WorldWideScience

Sample records for tissue injury primarily

  1. Factors associated with deep tissue injury in male wheelchair basketball players of a Japanese national team

    Directory of Open Access Journals (Sweden)

    Hirotaka Mutsuzaki

    2014-04-01

    Full Text Available Maintenance of the sporting activity of elite athletes in adapted sports can be difficult if a secondary disorder, such as a pressure ulcer, occurs. Pressure ulcers result from deep tissue injuries by external pressure. The purpose of this study was to use ultrasonography to investigate deep tissue injuries in male wheelchair basketball players of a Japanese national team, and to determine factors associated with the injuries (e.g., body mass index, class of wheelchair basketball, underlying disease, length of athletic career, and whether use of wheelchair is primarily for playing basketball. Twenty male Japanese wheelchair basketball players on the national team for the 2012 London Paralympic Games (12 representative players and eight candidate representative players participated in this study. The sacral region and bilateral ischial regions in each athlete were examined by ultrasonography to detect low-echoic lesions indicative of deep tissue injuries. Nine (45% players had low-echoic lesions, which were detected in 10 of 60 areas. Eight lesions were detected in the sacral region and two lesions were detected in the ischial region. More players with spinal cord injury had low-echoic lesions [9 (69.2% of 13 players], compared to players with skeletal system disease [0 (0% of 7 players, p = 0.002]. Players who used a wheelchair in daily life were more likely to have low-echoic lesions [8 (66.74% of 12 players], compared to players who primarily used a wheelchair for playing basketball [1 (12.5% of 8 players, p = 0.010]. Deep tissue injuries were detected in 45% of male Japanese wheelchair basketball players on the national team. Players with spinal cord injury and players who used a wheelchair in daily life were more likely to have deep tissue injuries, particularly in the sacral region. The lesions were small, but a periodic medical check should be performed to maintain athletes' sporting life.

  2. Soft tissue twisting injuries of the knee

    International Nuclear Information System (INIS)

    Magee, T.; Shapiro, M.

    2001-01-01

    Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR

  3. Significance of prevertebral soft tissue measurement in cervical spine injuries

    Energy Technology Data Exchange (ETDEWEB)

    Dai Liyang E-mail: lydai@etang.com

    2004-07-01

    Objective: The objective of this study was to evaluate the diagnostic value of prevertebral soft tissue swelling in cervical spine injuries. Materials and methods: A group of 107 consecutive patients with suspected injuries of the cervical vertebrae were reviewed retrospectively to identify the presence of prevertebral soft tissue swelling and to investigate the association of prevertebral soft tissue swelling with the types and degrees of cervical spine injuries. Results: Prevertebral soft tissue swelling occurred in 47 (43.9%) patients. Of the 47 patients, 38 were found with bony injury and nine were without. The statistic difference was significant (P<0.05). No correlation was demonstrated between soft tissue swelling and either the injured level of the cervical vertebrae or the degree of the spinal cord injury (P>0.05). Anterior element injuries in the cervical vertebrae had widening of the prevertebral soft tissue more than posterior element injuries (P<0.05). Conclusion: The diagnostic value of prevertebral soft tissue swelling for cervical spine injuries is significant, but the absence of this sign does not mean that further image evaluation can be spared.

  4. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  5. Pressure induced deep tissue injury explained

    NARCIS (Netherlands)

    Oomens, C.W.J.; Bader, D.L.; Loerakker, S.; Baaijens, F.P.T.

    The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This

  6. Experience with wound VAC and delayed primary closure of contaminated soft tissue injuries in Iraq.

    Science.gov (United States)

    Leininger, Brian E; Rasmussen, Todd E; Smith, David L; Jenkins, Donald H; Coppola, Christopher

    2006-11-01

    Wartime missile injuries are frequently high-energy wounds that devitalize and contaminate tissue, with high risk for infection and wound complications. Debridement, irrigation, and closure by secondary intention are fundamental principles for the management of these injuries. However, closure by secondary intention was impractical in Iraqi patients. Therefore, wounds were closed definitively before discharge in all Iraqi patients treated for such injures at our hospital. A novel wound management protocol was developed to facilitate this practice, and patient outcomes were tracked. This article describes that protocol and discusses the outcomes in a series of 88 wounds managed with it. High-energy injuries were treated with rapid aggressive debridement and pulsatile lavage, then covered with negative pressure (vacuum-assisted closure [VAC]) dressings. Patients underwent serial operative irrigation and debridement until wounds appeared clean to gross inspection, at which time they were closed primarily. Patient treatment and outcome data were recorded in a prospectively updated database. Treatment and outcomes data from September 2004 through May 2005 were analyzed retrospectively. There were 88 high-energy soft tissue wounds identified in 77 patients. Surprisingly, for this cohort of patients the wound infection rate was 0% and the overall wound complication rate was 0%. This series of 88 cases is the first report of the use of a negative pressure dressing (wound VAC) as part of the definitive management of high-energy soft tissue wounds in a deployed wartime environment. Our experience with these patients suggests that conventional wound management doctrine may be improved with the wound VAC, resulting in earlier more reliable primary closure of wartime injuries.

  7. X-ray and CT signs of connective tissue dysplasia in patients with primarily diagnosed infiltrative pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Sukhanova, L.A.; Sharmazanova, O.P.

    2009-01-01

    The x-ray signs of connective tissue systemic dysplasia (CTSD) in patients with primarily diagnosed pulmonary tuberculosis was investigated. Fifty-four patients (28 med and 26 women aged 18-70) with primarily diagnosed infiltrative pulmonary tuberculosis underwent x-ray study. In patients with infiltration pulmonary tuberculosis CTSD in the lungs manifests by their diminishing, deformity of the lung pattern, high position of the diaphragm cupola, mediastinum shift to the side of the pathology, which is better seen on CT. The degree of CTSD x-ray signs in the lungs depends on the number of phenotypical signs that is the degree of the disease manifestation. CT allows more accurate determining of the signs of connective tissue dysplasia in which tuberculosis develops

  8. MAXILLOFACIAL SOFT TISSUE INJURIES IN NAIROBI, KENYA

    African Journals Online (AJOL)

    2012-09-09

    Sep 9, 2012 ... Conclusion: The leading causes of MF-STIs apparently differ from those of skeletal fractures. INTRODUCTION. Maxillofacial (MF) soft tissue injuries (STIs) are often overlooked in clinical surveys compared to fractures, yet these injuries negatively impact both on function and esthetics. Previous surveys on ...

  9. Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain

    Science.gov (United States)

    2017-09-01

    Project Manager Boston Biomedical Innovation Center 215 First Street, Suite 500; Cambridge, MA 02142 857-307-2441 | rblackman1@partners.org | b...AWARD NUMBER: W81XWH-15-1-0480 TITLE: Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain PRINCIPAL...31/2017 4. TITLE AND SUBTITLE Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain 5a. CONTRACT NUMBER Tissue Injury

  10. One Stage Reconstruction of Skull Exposed by Burn Injury Using a Tissue Expansion Technique

    Directory of Open Access Journals (Sweden)

    Jae Young Cho

    2012-03-01

    Full Text Available BackgroundAn area of the skull exposed by burn injury has been covered by various methods including local flap, skin graft, or free flap surgery. Each method has disadvantages, such as postoperative alopecia or donor site morbidities. Due to the risk of osteomyelitis in the injured skull during the expansion period, tissue expansion was excluded from primary reconstruction. However, successful primary reconstruction was possible in burned skull by tissue expansion.MethodsFrom January 2000 to 2011, tissue expansion surgery was performed on 10 patients who had sustained electrical burn injuries. In the 3 initial cases, removal of the injured part of the skull and a bone graft was performed. In the latter 7 cases, the injured skull tissue was preserved and covered with a scalp flap directly to obtain natural bone healing and bone remodeling.ResultsThe mean age of patients was 49.9±12.2 years, with 8 male and 2 female. The size of the burn wound was an average of 119.6±36.7 cm2. The mean expansion duration was 65.5±5.6 days, and the inflation volume was an average of 615±197.6 mL. Mean defect size was 122.2±34.9 cm2. The complications including infection, hematoma, and the exposure of the expander were observed in 4 cases. Nonetheless, only 1 case required revision.ConclusionsSuccessful coverage was performed by tissue expansion surgery in burned skull primarily and no secondary reconstruction was needed. Although the risks of osteomyelitis during the expansion period were present, constant coverage of the injured skull and active wound treatment helped successful primary reconstruction of burned skull by tissue expansion.

  11. The tissue injury and repair in cancer radiotherapy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju

    1975-01-01

    One of the difficulties in cancer radiotherapy arises from the fact that the tissue tolerance dose is much smaller than the tumor lethal dose. In our opinion the former depends upon the tolerance of the endothelial cell of the blood vessel in the normal tissue. In this introduction, a new concept regarding the estimation of tissue radiosensitivity was described, and the possible significance of the mode of radiation injury and the repair capability of normal tissue in the cancer radiotheraphy was discussed. (author)

  12. Optical spectroscopy for the detection of ischemic tissue injury

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Fitzgerald, Jason [Sacramento, CA; Troppmann, Christoph [Sacramento, CA; Michalopoulou, Andromachi [Athens, GR

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  13. Connective tissue injury in calf muscle tears and return to play: MRI correlation.

    Science.gov (United States)

    Prakash, Ashutosh; Entwisle, Tom; Schneider, Michal; Brukner, Peter; Connell, David

    2017-10-26

    The aim of our study was to assess a group of patients with calf muscle tears and evaluate the integrity of the connective tissue boundaries and interfaces. Further, we propose a novel MRI grading system based on integrity of the connective tissue and assess any correlation between the grading score and time to return to play. We have also reviewed the anatomy of the calf muscles. We retrospectively evaluated 100 consecutive patients with clinical suspicion and MRI confirmation of calf muscle injury. We evaluated each calf muscle tear with MRI for the particular muscle injured, location of injury within the muscle and integrity of the connective tissue structure at the interface. The muscle tears were graded 0-3 depending on the degree of muscle and connective tissue injury. The time to return to play for each patient and each injury was found from the injury records and respective sports doctors. In 100 patients, 114 injuries were detected. Connective tissue involvement was observed in 63 out of 100 patients and failure (grade 3 injury) in 18. Mean time to return to play with grade 0 injuries was 8 days, grade 1 tears was 17 days, grade 2 tears was 25 days and grade 3 tears was 48 days (pmuscle tears. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Interventions for preventing lower limb soft-tissue running injuries.

    Science.gov (United States)

    Yeung, Simon S; Yeung, Ella W; Gillespie, Lesley D

    2011-07-06

    Overuse soft-tissue injuries occur frequently in runners. Stretching exercises, modification of training schedules, and the use of protective devices such as braces and insoles are often advocated for prevention. This is an update of a review first published in 2001. To assess the effects of interventions for preventing lower limb soft-tissue running injuries. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (March 2011); The Cochrane Library 2010, Issue 4; MEDLINE (1966 to January 2011); EMBASE (1980 to January 2011); and international trial registries (17 January 2011). Randomised or quasi-randomised trials evaluating interventions to prevent lower limb soft-tissue running injuries. Two authors independently assessed risk of bias (relating to sequence generation, allocation concealment, blinding, incomplete outcome data) and extracted data. Data were adjusted for clustering if necessary and pooled using the fixed-effect model when appropriate. We included 25 trials (30,252 participants). Participants were military recruits (19 trials), runners from the general population (three trials), soccer referees (one trial), and prisoners (two trials). The interventions tested in the included trials fell into four main preventive strategies: exercises, modification of training schedules, use of orthoses, and footwear and socks. All 25 included trials were judged as 'unclear' or 'high' risk of bias for at least one of the four domains listed above.We found no evidence that stretching reduces lower limb soft-tissue injuries (6 trials; 5130 participants; risk ratio [RR] 0.85, 95% confidence interval [95% CI] 0.65 to 1.12). As with all non-significant results, this is compatible with either a reduction or an increase in soft-tissue injuries. We found no evidence to support a training regimen of conditioning exercises to improve strength, flexibility and coordination (one trial; 1020 participants; RR 1.20, 95% CI 0.77 to 1.87).We found no

  15. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  16. Mathematical models of soft tissue injury repair : towards understanding musculoskeletal disorders

    OpenAIRE

    Dunster, Joanne L.

    2012-01-01

    The process of soft tissue injury repair at the cellular lew I can be decomposed into three phases: acute inflammation including coagulation, proliferation and remodelling. While the later phases are well understood the early phase is less so. We produce a series of new mathematical models for the early phases coagulation and inflammation. The models produced are relevant not only to soft tissue injury repair but also to the many disease states in which coagulation and inflammation play a rol...

  17. Outcome of tissue sparing surgical intervention in mine blast limb injuries

    International Nuclear Information System (INIS)

    Khan, M.I.; Zafar, A.; Khan, N.; Mufti, N.

    2006-01-01

    To describe the pattern of mine blast limb injuries in civilian population of Kashmir, to evaluate the outcome of tissue sparing surgical intervention in these injuries and to determine the sensitivity of hand-held percutaneous Doppler for tissue viability. One hundred and three patients who sustained mine blast injuries to upper or lower limbs, along side the line of control between the Indian-held Kashmir and Azad Kashmir, regardless of age and gender, were included in this study. Patients who already had amputation after injury at some other place were excluded. All patients were initially managed in emergency and had more than one surgical intervention. Transcutaneous Doppler was used to evaluate the vascularity of the remaining tissue. All patients were operated under spinal or general anaesthesia and had repeated debridements followed by skin cover by split skin graft, full thickness skin graft or rotational flaps. Every patient received at least 5 days course of antibiotics and tetanus prophylaxis. Postoperative rehabilitation and follow-up was conducted for at least 6 months after discharge from the hospital. Mean age of victims in this study was 22 years. Out of 103 patients, 72 (69.9%) received initial wound care in the peripheral primary health care centre but were not amputated while 31 patients (30%) were just dressed and referred for further treatment at tertiary care hospitals. Eighty five patients (82.5%), out of the total, had some sort of traumatic amputation at presentation due to the original injury. That included loss of limb below knee in 19 (18.45%) patients, at distal tibiofibular region in 13 (12.6%), mid tarsal amputations in 39(37.9%), and hemi foot amputation in 15 (14.6%) patients. Nine (8.7%) patients had losses of two or less than two toes, 1 (0.97%) patient had injury at mid palmer region, and 5 (4.9%) patients had 2 fingers traumatic amputation. Eighteen (17.5%) patients had soft tissue ( with or without bony injury) injury only

  18. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury.

    Science.gov (United States)

    Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J

    2004-08-17

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  19. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    Science.gov (United States)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  20. Mathematical model of normal tissue injury in telegammatherapy

    International Nuclear Information System (INIS)

    Belov, S.A.; Lyass, F.M.; Mamin, R.G.; Minakova, E.I.; Raevskaya, S.A.

    1983-01-01

    A model of normal tissue injury as a result of exposure to ionizing radiation is based on an assumption that the degree of tissue injury is determined by the degree of destruction by certain critical cells. The dependence of the number of lethal injuriies on a single dose is expressed by a trinomial - linear and quadratic parts and a constant, obtained as a result of the processing of experimental data. Quantitative correlations have been obtained for the skin and brain. They have been tested using clinical and experimental material. The results of the testing point out to the absence of time dependence on a single up to 6-week irradiation cources. Correlation with an irradiation field has been obtained for the skin. A conclusion has been made that the concept of isoefficacy of irradiation cources is conditional. Spatial-time fractionation is a promising direction in the development of radiation therapy

  1. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  2. The tissue injury and repair in cancer radiotherapy. A concept of tissue architecture and radio sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1975-06-01

    One of the difficulties in cancer radiotherapy arises from the fact that the tissue tolerance dose is much smaller than the tumor lethal dose. In our opinion the former depends upon the tolerance of the endothelial cell of the blood vessel in the normal tissue. In this introduction, a new concept regarding the estimation of tissue radiosensitivity was described, and the possible significance of the mode of radiation injury and the repair capability of normal tissue in the cancer radiotheraphy was discussed.

  3. Soft tissue injuries of the face: early aesthetic reconstruction in polytrauma patients.

    Science.gov (United States)

    Aveta, Achille; Casati, Paolo

    2008-01-01

    Facial injuries are often accompanied by soft tissue injuries. The complexity of these injuries is represented by the potential for loss of relationships between the functional and the aesthetic subunits of the head. Most reviews of craniofacial trauma have concentrated on fractures. With this article, we want to emphasize the importance of early aesthetic reconstruction of the face in polytrauma patients. We present 13 patients with soft tissue injuries of the face, treated in our emergency department in the 'day one surgery", without "second look"procedures. The final result always restored a sense of normalcy to the face. The face is the first most visible part of the human anatomy, so, in emergency, surgeons must pay special attention also to the reconstruction of the face, in polytrauma patients.

  4. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  5. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model

    Directory of Open Access Journals (Sweden)

    Fei-Fei Cui

    2016-02-01

    Full Text Available Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.

  6. Tissue classification and segmentation of pressure injuries using convolutional neural networks.

    Science.gov (United States)

    Zahia, Sofia; Sierra-Sosa, Daniel; Garcia-Zapirain, Begonya; Elmaghraby, Adel

    2018-06-01

    This paper presents a new approach for automatic tissue classification in pressure injuries. These wounds are localized skin damages which need frequent diagnosis and treatment. Therefore, a reliable and accurate systems for segmentation and tissue type identification are needed in order to achieve better treatment results. Our proposed system is based on a Convolutional Neural Network (CNN) devoted to performing optimized segmentation of the different tissue types present in pressure injuries (granulation, slough, and necrotic tissues). A preprocessing step removes the flash light and creates a set of 5x5 sub-images which are used as input for the CNN network. The network output will classify every sub-image of the validation set into one of the three classes studied. The metrics used to evaluate our approach show an overall average classification accuracy of 92.01%, an average total weighted Dice Similarity Coefficient of 91.38%, and an average precision per class of 97.31% for granulation tissue, 96.59% for necrotic tissue, and 77.90% for slough tissue. Our system has been proven to make recognition of complicated structures in biomedical images feasible. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, S [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Matsuzawa, T

    1975-06-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140 to 300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200 to 300 days postirradiation showed mucoid adenocarcinoma.

  8. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Matsuzawa, Taiju.

    1975-01-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140-300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200-300 days postirradiation showed mucoid adenocarcinoma. (author)

  9. AT2 Receptor and Tissue Injury

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Recarti, Chiara; Foulquier, Sébastien

    2014-01-01

    The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well...... established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from...... and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans...

  10. Training volume and soft tissue injury in professional and non-professional rugby union players: a systematic review.

    Science.gov (United States)

    Ball, Shane; Halaki, Mark; Orr, Rhonda

    2017-07-01

    To investigate the relationship between training volume and soft tissue injury incidence, and characterise soft tissue injury in rugby union players. A systematic search of electronic databases was performed. The search strategy combined terms covering: training volume and injury, and rugby union, and players of all levels. Medline, SPORTDiscus, Web of Science, Embase, PubMed. Studies were included if they reported: male rugby union players, a clear definition of a rugby union injury, the amount of training volume undertaken by participants, and epidemiological data for soft-tissue injuries including the number or incidence. 15 studies were eligible for inclusion. Overall match and training injury incidence ranged from 3.3 to 218.0 injuries/1000 player match hours and 0.1-6.1 injuries/1000 player training hours, respectively. Muscle and tendon as well as joint (non-bone) and ligament injuries were the most frequently occurring injuries. The lower limb was the most prevalent injury location. Injury incidence was higher in professional rugby union players than non-professional players. Contact events were responsible for the greatest injury incidence. For non-contact mechanisms, running was responsible for the highest injury incidence. Inconsistent injury definitions hindered reliable comparison of injury data. The lack of reporting training volumes in hours per player per week limited the ability to investigate associations between training volume and injury incidence. A higher level of play may result in higher match injury incidence. Muscle and tendon injuries were the most common type of soft tissue injury, while the lower limb was the most common location of injury in rugby union players, and running was responsible for the highest injury incidence during non-contact events. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Knee Ligament Injury and the Clinical Application of Tissue Engineering Techniques: A Systematic Review.

    Science.gov (United States)

    Riley, Thomas C; Mafi, Reza; Mafi, Pouya; Khan, Wasim S

    2018-02-23

    The incidence of knee ligament injury is increasing and represents a significant cost to healthcare providers. Current interventions include tissue grafts, suture repair and non-surgical management. These techniques have demonstrated good patient outcomes but have been associated graft rejection, infection, long term immobilization and reduced joint function. The limitations of traditional management strategies have prompted research into tissue engineering of knee ligaments. This paper aims to evaluate whether tissue engineering of knee ligaments offers a viable alternative in the clinical management of knee ligament injuries. A search of existing literature was performed using OVID Medline, Embase, AMED, PubMed and Google Scholar, and a manual review of citations identified within these papers. Silk, polymer and extracellular matrix based scaffolds can all improve graft healing and collagen production. Fibroblasts and stem cells demonstrate compatibility with scaffolds, and have been shown to increase organized collagen production. These effects can be augmented using growth factors and extracellular matrix derivatives. Animal studies have shown tissue engineered ligaments can provide the biomechanical characteristics required for effective treatment of knee ligament injuries. There is a growing clinical demand for a tissue engineered alternative to traditional management strategies. Currently, there is limited consensus regarding material selection for use in tissue engineered ligaments. Further research is required to optimize tissue engineered ligament production before clinical application. Controlled clinical trials comparing the use of tissue engineered ligaments and traditional management in patients with knee ligament injury could determine whether they can provide a cost-effective alternative. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Hyperextension injuries of the knee. Do patterns of bone bruising predict soft tissue injury?

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.M.; Gibbons, C.E.R. [Chelsea and Westminster Hospital, Department of Orthopaedic Surgery, London (United Kingdom); Pillai, J.K.; Roberton, B.J. [Chelsea and Westminster Hospital, Department of Radiology, London (United Kingdom); Gulati, V. [Homerton University Hospital, Department of Orthopaedic Surgery, London (United Kingdom)

    2018-02-15

    To establish whether patterns of soft tissue injury following knee hyperextension are associated with post-traumatic 'bone bruise' distribution. Patients with a knee MRI within one year of hyperextension injury were identified at our institution over a 7 year period. MRIs, plain radiographs and clinical details of these patients were reviewed. Twenty-five patients were identified (median time from injury to MRI = 24 days). The most common sites of bone bruising were the anteromedial tibial plateau (48%) and anterolateral tibial plateau (44%). There were high rates of injury to the posterior capsule (52%), ACL (40%) and PCL (40%) but lower rates of injury to the menisci (20%), medial and lateral collateral ligaments (16%) and posterolateral corner (16%). Anterior tibial plateau oedema and rupture of the posterior capsule predicted cruciate ligament injury [OR = 10.5 (p = 0.02) and 24.0 (p = 0.001) respectively]. Whilst anterolateral tibial plateau oedema strongly predicted PCL injury [OR = 26.0, p = 0.003], ACL injury was associated with a variable pattern of bone bruising. Meniscal injury was unrelated to the extent or pattern of bone bruising. 5 out of 8 patients with a 'double sulcus' on the lateral radiograph had ACL injury. The presence of a double sulcus showed significant association with anteromedial kissing contusions (OR = 7.8, p = 0.03). Following knee hyperextension, bone bruising patterns may be associated with cruciate ligament injury. Other structures are injured less frequently and have weaker associations with bone bruise distribution. The double sulcus sign is a radiographic marker that confers a high probability of ACL injury. (orig.)

  13. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation?

    Science.gov (United States)

    Kulkarni, Onkar P; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury.

  14. A retrospective study on traumatic dental and soft-tissue injuries in preschool children in Zagreb, Croatia.

    Science.gov (United States)

    Vuletić, Marko; Škaričić, Josip; Batinjan, Goran; Trampuš, Zdenko; Čuković Bagić, Ivana; Jurić, Hrvoje

    2014-02-01

    The purpose of this study was to analyze data according to gender, age, cause, number of traumatized teeth, time elapsed before treatment and type of tooth from the records of traumatized children. A retrospective study was conducted in the Department of Paediatric Dentistry at the University Dental Clinic in Zagreb, Croatia using the documentation of 128 patients (61 males and 67 females) aged 1 month to 6 years with injuries of primary teeth between February 2009 and January 2013. Trauma was seen in 217 primary teeth, which implies that the number of injured primary teeth was 1.69 per child. The maxillary central incisors were the most frequently affected teeth (81.1%), they were followed by maxillary lateral incisors, while the least affected were mandibular central incisors. Traumatic dental injuries involved periodontal tissue 2.82 times more frequently than hard dental and pulp tissue. The main cause of teeth injury was fall (67.2%) and the majority of injuries occurred at home (51.6%) (p<0.05). Of 128 patients who received treatment 71 (55.5%) also had soft-tissue injuries. The distribution of soft-tissue injuries by gender (35 males, 36 females) was not statistically significant. Comparing children with soft-tissue injuries and those without them, a statistically significant difference was found in the time of arrival (p<0.01). The results of this study showed the need of informing about preventive measures against falls at home and the methods of providing first aid in dental trauma injuries.

  15. Strain-time cell death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury

    NARCIS (Netherlands)

    Gefen, A.; Nierop, van B.J.; Bader, D.L.; Oomens, C.W.J.

    2008-01-01

    Deep tissue injury (DTI) is a severe pressure ulcer that results from sustained deformation of muscle tissue overlying bony prominences. In order to understand the etiology of DTI, it is essential to determine the tolerance of muscle cells to large mechanical strains. In this study, a new

  16. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2015-01-01

    Full Text Available With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "pe-ripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany, Washington University (USA, and Nantong University (China. The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.

  17. Ultraviolet injury of connective tissue

    International Nuclear Information System (INIS)

    Sengupta, K.P.; Sanyal, Sabitri; Biswas, S.K.; Pal, N.C.

    1975-01-01

    Changes induced by UV irradiation of rat skin could be divided morphologically into prenecrotic, necrotic and regenerating phases. During prenecrotic and necrotic phases, decrease in water content, collagenous protein, citrate buffer soluble fraction, elastin and total lipid and its fractions, and increase in noncollagenous protein nitrogen and fucoglycoprotein were observed. Increase in serum and urinary hydroxyproline and hexosamine, and serum sialic acid and fucose revealed the complicated nature of intrinsic changes occurring systemically. The study revealed that the ground substance was more easily affected while collagen, elastin and fat appeared to be more resistant to injury. This could be due to superficial action of radiation of short duration (30 min) on the dermal connective tissue. (author)

  18. Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Nicole [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Department of Forensic Medicine and Radiology, Institute of Forensic Medicine, Zurich (Switzerland); Andreisek, Gustav; Karer, Anissja T.; Manoliu, Andrei; Ulbrich, Erika J. [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Bouaicha, Samy [University Hospital Zurich, Department of Trauma Surgery, Zurich (Switzerland); Naraghi, Ali [University of Toronto, Department of Medical Imaging, Mount Sinai Hospital and the University Health Network, Toronto, ON (Canada); Seifert, Burkhardt [University of Zurich, Epidemiology, Biostatistics and Prevention Institute, Department of Biostatistics, Zurich (Switzerland)

    2017-01-15

    To determine the association between traumatic bone marrow abnormalities, the knee injury mechanism, and associated soft tissue injuries in a larger cohort than those in the published literature. Retrospective study including 220 patients with traumatic knee injuries. Knee MRIs were evaluated for trauma mechanism, soft tissue injury, and the location of bone marrow abnormalities. The locations of the abnormalities were correlated with trauma mechanisms and soft tissue injuries using the chi-square test with Bonferroni correction. One hundred and forty-four valgus injuries, 39 pivot shift injuries, 25 lateral patellar dislocations, 8 hyperextensions, and 4 dashboard injuries were included. Valgus and pivot shift injuries showed traumatic bone marrow abnormalities in the posterolateral regions of the tibia. Abnormalities after patellar dislocation were found in the anterolateral and centrolateral femur and patella. Hyperextension injuries were associated with abnormalities in almost all regions, and dashboard injuries were associated with changes in the anterior regions of the tibia and femur. Our study provides evidence of associations between traumatic bone marrow abnormality patterns and different trauma mechanisms in acute knee injury, and reveals some overlap, especially of the two most common trauma mechanisms (valgus and pivot shift), in a large patient cohort. (orig.)

  19. Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries

    International Nuclear Information System (INIS)

    Berger, Nicole; Andreisek, Gustav; Karer, Anissja T.; Manoliu, Andrei; Ulbrich, Erika J.; Bouaicha, Samy; Naraghi, Ali; Seifert, Burkhardt

    2017-01-01

    To determine the association between traumatic bone marrow abnormalities, the knee injury mechanism, and associated soft tissue injuries in a larger cohort than those in the published literature. Retrospective study including 220 patients with traumatic knee injuries. Knee MRIs were evaluated for trauma mechanism, soft tissue injury, and the location of bone marrow abnormalities. The locations of the abnormalities were correlated with trauma mechanisms and soft tissue injuries using the chi-square test with Bonferroni correction. One hundred and forty-four valgus injuries, 39 pivot shift injuries, 25 lateral patellar dislocations, 8 hyperextensions, and 4 dashboard injuries were included. Valgus and pivot shift injuries showed traumatic bone marrow abnormalities in the posterolateral regions of the tibia. Abnormalities after patellar dislocation were found in the anterolateral and centrolateral femur and patella. Hyperextension injuries were associated with abnormalities in almost all regions, and dashboard injuries were associated with changes in the anterior regions of the tibia and femur. Our study provides evidence of associations between traumatic bone marrow abnormality patterns and different trauma mechanisms in acute knee injury, and reveals some overlap, especially of the two most common trauma mechanisms (valgus and pivot shift), in a large patient cohort. (orig.)

  20. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury

    DEFF Research Database (Denmark)

    Mackey, Abigail Louise; Kjaer, Michael

    2017-01-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibres as they undergo necrosis, followed closely by satellite cell mediated myogenesis, have been mapped in detail. Much less is known about...... the adaptation throughout this process of both the connective tissue structures surrounding the myofibres, and the fibroblasts, the cells responsible for synthesising this connective tissue. However, the few studies investigating muscle connective tissue remodelling demonstrate a strong response that appears...

