolenic acid and total n-3 polyunsaturated fatty acids (P < 0.05 in thigh muscle tissue of broilers. Since selenium and n-3 polyunsaturated fatty acids are nutricines, our results show that the produced broiler meat may be considered as functional food.

  9. Lipid profiling of some authotrophic microalgae grown on waste water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Per

    Microalgae can be a new source of lipids for the aquaculture industry. Moreover, their potential as natural sources of antioxidants has gained recent attention. About 40 species of microalgae are used in aquaculture worldwide. A full characterization of lipid components is critical for selecting...... by membrane microfiltration and analyzed for fatty acid (GC), triacylglycerol (HPLC), sterol (GC) and tochol (HPLC) composition and also for amounts of phospholipids . Lipid composition in micro algae varied strongly between species....

  10. Resistin Regulates Pituitary Lipid Metabolism and Inflammation In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    F. Rodriguez-Pacheco

    2013-01-01

    Full Text Available The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way and in vitro (adenopituitary cell cultures treated with the adipokine. Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism.

  11. Resistin Regulates Pituitary Lipid Metabolism and Inflammation In Vivo and In Vitro

    Science.gov (United States)

    Rodriguez-Pacheco, F.; Novelle, M. G.; Vazquez, M. J.; Garcia-Escobar, E.; Soriguer, F.; Rojo-Martinez, G.; García-Fuentes, E.; Malagon, M. M.; Dieguez, C.

    2013-01-01

    The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH) secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way) and in vitro (adenopituitary cell cultures treated with the adipokine). Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism. PMID:23710116

  12. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  13. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    Science.gov (United States)

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  14. Selective One-Dimensional Total Correlation Spectroscopy Nuclear Magnetic Resonance Experiments for a Rapid Identification of Minor Components in the Lipid Fraction of Milk and Dairy Products: Toward Spin Chromatography?

    Science.gov (United States)

    Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P

    2015-06-10

    We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.

  15. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    Science.gov (United States)

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  16. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    Directory of Open Access Journals (Sweden)

    Shiqi Zhang

    2018-03-01

    Full Text Available Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1, an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c and its target genes, diacylglycerol acyltransferase (DGAT 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL and CGI-58 for adipose triglyceride lipase (ATGL, thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α, interleukin 1 beta (IL-1β, and interleukin 6 (IL-6 induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  17. Microsomal lipid peroxidation as a mechanism of cellular damage. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Kornbrust, D.J.

    1979-01-01

    The NADPH/iron-dependent peroxidation of lipids in rat liver microsomes was found to be dependent on the presence of free ferrous ion and maintains iron in the reduced Fe/sup 2 +/ state. Chelation of iron by EDTA inhibited peroxidation. Addition of iron, after preincubation of microsomes in the absence of iron, did not enhance the rate of peroxidation suggesting that iron acts by initiating peroxidative decomposition of membrane lipids rather than by catalyzing the breakdown of pre-formed hydroperoxides. Liposomes also underwent peroxidation in the presence of ferrous iron at a rate comparable to intact microsomes and was stimulated by ascorbate. Carbon tetrachloride initiated lipid peroxidation in the absence of free metal ions. Rates of in vitro lipid peroxidation of microsomes and homogenates were found to vary widely between different tissues and species. The effects of paraquat on lipid peroxidation was also studied. (DC)

  18. Transglycosylated Starch Modulates the Gut Microbiome and Expression of Genes Related to Lipid Synthesis in Liver and Adipose Tissue of Pigs

    Directory of Open Access Journals (Sweden)

    Monica A. Newman

    2018-02-01

    Full Text Available Dietary inclusion of resistant starches can promote host health through modulation of the gastrointestinal microbiota, short-chain fatty acid (SCFA profiles, and lipid metabolism. This study investigated the impact of a transglycosylated cornstarch (TGS on gastric, ileal, cecal, proximal-colonic, and mid-colonic bacterial community profiles and fermentation metabolites using a growing pig model. It additionally evaluated the effect of TGS on the expression of host genes related to glucose and SCFA absorption, incretins, and satiety in the gut as well as host genes related to lipid metabolism in hepatic and adipose tissue. Sixteen growing pigs (4 months of age were fed either a TGS or control (CON diet for 11 days. Bacterial profiles were determined via Illumina MiSeq sequencing of the V3–5 region of the 16S rRNA gene, whereas SCFA and gene expression were measured using gas chromatography and reverse transcription-quantitative PCR. Megasphaera, which was increased at all gut sites, began to benefit from TGS feeding in gastric digesta, likely through cross-feeding with other microbes, such as Lactobacillus. Shifts in the bacterial profiles from dietary TGS consumption in the cecum, proximal colon, and mid colon were similar. Relative abundances of Ruminococcus and unclassified Ruminococcaceae genus were lower, whereas that of unclassified Veillonellaceae genus was higher in TGS- compared to CON-fed pigs (p < 0.05. TGS consumption also increased (p < 0.05 concentrations of SCFA, especially propionate, and lactate in the distal hindgut compared to the CON diet which might have up-regulated GLP1 expression in the cecum (p < 0.05 and mid colon compared to the control diet (p < 0.10. TGS-fed pigs showed increased hepatic and decreased adipocyte expression of genes for lipid synthesis (FASN, SREBP1, and ACACA compared to CON-fed pigs, which may be related to postprandial portal nutrient flow and reduced systemic insulin signaling. Overall, our data

  19. LipidPioneer : A Comprehensive User-Generated Exact Mass Template for Lipidomics

    Science.gov (United States)

    Ulmer, Candice Z.; Koelmel, Jeremy P.; Ragland, Jared M.; Garrett, Timothy J.; Bowden, John A.

    2017-03-01

    Lipidomics, the comprehensive measurement of lipid species in a biological system, has promising potential in biomarker discovery and disease etiology elucidation. Advances in chromatographic separation, mass spectrometric techniques, and novel substrate applications continue to expand the number of lipid species observed. The total number and type of lipid species detected in a given sample are generally indicative of the sample matrix examined (e.g., serum, plasma, cells, bacteria, tissue, etc.). Current exact mass lipid libraries are static and represent the most commonly analyzed matrices. It is common practice for users to manually curate their own lists of lipid species and adduct masses; however, this process is time-consuming. LipidPioneer, an interactive template, can be used to generate exact masses and molecular formulas of lipid species that may be encountered in the mass spectrometric analysis of lipid profiles. Over 60 lipid classes are present in the LipidPioneer template and include several unique lipid species, such as ether-linked lipids and lipid oxidation products. In the template, users can add any fatty acyl constituents without limitation in the number of carbons or degrees of unsaturation. LipidPioneer accepts naming using the lipid class level (sum composition) and the LIPID MAPS notation for fatty acyl structure level. In addition to lipid identification, user-generated lipid m/z values can be used to develop inclusion lists for targeted fragmentation experiments. Resulting lipid names and m/z values can be imported into software such as MZmine or Compound Discoverer to automate exact mass searching and isotopic pattern matching across experimental data.

  20. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, van J.; Cats, A.; Depla, A.; Timmer, R.; Witteman, B.J.M.; Wesseling, J.; Kampman, E.; van't Veer, L.J.

    2009-01-01

    Context: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  1. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels.

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, J. van; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.; Wesseling, J.; Kampman, E.; Veer, L.J. van 't

    2009-01-01

    CONTEXT: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  2. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  3. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants

    OpenAIRE

    James, Christopher N.; Horn, Patrick J.; Case, Charlene R.; Gidda, Satinder K.; Zhang, Daiyuan; Mullen, Robert T.; Dyer, John M.; Anderson, Richard G. W.; Chapman, Kent D.

    2010-01-01

    CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common...

  4. Rational design of dendrimer/lipid nanoassemblies in drug delivery for cancer chemotherapy

    Science.gov (United States)

    Sun, Qihang

    Nanocarriers can minimize the side effects and improve therapeutic efficacy of anticancer drugs. Although some success has been achieved via active or passive drug delivery to tumor cells, the known nanocarriers are far from satisfying therapeutic efficacy expectations. This is because they usually fail in one of the four crucial requirements, that is, to retain drug in blood circulation but release it reliably in tumor cells and to be stealthy in transport in circulation and tumor tissue but sticky upon arrival at the tumor cell. Therefore, the goal of this work is to fabricate nanoassemblies of dendrimers and lipids to address all these challenges. Particularly, nanoassemblies designed and prepared in this work are illustrated to improve the tumor tissue penetration. Examples of dendrimers synthesized in this work are water-insoluble, pH-dependent water-insoluble and water-soluble biodegradable polyester dendrimers. These dendrimers are shown to be encapsulated by commonly used fusogenic and long-circulating lipids to form reliable nanoassemblies. The dendrimer/lipid nanocarriers are used to demonstrate a cascade drug delivery. They are expected to be stable in circulation, due to their appropriately large size, but to release the drug-loaded dendrimers in tumor tissue. The released dendrimers carrying drugs are much smaller and hence expected to have a much deeper penetration throughout the tumor tissue.

  5. Rett syndrome: a neurological disorder with metabolic components

    Science.gov (United States)

    Kyle, Stephanie M.

    2018-01-01

    Rett syndrome (RTT) is a neurological disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2), a ubiquitously expressed transcriptional regulator. Despite remarkable scientific progress since its discovery, the mechanism by which MECP2 mutations cause RTT symptoms is largely unknown. Consequently, treatment options for patients are currently limited and centred on symptom relief. Thought to be an entirely neurological disorder, RTT research has focused on the role of MECP2 in the central nervous system. However, the variety of phenotypes identified in Mecp2 mutant mouse models and RTT patients implicate important roles for MeCP2 in peripheral systems. Here, we review the history of RTT, highlighting breakthroughs in the field that have led us to present day. We explore the current evidence supporting metabolic dysfunction as a component of RTT, presenting recent studies that have revealed perturbed lipid metabolism in the brain and peripheral tissues of mouse models and patients. Such findings may have an impact on the quality of life of RTT patients as both dietary and drug intervention can alter lipid metabolism. Ultimately, we conclude that a thorough knowledge of MeCP2's varied functional targets in the brain and body will be required to treat this complex syndrome. PMID:29445033

  6. Associations between lipid metabolism and fertility in the dairy cow.

    Science.gov (United States)

    Wathes, D Claire; Clempson, Andrew M; Pollott, Geoff E

    2012-01-01

    Dairy cows mobilise body tissues to support milk production and, because glucose supplies are limited, lipids are used preferentially for energy production. Lipogenic activity is switched off and lipolytic mechanisms in adipose tissue increase through changes in the expression of several key enzymes. This results in a loss of body condition, together with high circulating concentrations of non-esterified fatty acids. Changes in the synthesis, secretion and signalling pathways of somatotrophic hormones (insulin, growth hormone, insulin-like growth factor 1) and adipokines (e.g. leptin) are central to the regulation of these processes. A high reliance on fatty acids as an energy source in the peripartum period causes oxidative damage to mitochondria in metabolically active tissues, including the liver and reproductive tract. The expression of genes involved in insulin resistance (PDK4, AHSG) is increased, together with expression of TIEG1, a transcription factor that can induce apoptosis via the mitochondrial pathway. Polymorphisms in TFAM and UCP2, two autosomal mitochondrial genes, have been associated with longevity in dairy cows. Polymorphisms in many other genes that affect lipid metabolism also show some associations with fertility traits. These include DGAT1, SCD1, DECR1, CRH, CBFA2T1, GH, LEP and NPY. Excess lipid accumulation in oocytes and the regenerating endometrium reduces fertility via reductions in embryo survival and increased inflammatory changes, respectively.

  7. Protective effects of a wheat germ rich diet against the toxic influence of profenofos on rat tissue lipids and oxidative pentose phosphate shunt enzymes

    Directory of Open Access Journals (Sweden)

    Abdel-Rahim, G. A.

    2011-09-01

    Full Text Available The effects of technical and formulated forms of profenofos on the metabolic lipid fractions of the liver, brain and kidneys as well as the activity of glucose-6-phosphate dehydrogenase (G6PD and 6-phosphogluconate dehydrogenase (6PGD, which consider lipid related enzymes, were studied. The two forms of profenofos were given separately either orally or by dermal at doses of 1/20 LD50 for 3 months (one dose every 48 h. Total lipids and lipid fractions (cholesterol, triglycerides and phospholipid contents decreased in the three studied organ tissues either in technical or formulated profenofos-induced rats compared with normal control animals. The highest effect was observed in the case of orally formulated profenofo induction, and the lowest was detected for the dermal technical one. The same trend was found in the activities of G6PD and 6PGD associated with lipid metabolism in the liver, brain and kidney tissues under the same conditions. On other hand, the treatment of profenofos-induced animals by feeding a wheat germ rich diet (as antioxidant agent produced significant improvements in both lipid fraction content and enzyme activity. In addition, the effects of the wheat germ rich diet (α-tocopherol rich source readjusted and improved the disturbed metabolic fractions of the lipid profiles in the profenofos-induced rats as well as their related enzyme activities (G6PD and 6PGD: oxidative pentose phosphate shunt.

    El efecto de formas técnicas o formuladas de profenofós en la fracción lipídica metabólica de hígado, cerebro y riñones así como la actividad de la glucosa-6-fosfato deshidrogenasa (G6PD y 6-fosfogluconato deshidrogenasa (6PGD, que son consideradas enzimas relacionadas con los lípidos, fueron estudiadas. Ambas formas de profenofós fueron suministradas separadamente tanto por vía oral como cutánea a una dosis de 1/20 LD50 durante 3 meses (una dosis cada 48 horas. Los lípidos totales y

  8. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. The Distribution Features of Polysaccharides and Lipids in the Development of Tomato Anthers

    Directory of Open Access Journals (Sweden)

    Zhu Yun

    2015-07-01

    Full Text Available The regulation of nutrient transportation and transformation in developing anthers is very complex. We analyzed the distribution and features of polysaccharides and lipids in the developing anthers of tomatoes using histochemical methods. Some starches appeared in the connective somatic tissue of anthers during the sporogenous cell stage. Before meiosis of the microspore mother cell, a thick polysaccharide callose wall was formed, accompanied by a reduction in the connective tissue starches. During the tetrad stage after meiosis, the polysaccharide material in the anther did not change. At the early microspore stage, the starches in the connective cells again increased, and polysaccharide material appeared in the partial intine of pollen. At the late microspore stage, a large vacuole formed that did not contain lipids or starches, and only the pollen wall contained red polysaccharides. At this stage, the connective somatic cell starch amounts decreased, and the tapetal cells changed shape and degenerated. After microspore division, abundant lipids appeared in the bicellular pollen, and starches accumulated following pollen development. As the anthers matured, many lipids and some starches accumulated in the epidermal cells. Nutrient metabolism within the tomato pollen characteristically accumulated lipids first and then starches, while the mature pollen accumulated starches and lipids simultaneously. This characteristic pattern of nutrient metabolism in tomato pollen shows species specificity among plants.

  10. Levels and distribution of polybrominated diphenyl ethers in various tissues of birds of prey

    International Nuclear Information System (INIS)

    Voorspoels, Stefan; Covaci, Adrian; Lepom, Peter; Jaspers, Veerle L.B.; Schepens, Paul

    2006-01-01

    In the present study, concentrations and tissue distribution of polybrominated diphenyl ethers (PBDEs; IUPAC nos. 28, 47, 99, 100, 153, 154, 183, and 209) were examined in brain, adipose tissue, liver, muscle, and serum of birds of prey. Median ΣPBDE levels (BDE 28-183) in the tissues of sparrowhawks ranged from 360 to 1900 ng/g lipid weight (lw), which was in general one order of magnitude higher than in the tissues of common buzzards (26-130 ng/g lw). There were no differences in PBDE congener patterns between the various tissues within individuals of a certain species. Inter-species differences in PBDE patterns and in particular the percentage of BDE 99, 100 and 153 were, however, pronounced between sparrowhawk and common buzzard. BDE 209 was detected in nearly all serum and in some liver samples, but not in any other tissues. This observation suggests that exposure to BDE 209 is low or that this congener is poorly accumulated. Passive (lipid content related) diffusion could not completely describe the PBDE tissue distribution, e.g. the lowest PBDE-load was measured in brain, a fairly lipid rich tissue. - Distribution of polybrominated diphenyl ethers in birds of prey is tissue dependent

  11. Convergent synthesis of a deuterium-labeled serine dipeptide lipid for analysis of biological samples.

    Science.gov (United States)

    Dietz, Christopher; Clark, Robert B; Nichols, Frank C; Smith, Michael B

    2017-05-30

    Bacterial serine dipeptide lipids are known to promote inflammatory processes and are detected in human tissues associated with periodontal disease or atherosclerosis. Accurate quantification of bacterial serine lipid, specifically lipid 654 [((S)-15-methyl-3-((13-methyltetradecanoyl)oxy)hexadecanoyl)glycyl-l-serine, (3S)-l-serine] isolated from Porphyromonas gingivalis, in biological samples requires the preparation of a stable isotope internal standard for sample supplementation and subsequent mass spectrometric analysis. This report describes the convergent synthesis of a deuterium-substituted serine dipeptide lipid, which is an isotopically labeled homologue that represents a dominant form of serine dipeptide lipid recovered in bacteria. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Effect of dietary lipid, carnitine and exercise on lipid profile in rat blood, liver and muscle.

    Science.gov (United States)

    Karanth, Jyothsna; Jeevaratnam, K

    2009-09-01

    Aim of this study was to investigate the influence of physical exercise on effects of the daily intake of vegetarian diet of either vegetable hydrogenated fat (HF) or peanut oil (PO) with or without carnitine on the lipid profile. Eight groups of male Wistar rats were fed HF-diet (4 groups) or PO-diet (4 groups), with or without carnitine for 24 weeks. One group for each diet acted as sedentary control while the other groups were allowed swimming for 1 hr a day, 6 days/week, for 24 weeks. Plasma triglycerides (TG), total cholesterol (TC), HDL-cholesterol, free fatty acids (FFA), liver and thigh muscle glycogen, total fat (TF), TG, TC and FFA were analyzed. HF-fed rats showed significantly increased plasma TC, VLDL+LDL-cholesterol and TG compared to PO-fed rats, wherein a lowered plasma TC, TG levels in all the groups with significantly increased liver cholesterol and decreased muscle cholesterol was observed. Physical exercise of moderate intensity reduced plasma TC and TG accompanied by significantly reduced tissue TG and cholesterol while FFA and glycogen increased in all the groups. The influence of exercise was less pronounced in carnitine supplemented rats since carnitine could significantly reduce TG in plasma and tissues of sedentary rats. Results from the present study showed that the intake of HF diet significantly increased the plasma and tissue lipid profile and MUFA-rich diet or carnitine supplementation and/or exercise may ameliorate the deleterious effects of HF.

  13. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  14. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue

    Directory of Open Access Journals (Sweden)

    Carly T. Cederquist

    2017-01-01

    Conclusions: Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin resistance.

  15. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery

    International Nuclear Information System (INIS)

    Date, Abhijit A; Nagarsenker, Mangal S; Vador, Nimish; Jagtap, Aarti

    2011-01-01

    Purpose. To evaluate the ability of Gelucire 50/13 (an amphiphilic lipid excipient) to act as a stabilizer for lipid nanocarriers such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) and to establish the ability of Gelucire 50/13 based lipid nanocarriers to improve oral delivery of hydrophobic drugs using repaglinide (RPG) as a model drug. Methods. The ability of Gelucire 50/13 to nanosize various solid lipids was evaluated. The ability of Gelucire 50/13 to yield NLC was evaluated by using Precirol ATO 5 as a model solid lipid and various liquid lipids (oils). Gelucire 50/13 based NLC (GeluPearl) were evaluated for their ability to improve the efficacy of RPG on oral administration in comparison to RPG tablets. The short term stability of RPG-GeluPearl was evaluated at 25 deg. C/60% RH. Results. Gelucire 50/13 could successfully yield SLN and NLC of various solid lipids, demonstrating its potential to act as a novel stabilizer. DSC studies indicated that Gelucire 50/13 interacts with Precirol ATO 5 and this interaction suppresses polymorphic transitions of both the components. RPG-GeluPearl exhibited significantly higher anti-diabetic activity compared to marketed RPG tablets. RPG-GeluPearl demonstrated good colloidal and chemical stability at the end of 1 month.

  16. Symptomatic lipid storage in carriers for the PNPLA2 gene.

    Science.gov (United States)

    Janssen, Mirian C H; van Engelen, Baziel; Kapusta, Livia; Lammens, Martin; van Dijk, Martin; Fischer, Judith; van der Graaf, Marinette; Wevers, Ron A; Fahrleitner, Manuela; Zimmermann, Robert; Morava, Eva

    2013-08-01

    Neutral lipid storage disease comprises a heterogeneous group of inherited disorders characterized by severe accumulation of cytoplasmic triglyceride droplets in several tissues and neutrophils. A novel type of autosomal recessive lipid myopathy due to PNPLA2 mutations was recently described with associated cardiac disease, myopathy and frequent infections, but without ichthyosis. Here we describe the clinical and biochemical characteristics of a long surviving patient and report on four carrier family members with diverse clinical involvement. Interestingly, heterozygous patients show neutral lipid storage in muscle and in the keratocytes of the skin, Jordans' bodies, mild myopathy and frequent infections. Biochemical analysis of fibroblasts obtained from patients revealed increased triglyceride storage and reduced lipid droplet-associated triglyceride hydrolase activity. Together, our data implicate that the wild-type allele cannot fully compensate for the mutated dysfunctional allele of PNPLA2 leading to triglyceride accumulation in muscle and mild myopathy in PNPLA2 mutation carriers. The presence of neutral lipid droplets in the skin in PNPLA2 mutation carriers strengthens the link between NLSD and other neutral lipid storage diseases with ichthyosis.

  17. Surface analysis of lipids by mass spectrometry: more than just imaging.

    Science.gov (United States)

    Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W

    2013-10-01

    Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  19. [Correction of lipid peroxidation and antioxidant system disorders by bioflavonoids during modeling of cholesterol atherosclerosis in rabbits].

    Science.gov (United States)

    Shysh, A M; Pashevin, D O; Dosenko, V Ie; Moĭbenko, O O

    2011-01-01

    We have studied the influence of bioflavonoids (quercetin, corvitin) on lipid peroxidation and antioxidant enzymes in the modeling of cholesterol atherosclerosis in rabbits. It has been shown that simultaneous administration of the quercetin derivative corvitin suppressed lipid peroxidation. We showed that under hypercholesterolemia, the concentration of malone dialdehyde in myocardial tissue in rabbits is significantly increased, while administration of bioflavonoids decreased the concentration of malone dialdehyde by 38.3%. Furthermore, corvitin caused activating effects on antioxidant enzymes superoxide dismutase and catalase in cardiac tissue. Our data suggest that bioflavonoids are able to suppress lipid peroxidation and prevent the decrease ofantioxidant enzymes activity in rabbits with cholesterol-rich diet induced atherosclerosis.

  20. Consistent Prediction of Properties of Systems with Lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    Equilibria between vapour, liquid and/or solid phases, pure component properties and also the mixture-phase properties are necessary for synthesis, design and analysis of different unit operations found in the production of edible oils, fats and biodiesel. A systematic numerical analysis....... Lipids are found in almost all mixtures involving edible oils, fats and biodiesel. They are also being extracted for use in the pharma-industry. A database for pure components (lipids) present in these processes and mixtures properties has been developed and made available for different applications...... (model development, property verification, property prediction, etc.). The database has verified data for fatty acids, acylglycerols, fatty esters, fatty alcohols, vegetable oils, biodiesel and minor compounds as phospholipids, tocopherols, sterols, carotene and squalene, together with a user friendly...

  1. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf; Astrup, A

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue...... was found to correlate linearly to the relative body weight (RBW) in per cent with the regression equation lambda = 0.045 . RBW + 0.99. The subcutaneous lambda on the abdomen correlated linearly to the local skinfold thickness (SFT) with the equation lambda = 0.22 SFT + 2.99. Similarly lambda on the thigh...... correlated to SFT with the equation lambda = 0.20 . SFT + 4.63. It is concluded that the previously accepted lambda value of 10 is generally too high in perirenal as well as in subcutaneous tissue. Thus, by application of the present regression equations, it is possible to obtain more exact estimates...

  2. Lipid mobilization in subcutaneous adipose tissue during exercise in lean and obese humans. Roles of insulin and natriuretic peptides

    DEFF Research Database (Denmark)

    Koppo, Katrien; Larrouy, Dominique; Marques, Marie A

    2010-01-01

    The aim of this study was to evaluate the relative contributions of various hormones involved in the regulation of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise and to assess the impact of obesity on this regulation. Eight lean and eight obese men performed a 60-min cycle...... phentolamine and propranolol while another probe was perfused with the phosphodiesterase and adenosine receptor inhibitor aminophylline. Compared with the control condition, infusion of octreotide reduced plasma insulin levels in lean (from approximately 3.5 to 0.5 microU/ml) and in obese (from approximately 9...... to 2 microU/ml), blunted the exercise-induced rise in plasma GH and epinephrine levels in both groups, and enhanced the exercise-induced natriuretic peptide (NP) levels in lean but not in obese subjects. In both groups, octreotide infusion resulted in higher exercise-induced increases in dialysate...

  3. Mechanistic Study of the sPLA2 Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid

    DEFF Research Database (Denmark)

    Linderoth, Lars; Fristrup, Peter; Hansen, Martin

    2009-01-01

    Secretory phospholipase A2 (sPLA2) is an interesting enzyme for triggered liposomal drug delivery to tumor tissue due the overexpression of sPLA2 in cancerous tissue. A drug delivery system based on the triggered release of therapeutics from sPLA2-sensitive liposomes constituted of pro anticancer...... ether lipids, which become cytotoxic upon sPLA2-catalyzed hydrolysis has previously been established. To optimize the hydrolysis rate of the lipids and thereby optimizing the release profile of the drugs from the liposomes, we have synthesized a thio-ester pro anticancer ether lipid. Liposomes...... constituted of this lipid showed an altered rate of hydrolysis by sPLA2. We have tested the cytotoxicity of the thio-ester pro anticancer ether lipids toward cancer cells, and the results showed that the cytotoxicity is indeed maintained upon sPLA2 exposure. To further understand the origin for the observed...

  4. The association between breast tissue optical content and mammographic density in pre- and post-menopausal women.

    Directory of Open Access Journals (Sweden)

    Kristina M Blackmore

    Full Text Available Mammographic density (MD, associated with higher water and lower fat content in the breast, is strongly related to breast cancer risk. Optical attenuation spectroscopy (OS is a non-imaging method of evaluating breast tissue composition by red and near-infrared light transmitted through the breast that, unlike mammography, does not involve radiation. OS provides information on wavelength dependent light scattering of tissue and on absorption by water, lipid, oxy-, deoxy-hemoglobin. We propose that OS could be an alternative marker of breast cancer risk and that OS breast tissue measures will be associated with MD. In the present analysis, we developed an algorithm to estimate breast tissue composition and light scattering parameters using a spectrally constrained global fitting procedure employing a diffuse light transport model. OS measurements were obtained from 202 pre- and post-menopausal women with normal mammograms. Percent density (PD and dense area (DA were measured using Cumulus. The association between OS tissue composition and PD and DA was analyzed using linear regression adjusted for body mass index. Among pre-menopausal women, lipid content was significantly inversely associated with square root transformed PD (β = -0.05, p = 0.0002 and DA (β = -0.05, p = 0.019; water content was significantly positively associated with PD (β = 0.06, p = 0.008. Tissue oxygen saturation was marginally inversely associated with PD (β = -0.03, p = 0.057 but significantly inversely associated with DA (β = -0.10, p = 0.002. Among post-menopausal women lipid and water content were significantly associated (negatively and positively, respectively with PD (β lipid = -0.08, β water = 0.14, both p<0.0001 and DA (β lipid = -0.10, p<0.0001; β water = 0.11, p = 0.001. The association between OS breast content and PD and DA is consistent with more proliferation in dense tissue of younger women, greater lipid content in low density tissue and higher water

  5. The Potential of Microalgae Lipids for Edible Oil Production.

    Science.gov (United States)

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  6. Mass Spectrometric Analyses of Phosphatidylcholines in Alkali-Exposed Corneal Tissue

    Science.gov (United States)

    Crane, Ashley M.; Hua, Hong-Uyen; Coggin, Andrew D.; Gugiu, Bogdan G.; Lam, Byron L.; Bhattacharya, Sanjoy K.

    2012-01-01

    Purpose. The aims were to determine whether exposure to sodium hydroxide results in predictable changes in phosphatidylcholine (PC) in corneal tissue and if PC profile changes correlate to exposure duration. PCs are major components of the cell membrane lipid bilayer and are often involved in biological processes such as signaling. Methods. Enucleated porcine (n = 140) and cadaver human eyes (n = 20) were exposed to water (control) and 11 M NaOH. The corneas were excised and lipids were extracted using the Bligh and Dyer method with suitable modifications. Class-specific lipid identification was carried out using a ratiometric lipid standard on a TSQ Quantum Access Max mass spectrometer. Protein amounts were determined using Bradford assays. Results. Control and alkali-treated corneas showed reproducible PC spectra for both porcine and human corneas. Over 200 PCs were identified for human and porcine control and each experimental time point. Several PC species (m/z values) consequent upon alkali exposure could not be ascribed to a recorded PC species. Control and treated groups showed 41 and 29 common species among them for porcine and human corneas, respectively. The unique PC species peaked at 12 minutes and at 30 minutes for human and porcine corneas followed by a decline consistent with an interplay of alkali penetration and hydrolyses at various time points. Conclusions. Alkali exposure dramatically changes the PC profile of cornea. Our data are consistent with penetration and hydrolysis as stochastic contributors to changes in PCs due to exposure to alkali for a finite duration and amount. PMID:22956606

  7. Evaluation of the Bligh & Dyer lipid determination method

    DEFF Research Database (Denmark)

    Smedes, Foppe; Thomasen, Torsten

    1996-01-01

    . In addition the actual phase compositions and phase volumes of their experiments were determined. Absorption of organic phase to the tissue appeared to be one of the main sources of incomplete extraction. The amount of lipid remaining in the aqueous phase is likely to be negligible, just like adsorption...

  8. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  9. Separating spectral mixtures in hyperspectral image data using independent component analysis: validation with oral cancer tissue sections

    Science.gov (United States)

    Duann, Jeng-Ren; Jan, Chia-Ing; Ou-Yang, Mang; Lin, Chia-Yi; Mo, Jen-Feng; Lin, Yung-Jiun; Tsai, Ming-Hsui; Chiou, Jin-Chern

    2013-12-01

    Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p<0.001).

  10. Diagnosing basal cell carcinoma in vivo by near-infrared Raman spectroscopy: a Principal Components Analysis discrimination algorithm

    Science.gov (United States)

    Silveira, Landulfo, Jr.; Silveira, Fabrício L.; Bodanese, Benito; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.

    2012-02-01

    This work demonstrated the discrimination among basal cell carcinoma (BCC) and normal human skin in vivo using near-infrared Raman spectroscopy. Spectra were obtained in the suspected lesion prior resectional surgery. After tissue withdrawn, biopsy fragments were submitted to histopathology. Spectra were also obtained in the adjacent, clinically normal skin. Raman spectra were measured using a Raman spectrometer (830 nm) with a fiber Raman probe. By comparing the mean spectra of BCC with the normal skin, it has been found important differences in the 800-1000 cm-1 and 1250-1350 cm-1 (vibrations of C-C and amide III, respectively, from lipids and proteins). A discrimination algorithm based on Principal Components Analysis and Mahalanobis distance (PCA/MD) could discriminate the spectra of both tissues with high sensitivity and specificity.