  1. Role of Kletik oil, Ginger and Garlic Extracts towards Soft Tissue Injury

    Directory of Open Access Journals (Sweden)

    Benjamin Yong Qing Nan

    2016-09-01

    Full Text Available Background: There is an increased consumption of herbal medicines throughout the world as an alternative treatment for curing health problems. Several herbal medicines are believed to contain anti-inflammatory properties that could trigger healing process. But little is known about the combination effect of herbal medicines. Therefore, the objective of the study was to determine the effects of garlic, ginger and coconut oil (kletik oil on soft tissue injury (swelling. Methods: The study was held in the research laboratory of Faculty of Medicine Universitas Padjadjaran, from 24th September until 1st October 2014. This experimental study used 7 healthy rabbits (Lepus curpaeums, ±2.5kg as animal models for each control and intervention group with induced soft tissue injury in the dorsal ear to mimic swelling (inflammation. The mixture of herbs was applied on the injured site in the trial group, while the healing process was denoted by the thickness of edema and time of observation. The data was analyzed using Wilcoxon test. Results: The study results showed that after observation time of 0.5 hour, 2 hours, and 5 hours, edema thickness was unvaried. Onset of action of the herbal mixture began 24 hours after induced injury, with significant difference of edema thickness on both groups; hence the p-value 0.019 (p<0.05. Conclusions: The herbal mixture of ginger, garlic, and coconut oil (kletik oil contains anti-inflammatory properties to enhance the healing process of soft tissue injury.

  2. The extent of soft tissue and musculoskeletal injuries after earthquakes; describing a role for reconstructive surgeons in an emergency response.

    Science.gov (United States)

    Clover, A J P; Jemec, B; Redmond, A D

    2014-10-01

    Earthquakes are the leading cause of natural disaster-related mortality and morbidity. Soft tissue and musculoskeletal injuries are the predominant type of injury seen after these events and a major reason for admission to hospital. Open fractures are relatively common; however, they are resource-intense to manage. Appropriate management is important in minimising amputation rates and preserving function. This review describes the pattern of musculoskeletal and soft-tissue injuries seen after earthquakes and explores the manpower and resource implications involved in their management. A Medline search was performed, including terms "injury pattern" and "earthquake," "epidemiology injuries" and "earthquakes," "plastic surgery," "reconstructive surgery," "limb salvage" and "earthquake." Papers published between December 1992 and December 2012 were included, with no initial language restriction. Limb injuries are the commonest injuries seen accounting for 60 % of all injuries, with fractures in more than 50 % of those admitted to hospital, with between 8 and 13 % of these fractures open. After the first few days and once the immediate lifesaving phase is over, the management of these musculoskeletal and soft-tissue injuries are the commonest procedures required. Due to the predominance of soft-tissue and musculoskeletal injuries, plastic surgeons as specialists in soft-tissue reconstruction should be mobilised in the early stages of a disaster response as part of a multidisciplinary team with a focus on limb salvage.

  3. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  4. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues

    Science.gov (United States)

    Faber, James E.; Zhang, Hua; Lassance-Soares, Roberta M.; Prabhakar, Pranay; Najafi, Amir H.; Burnett, Mary Susan; Epstein, Stephen E.

    2011-01-01

    Objective Aging is a major risk factor for increased ischemic tissue injury. Whether collateral rarefaction and impaired remodeling contribute to this is unknown. We quantified the number and diameter of native collaterals, and their remodeling in 3-, 16-, 24-, and 31-months-old mice. Methods and Results Aging caused an “age-dose-dependent” greater drop in perfusion immediately after femoral artery ligation, followed by a diminished recovery of flow and increase in tissue injury. These effects were associated with a decline in collateral number, diameter and remodeling. Angiogenesis was also impaired. Mechanistically, these changes were not accompanied by reduced recruitment of T-cells or macrophages to remodeling collaterals. However, eNOS signaling was dysfunctional, as indicated by increased protein nitrosylation and less phosphorylated eNOS and VASP in collateral wall cells. The cerebral circulation exhibited a similar age-dose-dependent loss of collateral number and diameter and increased tortuosity, resulting in an increase in collateral resistance and infarct volume (e.g., 6- and 3-fold, respectively, in 24-months-old mice) after artery occlusion. This was not associated with rarefaction of similarly-sized arterioles. Collateral remodeling was also reduced. Conclusions Our findings demonstrate that aging causes rarefaction and insufficiency of the collateral circulation in multiple tissues, resulting in more severe ischemic tissue injury. PMID:21617137

  5. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  6. Time to significant pain reduction following DETP application vs placebo for acute soft tissue injuries.

    Science.gov (United States)

    Yanchick, J; Magelli, M; Bodie, J; Sjogren, J; Rovati, S

    2010-08-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) provide fast and effective acute pain relief, but systemic administration has increased risk for some adverse reactions. The diclofenac epolamine 1.3% topical patch (DETP) is a topical NSAID with demonstrated safety and efficacy in treatment of acute pain from minor soft tissue injuries. Significant pain reduction has been observed in clinical trials within several hours following DETP application, suggesting rapid pain relief; however, this has not been extensively studied for topical NSAIDs in general. This retrospective post-hoc analysis examined time to onset of significant pain reduction after DETP application compared to a placebo patch for patients with mild-to-moderate acute ankle sprain, evaluating the primary efficacy endpoint from two nearly identical studies. Data from two double-blind, randomized, parallel-group, placebo-controlled studies (N = 274) of safety and efficacy of the DETP applied once daily for 7 days for acute ankle sprain were evaluated post-hoc using statistical modeling to estimate time to onset of significant pain reduction following DETP application. Pain on active movement on a 100 mm Visual Analog Scale (VAS) recorded in patient diaries; physician- and patient-assessed tolerability; and adverse events. DETP treatment resulted in significant pain reduction within approximately 3 hours compared to placebo. Within-treatment post-hoc analysis based on a statistical model suggested significant pain reduction occurred as early as 1.27 hours for the DETP group. The study may have been limited by the retrospective nature of the analyses. In both studies, the DETP was well tolerated with few adverse events, limited primarily to application site skin reactions. The DETP is an effective treatment for acute minor soft tissue injury, providing pain relief as rapidly as 1.27 hours post-treatment. Statistical modeling may be useful in estimating time to onset of pain relief for comparison of topical

  7. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  8. A case of lethal soft tissue injuries due to assault

    Directory of Open Access Journals (Sweden)

    Yanagawa Y

    2012-05-01

    Full Text Available Youichi Yanagawa,1 Yoshimasa Kanawaku,2 Jun Kanetake21Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, 2Department of Forensic Medicine, National Defense Medical College, Saitama, JapanAbstract: A 42-year-old male had been assaulted by his family over the two previous days and went into a deep coma. When the emergency technician arrived, the patient was in a state of cardiopulmonary arrest. On arrival, his electrocardiogram showed asystole. His body showed swelling with subcutaneous hemorrhage, suggesting multiple contusional wounds. Serum biochemistry evaluation revealed blood urea nitrogen of 80 mg/dL, creatinine of 5.99 mg/dL, creatine phosphokinase of 10,094 IU/L, and potassium of 11.0 mEq/L. Advanced cardiopulmonary resuscitation failed to obtain a return of spontaneous circulation. Laboratory findings revealed rhabdomyolysis, renal failure, and hyperkalemia. Autopsy did not indicate the direct cause of death to be traumatic organ injuries. Because trauma was not the direct reason of death, we speculated that the patient died of hyperkalemia induced by multiple contusional soft tissue injuries, following rhabdomyolysis, hemolysis, and acute renal failure. The physician should maintain a high index of suspicion for hyperkalemia induced by rhabdomyolysis and acute renal failure, especially in patients presenting with symptoms of multiple soft tissue injuries with massive subcutaneous hemorrhaging.Keywords: contusion, rhabdomyolysis, renal failure, hyperkalemia

  9. MRI in diagnostic of soft tissue damages by fractures of lateral tibial plate

    International Nuclear Information System (INIS)

    Dimitrova, D.; Proichev, V.; Popov, I.

    2015-01-01

    Full text: The knee is one of the most often injured joint. Fractures of tibial condyles are the most common articular damages. Koton and Berg call them „bumper“ fractures the tibia plateau is vulnerable to both high- and low-energy injury mechanisms due to its vulnerable position in the lower extremity. It must bear significant weight and sustain significant impact and deceleration forces with little skeletal constraint, and has scant surrounding soft tissue and a tethered medial and lateral integument. Furthermore, the tibial plateau has relatively forgiving ligamentous attachments that must allow for a large range of motion in a single plane. Not surprisingly, given the diversity of injury, management of these fractures has come to include a wide variety of treatment strategies. traditionally, ligament injury associated with plateau fractures has been diagnosed indirectly with stress radiographs and physical examination. With increasing use of more sensitive MRI and arthroscopy, associated ligament and meniscus injuries have been found in significant percentages of plateau fractures. these soft tissue injuries consist primarily of MCL lesions, meniscal injuries, and ACL disruptions. However, studies addressing associated soft tissue injuries all agree that neither the type of plateau fracture nor the presence or absence of ligament injury correlates with the incidence of meniscal tears

  10. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration

    Science.gov (United States)

    Bastakoty, Dikshya; Young, Pampee P.

    2016-01-01

    The Wnt/β-catenin pathway is an evolutionarily conserved set of signals with critical roles in embryonic and neonatal development across species. In mammals the pathway is quiescent in many organs. It is reactivated in response to injury and is reported to play complex and contrasting roles in promoting regeneration and fibrosis. We review the current understanding of the role of the Wnt/β-catenin pathway in injury of various mammalian organs and discuss the current advances and potential of Wnt inhibitory therapeutics toward promoting tissue regeneration and reducing fibrosis.—Bastakoty, D., Young, P. P. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. PMID:27335371

  11. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  12. Soft-tissue injuries of the fingertip: methods of evaluation and treatment. An algorithmic approach.

    Science.gov (United States)

    Lemmon, Joshua A; Janis, Jeffrey E; Rohrich, Rod J

    2008-09-01

    After studying this article, the participant should be able to: 1. Understand the anatomy of the fingertip. 2. Describe the methods of evaluating fingertip injuries. 3. Discuss reconstructive options for various tip injuries. The fingertip is the most commonly injured part of the hand, and therefore fingertip injuries are among the most frequent injuries that plastic surgeons are asked to treat. Although microsurgical techniques have enabled replantation of even very distal tip amputations, it is relatively uncommon that a distal tip injury will be appropriate for replantation. In the event that replantation is not pursued, options for distal tip soft-tissue reconstruction must be considered. This review presents a straightforward method for evaluating fingertip injuries and provides an algorithm for fingertip reconstruction.

  13. Proteomic Analysis of Various Rat Ocular Tissues after Ischemia–Reperfusion Injury and Possible Relevance to Acute Glaucoma

    Directory of Open Access Journals (Sweden)

    Hsin-Yi Chen

    2017-02-01

    Full Text Available Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. To investigate the protein expression alterations in various intraocular tissues (i.e., the cornea, conjunctiva, uvea, retina, and sclera during ischemia–reperfusion (IR injury, this study performed a proteomic analysis to qualitatively investigate such alterations resulting from acute glaucoma. The IR injury model combined with the proteomic analysis approach of two-dimensional difference gel electrophoresis (2D-DIGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS was used to monitor the protein expression alterations in two groups of specimens (an IR injury group and a control group. The analysis results revealed 221 unique differentially expressed proteins of a total of 1481 proteins in the cornea between the two groups. In addition, 97 of 1206 conjunctival proteins, 90 of 1354 uveal proteins, 61 of 1180 scleral proteins, and 37 of 1204 retinal proteins were differentially expressed. These findings imply that different ocular tissues have different tolerances against IR injury. To sum up, this study utilized the acute glaucoma model combined with 2D-DIGE and MALDI-TOF MS to investigate the IR injury affected protein expression on various ocular tissues, and based on the ratio of protein expression alterations, the alterations in the ocular tissues were in the following order: the cornea, conjunctiva, uvea, sclera, and retina.

  14. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.

    Science.gov (United States)

    Mackey, Abigail L; Kjaer, Michael

    2017-03-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury. Copyright © 2017 the American Physiological Society.

  15. Pattern, severity, and management of cranio-maxillofacial soft-tissue injuries in Port Harcourt, Nigeria

    Directory of Open Access Journals (Sweden)

    Akinbami Babatunde Olayemi

    2013-01-01

    Full Text Available Background: The pattern of craniofacial soft-tissue injuries occurring either in isolation or in association with fractures vary in different societies and is multiply influenced. The effects are enormous because of the prominence of the face; therefore, the purpose of this study was to document any changing pattern, severity and management of these craniofacial injuries in our center. Patients and Method: Cranio-maxillofacial region was classified into upper, middle and lower face. The cause, type, and site of the injuries were documented. Gunshot injuries were further categorized as penetrating, perforating or avulsions. Further, classification of injuries into mild, moderate, and severe was carried out based on multiple factors. Result: A total of 126 patients with soft-tissue injuries presented to our hospital out of which 85 (67.5% were males and 41 (32.5 were females. The age range of the patients was between 10 months and 90 years with a mean ± SD of 26.4 ± 15.5 years. Road traffic accident was the most common etiology of which vehicular accidents constituted 50 (54.9% and the motorcycle was 2 (2.2%. Assault contributed 16 (17.6% while cases due to gun shots were 13 (14.3%. A total of 19 (15.1% patients had associated head injuries, 11 (8.7% patients had craniofacial fractures involving any of the bones while 3 (2.4% patients had limb fractures and 2 (1.6% patients had rib fractures. There were 51 (41.8% cases classified as mild injuries, 37 (30.3% cases as moderate injuries and 24 (19.7% cases as severe injuries. Total of 126 cases managed, 121 (96.0% received primary closure of the wounds while 5 (4.0% received delayed closure under general anesthesia.

  16. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  17. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  18. The Effect of Blood Loss in the Presence and Absence of Severe Soft Tissue Injury on Hemodynamic and Metabolic Parameters; an Experimental study

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Moradi

    2014-09-01

    Full Text Available Introduction: The effect of severe soft tissue injury on the severity of hemorrhagic shock is still unknown. Therefore, the present study was aimed to determine hemodynamic and metabolic changes in traumatic/hemorrhagic shock in an animal model. Methods: Forty male rats were randomly divided into 4 equal groups including sham, hemorrhagic shock, soft tissue injury, and hemorrhagic shock + soft tissue injury groups. The changes in blood pressure, central venous pressure (CVP level, acidity (pH, and base excess were dynamically monitored and comparedsented. Results: Mean arterial blood pressure decreased significantly in hemorrhagic shock (df: 12; F=10.9; p<0.001 and severe soft tissue injury + hemorrhagic shock (df: 12; F=11.7; p<0.001 groups 15 minutes and 5 minutes after injury, respectively. A similar trend was observed in CVP in severe soft tissue injury + hemorrhagic shock group (df: 12; F=8.9; p<0.001. After 40 minutes, pH was significantly lower in hemorrhagic shock (df: 12; F=6.8; p=0.009 and severe soft tissue injury + hemorrhagic shock (df: 12; F=7.9; p=0.003 groups. Base excess changes during follow ups have a similar trend. (df: 12; F=11.3; p<0.001. Conclusion: The results of this study have shown that the effect of hemorrhage on the decrease of mean arterial blood pressure, CVP, pH, and base excess is the same in the presence or absence of soft tissue injury.

  19. Profile of the subjects with soft tissue injuries attended at an occupational health service and the RSI

    Directory of Open Access Journals (Sweden)

    Camila de Freitas

    2015-07-01

    Full Text Available Aim: To investigate the profile of subjects with soft tissue injuries attended at the Reference Center of Occupational Health – CEREST in the municipality of Santos, Sao Paulo state, in 2010, and the social insurance benefits granted.Materials and Methods: Analysis of medical records of the subjects assisted at CEREST in 2010, surveying data on gender, age, occupation, clinical diagnostics, clinical complaints, retirement, etc. The clinical diagnostics were categorized according to the International Classification of Diseases - ICD-10, subjects with soft tissue injuries were selected, and the diagnostics related to mental health disorders were registered. Data were recorded in Microsoft Excel spreadsheet and analyzed using statistical software R Development Core Team.Results: Of the 206 medical records analyzed, 18.0% (n=37 showed soft tissue injuries, 81.1% were female and 18.9% were male, and the subjects’ mean age was 43.24 years (SD=8.76. Subjects between 31 and 50 years old (70.2% were the most affected. The most affected occupations were cleaners, general service workers, and bank clerks. The most prevalent clinical diagnoses were synovitis and tenosynovitis, shoulder bursitis, and rotator cuff syndrome, with 62.2% of the subjects presenting more than one clinical diagnosis. 13.5% of the subjects also presented mental disorders. Association between retirement from work and the presence of soft tissue injury was observed (p=0.032. Only 13.5% of the diagnoses had some association with the work conditions.Conclusions: The general profile of the workers with soft tissue injuries was obtained: prevalence in women, diseases manifested in productive age, difficulty of association with work conditions, need for interdisciplinary interventions.

  20. Measuring surface temperature and grading pathological changes of airway tissue in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Zhao, Ran; Di, La-na; Zhao, Xiao-zhuo; Wang, Cheng; Zhang, Guo-an

    2013-06-01

    Airway tissue shows unexpected invulnerability to heated air. The mechanisms of this phenomenon are open to debate. This study was designed to measure the surface temperatures at different locations of the airway, and to explore the relationship between the tissue's surface temperature and injury severity. Twenty dogs were randomly divided into four groups, including three experimental groups (six dogs in each) to inhale heated air at 70-80 °C (group I), 150-160 °C (group II) and 310-320 °C (group III) and a control group (two dogs, only for histological observation). Injury time was 20 min. Mucosal surface temperatures of the epiglottis (point A), cricoid cartilage (point B) and lower trachea (point C) were measured. Dogs in group I-III were divided into three subgroups (two in each), to be assayed at 12, 24 and 36 h after injury, respectively. For each dog, four tissue parts (epiglottis, larynx, lower trachea and terminal bronchiole) were microscopically observed and graded according to an original pathological scoring system (score range: 0-27). Surface temperatures of the airway mucosa increased slowly to 40.60±3.29 °C, and the highest peak temperature was 48.3 °C (group III, point A). The pathological score of burned tissues was 4.12±4.94 (0.0-18.0), suggesting slight to moderate injuries. Air temperature and airway location both influenced mucosal temperature and pathological scores very significantly, and there was a very significant positive correlation between tissue temperature and injury severity. Compared to the inhalational air hyperthermia, airway surface temperature was much lower, but was still positively correlated with thermal injury severity. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  1. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    Science.gov (United States)

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  2. A novel radiation responsive cis-acting element regulates gene induction and mediates tissue injury

    International Nuclear Information System (INIS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi; Kuchibahtla, Jaya

    1997-01-01

    Purpose: The intracellular adhesion molecule (ICAM-1) binds and activates inflammatory cells and thereby contributes to the pathogenesis of tissue injury. To characterize a model for radiation-induction of tissue injury, we studied radiation-mediated lung injury in mice deficient in the ICAM-1 gene. To study the mechanisms of x-ray mediated ICAM induction, we studied transcriptional activation of the ICAM promoter and nuclear protein binding to the 5' untranslated region of the ICAM gene. Methods: Immunohistochemistry and immunofluorescence were used to study the histologic pattern of ICAM expression in irradiated tissue. The ICAM-1 knockout mice were bred with wild type mice to create heterozygous mice with attenuated ICAM expression. ICAM -/-, ICAM+/- and ICAM +/+ mice were treated with thoracic irradiation and lung sections were stained for leukocyte common antigen (CD45) to study inflammation. To study the mechanism of x-ray induction of ICAM, we linked the 5' untranslated region of the ICAM gene to the luciferase reporter gene and delated DNA segments from the promoter to determine which elements are required for induction. We performed electrophoretic mobility shift analysis of nuclear proteins from irradiated endothelial cells to study transcription factor activation. Results: Immunohistochemistry showed dose and time dependent increases in ICAM protein expression in irradiated lungs which was prolonged as compared to endothelial cells in vitro. The histologic pattern of ICAM expression was in the capillary endothelium and was distinct from the pattern of expression of other radiation-inducible adhesion molecules. ICAM knockout mice had no ICAM expression and no inflammatory cell accumulation in the irradiated lung. ICAM+/+ mice developed leukocyte adhesion to irradiated endothelium within hours of irradiation and radiation pneumonitis 5 to 6 weeks later. The DNA sequence between -981 and -769 (relative to start codon) contains two 16-base pair repeats, each

  3. Compression-induced deep tissue injury examined with magnetic resonance imaging and histology

    NARCIS (Netherlands)

    Stekelenburg, A.; Oomens, C. W. J.; Strijkers, G. J.; Nicolay, K.; Bader, D. L.

    2006-01-01

    The underlying mechanisms leading to deep tissue injury after sustained compressive loading are not well understood. It is hypothesized that initial damage to muscle fibers is induced mechanically by local excessive deformation. Therefore, in this study, an animal model was used to study early

  4. Experience with esthetic reconstruction of complex facial soft tissue trauma: application of the pulsed dye laser.

    Science.gov (United States)

    Ebrahimi, Ali; Kazemi, Hossein Mohammad; Nejadsarvari, Nasrin

    2014-08-01

    Facial soft tissue injury can be one of the most challenging cases presenting to the plastic surgeon. The life quality and self-esteem of the patients with facial injury may be compromised temporarily or permanently. Immediate reconstruction of most defects leads to better restoration of form and function as well as early rehabilitation. The aim of this study was to present our experience in management of facial soft tissue injuries from different causes. We prospectively studied patients treated by plastic surgeons from 2010 to 2012 suffering from different types of blunt or sharp (penetrating) facial soft tissue injuries to the different areas of the face. All soft tissue injuries were treated primarily. Photography from all patients before, during, and after surgical reconstruction was performed and the results were collected. We used early pulsed dye laser (PDL) post-operatively. In our study, 63 patients including 18 (28.5%) women and 45 (71.5%) men aged 8-70 years (mean 47 years) underwent facial reconstruction due to soft tissue trauma in different parts of the face. Sharp wounds were seen in 15 (23%) patients and blunt trauma lacerations were seen in 52 (77%) patients. Overall, 65% of facial injuries were repaired primary and the remainder were reconstructed with local flaps or skin graft from adjacent tissues. Postoperative PDL therapy done two weeks following surgery for all scars yielded good results in our cases. Analysis of the injury including location, size, and depth of penetration as well as presence of associated injuries can aid in the formulation of a proper surgical plan. We recommend PDL in the early post operation period (two weeks) after suture removal for better aesthetic results.

  5. Endocrine factors influencing radiation injury to central nervous tissue

    International Nuclear Information System (INIS)

    Aristizabal, S.A.; Boone, M.L.; Laguna, J.F.

    1979-01-01

    Corticosteroids have been shown experimentally to lower the tolerance of various normal tissues (lung, kidney, intestine) to irradiation. Pre-existing hypertension also modified the effect of irradiation on the rat spinal cord and brain. Hypercorticism and hypertension co-exist in patients with Cushing's disease. Although these patients are often approached therapeutically by irradiation, no reports concerning differences in the radiation sensitivity of nervous tissue between normal subjects (non-functioning pituitary adenomas) and those with hormonal imbalance and/or hypertension appear to be available. A comprehensive review of the literature revealed 14 patients with radiation damage to brain or to optic pathways following moderate doses for pituitary adenomas. Seven of the 14 patients (50%) had Cushing's disease. This apparent higher incidence of radiation injury is significant if we consider that less than 5% of all patients receiving irradiation for pituitary adenomas have Cushing's disease

  6. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch

    Directory of Open Access Journals (Sweden)

    David R Lionberger

    2010-11-01

    Full Text Available David R Lionberger1, Michael J Brennan21Southwest Orthopedic Group, Houston, TX, USA; 2Department of Medicine, Bridgeport Hospital, Bridgeport, CT, USAAbstract: The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs, diclofenac, and DETP in patients with acute soft tissue injuries was included. Relevant literature was identified on MEDLINE using the search terms topical NSAIDs, diclofenac, diclofenac epolamine, acute pain, sports injury, soft tissue injury, strain, sprain, and contusion, and from citations in retrieved articles covering the years 1978–2008. Review of published, randomized clinical trials and meta-analyses shows that topical NSAIDs are significantly more effective than placebo in relieving acute pain; the pooled average relative benefit was 1.7 (95% confidence interval, 1.5–1.9. In a limited number of comparisons, topical and oral NSAIDs provided comparable pain relief, but the use of topical agents produced lower plasma drug concentrations and fewer systemic adverse events (AEs. The physical–chemical properties of diclofenac epolamine make it well suited for topical use. In patients with acute soft tissue injuries treated with DETP, clinical data report an analgesic benefit within hours of the first application, and significant pain relief relative to placebo within 3 days. Moreover, DETP displayed tolerability comparable with placebo; the most common AEs were pruritus and other application site reactions. Review of published literature suggests that DETP is generally safe and well tolerated, clinically efficacious, and a rational treatment option for patients experiencing acute pain associated with strains, sprains, and contusions, and other localized painful conditions

  7. Effects of mesenchymal stem cells on thymus tissue injury induced by ionizing radiation in mice

    International Nuclear Information System (INIS)

    Wang Hongyan; Qi Yali; Gong Shouliang; Song Xiangfu; Liu Liping; Chen Yubing

    2009-01-01

    Objective: To observe the migration,colonization and repairing effects of marrow mesenchymal stem cells (MSCs) on thymus tissue injury induced by ionizing radiation in mice. Methods: MSCs of C57BL/6 mice were isolated, purified and cultivated in vitro. Their migration and colorization were observed with laser confocal microscopy 1, 5 and 10 d after DAPI labeled. MSCs were injected into the thymus tissue of mice through tail vein. The model of thymus tissue injury induced by whole-body X-irradiation was established. The mice were divided into four groups: normal, irradiation, irradiation+saline, and irradiation+MSCs groups. The apoptosis was detected by flow cytometry and the repairing effect of MSCs on thymus tissue injury was observed by histological method 3 months later. Results: The occurrence of MSCs in the thymus was observed 1 d after MSCs injection, the diffusion of MSCs in the thymus appeared 5 d later, and widely dispersed 10 d later. The apoptotic rate of thymocytes in irradiation group was higher than that in normal (P<0.05) and was lower than that in MSCs group (P<0.05). The structures of cortex and medulla of thymus were clear in mice in normal group, there were a large number of lymphocytes in the cortex and small number of lymphocytes in the medulla. The structures of cortex and medulla of thymus were unclear in mice in both irradiation, irradiation and saline groups. The lymphocytes in thymus showed extensive coagulation necrosis. There were remnants or newborn lymphoid tissue in the cortex and medulla in mice in irradiation+MSCs groups. Conclusion: MSCs can be rapidly enriched in thymus tissue and promote regeneration and repair of damaged thymus. (authors)

  8. Emergency repair of upper extremity large soft tissue and vascular injuries with flow-through anterolateral thigh free flaps.

    Science.gov (United States)

    Zhan, Yi; Fu, Guo; Zhou, Xiang; He, Bo; Yan, Li-Wei; Zhu, Qing-Tang; Gu, Li-Qiang; Liu, Xiao-Lin; Qi, Jian

    2017-12-01

    Complex extremity trauma commonly involves both soft tissue and vascular injuries. Traditional two-stage surgical repair may delay rehabilitation and functional recovery, as well as increase the risk of infections. We report a single-stage reconstructive surgical method that repairs soft tissue defects and vascular injuries with flow-through free flaps to improve functional outcomes. Between March 2010 and December 2016 in our hospital, 5 patients with severe upper extremity trauma received single-stage reconstructive surgery, in which a flow-through anterolateral thigh free flap was applied to repair soft tissue defects and vascular injuries simultaneously. Cases of injured artery were reconstructed with the distal trunk of the descending branch of the lateral circumflex femoral artery. A segment of adjacent vein was used if there was a second artery injury. Patients were followed to evaluate their functional recoveries, and received computed tomography angiography examinations to assess peripheral circulation. Two patients had post-operative thumb necrosis; one required amputation, and the other was healed after debridement and abdominal pedicle flap repair. The other 3 patients had no major complications (infection, necrosis) to the recipient or donor sites after surgery. All the patients had achieved satisfactory functional recovery by the end of the follow-up period. Computed tomography angiography showed adequate circulation in the peripheral vessels. The success of these cases shows that one-step reconstructive surgery with flow-through anterolateral thigh free flaps can be a safe and effective treatment option for patients with complex upper extremity trauma with soft tissue defects and vascular injuries. Copyright © 2017. Published by Elsevier Ltd.

  9. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters.

    Science.gov (United States)

    Loubani, Osama M; Green, Robert S

    2015-06-01

    The aim of this study was to collect and describe all published reports of local tissue injury or extravasation from vasopressor administration via either peripheral intravenous (IV) or central venous catheter. A systematic search of Medline, Embase, and Cochrane databases was performed from inception through January 2014 for reports of adults who received vasopressor intravenously via peripheral IV or central venous catheter for a therapeutic purpose. We included primary studies or case reports of vasopressor administration that resulted in local tissue injury or extravasation of vasopressor solution. Eighty-five articles with 270 patients met all inclusion criteria. A total of 325 separate local tissue injury and extravasation events were identified, with 318 events resulting from peripheral vasopressor administration and 7 events resulting from central administration. There were 204 local tissue injury events from peripheral administration of vasopressors, with an average duration of infusion of 55.9 hours (±68.1), median time of 24 hours, and range of 0.08 to 528 hours. In most of these events (174/204, 85.3%), the infusion site was located distal to the antecubital or popliteal fossae. Published data on tissue injury or extravasation from vasopressor administration via peripheral IVs are derived mainly from case reports. Further study is warranted to clarify the safety of vasopressor administration via peripheral IVs. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.

    Science.gov (United States)

    Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei

    2017-02-01

    Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  12. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  13. Prolonged superficial local cryotherapy attenuates microcirculatory impairment, regional inflammation, and muscle necrosis after closed soft tissue injury in rats.

    Science.gov (United States)

    Schaser, Klaus-Dieter; Disch, Alexander C; Stover, John F; Lauffer, Annette; Bail, Herman J; Mittlmeier, Thomas

    2007-01-01

    Closed soft tissue injury induces progressive microvascular dysfunction and regional inflammation. The authors tested the hypothesis that adverse trauma-induced effects can be reduced by local cooling. While superficial cooling reduces swelling, pain, and cellular oxygen demand, the effects of cryotherapy on posttraumatic microcirculation are incompletely understood. Controlled laboratory study. After a standardized closed soft tissue injury to the left tibial compartment, male rats were randomly subjected to percutaneous perfusion for 6 hours with 0.9% NaCL (controls; room temperature) or cold NaCL (cryotherapy; 8 degrees C) (n = 7 per group). Uninjured rats served as shams (n = 7). Microcirculatory changes and leukocyte adherence were determined by intravital microscopy. Intramuscular pressure was measured, and invasion of granulocytes and macrophages was assessed by immunohistochemistry. Edema and tissue damage was quantified by gravimetry and decreased desmin staining. Closed soft tissue injury significantly decreased functional capillary density (240 +/- 12 cm(-1)); increased microvascular permeability (0.75 +/- 0.03), endothelial leukocyte adherence (995 +/- 77/cm(2)), granulocyte (182.0 +/- 25.5/mm(2)) and macrophage infiltration, edema formation, and myonecrosis (ratio: 2.95 +/- 0.45) within the left extensor digitorum longus muscle. Cryotherapy for 6 hours significantly restored diminished functional capillary density (393 +/- 35), markedly decreased elevated intramuscular pressure, reduced the number of adhering (462 +/- 188/cm(2)) and invading granulocytes (119 +/- 28), and attenuated tissue damage (ratio: 1.7 +/- 0.17). The hypothesis that prolonged cooling reduces posttraumatic microvascular dysfunction, inflammation, and structural impairment was confirmed. These results may have therapeutic implications as cryotherapy after closed soft tissue injury is a valuable therapeutic approach to improve nutritive perfusion and attenuate leukocyte

  14. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  15. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  16. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch.

    Science.gov (United States)

    Lionberger, David R; Brennan, Michael J

    2010-11-10

    The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP) in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac, and DETP in patients with acute soft tissue injuries was included. Relevant literature was identified on MEDLINE using the search terms topical NSAIDs, diclofenac, diclofenac epolamine, acute pain, sports injury, soft tissue injury, strain, sprain, and contusion, and from citations in retrieved articles covering the years 1978-2008. Review of published, randomized clinical trials and meta-analyses shows that topical NSAIDs are significantly more effective than placebo in relieving acute pain; the pooled average relative benefit was 1.7 (95% confidence interval, 1.5-1.9). In a limited number of comparisons, topical and oral NSAIDs provided comparable pain relief, but the use of topical agents produced lower plasma drug concentrations and fewer systemic adverse events (AEs). The physical-chemical properties of diclofenac epolamine make it well suited for topical use. In patients with acute soft tissue injuries treated with DETP, clinical data report an analgesic benefit within hours of the first application, and significant pain relief relative to placebo within 3 days. Moreover, DETP displayed tolerability comparable with placebo; the most common AEs were pruritus and other application site reactions. Review of published literature suggests that DETP is generally safe and well tolerated, clinically efficacious, and a rational treatment option for patients experiencing acute pain associated with strains, sprains, and contusions, and other localized painful conditions.

  17. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    Science.gov (United States)

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  18. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  19. Histomorphology of the Olfactory Mucosa and Spinal Tissue Sparing Following Transplantation in the Partial Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    H Delaviz

    2011-01-01

    Full Text Available Introduction & Objective: Nowadays, cellular and tissues transplant has become the focus of attention for spinal cord injury. It has been shown olfactory nerve cells or olfactory mucosa whi have more efficient on nervous tissue repair and they have been more studied in experimental study. Furthermore, they were used in a few clinical centers for spinal defect. But mucosa tissue and spinal tissue have different structure and there is doubt about the integration of mucosa tissue in nervous tissue. Thus, in this research the morphology and the effect of the fetal olfactory mucosa (FOM on spinal tissue sparing were studied after transplanted into the spinal cord hemisection in rats. Materials & Methods: This experimental study was conducted at Iran University of Medical Sciences in 2008. Of thirty eight female Sprague-Dawley (200-250g rats twenty- eight were spinally hemisected at the L1 spinal level and were randomized into two groups of 14 animals. Treatment group received FOM graft and the control group received fetal respiratory mucosa graft (FRM. The other animals received surgical procedure without spinal cord injury as a sham group. The morphology of the transplant region and spinal tissue sparing was examined histological eight weeks after transplantation. The collected data was analyzed by the SPSS software using ANOVA and the morphology of the transplant region were studied by light microscope. Results: Histological study showed that the both mucosa tissues could not integrate with the parenchyma of the spinal tissue. Although the FOM were fused more than the FRM with the host tissue but clear boundary was seen at the graft–host interface. The mean spinal tissue sparing of the treatment group increased a little compare to the control but a significant difference was not apparent whereas, the spinal tissue sparing in treatment and control groups compare to the sham group decreased significantly (P < 0.05. Conclusion: Transplantation of

  20. The experimental study of radiation injury on bile duct and liver tissue

    International Nuclear Information System (INIS)

    Cao Guiwen; Wang Bin; Sun Yequan; Shao Xueye; Ning Houfa; Sui Shouguang; Wang Xiuchun; Bai Xuming

    2007-01-01

    Objective: To investigate the safety, acceptance and the effective extent of 192 Ir-internal irradiation, providing theoretical guidelines for HC. Methods: Sixteen male healthy hybrid dogs enrolled in the experiment were divided into 4 groups of 4 each. The brachytherapy applicator was introduced from gall bladder into the convergence of cystic duct with common hepatic duct during the operation and a small chip of 1 cm 3 liver tissue was cut off and taken for control later on. The animals in group A-D were irradiated by 192 Ir-internal irradiation with 30 Gy, 40 Gy, 50 Gy arid 60 Gy at the correlative dose points respectively. Animals were put to death after 10 days subsequently, with sampling specimens obtained from radiation cystic duct and the in between liver tissue with the distant cystic duct. The radiation injury of the cystic duct and liver tissue near bile ducts were observed and studied by light microscope and transmission election microscope. Results: By the limit of the safest endurance dose(50 Gy) of Bile duct, unreversed injury of the nuclei of liver cells occurred at 0 to 15 mm from bile duct revealed by transmission electron microscope and light microscope. The whole biliary duct wall would be undergone necrosis with irradiation dose over 60 Gy. Conclusions: Normal bile duct possesses good endurance to 192 Ir-internal irradiation. Within the safest endurance limit of 50 Gy the effective irradiation field could reach 15 mm from the involved bile duct. (authors)

  1. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue

    International Nuclear Information System (INIS)

    Silkworth, J.B.; Antrim, L.A.; Sack, G.

    1986-01-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue

  2. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue.

    Science.gov (United States)

    Fernandez-Zafra, Teresa; Codeluppi, Simone; Uhlén, Per

    2017-08-15

    Traumatic spinal cord injury is characterized by an initial cell loss that is followed by a concerted cellular response in an attempt to restore the damaged tissue. Nevertheless, little is known about the signaling mechanisms governing the cellular response to injury. Here, we have established an adult ex vivo system that exhibits multiple hallmarks of spinal cord injury and allows the study of complex processes that are difficult to address using animal models. We have characterized the ependymal cell response to injury in this model system and found that ependymal cells can become activated, proliferate, migrate out of the central canal lining and differentiate in a manner resembling the in vivo situation. Moreover, we show that these cells respond to external adenosine triphosphate and exhibit spontaneous Ca 2+ activity, processes that may play a significant role in the regulation of their response to spinal cord injury. This model provides an attractive tool to deepen our understanding of the ependymal cell response after spinal cord injury, which may contribute to the development of new treatment options for spinal cord injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The iliac wing sign: An indicator of the presence of bone and/or soft-tissue injury of the pelvis and hips

    Energy Technology Data Exchange (ETDEWEB)

    Kakigi, Takahide, E-mail: t.a.kakigi@dance.ocn.ne.jp [Department of Radiology, Saiseikai Ibaraki Hospital, 2-1-45 Mitsukeyama, Ibaraki, Osaka 567-0035 (Japan); Hosono, Makoto, E-mail: hosono@med.kindai.ac.jp [Department of Radiology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osakasayama, Osaka 589-8511 (Japan); Shimono, Taro [Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Hiraoka, Taizo; Nishimura, Kazumasa [Department of Radiology, Saiseikai Ibaraki Hospital, 2-1-45 Mitsukeyama, Ibaraki, Osaka 567-0035 (Japan)

    2012-09-15

    Purpose: To prospectively evaluate the feasibility of using the “iliac wing sign (IWS)” as an indicator of bone and/or soft-tissue injury of the pelvis and hips on magnetic resonance (MR) imaging. IWS means edema of the iliacus muscle attachment entering the iliac wing that is visualized as a linear high signal intensity on fat-suppressed T2-weighted MR images. Methods: Consecutive 106 patients who complained of hip pain were enrolled in this study. We evaluated the correlation between IWS and bone and/or soft-tissue injury of the pelvis and hips using Fisher's exact test. Further, performance parameters of sensitivity, specificity, accuracy, the positive predictive value (PPV), and negative predictive value (NPV) of IWS were calculated. Results: Thirty-eight of the 106 (36%) patients had bone and/or soft-tissue injury. Twenty-seven of these 38 (71%) patients with injury showed a positive IWS, while only 11 of 68 (16%) patients without injury showed a positive IWS (p < .0001). IWS, thus, yielded a sensitivity of 71%, specificity of 84%, accuracy of 79%, positive predictive value (PPV) of 71%, and negative predictive value (NPV) of 84%. Conclusion: In cases with a positive IWS, the careful interpretation of MR images is needed because injury presence is highly likely, as suggested by the relatively high sensitivity and PPV. IWS absence may mean a low probability of injury because of the high specificity and NPV.

  4. Avoiding Complications in Bone and Soft Tissue Ablation

    International Nuclear Information System (INIS)

    Kurup, A. Nicholas; Schmit, Grant D.; Morris, Jonathan M.; Atwell, Thomas D.; Schmitz, John J.; Weisbrod, Adam J.; Woodrum, David A.; Eiken, Patrick W.; Callstrom, Matthew R.

    2017-01-01

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitor critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.

  5. Avoiding Complications in Bone and Soft Tissue Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, A. Nicholas, E-mail: kurup.anil@mayo.edu; Schmit, Grant D., E-mail: schmit.grant@mayo.edu; Morris, Jonathan M., E-mail: morris.jonathan@mayo.edu; Atwell, Thomas D., E-mail: atwell.thomas@mayo.edu; Schmitz, John J., E-mail: schmitz.john@mayo.edu; Weisbrod, Adam J., E-mail: weisbrod.adam@mayo.edu; Woodrum, David A., E-mail: woodrum.david@mayo.edu; Eiken, Patrick W., E-mail: eiken.patrick@mayo.edu; Callstrom, Matthew R., E-mail: callstrom.matthew@mayo.edu [Mayo Clinic, Department of Radiology (United States)

    2017-02-15

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitor critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.

  6. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  7. Injury rates and profiles of elite competitive weightlifters.

    Science.gov (United States)

    Calhoon, G; Fry, A C

    1999-07-01

    To determine injury types, natures, anatomical locations, recommended amount of time missed, and injury rates during weightlifting training. We collected and analyzed medical injury records of resident athletes and during numerous training camps to generate an injury profile. Elite US male weightlifters who were injured during training at the United States Olympic Training Centers. United States Olympic Training Center weightlifting injury reports from a 6-year period were analyzed. Data were expressed as percentages and were analyzed via x(2) tests. The back (primarily low back), knees, and shoulders accounted for the most significant number of injuries (64.8%). The types of injuries most prevalent in this study were strains and tendinitis (68.9%). Injuries of acute (59.6%) or chronic (30.4%) nature were significantly more common than recurrent injuries and complications. The recommended number of training days missed for most injuries was 1 day or fewer (90.5%). Injuries to the back primarily consisted of strains (74.6%). Most knee injuries were tendinitis (85.0%). The majority of shoulder injuries were classified as strains (54.6%). Rates of acute and recurring injuries were calculated to be 3.3 injuries/1000 hours of weightlifting exposure. The injuries typical of elite weightlifters are primarily overuse injuries, not traumatic injuries compromising joint integrity. These injury pattems and rates are similar to those reported for other sports and activities.

  8. A simple and noninvasive technique using Bohlers stirrup facilitating management of posterior soft tissue injuries of heel

    Directory of Open Access Journals (Sweden)

    Nikil Jayasheelan

    2014-01-01

    Full Text Available Introduction: Many techniques have been devised to solve the problems associated with posterior soft tissue injuries. A noninvasive technique with plaster of Paris cast mold has been described by Ravishankar. Plaster casting techniques have been associated with problems such as tight cast and cast damage. Invasive techniques using external fixators as described by Berkowitz and Kim using tubular fixators like "kick back stand" and by Kamath using ring Illizarov fixators. The external fixators have their own problems like maintaining them for weeks and pin tract infection. Materials and Methods: We have tried to achieve as noninvasive technique using a Bohler stirrup incorporated with slab for patients with only soft tissue in injury and in a fixator for patients with skeletal injury already on tubular fixators. Results: In all the 12 cases where this method was used, the authors achieved the purpose of protecting the split skin graft in four cases and flap in eight cases. We did not encounter any problems related to this method such as skin maceration, sores including loosening of the frame. Conclusion: It is a simple and noninvasive method, which can be easily and reliably performed to maintain adequate limb elevation and soft tissue protection, which can be done is any hospital setup.

  9. Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan

    2016-05-01

    This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  10. Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-08-30

    Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Adverse event reporting and developments in radiation biology after normal tissue injury: International Atomic Energy Agency consultation

    International Nuclear Information System (INIS)

    Chen Yuhchyau; Trotti, Andy; Coleman, C. Norman; Machtay, Mitchell; Mirimanoff, Rene O.; Hay, John; O'Brien, Peter C.; El-Gueddari, Brahim; Salvajoli, Joao V.; Jeremic, Branislav

    2006-01-01

    Purpose: Recent research has enhanced our understanding of radiation injury at the molecular-cellular and tissue levels; significant strides have occurred in standardization of adverse event reporting in clinical trials. In response, the International Atomic Energy Agency, through its Division of Human Health and its section for Applied Radiation Biology and Radiotherapy, organized a consultation meeting in Atlanta (October 2, 2004) to discuss developments in radiobiology, normal tissue reactions, and adverse event reporting. Methods and Materials: Representatives from cooperative groups of African Radiation Oncology Group, Curriculo Radioterapeutica Ibero Latino Americana, European Organization for Research and Treatment of Cancer, National Cancer Institute of Canada Clinical Trials Group, Radiation Therapy Oncology Group, and Trans-Tasman Radiation Oncology Group held the meeting discussion. Results: Representatives of major radiotherapy groups/organizations and prominent leaders in radiotherapy discussed current understanding of normal tissue radiobiologic effects, the design and implementation of future clinical and translational projects for normal tissue injury, and the standardization of adverse-event reporting worldwide. Conclusions: The consensus was to adopt NCI comprehensive adverse event reporting terminology and grading system (CTCAE v3.0) as the new standard for all cooperative group trials. Future plans included the implementation of coordinated research projects focusing on normal tissue biomarkers and data collection methods

  12. Does the ratio and thickness of prevertebral soft tissue provide benefit in blunt cervical spine injury?

    Science.gov (United States)

    Shiau, J-P; Chin, C-C; Yeh, C-N; Chen, J-F; Lee, S-T; Fang, J-F; Liao, C-C

    2013-06-01

    Although many reports advocate computed tomography (CT) as the initial surveillance tool for occult cervical spine injury (CSI) at the emergency department (ED), the role of a lateral cervical spine radiograph (LCSX) has still not been replaced. We hypothesized that the increased width of the prevertebral soft tissue on an LCSX provides helpful information for selecting the high-risk patients who need to be evaluated with more accurate diagnostic tools. This was a retrospective and consecutive series of injured patients requiring cervical spine evaluation who were first imaged with three-view plain films at the ED. The prevertebral soft tissue thickness (PVST) and ratio of prevertebral soft tissue thickness to the cervical vertebrae diameter (PVST ratio) were calculated on the LCSX. Suspicion of CSI was confirmed by either CT or magnetic resonance imaging (MRI) scans. A total of 826 adult trauma patients requiring cervical spine evaluation were enrolled. The C3 PVST and PVST ratio were significantly different between patients with or without upper cervical area injury (UCAI, 8.64 vs. 5.49 mm, and 0.394 vs. 0.276, respectively), and, likewise, the C6 PVST and PVST ratio for patients with or without lower cervical area injury (LCAI, 16.89 vs. 14.66 mm, and 0.784 vs. 0.749, respectively). The specificity was greater than 90 % in predicting UCAI and LCAI when combining these two parameters. This method maximizes the usefulness of LCSX during the initial assessment of a conscious patient with blunt head and neck injury, especially for the identification of high-risk patients requiring prompt CT or MRI; on the other hand, it prevents the overuse of these high-cost imaging studies as initial diagnostic tools.

  13. Oxidized tissue proteins after intestinal reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Schanaider Alberto

    2005-01-01

    Full Text Available PURPOSE: To analyse if the carbonyl proteins measurement could be validated as a method that allows the identification of an intestinal oxidative stress after ischemia and reperfusion injury. METHODS: Twenty-five male Wistar rats (n =21 weighting 200 to 250g were divided into three groups. Group I - control (n = 10. Group II - sham (n = 5 and Group III (n = 10 subjected to 60 minutes of intestinal ischemia and equal period of reperfusion. For this purpose it was clamped the superior mesenteric artery in its distal third. Histological changes and carbonyl protein levels were determined in the samples of all groups. In group III, samples of both normal and reperfused ileal segment were studied. RESULTS: All the reperfused segments showed mucosal and submucosal swelling and inflammatory infiltrate of the lamina propria. Levels of carbonyl protein rose in group III, including in the non-ischemic segments. The sensitivity and specificity of the carbonyl protein tissue levels were respectively 94% and 88%. CONCLUSION: The carbonyl protein method is a useful biologic marker of oxidative stress after the phenomenon of intestinal ischemia and reperfusion in rats. It was also noteworthy that the effects of oxidative stress could be seen far from the locus of the primary injury.

  14. Reconstruction with vascularized composite tissue in patients with excessive injury following surgery and irradiation

    International Nuclear Information System (INIS)

    Serafin, D.; DeLand, M.; Lesesne, C.B.; Smith, P.J.; Noell, K.T.; Georgiade, N.

    1982-01-01

    The biological effects of a single high dose of radiation are examined. Both cellular injury and repair are reviewed during early, intermediate, and late phases. Anticipated composite tissue morbidity is detailed for therapeutic radiation doses administered to the head and neck, breast and thorax, and perineum. Patients who demonstrated excessive time-dose fractionation values were irradiated with lower x-ray energies. Those in whom there was an overlap of treatment fields presented a serious challenge to the reconstructive surgeon. Judicious selection of well-vascularized composite tissue outside the portals of irradiation, preferably with a long vascular pedicle, facilitated reconstruction. When possible, both donor and recipient vasculature should be outside the irradiated area to ensure uninterrupted blood flow to the transferred or transplanted tissue

  15. Softball Pitching and Injury.

    Science.gov (United States)

    Lear, Aaron; Patel, Niraj

    2016-01-01

    The windmill softball pitch generates considerable forces about the athlete's shoulder and elbow. The injury pattern of softball pitchers seems to be primarily overuse injury, and they seem not to suffer the same volume of injury that baseball pitchers do. This article will explore softball pitching techniques, kinetics and kinematics of the windmill pitch, epidemiology of softball pitchers, and discuss possible etiologies of softball pitching injuries.

  16. Radiation-induced hypoxia may perpetuate late normal tissue injury

    International Nuclear Information System (INIS)

    Vujaskovic, Zeljko; Anscher, Mitchell S.; Feng, Q.-F.; Rabbani, Zahid N.; Amin, Khalid; Samulski, Thaddeus S.; Dewhirst, Mark W.; Haroon, Zishan A.

    2001-01-01

    Purpose: The purpose of this study was to determine whether or not hypoxia develops in rat lung tissue after radiation. Methods and Materials: Fisher-344 rats were irradiated to the right hemithorax using a single dose of 28 Gy. Pulmonary function was assessed by measuring the changes in respiratory rate every 2 weeks, for 6 months after irradiation. The hypoxia marker was administered 3 h before euthanasia. The tissues were harvested at 6 weeks and 6 months after irradiation and processed for immunohistochemistry. Results: A moderate hypoxia was detected in the rat lungs at 6 weeks after irradiation, before the onset of functional or histopathologic changes. The more severe hypoxia, that developed at the later time points (6 months) after irradiation, was associated with a significant increase in macrophage activity, collagen deposition, lung fibrosis, and elevation in the respiratory rate. Immunohistochemistry studies revealed an increase in TGF-β, VEGF, and CD-31 endothelial cell marker, suggesting a hypoxia-mediated activation of the profibrinogenic and proangiogenic pathways. Conclusion: A new paradigm of radiation-induced lung injury should consider postradiation hypoxia to be an important contributing factor mediating a continuous production of a number of inflammatory and fibrogenic cytokines

  17. Vitamin E levels in preeclampsia placenta tissue and its correlation with oxidative stress injury and apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-04-01

    Full Text Available Objective: To study the vitamin E levels in preeclampsia placenta tissue and its correlation with oxidative stress injury and apoptosis. Methods: A total of 60 pregnant women with preeclampsia who received treatment and gave birth in our hospital between July 2012 and January 2016 were collected and divided into mild preeclampsia group (n=41 and severe preeclampsia group (n=19 according to the disease severity; 38 normal pregnant women who received pregnancy test and gave birth in our hospital during the same period were selected as healthy control group. The placental tissue samples of three groups of research subjects were retained, high performance liquid chromatograph-mass spectrometry was used to detect VitE levels in tissue grinding fluid, automatic biochemical analyzer was used to detect the levels of oxidative stress injury indexes, and fluorescence quantitative PCR method was used to detect the mRNA expression of apoptosis molecules. Results: VitE, SOD and CAT levels in grinding fluid of severe preeclampsia group were lower than those of mild preeclampsia group and healthy control group while ROS and AOPP levels were higher than those of mild preeclampsia group and healthy control group; Fas, caspase and Apaf-1 mRNA expression were higher than those of mild preeclampsia group and healthy control group while anti-apoptotic molecules Bcl-2, Bcl-xl, Mcl-2 and p57kip2 mRNA expression were lower than those of mild preeclampsia group and healthy control group. Spearman correlation analysis showed that VitE level in the preeclampsia placenta tissue was directly correlated with oxidative stress injury and cell apoptosis. Conclusion: VitE deficiency is the direct factor that results in oxidative stress and cell apoptosis in patients with preeclampsia, and the VitE supplementation in time is expected to become the auxiliary treatment means for patients with preeclampsia.

  18. Oral paracetamol and/or ibuprofen for treating pain after soft tissue injuries: Single centre double-blind, randomised controlled clinical trial.

    Directory of Open Access Journals (Sweden)

    Kevin K C Hung

    Full Text Available Soft tissue injuries commonly present to the emergency department (ED, often with acute pain. They cause significant suffering and morbidity if not adequately treated. Paracetamol and ibuprofen are commonly used analgesics, but it remains unknown if either one or the combination of both is superior for pain control.To investigate the analgesic effect of paracetamol, ibuprofen and the combination of both in the treatment of soft tissue injury in an ED, and the side effect profile of these drugs.Double-blind, double dummy, placebo-controlled randomised controlled trial. 782 adult patients presenting with soft tissue injury without obvious fractures attending the ED of a university hospital in the New Territories of Hong Kong were recruited. Patients were randomised using a random number table into three parallel arms of paracetamol only, ibuprofen only and a combination of paracetamol and ibuprofen in a 1:1:1 ratio. The primary outcome measure was pain score at rest and on activity in the first 2 hours and first 3 days. Data was analysed on an intention to treat basis.There was no statistically significant difference in pain score in the initial two hours between the three groups, and no clinically significant difference in pain score in the first three days.There was no difference in analgesic effects or side effects observed using oral paracetamol, ibuprofen or a combination of both in patients with mild to moderate pain after soft tissue injuries attending the ED.The study is registered with ClinicalTrials.gov (no. NCT00528658.

  19. Oral paracetamol and/or ibuprofen for treating pain after soft tissue injuries: Single centre double-blind, randomised controlled clinical trial.

    Science.gov (United States)

    Hung, Kevin K C; Graham, Colin A; Lo, Ronson S L; Leung, Yuk Ki; Leung, Ling Yan; Man, S Y; Woo, W K; Cattermole, Giles N; Rainer, Timothy H

    2018-01-01

    Soft tissue injuries commonly present to the emergency department (ED), often with acute pain. They cause significant suffering and morbidity if not adequately treated. Paracetamol and ibuprofen are commonly used analgesics, but it remains unknown if either one or the combination of both is superior for pain control. To investigate the analgesic effect of paracetamol, ibuprofen and the combination of both in the treatment of soft tissue injury in an ED, and the side effect profile of these drugs. Double-blind, double dummy, placebo-controlled randomised controlled trial. 782 adult patients presenting with soft tissue injury without obvious fractures attending the ED of a university hospital in the New Territories of Hong Kong were recruited. Patients were randomised using a random number table into three parallel arms of paracetamol only, ibuprofen only and a combination of paracetamol and ibuprofen in a 1:1:1 ratio. The primary outcome measure was pain score at rest and on activity in the first 2 hours and first 3 days. Data was analysed on an intention to treat basis. There was no statistically significant difference in pain score in the initial two hours between the three groups, and no clinically significant difference in pain score in the first three days. There was no difference in analgesic effects or side effects observed using oral paracetamol, ibuprofen or a combination of both in patients with mild to moderate pain after soft tissue injuries attending the ED. The study is registered with ClinicalTrials.gov (no. NCT00528658).

  20. UNC5B receptor deletion exacerbates tissue injury in response to AKI.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Navankasattusas, Sutip; Li, Dean Y; Kim, Il-man; Ramesh, Ganesan

    2014-02-01

    Netrin-1 regulates cell survival and apoptosis by activation of its receptors, including UNC5B. However, the in vivo role of UNC5B in cell survival during cellular stress and tissue injury is unknown. We investigated the role of UNC5B in cell survival in response to stress using mice heterozygously expressing the UNC5B gene (UNC5B(-/flox)) and mice with targeted homozygous deletion of UNC5B in kidney epithelial cells (UNC5B(-/flox/GGT-cre)). Mice were subjected to two different models of organ injury: ischemia reperfusion injury of the kidney and cisplatin-induced nephrotoxicity. Both mouse models of UNC5B depletion had normal organ function and histology under basal conditions. After AKI, however, UNC5B(-/flox/GGT-cre) mice exhibited significantly worse renal function and damage, increased tubular apoptosis, enhanced p53 activation, and exacerbated inflammation compared with UNC5B(-/flox) and wild-type mice. shRNA-mediated suppression of UNC5B expression in cultured tubular epithelial cells exacerbated cisplatin-induced cell death in a p53-dependent manner and blunted Akt phosphorylation. Inhibition of PI3 kinase similarly exacerbated cisplatin-induced apoptosis; in contrast, overexpression of UNC5B reduced cisplatin-induced apoptosis in these cells. Taken together, these results show that the netrin-1 receptor UNC5B plays a critical role in cell survival and kidney injury through Akt-mediated inactivation of p53 in response to stress.

  1. A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR).

    Science.gov (United States)

    Leyendecker, Gerhard; Wildt, Ludwig

    2011-03-01

    Pelvic endometriosis, deeply infiltrating endometriosis and uterine adenomyosis share a common pathophysiology and may be integrated into the physiological mechanism and new nosological concept of 'tissue injury and repair' (TIAR) and may, in this context, just represent the extreme of a basically physiological, estrogen-related mechanism that is pathologically exaggerated in an extremely estrogen-sensitive reproductive organ. The acronym TIAR describes a fundamental and apparently ubiquitous biological system that becomes operative in mesenchymal tissues following tissue injury and, upon activation, results in the local production of estradiol. Endometriosis and adenomyosis are caused by trauma. In the spontaneously developing disease, chronic uterine peristaltic activity or phases of hyperperistalsis induce, at the endometrial-myometrial interface near the fundo-cornual raphe, microtraumatisations, with activation of the TIAR mechanism. With ongoing traumatisations, such sites of inflammation might accumulate and the increasingly produced estrogens interfere in a paracrine fashion with ovarian control over uterine peristaltic activity, resulting in permanent hyperperistalsis and a self-perpetuation of the disease process. Overt autotraumatisation of the uterus with dislocation of fragments of basal endometrium into the peritoneal cavity and infiltration of basal endometrium into the depth of the myometrial wall ensues. In most cases of endometriosis/adenomyosis a causal event early in the reproductive period of life must be postulated, rapidly leading to archimetral hyperestrogenism and uterine hyperperistalsis. In late premenopausal adenomyosis such an event might not have occurred. However, as indicated by the high prevalence of the disease, it appears to be unavoidable that, with time, chronic normoperistalsis throughout the reproductive period of life accumulates to the same extent of microtraumatisation. With activation of the TIAR mechanism followed by

  2. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    Science.gov (United States)

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  3. Medical Efforts and Injury Patterns of Military Hospital Patients Following the 2013 Lushan Earthquake in China: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Peng Kang

    2015-08-01

    Full Text Available The aim of this paper is to investigate medical efforts and injury profiles of victims of the Lushan earthquake admitted to three military hospitals. This study retrospectively investigated the clinical records of 266 admitted patients evacuated from the Lushan earthquake area. The 2005 version of the Abbreviated Injury Scale (AIS-2005 was used to identify the severity of each injury. Patient demographic data, complaints, diagnoses, injury types, prognosis, means of transportation, and cause of injury were all reviewed individually. The statistical analysis of the study was conducted primarily using descriptive statistics. Of the 266 patients, 213 (80.1% were admitted in the first two days. A total of 521 injury diagnoses were recorded in 266 patients. Earthquake-related injuries were primarily caused by buildings collapsing (38.4% and victims being struck by objects (33.8%; the most frequently injured anatomic sites were the lower extremities and pelvis (34.2% and surface area of the body (17.9%. Fracture (41.5% was the most frequent injury, followed by soft tissue injury (27.5%, but crush syndrome was relatively low (1.2% due to the special housing structures in the Lushan area. The most commonly used procedure was suture and dressings (33.7%, followed by open reduction and internal fixation (21.9%.The results of this study help formulate recommendations to improve future disaster relief and emergency planning in remote, isolated, and rural regions of developing countries.