  11. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  12. Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco

    International Nuclear Information System (INIS)

    Chen, Qi-Liang; Gong, Yuan; Luo, Zhi; Zheng, Jia-Lang; Zhu, Qing-Ling

    2013-01-01

    Highlights: •Cd triggered hepatic lipid accumulation through the improvement of lipogenesis. •Lipid homeostasis in muscle after Cd exposure derived from the down-regulation of both lipogenesis and lipolysis. •Our study determines the mechanism of waterborne Cd exposure on lipid metabolism in fish on a molecular level. •Our study indicates the tissue-specific regulatory effect of lipid metabolism under waterborne Cd exposure. -- Abstract: The present study was conducted to investigate the effect of waterborne cadmium (Cd) exposure on lipid metabolism in liver and muscle of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to 0 (control), 0.49 and 0.95 mg Cd/l, respectively, for 6 weeks, the lipid deposition, Cd accumulation, the activities and expression level of several enzymes as well as the mRNA expression of transcription factors involved in lipid metabolism in liver and muscle were determined. Waterborne Cd exposure reduced growth performance, but increased Cd accumulation in liver and muscle. In liver, lipid content, the activities and the mRNA expression of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), fatty acid synthetase (FAS)) and lipoprotein lipase (LPL) activity increased with increasing waterborne Cd concentrations. However, the mRNA expressions of LPL and peroxisome proliferators-activated receptor (PPAR) α were down-regulated by Cd exposure. Carnitine palmitoyltransferase 1 (CPT1) activity as well as the mRNA expressions of CPT1 and PPARγ showed no significant differences among the treatments. In muscle, lipid contents showed no significant differences among the treatments. The mRNA expression of 6PGD, FAS, CPT1, LPL, PPARα and PPARγ were down-regulated by Cd exposure. Thus, our study indicated that Cd triggered hepatic lipid accumulation through the improvement of lipogenesis, and that lipid homeostasis in muscle was probably conducted by the down

  13. Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi-Liang; Gong, Yuan [Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070 (China); Luo, Zhi, E-mail: luozhi99@mail.hzau.edu.cn [Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070 (China); Zheng, Jia-Lang; Zhu, Qing-Ling [Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070 (China)

    2013-10-15

    Highlights: •Cd triggered hepatic lipid accumulation through the improvement of lipogenesis. •Lipid homeostasis in muscle after Cd exposure derived from the down-regulation of both lipogenesis and lipolysis. •Our study determines the mechanism of waterborne Cd exposure on lipid metabolism in fish on a molecular level. •Our study indicates the tissue-specific regulatory effect of lipid metabolism under waterborne Cd exposure. -- Abstract: The present study was conducted to investigate the effect of waterborne cadmium (Cd) exposure on lipid metabolism in liver and muscle of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to 0 (control), 0.49 and 0.95 mg Cd/l, respectively, for 6 weeks, the lipid deposition, Cd accumulation, the activities and expression level of several enzymes as well as the mRNA expression of transcription factors involved in lipid metabolism in liver and muscle were determined. Waterborne Cd exposure reduced growth performance, but increased Cd accumulation in liver and muscle. In liver, lipid content, the activities and the mRNA expression of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), fatty acid synthetase (FAS)) and lipoprotein lipase (LPL) activity increased with increasing waterborne Cd concentrations. However, the mRNA expressions of LPL and peroxisome proliferators-activated receptor (PPAR) α were down-regulated by Cd exposure. Carnitine palmitoyltransferase 1 (CPT1) activity as well as the mRNA expressions of CPT1 and PPARγ showed no significant differences among the treatments. In muscle, lipid contents showed no significant differences among the treatments. The mRNA expression of 6PGD, FAS, CPT1, LPL, PPARα and PPARγ were down-regulated by Cd exposure. Thus, our study indicated that Cd triggered hepatic lipid accumulation through the improvement of lipogenesis, and that lipid homeostasis in muscle was probably conducted by the down

  14. Fatty Acid Profile of Sunshine Bass: II. Profile Change Differs Among Fillet Lipid Classes.

    Science.gov (United States)

    Trushenski, Jesse T; Lewis, Heidi A; Kohler, Christopher C

    2008-07-01

    Fatty acid (FA) profile of fish tissue mirrors dietary FA profile and changes in a time-dependent manner following a change in dietary FA composition. To determine whether FA profile change varies among lipid classes, we evaluated the FA composition of fillet cholesteryl esters (CE), phospholipids (PL), and triacylglycerols (TAG) of sunshine bass (SB, Morone chrysops x M. saxatilis) raised on feeds containing fish oil or 50:50 blend of fish oil and coconut, grapeseed, linseed, or poultry oil, with or without implementation of a finishing period (100% FO feed) prior to harvest. Each lipid class was associated with a generalized FA signature, irrespective of nutritional history: fillet PL was comprised largely of saturated FA (SFA), long-chain polyunsaturated FA (LC-PUFA), and total n-3 FA; fillet TAG was higher in MC-PUFA and total n-6 FA; and fillet CE was highest in monounsaturated FA (MUFA). Neutral lipids reflected dietary composition in a near-direct fashion; conversely, PL showed evidence of selectivity for MC- and LC-PUFA. Shorter-chain SFA were not strongly reflected within any lipid fraction, even when dietary availability was high, suggesting catabolism of these FA. FA metabolism in SB is apparently characterized by a division between saturated and unsaturated FA, whereby LC-PUFA are preferentially incorporated into tissues and SFA are preferentially oxidized for energy production. We demonstrated provision of SFA in grow-out feeds for SB, instead MC-PUFA which compete for tissue deposition, meets energy demands and allows for maximum inclusion of LC-PUFA within fillet lipids.

  15. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; MacDonald, Robert C. (NWU)

    2010-01-18

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, {approx} 40-45 C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer 'frustration' which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored

  16. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region

    DEFF Research Database (Denmark)

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael

    2018-01-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ∼25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC...... discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source...

  18. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  19. Autophagy, lipophagy and lysosomal lipid storage disorders.

    Science.gov (United States)

    Ward, Carl; Martinez-Lopez, Nuria; Otten, Elsje G; Carroll, Bernadette; Maetzel, Dorothea; Singh, Rajat; Sarkar, Sovan; Korolchuk, Viktor I

    2016-04-01

    Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Evaluation of treadmill exercise effect on muscular lipid profiles of diabetic fatty rats by nanoflow liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee

    2016-07-01

    We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.

  1. Engineering lipid structure for recognition of the liquid ordered membrane phase

    International Nuclear Information System (INIS)

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-01-01

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L_o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L_o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L_d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L_o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L_o phase.

  2. Effects of lipophilic components on the compatibility of lipid-based formulations with hard gelatin capsules.

    Science.gov (United States)

    Chen, Feng-Jing; Etzler, Frank M; Ubben, Johanna; Birch, Amy; Zhong, Li; Schwabe, Robert; Dudhedia, Mayur S

    2010-01-01

    The present study investigated the effect of lipophilic components on the compatibility of propylene glycol (PG)-containing lipid-based drug delivery system (LBDDS) formulations with hard gelatin capsules. The presence of a lipophilic active pharmaceutical ingredient (API) (log P approximately 6.1) and an additional lipophilic excipient (Capmul MCM) significantly affected the activity of PG in the fills and the equilibrium of PG between capsule shells and fills. These changes in activity and equilibrium of PG were furthermore correlated to the mechanical and thermal properties of the liquid-filled capsules and subsequently linked to the shelf-life of the capsules on stability with respect to capsule deformation. The present study also investigated the mechanism by which lipophilic component(s) might affect the activity of PG in the fill formulations and the equilibrium of PG between capsule shells and fills. The activities of PG in two series of "binary" mixtures with Capmul MCM and with Cremophor EL were measured, respectively. The mixtures of PG containing Capmul MCM were found to be more nearly ideal than those containing Cremophor EL. The observed negative deviation from Rauolt's law indicates that the excess free energies of mixing are less then zero indicating favorable interaction between PG and the other component. It is speculated that enhanced hydrogen bonding opportunities with Cremophor EL are responsible for the decreased excess free energy of mixing. Replacement of Cremophor EL with lipophilic API also reduces the hydrogen bonding opportunities for PG in the mixtures. This hypothesis may further explain the increased activity of PG in the fills and the shifted equilibrium of PG toward the capsule shells. Activity determination utilizing headspace gas chromatography (GC) using short 30 min incubation time seems to be a time-efficient approach for assessing capsule-fill compatibility. Direct measurements of PG migration and other physical properties of

  3. Altered tissue mineralization, increased hepatic lipid and inhibited ...

    African Journals Online (AJOL)

    Mineral homeostasis is often disrupted in intrauterine growth retardation (IUGR) infants. Most studies focus on calcium or phosphorus metabolism of IUGR infants via determining serum mineral concentrations instead of tissues. This study was conducted to investigate the effects of IUGR on the mineralization and ...

  4. Role of the catechol group in the antioxidant and neuroprotective effects of virgin olive oil components in rat brain.

    Science.gov (United States)

    De La Cruz, J P; Ruiz-Moreno, M I; Guerrero, A; López-Villodres, J A; Reyes, J J; Espartero, J L; Labajos, M T; González-Correa, J A

    2015-05-01

    The aim of the present study was to determine the role of the catechol group in the antioxidant and neuroprotective effects of minor components of virgin olive oil in rat brain tissue. Hydroxytyrosol ethyl ether (HT, 2 OH), tyrosol ethyl ether (Ty, 1 OH) and 3,4-di-ortho-methylidene-hydroxytyrosol ethyl ether (MET, no OH) were compared. Oxidative stress was induced with ferrous salts (lipid peroxidation induction), diethylmaleate (depletion of glutathione) and hypoxia-reoxygenation in brain slices. Lipid peroxidation was inhibited in direct proportion to the number of OH groups: HT>Ty>MET. Exposure to HT led to partial recovery of the glutathione system after chemical inhibition or hypoxia-reoxygenation. All three compounds inhibited cell death in hypoxia-reoxygenation experiments (HT≥Ty>MET). Peroxynitrite formation (3-nitrotyrosine) and inflammatory mediators (prostaglandin E2 and interleukin 1ß) were inhibited by all three compounds. In conclusion, the presence of OH groups in the molecule of these phenolic compounds from virgin olive oil is a determinant factor in their antioxidant effect in brain tissue, but this antioxidant effect is not the only explanation for their neuroprotective effect. Copyright © 2015. Published by Elsevier Inc.

  5. Radioprotection of normal tissues in tumor-bearing mice by troxerutin

    International Nuclear Information System (INIS)

    Maurya, D.K.; Salvi, V.P.; Krishnan Nair, C.K.

    2004-01-01

    The flavanoid derivative troxerutin, used clinically for treating venous disorders, protected biomembranes and cellular DNA against the deleterious effects of γ-radiation. The peroxidation of lipids (measured as thiobarbituric acid-reacting substances, or TBARS) in rat liver microsomal and mitochondrial membranes resulting from γ-irradiation up to doses of 500 Gy in vitro was prevented by 0.2 mM troxerutin. The administration of troxerutin (175 mg/kg body weight) to tumor-bearing mice by intraperitoneal (ip) one hour prior to 4 Gy whole-body γ-irradiation significantly decreased the radiation-induced peroxidation of lipids in tissues such as liver and spleen, but there was no reduction of lipid peroxidation in tumor. The effect of troxerutin in γ-radiation-induced DNA strand breaks in different tissues of tumor-bearing mice was studied by comet assay. The administration of troxerutin to tumor-bearing animals protected cellular DNA against radiation-induced strand breaks. This was evidenced from decreases in comet tail length, tail moment, and percent of DNA in the tails in cells of normal tissues such as blood leukocytes and bone marrow, and these parameters were not altered in cells of fibrosarcoma tumor. The results revealed that troxerutin could preferentially protect normal tissues against radiation-induced damages in tumor-bearing animals. (author)

  6. Targeting the motor regulator Klar to lipid droplets

    Directory of Open Access Journals (Sweden)

    Einstein Jenifer

    2011-02-01

    Full Text Available Abstract Background In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo. Results Here we describe a new mutant allele of klar with a lesion specifically in the LD domain; this lesion abolishes both droplet localization of Klar and the ability of Klar to regulate droplet motion. It does not disrupt Klar's function for nuclear migration in photoreceptors. Using a GFP-LD fusion, we show that the LD domain is not only necessary but also sufficient for droplet targeting in vivo; it mediates droplet targeting in embryos, in ovaries, and in a number of somatic tissues. Conclusions Our analysis demonstrates that droplet targeting of Klar occurs via a cis-acting sequence and generates a new tool for monitoring lipid droplets in living tissues of Drosophila.

  7. Review Article: Dyslipidaemia, Lipid Oxidation, And Free Radicals In ...

    African Journals Online (AJOL)

    Diabetes mellitus is frequently associated with dyslipidaemia evidenced by high prevalence rate that range from 16%-40%, and chronically elevated level of plasma lipids, low-density lipoprotein in particular, leads to modification of structures, importantly through oxidative processes. Renal tissue particularly in diabetes ...

  8. 3,5-Diiodo-L-Thyronine Modifies the Lipid Droplet Composition in a Model of Hepatosteatosis

    Directory of Open Access Journals (Sweden)

    Elena Grasselli

    2014-02-01

    Full Text Available Background/Aims: Fatty acids are the main energy stores and the major membrane components of the cells. In the hepatocyte, fatty acids are esterified to triacylglycerols (TAGs and stored in lipid droplets (LDs. The lipid lowering action of 3,5-diiodo-L-thyronine (T2 on an in vitro model of hepatosteatosis was investigated in terms of fatty acid and protein content of LDs, lipid oxidation and secretion. Methods: FaO cells were exposed to oleate/palmitate, then treated with T2. Results: T2 reduced number and size of LDs, and modified their acyl composition by decreasing the content of saturated (SFA vs monounsaturated (MUFA fatty acids thus reversing the SFA/MUFA ratio. The expression of the LD-associated proteins adipose differentiation-related protein (ADRP, oxidative tissue-enriched PAT protein (OXPAT, and adipose triglyceride lipase (ATGL was increased in ‘steatotic' cells and further up-regulated by T2. Moreover, T2 stimulated the mitochondrial oxidation by up-regulating carnitine-palmitoyl-transferase (CPT1, uncoupling protein 2 (UCP2 and very long-chain acyl-coenzyme A dehydrogenase (VLCAD. Conclusions: T2 leads to mobilization of TAGs from LDs and stimulates mitochondrial oxidative metabolism of fatty acids, in particular of SFAs, and thus enriches of MUFAs the LDs. This action may protect the hepatocyte from excess of SFAs that are more toxic than MUFAs.

  9. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...... tissue has been carried out. In the present study a partition coefficient of 1.12 +/- 0.06 (mean +/- S.D.) for 131I-AP in adipose tissue has been determined based on the partition coefficient for 131I-AP between lipid-saline (1.24 ml g-1), red blood cells-plasma (0.64 ml g-1), protein-saline (0.19 ml g-1...

  10. Changes in cholesterol content and fatty acid composition of serum lipid in irradiated rat

    International Nuclear Information System (INIS)

    Ohashi, Shigeru

    1979-01-01

    The effect of a single dose of whole body irradiation on the serum cholesterol content and fatty acid composition of serum lipids in rats was investigated. A change in the fatty acid composition of liver lipids was also observed. After 600 rad of irradiation, the cholesterol content increased, reached a maximum 3 days after irradiation, and then decreased. After irradiation, an increase in cholesterol content and a marked decrease in triglyceride content were observed, bringing about a change in the amount of total serum lipids. The fatty acid compositions of normal and irradiated rat sera were compared. The relative percentages of palmitic and oleic acids in total lipids decreased while those of stearic and arachidonic acids increased. Serum triglyceride had trace amounts of arachidonic acid and the unsaturated fatty acid component decreased after irradiation. On the other hand, unsaturated fatty acid in cholesterol ester increased after irradiation, while linoleic and arachidonic acids made up 29% and 22% in the controls and 17% and 61% after irradiation, respectively. The fatty acid composition of total liver lipids after irradiation showed a decrease in palmitic and oleic acids and an increase in stearic and arachidonic acids, the same trend as observed in serum lipid fatty acid. Liver cholesterol ester showed trace amounts of linoleic and arachidonic acids and an increase in short-chain fatty acid after irradiation. The major component of serum phospholipids was phosphatidylcholine while palmitostearyl lecithine and unsaturated fatty acid were minor components. Moreover, phosphatidylcholine and phosphatidylethanolamine were the major components of liver phospholipids, having highly unsaturated fatty acids. The changes in fatty acid composition were similar to the changes in total phospholipids. (J.P.N.)

  11. A vocabulary for the identification and delineation of teratoma tissue components in hematoxylin and eosin-stained samples

    Directory of Open Access Journals (Sweden)

    Ramamurthy Bhagavatula

    2014-01-01

    Full Text Available We propose a methodology for the design of features mimicking the visual cues used by pathologists when identifying tissues in hematoxylin and eosin (H&E-stained samples. Background: H&E staining is the gold standard in clinical histology; it is cheap and universally used, producing a vast number of histopathological samples. While pathologists accurately and consistently identify tissues and their pathologies, it is a time-consuming and expensive task, establishing the need for automated algorithms for improved throughput and robustness. Methods: We use an iterative feedback process to design a histopathology vocabulary (HV, a concise set of features that mimic the visual cues used by pathologists, e.g. "cytoplasm color" or "nucleus density." These features are based in histology and understood by both pathologists and engineers. We compare our HV to several generic texture-feature sets in a pixel-level classification algorithm. Results: Results on delineating and identifying tissues in teratoma tumor samples validate our expert knowledge-based approach. Conclusions: The HV can be an effective tool for identifying and delineating teratoma components from images of H&E-stained tissue samples.

  12. Mechanisms of stable lipid loss in a social insect

    Science.gov (United States)

    Ament, Seth A.; Chan, Queenie W.; Wheeler, Marsha M.; Nixon, Scott E.; Johnson, S. Peir; Rodriguez-Zas, Sandra L.; Foster, Leonard J.; Robinson, Gene E.

    2011-01-01

    SUMMARY Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes. PMID:22031746

  13. Mechanisms of stable lipid loss in a social insect.

    Science.gov (United States)

    Ament, Seth A; Chan, Queenie W; Wheeler, Marsha M; Nixon, Scott E; Johnson, S Peir; Rodriguez-Zas, Sandra L; Foster, Leonard J; Robinson, Gene E

    2011-11-15

    Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes.

  14. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  15. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  16. Effect of gamma irradiation on essential oils and lipids in spices

    International Nuclear Information System (INIS)

    Kaneko, Nobutada; Ito, Hitoshi; Ishigaki, Isao

    1991-01-01

    Four kinds of spices were irradiated with gamma-rays at a dose of 10 to 50 kGy. Studies on radiation effect on essential oils and lipids in spices were carried out by gas-chromatography (GC). The GC analysis of lipids in spices revealed that components were not changed even after irradiation up to 50 kGy of gamma-rays. Radiation effect on components of essential oils in spices were analyzed by headspace-GC (HS-GC) and GC after separation to hydrocarbon compounds and oxygen compounds, and any degradation of components was not observed up to 50 kGy of irradiation. On the contrary, essential oils of cloves sterilized by heat treatment were apparently decreased as compared with irradiated and non-irradiated cloves. (author)

  17. Lipid synthesis in the aorta of chick and other species

    International Nuclear Information System (INIS)

    Rao, A.R.