  4. Medical Efforts and Injury Patterns of Military Hospital Patients Following the 2013 Lushan Earthquake in China: A Retrospective Study.

    Science.gov (United States)

    Kang, Peng; Tang, Bihan; Liu, Yuan; Liu, Xu; Liu, Zhipeng; Lv, Yipeng; Zhang, Lulu

    2015-08-31

    The aim of this paper is to investigate medical efforts and injury profiles of victims of the Lushan earthquake admitted to three military hospitals. This study retrospectively investigated the clinical records of 266 admitted patients evacuated from the Lushan earthquake area. The 2005 version of the Abbreviated Injury Scale (AIS-2005) was used to identify the severity of each injury. Patient demographic data, complaints, diagnoses, injury types, prognosis, means of transportation, and cause of injury were all reviewed individually. The statistical analysis of the study was conducted primarily using descriptive statistics. Of the 266 patients, 213 (80.1%) were admitted in the first two days. A total of 521 injury diagnoses were recorded in 266 patients. Earthquake-related injuries were primarily caused by buildings collapsing (38.4%) and victims being struck by objects (33.8%); the most frequently injured anatomic sites were the lower extremities and pelvis (34.2%) and surface area of the body (17.9%). Fracture (41.5%) was the most frequent injury, followed by soft tissue injury (27.5%), but crush syndrome was relatively low (1.2%) due to the special housing structures in the Lushan area. The most commonly used procedure was suture and dressings (33.7%), followed by open reduction and internal fixation (21.9%).The results of this study help formulate recommendations to improve future disaster relief and emergency planning in remote, isolated, and rural regions of developing countries.

  5. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    Science.gov (United States)

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  6. Penetrating injury of the lungs and multiple injuries of lower extremities caused by aircraft bombs splinters

    Directory of Open Access Journals (Sweden)

    Golubović Zoran

    2010-01-01

    Full Text Available Introduction. Injuries caused by aircraft bombs cause severe damages to the human body. They are characterized by massive destruction of injured tissues and organs, primary contamination by polymorph bacterial flora and modified reactivity of the body. Upon being wounded by aircraft bombs projectiles a victim simultaneously sustains severe damages of many organs and organ systems due to the fact that a large number of projectiles at the same time injure the chest, stomach, head and extremities. Case report. We presented a patient, 41 years of age, injured by aircraft bomb with hemo-pneumothorax and destruction of the bone and soft tissue structures of the foot, as well as the treatment result of such heavy injuries. After receiving thoracocentesis and short reanimation, the patient underwent surgical procedure. The team performed thoracotomy, primary treatment of the wound and atypical resection of the left lung. Thoracic drains were placed. The wounds on the lower leg and feet were treated primarily. Due to massive destruction of bone tissue of the right foot by cluster bomb splinters, and impossibility of reconstruction of the foot, guillotine amputation of the right lower leg was performed. Twelve days after the wounding caused by cluster bomb splinters, soft tissue of the left lower leg was covered by Tirsch free transplantant and the defect in the area of the left foot was covered by dorsalis pedis flap. The transplant and flap were accepted and the donor sites were epithelized. Twenty-six days following the wounding reamputation was performed and amputation stump of the right lower leg was closed. The patient was given a lower leg prosthesis with which he could move. Conclusion. Upon being wounded by aircraft bomb splinters, the injured person sustains severe wounds of multiple organs and organ systems due to simultaneous injuries caused by a large number of projectiles. It is necessary to take care of the vital organs first because they

  7. Role of MMP-12 on tissue remodeling at early stage of radiation-induced pulmonary injury

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Diao Ruiying; Wang Shaoxia; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To explore the role of MMP-12 on tissue remodeling at early stage of radiation- induced pulmonary injury. Methods: Wistar rats irradiated by 60 Co γ-rays to the whole lungs were sacrificed at 1, 2, 4 weeks. MMP-12 mRNA expression was detected by RT-PCR. MMP-2, MMP-9, MMP-12 activities were determined by zymography. The degradation and collapse of elastin were determined by tissue elastin particular staining; the 'cross talking' phenomenon between alveolar type II cells and mesenchymal cells was observed under electron microscope; the expression of TGF-β1 and TNF-α in BALF was detected by ELISA. The expression of α-SMA was determined by immunohistochemistry. Results: The mRNA expression of MMP-12 displayed a significant elevation at 1, 2, 4 weeks after irradiation. MMP-12 activity increased at 2, 4 weeks after irradiation. Elastin began to degrade and collapse at 1 week, which became worst 4 weeks after irradiation. The cross talking phenomenon was found under electron microscope. The expression of TGF-β1, TNF-α and α-SMA was increased gradually as time elapse after irradiation. Conclusions: 60 Co γ-ray irradiation can promote pulmonary MMP-12 expression, initiate pulmonary tissue remodeling by degradation of elastin, and make the pulmonary injury develop towards pulmonary fibrosis eventually. (authors)

  8. Therapeutic potential of brain-derived neurotrophic factor (BDNF and a small molecular mimics of BDNF for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary Wurzelmann

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF, a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  9. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  10. Correlating learning and memory improvements to long-term potentiation in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    Xingfu Peng; Qian Yu

    2008-01-01

    BACKGROUND:Brain injury patients often exhibit learning and memory functional deficits.Long-term potentiation(LTP)is a representative index for studying learning and memory cellular models; the LTP index correlates to neural plasticity. OBJECTIVE:This study was designed to investigate correlations of learning and memory functions to LTP in brain injury patients,and to summarize the research advancements in mechanisms underlying brain functional improvements after rehabilitation intervention. RETRIEVAL STRATEGY:Using the terms "brain injuries,rehabilitation,learning and memory,long-term potentiation",manuscripts that were published from 2000-2007 were retrieved from the PubMed database.At the same time,manuscripts published from 2000-2007 were also retrieved from the Database of Chinese Scientific and Technical Periodicals with the same terms in the Chinese language.A total of 64 manuscripts were obtained and primarily screened.Inclusion criteria:studies on learning and memory,as well as LTP in brain injury patients,and studies focused on the effects of rehabilitation intervention on the two indices; studies that were recently published or in high-impact journals.Exclusion criteria:repetitive studies.LITERATURE EVALUATION:The included manuscripts primarily focused on correlations between learning and memory and LTP,the effects of brain injury on learning and memory,as well as LTP,and the effects of rehabilitation intervention on learning and memory after brain injury.The included 39 manuscripts were clinical,basic experimental,or review studies. DATA SYNTHESIS:Learning and memory closely correlates to LTP.The neurobiological basis of learning and memory is central nervous system plasticity,which involves neural networks,neural circuits,and synaptic connections,in particular,synaptic plasticity.LTP is considered to be an ideal model for studying synaptic plasticity,and it is also a classic model for studying neural plasticity of learning and memory.Brain injury

  11. Effect of pheniramine maleate on reperfusion injury in brain tissue.

    Science.gov (United States)

    Yürekli, Ismail; Gökalp, Orhan; Kiray, Müge; Gökalp, Gamze; Ergüneş, Kazım; Salman, Ebru; Yürekli, Banu Sarer; Satoğlu, Ismail Safa; Beşir, Yüksel; Cakır, Habib; Gürbüz, Ali

    2013-12-06

    The aim of this study was to investigate the protective effects of methylprednisolone (Pn), which is a potent anti-inflammatory agent, and pheniramine maleate (Ph), which is an antihistaminic with some anti-inflammatory effects, on reperfusion injury in brain developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats were divided into 4 groups: Group 1 was the control group, Group 2 was the sham group (I/R), Rats in Group 3 were subjected to I/R and given Ph, and rats in Group 4 were subjected to I/R and given Pn. A tourniquet was applied at the level of left groin region of subjects in the I/R group after induction of anesthesia. One h of ischemia was performed with no drug administration. In the Ph group, half of a total dose of 10 mg/kg Ph was administered intraperitoneally before ischemia and the remaining half before reperfusion. In the Pn group, subjects received a single dose of 50 mg/kg Pn intraperitoneally at the 30th min of ischemia. Brains of all subjects were removed after 24 h for examination. Malondialdehyde (MDA) levels of the prefrontal cortex were significantly lower in the Ph group than in the I/R group (p<0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were found to be significantly higher in the Ph group than in the I/R group (p<0.05). Histological examination demonstrated that Ph had protective effects against I/R injury developing in the brain tissue. Ph has a protective effect against ischemia/reperfusion injury created experimentally in rat brains.

  12. An experimental study of radiation injury on oral tissue at young age

    International Nuclear Information System (INIS)

    Kuba, Youichi

    1986-01-01

    For the purpose of studying radiation injury on mandibles at growth stage, the mandibles of young adult dogs were irradiated with X-ray of 200 kVp, and the irradiated intraoral tissues such as gingival membrane, teeth and mandibles were investigated macroscopically and the teeth and mandibles radiologically. The results were as follows: 1. As the injury on irradiated skin, partial epilation began two days after irradiation and ulceration (4 out of 16 cases) formed at 79 days and worsened further, and necrosis was seen in all subjects at 195 days. 2. As the injury on the intraoral tissue, pigment loss in the gingival membrane began four days after irradiation. Ulceration of gingiva (2 out of 16) formed at 30 days and worsened, and exposure of the alveolar bone was observed at 208 days. At 220 days, bone fracture (6 out of 16) was observed. 3. Formation of necrosis in the gingiva leading to necrosis of the skin corresponding to the third premolar was found in four cases. Formation of necrosis in the skin corresponding to the third premolar leading to necrosis of the gingival membrane was found in 12 cases. 4. In radiological findings, enlargement of periodontal membrane space, disappearance of lamina dura (6 out of 16), and resporption of the alveolar crest (6 out of 16) began in the subjects at 1 month. Worsening began with bone destruction (10 out of 16), bone destruction accompanied by osteosclerosis, and erosion of inferior border of the cortical bone (8 out of 16) in the subjects at 3 months. Formation of sequestrum (4 out of 16) at 6 months and bone fracture (6 out of 16) at 8 months were observed. 5. In radiological findings for the subjects with formation of ulceration, enlargement of periodontal membrane space, and resorption of the alveolar crest were the early findings and lamina dura image around the bone destruction image followed. (J.P.N.)

  13. Throwing Injuries of the Shoulder.

    Science.gov (United States)

    McCue, Frank C., III; and Others

    The majority of shoulder injuries occurring in throwing sports involve the soft tissue structures. Injuries often occur when the unit is overstretched to a point near its greatest length, involving the elastic tissues. The other injury mechanism involves the contractural unit of the muscle, which occurs near the midpoint of contractions, involving…

  14. Severe Hand Injuries Caused by a Mole Gun

    Directory of Open Access Journals (Sweden)

    Serdar Düzgün

    2017-10-01

    Full Text Available Objective: Injuries by mole guns differ from other firearm injuries primarily because they are close-range, low-energy injuries that are highly contaminated owing to contact with contaminated surfaces and the presence of numerous residual foreign bodies within the wound. The aim of this article is to share our surgical experience regarding the repair of severe hand injuries caused by mole guns. Material and Methods: This retrospective study included 11 patients with hand injuries. Data obtained about the patients, including age, gender, dominant or non-dominant hand, injuries to all vital structures, and reconstructive procedures were assessed, categorized, and recorded. Results: Ten patients had defects in one or several common digital branches of the median nerve in areas ranging from the distal part of the carpal tunnel to the distal palmar crease. All patients had flexor and extensor tendon injuries in all fingers except for the first finger. Reconstruction of soft tissue and skin defects was carried out with an interpolation flap planned from a random-based subpectoral- paraumbilical region in five patients, a SCIA-based groin flap in four patients, a reverse-radial forearm flap in one patient, and an adipofascial flap planned from the forearm in one patient. Conclusion: Mole gun injuries typically include all structures of the hand, and repair procedures involve every anatomic structure of the hand. An early and effective surgical operation followed by prolonged and effective physical therapy protocols is vital for regaining the full spectrum of hand functions.

  15. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  16. Assessment of tissue viability after frostbite injury by technetium-99m-sestamibi scintigraphy in an experimental rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, I. [Dept. of Nuclear Medicine, Kocaeli University Medical Faculty, Kocaeli (Turkey); Cemal Aygit, A. [Department of Plastic and Reconstructive Surgery, Trakya University Medical Faculty, Edirne (Turkey); Candan, L. [Department of Pathology, Trakya University Medical Faculty, Edirne (Turkey); Sarikaya, A.; Berkarda, S. [Dept. of Nuclear Medicine, Trakya University Medical Faculty, Edirne (Turkey); Tuerkyilmaz, M. [Dept. of Chemistry, Trakya University Faculty of Science, Edirne (Turkey)

    2000-01-01

    Frostbite causes injury to the tissue by direct ice-crystal formation at the cellular level with cellular dehydration and microvascular occlusion. Muscle that initially appears viable on reperfusion may subsequently become necrotic because of microcirculatory collapse. Since muscle is a sensitive tissue in frostbite injury, we used technetium-99m-sestamibi limb scintigraphy to assess tissue viability in an experimental rabbit model. Twelve rabbits were used for this investigation. The right hind limb of the rabbits was immersed to the ankle joint in a container filled with 90% ethanol at -25 C for 10 min. Frostbitten limbs were allowed to thaw in air at room temperature. Imaging and pathological examination of the affected limbs were performed 2 h, 24 h, 48 h and 72 h after freezing. In 2-h images, initial hypoperfusion was seen that corresponded to circulatory collapse. In 24-h images, there was hyperperfusion (so-called period of temporary reperfusion), corresponding to circulatory restoration. In 48-h images, a second hypoperfusion corresponded to viable but ischaemic tissue. In 72-h images, there was non-perfusion of the limb that correlated with the pathologically determined diagnosis of necrosis. All scintigraphic patterns correlated with pathological findings. We suggest that these scintigraphic patterns in soft tissue may be helpful in distinguishing between frank infarction and reversible ischemia and therefore may be useful in selecting early therapeutic or surgical interventions to salvage bone and soft tissue. Further studies are needed to show the usefulness of {sup 99m}Tc sestamibi scintigraphy in clinical frostbite cases. (orig.)

  17. Tissue injuries of wistar rats treated with hydroalcoholic extract of Sonchus oleraceus L.

    Directory of Open Access Journals (Sweden)

    Franciele Carla Prichoa

    2011-09-01

    Full Text Available The use of plant species is emerging as an important alternative in the treatment of injuries. Therefore, the extract of Sonchus oleraceus 10% was employed in the repair of skin lesions. A total of 36 male Wistar rats were subjected to a punch injury and divided into three groups: a negative control, receiving no treatment, a positive control, treated with Dersani, and the experimental group treated with the extract. The injury was assessed macroscopically and microscopically. Morphometric data was collected at the 3rd, 5th and 7th postoperative day, and the experimental group showed greater changes in shrinkage of the lesion compared to control groups. On the 3rd postoperative day, the injury in the experimental group showed less necrotic tissue, lower slough and more granulation tissue in relation to the positive control group. On the 7th and 10th postoperative day, the injury in the experimental group showed lower slough compared to the positive control group. Microscopic analysis of lesions on the 5th postoperative day revealed increased fibroplasia in the experimental group compared to control groups, while on the 14th postoperative day less neovascularization was evident in the experimental group and increased formation of hair follicles in the negative control group. The extract of S. oleraceus provided tissue repair in accordance with normal physiological patterns thus confirming empirical evidence for its use.O emprego de espécies vegetais vem surgindo como alternativa no tratamento de lesões. Dessa forma, foi utilizado o extrato hidroalcoólico de Sonchus oleraceus a 10% na reparação de lesões cutâneas. Trinta e seis ratos machos Wistar, foram submetidos a uma lesão com "punch" e distribuídos em três grupos: controle negativo, não recebeu tratamento; controle positivo, tratado com Dersani; e o experimental, tratado com extrato. A lesão foi avaliada macroscopicamente e microscopicamente. Os dados morfométricos mostraram que

  18. Effects of copper on the sabellid polychaete, Eudistylia vancouveri. II. copper accumulation and tissue injury in the branchial crown

    Energy Technology Data Exchange (ETDEWEB)

    Young, J S [Pacific Northwest Lab., Sequim, WA; Adee, R R; Piscopo, I; Buschbom, R L

    1981-01-01

    Copper in seawater caused injury to the radioles (gills) of the sabellid polychaete, Eudistylia vancouveri. Light and electron microscopy showed the loss of cellular adhesion and the structural derangement that lead to cell necrosis and death. The progression of injury was related to the uptake of copper into the tissues. Copper was found by X-ray microanalysis to be localized subcellularly in membrane-bound vesicles that are similar to lysosomes. Cell breakdown may result from lysosmal labilization.

  19. Nasal avulsion injuries.

    Science.gov (United States)

    Denneny, J C

    1987-11-01

    The nose is the most frequently traumatized portion of the human face. High-speed motor vehicle accidents and interpersonal violence commonly produce bony pyramid and septal damage and occasional minor soft-tissue damage. Major soft-tissue injuries are much less commonly encountered. Avulsion injuries of this type may involve skin only or the bony and cartilaginous framework as well. The severity of these injuries can range from total avulsion to minor skin loss and anywhere within the spectrum between. My experience is reviewed, management guidelines and options are detailed, and selected cases are presented.

  20. Precision Medicine for Acute Kidney Injury (AKI): Redefining AKI by Agnostic Kidney Tissue Interrogation and Genetics.

    Science.gov (United States)

    Kiryluk, Krzysztof; Bomback, Andrew S; Cheng, Yim-Ling; Xu, Katherine; Camara, Pablo G; Rabadan, Raul; Sims, Peter A; Barasch, Jonathan

    2018-01-01

    Acute kidney injury (AKI) currently is diagnosed by a temporal trend of a single blood analyte: serum creatinine. This measurement is neither sensitive nor specific to kidney injury or its protean forms. Newer biomarkers, neutrophil gelatinase-associated lipocalin (NGAL, Lipocalin 2, Siderocalin), or kidney injury molecule-1 (KIM-1, Hepatitis A Virus Cellular Receptor 1), accelerate the diagnosis of AKI as well as prospectively distinguish rapidly reversible from prolonged causes of serum creatinine increase. Nonetheless, these biomarkers lack the capacity to subfractionate AKI further (eg, sepsis versus ischemia versus nephrotoxicity from medications, enzymes, or metals) or inform us about the primary and secondary sites of injury. It also is unknown whether all nephrons are injured in AKI, whether all cells in a nephron are affected, and whether injury responses can be stimulus-specific or cell type-specific or both. In this review, we summarize fully agnostic tissue interrogation approaches that may help to redefine AKI in cellular and molecular terms, including single-cell and single-nuclei RNA sequencing technology. These approaches will empower a shift in the current paradigm of AKI diagnosis, classification, and staging, and provide the renal community with a significant advance toward precision medicine in the analysis AKI. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mixed Connective Tissue Disease

    Science.gov (United States)

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  2. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  3. Spinal cord injury after blunt cervical spine trauma: correlation of soft-tissue damage and extension of lesion.

    Science.gov (United States)

    Martínez-Pérez, R; Paredes, I; Cepeda, S; Ramos, A; Castaño-León, A M; García-Fuentes, C; Lobato, R D; Gómez, P A; Lagares, A

    2014-05-01

    In patients with spinal cord injury after blunt trauma, several studies have observed a correlation between neurologic impairment and radiologic findings. Few studies have been performed to correlate spinal cord injury with ligamentous injury. The purpose of this study was to retrospectively evaluate whether ligamentous injury or disk disruption after spinal cord injury correlates with lesion length. We retrospectively reviewed 108 patients diagnosed with traumatic spinal cord injury after cervical trauma between 1990-2011. Plain films, CT, and MR imaging were performed on patients and then reviewed for this study. MR imaging was performed within 96 hours after cervical trauma for all patients. Data regarding ligamentous injury, disk injury, and the extent of the spinal cord injury were collected from an adequate number of MR images. We evaluated anterior longitudinal ligaments, posterior longitudinal ligaments, and the ligamentum flavum. Length of lesion, disk disruption, and ligamentous injury association, as well as the extent of the spinal cord injury were statistically assessed by means of univariate analysis, with the use of nonparametric tests and multivariate analysis along with linear regression. There were significant differences in lesion length on T2-weighted images for anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum in the univariate analysis; however, when this was adjusted by age, level of injury, sex, and disruption of the soft tissue evaluated (disk, anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum) in a multivariable analysis, only ligamentum flavum showed a statistically significant association with lesion length. Furthermore, the number of ligaments affected had a positive correlation with the extension of the lesion. In cervical spine trauma, a specific pattern of ligamentous injury correlates with the length of the spinal cord lesion in MR imaging studies

  4. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models.

    Science.gov (United States)

    Finch, Paul W; Mark Cross, Lawrence J; McAuley, Daniel F; Farrell, Catherine L

    2013-09-01

    Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  5. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    Science.gov (United States)

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  6. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury.

    Science.gov (United States)

    Moore, Scott M; Zhang, Hua; Maeda, Nobuyo; Doerschuk, Claire M; Faber, James E

    2015-07-01

    Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.

  7. Analysis of sports related mTBI injuries caused by elastic wave propagation through brain tissue

    Directory of Open Access Journals (Sweden)

    D Case

    2016-10-01

    Full Text Available Repetitive concussions and sub-concussions suffered by athletes have been linked to a series of sequelae ranging from traumatic encephalopathy to dementia pugilistica. A detailed finite element model of the human head was developed based on standard libraries of medical imaging. The model includes realistic material properties for the brain tissue, bone, soft tissue, and CSF, as well as the structure and properties of a protective helmet. Various impact scenarios were studied, with a focus on the strains/stresses and pressure gradients and concentrations created in the brain tissue due to propagation of waves produced by the impact through the complex internal structure of the human head. This approach has the potential to expand our understanding of the mechanism of brain injury, and to better assess the risk of delayed neurological disorders for tens of thousands of young athletes throughout the world.

  8. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    Science.gov (United States)

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  9. Ganga hospital open injury score in management of open injuries.

    Science.gov (United States)

    Rajasekaran, S; Sabapathy, S R; Dheenadhayalan, J; Sundararajan, S R; Venkatramani, H; Devendra, A; Ramesh, P; Srikanth, K P

    2015-02-01

    Open injuries of the limbs offer challenges in management as there are still many grey zones in decision making regarding salvage, timing and type of reconstruction. As a result, there is still an unacceptable rate of secondary amputations which lead to tremendous waste of resources and psychological devastation of the patient and his family. Gustilo Anderson's classification was a major milestone in grading the severity of injury but however suffers from the disadvantages of imprecise definition, a poor interobserver correlation, inability to address the issue of salvage and inclusion of a wide spectrum of injuries in Type IIIb category. Numerous scores such as Mangled Extremity Severity Score, the Predictive Salvage Index, the Limb Salvage Index, Hannover Fracture Scale-97 etc have been proposed but all have the disadvantage of retrospective evaluation, inadequate sample sizes and poor sensitivity and specificity to amputation, especially in IIIb injuries. The Ganga Hospital Open Injury Score (GHOIS) was proposed in 2004 and is designed to specifically address the outcome in IIIb injuries of the tibia without vascular deficit. It evaluates the severity of injury to the three components of the limb--the skin, the bone and the musculotendinous structures separately on a grade from 0 to 5. Seven comorbid factors which influence the treatment and the outcome are included in the score with two marks each. The application of the total score and the individual tissue scores in management of IIIB injuries is discussed. The total score was shown to predict salvage when the value was 14 or less; amputation when the score was 17 and more. A grey zone of 15 and 16 is provided where the decision making had to be made on a case to case basis. The additional value of GHOIS was its ability to guide the timing and type of reconstruction. A skin score of more than 3 always required a flap and hence it indicated the need for an orthoplastic approach from the index procedure. Bone

  10. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    OpenAIRE

    Kulkarni, Onkar P.; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R.

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine t...

  11. Matrix- and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine.

    Science.gov (United States)

    Sheets, Anthony R; Massey, Conner J; Cronk, Stephen M; Iafrati, Mark D; Herman, Ira M

    2016-07-02

    Non-healing wounds are a major global health concern and account for the majority of non-traumatic limb amputations worldwide. However, compared to standard care practices, few advanced therapeutics effectively resolve these injuries stemming from cardiovascular disease, aging, and diabetes-related vasculopathies. While matrix turnover is disrupted in these injuries, debriding enzymes may promote healing by releasing matrix fragments that induce cell migration, proliferation, and morphogenesis, and plasma products may also stimulate these processes. Thus, we created matrix- and plasma-derived peptides, Comb1 and UN3, which induce cellular injury responses in vitro, and accelerate healing in rodent models of non-healing wounds. However, the effects of these peptides in non-healing wounds in diabetes are not known. Here, we interrogated whether these peptides stimulate healing in a diabetic porcine model highly reminiscent of human healing impairments in type 1 and type 2-diabetes. After 3-6 weeks of streptozotocin-induced diabetes, full-thickness wounds were surgically created on the backs of adult female Yorkshire swine under general anesthesia. Comb1 and UN3 peptides or sterile saline (negative control) were administered to wounds daily for 3-7 days. Following sacrifice, wound tissues were harvested, and quantitative histological and immunohistochemical analyses were performed for wound closure, angiogenesis and granulation tissue deposition, along with quantitative molecular analyses of factors critical for angiogenesis, epithelialization, and dermal matrix remodeling. Comb1 and UN3 significantly increase re-epithelialization and angiogenesis in diabetic porcine wounds, compared to saline-treated controls. Additionally, fluorescein-conjugated Comb1 labels keratinocytes, fibroblasts, and vascular endothelial cells in porcine wounds, and Far western blotting reveals these cell populations express multiple fluorescein-Comb1-interacting proteins in vitro. Further

  12. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation.

    Science.gov (United States)

    Solis, Leandro R; Liggins, Adrian; Uwiera, Richard R E; Poppe, Niek; Pehowich, Enid; Seres, Peter; Thompson, Richard B; Mushahwar, Vivian K

    2012-08-01

    The overall goal of this project is to develop interventions for the prevention of deep tissue injury (DTI), a form of pressure ulcers that originates in deep tissue around bony prominences. The present study focused on: (1) obtaining detailed measures of the distribution of pressure experienced by tissue around the ischial tuberosities, and (2) investigating the effectiveness of intermittent electrical stimulation (IES), a novel strategy for the prevention of DTI, in alleviating pressure in regions at risk of breakdown due to sustained loading. The experiments were conducted in adult pigs. Five animals had intact spinal cords and healthy muscles and one had a spinal cord injury that led to substantial muscle atrophy at the time of the experiment. A force-controlled servomotor was used to load the region of the buttocks to levels corresponding to 25%, 50% or 75% of each animal's body weight. A pressure transducer embedded in a catheter was advanced into the tissue to measure pressure along a three dimensional grid around the ischial tuberosity of one hind leg. For all levels of external loading in intact animals, average peak internal pressure was 2.01 ± 0.08 times larger than the maximal interfacial pressure measured at the level of the skin. In the animal with spinal cord injury, similar absolute values of internal pressure as that in intact animals were recorded, but the substantial muscle atrophy produced larger maximal interfacial pressures. Average peak internal pressure in this animal was 1.43 ± 0.055 times larger than the maximal interfacial pressure. Peak internal pressure was localized within a ±2 cm region medio-laterally and dorso-ventrally from the bone in intact animals and ±1 cm in the animal with spinal cord injury. IES significantly redistributed internal pressure, shifting the peak values away from the bone in spinally intact and injured animals. These findings provide critical information regarding the relationship between internal and

  13. Podocytes degrade endocytosed albumin primarily in lysosomes.

    Science.gov (United States)

    Carson, John M; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, plysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic potential in slowing the progression of glomerulosclerosis by enhancing the ability of podocytes to process and degrade albumin.

  14. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  15. Injury Characteristics of Low-Energy Lisfranc Injuries Compared With High-Energy Injuries.

    Science.gov (United States)

    Renninger, Christopher H; Cochran, Grant; Tompane, Trevor; Bellamy, Joseph; Kuhn, Kevin

    2017-09-01

    Lisfranc injuries result from high- and low-energy mechanisms though the literature has been more focused on high-energy mechanisms. A comparison of high-energy (HE) and low-energy (LE) injury patterns is lacking. The objective of this study was to report injury patterns in LE Lisfranc joint injuries and compare them to HE injury patterns. Operative Lisfranc injuries were identified over a 5-year period. Patient demographics, mechanism of injury, injury pattern, associated injuries, missed diagnoses, clinical course, and imaging studies were reviewed and compared. HE mechanism was defined as motor vehicle crash, motorcycle crash, direct crush, and fall from greater than 4 feet and LE mechanism as athletic activity, ground level twisting, or fall from less than 4 feet. Thirty-two HE and 48 LE cases were identified with 19.3 months of average follow-up. There were no differences in demographics or missed diagnosis frequency (21% HE vs 18% LE). Time to seek care was not significantly different. HE injuries were more likely to have concomitant nonfoot fractures (37% vs 6%), concomitant foot fractures (78% vs 4%), cuboid fractures (31% vs 6%), metatarsal base fractures (84% vs 29%), displaced intra-articular fractures (59% vs 4%), and involvement of all 5 rays (23% vs 6%). LE injuries were more commonly ligamentous (68% vs 16%), with fewer rays involved (2.7 vs 4.1). LE mechanisms were a more common cause of Lisfranc joint injury in this cohort. These mechanisms generally resulted in an isolated, primarily ligamentous injury sparing the lateral column. Both types had high rates of missed injury that could result in delayed treatment. Differences in injury patterns could help direct future research to optimize treatment algorithms. Level III, comparative series.