    1976-01-01

    The relative rate of fatty acid biosynthesis from labelled acetate in the adipose tissue of chicken is much lower than that in the rat (O'Hea and Leveille, 1968). To determine similar species differences in lipid synthesis in the aortas of cock, rat, rabbit and monkey, thoracic and abdominal segments of fresh aortas were incubated in vitro with (1- 14 C)-acetate for 3 h. Total lipids and their fractions (free and total cholesterol, free fatty acids, triglycerides and phospholipids) were counted for radioactivity. Incorporation of radioactivity into total as well as all classes of lipids was several times greater in chicken than in other species. Significant and consistent incorporation into cholesterol occurred only in chicks. Synthesis into total lipids and triglycerides was greater in the thoracic segment of chicks. These findings (Rao and Rao, 1968) are consistent with the ready susceptibility of chicken to atherosclerosis. (author)

  18. Lipid-Lowering Pharmaceutical Clofibrate Inhibits Human Sweet Taste

    OpenAIRE

    Kochem, Matthew; Breslin, Paul A.S.

    2016-01-01

    T1R2-T1R3 is a heteromeric receptor that binds sugars, high potency sweeteners, and sweet taste blockers. In rodents, T1R2-T1R3 is largely responsible for transducing sweet taste perception. T1R2-T1R3 is also expressed in non-taste tissues, and a growing body of evidence suggests that it helps regulate glucose and lipid metabolism. It was previously shown that clofibric acid, a blood lipid-lowering drug, binds T1R2-T1R3 and inhibits its activity in vitro. The purpose of this study was to dete...

  19. Reproductive effects of lipid soluble components of Syzygium aromaticum flower bud in male mice

    Directory of Open Access Journals (Sweden)

    Raghav Kumar Mishra

    2013-01-01

    Full Text Available Background: The flower buds of Syzygium aromaticum (clove have been used in indigenous medicines for the treatment of male sexual disorders in Indian subcontinent. Objective: To evaluate the effect of Syzygium aromaticum flower bud on male reproduction, using Parkes (P strain mice as animal model. Materials and Methods: Mice were orally administered lipid soluble components of Syzygium aromaticum flower bud in doses of 15, 30, and 60 mg/kg body weight for 35 days, and several male reproductive endpoints were evaluated. Results: Treatment with lower dose (15 mg of Syzygium increased the motility of sperm and stimulated the secretory activities of epididymis and seminal vesicle, while higher doses (30 and 60 mg had adverse effects on sperm dynamics of cauda epididymidis and on the secretory activities of epididymis and seminal vesicle. Libido was not affected in treated males; however, a significant decrease in litter in females sired by males treated with higher doses of Syzygium was recorded. Conclusion: Treatment with Syzygium aromaticum flower bud causes dose-dependent biphasic effect on male reproductive indices in P mice; lower dose of Syzygium appears stimulatory, while the higher doses have adverse effect on male reproduction. The results suggest that the lower dose of Syzygium may have androgenic effect, but further studies are needed to support this contention.

  20. Impact of certain flavonoids on lipid profiles--potential action of Garcinia cambogia flavonoids.

    Science.gov (United States)

    Koshy, A S; Vijayalakshmi, N R

    2001-08-01

    Flavonoids from Cocos nucifera, Myristica fragrance, Saraka asoka and Garcinia cambogia exerted hypolipidaemic activity in rats. Lipid lowering activity was maximum in rats administered flavonoids (10 mg/kg BW/day) from Garcinia cambogia. A dose response study revealed biphasic activity. Higher doses were less effective in reducing lipid levels in serum and tissues, although devoid of toxic effects. Copyright 2001 John Wiley & Sons, Ltd.

  1. Biosynthesis of lipids by bovine meibomian glands

    International Nuclear Information System (INIS)

    Kolattukudy, P.E.; Rogers, L.M.; Nicolaides, N.

    1985-01-01

    Isolated bovine meibomian glands incorporated exogenous [1- 14 C]acetate into lipids. Thin layer chromatographic analysis of the lipids showed that wax esters and sterol esters contained 61% of the total label. Radio gas liquid chromatographic analysis of the acid and alcohol moieties of both ester fractions showed the label was distributed equally between the two portions of the ester in both cases. Cholesterol and 5-alpha-cholest-7-en-3 beta-ol were the major labeled sterols, and anteiso-C25, anteiso-C27 and anteiso-C23 were the most highly labeled alcohols. The major labeled fatty acids in the wax esters were anteiso-C15, n-C16, anteiso-C17 and n-C18:1, whereas anteiso-C25 and anteiso-C27 were the major labeled acids in the sterol esters. The diester region with 6% of the total label contained labeled fatty acids and fatty alcohols each with anteiso-C25 as the major component and omega-hydroxy acids in which n-C32:1 was the major labeled component. The triglyceride fraction which contained 8% of the total lipids was composed of labeled fatty acids similar to those found in both sterol and wax ester fractions. Chromatographic analyses of the labeled lipids derived from exogenous labeled isoleucine showed that anteiso-branched products were preferentially labeled. The labeled triglyceride fraction derived from [U- 14 C] isoleucine also contained esterified C15, C13, C11, C9, C7 and possibly shorter anteiso-branched acids

  2. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach.

    Science.gov (United States)

    Taylor, S E; Cheung, K T; Patel, I I; Trevisan, J; Stringfellow, H F; Ashton, K M; Wood, N J; Keating, P J; Martin-Hirsch, P L; Martin, F L

    2011-03-01

    Endometrial cancer is the most common gynaecological malignancy in the United Kingdom. Diagnosis currently involves subjective expert interpretation of highly processed tissue, primarily using microscopy. Previous work has shown that infrared (IR) spectroscopy can be used to distinguish between benign and malignant cells in a variety of tissue types. Tissue was obtained from 76 patients undergoing hysterectomy, 36 had endometrial cancer. Slivers of endometrial tissue (tumour and tumour-adjacent tissue if present) were dissected and placed in fixative solution. Before analysis, tissues were thinly sliced, washed, mounted on low-E slides and desiccated; 10 IR spectra were obtained per slice by attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. Derived data was subjected to principal component analysis followed by linear discriminant analysis. Post-spectroscopy analyses, tissue sections were haematoxylin and eosin-stained to provide histological verification. Using this approach, it is possible to distinguish benign from malignant endometrial tissue, and various subtypes of both. Cluster vector plots of benign (verified post-spectroscopy to be free of identifiable pathology) vs malignant tissue indicate the importance of the lipid and secondary protein structure (Amide I and Amide II) regions of the spectrum. These findings point towards the possibility of a simple objective test for endometrial cancer using ATR-FTIR spectroscopy. This would facilitate earlier diagnosis and so reduce the morbidity and mortality associated with this disease.

  3. Comparative pharmacokinetics and tissue distribution profiles of lignan components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    Science.gov (United States)

    Yang, Tao; Liu, Shan; Zheng, Tian-Hui; Tao, Yan-Yan; Liu, Cheng-Hai

    2015-05-26

    Fuzheng Huayu recipe (FZHY) is formulated on the basis of Chinese medicine theory in treating liver fibrosis. To illuminate the influence of the pathological state of liver fibrosis on the pharmacokinetics and tissue distribution profiles of lignan components from FZHY. Male Wistar rats were randomly divided into normal group and Hepatic fibrosis group (induced by dimethylnitrosamine). Six lignan components were detected and quantified by ultrahigh performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)in the plasma and tissue of normal and hepatic fibrosis rats. A rapid, sensitive and convenient UHPLC-MS/MS method has been developed for the simultaneous determination of six lignan components in different rat biological samples successfully. After oral administration of FZHY at a dose of 15g/kg, the pharmacokinetic behaviors of schizandrin A (SIA), schizandrin B (SIB), schizandrin C (SIC), schisandrol A (SOA), Schisandrol B (SOB) and schisantherin A (STA) have been significantly changed in hepatic fibrosis rats compared with the normal rats, and their AUC(0-t) values were increased by 235.09%, 388.44%, 223.30%, 669.30%, 295.08% and 267.63% orderly (Pdistribution results showed the amount of SIA, SIB, SOA and SOB were significant increased in heart, lung, spleen and kidney of hepatic fibrosis rats compared with normal rats at most of the time point (Pdistribution of lignan components in normal and hepatic fibrosis rats. The hepatic fibrosis could alter the pharmacokinetics and tissue distribution properties of lignan components in rats after administration of FZHY. The results might be helpful for guide the clinical application of this medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  5. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II

    NARCIS (Netherlands)

    Hasper, Hester E.; Kramer, Naomi E.; Smith, James L.; Hillman, J. D.; Zachariah, Cherian; Kuipers, Oscar P.; de Kruijff, Ben; Breukink, Eefjan

    2006-01-01

    Lantibiotics are polycyclic peptides containing unusual amino acids, which have binding specificity for bacterial cells, targeting the bacterial cell wall component lipid II to form pores and thereby lyse the cells. Yet several members of these lipid II - targeted lantibiotics are too short to be

  6. Essential oil-loaded lipid nanoparticles for wound healing.

    Science.gov (United States)

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  7. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two-co...

  8. Effects of achilline on lipid metabolism gene expression in cell culture

    Directory of Open Access Journals (Sweden)

    A. V. Ratkin

    2016-01-01

    Full Text Available Objective. Evaluation in vitro of the mechanisms of the hypolipidemic effect of sesquiterpene γ-lactone achilline in the hepatoma tissue culture (HTC.Materials and methods.The influence of sesquiterpene γ-lactone achilline and gemfibrozil (comparison drug on the viability, lipid content and expression of key genes of lipid metabolism in the hepatoma tissue culture. The lipid content was assessed by fluorescent method with the vital dye Nile Red, the cell viability was assessed using MTT assay.Results. Cultivation of of cell cultures of rat’s hepatoma cell line HTC for 48 h with achilline in a concentration of from 0.25 to 1.0 mm and gemfibrozil from 0,25 to 0,5 mm did not change cell viability compared to control. In these same concentrations of the test substance reduced the lipid content in the cells, assessed by fluorescent method with the vital dye Nile Red. To study the mechanism of hypolipidemicaction of achillinedetermined the expression of key genes of lipid metabolism in cell culture lines HTC. The possible mechanism of hypolipidemic action of achilline can be attributed to the increased transport and oxidation of long-chain fatty acids in mitochondria, as evidenced by the increase in the gene expression of carnitine-palmitoyltransferase 2 (Cpt2. The decrease in cholesterol level may be due to increased synthesis of bile acids from cholesterol, due to increased gene expression of 7-alphahydroxylase (Cyp7a1. Conclusion. In cell cultures of rat’s hepatoma cell line HTC sesquiterpene γ-lactone achilline reduces the accumulation of lipids in cells, as evidenced by the decrease in the fluorescence of Nile Red, increased gene expression of the carnitine-palmitoyltransferase 2 (Cpt2 gene and 7-alpha-hydroxylase (Cyp7a1.

  9. Lysosomal exocytosis and lipid storage disorders.

    Science.gov (United States)

    Samie, Mohammad Ali; Xu, Haoxing

    2014-06-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Lysosomal exocytosis and lipid storage disorders

    Science.gov (United States)

    Samie, Mohammad Ali; Xu, Haoxing

    2014-01-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. PMID:24668941

  11. Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom

    DEFF Research Database (Denmark)

    Hyttel-Sorensen, Simon; Kleiser, Stefan; Wolf, Martin

    2013-01-01

    In a blood-lipid liquid phantom the prototype near-infrared spectroscopy oximeter OxyPrem was calibrated against the INVOS® 5100c adult sensor in respect to values of regional tissue oxygen haemoglobin saturation (rStO2) for possible inclusion in the randomised clinical trial - SafeBoosC. In addi......In a blood-lipid liquid phantom the prototype near-infrared spectroscopy oximeter OxyPrem was calibrated against the INVOS® 5100c adult sensor in respect to values of regional tissue oxygen haemoglobin saturation (rStO2) for possible inclusion in the randomised clinical trial - Safe...

  12. Thickness of Lipid Deposition on Oral Surfaces Depending on Oil Content and Its Influence on Mouthfeel Perception

    Directory of Open Access Journals (Sweden)

    Urška Pivk Kupirovič

    2012-01-01

    Full Text Available Lipid content in food strongly influences food perception on the level of textural properties. Lipids in contact with the tongue and palate are substantially responsible for the sensory impact of a product. The aim of this study is to investigate the impact of oil content on the thickness of lipid deposition on oral surface as well as on the mouthfeel perception. The fluorescent probe method was used to study the thickness of lipid deposition on oral surface. We observed an increase in the thickness of lipid deposition depending on the increase of oil content in oil/water dispersions. Clear correlation was shown between the thickness of lipid deposition on oral surfaces and the perception of mouthfeel. A direct measure of undisrupted deposition of food components on oral surface contributes to the understanding of the behaviour of food components in the mouth and their influence on mouthfeel perception.

  13. Apollo 12 lunar material - Effects on lipid levels of tobacco tissue cultures.

    Science.gov (United States)

    Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.

    1972-01-01

    Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 per cent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.

  14. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection.

    Science.gov (United States)

    Hu, Xiaolong; Zhu, Min; Liang, Zi; Kumar, Dhiraj; Chen, Fei; Zhu, Liyuan; Kuang, Sulan; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2017-04-01

    The mechanism of how Bombyx mori nucleopolyhedrovirus (BmNPV) enters cells is unknown. The primary components of membrane lipid rafts are proteins and cholesterol, and membrane lipid rafts are thought to be an active region for host-viral interactions. However, whether they contribute to the entry of BmNPV into silkworm cells remains unclear. In this study, we explored the membrane protein components of lipid rafts from BmN cells with mass spectrometry (MS). Proteins and cholesterol were investigated after establishing infection with BmNPV in BmN cells. In total, 222 proteins were identified in the lipid rafts, and Gene Ontology (GO) annotation analysis showed that more than 10% of these proteins had binding and catalytic functions. We then identified proteins that potentially interact between lipid rafts and BmNPV virions using the Virus Overlay Protein Blot Assay (VOPBA). A total of 65 proteins were analyzed with MS, and 7 were predicted to be binding proteins involved in BmNPV cellular invasion, including actin, kinesin light chain-like isoform X2, annexin B13, heat-shock protein 90, barrier-to-autointegration factor B-like and serine/arginine-rich splicing factor 1 A-like. When the cholesterol of the lipid rafts from the membrane was depleted by methyl-β-cyclodextrin (MβCD), BmNPV entry into BmN cells was blocked. However, supplying cholesterol into the medium rescued the BmNPV infection ability. These results show that membrane lipid rafts may be the active regions for the entry of BmNPV into cells, and the components of membrane lipid rafts may be candidate targets for improving the resistance of the silkworm to BmNPV.

  15. Characterization of human arterial tissue affected by atherosclerosis using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Baria, Enrico; Cicchi, Riccardo; Rotellini, Matteo; Nesi, Gabriella; Massi, Daniela; Pavone, Francesco S.

    2016-03-01

    Atherosclerosis is a widespread cardiovascular disease caused by the deposition of lipids (such as cholesterol and triglycerides) on the inner arterial wall. The rupture of an atherosclerotic plaque, resulting in a thrombus, is one of the leading causes of death in the Western World. Preventive assessment of plaque vulnerability is therefore extremely important and can be performed by studying collagen organization and lipid composition in atherosclerotic arterial tissues. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires immune-histochemical examination and a morpho-functional approach. Instead, a label-free and non-invasive alternative is provided by nonlinear microscopy. In this study, we combined SHG and FLIM microscopy in order to characterize collagen organization and lipids in human carotid ex vivo tissues affected by atherosclerosis. SHG and TPF images, acquired from different regions within atherosclerotic plaques, were processed through image pattern analysis methods (FFT, GLCM). The resulting information on collagen and cholesterol distribution and anisotropy, combined with collagen and lipids fluorescence lifetime measured from FLIM images, allowed characterization of carotid samples and discrimination of different tissue regions. The presented method can be applied for automated classification of atherosclerotic lesions and plaque vulnerability. Moreover, it lays the foundation for a potential in vivo diagnostic tool to be used in clinical setting.

  16. High-Fat Diet Triggers Inflammation-Induced Cleavage of SIRT1 in Adipose Tissue To Promote Metabolic Dysfunction

    OpenAIRE

    Chalkiadaki, Angeliki; Guarente, Leonard

    2012-01-01

    Adipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from inflammation and obesity under normal feeding conditions, and to f...

  17. Effect of age and gender on lipid profile in healthy rural population of ...

    African Journals Online (AJOL)

    There are contradicting information on the influence of age and gender on blood lipid profile, some researchers believe the levels of total cholesterol and other components of lipid profile increase with age, others have proved significant negative correlation between total cholesterol, low density lipoprotein cholesterol and ...

  18. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences.

    Science.gov (United States)

    Conlan, Jessica A; Rocker, Melissa M; Francis, David S

    2017-01-01

    Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral's condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-spraying and (2) crushing the coral in toto . Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes ( Acropora millepora , Montipora crassotuberculata , Porites cylindrica , and Pocillopora damicornis ). Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55-69% and 56-64%, respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.

  19. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences

    Directory of Open Access Journals (Sweden)

    Jessica A. Conlan

    2017-08-01

    Full Text Available Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral’s condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1 tissue isolation by air-spraying and (2 crushing the coral in toto. Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes (Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and Pocillopora damicornis. Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55–69% and 56–64%, respectively. As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.

  20. LIPID PEROXIDATION AND JOB STRESS IN DENTAL HEALTHCARE WORKERS

    Directory of Open Access Journals (Sweden)

    S. V. Melnikova

    2014-04-01

    Full Text Available This study devoted to the lipid peroxidation indices in dentists target group as a marker of psycho-emotional state. We revealed increase in the level of TBA-active products in female and male dentists during job stress. There was strong decrease in level of TBA-active products in control group of dentist that study during the lectures. Activation of lipid peroxidation in dentists during dentist examination can be considered as non-specific component of reactions towards the stressors of professional activities. We also revealed that the initial level of TBA-active products in female and male dentists before the outpatient dental reception was higher than that of dentists that study before lectures. This is indicates the mobilization of sympathetic nervous system before beginning of the working day. The contents of the level of TBA-active products in the oral fluid of female and male dentists after dental examination significantly increased, whereas these indices decreased in the group of dentists that study after the lectures. The increasing of TBA-active products in dentists after outpatient dental reception was by 42.5 % and 77 % higher compared with a group of dentists that study in the lecture classes. The results of correlation analysis suggest the influence of lipid peroxidation processes on the cardiovascular and blood system of dentists during job stress. Activation of lipid peroxidation in dentists during dental examination can be considered as non-specific component of the body's response to stressors influence in professional activities. Key words: dentists, activation of lipid peroxidation, psychoemotional stress, job stress.

  1. Atom-scale molecular interactions in lipid raft mixtures

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo

    2009-01-01

    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular...... dynamics simulations, complemented by extensive comparison to experimental data. The discussion is divided into four sections. The first part investigates the properties of one-component SM bilayers and compares them to bilayers with phosphatidylcholine (PC), the focus being on a detailed analysis...... examples of this issue. The third part concentrates on the specificity of intermolecular interactions in three-component mixtures of SM, PC and cholesterol (CHOL) under conditions where the concentrations of SM and CHOL are dilute with respect to that of PC. The results show how SM and CHOL favor one...

  2. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Science.gov (United States)

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  3. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  4. Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds

    Directory of Open Access Journals (Sweden)

    Anna eEl Tahchy

    2015-12-01

    Full Text Available Worldwide demand for vegetable oil is projected to double within the next thirty years due to increasing food, fuel and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyses monoacylglycerol (MAG to form diacylglycerol (DAG, and then triacylglycerol (TAG. In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate (G-3-P by a series of three subsequent acylation reactions, or originate from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabelled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  5. LIPID CONTENT AND CONDITION IN AN ESTUARINE TELEOST

    African Journals Online (AJOL)

    The value of lipid content as a measure of the feeding level of fish compared with condition factor was assessed using two ... in fish are stored at or near the sites of utilization since there is no specialized adipose tissue as in birds and mammals. ..... The behaviour and physiology of herring and other clupeids. Adv. mar. Bioi.

  6. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  7. Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae.

    Science.gov (United States)

    Kügler, Johannes H; Muhle-Goll, Claudia; Kühl, Boris; Kraft, Axel; Heinzler, Raphael; Kirschhöfer, Frank; Henkel, Marius; Wray, Victor; Luy, Burkhard; Brenner-Weiss, Gerald; Lang, Siegmund; Syldatk, Christoph; Hausmann, Rudolf

    2014-11-01

    Actinomycetales are known to produce various secondary metabolites including products with surface-active and emulsifying properties known as biosurfactants. In this study, the nonpathogenic actinomycetes Tsukamurella spumae and Tsukamurella pseudospumae are described as producers of extracellular trehalose lipid biosurfactants when grown on sunflower oil or its main component glyceryltrioleate. Crude extracts of the trehalose lipids were purified using silica gel chromatography. The structure of the two trehalose lipid components (TL A and TL B) was elucidated using a combination of matrix-assisted laser desorption/ionization time-of-flight/time-of-flight/tandem mass spectroscopy (MALDI-ToF-ToF/MS/MS) and multidimensional NMR experiments. The biosurfactants were identified as 1-α-glucopyranosyl-1-α-glucopyranosid carrying two acyl chains varying of C4 to C6 and C16 to C18 at the 2' and 3' carbon atom of one sugar unit. The trehalose lipids produced demonstrate surface-active behavior and emulsifying capacity. Classified as risk group 1 organisms, T. spumae and T. pseudospumae hold potential for the production of environmentally friendly surfactants.

  8. High dietary level of synthetic vitamin E on lipid peroxidation, membrane fatty acid composition and cytotoxicity in breast cancer xenograft and in mouse host tissue

    Directory of Open Access Journals (Sweden)

    Barnes Christopher J

    2003-03-01

    Full Text Available Abstract Background d-α-tocopherol is a naturally occurring form of vitamin E not previously known to have antitumor activity. Synthetic vitamin E (sE is a commonly used dietary supplement consisting of a mixture of d-α-tocopherol and 7 equimolar stereoisomers. To test for antilipid peroxidation and for antitumor activity of sE supplementation, two groups of nude mice bearing a MDA-MB 231 human breast cancer tumor were fed an AIN-76 diet, one with and one without an additional 2000 IU/kg dry food (equivalent to 900 mg of all-rac-α-tocopherol or sE. This provided an intake of about 200 mg/kg body weight per day. The mice were killed at either 2 or 6 weeks after the start of dietary intervention. During necropsy, tumor and host tissues were excised for histology and for biochemical analyses. Results Tumor growth was significantly reduced by 6 weeks of sE supplementation. Thiobarbituric acid reactive substances, an indicator of lipid peroxidation, were suppressed in tumor and in host tissues in sE supplemented mice. In the sE treated mice, the fatty acid composition of microsomal and mitochondrial membranes of tumor and host tissues had proportionately less linoleic acid (n-6 C 18-2, similar levels of arachidonic acid (n-6 C 20-4, but more docosahexanoic acid (n-3 C 22-6. The sE supplementation had no significant effect on blood counts or on intestinal histology but gave some evidence of cardiac toxicity as judged by myocyte vacuoles and by an indicator of oxidative stress (increased ratio of Mn SOD mRNA over GPX1 mRNA. Conclusions At least one of the stereoisomers in sE has antitumor activity. Synthetic vitamin E appears to preferentially stabilize membrane fatty acids with more double bonds in the acyl chain. Although sE suppressed tumor growth and lipid peroxidation, it may have side-effects in the heart.

  9. Regulation of lipid metabolism by energy availability: a role for the central nervous system.

    Science.gov (United States)

    Nogueiras, R; López, M; Diéguez, C

    2010-03-01

    The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.

  10. 10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling

    OpenAIRE

    Honda, Yoko; Araki, Yoko; Hata, Taketoshi; Ichihara, Kenji; Ito, Masafumi; Tanaka, Masashi; Honda, Shuji

    2015-01-01

    Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA f...

  11. Lipid composition of positively buoyant eggs of reef building corals

    Science.gov (United States)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 μm diameter lipid droplets which fill most of the central mass of the coral eggs.

  12. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    Science.gov (United States)

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  13. Effect of soy oil, orange (Citrus sinensis) peel oil and their blends on total phospholipid, lipid peroxidation, and antioxidant defense system in brain tissues of normo rats

    Energy Technology Data Exchange (ETDEWEB)

    Erukainure, O.L.; Ajiboye, J.A.; Davis, F.F.; Obabire, K.; Okoro, E.E.; Adenekan, S.O.; Adegbola, M.V.; Awogbemi, B.J.; Odjobo, B.O.; Zaruwa, M.Z.

    2016-07-01

    Soy and orange peel (C. sinensis) oils were fed to albino male rats to determine their effects on malondialdehyde (MDA), total phospholipid (TP) content and oxidative stress biomarkers of brain tissue. Beside mouse chow, four diets were designed to contain 50% of their energy as carbohydrate, 35% as fat, and 15% as protein, and one lipid-free diet which had distilled water substituted for fat. Groups of five rats were each fed one of these diets, while a fifth group was fed pelletized mouse chow. A significant difference (p < 0.05) was observed in the TP of the mouse chow group. The TP was highest (p < 0.05) in those fed the soy and orange peel oil blend as compared to those fed these oils separately. Feeding soy oil led to decreased MDA in brain tissues and influenced the TP content. Significantly lower (p < 0.05) GSH and SOD activities were observed in the groups fed soy oil+orange peel oil, and soy oil diets respectively. Higher significant (p < 0.05) activities were observed in the orange oil fed group. Significantly higher (p < 0.05) catalase activity was observed in the lipid free diet fed group, which was followed by orange peel oil, and soy oil+orange peel oil diets, respectively. A combination of both oils may be useful in the management of certain neurological diseases or illnesses and protect against other oxidative stress complications. (Author)

  14. Lipid peroxidation and antioxidant activity in patients in labor with nonreassuring fetal status.

    Science.gov (United States)

    Dede, F S; Guney, Yildiz; Dede, Hulya; Koca, Cemile; Dilbaz, Berna; Bilgihan, Ayse

    2006-01-01

    The aim of our study was to evaluate lipid peroxidation products and antioxidant enzyme activity in placental tissue and umbilical cord blood, as a marker for fetal hypoxia in patients in labor with nonreassuring fetal status. Umbilical cord arterial blood and placental tissue samples were collected from 24 patients with term pregnancies in labor and nonreassuring fetal heart rate (FHR) patterns (study) and 24 women with normal pregnancies in labor and normal FHR tracings (controls) for determination of malondialdehyde (MDA) as a marker for lipid peroxidation and superoxide dismutase (SOD) for the antioxidant activity. Measured values were compared statistically between two groups using independent samples t-test or Mann-Whitney U-test. The median 1min Apgar score was 8 (range 4-9) in the study group and 9 (range 8-10) in the control group, respectively (p 0.05). Placental MDA levels in patients with nonreassuring fetal status were found to be significantly elevated compared to the control group (12.14 nmol/g tissue versus 9.75 nmol/g tissue; p < 0.01). The placental SOD activity in the study group was significantly higher (p < 0.01) compared to controls (3.57 U/mg protein versus 2.63 U/mg protein). The umbilical cord blood MDA levels in the study group were higher than in normal pregnancies (4.99 nmol/mL, 3.88 nmol/mL; p < 0.05). The activity of SOD in umbilical cord blood was significantly higher (p < 0.001) in patients with nonreassuring fetal status when compared with the control group (11.62 versus 6.95 U/mL). Lipid peroxidation products and antioxidant functions were elevated in the umbilical cord blood and placenta of patients having nonreassuring FHR tracings during labor. These findings indicate that lipid peroxidation products in placenta and umbilical cord blood can be used as a possible marker for fetal hypoxia during labor and SOD levels may discriminate acute from chronic hypoxia. Further investigations are needed with large number of series to

  15. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy.

    Science.gov (United States)

    Fu, Dan; Yu, Yong; Folick, Andrew; Currie, Erin; Farese, Robert V; Tsai, Tsung-Huang; Xie, Xiaoliang Sunney; Wang, Meng C

    2014-06-18

    Metabolic fingerprinting provides valuable information on the physiopathological states of cells and tissues. Traditional imaging mass spectrometry and magnetic resonance imaging are unable to probe the spatial-temporal dynamics of metabolites at the subcellular level due to either lack of spatial resolution or inability to perform live cell imaging. Here we report a complementary metabolic imaging technique that is based on hyperspectral stimulated Raman scattering (hsSRS). We demonstrated the use of hsSRS imaging in quantifying two major neutral lipids: cholesteryl ester and triacylglycerol in cells and tissues. Our imaging results revealed previously unknown changes of lipid composition associated with obesity and steatohepatitis. We further used stable-isotope labeling to trace the metabolic dynamics of fatty acids in live cells and live Caenorhabditis elegans with hsSRS imaging. We found that unsaturated fatty acid has preferential uptake into lipid storage while saturated fatty acid exhibits toxicity in hepatic cells. Simultaneous metabolic fingerprinting of deuterium-labeled saturated and unsaturated fatty acids in living C. elegans revealed that there is a lack of interaction between the two, unlike previously hypothesized. Our findings provide new approaches for metabolic tracing of neutral lipids and their precursors in living cells and organisms, and could potentially serve as a general approach for metabolic fingerprinting of other metabolites.

  16. Life as a matter of fat : lipids in a membrane biophysics perspective

    CERN Document Server

    Mouritsen, Ole G

    2016-01-01

    The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described.   The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being...

  17. Characterization of lipid rafts in human platelets using nuclear magnetic resonance: A pilot study

    Directory of Open Access Journals (Sweden)

    Joshua F. Ceñido

    2017-07-01

    Full Text Available Lipid microdomains (‘lipid rafts’ are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR, but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13 and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10–35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent ‘centerband’ peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity of this ‘centerband’ peak, together with the ratio of intensities between the centerband and ‘spinning sideband’ peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing

  18. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    International Nuclear Information System (INIS)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via β-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents

  19. The role of GABA in Na, K-pump activity modulation in nerve cells after irradiation and experimental modification of membrane lipid component

    International Nuclear Information System (INIS)

    Anan'eva, T.V.

    1998-01-01

    Effects of γ-aminobutyric acid (GABA) on the activity of Na, K-pump of nervous cells in case of total exposure of rats-males to X-radiation are studied as well as of experimental modification of membrane lipid component. It is shown that acute lethal (12 Gy, 600 mGy/min), single long-term (0.25 Gy, 1.75 mGy/min) and chronic (0.01 Gy/d, 1.75 mGy/min) exposure results in considerable alterations in Na, K-pump function in cerebral cortex section of rats. Experimental damage of cell membranes with the help of phospholipase or arachidonic acid leads to the same effect. GABA presence decreases the above effect [ru

  20. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Directory of Open Access Journals (Sweden)

    Courtney M. Anderson

    2015-02-01

    Full Text Available Brown adipose tissue (BAT possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ. While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.

  1. Association between lipid profile and adiposity in women over age 60.

    Science.gov (United States)

    Krause, Maressa Priscila; Hallage, Tatiane; Gama, Mirnaluci P R; Sasaki, Jeffer Eidi; Miculis, Cristiane Petra; Buzzachera, Cosme Franklin; Silva, Sergio Gregorio da

    2007-09-01

    To verify the association between lipid profiles and overall or central obesity in women over the age of 60. The sample was comprised of 388 women over the age of 60 (mean 69; standard deviation 5.9 years). The lipid profile was determined using total cholesterol (TC), HDL cholesterol (HDL-C), LDL cholesterol (LDL-C) and triglyceride (TG) levels. Overall obesity was determined using the body mass index (BMI) and skin fold (SF) measurements. Central obesity was determined using the waist circumference (WC) and waist--hip ratio (WHR). Statistical analysis was conducted using age adjusted partial correlation and one way ANOVA (padiposity variables and lipid profile components indicate an elevated atherogenic risk. In addition, the indicators for overall and central obesity were directly related to TG levels and inversely related to HDL-C levels. The partial correlation analysis and the largest variance found for WC and WHR in comparison to the lipidogram components indicate that both methods could be useful in the early diagnosis of atherosclerosis.

  2. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation

    Directory of Open Access Journals (Sweden)

    Yosuke eIsobe

    2012-08-01

    Full Text Available Acute inflammation and its resolution are essential processes for tissue protection and homeostasis. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programs that enable inflamed tissues to return to homeostasis. The mechanisms by which acute inflammation is resolved are of interest, and research in recent years has uncovered new endogenous anti-inflammatory and pro-resolving lipid mediators (i.e. lipoxins, resolvins, protectin, and maresin generated from polyunsaturated fatty acids (PUFAs. This review presents new insights into the cellular and molecular mechanisms of inflammatory resolution, especially the roles of eosinophils, and a series of omega-3 PUFA derived anti-inflammatory lipid mediators that they generate.