  16. Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.

    Science.gov (United States)

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James

    2015-07-15

    Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in

  17. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    Directory of Open Access Journals (Sweden)

    Joel Greenberger

    2015-01-01

    Full Text Available Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1 radiation counter measures against total or partial body irradiation; (2 normal tissue protection against acute organ specific ionizing irradiation injury; and (3 prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.

  18. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Science.gov (United States)

    Baer, Matthew L; Henderson, Scott C; Colello, Raymond J

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  19. Elucidating the Role of Injury-Induced Electric Fields (EFs in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Matthew L Baer

    Full Text Available Injury to the vertebrate central nervous system (CNS induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  20. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  1. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  2. Baseball and softball injuries.

    Science.gov (United States)

    Wang, Quincy

    2006-05-01

    Baseball and softball injuries can be a result of both acute and overuse injuries. Soft tissue injuries include contusions, abrasions, and lacerations. Return to play is allowed when risk of further injury is minimized. Common shoulder injuries include those to the rotator cuff, biceps tendon, and glenoid labrum. Elbow injuries are common in baseball and softball and include medial epicondylitis, ulnar collateral ligament injury, and osteochondritis dissecans. Typically conservative treatment with relative rest, medication, and a rehabilitation program will allow return to play. Surgical intervention may be needed for certain injuries or conservative treatment failure.

  3. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available The robust inflammatory response that occurs during ischemia reperfusion (IR injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4, during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.

  4. Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn2+ in Settings of Tissue Injury

    Directory of Open Access Journals (Sweden)

    Kristin M. Priebatsch

    2017-03-01

    Full Text Available Divalent metal ions are essential nutrients for all living organisms and are commonly protein-bound where they perform important roles in protein structure and function. This regulatory control from metals is observed in the relatively abundant plasma protein histidine-rich glycoprotein (HRG, which displays preferential binding to the second most abundant transition element in human systems, Zinc (Zn2+. HRG has been proposed to interact with a large number of protein ligands and has been implicated in the regulation of various physiological and pathological processes including the formation of immune complexes, apoptotic/necrotic and pathogen clearance, cell adhesion, antimicrobial activity, angiogenesis, coagulation and fibrinolysis. Interestingly, these processes are often associated with sites of tissue injury or tumour growth, where the concentration and distribution of Zn2+ is known to vary. Changes in Zn2+ levels have been shown to modify HRG function by altering its affinity for certain ligands and/or providing protection against proteolytic disassembly by serine proteases. This review focuses on the molecular interplay between HRG and Zn2+, and how Zn2+ binding modifies HRG-ligand interactions to regulate function in different settings of tissue injury.

  5. A Loss in the Plasma Membrane ATPase Activity and Its Recovery Coincides with Incipient Freeze-Thaw Injury and Postthaw Recovery in Onion Bulb Scale Tissue 1

    Science.gov (United States)

    Arora, Rajeev; Palta, Jiwan P.

    1991-01-01

    Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063

  6. Effect of Fucoidan Extracted from Mozuku on Experimental Cartilaginous Tissue Injury 

    Directory of Open Access Journals (Sweden)

    Saburo Minami

    2012-11-01

    Full Text Available We investigated the effect of fucoidan, a sulfated polysaccharide, on acceleration of healing of experimental cartilage injury in a rabbit model. An injured cartilage model was surgically created by introduction of three holes, one in the articular cartilage of the medial trochlea and two in the trochlear sulcus of the distal femur. Rabbits in three experimental groups (F groups were orally administered fucoidan of seven different molecular weights (8, 50, 146, 239, 330, 400, or 1000 kD for 3 weeks by screening. Control (C group rabbits were provided water ad libitum. After the experimental period, macroscopic examination showed that the degree of filling in the fucoidan group was higher than that in the C group. Histologically, the holes were filled by collagen fiber and fibroblasts in the C group, and by chondroblasts and fibroblasts in the F groups. Image analysis of Alcian blue- and safranin O-stained F-group specimens showed increased production of glycosaminoglycans (GAGs and proteoglycans (PGs, respectively. Some injured holes were well repaired both macroscopically and microscopically and were filled with cartilage tissues; cartilage matrices such as PGs and GAGs were produced in groups F 50, F 146, and F 239. Thus, fucoidan administration enhanced morphologically healing of cartilage injury.

  7. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  8. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    Science.gov (United States)

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    Science.gov (United States)

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  10. Disrupted G1 to S phase clearance via cyclin signaling impairs liver tissue repair in thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2005-01-01

    Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G 0 to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G 1 to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes

  11. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries.

    Science.gov (United States)

    Patel, Nitesh P; Lyon, Kristopher A; Huang, Jason H

    2018-05-01

    Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.

  12. Diagnosis of Acute Groin Injuries

    DEFF Research Database (Denmark)

    Serner, Andreas; Tol, Johannes L; Jomaah, Nabil

    2015-01-01

    BACKGROUND: Acute groin injuries are common in high-intensity sports, but there are insufficient data on injury characteristics such as injury mechanisms and clinical and radiological findings. PURPOSE: To describe these characteristics in a cohort of athletes. STUDY DESIGN: Cross-sectional study......; Level of evidence, 3. METHODS: A total of 110 male athletes (mean age, 25.6 ± 4.7 years) with sports-related acute groin pain were prospectively included within 7 days of injury from August 2012 to April 2014. Standardized history taking, a clinical examination, magnetic resonance imaging (MRI), and....../or ultrasound (US) were performed. RESULTS: The most frequent injury mechanism in soccer was kicking (40%), and change of direction was most frequent in other sports (31%). Clinically, adductor injuries accounted for 66% of all injuries and primarily involved the adductor longus on imaging (91% US, 93% MRI...

  13. Cellular proliferation and regeneration following tissue damage. Progress report. [Eyes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.V.

    1976-10-01

    Results are reported from a study of wound healing in tissues of the eye, particularly lens, cornea, and surrounding tissues. The reactions of these tissues to mechanical injuries, as well as injuries induced by chemotoxic agents were studied. It is postulated that a better understanding of the basic reactions of the eye to injurious agents may be of importance in the evaluation of potential environmental hazards.

  14. Podocytes Degrade Endocytosed Albumin Primarily in Lysosomes

    Science.gov (United States)

    Carson, John M.; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B.; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, palbumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic

  15. The development and application of a cold atmospheric plasma generator for treatment of skin and soft-tissue injuries in animals

    Science.gov (United States)

    Emelyanov, O. A.; Petrova, N. O.; Smirnova, N. V.; Shemet, M. V.

    2017-08-01

    We describe a device for obtaining cold plasma in air at atmospheric pressure using a system of positive high-voltage pin electrodes, which is intended for the treatment of skin and soft-tissue injuries in animals. Plasma is generated due to the development of periodic pulsed discharge of nanosecond duration at current pulse amplitudes 10-20 mA, characteristic frequencies 10-20 kHz, and applied voltages within 8-10 kV. The high efficacy of the proposed device and method is confirmed by the good clinical results of treating large domestic animals with traumatic injuries.

  16. Effect of pigment epithelium derived factor on NO and the expression of caspase-3 in retinal tissues of model rats with optic nerve crush injury

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Yan

    2017-06-01

    Full Text Available AIM: To analyze the effect of pigment epithelium derived factor(PEDFon nitrogen monoxide(NOand expression of cysteine-containing, aspartate-specific proteases-3(caspase-3in retinal tissues of model rats with optic nerve crush injury. METHODS: A total of 60 SD rats were randomly divided into the blank control group, model group and PEDF group, with 20 rats in each group. Except the blank control group, the optic nerve crush injury rat models were established in the other groups, and left eyeballs were taken as samples. After successfully modeling, the model group were treated with intravitreal injection of 5μL of balanced salt solution while PEDF group were treated with intravitreal injection of 5μL of PEDF(0.2μg/μL. Two weeks later, the retinal tissues were collected, and changes of shape were observed under microscope after HE staining. The changes of NO level were measured by colorimetry assay, the expression of caspase-3 mRNA and caspase-3 protein was detected by reverse transcription-polymerase chain reaction(RT-PCRand Western-blot. RESULTS: HE staining showed that retinal tissues of the blank control group arranged neatly and clearly. Retinal ganglion cells(RGCsarranged in a monolayer, and cells were oval, uniform in size and distribution, the cell nuclei were clear, closely arranged, with clear boundaries. The retinal tissues of the model group were sparse in shape, RGCs showed vacuolar changes, the overall number of cells was reduced, and cell nuclei of residual RGCs showed pyknosis and uneven staining. RGCs in PEDF group were with slightly edema and arranged closely, and the degree of injury was significantly milder than that in the model group. Levels of Caspase-3 mRNA and protein and NO levels in the three groups showed the model group > PEDF group > blank control group(all P CONCLUSION: The application of PEDF can down regulate the expression of Caspase-3 and NO in rates with optic nerve injury and reduce RGCs injury.

  17. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  18. Holiday ornament-related injuries in children.

    Science.gov (United States)

    Kimia, Amir; Lee, Lois; Shannon, Michael; Capraro, Andrew; Mays, Donald; Johnston, Patrick; Hummel, David; Shuman, Margot

    2009-12-01

    Holiday ornament injuries in children have not been well documented in the medical literature. Our aim was to investigate the patterns of injuries sustained from these ornaments as a first measure toward prevention. This was a retrospective cohort analysis of all patients examined in an urban pediatric emergency department over a 13-year period ending in March 2008 for holiday ornament-related injuries. Cases were identified using a computer-assisted text query followed by a manual chart review. Data collected from each chart included the child's age, sex, injury characteristics, physical examination findings, radiographic imaging, interventions, and disposition. To analyze injury rates over the years, we used a multiplicative Poisson model allowing varying exposures. Over the study period, we identified 76 eligible patients. The median age was 2 years (interquartile range, 1.17-3.3 years); 44.7% were female. Forty-three of the 76 cases (53.9%) involved ingestions: 35 were of holiday ornaments, and 8 were of light bulbs. All but one of these ornaments were made of glass. In 28%, there was an associated bleed either from the mouth or as a delayed gastrointestinal bleed. Other patients experienced lacerations (27.6%), eye injuries (5.1%), and minor electrocution injury (2.5%). Imaging was performed in 85%. A subspecialty consult was obtained in 23%, primarily addressing a foreign body ingestion or removal after skin exploration. The incidence rate has not changed over the years. Holiday ornament-related injuries primarily involve foreign body ingestions and glass-related injuries. Over half of the injuries involved small light bulbs and ornaments made of glass placed at the level a toddler can reach. Pediatricians are advised to discuss these points with families during holiday season.

  19. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  20. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model.

    Science.gov (United States)

    Lotter, Oliver; Held, Manuel; Schiefer, Jennifer; Werner, Ole; Medved, Fabian; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Jaminet, Patrick; Rothenberger, Jens

    2015-01-01

    Currently, the diagnosis of burn depth is primarily based on a visual assessment and can be dependent on the surgeons' experience. The goal of this study was to determine the ability of laser Doppler flowmeter combined with a tissue spectrophotometer to discriminate burn depth in a miniature swine burn model. Burn injuries of varying depth, including superficial-partial, deep-partial, and full thickness, were created in seven Göttingen minipigs using an aluminium bar (100 °C), which was applied to the abdominal skin for periods of 1, 3, 6, 12, 30, and 60 seconds with gravity alone. The depth of injury was evaluated histologically using hematoxylin and eosin staining. All burns were assessed 3 hours after injury using a device that combines a laser light and a white light to determine blood flow, hemoglobin oxygenation, and relative amount of hemoglobin. The blood flow (41 vs. 124 arbitrary units [AU]) and relative amount of hemoglobin (32 vs. 52 AU) were significantly lower in full thickness compared with superficial-partial thickness burns. However, no significant differences in hemoglobin oxygenation were observed between these depths of burns (61 vs. 60%). These results show the ability of laser Doppler flowmeter and tissue spectrophotometer in combination to discriminate between various depths of injury in the minipig model, suggesting that this device may offer a valuable tool for burn depth assessment influencing burn management. © 2014 by the Wound Healing Society.

  1. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  2. Different tissue type categories of overuse injuries to cricket fast ...

    African Journals Online (AJOL)

    Background. Cricket fast bowlers have a high incidence of injury and have been the subject of previous research investigating the effects of previous injury, workload and technique. Bone stress injuries are of particular concern as they lead to prolonged absences from the game, with younger bowlers appearing to be at ...

  3. The state of head injury biomechanics: past, present, and future part 2: physical experimentation.

    Science.gov (United States)

    Goldsmith, Werner; Monson, Kenneth L

    2005-01-01

    This presentation is the continuation of the article published in Critical Reviews of Biomedical Engineering, 29(5-6), 2001. That issue contained topics dealing with components and geometry of the human head, classification of head injuries, some early experimental studies, and tolerance considerations. It then dealt with head motion and load characterization, investigations during the period from 1939 to 1966, injury causation and early modeling efforts, the 1966 Head Injury Conference and its sequels, mechanical properties of solid tissues, fluid characterization, and early investigation of the mechanical properties of cranial materials. It continued with a description of the systematic investigations of solid cranial components and structural properties since 1966, fetal cranial properties, analytical head modeling, and numerical solutions of head injury. The paper concluded with experimental dynamic loading of human living and cadaver heads, dynamic loading of surrogate heads, and head injury mechanics. This portion of the paper describes physical head injury experimentation involving animals, primarily primates, human cadavers, volunteers, and inanimate physical models. In order to address the entire domain of head injury biomechanics in the two-part survey, it was intended that this information be supplemented by discussions of head injury tolerance and criteria, automotive and sports safety considerations, and the design of protective equipment, but Professor Goldsmith passed away before these sections could be completed. It is nevertheless anticipated that this attenuated installment will provide, in conjunction with the first part of the survey, a valuable resource for students and practitioners of head injury biomechanics.

  4. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  5. Penetrating missile-type head injury from a defective badminton racquet.

    Science.gov (United States)

    Pappano, Dante; Murray, Elizabeth; Cimpello, Lynn Babcock; Conners, Gregory

    2009-06-01

    Injuries occurring during badminton are rarely serious and primarily involve the lower extremities. We report an instance wherein a patient suffered serious brain injury related to playing with a defective badminton racquet. The possibility of similar injuries following the separation of the racquet head and shaft from the handle needs to be disseminated.

  6. Aquatic antagonists: cutaneous sea urchin spine injury.

    Science.gov (United States)

    Hsieh, Clifford; Aronson, Erica R; Ruiz de Luzuriaga, Arlene M

    2016-11-01

    Injuries from sea urchin spines are commonly seen in coastal regions with high levels of participation in water activities. Although these injuries may seem minor, the consequences vary based on the location of the injury. Sea urchin spine injuries may cause arthritis and synovitis from spines in the joints. Nonjoint injuries have been reported, and dermatologic aspects of sea urchin spine injuries rarely have been discussed. We present a case of a patient with sea urchin spines embedded in the thigh who subsequently developed painful skin nodules. Tissue from the site of the injury demonstrated foreign-body type granulomas. Following the removal of the spines and granulomatous tissue, the patient experienced resolution of the nodules and associated pain. Extraction of sea urchin spines can attenuate the pain and decrease the likelihood of granuloma formation, infection, and long-term sequelae.

  7. The role of the plastic surgeon in dealing with soft tissue injuries: experience from the second Israel-Lebanon war, 2006.

    Science.gov (United States)

    Sharony, Zach; Eldor, Liron; Klein, Yuval; Ramon, Yitzchak; Rissin, Yaron; Berger, Yosef; Lerner, Alexander; Ullmann, Yehuda

    2009-01-01

    During the 2006 war between Israel and Lebanon, 282 Israeli soldiers were evacuated to Rambam Health Care Campus. Of these, 210 were admitted for observation or treatment, and 15 of these were admitted to the Department of Plastic and Reconstructive Surgery. Thirty-five other soldiers, hospitalized in other departments, required the care of Plastic Surgeons, either for conservative or surgical treatment. The injury profile observed was consistent with data from previous low-intensity warfare, which demonstrated that over 80% of injuries were produced by fragmentation weapons, such as artillery, mortarshells, rockets, and missiles. It differs, however, from our experience in previous wars and our expectations regarding burn wounds, both in incidence and severity, which were significantly lower as compared with the past. This article presents our management of extensive soft tissue injuries, and details 3 representative cases. It highlights the role of the Plastic Surgeon as part of the whole treatment in this type of injury and helps to predict the needs of the medical system in preparation for the future.

  8. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  9. Evaluating the injury incidence from skate shoes in the United States.

    Science.gov (United States)

    Ruth, Erin; Shah, Binisa; Fales, Willliam

    2009-05-01

    increase in injuries to children and adolescents using skate shoes, which paralleled the products' sales increase. The types of injuries are primarily a wide range of non-life threatening bone and soft tissue injuries.

  10. Childhood agricultural injuries: an update for clinicians.

    Science.gov (United States)

    Wright, Suzanne; Marlenga, Barbara; Lee, Barbara C

    2013-02-01

    Every three days a child dies in an agriculture-related incident, and every day 45 children are injured in the United States. These tragedies should not be regarded as "accidents," as they often follow predictable and preventable patterns. Prevention is not only possible, but vital, since many of these injuries are almost immediately fatal. Major sources of fatal injuries are machinery, motor vehicles, and drowning. Tractor injuries alone account for one-third of all deaths. The leading sources of nonfatal injuries are structures and surfaces, animals (primarily horses), and vehicles (primarily all-terrain vehicles [ATVs]). Children living on farms are at a higher risk than hired workers, and are unprotected by child labor laws. Preschool children and older male youth are at the highest risk for fatal injury, while nonfatal injury was most common among boys aged 10-15 years. Multiple prevention strategies have been developed, yet economic and cultural barriers often impede their implementation. Educational campaigns alone are often ineffective, and must be coupled with re-engineering of machines and safety devices to reduce fatalities. Legislation has the potential to improve child safety, yet political and economic pressures often prohibit changes in child labor laws and mandated safety requirements. Clinicians play a pivotal role in injury prevention, and should actively address common rural risk-taking behaviors as part of the routine office visit in order to help prevent these tragedies. Copyright © 2013 Mosby, Inc. All rights reserved.

  11. Facial transplantation for massive traumatic injuries.

    Science.gov (United States)

    Alam, Daniel S; Chi, John J

    2013-10-01

    This article describes the challenges of facial reconstruction and the role of facial transplantation in certain facial defects and injuries. This information is of value to surgeons assessing facial injuries with massive soft tissue loss or injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Ligamentous Injuries and the Risk of Associated Tissue Damage in Acute Ankle Sprains in Athletes: A Cross-sectional MRI Study.

    Science.gov (United States)

    Roemer, Frank W; Jomaah, Nabil; Niu, Jingbo; Almusa, Emad; Roger, Bernard; D'Hooghe, Pieter; Geertsema, Celeste; Tol, Johannes L; Khan, Karim; Guermazi, Ali

    2014-07-01

    Ankle joint injuries are extremely common sports injuries, with the anterior talofibular ligament involved in the majority of ankle sprains. There have been only a few large magnetic resonance imaging (MRI) studies on associated structural injuries after ankle sprains. To describe the injury pattern in athletes who were referred to MRI for the assessment of an acute ankle sprain and to assess the risk of associated traumatic tissue damage including lateral and syndesmotic ligament involvement. Cross-sectional study; Level of evidence, 3. A total of 261 ankle MRI scans of athletes with acute ankle sprains were evaluated for: lateral and syndesmotic ligament injury; concomitant injuries to the deltoid and spring ligaments and sinus tarsi; peroneal, flexor, and extensor retinacula and tendons; traumatic and nontraumatic osteochondral and osseous changes; and joint effusion. Patients were on average 22.5 years old, and the average time from injury to MRI was 5.7 days. Six exclusive injury patterns were defined based on lateral and syndesmotic ligament involvement. The risk for associated injuries was assessed by logistic regression using ankles with no or only low-grade lateral ligament injuries and no syndesmotic ligament damage as the reference. With regard to the injury pattern, there were 103 ankles (39.5%) with complete anterior talofibular ligament disruption and no syndesmotic injury, and 53 ankles (20.3%) had a syndesmotic injury with or without lateral ligament damage. Acute osteochondral lesions of the lateral talar dome were seen in 20 ankles (7.7%). The percentage of chronic lateral osteochondral lesions was 1.1%. The risk for talar bone contusions increased more than 3-fold for ankles with complete lateral ligament ruptures (adjusted odds ratio [aOR], 3.43; 95% CI, 1.72-6.85) but not for ankles with syndesmotic involvement. The risk for associated deltoid ligament injuries increased for ankles with complete lateral ligament injuries (aOR, 4.04; 95% CI, 1

  13. Assessment of the Effectiveness of Extracorporeal Shock Wave Therapy (ESWT) For Soft Tissue Injuries (ASSERT): An Online Database Protocol.

    Science.gov (United States)

    Maffulli, G; Hemmings, S; Maffulli, N

    2014-09-01

    Soft tissue injuries and tendinopathies account for large numbers of chronic musculoskeletal disorders. Extracorporeal shockwave therapy (ESWT) is popular, and effective in the management of chronic tendon conditions in the elbow, shoulder, and pain at and around the heel. Ethical approval was granted from the South East London Research Ethics Committee to implement a database for the Assessment of Effectiveness of Extracorporeal Shock Wave Therapy for Soft Tissue Injuries (ASSERT) to prospectively collect information on the effectiveness of ESWT across the UK. All participants will give informed consent. All clinicians follow a standardised method of administration of the ESWT. The primary outcome measures are validated outcome measures specific to the condition being treated. A Visual Analogue Score for pain and the EuroQol will be completed alongside the condition specific outcome tool at baseline, 3, 6, 12 and 24 months post treatment. The development of the ASSERT database will enable the evaluation of the effectiveness of ESWT for patients suffering from chronic conditions (plantar fasciopathy, tennis elbow, Achilles tendinopathy, greater trochanter pain syndrome and patellar tendinopathy). The results will aid the clinicians in the decision making process when managing these patients.

  14. Influence of Bone and Muscle Injuries on the Osteogenic Potential of Muscle Progenitors: Contribution of Tissue Environment to Heterotopic Ossification.

    Science.gov (United States)

    Molligan, Jeremy; Mitchell, Reed; Schon, Lew; Achilefu, Samuel; Zahoor, Talal; Cho, Young; Loube, Jeffery; Zhang, Zijun

    2016-06-01

    : By using surgical mouse models, this study investigated how the tissue environment influences the osteogenic potential of muscle progenitors (m-progenitors) and potentially contributes to heterotopic ossification (HO). Injury was induced by clamping the gluteus maximus and medius (group M) or osteotomy of greater trochanter (group O) on the right hip, as well as combined muscle injury and osteotomy of greater trochanter (group M+O). The gluteus maximus and medius of the operated hips were harvested at days 1, 3, 5, and 10 for isolation of m-progenitors. The cells were cultured in an osteogenic medium for 3 weeks, and osteogenesis was evaluated by matrix mineralization and the expression of osteogenesis-related genes. The expression of type I collagen, RUNX2 (runt-related transcription factor 2), and osteocalcin by the m-progenitors of group M+O was significantly increased, compared with groups M and O. Osteogenic m-progenitors in group O increased the expression of bone morphogenetic protein 2 and also bone morphogenetic protein antagonist differential screening-selected gene aberrative in neuroblastoma. On histology, there was calcium deposition mostly in the muscles of group M+O harvested at day 10. CD56, representing myogenic progenitors, was highly expressed in the m-progenitors isolated from group M (day 10), but m-progenitors of group M+O (day 10) exhibited the highest expression of platelet-derived growth factor receptor α (PDGFR-α), a marker of muscle-derived mesenchymal stem cells (M-MSCs). The expressions of PDGFR-α and RUNX2 were colocalized in osteogenic m-progenitors. The data indicate that the tissue environment simulated in the M+O model is a favorable condition for HO formation. Most likely, M-MSCs, rather than myogenic progenitors, in the m-progenitors participate in HO formation. The prevalence of traumatic heterotopic ossification (HO) is high in war injury. The pathogenesis of HO is still unknown. This study clarified the contribution of a

  15. Mole gun injury.

    Science.gov (United States)

    Pistré, V; Rezzouk, J

    2013-09-01

    A mole gun is a weapon, which is used to trap and kill moles. This report provides an overview of the state of knowledge of mole gun injuries, comparable to blast injuries caused by fireworks, explosive or gunshot. Over a 2-year period, the authors reported their experience with ten hand injuries caused by mole gun. Radial side of the hand was often concerned, particularly the thumb. The authors explain their choices in the management of such lesions. Surgery was performed primarily and a large debridement currently seemed to offer the best outcome for the patient. Blast, crush, burns and lacerations may explain the higher rate of amputation to the digits. A long period of physiotherapy, specifically of the hand, was needed before the patient could return to work. This ballistic hand trauma encountered by surgeons requires knowledge and understanding of these injuries. It should be in accordance with firearms law because of severe injuries encountered and possible lethal wounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Car surfing: an underreported mechanism of serious injury in children and adolescents.

    Science.gov (United States)

    Geiger, J D; Newsted, J; Drongowski, R A; Lelli, J L

    2001-01-01

    Car surfing, in which participants stand on top of a moving vehicle as though it were a surfboard, has been reported as a cause of traumatic injury in only 5 cases in the literature. Over the last 8 years, however, the authors have treated 26 children, primarily adolescents, for injuries resulting from car surfing. This report describes the injuries and outcomes of this potentially underreported mechanism of injury. Medical records of 26 patients treated for car surfing injuries between 1991 and 1999 were reviewed. Demographics, hospital course, and type and severity of injuries were analyzed. Eighteen boys (69%) and 8 girls (31%) with an average age of 15.7+/-3.4 years (range, 6 to 22) have presented with injuries related to car surfing. All patients had fallen from the hood, roof, or trunk of a moving motor vehicle, the majority falling from the hood (n = 13; 50%). Injury severity was evaluated using the Injury Severity Scores (ISS; 12.4+/-6.5), Revised Trauma Score (RTS; 7.5+/- 1.1) and Glasgow Coma Score (GCS; 13.5+/-3.2). Injury severity was equivalent between boys and girls (P>.05). Central nervous system injuries predominated, with closed head injuries occurring in 22 (85%) and loss of consciousness in 10 (39%). Skull fractures occurred in 11 (42%) and intracranial bleeding in 9 (35%). Long-term cognitive rehabilitation was necessary in 22 (85%) patients. Three patients (12%) had spinal column fractures, with 2 (8%) suffering permanent paralysis. Two extremity (8%) and 3 (11.7%) pelvic fractures occurred. Most patients (73%) suffered significant skin and soft tissue injuries. Two patients (8%) presented with solid visceral injuries, and 1 child died. Car surfing is an extremely high-risk behavior in children and adolescents that leads to significant morbidity, long-term disability, and is potentially fatal. The incidence of car surfing may be greater than has been reported previously; therefore, prevention programs aimed at discouraging this high

  17. Review of the efficacy and tolerability of the diclofenac epolamine topical patch 1.3% in patients with acute pain due to soft tissue injuries.

    Science.gov (United States)

    Kuehl, Kerry S

    2010-06-01

    The diclofenac epolamine topical patch 1.3% (DETP) was approved by the US Food and Drug Administration in January 2007 for the treatment of soft tissue injuries such as strains, sprains, and contusions, although it has been available for many years in >40 countries worldwide. The aim of this study was to review the efficacy and tolerability of the DETP in relieving acute pain caused by soft tissue injuries. The MEDLINE, Derwent Drug File, BIOSIS, and EMBASE databases were searched for literature published between 1984 and October 30, 2009, in any language, using the terms diclofenac epolamine patch, diclofenac hydroxyethylpyrrolidine patch, and FLECTOR Patch. Clinical studies of the efficacy and/or tolerability of the DETP in patients with acute pain due to soft tissue injuries or localized periarticular disorders were included. Efficacy studies that enrolled patients with other medical conditions were excluded, except for reports that focused on tolerability, which were included to supplement tolerability data. The bibliographies of included studies were reviewed manually for relevant articles based on inclusion and exclusion criteria, and the manufacturer was contacted for additional relevant postmarketing surveillance information and presentations from scientific meetings. The search identified 6 placebo-controlled clinical studies, 1 active-comparator-controlled clinical study, and 1 open-label comparator clinical study of the efficacy and tolerability of the DETP in patients with soft tissue injuries. Three studies reported on tolerability. Primary analyses among the 8 studies reported DETP-associated reductions in spontaneous pain from baseline, assessed using a visual analog scale, ranging from 26% to 88% on day 7 and 56% to 61% on day 14. The use of the DETP was associated with significantly greater reductions in pain scores compared with a placebo patch (2 studies) on day 7 (88% vs 74%; P = 0.001) and day 14 (56.5% vs 46.8%; P = 0.001) and compared with

  18. Sports injuries in adolescent boarding school boys.

    OpenAIRE

    Briscoe, J H

    1985-01-01

    A survey is presented of 346 sports injuries admitted to the Eton College Sanatorium between 1971 and 1982. The incidence of injury was lowest in 13 year olds perhaps because of their lighter weight. The injuries were classified into four groups--minor head injury, soft tissue injury, fractures and dislocations, and eye injury. Football caused 75 per cent of all injuries except eye injury where it accounted for only a third. Comparison of the incidence of injury at the three types of football...

  19. Rollerblading and skateboarding injuries in children in northeast England.

    Science.gov (United States)

    Hassan, I; Dorani, B J

    1999-01-01

    OBJECTIVES: To establish the demographic profile and injury characteristics of children presenting with rollerblading or skateboarding associated injuries. This study also examines the circumstances leading to these injuries with a view to suggesting preventive measures. METHODS: A prospective study using a proforma to collect data from each child presenting with rollerblading or skateboarding related injuries. Injury details were obtained from clinical and radiological records. The injury severity score (ISS) was calculated for each child and statistical analysis was done using chi2. RESULTS: Eighty one children presented with rollerblading associated injuries accounting for 7% of childhood injuries seen during the eight month study period. The mean age was 10.3 years and sex distribution was equal. Soft tissue injuries accounted for 51% and fractures for 49% of the injuries. Wrist fractures alone accounted for 86% of all fractures seen. Seventy per cent of soft tissue injuries involved the upper limb. The overall mean ISS was 3.0 with a range from 1 to 9. Injury was attributed to fall secondary to loss of control or collision with an obstacle while rollerblading in the majority of children. Injury occurred while rollerblading in residential or public places in 99% of the children. In contrast skateboarding related injuries were much rarer and caused soft tissue injuries only. CONCLUSION: This study has revealed a higher incidence of rollerblading injuries than previously suspected. Effective management strategies should include not only the treatment of these injuries but also attention to their causes and prevention. PMID:10505916

  20. Mobilization of Circulating Vascular Progenitors in Cancer Patients Receiving External Beam Radiation in Response to Tissue Injury

    International Nuclear Information System (INIS)

    Allan, David S.; Morgan, Scott C.; Birch, Paul E.; Yang, Lin; Halpenny, Michael J.; Gunanayagam, Angelo; Li Yuhua; Eapen, Libni

    2009-01-01

    Purpose: Endothelial-like vascular progenitor cells (VPCs) are associated with the repair of ischemic tissue injury in several clinical settings. Because the endothelium is a principal target of radiation injury, VPCs may be important in limiting toxicity associated with radiotherapy (RT) in patients with cancer. Methods and Materials: We studied 30 patients undergoing RT for skin cancer (n = 5), head-and-neck cancer (n = 15), and prostate cancer (n = 10) prospectively, representing a wide range of irradiated mucosal volumes. Vascular progenitor cell levels were enumerated from peripheral blood at baseline, midway through RT, at the end of treatment, and 4 weeks after radiation. Acute toxicity was graded at each time point by use of the National Cancer Institute's Common Toxicity Criteria, version 3.0. Results: Significant increases in the proportion of CD34 + /CD133 + VPCs were observed after completion of RT, from 0.012% at baseline to 0.048% (p = 0.029), and the increase in this subpopulation was most marked in patients with Grade 2 peak toxicity or greater after RT (p = 0.034). Similarly, CD34 + /vascular endothelial growth factor receptor 2-positive VPCs were increased after the completion of radiation therapy in comparison to baseline (from 0.014% to 0.027%, p = 0.043), and there was a trend toward greater mobilization in patients with more significant toxicity (p = 0.08). The mobilization of CD34 + hematopoietic stem cells did not increase after treatment (p = 0.58), and there was no relationship with toxicity. Conclusions: We suggest that VPCs may play an important role in reducing radiation-induced tissue damage. Interventions that increase baseline VPC levels or enhance their mobilization and recruitment in response to RT may prove useful in facilitating more rapid and complete tissue healing.

  1. Lawnmower injuries in children.

    LENUS (Irish Health Repository)

    Nugent, Nora

    2012-02-03

    OBJECTIVE: Power lawnmowers can pose significant danger of injury to both the operator and the bystander, from direct contact with the rotary blades or missile injury. Our objective was to review our experience with paediatric lawnmower-associated trauma, and the safety recommendations available to operators of power lawnmowers. METHODS: The patient cohort comprised paediatric (<16 years of age) patients treated for lawnmower-associated trauma, by the plastic surgery service, between 1996 and 2003. These patients were identified retrospectively. Age at the time of injury, location and extent of bony and soft tissue injuries sustained, treatment instituted and clinical outcome were recorded. Brochures and instruction manuals of six lawnmower manufacturers were reviewed, and safety recommendations noted. RESULTS: Fifteen patients were identified. The majority of injuries occurred from direct contact with the rotary blades (93%); the remaining child sustained a burn injury. Fourteen children (93%) required operative intervention. Seven patients (46%) sustained injuries resulting in amputation, two of whom had major limb amputations. All children, except the burns patient, underwent wound debridement and received antibiotic therapy. Reconstructive methods ranged from primary closure to free tissue transfer. Many patients required multiple procedures. In all instruction manuals, instructions to keep children and pets indoors or out of the yard when mowing were found. CONCLUSIONS: Lawnmower injuries can be devastating, particularly in children. Many victims have lasting deformities as a result of their injuries. Awareness of and stringent adherence to safety precautions during use of power lawnmowers can prevent many of these accidents.

  2. Localized bioimpedance to assess muscle injury

    International Nuclear Information System (INIS)

    Nescolarde, L; Rosell-Ferrer, J; Yanguas, J; Lukaski, H; Alomar, X; Rodas, G

    2013-01-01

    Injuries to lower limb muscles are common among football players. Localized bioimpedance analysis (BIA) utilizes electrical measurements to assess soft tissue hydration and cell membrane integrity non-invasively. This study reports the effects of the severity of muscle injury and recovery on BIA variables. We made serial tetra-polar, phase-sensitive 50 kHz localized BIA measurements of quadriceps, hamstring and calf muscles of three male football players before and after injury and during recovery until return-to-play, to determine changes in BIA variables (resistance (R), reactance (Xc) and phase angle (PA)) in different degrees of muscle injury. Compared to non-injury values, R, Xc and PA decreased with increasing muscle injury severity: grade III (23.1%, 45.1% and 27.6%), grade II (20.6%, 31.6% and 13.3%) and grade I (11.9%, 23.5% and 12.1%). These findings indicate that decreases in R reflect localized fluid accumulation, and reductions in Xc and PA highlight disruption of cellular membrane integrity and injury. Localized BIA measurements of muscle groups enable the practical detection of soft tissue injury and its severity. (paper)

  3. Braque and Kokoschka: Brain Tissue Injury and Preservation of Artistic Skill.

    Science.gov (United States)

    Zaidel, D W

    2017-08-19

    The neural underpinning of art creation can be gleaned following brain injury in professional artists. Any alteration to their artistic productivity, creativity, skills, talent, and genre can help understand the neural underpinning of art expression. Here, two world-renown and influential artists who sustained brain injury in World War I are the focus, namely the French artist Georges Braque and the Austrian artist Oskar Kokoschka. Braque is particularly associated with Cubism, and Kokoschka with Expressionism. Before enlisting, they were already well-known and highly regarded. Both were wounded in the battlefield where they lost consciousness and treated in European hospitals. Braque's injury was in the left hemisphere while Kokoschka's was in the right hemisphere. After the injury, Braque did not paint again for nearly a whole year while Kokoschka commenced his artistic works when still undergoing hospital treatment. Their post-injury art retained the same genre as their pre-injury period, and their artistic skills, talent, creativity, and productivity remained unchanged. The quality of their post-injury artworks remained highly regarded and influential. These neurological cases suggest widely distributed and diffuse neural control by the brain in the creation of art.

  4. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    -rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified...... release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans....

  5. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health.

    Science.gov (United States)

    Kehrer, James P; Klotz, Lars-Oliver

    2015-01-01

    A radical is any molecule that contains one or more unpaired electrons. Radicals are normal products of many metabolic pathways. Some exist in a controlled (caged) form as they perform essential functions. Others exist in a free form and interact with various tissue components. Such interactions can cause both acute and chronic dysfunction, but can also provide essential control of redox regulated signaling pathways. The potential roles of endogenous or xenobiotic-derived free radicals in several human pathologies have stimulated extensive research linking the toxicity of numerous xenobiotics and disease processes to a free radical mechanism. In recent years, improvements in analytical methodologies, as well as the realization that subtle effects induced by free radicals and oxidants are important in modulating cellular signaling, have greatly improved our understanding of the roles of these reactive species in toxic mechanisms and disease processes. However, because free radical-mediated changes are pervasive, and a consequence as well as a cause of injury, whether such species are a major cause of tissue injury and human disease remains unclear. This concern is supported by the fact that the bulk of antioxidant defenses are enzymatic and the findings of numerous studies showing that exogenously administered small molecule antioxidants are unable to affect the course of most toxicities and diseases purported to have a free radical mechanism. This review discusses cellular sources of various radical species and their reactions with vital cellular constituents, and provides examples of selected disease processes that may have a free radical component.

  6. In Vivo Effects of Quercetin in Association with Moderate Exercise Training in Improving Streptozotocin-Induced Aortic Tissue Injuries

    Directory of Open Access Journals (Sweden)

    Irina C. Chis

    2015-12-01

    Full Text Available Background: Diabetes mellitus (DM is a chronic endocrine-metabolic disorder associated with endothelial dysfunction. Hyperglycemia, dyslipidemia and abnormal nitric oxide-mediated vasodilatation are the major causal factors in the development of endothelial dysfunction in DM. The prevention of endothelial dysfunction may be a first target against the appearance of atherosclerosis and cardiovascular diseases. We have investigated the synergistic protective effects of quercetin administration and moderate exercise training on thoracic aorta injuries induced by diabetes. Methods: Diabetic rats that performed exercise training were subjected to a swimming training program (1 h/day, 5 days/week, 4 weeks. The diabetic rats received quercetin (30 mg/kg body weight/day for 4 weeks. At the end of the study, the thoracic aorta was isolated and divided into two parts; one part was immersed in 10% formalin for histopathological evaluations and the other was frozen for the assessment of oxidative stress markers (malondialdehyde, MDA and protein carbonyls groups, PC, the activity of antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT, nitrite plus nitrate (NOx production and inducible nitric oxide synthase (iNOS protein expression. Results: Diabetic rats showed significantly increased MDA and PC levels, NOx production and iNOS expression and a reduction of SOD and CAT activity in aortic tissues. A decrease in the levels of oxidative stress markers, NOx production and iNOS expression associated with elevated activity of antioxidant enzymes in the aortic tissue were observed in quercetin-treated diabetic trained rats. Conclusions: These findings suggest that quercetin administration in association with moderate exercise training reduces vascular complications and tissue injuries induced by diabetes in rat aorta by decreasing oxidative stress and restoring NO bioavailability.

  7. Dismounted Complex Blast Injury.

    Science.gov (United States)

    Andersen, Romney C; Fleming, Mark; Forsberg, Jonathan A; Gordon, Wade T; Nanos, George P; Charlton, Michael T; Ficke, James R

    2012-01-01

    The severe Dismounted Complex Blast Injury (DCBI) is characterized by high-energy injuries to the bilateral lower extremities (usually proximal transfemoral amputations) and/or upper extremity (usually involving the non-dominant side), in addition to open pelvic injuries, genitourinary, and abdominal trauma. Initial resuscitation and multidisciplinary surgical management appear to be the keys to survival. Definitive treatment follows general principals of open wound management and includes decontamination through aggressive and frequent debridement, hemorrhage control, viable tissue preservation, and appropriate timing of wound closure. These devastating injuries are associated with paradoxically favorable survival rates, but associated injuries and higher amputation levels lead to more difficult reconstructive challenges.

  8. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  9. Foot strike and injury rates in endurance runners: a retrospective study.

    Science.gov (United States)

    Daoud, Adam I; Geissler, Gary J; Wang, Frank; Saretsky, Jason; Daoud, Yahya A; Lieberman, Daniel E

    2012-07-01

    This retrospective study tests if runners who habitually forefoot strike have different rates of injury than runners who habitually rearfoot strike. We measured the strike characteristics of middle- and long-distance runners from a collegiate cross-country team and quantified their history of injury, including the incidence and rate of specific injuries, the severity of each injury, and the rate of mild, moderate, and severe injuries per mile run. Of the 52 runners studied, 36 (69%) primarily used a rearfoot strike and 16 (31%) primarily used a forefoot strike. Approximately 74% of runners experienced a moderate or severe injury each year, but those who habitually rearfoot strike had approximately twice the rate of repetitive stress injuries than individuals who habitually forefoot strike. Traumatic injury rates were not significantly different between the two groups. A generalized linear model showed that strike type, sex, race distance, and average miles per week each correlate significantly (P strike have significantly higher rates of repetitive stress injury than those who mostly forefoot strike. This study does not test the causal bases for this general difference. One hypothesis, which requires further research, is that the absence of a marked impact peak in the ground reaction force during a forefoot strike compared with a rearfoot strike may contribute to lower rates of injuries in habitual forefoot strikers.

  10. Musculoskeletal injuries among Malaysian badminton players.

    Science.gov (United States)

    Shariff, A H; George, J; Ramlan, A A

    2009-11-01

    The purpose of this study was to investigate the pattern of musculoskeletal injuries sustained by Malaysian badminton players. This is a retrospective case notes review of all badminton players who attended the National Sports Institute (NSI) Clinic, Kuala Lumpur, Malaysia, and were diagnosed with musculoskeletal injuries. In a two and a half year period, from January 2005 to June 2007, 469 musculoskeletal injuries were diagnosed among badminton players at the NSI Clinic. The mean age of the players who attended the clinic was 19.2 (range 13-52) years. Approximately 60 percent of the injuries occurred in players younger than 20 years of age. The majority of injuries (91.5 percent) were categorised as mild overuse injury and mostly involved the knee. The majority of the injuries sustained by badminton players in this study were due to overuse, primarily in the knee. The majority of the injuries were diagnosed in younger players and occurred during training/practice sessions. There was no difference in terms of incidence and types of injuries between the genders.

  11. Triacylglycerol Accumulation is not primarily affected in Myotubes established from Type 2 Diabetic Subjects

    DEFF Research Database (Denmark)

    Gaster, Michael; Beck-Nielsen, Henning

    2006-01-01

    In the present study, we investigated triacylglycerol (TAG) accumulation, glucose and fatty acid (FA) uptake, and glycogen synthesis (GS) in human myotubes from healthy, lean, and obese subjects with and without type 2 diabetes (T2D), exposed to increasing palmitate (PA) and oleate (OA...... uptake (P0.05). These results indicate that (1) TAG accumulation is not primarily affected in skeletal muscle tissue of obese and T2D; (2) induced inhibition of oxidative phosphorylation is followed by TAG accumulation...... in skeletal muscle of obese and T2D subjects is adaptive....

  12. MR imaging of acute cervical spine injuries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Hwa; Lee, Jung Hyung; Joo, Yang Goo [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1995-01-15

    To describe magnetic resonance (MR) findings of the patients with acute cervical spinal injury and to assess the usefulness of the MR imagings. We retrospectively reviewed the MR images of 32 patients with acute cervical spinal injury. MR images were obtained with a 2.0 T superconductive MR imaging units (Spectro-20000, Gold-Star, Seoul), using spin-echo and gradient-echo technique. Most of patients were in their 3rd-4th decades and motor vehicle accident was the most frequent cause of acute cervical trauma. We assessed the MR findings with respect to the spinal cord, ligaments, paravertebral soft tissues, intervertebral disk, and bony spine. Spinal cord injury was the most common (65%), where cord swelling, edema, and/or hematoma were demonstrated most frequently at C5-6 level. Traumatic intervertebral disk herniations were the second most common (62.5%) and frequently occurred at the lower cervical levels, mostly at C5-6. Paravertebral soft tissue injury, vertebral body fracture, bone marrow edema and displacement were also well shown on MR images. MR imaging appears to be essential for the evaluation of traumatic disk herniations, spinal cord abnormalities, and injury of paravertebral soft tissue in the acute injury of the cervical spine.

  13. MR imaging of acute cervical spine injuries

    International Nuclear Information System (INIS)

    Kim, Kyu Hwa; Lee, Jung Hyung; Joo, Yang Goo

    1995-01-01

    To describe magnetic resonance (MR) findings of the patients with acute cervical spinal injury and to assess the usefulness of the MR imagings. We retrospectively reviewed the MR images of 32 patients with acute cervical spinal injury. MR images were obtained with a 2.0 T superconductive MR imaging units (Spectro-20000, Gold-Star, Seoul), using spin-echo and gradient-echo technique. Most of patients were in their 3rd-4th decades and motor vehicle accident was the most frequent cause of acute cervical trauma. We assessed the MR findings with respect to the spinal cord, ligaments, paravertebral soft tissues, intervertebral disk, and bony spine. Spinal cord injury was the most common (65%), where cord swelling, edema, and/or hematoma were demonstrated most frequently at C5-6 level. Traumatic intervertebral disk herniations were the second most common (62.5%) and frequently occurred at the lower cervical levels, mostly at C5-6. Paravertebral soft tissue injury, vertebral body fracture, bone marrow edema and displacement were also well shown on MR images. MR imaging appears to be essential for the evaluation of traumatic disk herniations, spinal cord abnormalities, and injury of paravertebral soft tissue in the acute injury of the cervical spine

  14. Recreational mountain biking injuries.

    Science.gov (United States)

    Aitken, S A; Biant, L C; Court-Brown, Charles M

    2011-04-01

    Mountain biking is increasing in popularity worldwide. The injury patterns associated with elite level and competitive mountain biking are known. This study analysed the incidence, spectrum and risk factors for injuries sustained during recreational mountain biking. The injury rate was 1.54 injuries per 1000 biker exposures. Men were more commonly injured than women, with those aged 30-39 years at highest risk. The commonest types of injury were wounding, skeletal fracture and musculoskeletal soft tissue injury. Joint dislocations occurred more commonly in older mountain bikers. The limbs were more commonly injured than the axial skeleton. The highest hospital admission rates were observed with head, neck and torso injuries. Protective body armour, clip-in pedals and the use of a full-suspension bicycle may confer a protective effect.

  15. Camellia sinensis Prevents Perinatal Nicotine-Induced Neurobehavioral Alterations, Tissue Injury, and Oxidative Stress in Male and Female Mice Newborns

    Science.gov (United States)

    Ajarem, Jamaan S.; Al-Basher, Gadh; Allam, Ahmed A.

    2017-01-01

    Nicotine exposure during pregnancy induces oxidative stress and leads to behavioral alterations in early childhood and young adulthood. The current study aimed to investigate the possible protective effects of green tea (Camellia sinensis) against perinatal nicotine-induced behavioral alterations and oxidative stress in mice newborns. Pregnant mice received 50 mg/kg C. sinensis on gestational day 1 (PD1) to postnatal day 15 (D15) and were subcutaneously injected with 0.25 mg/kg nicotine from PD12 to D15. Nicotine-exposed newborns showed significant delay in eye opening and hair appearance and declined body weight at birth and at D21. Nicotine induced neuromotor alterations in both male and female newborns evidenced by the suppressed righting, rotating, and cliff avoidance reflexes. Nicotine-exposed newborns exhibited declined memory, learning, and equilibrium capabilities, as well as marked anxiety behavior. C. sinensis significantly improved the physical development, neuromotor maturation, and behavioral performance in nicotine-exposed male and female newborns. In addition, C. sinensis prevented nicotine-induced tissue injury and lipid peroxidation and enhanced antioxidant defenses in the cerebellum and medulla oblongata of male and female newborns. In conclusion, this study shows that C. sinensis confers protective effects against perinatal nicotine-induced neurobehavioral alterations, tissue injury, and oxidative stress in mice newborns. PMID:28588748

  16. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    Science.gov (United States)

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  17. Athletic Hip Injuries.

    Science.gov (United States)

    Lynch, T Sean; Bedi, Asheesh; Larson, Christopher M

    2017-04-01

    Historically, athletic hip injuries have garnered little attention; however, these injuries account for approximately 6% of all sports injuries and their prevalence is increasing. At times, the diagnosis and management of hip injuries can be challenging and elusive for the team physician. Hip injuries are seen in high-level athletes who participate in cutting and pivoting sports that require rapid acceleration and deceleration. Described previously as the "sports hip triad," these injuries consist of adductor strains, osteitis pubis, athletic pubalgia, or core muscle injury, often with underlying range-of-motion limitations secondary to femoroacetabular impingement. These disorders can happen in isolation but frequently occur in combination. To add to the diagnostic challenge, numerous intra-articular disorders and extra-articular soft-tissue restraints about the hip can serve as pain generators, in addition to referred pain from the lumbar spine, bowel, bladder, and reproductive organs. Athletic hip conditions can be debilitating and often require a timely diagnosis to provide appropriate intervention.

  18. [Experimental study on the treatment of serious soft tissue injuries with strengthening the spleen and replenishing qi].

    Science.gov (United States)

    Chen, Xun-wen; Zhu, Yong-zhan; Chen, Zhi-wei; Wu, Zheng-jie; He, Li-lei

    2008-09-01

    To study the effects of Chinese drugs based on strengthening the spleen and replenishing qi treatment rule on neoformative capillaries and fibroblast during the soft tissue repair after serious trauma in rats, so as to explore the biological basis of the TCM theory "the spleen dominate extremities and muscles" applied to the treatment of soft tissue injuries. The model rats were established by bleeding from femoral artery and lancing method, and the rats were randomly divided into the control group, strengthening the spleen group and activating blood and resolving stasis group. The samples were got from the tissue of the wounded area at the 5th, 10th and 15th days after oral administration of the traditional Chinese medicine. After fixation and section, the tissues were stained by CD31 and PCNA staining. The amount of the capillaries and fibroblasts in the tissue of the wounded area were observed through multi-purpose microscope (ZEISS Axioskop2). Quantitative analysis was carried out on Image-ProPlus image analyzer. The amount of the capillaries and fibroblasts in the wounded tissue in the strengthening the spleen group were larger than that in the control group at the 5th, 10th and 15th day. And the proliferation speed of capillaries and fibroblasts was faster than those in the control group or the activating blood and resolving stasis group. The Chinese drugs according to strengthening the spleen and replenishing qi treatment rule were effective to promote growth of the granulation tissue and facilitate healing of the wounded area. And it has better effect than the treatment of promoting blood circulation and removing stasis.

  19. Comparative outcome of bomb explosion injuries versus high-powered gunshot injuries of the upper extremity in a civilian setting.

    Science.gov (United States)

    Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram

    2013-03-01

    Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.

  20. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Expression of modulators of extracellular matrix structure after anterior cruciate ligament injury.

    Science.gov (United States)

    Haslauer, Carla M; Proffen, Benedikt L; Johnson, Victor M; Murray, Martha M

    2014-01-01

    The ability of the anterior cruciate ligament (ACL) to heal after injury declines within the first 2 weeks after ACL rupture. To begin to explore the mechanism behind this finding, we quantified the expression of genes for collagen I and III, decorin, tenascin-C, and alpha smooth muscle actin, as well as matrix metalloproteinase (MMP)-1 and -13 gene expression within multiple tissues of the knee joint after ACL injury in a large animal model over a 2-week postinjury period. Gene expression of collagen I and III, decorin, and MMP-1 was highest in the synovium, whereas the highest MMP-13 gene expression levels were found in the ACL. The gene expression for collagen and decorin increased over the 2 weeks to levels approaching that in the ligament and synovium; however, no significant increase in either of the MMPs was found in the provisional scaffold. This suggests that although the ACL and synovium up-regulate both anabolic and catabolic factors, the provisional scaffold is primarily anabolic in function. The relative lack of provisional scaffold formation within the joint environment may thus be one of the key reasons for ACL degradation after injury. © 2014 by the Wound Healing Society.

  2. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch

    OpenAIRE

    Lionberger, David

    2010-01-01

    David R Lionberger1, Michael J Brennan21Southwest Orthopedic Group, Houston, TX, USA; 2Department of Medicine, Bridgeport Hospital, Bridgeport, CT, USAAbstract: The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP) in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac, and DETP in patients with ac...

  3. Localization of IAA transporting tissue by tissue printing and autoradiography

    International Nuclear Information System (INIS)

    Mee-Rye Cha; Evans, M.L.; Hangarter, R.P.

    1991-01-01

    Tissue printing on nitrocellulose membranes provides a useful technique for visualizing anatomical details of tissue morphology of cut ends of stem segments. Basal ends of Coleus stem and corn coleoptile segments that were transporting 14 C-IAA were gently blotted onto DEAE-nitrocellulose for several minutes to allow 14 C-IAA to efflux from the tissue. Because of the anion exchange properties of DEAE-nitrocellulose the 14 C-IAA remains on the membrane at the point it leaves the transporting tissue. Autoradiography of the DEAE membrane allowed indirect visualization of the tissues preferentially involved in auxin transport. The authors observed that polar transport through the stem segments occurred primarily through or in association with vascular tissues. However, in Coleus stems, substantial amounts of the label appeared to move through the tissue by diffusion as well as by active transport

  4. Blast injury face: An exemplified review of management

    Science.gov (United States)

    Kumar, Vijay; Singh, Arun Kumar; Kumar, Parmod; Shenoy, Yogesh Ramdas; Verma, Anoop K.; Borole, Ateesh Jayram; Prasad, Veerendra

    2013-01-01

    Facial injuries are extremely common due to increased incidence of vehicular and industrial trauma and warfare injuries. But isolated injury to the face due to low voltage cells exploding is rare. In blast injury, the force can cause massive soft tissue injury, along with injury to facial fractures and damage to adnexa. Facial injury is not life threatening unless associated with other injuries of the skull and airway. The major risks to airway in facial trauma are due to anatomic alteration of patient's airway through bony and soft tissue disruption and increased chances of aspiration. The past several decades have seen a rapid growth in the range of procedures available for reconstructive purposes. However, the essential preliminary management is a must and needs to be structured. The patient, a 10-year-old boy, was joining three pencil batteries in series and twisting the wire with his teeth when one battery exploded causing severe injuries to midface and mandibular region. After stabilization, the patient was taken up for surgery. A cap splint with zygomatic suspension was done for the maxilla, and wiring of residual mandibular segments with lining and skin cover provided by a deltopectoral flap was done. Reconstructive surgeries for reconstruction of the upper lip and maintenance of oral continence were planned for the future. The present case stresses the importance of educating the masses about unsafe handling of low voltage devices, management of airway, massive soft tissue injury, along with facial fractures and damage to adnexa. PMID:24163550

  5. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    Science.gov (United States)

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.

  6. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury.

    Science.gov (United States)

    Guenther, Catherine A; Wang, Zhen; Li, Emma; Tran, Misha C; Logan, Catriona Y; Nusse, Roel; Pantalena-Filho, Luiz; Yang, George P; Kingsley, David M

    2015-08-01

    Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  8. Lawn mower-related projectile injury.

    Science.gov (United States)

    McNamara, William F; Yamout, Sani Z; Escobar, Mauricio A; Glick, Philip L

    2009-07-01

    Lawn mower injuries are a potentially devastating, yet preventable cause of morbidity and mortality in the pediatric population. The sequelae to these injuries can become even worse if the initial presentation goes unsuspected by medical staff, leading to a delay in treatment. The authors report the case of a lawn mower-related penetrating missile injury, where the extent of injury was not appreciated by the patient until signs and symptoms of a soft-tissue infection developed, prompting the patient to seek medical attention the next day.

  9. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  10. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis.

    Science.gov (United States)

    Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon

    2018-05-01

    Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All

  11. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    International Nuclear Information System (INIS)

    Antoniades, H.N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P.; Lynch, S.E.

    1991-01-01

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth

  12. Karate injuries in children and adolescents.

    Science.gov (United States)

    Zetaruk, M N; Violan, M A; Zurakowski, D; Micheli, L J

    2000-05-01

    To identify risk factors for injury and to establish safety guidelines for children in Uechi-Ryu karate. A 1-year retrospective survey of injuries. A private karate school (Uechi-Ryu style) in Plymouth, MA. A total of 68 athletes (age 6-16 years; mean age 10 years) who participated in karate during the 1995-1996 season. None. The presence or absence of injury, with grading of injuries as major, moderate or minor. The types of injuries and body region involved were also analyzed. Twenty eight percent of athletes sustained at least one injury. All injuries were minor, with no time off from training required. The injuries consisted primarily of bruises (11 of 19). Other injuries included mild sprains or strains (5 of 19) and having their 'wind knocked out' (3 of 19). Most injuries were localized to the extremities. Logistic regression analysis identified risk factors for injury. Risk of injury increased with number of years of training (odds ratio 2.95; 95% confidence interval 1.81-4.82; PKarate is a relatively safe sport for children and adolescents when properly taught. Risk of injury increases with experience; therefore, greater supervision is required of higher ranks. Injury increases with weekly training; however, 3 h a week or less appears to be associated with a low risk of significant injury in this age group.

  13. Age peculiarities of postraumatic repair of open fractures in case of combined radiation injuries

    International Nuclear Information System (INIS)

    Shantyr', V.I.; Korzh, A.A.; Frenkel', L.A.; Kazitskij, V.M.; Lan'ko, A.I.; Yakovenko, M.G.

    1982-01-01

    Results of investigation of recovery in rabbit soft tissues (skin, muscle tissue) and in bones following bone fractures and whole-body X-irradiation are presented. Heavier damages developed in connective tissue in adolescent than in adult rabbits in conditions of combined radiation injuries. Normalization of connective tissue in skin and muscles was observed by 90 day in adolescent rabbits, where as connective tissue remained inferior in adult animals. Bone tissue recovery remained unfinished by 90 day in adolescent and adult rabbits in conditions of combined radiation injuries. The main reason for slowing-down of recovery of damaged tissues in case of open fracture is radiation injury in the irradiated organism

  14. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury.

    Science.gov (United States)

    Dearth, Christopher L; Slivka, Peter F; Stewart, Scott A; Keane, Timothy J; Tay, Justin K; Londono, Ricardo; Goh, Qingnian; Pizza, Francis X; Badylak, Stephen F

    2016-02-01

    Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal

  15. Ultrasound imaging of sports-related musculoskeletal injuries

    International Nuclear Information System (INIS)

    Craig, J.G.; Holsbeek, M.T. van; Gauthier, T.P.; Cook, W.J.