  3. Effects of chromium-enriched bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality.

    Science.gov (United States)

    Yang, Jiajun; Qian, Kun; Zhang, Wei; Xu, Yayuan; Wu, Yijing

    2016-11-08

    Both chromium (Cr) and probiotic bacillus own the virtues of regulating animal metabolism and meat quality. Purpose of this study was to evaluate the efficiency of supplemental Cr and bacillus in the form of chromium-enriched Bacillus subtilis KT260179 (CEBS) on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Six hundred of 1-day-old Chinese Huainan Partridge chickens were divided into four groups randomly: Control, inorganic Cr, Bacillus subtilis, and CEBS. The feed duration was 56 days. After 28 days of treatment, broiler feed CEBS or normal B. subtilis had higher body weights than control broiler, and after 56 days, chickens given either CEBS or B. subtilis had greater body weights than control broiler or those given inorganic Cr. Plasma total cholesterol, triglycerides, and low density lipoprotein cholesterol levels declined significantly in the CEBS group compared with the control, whereas plasma high density lipoprotein cholesterol levels increased significantly. The concentration of Cr in blood and breast muscle increased after CEBS and inorganic Cr supplementation. B. subtilis and CEBS supplementation caused a significant increase in the numbers of Lactobacillus and Bifidobacterium in the caecum, while the numbers of Escherichia coli and Salmonella decreased significantly compared to the control. Feed adding CEBS increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, decreased the shear force and cooking loss. In all, CEBS supplementation promoted body growth, improved plasma lipid parameters, increased tissue Cr concentrations, altered cecal bacterial composition and improved breast meat quality.

  4. Protective role of 20-OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Naresh Kumar, Rajendran; Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2013-01-05

    Hyperlipidemia is an associated complication of diabetes mellitus. The association of hyperglycemia with an alteration of lipid parameters presents a major risk for cardiovascular complications in diabetes. The present study was designed to examine the antihyperlipidemic effect of 20-OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats. The levels of blood glucose, cholesterol, triglycerides, free fatty acids, phospholipids, low density lipoprotein, very low density lipoprotein, high density lipoprotein, lipoprotein lipase, lecithin cholesterol acyl transferase, 3-hydroxy 3-methylglutaryl coenzyme A reductase and fatty acid composition were estimated in plasma, liver and kidneys of control and experimental groups of rats. Oral administration of 20-OH ecdysone at a dose of 5mg/kg bodyweight per day to STZ-induced diabetic rats for a period of 30 days resulted in a significant reduction in fasting blood glucose, cholesterol, triglycerides, free fatty acids, phospholipids, low density lipoprotein, very low density lipoprotein, 3-hydroxy 3-methylglutaryl coenzyme A reductase and elevation of high density lipoprotein, lipoprotein lipase and lecithin cholesterol acyl transferasein comparison with diabetic untreated rats. Moreover, administration of 20-OH ecdysone to diabetic rats also decreased the concentrations of fatty acids, viz., palmitic, stearic (16:1) and oleic acid (18:1), whereas linolenic (18:3) and arachidonic acid (20:4) were elevated. The antihyperlipidemic effect of 20-OH ecdysone was compared with glibenclamide a well-known antihyperglycemic drug. The result of the present study indicates that 20-OH ecdysone showed an antihyperlipidemic effect in addition to its antidiabetic effect in experimental diabetes. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Evaluation of dose components for healthy tissue tolerance studies on dogs at the HFR Petten

    International Nuclear Information System (INIS)

    Watkins, P.; Moss, R.L.; Siefert, A.; Huiskamp, R.; Gavin, P.; Konijnenberg, M.

    1993-01-01

    Before the start of clinical trails of BNCT on glioma patients at the Petten reactor, certain preconditions must be determined. In particular the tolerance of healthy brain tissue exposed to the epithermal neutron beam requires investigation. In these studies, beagle dogs have been subjected to different levels of irradiation and 10 B, the latter in the form of BSH. To support this work a treatment planning tool is being developed to predict the various dose components within the treatment volume. A Monte Carlo code, MCNP, has been used to simulate the particle transport and to predict the different dose rate distributions. The doses rates generated by MCNP are manipulated with a processing code, TREAT, to give irradiation times, peak dose positions and to display the required data in a graphical format. This paper explains the basic methodology used in the system and a practical case is presented for one of the healthy tissue tolerance dogs. Doses, both physical and RBE weighted, have been produced for pre-treatment planning studies

  6. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation.

    Science.gov (United States)

    Jankovic, Aleksandra; Golic, Igor; Markelic, Milica; Stancic, Ana; Otasevic, Vesna; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2015-08-01

    White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear. Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation. The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies. Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold

  7. Unique honey bee (Apis mellifera hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Directory of Open Access Journals (Sweden)

    Kirk J Grubbs

    Full Text Available Microbial communities (microbiomes are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME and phospholipid-derived fatty acid (PLFA analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  8. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Science.gov (United States)

    Grubbs, Kirk J; Scott, Jarrod J; Budsberg, Kevin J; Read, Harry; Balser, Teri C; Currie, Cameron R

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  9. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  10. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid

    Directory of Open Access Journals (Sweden)

    Daniel Fraher

    2016-02-01

    Full Text Available The role of lipids in providing energy and structural cellular components during vertebrate development is poorly understood. To elucidate these roles further, we visualized lipid deposition and examined expression of key lipid-regulating genes during zebrafish embryogenesis. We also conducted a semiquantitative analysis of lipidomic composition using liquid chromatography (LC-mass spectrometry. Finally, we analyzed processing of boron-dipyrromethene (BODIPY lipid analogs injected into the yolk using thin layer chromatography. Our data reveal that the most abundant lipids in the embryo are cholesterol, phosphatidylcholine, and triglyceride. Moreover, we demonstrate that lipids are processed within the yolk prior to mobilization to the embryonic body. Our data identify a metabolically active yolk and body resulting in a dynamic lipid composition. This provides a foundation for studying lipid biology during normal or pharmacologically compromised embryogenesis.

  11. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  12. Effects of baked and raw salmon fillet on lipids and n-3 PUFAs in serum and tissues in Zucker fa/fa rats​​​​​​​​​​​​​​​​​​​​.

    Science.gov (United States)

    Vikøren, Linn A; Drotningsvik, Aslaug; Bergseth, Marthe T; Mjøs, Svein A; Mola, Nazanin; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2017-01-01

    Knowledge of the health impact of consuming heat-treated versus raw fish fillet is limited. To investigate effects of baked or raw salmon fillet intake on lipids and n-3 PUFAs in serum and tissues, obese Zucker fa/fa rats were fed diets containing 25% of protein from baked or raw salmon fillet and 75% of protein from casein, or casein as the sole protein source (control group) for four weeks. Salmon diets had similar composition of amino and fatty acids. Growth and energy intake were similar in all groups. Amounts of lipids and n-3 PUFAs in serum, liver and skeletal muscle were similar between rats fed baked or raw salmon fillet. When compared to the control group, rats fed baked salmon had lower serum total and LDL cholesterol and higher serum triacylglycerol levels. Both raw and baked salmon groups had lower HDL cholesterol level when compared to control rats. In conclusion, baking as a preparation method does not alter protein and fat qualities of salmon fillets, and intake of baked and raw salmon fillets gave similar effects on lipids and n-3 PUFAs in serum and tissues from rats.

  13. Polyphophoinositides components of plant nuclear membranes

    International Nuclear Information System (INIS)

    Hendrix, K.W.; Boss, W.F.

    1987-01-01

    The polyphosphoinositides, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP 2 ), have been shown to be important components in signal transduction in many animal cells. Recently, these lipids have been found to be associated with plasma membrane but not microsomal membrane isolated from fusogenic wild carrot cells; however, in that study the lipids of the nuclear membrane were not analyzed. Since polyphosphoinositides had been shown to be associated with the nuclear membranes as well as the plasma membrane in some animal cells, it was important to determine whether they were associated with plant nuclear membranes as well. Cells were labeled for 18h with [ 3 H] inositol and the nuclei were isolated by a modification of the procedure of Saxena et al. Preliminary lipid analyses indicate lower amount of PIP and PIP 2 in nuclear membranes compared to whole protoplasts. This suggests that the nuclear membranes of carrot cells are not enriched in PIP and PIP 2 ; however, the Triton X-100 used during the nuclear isolation procedure may have affected the recovery of the lipids. Experiments are in progress to determine the effects of Triton X-100 on lipid extraction

  14. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.

    Science.gov (United States)

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole

    2018-04-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

  15. Concerted diffusion of lipids in raft-like membranes

    NARCIS (Netherlands)

    Apajalahti, Touko; Niemela, Perttu; Govindan, Praveen Nedumpully; Miettinen, Markus S.; Salonen, Emppu; Marrink, Siewert-Jan; Vattulainen, Ilpo

    2010-01-01

    Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions,

  16. Profiling and study of interfacial tension laden with crude lipid extract ...

    African Journals Online (AJOL)

    Crude lipid extract plant based namely SPLIP and PULIP are being introduced in this research as a potential surfactant with phospholipid and glycolipid components which playing an important role at the oil/water interface. Since the interaction between the components give a significant impact on the interfaces, the aim of ...

  17. 1H Nuclear Magnetic Resonance (NMR) metabonomic study of breast cancer in Indian population

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Arshad, Farah

    2012-01-01

    Breast cancer is the most common cancer diagnosed in women worldwide with over 1.3 million new cases per year. Recently it has been observed that breast cancer is increasing very rapidly in low income countries including India. Lipids not only play very important and vital role of prime structural component in human body they are also important functional components in cellular metabolism. Transformation from benign to malignant tissue involves several biochemical processes and understanding these processes provides very useful insight related to cancer prognosis. Thus study of lipids becomes very important and NMR spectroscopy is one of the techniques which can be utilized to identifying all lipid components simultaneously. The tissue specimens (35, benign 20 and malignant 15; patient age group 47 yrs) were collected after breast surgeries and were snap frozen in liquid nitrogen. Part of all tissues was sent for routine histopathology. Lipid extraction was performed by Folch method (Folch, 1957) using cholesterol and methanol (2:1 ratio). The NMR spectra of the extracted lipids were recorded immediately after the sample preparation. All NMR experiments were performed on a Bruker Avance 800 MHz spectrometer. 1 H NMR analysis of lipid extract of breast tissue in Indian population shows there is significant elevation of phosphotidycholine, plasmalogen and esterified cholesterol with decrease in triacylglycerol in cancer breast compared to benign tissue implying that their metabolism is definitely altered during carcinogenesis. This study analyzes the role of NMR as an additional diagnostic tool on the basis of examination of lipid extract. (author)

  18. Antioxidant activities of ginger extract and its constituents toward lipids.

    Science.gov (United States)

    Si, Wenhui; Chen, Yan Ping; Zhang, Jianhao; Chen, Zhen-Yu; Chung, Hau Yin

    2018-01-15

    Lipid oxidation-a major cause of food product deterioration-necessitates the use of food additives to inhibit food oxidation. Ginger extract (GE) has been reported to possess antioxidant properties. However, components isolated from ginger have been rarely reported to inhibit fat oxidation. Herein, antioxidant properties of GE and four pure components derived from it (6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol) were examined and their properties were compared to those of butylated hydroxytoluene. GE and the constituent components exhibited antioxidant properties that might be attributed to their hydroxyl groups and suitable solubilizing side chains. 6-Shogaol and 10-gingerol exhibited higher activity at 60°C than 6-gingerol and 8-gingerol. Low antioxidant activity was detected at high temperatures (120/180°C). Overall, GE displayed the strongest dose-dependent antioxidant properties, especially at high temperatures, thereby demonstrating that GE can be employed as a natural antioxidant in lipid-containing processed foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  20. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    International Nuclear Information System (INIS)

    Kunisue, Tatsuya; Johnson-Restrepo, Boris; Hilker, David R.; Aldous, Kenneth M.; Kannan, Kurunthachalam

    2009-01-01

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time

  1. Lipid flopping in the liver.

    Science.gov (United States)

    Linton, Kenneth J

    2015-10-01

    Bile is synthesized in the liver and is essential for the emulsification of dietary lipids and lipid-soluble vitamins. It is a complex mixture of amphiphilic bile acids (BAs; which act as detergent molecules), the membrane phospholipid phosphatidylcholine (PC), cholesterol and a variety of endogenous metabolites and waste products. Over the last 20 years, the combined effort of clinicians, geneticists, physiologists and biochemists has shown that each of these bile components is transported across the canalicular membrane of the hepatocyte by its own specific ATP-binding cassette (ABC) transporter. The bile salt export pump (BSEP) ABCB11 transports the BAs and drives bile flow from the liver, but it is now clear that two lipid transporters, ABCB4 (which flops PC into the bile) and the P-type ATPase ATP8B1/CDC50 (which flips a different phospholipid in the opposite direction) play equally critical roles that protect the biliary tree from the detergent activity of the bile acids. Understanding the interdependency of these lipid floppases and flippases has allowed the development of an assay to measure ABCB4 function. ABCB4 harbours numerous mis-sense mutations which probably reflects the spectrum of liver disease rooted in ABCB4 aetiology. Characterization of the effect of these mutations at the protein level opens the possibility for the development of personalized prognosis and treatment. © 2015 Authors; published by Portland Press Limited.

  2. Interface-mediation of lipid bilayer organization and dynamics.

    Science.gov (United States)

    Mize, Hannah E; Blanchard, G J

    2016-06-22

    We report on the morphology and dynamics of planar supported lipid bilayer structures as a function of pH and ionic strength of the aqueous overlayer. Supported lipid bilayers composed of three components (phosphocholine, sphingomyelin and cholesterol) are known to exhibit phase segregation, with the characteristic domain sizes dependent on the amount and identity of each constituent, and the composition of the aqueous overlayer in contact with the bilayer. We report on fluorescence anisotropy decay imaging measurements of a rhodamine chromophore tethered to the headgroup of a phosphoethanolamine, where anisotropy decay images were acquired as a function of solution overlayer pH and ionic strength. The data reveal a two-component anisotropy decay under all conditions, with the faster time constant being largely independent of pH and ionic strength and the slower component depending on pH and ionic strength in different manners. For liposomes of the same composition, a single exponential anisotropy decay was seen. We interpret this difference in terms of bilayer curvature and support surface-bilayer interactions, and the pH and ionic strength dependencies in terms of ionic screening and protonation in the bilayer headgroup region.

  3. Effect of gamma irradiation on essential oils and lipids in spices

    International Nuclear Information System (INIS)

    Kaneko, Nobutada; Ito, Hitoshi; Ishigaki, Isao

    1991-01-01

    Seven kinds of spices were irradiated with gamma-rays at the dose of 5 to 80 kGy. Studies of radiation effect on lipids in each spice were carried out by measuring peroxide value (POV), iodine value (IV), acid value (AV) and analysis of gas-chromatography (GC). POV in each spice was gradually increased with increasing absorbed doses. The increase of POV in nutmeg was higher than those of other spices, and it was suggested that those increase of POV values were related to lipid contents in spices. A little increase of IV and AV were also observed as same amount of POV by the irradiation up to 80 kGy. From the GC analysis of lipids in each spice, components were not changed even irradiated up to 50 kGy of gamma-rays. Radiation effect on components of essential oils in each spice were also analyzed by headspace-GC (HS-GC), and any degradation of components were not observed up to 50 kGy of irradiation even analyzed by GC after separation to hydrocarbon and oxygen compounds. On the contrary, essential oils of cloves sterilized by heat treatment were apparently decreased as compared with irradiated and non-irradiated cloves. (author)

  4. Effect of gamma irradiation on essential oils and lipids in spices

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Nobutada; Ito, Hitoshi; Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1991-11-01

    Seven kinds of spices were irradiated with gamma-rays at the dose of 5 to 80 kGy. Studies of radiation effect on lipids in each spice were carried out by measuring peroxide value (POV), iodine value (IV), acid value (AV) and analysis of gas-chromatography (GC). POV in each spice was gradually increased with increasing absorbed doses. The increase of POV in nutmeg was higher than those of other spices, and it was suggested that those increase of POV values were related to lipid contents in spices. A little increase of IV and AV were also observed as same amount of POV by the irradiation up to 80 kGy. From the GC analysis of lipids in each spice, components were not changed even irradiated up to 50 kGy of gamma-rays. Radiation effect on components of essential oils in each spice were also analyzed by headspace-GC (HS-GC), and any degradation of components were not observed up to 50 kGy of irradiation even analyzed by GC after separation to hydrocarbon and oxygen compounds. On the contrary, essential oils of cloves sterilized by heat treatment were apparently decreased as compared with irradiated and non-irradiated cloves. (author).

  5. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice.

    Science.gov (United States)

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-09-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day(-1)). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training.

  6. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  7. Edible lipid nanoparticles: digestion, absorption, and potential toxicity.

    Science.gov (United States)

    McClements, David Julian

    2013-10-01

    Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius beverage industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    Science.gov (United States)

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  9. Effect of different commercial fat sources on brain, liver and blood lipid profiles of rats in growth phase.

    Science.gov (United States)

    Angelis-Pereira, Michel Cardoso de; Barcelos, Maria de Fátima Píccolo; Pereira, Juciane de Abreu Ribeiro; Pereira, Rafaela Corrêa; Souza, Raimundo Vicente de

    2017-12-01

    To investigate the fatty acid content of different fat sources and evaluate the effect of them on plasma and hepatic lipids and on the fatty acid profile of the brain tissue of Wistar rats. Thirty male albino Wistar rats received for 59 days, the following diets: diet added of margarine with low content of polyunsaturated fatty acids (PUFA); diet added of margarine with high content of PUFA; diet added of butter; diet added of hydrogenated vegetable fat; diet added of soybean oil. Fatty acid profile of the lipid sources, blood and hepatic lipids fractions and fatty acid profile of the brain tissue were determined. Margarine consumption of provided different responses as to concentrations of blood and hepatic lipid fractions. Intake of butter and hydrogenated increased LDL-c/HDL-c ratio, being the steepest increase promoted by hydrogenated vegetable fat, which also raised LDL-c levels expressively. All fats used in the treatments reduced the cerebral concentration of docosahexaenoic acid when compared to soybean oil (control). The different fat sources commonly consumed by population provided different responses in vivo. This is particularly relevant considering the role of these lipids in the incidence and prevention of cardiovascular diseases.