    2006-01-01

    Sports-related injuries of the musculoskeletal system affect millions of individuals every year. Integrating high-frequency Tissue Harmonic Imaging ultrasound with MRI and CT gives the greatest opportunity for diagnosing specific injuries. (orig.)

  16. Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System.

    Science.gov (United States)

    Edsberg, Laura E; Black, Joyce M; Goldberg, Margaret; McNichol, Laurie; Moore, Lynn; Sieggreen, Mary

    Our understanding of pressure injury etiology and development has grown in recent years through research, clinical expertise, and global interdisciplinary expert collaboration. Therefore, the National Pressure Ulcer Advisory Panel (NPUAP) has revised the definition and stages of pressure injury. The revision was undertaken to incorporate the current understanding of the etiology of pressure injuries, as well as to clarify the anatomical features present or absent in each stage of injury. An NPUAP-appointed Task Force reviewed the literature and created drafts of definitions, which were then reviewed by stakeholders and the public, including clinicians, educators, and researchers around the world. Using a consensus-building methodology, these revised definitions were the focus of a multidisciplinary consensus conference held in April 2016. As a result of stakeholder and public input, along with the consensus conference, important changes were made and incorporated into the new staging definitions. The revised staging system uses the term injury instead of ulcer and denotes stages using Arabic numerals rather than Roman numerals. The revised definition of a pressure injury now describes the injuries as usually occurring over a bony prominence or under a medical or other device. The revised definition of a Stage 2 pressure injury seeks to clarify the difference between moisture-associated skin damage and injury caused by pressure and/or shear. The term suspected has been removed from the Deep Tissue Pressure Injury diagnostic label. Each definition now describes the extent of tissue loss present and the anatomical features that may or may not be present in the stage of injury. These important revisions reflect the methodical and collaborative approach used to examine the available evidence and incorporate current interdisciplinary clinical expertise into better defining the important phenomenon of pressure injury etiology and development.

  17. The Compression Intensity Index: a practical anatomical estimate of the biomechanical risk for a deep tissue injury.

    Science.gov (United States)

    Gefen, Amit

    2008-01-01

    Pressure-related deep tissue injury (DTI) is a severe form of pressure ulcer that initiates in compressed muscle tissues under bony prominences, and progresses superficially towards the skin. Patients with impaired motosensory capacities are at high risk of developing DTI. There is a critical medical need for developing risk assessment tools for DTI. A new anatomical index, the Compression Intensity Index: CII=(BW/Rt);[1/2], which depends on the body weight (BW), radius of curvature of the ischial tuberosities (R) and thickness of the underlying gluteus muscles (t), is suggested for approximating the loading intensity in muscle tissue during sitting in permanent wheelchair users, as part of a clinically-oriented risk assessment for DTI. Preliminary CII data were calculated for 6 healthy and 4 paraplegic subjects following MRI scans, and data were compared between the groups and with respect to a gold standard, being a previously developed subject-specific MRI-finite-element (MRI-FE) method of calculating muscle tissue stresses (Linder-Ganz et al., J. Biomech. 2007). Marked differences between the R and t parameters of the two groups caused the CII values of the paraplegics to be approximately 1.6-fold higher than for the healthy (pbedridden patients. Hence, CII measurements can be integrated into DTI-risk-assessment tools, the need of which is now being discussed intensively in the American and European Pressure Ulcer Advisory Panel meetings.

  18. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    Science.gov (United States)

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Levetiracetam in spinal cord injury pain: a randomized controlled trial

    DEFF Research Database (Denmark)

    Finnerup, N B; Grydehøj, J; Bing, J

    2009-01-01

    . OBJECTIVES: The objective of the study was primarily to evaluate the efficacy of the anticonvulsant levetiracetam in patients with spinal cord injury (SCI) at- and below-level pain and secondarily to evaluate the effect on spasm severity. SETTING: Outpatients at two spinal cord units and a pain center...... severity following spinal cord injury....

  20. Tissue-engineering strategies for the tendon/ligament-to-bone insertion.

    Science.gov (United States)

    Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros

    2012-01-01

    Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.

  1. Critical role of acrolein in secondary injury following ex vivo spinal cord trauma.

    Science.gov (United States)

    Hamann, Kristin; Durkes, Abigail; Ouyang, Hui; Uchida, Koji; Pond, Amber; Shi, Riyi

    2008-11-01

    The pathophysiology of spinal cord injury (SCI) is characterized by the initial, primary injury followed by secondary injury processes in which oxidative stress is a critical component. Secondary injury processes not only exacerbate pathology at the site of primary injury, but also result in spreading of injuries to the adjacent, otherwise healthy tissue. The lipid peroxidation byproduct acrolein has been implicated as one potential mediator of secondary injury. To further and rigorously elucidate the role of acrolein in secondary injury, a unique ex vivo model is utilized to isolate the detrimental effects of mechanical injury from toxins such as acrolein that are produced endogenously following SCI. We demonstrate that (i) acrolein-Lys adducts are capable of diffusing from compressed tissue to adjacent, otherwise uninjured tissue; (ii) secondary injury by itself produces significant membrane damage and increased superoxide production; and (iii) these injuries are significantly attenuated by the acrolein scavenger hydralazine. Furthermore, hydralazine treatment results in significantly less membrane damage 2 h following compression injury, but not immediately after. These findings support our hypothesis that, following SCI, acrolein is increased to pathologic concentrations, contributes significantly to secondary injury, and thus represents a novel target for scavenging to promote improved recovery.

  2. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Jerry R. [Department of Radiology, Rady Children' s Hospital and Health Center, San Diego, CA (United States); Cardoso, Fabiano; Chung, Christine B. [University of California at San Diego, Department of Radiology, San Diego, CA (United States)

    2009-12-15

    In the pediatric gymnast, stress-related physeal injuries have been well described with characteristic imaging findings. However, a spectrum of overuse injuries, some rarely reported in the literature, can be encountered in the gymnast's hand and wrist. To demonstrate the MR appearance of a spectrum of overuse injuries in the skeletally immature wrist and hand of pediatric gymnasts. A total of 125 MR exams of the hand and wrist in skeletally immature children were performed at our institution during a 2-year period. Clinical histories were reviewed for gymnastics participation. MR studies of that subpopulation were reviewed and abnormalities tabulated. Of the MR studies reviewed, ten gymnasts were identified, all girls age 12-16 years (mean age 14.2 years) who presented with wrist or hand pain. Three of these children had bilateral MR exams. Abnormalities included chronic physeal injuries in three children. Two girls exhibited focal lunate osteochondral defects. Triangular fibrocartilage tears were present in three girls, one of whom had a scapholunate ligament tear. Two girls manifested metacarpal head flattening and necrosis. A variety of soft-tissue and osseous lesions can be encountered in the skeletally immature gymnast. Familiarity with these stress-related injuries is important for accurate diagnosis. (orig.)

  3. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist

    International Nuclear Information System (INIS)

    Dwek, Jerry R.; Cardoso, Fabiano; Chung, Christine B.

    2009-01-01

    In the pediatric gymnast, stress-related physeal injuries have been well described with characteristic imaging findings. However, a spectrum of overuse injuries, some rarely reported in the literature, can be encountered in the gymnast's hand and wrist. To demonstrate the MR appearance of a spectrum of overuse injuries in the skeletally immature wrist and hand of pediatric gymnasts. A total of 125 MR exams of the hand and wrist in skeletally immature children were performed at our institution during a 2-year period. Clinical histories were reviewed for gymnastics participation. MR studies of that subpopulation were reviewed and abnormalities tabulated. Of the MR studies reviewed, ten gymnasts were identified, all girls age 12-16 years (mean age 14.2 years) who presented with wrist or hand pain. Three of these children had bilateral MR exams. Abnormalities included chronic physeal injuries in three children. Two girls exhibited focal lunate osteochondral defects. Triangular fibrocartilage tears were present in three girls, one of whom had a scapholunate ligament tear. Two girls manifested metacarpal head flattening and necrosis. A variety of soft-tissue and osseous lesions can be encountered in the skeletally immature gymnast. Familiarity with these stress-related injuries is important for accurate diagnosis. (orig.)

  4. Skeletal injuries associated with sexual abuse

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karl; Chapman, Stephen [Department of Radiology, Birmingham Children' s Hospital, Steelhouse Lane, B4 6NH, Birmingham (United Kingdom); Hall, Christine M. [Department of Radiology, Great Ormond Street Hospital for Children, London (United Kingdom)

    2004-08-01

    Background: Sexual abuse is often associated with physical abuse, the most common injuries being bruising and other soft-tissue injuries, but fractures occur in 5% of sexually abused children. The fractures described to date have formed part of the spectrum of injuries in these children and have not been specifically related to the abusive act. Objective: To describe concurrent sexual abuse and fractures. Materials and methods: Three children with pelvic or femoral shaft injuries in association with sexual abuse. Results: A 3-year-old girl with extensive soft-tissue injuries to the arms, legs and perineum also sustained fractures of both pubic rami and the sacral side of the right sacro-iliac joint. A 5-month-old girl with an introital tear was shown to have an undisplaced left femoral shaft fracture. A 5-year-old girl presented with an acute abdomen and pneumoperitoneum due to a ruptured rectum following sexual abuse. She had old healed fractures of both pubic rami with disruption of the symphysis pubis. Conclusions: Although the finding of a perineal injury in a young child may be significant enough for the diagnosis of abuse, additional skeletal injuries revealed by radiography will assist in confirmation of that diagnosis and may be more common than hitherto suspected. (orig.)

  5. Skeletal injuries associated with sexual abuse

    International Nuclear Information System (INIS)

    Johnson, Karl; Chapman, Stephen; Hall, Christine M.

    2004-01-01

    Background: Sexual abuse is often associated with physical abuse, the most common injuries being bruising and other soft-tissue injuries, but fractures occur in 5% of sexually abused children. The fractures described to date have formed part of the spectrum of injuries in these children and have not been specifically related to the abusive act. Objective: To describe concurrent sexual abuse and fractures. Materials and methods: Three children with pelvic or femoral shaft injuries in association with sexual abuse. Results: A 3-year-old girl with extensive soft-tissue injuries to the arms, legs and perineum also sustained fractures of both pubic rami and the sacral side of the right sacro-iliac joint. A 5-month-old girl with an introital tear was shown to have an undisplaced left femoral shaft fracture. A 5-year-old girl presented with an acute abdomen and pneumoperitoneum due to a ruptured rectum following sexual abuse. She had old healed fractures of both pubic rami with disruption of the symphysis pubis. Conclusions: Although the finding of a perineal injury in a young child may be significant enough for the diagnosis of abuse, additional skeletal injuries revealed by radiography will assist in confirmation of that diagnosis and may be more common than hitherto suspected. (orig.)

  6. Sports injuries in adolescent boarding school boys.

    Science.gov (United States)

    Briscoe, J H

    1985-06-01

    A survey is presented of 346 sports injuries admitted to the Eton College Sanatorium between 1971 and 1982. The incidence of injury was lowest in 13 year olds perhaps because of their lighter weight. The injuries were classified into four groups--minor head injury, soft tissue injury, fractures and dislocations, and eye injury. Football caused 75 per cent of all injuries except eye injury where it accounted for only a third. Comparison of the incidence of injury at the three types of football played at Eton--Rugby, Association and Eton--showed Rugby football to be the most dangerous and Eton football the safest game. Advice on the management and prevention of injury is given.

  7. Repair of radiation injury by transplantation of hemopoietic tissue

    International Nuclear Information System (INIS)

    Smith, L.H.

    1978-01-01

    The following topics are discussed: endogenous repair of tissue by surviving cells; exogenous repair by transplantation of tissue from unirradiated donor; repair of hematopoietic tissue following sublethal exposure or exposure in the LD 1 to LD 100 range; early studies on regeneration of hematopoietic tissue in x-irradiated dogs by giving bone marrow; hypotheses as to how bone marrow injections result in regeneration of blood-forming tissue; effects of rat bone marrow transplants on survival of lethally irradiated mice; and effect of tissue transplants on dose-response curve

  8. Designing the stem cell microenvironment for guided connective tissue regeneration.

    Science.gov (United States)

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  9. Blunt liver injury with intact ribs under impacts on the abdomen: a biomechanical investigation.

    Directory of Open Access Journals (Sweden)

    Yu Shao

    Full Text Available Abdominal trauma accounts for nearly 20% of all severe traffic injuries and can often result from intentional physical violence, from which blunt liver injury is regarded as the most common result and is associated with a high mortality rate. Liver injury may be caused by a direct impact with a certain velocity and energy on the abdomen, which may result in a lacerated liver by penetration of fractured ribs. However, liver ruptures without rib cage fractures were found in autopsies in a series of cases. All the victims sustained punches on the abdomen by fist. Many studies have been dedicated to determining the mechanism underlying hepatic injury following abdominal trauma, but most have been empirical. The actual process and biomechanism of liver injury induced by blunt impact on the abdomen, especially with intact ribs remained, are still inexhaustive. In order to investigate this, finite element methods and numerical simulation technology were used. A finite element human torso model was developed from high resolution CT data. The model consists of geometrically-detailed liver and rib cage models and simplified models of soft tissues, thoracic and abdominal organs. Then, the torso model was used in simulations in which the right hypochondrium was punched by a fist from the frontal, lateral, and rear directions, and in each direction with several impact velocities. Overall, the results showed that liver rupture was primarily caused by a direct strike of the ribs induced by blunt impact to the abdomen. Among three impact directions, a lateral impact was most likely to cause liver injury with a minimum punch speed of 5 m/s (the momentum was about 2.447 kg.m/s. Liver injuries could occur in isolation and were not accompanied by rib fractures due to different material characteristics and injury tolerance.

  10. Effects of compression injury on brain mitochondrial and tissue viability evaluated by a multiparametric monitoring system

    Science.gov (United States)

    Barbiro-Michaely, Efrat; Bachbut, Galit; Mayevsky, Avraham

    2008-02-01

    Neurosurgical procedures involve brain compression created by retractors. Although it is clear that retractors are causing damage to the brain tissue, the pathophysiology of the retraction was not investigated in details. In the present study we used the multiparametric monitoring approach for real time evaluation of mitochondrial function, hemodynamic, ionic and electrical activities monitored contralaterally to the retractor placement on the brain. The aims of the study were to test the effects of retractor size and severity of the compression on the degree of damage to the cerebral tissue. A special probe was lowered towards the cerebral cortex, (2mm and 4mm in depth) using a micromanipulator. Compression lasted for 30 minutes, than the retractor was elevated back to its initial position and monitoring continued for two hours. Additionally, two sizes of retractors were used 6mm and 3mm in diameter, the 3mm retractor included an intracranial pressure (ICP) probe. The results show that the combination of a large retractor with the depth of 4mm yielded high mortality rate (62%) of the rats while the use of a smaller retractor decreased significantly the percentage of mortality. Also, compression to the depth of 4mm increased tissue injury as compared to 2mm depth. In conclusion, the present study raises the importance and significance of multiparametric monitoring, and not only ICP and cerebral blood flow of the areas nearby the retractor position and not only the retraction site, as well as the effect of the retractor size on the damage induced to the cerebral tissue.

  11. MRI of acute cervical injury: correlation with neurologic deficit

    International Nuclear Information System (INIS)

    Hyun, Chang Dong; Kwon, Soon Tae; Lim, Seung Chul; Shin, Myung Jin; Han, Boo Kyung; Kim, Sang Joon; Park, Man Soo; Yoon, Hyun Ki; Suh, Dae Chul

    1995-01-01

    To evaluate MRI findings of spinal cord according to mechanism in acute cervical spinal injury. 25 patients under went MRI within 1 month after acute cervical trauma. Axial T1Wl (TR/TE: 500/20), gradient-echo (TR/TE: 300/14), sagittal T1Wl (TR/TE: 500/20), proton (TR/TE: 2000. 20 msec), T2Wl (TR/TE: 2000/80) were performed. In 11 patients, post-enhancement T1Wl was done. Change of spinal cord signal intensity on MRI in addition to the presence of abnormal changes of vertebral body, intervertebral disc and paraspinal soft tissue were evaluated. 15 patients had flexion injury, seven had extension injury and three had injury of unknown mechanism. Twelve patients showed iso-signal intensity on T2Wl and high signal intensity on T2Wl. Three patients showed low signal intensity on T1Wl and high signal intensity on T2Wl. Spinal cord hemorrhage occured in 10 patients. We found cord swelling in nine patients and cord compression in 12 patients. In nine patients with cord swelling, extent of cord injury was more than one segment of vertebral body. Ligamentous injury, disc injury, soft tissue injury occurred in 16 (64%), 17 (68%), 15 (60%) patients respectively. Vertebral body fracture was found in 17 patients (68%). The levels of fracture were C6 (eight patients) and C5 (five patients). MRI is valuable in exaluetion of the spinal cord, intervertebral disc, and soft tissue lesions in acute cervical spinal injury. Prognosis is worse in flexion injury than in extension injury, and is well correlated with cord hemorrhage and lesion extent

  12. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  13. Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury

    Science.gov (United States)

    Xu, Yun-Jun; Dong, Liang; Lu, Yang; Zhang, Le-Cheng; An, Duo; Gao, Huai-Ling; Yang, Dong-Mei; Hu, Wen; Sui, Cong; Xu, Wei-Ping; Yu, Shu-Hong

    2016-01-01

    Inorganic non-metallic biomaterials, including the silicon frustule of a unicellular diatom, the carbonate shell of a mollusk and the calcium skeleton of the vertebrate, which are the main constituent part of an organism, serve as the supportive and protective components of soft tissue. Among them, hydroxyapatite, which primarily makes up the enamel and bone, is widely used in tissue engineering. Recently, the inorganic nonmetallic biomaterials, especially the applications of hydroxyapatites have attracted great attention. Herein, we report a novel synthesis method of magnetic functionalized hydroxyapatite nanocomposites. By simply tuning the ratios of reactants, a series of hydroxyapatite-Fe3O4 worm-shaped nanocomposites (HAP-ION nanoworms) are obtained. In addition, layer-by-layer surface modifications with chitosan (CH) and sodium alginate (SA) were employed to improve the solubility and biocompatibility, and low cytotoxicity and no hemolysis were observed. With the increase of iron oxide nanocrystals, the magnetic properties of the magnetic assembled nanoworms were enhanced, which resulted in better performance of magnetic resonance (MR) imaging. Owing to the intravenous injection of HAP-ION nanoworms, the contrast to noise ratio (CNR) of hepatic MR imaging in vivo was enhanced obviously, which should be beneficial for hepatic injury grading and further therapeutic treatment.Inorganic non-metallic biomaterials, including the silicon frustule of a unicellular diatom, the carbonate shell of a mollusk and the calcium skeleton of the vertebrate, which are the main constituent part of an organism, serve as the supportive and protective components of soft tissue. Among them, hydroxyapatite, which primarily makes up the enamel and bone, is widely used in tissue engineering. Recently, the inorganic nonmetallic biomaterials, especially the applications of hydroxyapatites have attracted great attention. Herein, we report a novel synthesis method of magnetic

  14. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  15. Surgical versus conservative treatment for acute injuries of the lateral ligament complex of the ankle in adults

    NARCIS (Netherlands)

    Kerkhoffs, G. M. M. J.; Handoll, H. H. G.; de Bie, R.; Rowe, B. H.; Struijs, P. A. A.

    2002-01-01

    BACKGROUND: Inversion injuries, primarily sprains, of the ankle are one of the most commonly treated injuries. The three main treatment modalities for acute lateral ankle ligament injuries are immobilisation with plaster cast or splint, 'functional treatment' comprising early mobilisation and the

  16. Reduction of myocardial ischemia-reperfusion injury by mechanical tissue resuscitation using sub-atmospheric pressure.

    Science.gov (United States)

    Argenta, Louis C; Morykwas, Michael J; Mays, Jennifer J; Thompson, Edreca A; Hammon, John W; Jordan, James E

    2010-03-01

    Reperfusion-induced injury after myocardial infarction is associated with a well-defined sequence of early and late cardiomyocyte death. Most present attempts to ameliorate this sequence focus on a single facet of the complex process in an attempt to salvage cardiomyocytes. We examined, as proof of concept, the effects of mechanical tissue resuscitation (MTR) with controlled negative pressure on myocardial injury following acute myocardial infarction. Anesthetized swine were subjected to 75 minutes of left coronary artery occlusion and three hours of reperfusion. Animals were assigned to one of three groups: (A) untreated control; treatment of involved myocardium for 180 minutes of MTR with (B) -50 mmHg, or (C) -125 mmHg. All three groups were subjected to equivalent ischemic stress. Treatment of the ischemic area with MTR for 180 minutes significantly (p control: 9.3 +/- 1.8% (-50 mmHg) and 11.9 +/- 1.2% (-125 mmHg) versus 26.4 +/- 2.1% (control). Total area of cell death was reduced by 65% with -50 mmHg treatment and 55% in the -125 mmHg group. Treatment of ischemic myocardium with MTR, for a controlled period of time during reperfusion, successfully reduced the extent of myocardial death after acute myocardial infarction. These data provide evidence that MTR using subatmospheric pressure may be a simple, efficacious, nonpharmacological, mechanical strategy for decreasing cardiomyocyte death following myocardial infarction, which can be delivered in the operating room.

  17. Diagnosis and treatment of traumatic pancreatic injury

    International Nuclear Information System (INIS)

    Hirakawa, Akihiko; Isayama, Kenji; Nakatani, Toshio

    2011-01-01

    The diagnosis of traumatic pancreatic injury in the acute stage is difficult to establish blood tests and abdominal findings alone. Moreover, to determine treatment strategies, it is important not only that a pancreatic injury is diagnosed but also whether a pancreatic ductal injury can be found. At our center, to diagnose isolated pancreatic injuries, we actively perform endoscopic retrograde pancreatography (ERP) in addition to abdominal CT at the time of admission. For cases with complications such as abdominal and other organ injuries, we perform a laparotomy to ascertain whether a pancreatic duct injury is present. In regard to treatment options, for grade III injuries to the pancreatic body and tail, we basically choose distal pancreatectomy, but we also consider the Bracy method depending on the case. As for grade III injuries to the pancreatic head, we primarily choose pancreaticoduodenectomy, but also apply drainage if the situation calls for it. However, pancreatic injuries are often complicated by injuries of other regions of the body. Thus, diagnosis and treatment of pancreatic injury should be based on a comprehensive decision regarding early prioritization of treatment, taking hemodynamics into consideration after admission, and how to minimize complications such as anastomotic leak and pancreatic fistulas. (author)

  18. Trampoline-related injuries to children.

    Science.gov (United States)

    Smith, G A; Shields, B J

    1998-07-01

    To describe the epidemiological features of trampoline-related injuries among children treated in an urban pediatric emergency department. A descriptive study of a consecutive series of patients. The emergency department of a large, urban, academic children's hospital. Children treated for trampoline-related injuries from May 1, 1995, through April 30, 1997. Two hundred fourteen children were treated for trampoline-related injuries during the study period, representing, on average, 1 child treated approximately every 3 days. Children ranged in age from 1 to 16 years (mean [SD], 9.4 [3.6] years). The area of the body most commonly injured was a lower extremity (36.0%), followed by an upper extremity (31.8%), the head (14.5%), the trunk (9.8%), and the neck (7.9%). The most common type of injury was a soft tissue injury (51.9%), followed by fracture (34.6%) and laceration (11.7%). Several patterns of trampoline-related injury were identified. Extremity fractures were more common in the upper extremities (P=.006; relative risk [RR]=1.64; 95% confidence interval [CI], 1.16-2.31); however, soft tissue injuries were more common in the lower extremities (P=.006; RR=1.66; 95% CI, 1.16-2.38). Lacerations were associated with injury to the head region (Ptrampoline was located in the backyard in 96% (119/124) of cases. Adult supervision was present at the time of injury for 55.6% (65/117) of children, including 73.3% (22/30) of children younger than 6 years. Parents reported that they had been aware of the potential dangers of trampolines before the injury event (73% [81/111]), that their child had previously attempted a flip on a trampoline (56.9% [66/116]), that this was not the child's first injury on a trampoline (10% [12/120]), and that their child continued to use a trampoline after the current injury event (54.8% [63/115]). Trampoline-related injuries to children treated in the emergency department are almost exclusively associated with the use of backyard trampolines

  19. Application of stem cells in tissue engineering for defense medicine.

    Science.gov (United States)

    Ude, Chinedu Cletus; Miskon, Azizi; Idrus, Ruszymah Bt Hj; Abu Bakar, Muhamad Bin

    2018-02-26

    The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.

  20. Preventing running injuries. Practical approach for family doctors.

    OpenAIRE

    Johnston, C. A. M.; Taunton, J. E.; Lloyd-Smith, D. R.; McKenzie, D. C.

    2003-01-01

    OBJECTIVE: To present a practical approach for preventing running injuries. QUALITY OF EVIDENCE: Much of the research on running injuries is in the form of expert opinion and comparison trials. Recent systematic reviews have summarized research in orthotics, stretching before running, and interventions to prevent soft tissue injuries. MAIN MESSAGE: The most common factors implicated in running injuries are errors in training methods, inappropriate training surfaces and running shoes, malalign...

  1. NK1.1+ cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock.

    Science.gov (United States)

    Chen, Shuhua; Hoffman, Rosemary A; Scott, Melanie; Manson, Joanna; Loughran, Patricia; Ramadan, Mostafa; Demetris, Anthony J; Billiar, Timothy R

    2017-07-01

    Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1 + cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1 + cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1 + cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1 + cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut. © Society for Leukocyte Biology.

  2. Iso-effect tables for tolerance of irradiated normal human tissues

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on a radiation injury to human tissues (lung, brain, kidney and intestine) was surveyed. A parameter search program (RAD3) was used to derive best-fitting cell kinetic parameters, on the assumption that radiation injury arises from depletion of parenchymal cells in the irradiated organs. From these parameters iso-effect tables were constructed for a wide range of treatment schedules, including daily treatment as well as fractionation at longer intervals, for each tissue. The tables provide a set of limiting doses, above which the risk of radiation injury becomes substantial. Tolerance limits and dose-time-factors were substantially different in the four tissues. It is concluded that computed iso-effect tables provide a more reliable guide to treatment than conventional time-dose equations

  3. Firefighter injuries are not just a fireground problem.

    Science.gov (United States)

    Frost, D M; Beach, T A C; Crosby, I; McGill, S M

    2015-01-01

    Linking firefighter injury reporting to general motion patterns may provide insight into potential injury mechanisms and the development of prevention strategies. To characterize the injuries sustained by members of a large Canadian metropolitan fire department over a 5-year span. Data were taken from injury reports filed by career firefighters between 2007 and 2011. Injuries were described by job duty, type, body part affected, and the general motion pattern employed at the time of injury (e.g. lifting). Of the 1311 injuries reported, 64% were categorized as sprains and strains (musculoskeletal disorders -MSDs), the most frequent of which affected the back (32%). Categorized by job duty, 65% of MSDs were sustained while working at the fire station or during physical training-related activities. Only 15% were attributed to fireground operations. Furthermore, the associated job duty could not differentiate the types of injuries sustained; back injuries occurred primarily while lifting, knee injuries while stepping, and shoulder injuries during pushing/pulling-related activities. Firefighter injuries are not just a fireground problem. Injury causation may be better understood by linking the injury location and type with motion patterns rather than job duties. This information could assist in developing general prevention strategies for the fire service.

  4. Pathophysiology of overuse tendon injury

    International Nuclear Information System (INIS)

    Kannus, P.; Paavola, M.; Paakkala, T.; Parkkari, J.; Jaervinen, T.; Jaervinen, M.

    2002-01-01

    Overuse tendon injury is one of the most common injuries in sports.The etiology as well as the pathophysilogical mechanisms leading to tendinopathy are of crucial medical importance.At the moment intrinsic and extrinsic factors are assumed as mechanisms of overuse tendon injury. Except for the acute, extrinsic trauma, the chronic overuse tendon injury is a multifactorial process. There are many other factors, such as local hypoxia, less of nutrition, impaired metabolism and local inflammatory that may also contribute to the development of tissue damage.The exact interaction of these factors cannot be explained entirely at the moment.Further studies will be necessary in order to get more information. (orig.) [de

  5. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  6. Local cooling does not prevent hyperalgesia following burn injury in humans

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Pedersen, Juri L

    2002-01-01

    One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti-inflammato......One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti...

  7. Transcutaneous electrical neurostimulation in musculoskeletal pain of acute spinal cord injuries.

    Science.gov (United States)

    Richardson, R R; Meyer, P R; Cerullo, L J

    1980-01-01

    Cervical, thoracic, thoracolumbar, and lumbar fractures associated with physiologic complete or incomplete spinal cord injuries frequently have severe soft-tissue injury as well as severe pain associated with the site or area of injury. Transcutaneous electrical neurostimulation has proved effective in the treatment of various causes of severe acute and chronic intractable pains. We applied this modality to a group of 20 patients who had acute spinal cord injuries and pain associated with severe, extensive soft-tissue injury. Its advantages include ease of application, lack of major complications, increased intestinal peristalsis, and avoidance of narcotic analgesic medications. It also produced significant (greater than 50%) pain relief in 75% of patients treated by transcutaneous electrical neurostimulation.

  8. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Cordelia Ziraldo

    2015-06-01

    Full Text Available People with spinal cord injury (SCI are predisposed to pressure ulcers (PU. PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM of ischemia/reperfusion-induced inflammation and PU (the PUABM was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to "better" vs. "worse" outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.

  9. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury.

    Science.gov (United States)

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M Kristi; Sowa, Gwendolyn A; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-06-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to "better" vs. "worse" outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.