  10. Genetics of Lipid and Lipoprotein Disorders and Traits.

    Science.gov (United States)

    Dron, Jacqueline S; Hegele, Robert A

    2016-01-01

    Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1 , APOC3 , LDLR , APOA5 , and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.

  11. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu

    2015-08-01

    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  12. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure

    Science.gov (United States)

    Felgner, Philip L.; Gadek, Thomas R.; Holm, Marilyn; Roman, Richard; Chan, Hardy W.; Wenz, Michael; Northrop, Jeffrey P.; Ringold, Gordon M.; Danielsen, Mark

    1987-11-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA. DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to >100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.

  13. Diagnostic radiopharmaceuticals for localization in target tissues exhibiting a regional pH shift relative to surrounding tissues

    International Nuclear Information System (INIS)

    Blau, M.; Kung, H.F.

    1985-01-01

    Diagnostic radiopharmaceutical compounds are provided which are capable of entering a target tissue or a target organ by passive diffusion through cell walls and which are effectively accumulated and retained within the target tissue or organ due to a regional pH shift. Such compounds are desirably readily accessible synthetically using readily available radionuclides. The compound comprises a radioactive isotope of an element in chemical combination with at least one amine group and preferably with at least two secondary or tertiary amine groups. The radioactive element is an element other than iodine emitting gamma ray, x-ray or positron radiation. When the element is a gamma ray emitting isotope, at least 75 percent of the number of emissions is emitted at energies of between 80 and 400 keV. The half-life of the isotope is usually between two minutes and 15 days. The compound has acid-base characteristics such that the state of ionization of the compound at the pH of the body is significantly different and usually less than its state of ionization at the intracellular pH of the target tissue. The compound has such lipid solubility characteristics that it is capable of ready penetration through cell walls, but within cells its lipid solubility is substantially decreased, whereby the ability of the compound to leave the target tissue is substantially diminished. Specific data relevant to di-beta-(piperidinoethyl)-selenide and di-beta-(morpholinoethyl)-selenide in rat brains are presented

  14. Hydrogenated fat intake during pregnancy and lactation modifies serum lipid profile and adipokine mRNA in 21-day-old rats.

    Science.gov (United States)

    Pisani, Luciana P; Oyama, Lila M; Bueno, Allain A; Biz, Carolina; Albuquerque, Kelse T; Ribeiro, Eliane B; Oller do Nascimento, Claudia M

    2008-03-01

    We examined whether feeding pregnant and lactating rats hydrogenated fats rich in trans-fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 21-d-old offspring. Pregnant and lactating Wistar rats were fed with a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). After delivery, male offspring were weighed weekly and killed at day 21 of life by decapitation. Blood and retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Offspring of T-group rats had increased serum triacylglycerols and cholesterol, white adipose tissue plasminogen activator inhibitor-1, and tumor necrosis factor-alpha gene expression, and carcass lipid content and decreased blood leptin and adiponectin and adiponectin gene expression. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation alters the blood lipid profiles and the expression of proinflammatory adipokynes by the adipose tissue of offspring aged 21 d.

  15. Maternal obesity modulates intracellular lipid turnover in the human term placenta.

    Science.gov (United States)

    Hirschmugl, B; Desoye, G; Catalano, P; Klymiuk, I; Scharnagl, H; Payr, S; Kitzinger, E; Schliefsteiner, C; Lang, U; Wadsack, C; Hauguel-de Mouzon, S

    2017-02-01

    Obesity before pregnancy is associated with impaired metabolic status of the mother and the offspring later in life. These adverse effects have been attributed to epigenetic changes in utero, but little is known about the role of placental metabolism and its contribution to fetal development. We examined the impact of maternal pre-pregnancy obesity on the expression of genes involved in placental lipid metabolism in lean and obese women. Seventy-three lean and obese women with healthy pregnancy were recruited at term elective cesarean delivery. Metabolic parameters were measured on maternal venous blood samples. Expression of 88 genes involved in lipid metabolism was measured in whole placenta tissue. Proteins of genes differently expressed in response to maternal obesity were quantified, correlated with maternal parameters and immunolocalized in placenta sections. Isolated primary trophoblasts were used for in vitro assays. Triglyceride (TG) content was increased in placental tissue of obese (1.10, CI 1.04-1.24 mg g -1 , Pwomen. Among target genes examined, six showed positive correlation (Pobese vs lean women. CGI-58 protein levels correlated positively with maternal insulin levels and pre-pregnancy body mass index (R=0.63, Ptreatment of cultured trophoblast cells. Pre-gravid obesity significantly modifies the expression of placental genes related to transport and storage of neutral lipids. We propose that the upregulation of CGI-58, a master regulator of TG hydrolysis, contributes to the turnover of intracellular lipids in placenta of obese women, and is tightly regulated by metabolic factors of the mother.

  16. Inter- and intra-individual differences in skin hydration and surface lipids measured with mid-infrared spectroscopy

    Science.gov (United States)

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2016-03-01

    Skin health is characterized by heterogeneous system of water and lipids in upper layers providing protection from external environment and preventing loss of vital components of the body. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of healthy skin and plays a central role in protecting and preserving skin integrity. In this manuscript we present inter- and intra-individual variation in skin hydration and surface lipids measured with a home-built experimental prototype based on infrared spectroscopy. Results show good agreement with measurements performed by commercially available instruments Corneometer and Sebumeter used for skin hydration and sebum measurements respectively.

  17. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    Science.gov (United States)

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    2012-12-01

    In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.

  18. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    Science.gov (United States)

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  19. Aluminum induces lipid peroxidation and aggregation of human blood platelets

    Directory of Open Access Journals (Sweden)

    T.J.C. Neiva

    1997-05-01

    Full Text Available Aluminum (Al3+ intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA (100 µM and n-propyl gallate (NPG (100 µM, inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA (100 µM, an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

  20. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Directory of Open Access Journals (Sweden)

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  1. Packaging and irradiation effects on lipid oxidation and volatiles in pork patties

    International Nuclear Information System (INIS)

    Ahn, D.U.; Olson, D.G.; Lee, J.I.; Jo, C.; Wu, C.; Chen, X.

    1998-01-01

    Raw-meat patties were prepared from three pork muscles, irradiated in different packaging environments, and stored for 0 or 3 days before cooking. Lipid oxidation by-products were formed in the raw meat during storage and the baseline lipid oxidation data of raw meat was used to measure the progression of lipid oxidation after cooking. Thiobarbituric acid-reactive substances (TBARS) and volatiles data indicated that preventing oxygen exposure after cooking was more important for cooked meat quality than packaging, irradiation, or storage conditions of raw meat. Propanal, pentanal, hexanal, 1-pentanol, and total volatiles correlated highly (P 0.01) with TBARS values of cooked meat. Hexanal and total volatiles represented the lipid oxidation status better than any other individual volatile components

  2. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling.

    Science.gov (United States)

    Shi, Haojun; Fang, Winston; Liu, Minda; Fu, Deliang

    2017-10-01

    Pancreatic cancer shows a remarkable predilection for hepatic metastasis. Complement component 1, q subcomponent binding protein (C1QBP) can mediate growth factor-induced cancer cell chemotaxis and distant metastasis by activation of receptor tyrosine kinases. Coincidentally, insulin-like growth factor-1 (IGF-1) derived from the liver and cancer cells itself has been recognized as a critical inducer of hepatic metastasis. However, the mechanism underlying IGF-1-dependent hepatic metastasis of pancreatic cancer, in which C1QBP may be involved, remains unknown. In the study, we demonstrated a significant association between C1QBP expression and hepatic metastasis in patients with pancreatic cancer. IGF-1 induced the translocation of C1QBP from cytoplasm to lipid rafts and further drove the formation of CD44 variant 6 (CD44v6)/C1QBP complex in pancreatic cancer cells. C1QBP interacting with CD44v6 in lipid rafts promoted phosphorylation of IGF-1R and thus activated downstream PI3K and MAPK signaling pathways which mediated metastatic potential of pancreatic cancer cells including proliferation, apoptosis, invasion, adhesion and energy metabolism. Furthermore, C1QBP knockdown suppressed hepatic metastasis of pancreatic cancer cells in nude mice. We therefore conclude that C1QBP in lipid rafts serves a key regulator of IGF-1/IGF-1R-induced hepatic metastasis from pancreatic cancer. Our findings about C1QBP in lipid rafts provide a novel strategy to block IGF-1/IGF-1R signaling in pancreatic cancer and a reliable premise for more efficient combined modality therapies. © 2017 UICC.

  3. Lipid peroxidation in radiation pneumonitis in mouse lung and its preventation

    International Nuclear Information System (INIS)

    Kodama, Akihisa; Tsujino, Kayoko; Kono, Michio

    1998-01-01

    Lipid peroxidation of the lung in irradiated C57BL6J mice was analyzed by gas chromatography. Among six major fatty acids in the mouse lung tissue, the amounts of two unsaturated fatty acids, arachidonic acid and DHA reduced one day after irradiation, and then recovered up to the level of in the control group four weeks after irradiation. In contrast, the amounts of stearic and palmitic acid did not change significantly. The mice fed with vitamin E-enriched food showed no significant changes of fatty acids which were compatible with pathophysiological findings 4 weeks after irradiation. Reduction of both arachidonic acid and DHA following lipid peroxidation in lung tissue, was assumed to play an important role in development of radiation pneumonitis. Vitamin E seems to enable to prevent or reduce the occurrence and progression of radiation pneumonitis, but as a radical scavenger, it may also weaken the anti-tumor growth effect of low linear energy transfer (LET) irradiation as photon. (author)

  4. Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells

    Science.gov (United States)

    Farre, B.; Dauphin, Y.

    2009-04-01

    Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence

  5. Ageing mechanisms and associated lipid changes.

    Science.gov (United States)

    Kolovou, Genovefa; Katsiki, Niki; Pavlidis, Antonis; Bilianou, Helen; Goumas, George; Mikhailidis, Dimitri P

    2014-01-01

    Ageing is related to slowdown/breakdown of the somatotropic axis (i.e. the somatopause) leading to many physiological changes. The somatopause is accompanied by DNA and other macromolecule damage, and is characterized by a progressive decline in vitality and tissue function. We still do not have a definitive understanding of the mechanism( s) of ageing. Several overlapping theories have been proposed such as: 1) The free radical theory, 2) Mitochondrial Ageing, 3) The Glycation Theory, 4) Protein Damage and Maintenance in Ageing, and, 5) DNA Damage and Repair. Furthermore, several models of ageing were introduced such as genetically programmed senescence, telomere shortening, genomic instability, heterochromatin loss, altered epigenetic patterns and long lived cells. There are certain lipid modifications associated with the somatopause, characterized mainly by an increase in total cholesterol and triglyceride levels in both genders. In this review we consider the mechanisms of ageing and the associated changes in lipid metabolism according to gender.

  6. The effect of ionizing radiation on lipid metabolism in lymphoid cells

    International Nuclear Information System (INIS)

    Kolomiytseva, I.K.; Novoselova, E.G.; Kulagina, T.P.; Kuzin, A.M.

    1987-01-01

    Lipid metabolism was studied in lymphoid tissues of rats after whole body irradiation with doses producing damage of different degrees to lymphoid cells (4-10 Gy). The content of free cholesterol, cholesterol esters, and total phospholipids was determined in peripheral blood lymphocytes and thymocytes 1-2 h after exposure. Simultaneously, the rate of in vitro incorporation of 2 14 C-acetate into total lipids, phospholipids, and cholesterol of lymphoid cells was estimated. It was shown that exposure of rats to ionizing radiation caused activation of lipogenesis. Cholesterol synthesis was activated after a dose of 4 Gy and decreased with increasing dose. (author)

  7. Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-12-01

    To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

  8. The structure of a lipid-water lamellar phase containing two types of lipid monolayers

    International Nuclear Information System (INIS)

    Ranck, J.L.; Luzzati, V.; Zaccai, G.

    1980-01-01

    One lamellar phase, observed in the mitochondrial lipids-water system at low temperature (ca 253 K) and at low water content (ca 15%), contains four lipid monolayers in its unit cell, two of type α and two of type β. Previous X-ray scattering studies of this phase led to an ambiguity: the phase could contain either two homogeneous bilayers, one α and one β, or two mixed bilayers, each formed by an α and a β monolayer. A solution to this problem was sought in a neutron scattering study as a function of the D 2 O/H 2 O ratio. Because of limited resolution, straightforward analysis of the neutron scattering data leads also to ambiguous results. Using a more sophisticated analysis based upon the zeroth- and second-order moments of the Patterson peaks relevant to the exchangeable components, it is shown that the weight of the evidence is in favour of a structure containing mixed bilayers. (Auth.)

  9. Profiling of lipid species by normal-phase liquid chromatography, nanoelectrospray ionization, and ion trap-orbitrap mass spectrometry

    DEFF Research Database (Denmark)

    Sokol, Elena; Almeida, Reinaldo; Hannibal-Bach, Hans Kristian

    2013-01-01

    Detailed analysis of lipid species can be challenging due to their structural diversity and wide concentration range in cells, tissues, and biofluids. To address these analytical challenges, we devised a reproducible, sensitive, and integrated lipidomics workflow based on normal-phase liquid......) routine for characterizing the fatty acid moieties of identified lipid species. We benchmarked the performance of the workflow by characterizing the chromatographic properties of the LC-MS system for general lipid analysis. In addition, we demonstrate the efficacy of the workflow by reporting a study...

  10. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DEFF Research Database (Denmark)

    Rønnest, A. K.; Peters, Günther H.J.; Hansen, Flemming Yssing

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid...... compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have...... the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic...

  11. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.

    Science.gov (United States)

    Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique

    2007-04-01

    The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

  12. Basic Components of Connective Tissues and Extracellular Matrix

    DEFF Research Database (Denmark)

    Halper, Jaroslava; Kjær, Michael

    2014-01-01

    of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes...

  13. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.

    Science.gov (United States)

    Chatterjee, Priyajit; Seal, Soma; Mukherjee, Sandip; Kundu, Rakesh; Mukherjee, Sutapa; Ray, Sukanta; Mukhopadhyay, Satinath; Majumdar, Subeer S; Bhattacharya, Samir

    2013-09-27

    Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.

  15. Replication of simulated prebiotic amphiphile vesicles controlled by experimental lipid physicochemical properties

    International Nuclear Information System (INIS)

    Armstrong, Don L; Zidovetzki, Raphael; Markovitch, Omer; Lancet, Doron

    2011-01-01

    We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers

  16. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  17. Tissue and subcellular localizations of 3H-cyclosporine A in mice

    International Nuclear Information System (INIS)

    Baeckman, L.; Brandt, I.; Appelkvist, E.-L.; Dallner, G.

    1988-01-01

    The tissue and subcellular localizations of 3 H-cyclosporine A after administration to mice were determined with whole-body autoradiography and scintillation counting of lipid extracts of tissues and subcellular fractions. The radioactivity was widely distributed in the body and the pattern of distribution after oral or parenteral administration was the same, except that tissue levels were generatlly lower after oral administration. Pretreatment of the animals with a diet containing cyclosporine A for 30 days before the injection of radioactive cyclosporine A did not change the pattern of distribution substantially. No significant radioactivity was found in the central nervous system, except for the choroidal plexus and the area postrema region of the brain. In pregnant mice no passage of radioactivity from the placentas to fetuses was observed after a single injection. 3 H-cyclosporine A and/or its metabolites showed a high affinity for the lympho-myeloid tissues, with a marked long-term retention in bone marrow and lymph nodes. There was massive excretion in the intestinal tract after parenteral administration, and the liver, bile, pancreas and salivary glands contained high levels of radioactivity. In the kidney radioactivity was confined to the outer zone of the outer kidney medulla. In liver homogenates no quantitatively significant binding of 3 H-cyclosporine A and/or its metabolites to cellular molecules such as proteins, DNA, phospho- or neutral lipids was found. After lipid extraction with organic solvents, almost all radioactivity was recovered in the organic phase. (author)

  18. Inter-and intra-individual differences in skin hydration and surface lipids measured with mid-infrared spectroscopy

    NARCIS (Netherlands)

    Ezerskaia, A.; Pereira, S.F.; Urbach, Paul; Varghese, Babu; Coté, Gerard L.

    2016-01-01

    Skin health is characterized by heterogeneous system of water and lipids in upper layers providing protection from external environment and preventing loss of vital components of the body. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin

  19. Lipid storage myopathy with clinical markers of Marfan syndrome: A rare association

    Directory of Open Access Journals (Sweden)

    Subasree Ramakrishnan

    2012-01-01

    Full Text Available Disorders of lipid metabolism can cause variable clinical presentations, often involving skeletal muscle, alone or together with other tissues. A 19-year-old boy presented with a 2-year history of muscle pain, cramps, exercise intolerance and progressive weakness of proximal lower limbs. Examination revealed skeletal markers of Marfan syndrome in the form of increased arm span compared with height, Kyphoscoliois, moderate pectus excavatum, high arched palate and wrist sign. He also had mild neck flexor weakness and proximal lower limb weakness with areflexia. Pathologic findings revealed lipid-laden fine vacuoles in the muscle fibers. Possibility of carnitine deficiency myopathy was considered and the patient was started on carnitine and Co Q. The patient made remarkable clinical improvement over the next 2 months. This case is reported for rarity of the association of clinical markers of Marfan syndrome and lipid storage myopathy and sparse literature on lipid storage myopathy in the Indian context.

  20. Resistin in Dairy Cows: Plasma Concentrations during Early Lactation, Expression and Potential Role in Adipose Tissue

    Science.gov (United States)

    Reverchon, Maxime; Ramé, Christelle; Cognié, Juliette; Briant, Eric; Elis, Sébastien; Guillaume, Daniel; Dupont, Joëlle

    2014-01-01

    Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP) and at five months of gestation (5 MG). We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA) levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6) in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase) and HSL (hormone-sensitive lipase) in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro. PMID:24675707

  1. Resistin in dairy cows: plasma concentrations during early lactation, expression and potential role in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Maxime Reverchon

    Full Text Available Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP and at five months of gestation (5 MG. We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6 in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase and HSL (hormone-sensitive lipase in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro.

  2. Concentrations of Polybrominated Diphenyl Ethers (PBDEs) and 2,4,6-Tribromophenol in Human Placental Tissues

    Science.gov (United States)

    Leonetti, Christopher; Butt, Craig M.; Hoffman, Kate; Miranda, Marie Lynn; Stapleton, Heather M.

    2015-01-01

    Legacy environmental contaminants such as polybrominated diphenyl ethers (PBDEs) are widely detected in human tissues. However, few studies have measured PBDEs in placental tissues, and there are no reported measurements of 2,4,6-tribromophenol (2,4,6-TBP) in placental tissues. Measurements of these contaminants are important for understanding potential fetal exposures, as these compounds have been shown to alter thyroid hormone regulation in vitro and in vivo. In this study, we measured a suite of PBDEs and 2,4,6-TBP in 102 human placental tissues collected between 2010–2011 in Durham County, North Carolina, USA. The most abundant PBDE congener detected was BDE-47, with a mean concentration of 5.09 ng/g lipid (range: 0.12–141 ng/g lipid; detection frequency 91%); however, 2,4,6-TBP was ubiquitously detected and present at higher concentrations with a mean concentration of 15.4 ng/g lipid (range:1.31–316 ng/g lipid; detection frequency 100%). BDE-209 was also detected in more than 50% of the samples, and was significantly associated with 2,4,6-TBP in placental tissues, suggesting they may have a similar source, or that 2,4,6-TBP may be a degradation product of BDE-209. Interestingly, BDE-209 and 2,4,6-TBP were negatively associated with age (rs=−0.16; p=0.10 and rs=−0.17; p=0.08, respectively). The results of this work indicate that PBDEs and 2,4,6-TBP bioaccumulate in human placenta tissue and likely contribute to prenatal exposures to these environmental contaminants. Future studies are needed to determine if these joint exposures are associated with any adverse health measures in infants and children. PMID:26700418

  3. Lipid Cell and Micropapillary Variants of Urothelial Carcinoma of the Ureter

    Directory of Open Access Journals (Sweden)

    Yu Miyama

    2015-11-01

    Full Text Available We report on a case of urothelial carcinoma (UC with lipid cell and micropapillary variants in the ureter. A 64-year-old man presented with gross hematuria. Urinary cytology revealed the presence of atypical urothelial cells. Computed tomography and drip infusion/retrograde pyelography identified a mass-occupying lesion in the left mid-ureter, as well as left hydronephrosis. A clinical diagnosis of left ureteral cancer was given and the patient underwent left nephroureterectomy. Microscopically, the major component of the tumor was a conventional high-grade UC. In the invasive region, however, lipid cell and micropapillary variants of UC were also observed. Upon immunohistochemical analysis, all of the components were diffusely positive for cytokeratin 7 and p53. Intense membranous expression of human epidermal growth factor receptor 2 (HER2 was also observed in both the lipid cell and micropapillary variants of UC, whereas weak and incomplete staining was observed in most regions of the conventional UC. The pathological stage was pT3 N2. Multiple times, the patient experienced recurrence of the UC in the urinary bladder and urethra. Although the patient underwent total cystectomy and urethrectomy, 52 months following the initial surgery, signs of local recurrence developed, as well as multiple lymph node and bone metastases. The patient died 75 months following the initial surgery. To the best of our knowledge, this is the first reported case of a lipid cell variant of ureteral UC. The overexpression of HER2 may be associated with both the lipid cell and micropapillary variants of UC.

  4. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of environmental stressors on lipid metabolism in aquatic invertebrates.

    Science.gov (United States)

    Lee, Min-Chul; Park, Jun Chul; Lee, Jae-Seong

    2018-07-01

    Lipid metabolism is crucial for the survival and propagation of the species, since lipids are an essential cellular component across animal taxa for maintaining homeostasis in the presence of environmental stressors. This review aims to summarize information on the lipid metabolism under environmental stressors in aquatic invertebrates. Fatty acid synthesis from glucose via de novo lipogenesis (DNL) pathway is mostly well-conserved across animal taxa. The structure of free fatty acid (FFA) from both dietary and DNL pathway could be transformed by elongase and desaturase. In addition, FFA can be stored in lipid droplet as triacylglycerol, upon attachment to glycerol. However, due to the limited information on both gene and lipid composition, in-depth studies on the structural modification of FFA and their storage conformation are required. Despite previously validated evidences on the disturbance of the normal life cycle and lipid homeostasis by the environmental stressors (e.g., obesogens, salinity, temperature, pCO 2 , and nutrients) in the aquatic invertebrates, the mechanism behind these effects are still poorly understood. To overcome this limitation, omics approaches such as transcriptomic and proteomic analyses have been used, but there are still gaps in our knowledge on aquatic invertebrates as well as the lipidome. This paper provides a deeper understanding of lipid metabolism in aquatic invertebrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Aloe Vera for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Shekh Rahman

    2017-02-01

    Full Text Available Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  7. Aloe Vera for Tissue Engineering Applications.

    Science.gov (United States)

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  8. Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves' ophthalmopathy.

    Science.gov (United States)

    Hondur, Ahmet; Konuk, Onur; Dincel, Aylin Sepici; Bilgihan, Ayse; Unal, Mehmet; Hasanreisoglu, Berati

    2008-05-01

    To investigate the oxidative stress and antioxidant activity in the orbit in Graves' ophthalmopathy (GO). Orbital fibroadipose tissue samples were obtained from 13 cases during orbital fat decompression surgery. All cases demonstrated features of moderate or severe GO according to the European Group on Graves' Orbitopathy classification. The disease activity was evaluated with the Clinical Activity Score, and the clinical features of GO were evaluated with the Ophthalmopathy Index. Orbital fibroadipose tissue samples of 8 patients without any thyroid or autoimmune disease were studied as controls. In the tissue samples, lipid hydroperoxide level was examined to determine the level of oxidative stress; glutathione level to determine antioxidant level; superoxide dismutase, glutathione reductase, and glutathione peroxidase activities to determine antioxidant activity. Lipid hydroperoxide level and all three antioxidant enzyme activities were found to be significantly elevated, while glutathione level significantly diminished in tissue samples from GO cases compared to controls (p < 0.05). Glutathione levels in tissue samples of GO cases showed negative correlation with Ophthalmopathy Index (r = -0.59, p < 0.05). The antioxidant activity in the orbit is enhanced in GO. However, the oxidative stress appears to be severe enough to deplete the tissue antioxidants and leads to oxidative tissue damage. This study may support the possible value of antioxidant treatment in GO.

  9. Phase coexistence and line tension in ternary lipid systems

    NARCIS (Netherlands)

    Idema, T.; Leeuwen, van J.M.J.; Storm, C.

    2009-01-01

    The ternary system consisting of cholesterol, a saturated lipid, and an unsaturated one exhibits a rich phase behavior with multiple phase coexistence regimes. Remarkably, phase separation even occurs when each of the three binary systems consisting of two of these components is a uniform mixture.

  10. Storage products and tissue interaction in the ovule of Pinus silvestris (L.

    Directory of Open Access Journals (Sweden)

    F. M. Engels

    2014-01-01

    Full Text Available The organel-sequence in ovular cells of Pinus silvestris was investigated by light- and electronmicroscopy during the post-pollination and pre-fertilization period. Changes in starch and lipid storage suppose starch to be a pool for lipid synthesis and a reserve for ovule development. The base nucellus plays an important role in the distribution of metabolites all over the ovular tissues. Lipid, starch and callose are of interest for the cells to protect them against low temperatures by means of isolation, antifreeze and plug formation respectively.

  11. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m, sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (90% of total lipid and polyunsaturated fatty acids (34±12% of total fatty acids. In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93% and monounsaturated fatty acids (36±12%. With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm and liver (34.1±3.2 kJ g-1 dm, demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.

  12. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    Science.gov (United States)

    Pethybridge, Heidi R; Parrish, Christopher C; Bruce, Barry D; Young, Jock W; Nichols, Peter D

    2014-01-01

    Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.

  13. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  14. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  15. Current trends to comprehend lipid metabolism in diatoms.

    Science.gov (United States)

    Zulu, Nodumo Nokulunga; Zienkiewicz, Krzysztof; Vollheyde, Katharina; Feussner, Ivo

    2018-04-01

    Diatoms are the most dominant phytoplankton species in oceans and they continue to receive a great deal of attention because of their significant contributions in ecosystems and the environment. Due to triacylglycerol (TAG) profiles that are abundant in medium-chain fatty acids, diatoms have emerged to be better feed stocks for biofuel production, in comparison to the commonly studied green microalgal species (chlorophytes). Importantly, diatoms are also known for their high levels of the essential ω3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and are considered to be a promising alternative source of these components. The two most commonly exploited diatoms include Thalassiosira pseudonana and Phaeodactylum tricornutum. Although obvious similarities between diatoms and chlorophytes exist, there are some substantial differences in their lipid metabolism. This review provides an overview on lipid metabolism in diatoms, with P. tricornutum as the most explored model. Special emphasis is placed on the synthesis and incorporation of very long chain ω3 fatty acids into lipids. Furthermore, current approaches including genetic engineering and biotechnological methods aimed at improving and maximizing lipid production in P. tricornutum are also discussed. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effects of stocking density on lipid deposition and expression of lipid-related genes in Amur sturgeon (Acipenser schrenckii).

    Science.gov (United States)

    Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang; He, Feng; Ni, Meng

    2017-12-01

    To investigate the correlation between lipid deposition variation and stocking density in Amur sturgeon (Acipenser schrenckii) and the possible physiological mechanism, fish were conducted in different stocking densities (LSD 5.5 kg/m 3 , MSD 8.0 kg/m 3 , and HSD 11.0 kg/m 3 ) for 70 days and then the growth index, lipid content, lipase activities, and the mRNA expressions of lipid-related genes were examined. Results showed that fish subjected to higher stocking density presented lower final body weights (FBW), specific growth ratio (SGR), and gonad adipose tissue index (GAI) (P density lipoprotein cholesterol (HDL-C) decreased significantly with increasing stocking density, while no significant change was observed for low-density lipoprotein cholesterol (LDL-C). Furthermore, the cDNAs encoding lipoprotein lipase (LPL) and hepatic lipase (HL) were isolated in Amur sturgeon, respectively. The full-length LPL cDNA was composed of 1757 bp with an open reading frame of 501 amino acids, while the complete nucleotide sequences of HL covered 1747 bp encoding 499 amino acids. In the liver, the activities and mRNA levels of LPL were markedly lower in HSD group, which were consistent with the variation tendency of HL. Fish reared in HSD group also presented lower levels of activities and mRNA expression of LPL in the muscle and gonad. Moreover, the expressions of peroxisome proliferator-activated receptor α (PPARα) in both the liver and skeletal muscle were significantly upregulated in HSD group. Overall, the results indicated that high stocking density negatively affects growth performance and lipid deposition of Amur sturgeon to a certain extent. The downregulation of LPL and HL and the upregulation of PPARα may be responsible for the lower lipid distribution of Amur sturgeon in higher stocking density.

  17. The properties of the outer membrane localized Lipid A transporter LptD

    International Nuclear Information System (INIS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-01-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  18. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO 2 -FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO 2 -FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[ 14 C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO 2 -FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO 2 -OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO 2 -FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO 2 -OA-treated mice. This pattern of NO 2 -FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Characterisation of the Native Lipid Moiety of Echinococcus granulosus Antigen B

    Science.gov (United States)

    Obal, Gonzalo; Ramos, Ana Lía; Silva, Valeria; Lima, Analía; Batthyany, Carlos; Bessio, María Inés; Ferreira, Fernando; Salinas, Gustavo; Ferreira, Ana María

    2012-01-01

    Antigen B (EgAgB) is the most abundant and immunogenic antigen produced by the larval stage (metacestode) of Echinococcus granulosus. It is a lipoprotein, the structure and function of which have not been completely elucidated. EgAgB apolipoprotein components have been well characterised; they share homology with a group of hydrophobic ligand binding proteins (HLBPs) present exclusively in cestode organisms, and consist of different isoforms of 8-kDa proteins encoded by a polymorphic multigene family comprising five subfamilies (EgAgB1 to EgAgB5). In vitro studies have shown that EgAgB apolipoproteins are capable of binding fatty acids. However, the identity of the native lipid components of EgAgB remains unknown. The present work was aimed at characterising the lipid ligands bound to EgAgB in vivo. EgAgB was purified to homogeneity from hydatid cyst fluid and its lipid fraction was extracted using chloroform∶methanol mixtures. This fraction constituted approximately 40–50% of EgAgB total mass. High-performance thin layer chromatography revealed that the native lipid moiety of EgAgB consists of a variety of neutral (mainly triacylglycerides, sterols and sterol esters) and polar (mainly phosphatidylcholine) lipids. Gas-liquid chromatography analysis showed that 16∶0, 18∶0 and 18∶1(n-9) are the most abundant fatty acids in EgAgB. Furthermore, size exclusion chromatography coupled to light scattering demonstrated that EgAgB comprises a population of particles heterogeneous in size, with an average molecular mass of 229 kDa. Our results provide the first direct evidence of the nature of the hydrophobic ligands bound to EgAgB in vivo and indicate that the structure and composition of EgAgB lipoprotein particles are more complex than previously thought, resembling high density plasma lipoproteins. Results are discussed considering what is known on lipid metabolism in cestodes, and taken into account the Echinococcus spp. genomic information regarding both lipid

  20. Characterisation of the native lipid moiety of Echinococcus granulosus antigen B.

    Directory of Open Access Journals (Sweden)

    Gonzalo Obal

    Full Text Available Antigen B (EgAgB is the most abundant and immunogenic antigen produced by the larval stage (metacestode of Echinococcus granulosus. It is a lipoprotein, the structure and function of which have not been completely elucidated. EgAgB apolipoprotein components have been well characterised; they share homology with a group of hydrophobic ligand binding proteins (HLBPs present exclusively in cestode organisms, and consist of different isoforms of 8-kDa proteins encoded by a polymorphic multigene family comprising five subfamilies (EgAgB1 to EgAgB5. In vitro studies have shown that EgAgB apolipoproteins are capable of binding fatty acids. However, the identity of the native lipid components of EgAgB remains unknown. The present work was aimed at characterising the lipid ligands bound to EgAgB in vivo. EgAgB was purified to homogeneity from hydatid cyst fluid and its lipid fraction was extracted using chloroform∶methanol mixtures. This fraction constituted approximately 40-50% of EgAgB total mass. High-performance thin layer chromatography revealed that the native lipid moiety of EgAgB consists of a variety of neutral (mainly triacylglycerides, sterols and sterol esters and polar (mainly phosphatidylcholine lipids. Gas-liquid chromatography analysis showed that 16∶0, 18∶0 and 18∶1(n-9 are the most abundant fatty acids in EgAgB. Furthermore, size exclusion chromatography coupled to light scattering demonstrated that EgAgB comprises a population of particles heterogeneous in size, with an average molecular mass of 229 kDa. Our results provide the first direct evidence of the nature of the hydrophobic ligands bound to EgAgB in vivo and indicate that the structure and composition of EgAgB lipoprotein particles are more complex than previously thought, resembling high density plasma lipoproteins. Results are discussed considering what is known on lipid metabolism in cestodes, and taken into account the Echinococcus spp. genomic information regarding