  10. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury

    Science.gov (United States)

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M. Kristi; Sowa, Gwendolyn A.; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-01-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to “better” vs. “worse” outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU. PMID:26111346

  11. Proposal of a new classification scheme for periocular injuries

    Directory of Open Access Journals (Sweden)

    Devi Prasad Mohapatra

    2017-01-01

    Full Text Available Background: Eyelids are important structures and play a role in protecting the globe from trauma, brightness, in maintaining the integrity of tear films and moving the tears towards the lacrimal drainage system and contribute to aesthetic appearance of the face. Ophthalmic trauma is an important cause of morbidity among individuals and has also been responsible for additional cost of healthcare. Periocular trauma involving eyelids and adjacent structures has been found to have increased recently probably due to increased pace of life and increased dependence on machinery. A comprehensive classification of periocular trauma would help in stratifying these injuries as well as study outcomes. Material and Methods: This study was carried out at our institute from June 2015 to Dec 2015. We searched multiple English language databases for existing classification systems for periocular trauma. We designed a system of classification of periocular soft tissue injuries based on clinico-anatomical presentations. This classification was applied prospectively to patients presenting with periocular soft tissue injuries to our department. Results: A comprehensive classification scheme was designed consisting of five types of periocular injuries. A total of 38 eyelid injuries in 34 patients were evaluated in this study. According to the System for Peri-Ocular Trauma (SPOT classification, Type V injuries were most common. SPOT Type II injuries were more common isolated injuries among all zones. Discussion: Classification systems are necessary in order to provide a framework in which to scientifically study the etiology, pathogenesis, and treatment of diseases in an orderly fashion. The SPOT classification has taken into account the periocular soft tissue injuries i.e., upper eyelid, lower eyelid, medial and lateral canthus injuries., based on observed clinico-anatomical patterns of eyelid injuries. Conclusion: The SPOT classification seems to be a reliable

  12. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  13. Optical measurement of blood flow changes in spinal cord injury

    International Nuclear Information System (INIS)

    Phillips, J P; Kyriacou, P A; George, K J; Langford, R M

    2010-01-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  14. Optical measurement of blood flow changes in spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A [Biomedical Engineering Research Group, City University London, Northampton Square, London (United Kingdom); George, K J [Neuroscience Centre, Queen Mary, University of London, Mile End, London (United Kingdom); Langford, R M, E-mail: justin.phillips.1@city.ac.u [Pain and Anaesthesia Research Centre, St Bartholomew' s Hospital, West Smithfield, London (United Kingdom)

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  15. CT of peroneal tendon injury in patients with calcaneal fractures

    International Nuclear Information System (INIS)

    Rosenberg, Z.S.; Feldman, F.; Singson, R.D.

    1986-01-01

    Injury to the peroneal tendons is a major complication of intraarticular calcaneal fractures. Heretofore, the injury has been difficult to diagnose by routine imaging modalities. However, CT studies of 24 intraarticular calcaneal fractures revealed evidence of peroneal tendon injury in 22 cases. The pathologic conditions included lateral displacement, subluxation, dislocation, and impingement on the tendons by bony fragments, hematomas, and scar tissue. Patients studied 6-12 months after injury had CT evidence consistent with clinical symptoms of peroneal tenosynovitis. Since peroneal tendon injury is surgically correctable, it should be differentiated from other known and more obvious complications, of calcaneal fractures. CT therefore serves as a valuable, noninvasive tool in evaluating these otherwise nonvisualized soft tissue structures in the immediate posttraumatic period as well as during long-term follow up

  16. Taurine content of tissues of irradiated rats

    International Nuclear Information System (INIS)

    Akhalaya, M.Ya.; Bogatyrev, G.P.; Kudryashov, Yu.B.; Yartsev, E.I.

    1976-01-01

    The taurine content of tissues (liver, stomach, small intestine and spleen) of rats irradiated with doses of 700 and 450 rads has been studied. Phase changes have been found in the taurine content of radiosensitive tissues in the course of radiation injury development

  17. CT Imaging of facial trauma. The role of different types of reconstruction. Part II - soft tissues

    International Nuclear Information System (INIS)

    Myga-Porosilo, J.; Sraga, W.; Borowiak, H.; Jackowska, Z.; Kluczewska, E.; Skrzelewski, S.

    2011-01-01

    Background: Injury to facial soft tissues as a complication of skeleton fractures is an important problem among patients with facial trauma. The aim of this work was to assess the value of multiplanar and three-dimensional (3D) reconstruction computed tomography (CT) images obtained by using multi-detector row technology in spiral data acquisition in patients with facial injuries of soft tissue. Material/Methods: Sixty-seven patients diagnosed with injury to the facial skeleton underwent a CT scan with the use of GE Hispeed Qx/i scanner. For each patient: a two-dimensional (2D) multiplanar reconstruction (MPR), maximum intensity projection (MIP), and 3D volume rendering (VR) were conducted. Post-injury lesions of soft tissues were assessed. During the assessment of the post-injury lesions of soft tissues, the following features were evaluated: Extra ocular muscle and fat tissue herniation through fractures in the medial and inferior orbital walls. Fluid in the sinuses and in the nasal cavity. Subcutaneous tissue emphysema. Results: For subcutaneous emphysema and sinus fluid imaging, both the axial and the 2D image reconstruction proved comparably effective. However, 2D reconstructions were superior to transverse plane images with regard to herniations into fractures of the inferior orbital wall. 3D reconstruction has no importance in diagnosing soft tissue injuries. Conclusions: Multiplanar CT reconstructions increase the effectiveness of imaging of orbital tissue herniations, especially in case of fractures in the inferior orbital wall. In suspected soft tissue herniations, as well as prior to surgical treatment, spiral CT with 2D multiplanar reconstructions should be the method of choice. (authors)

  18. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L. [Dept.of Radiation Oncology, Henry Ford Health System, Detroit (United States)

    2014-09-15

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  19. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  20. Management of lawn mower injuries to the foot and ankle.

    Science.gov (United States)

    Corcoran, J; Zamboni, W A; Zook, E G

    1993-09-01

    Seventy consecutive patients treated for lawn mower injuries to the foot and ankle were reviewed to determine optimal treatment, functional results, and complications. Injuries were classified into 1 or more functional-anatomical zones (I, digits; II, dorsum; III, plantar nonweight-bearing surface; IV, heel; and V, ankle) for a total of 96 injuries. Thirty-one patients were available for follow-up. Mean age was 36.7 years and 84% were males. Most injuries (67%) involved patients > 16 years old using a push mower; however, 18% involved children Lawn mower injuries to the foot and ankle can be closed primarily after adequate irrigation and debridement without compromise of infection rate or function. Antibiotic prophylaxis is recommended. One-sixth of these injuries involve children < 5 years of age and can be prevented.

  1. Lethal and sublethal cellular injury in multifraction irradiation

    International Nuclear Information System (INIS)

    Withers, H.R.

    1975-01-01

    Work has been carried out on cellular injury in multifraction irradiation of mouse tissues and compared with similar work on human skin reported earlier by Dutreix et al (Eur. J. Cancer.; 9:159 (1973)). In agreement with Dutreix et al it is emphasized that the absolute amount of sublethal injury repaired per fractionation interval (Dsub(r)) is not as important to radiotherapists as the change in the amount repaired (ΔDsub(r)) when the dose-per-fraction is altered. It was found that although there is a critical divergence at low doses, the data for mouse tissues are similar to those previously given for human skin and support the conclusions: (i) That the capacity of many normal cells for accumulating and repairing sublethal radiation injury is probably not greatly different. (ii) That fixed exponents used for fraction number and time in iso-effect formulae are inaproporiate. At low doses-per-fraction, repair of sublethal injury is complete, or nearly so, and hence, additional fractionation of dose does not give appreciable additional sparing, whereas rapidly-regenerating tissues, due to the lengthening of overall time, would continue being spared by repopulation. (U.K.)

  2. Oxidative muscular injury and its relevance to hyperthyroidism.

    Science.gov (United States)

    Asayama, K; Kato, K

    1990-01-01

    In experimental hyperthyroidism, acceleration of lipid peroxidation occurs in heart and slow-oxidative muscles, suggesting the contribution of reactive oxygen species to the muscular injury caused by thyroid hormones. This article reviews various models of oxidative muscular injury and considers the relevance of the accompanying metabolic derangements to thyrotoxic myopathy and cardiomyopathy, which are the major complications of hyperthyroidism. The muscular injury models in which reactive oxygen species are supposed to play a role are ischemia/reperfusion syndrome, exercise-induced myopathy, heart and skeletal muscle diseases related to the nutritional deficiency of selenium and vitamin E and related disorders, and genetic muscular dystrophies. These models provide evidence that mitochondrial function and the glutathione-dependent antioxidant system are important for the maintenance of the structural and functional integrity of muscular tissues. Thyroid hormones have a profound effect on mitochondrial oxidative activity, synthesis and degradation of proteins and vitamin E, the sensitivity of the tissues to catecholamine, the differentiation of muscle fibers, and the levels of antioxidant enzymes. The large volume of circumstantial evidence presented here indicates that hyperthyroid muscular tissues undergo several biochemical changes that predispose them to free radical-mediated injury.

  3. Sport injuries in adolescents

    Directory of Open Access Journals (Sweden)

    Susanne Habelt

    2011-11-01

    Full Text Available In spite of the wide range of injuries in adolescents during sports activities, there are only a few studies investigating the type and frequency of sport injuries in puberty. However, this information may help to prevent, diagnose and treat sports injuries among teens. 4468 injuries in adolescent patients were treated over a ten year period of time: 66,97% were boys and 32.88% girls. The most frequent sports injuries were football (31.13% followed by handball (8.89% and sports during school (8.77%. The lower extremity was involved in 68.71% of the cases. Knee problems were seen in 29.79% of the patients; 2.57% spine and 1.99% head injuries. Injuries consisted primarily of distortions (35.34% and ligament tears (18.76%; 9,00% of all injuries were fractures. We found more skin wounds (6:1 and fractures (7:2 in male patients compared to females. The risk of ligament tears was highest during skiing. Three of four ski injuries led to knee problems. Spine injuries were observed most often during horse riding (1:6. Head injuries were seen in bicycle accidents (1:3. Head injuries were seen in male patients much more often then in female patients (21:1. Fractures were noted during football (1:9, skiing (1:9, inline (2:3, and during school sports (1:11. Many adolescents participate in various sports. Notwithstanding the methodological problems with epidemiological data, there is no doubt about the large number of athletes sustain musculoskeletal injuries, sometimes serious. In most instances, the accident does not happened during professional sports and training. Therefore, school teachers and low league trainer play an important role preventing further accidence based on knowledge of individual risk patterns of different sports. It is imperative to provide preventive medical check-ups, to monitor the sport-specific needs for each individual sports, to observe the training skills as well as physical fitness needed and to evaluation coaches education.

  4. Radiation injuries of the oral cavity

    International Nuclear Information System (INIS)

    Galantseva, G.F.

    1982-01-01

    The review is given of factors which cause the beginning of radiation injuries of oral cavity in oncologic patients following radiotherapy: dose rate absorbed with tumor and surrounding healthy tissues; irradiation procedures; size of irradiated volume. Pathogenesis and clinical picture are considered as well as prophylaxis and tactics of treatments of patients with radiation injuries of oral cavity

  5. High pressure injection injuries: an overview.

    Science.gov (United States)

    Fialkov, J A; Freiberg, A

    1991-01-01

    Injuries resulting from the use of high pressure injectors and spray guns are relatively rare; however, the potential tissue damage caused by the injury as well as the extent of the injury itself may go unrecognized by the primary physician. The purpose of this paper is to inform the emergency physician of the nature and standard management of this type of injury. A basic understanding of the pathophysiology of the high pressure injection injury (HPII) is essential in avoiding the mistakes in management that have been reported in the literature. The emergency management of the HPII includes: evaluation and immobilization, tetanus and antimicrobial prophylaxis, supportive and resuscitative measures, analgesia, and minimizing the time to definitive surgical treatment.

  6. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  7. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  8. Open extensor tendon injuries: an epidemiologic study.

    Science.gov (United States)

    Patillo, Dominic; Rayan, Ghazi M

    2012-01-01

    To report the epidemiology, mechanism, anatomical location, distribution, and severity of open extensor tendon injuries in the digits, hand, and forearm as well as the frequency of associated injuries to surrounding bone and soft tissue. Retrospective chart review was conducted for patients who had operative repair of open digital extensor tendon injuries in all zones within an 11-year period. Data was grouped according to patient characteristics, zone of injury, mechanism of injury, and presence of associated injury. Statistical analysis was used to determine the presence of relevant associations. Eighty-six patients with 125 severed tendons and 105 injured digits were available for chart reviews. Patients were predominantly males (83%) with a mean age of 34.2 years and the dominant extremity was most often injured (60%). The thumb was the most commonly injured (25.7%), followed by middle finger (24.8), whereas small finger was least affected (10.5%). Sharp laceration was the most common mechanism of injury (60%), and most of these occurred at or proximal to the metacarpophalangeal joints. Most saw injuries occurred distal to the metacarpophalangeal joint. Zone V was the most commonly affected in the fingers (27%) while zone VT was the most commonly affected in the thumb (69%). Associated injuries to bone and soft tissue occurred in 46.7% of all injuries with saw and crush/avulsions being predictive of fractures and damage to the underlying joint capsule. The extensor mechanism is anatomically complex, and open injuries to the dorsum of the hand, wrist, and forearm, especially of crushing nature and those inflicted by saws, must be thoroughly evaluated. Associated injuries should be ruled out in order to customize surgical treatment and optimize outcome.

  9. Trampoline-related injury in children.

    Science.gov (United States)

    Shankar, Amitabh; Williams, Kim; Ryan, Mary

    2006-09-01

    To quantify and describe trampoline-related injuries in children attending an urban pediatric emergency department. Retrospective cohort study of consecutive patients attending a children's emergency department with trampoline-related injuries over a 3-month period (May-July 2005). One hundred and sixty-eight children were treated for trampoline-related injuries during the period reviewed. Sixty-three percent were girls. Their age ranged between 4 months and 16 years (mean, 10.4 years [SD, 3 years and 10 months]). Lower limb injuries (51%) were more common overall. The most common injuries were to the ankle (31%), followed by foot (9.2%), and neck (8.4%). Sprain or soft tissue injuries (68%) were the most common type of injury, followed by fracture (12.2%). The most common mechanism of injury was inversion of the ankle on a trampoline (18.4%). Trampoline-related injuries represented 2.5% of morbidity from accidental trauma in children presenting to emergency department in our study. The rate and severity of injury has become a significant public health concern. It appears that current preventative strategies are inadequate in making children's carers aware of the potential risks of trampoline use, particularly when used recreationally.

  10. Review of adult head injury admissions into the intensive care unit of ...

    African Journals Online (AJOL)

    The most common mode of injury was road traffic accident. All the patients admitted to ICU had either moderate or severe head injury, with 73.7% having severe head injury. About 26.3% of the patients had associated cervical spine injuries and 50% had various musculoskeletal and soft tissue injuries. Cranial computed ...

  11. Primary Kaposi sarcoma of the subcutaneous tissue

    Directory of Open Access Journals (Sweden)

    Dezube Bruce J

    2008-09-01

    Full Text Available Abstract Background Involvement of the subcutis by Kaposi sarcoma (KS occurs primarily when cutaneous KS lesions evolve into deep penetrating nodular tumors. Primary KS of the subcutaneous tissue is an exceptional manifestation of this low-grade vascular neoplasm. Case presentation We present a unique case of acquired immune deficiency syndrome (AIDS-associated KS manifesting primarily in the subcutaneous tissue of the anterior thigh in a 43-year-old male, which occurred without overlying visible skin changes or concomitant KS disease elsewhere. Radiological imaging and tissue biopsy confirmed the diagnosis of KS. Conclusion This is the first documented case of primary subcutaneous KS occurring in the setting of AIDS. The differential diagnosis of an isolated subcutaneous lesion in an human immunodeficiency virus (HIV-infected individual is broad, and requires both imaging and a histopathological diagnosis to guide appropriate therapy.

  12. Nanomedicine strategies for treatment of secondary spinal cord injury

    Directory of Open Access Journals (Sweden)

    White-Schenk D

    2015-01-01

    Full Text Available Désirée White-Schenk,1,4 Riyi Shi,1–3 James F Leary1–4 1Interdisciplinary Biomedical Sciences Program, 2Weldon School of Biomedical Engineering, 3Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, 4Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA Abstract: Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. Keywords: spinal cord injury, acrolein, drug delivery, methylprednisolone, secondary injury

  13. Evaluation of Vacuum Assisted Closure Therapy for Soft Tissue Injury in Open Musculoskeletal Trauma.

    Science.gov (United States)

    Raj, Manish; Gill, S P S; Sheopaltan, Sunil Kumar; Singh, Pulkesh; Dinesh; Sigh, Jasveer; Rastogi, Prateek; Mishra, L N

    2016-04-01

    The application of controlled levels of negative or sub atmospheric pressure for a prolonged period of time on a wound had shown to accelerate removal of excess fluid and promote hyperaemia, which eventually promote wound healing. The study was conducted with the aim to evaluate the effectiveness of Vacuum Assisted Closure (VAC) therapy for soft tissue injury in open musculoskeletal trauma. Twenty cases of complex musculoskeletal wound involving different parts of body were included in this progressive randomized study. In patients, aggressive debridement was done before the application of VAC therapy. Controlled negative pressure was uniformly applied to the wound. Dressings were changed after every 4 to 5 days. The evaluation of results included healing rate of the wound, eradication of infection, complication rate, and number of secondary procedures. VAC therapy over the wound was administered for an average of 20.4 days ±6.72 days (range 14 to 42 days). There was decrease in wound size attained by VAC therapy ranged from 2.6 to 24.4cm(2), with an average reduction of 10.55 cm(2). Three wounds were infected at the start of VAC therapy. However, all patients were cleared of bacterial infection by the end of VAC therapy. VAC therapy using negative pressure promote Wound healing by increasing local capillary perfusion and increased rate of granulation tissue formation, decreases the duration of wound healing and requires fewer painful dressing change.

  14. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  15. Radiation injury to the nervous system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system

  16. The Triaging and Treatment of Cold-Induced Injuries.

    Science.gov (United States)

    Sachs, Christoph; Lehnhardt, Marcus; Daigeler, Adrien; Goertz, Ole

    2015-10-30

    In Central Europe, cold-induced injuries are much less common than burns. In a burn center in western Germany, the mean ratio of these two types of injury over the past 10 years was 1 to 35. Because cold-induced injuries are so rare, physicians often do not know how to deal with them. This article is based on a review of publications (up to December 2014) retrieved by a selective search in PubMed using the terms "freezing," "frostbite injury," "non-freezing cold injury," and "frostbite review," as well as on the authors' clinical experience. Freezing and cold-induced trauma are part of the treatment spectrum in burn centers. The treatment of cold-induced injuries is not standardized and is based largely on case reports and observations of use. distinction is drawn between non-freezing injuries, in which there is a slow temperature drop in tissue without freezing, and freezing injuries in which ice crystals form in tissue. In all cases of cold-induced injury, the patient should be slowly warmed to 22°-27°C to prevent reperfusion injury. Freezing injuries are treated with warming of the body's core temperature and with the bathing of the affected body parts in warm water with added antiseptic agents. Any large or open vesicles that are already apparent should be debrided. To inhibit prostaglandin-mediated thrombosis, ibuprofen is given (12 mg/kg body weight b.i.d.). The treatment of cold-induced injuries is based on their type, severity, and timing. The recommendations above are grade C recommendations. The current approach to reperfusion has yielded promising initial results and should be further investigated in prospective studies.

  17. Inflammation reduces physiological tissue tolerance in the development of work-related musculoskeletal disorders.

    Science.gov (United States)

    Barr, Ann E; Barbe, Mary F

    2004-02-01

    Work-related musculoskeletal disorders (MSDs) cause substantial worker discomfort, disability and loss of productivity. Due to the difficulty in analyzing the tissues of patients in the early stages of work-related MSD, there is controversy concerning the pathomechanisms of the development of these disorders. The pathophysiology of work-related MSD can be studied more easily in animal models. The purpose of this review is to relate theories of the development of tissue injury due to repeated motion to findings of recent investigations in animals that address the role of the inflammatory response in propagating tissue injury and contributing to chronic or recurring tissue injury. These tissue effects are related to behavioral indicators of discomfort and movement dysfunction with the aim of clarifying key time points for specific intervention approaches. The results from animal models of MSD are discussed in the light of findings in patients, whose tissues are examined at a much later phase of MSD development. Finally, a conceptual model of the potentially negative impact of inflammation on tissue tolerance is proposed along with suggestions for future research directions.

  18. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  19. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ren [Department of Pathology, University of Southern California, Los Angeles (United States); Trindade, Alexandre [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Sun, Zhanfeng [Department of Vascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Kumar, Ram; Weaver, Fred A. [Department of Surgery, University of Southern California, Los Angeles (United States); Krasnoperov, Valery; Naga, Kranthi [Vasgene Therapeutics, Los Angeles, CA (United States); Duarte, Antonio [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Gill, Parkash S., E-mail: parkashg@usc.edu [Department of Pathology, University of Southern California, Los Angeles (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  20. Functional tissue engineering of ligament healing

    Directory of Open Access Journals (Sweden)

    Hsu Shan-Ling

    2010-05-01

    Full Text Available Abstract Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL and medial collateral ligament (MCL of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

  1. The irreducible floating hip: a unique presentation of a rare injury.

    Science.gov (United States)

    Tiedeken, Nathan C; Saldanha, Vilas; Handal, John; Raphael, James

    2013-10-04

    A floating hip injury occurs in the setting of poly-trauma and is a rare and difficult problem to manage. Floating hip injuries require vigilant attention not only to the osseous injuries but also the surrounding compartments and soft tissue envelope. We report the case of a 35-year-old male with a lower extremity posterior wall acetabular fracture, ipsilateral femoral shaft fracture and a postero-superior hip dislocation. Closed reduction failed, necessitating an open reduction internal fixation of his hip dislocation and acetabular fracture. The patient then developed a thigh compartment syndrome requiring a fasciotomy. Despite the obvious bony injuries, orthopedic surgeons must be vigilant of the neurovascular structures and soft tissues that have absorbed a great amount of force. A treatment plan should be formulated based on the status of the overlying soft tissue, fracture pattern and the patient's physiologic stability. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2013.

  2. Impact of First Aid on Treatment Outcomes for Non-Fatal Injuries in Rural Bangladesh: Findings from an Injury and Demographic Census.

    Science.gov (United States)

    Hoque, Dewan Md Emdadul; Islam, Md Irteja; Sharmin Salam, Shumona; Rahman, Qazi Sadeq-Ur; Agrawal, Priyanka; Rahman, Aminur; Rahman, Fazlur; El-Arifeen, Shams; Hyder, Adnan A; Alonge, Olakunle

    2017-07-12

    Non-fatal injuries have a significant impact on disability, productivity, and economic cost, and first-aid can play an important role in improving non-fatal injury outcomes. Data collected from a census conducted as part of a drowning prevention project in Bangladesh was used to quantify the impact of first-aid provided by trained and untrained providers on non-fatal injuries. The census covered approximately 1.2 million people from 7 sub-districts of Bangladesh. Around 10% individuals reported an injury event in the six-month recall period. The most common injuries were falls (39%) and cuts injuries (23.4%). Overall, 81.7% of those with non-fatal injuries received first aid from a provider of whom 79.9% were non-medically trained. Individuals who received first-aid from a medically trained provider had more severe injuries and were 1.28 times more likely to show improvement or recover compared to those who received first-aid from an untrained provider. In Bangladesh, first-aid for non-fatal injuries are primarily provided by untrained providers. Given the large number of untrained providers and the known benefits of first aid to overcome morbidities associated with non-fatal injuries, public health interventions should be designed and implemented to train and improve skills of untrained providers.

  3. Late radiation injury of the colon and rectum. Surgical management and outcome

    International Nuclear Information System (INIS)

    Kimose, H.H.; Fischer, L.; Spjeldnaes, N.; Wara, P.

    1989-01-01

    After a median latency of 2 years, the initial late colorectal radiation injuries in 182 patients were: stricture (37 percent), minor lesions (36 percent), rectovaginal fistula (22 percent), and gangrene or other fistulas (5 percent). Due to progression, new colorectal injuries, primarily stricture (55 percent) and fistula (42 percent), occurred in 68 patients (37 percent). Resection provided the best results. However, the resectability rate was low (46 percent) and resection was primarily performed in patients with a circumscript well-defined stricture of the proximal rectum or sigmoid colon with an anastomotic leakage rate of 5 percent. The prevailing management of 78 patients with fistula or stricture with synchronous fistula was defunctioning colostomy, primarily end-sigmoidostomy, providing fair results in half of the patients. Stomal complications occurred in 15 percent. The radiation-induced colorectal mortality was 8 percent. Colorectal fistula and associated radiation injuries of the urinary tract, and especially of the small bowel, were the major determinants of fatal outcome, yielding an overall radiation-induced mortality of 25 percent. After a median observation time of 13 years, half of the patients were alive at follow-up; 56 percent of these had a fair outcome whereas the remaining patients continued to have mild symptoms responding to conservative measures (34 percent) or disabling symptoms (10 percent)

  4. Irradiation-induced hypoxia in bones and soft tissues: an experimental study

    International Nuclear Information System (INIS)

    Aitasalo, K.; Aro, H.

    1986-01-01

    Bone marrow and subcutaneous tissue pO 2 and pCO 2 were measured by means of implanted tissue tonometers in irradiated and nonirradiated rabbit hind limbs. The x-ray dose was 500, 1000, 1500, 2000, and 3000 rads. Tissue gas tensions were measured 1 day and 5 and 11 weeks after radiation. The pCO 2 changes in both tissues were slight but not statistically significant. The subcutaneous tissue pO 2 decreased during the acute phase of irradiation injury, and the effect of irradiation was dose-dependent. Later on, irradiation had no significant effects on the subcutaneous pO 2 , although light microscopy of the affected tissues showed fibrosis and blood vessel changes. The response of the subcutaneous pO 2 to systemic hyperoxia also increased in the chronic phase of irradiation injury as a sign of improved microcirculation. The bone marrow showed a high radiosensitivity. Irradiation caused a rapid dose-dependent decrease of the marrow pO 2 , and the marrow pO 2 decreased with time during the chronic phase of irradiation injury. The marrow pO 2 responded slowly and marginally to an increment of arterial pO 2 during breathing 100% oxygen as further evidence of impaired vascular pattern. The results showed that irradiation causes only a transient impairment of tissue perfusion in the skin. However, irradiation-damaged marrow was characterized by progressive tissue hypoxia

  5. Evaluation of functional outcome of the floating knee injury using multivariate analysis.

    Science.gov (United States)

    Yokoyama, Kazuhiko; Tsukamoto, Tatsuro; Aoki, Shinichi; Wakita, Ryuji; Uchino, Masataka; Noumi, Takashi; Fukushima, Nobuaki; Itoman, Moritoshi

    2002-11-01

    The objective of this study is to evaluate significant contributing factors affecting the functional prognosis of floating knee injuries using multivariate analysis. A total of 68 floating knee injuries (67 patients) were treated at Kitasato University Hospital from 1986 to 1999. Both the femoral fractures and the tibial fractures were managed surgically by various methods. The functional results of these injuries were evaluated using the grading system of Karlström and Olerud. Follow-up periods ranged from 2 to 19 years (mean 50.2 months) after the original injury. We defined satisfactory (S) outcomes as those cases with excellent or good results and unsatisfactory (US) outcomes as those cases with acceptable or poor results. Logistic regression analysis was used as a multivariate analysis, and the dependent variables were defined as a satisfactory outcome or as an unsatisfactory outcome. The explanatory variables were predicting factors influencing the functional outcome such as age at trauma, gender, severity of soft-tissue injury in the femur and the tibia, AO fracture grade in the femur and the tibia, Fraser type (type I or type II), Injury Severity Score (ISS), and fixation time after injury (less than 1 week or more than 1 week) in the femur and the tibia. The final functional results were as follows: 25 cases had excellent results, 15 cases good results, 16 cases acceptable results, and 12 cases poor results. The predictive logistic regression equation was as follows: Log 1-p/p = 3.12-1.52 x Fraser type - 1.65 x severity of soft-tissue injury in the tibia - 1.31 x fixation time after injury in the tibia - 0.821 x AO fracture grade in the tibia + 1.025 x fixation time after injury in the femur - 0.687 x AO fracture grade in the femur ( p=0.01). Among the variables, Fraser type and the severity of soft-tissue injury in the tibia were significantly related to the final result. The multivariate analysis showed that both the involvement of the knee joint and

  6. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  7. Morphological aspects of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, C C; Fliedner, T M

    1971-04-01

    The injury to haemopoietic and lymphatic tissues produced by ionizing irradiation in various species of mammals including man is one of the major features of the biological effects of radiation (Bond et al. 1965,' Cottier, 1961). At the moment of injury and for a short time thereafter relatively little morphological evidence of cell damage in bone marrow other than cessation of cell division and DNA synthesis is seen. Within a few hours, however, depending on the level of exposure, major destruction of red bone marrow tissue can occur. In this chapter the histologic changes in bone marrow are summarized for correlation with the functional aspects of the change in the target tissue, particularly its cell renewal features and where possible the remarkable flux or migration of cells through bone marrow and lymphatic tissues. This latter topic of cellular traffic represents the outcome of extensive physiological studies on haemopoiesis and lymphopoiesis by mammalian radiobiologists. The initial injury, the structural changes and the physiological consequences are the first half of the radiation injury sequence. Regeneration also has morphological features of major importance to the understanding of radiation haematology. It is common to discuss radiation effects on biological materials from the point of view of external or internal sources of exposure. In addition exposure rate, whole body or partial body, type and quality of the ionizing source are features that must be taken into account. While these features are extremely important, the simplest approach to understanding histologic effects on the bone marrow is to assume acute penetrating whole-body exposure in the lethal range. With this background the differences related to variations in the conditions of exposure can usually be understood. The individual human or animal organism receiving the exposure must also be considered in the final outcome of the experience because age, sex, nutritional status and presence

  8. Long-term health outcomes of youth sports injuries.

    Science.gov (United States)

    Maffulli, N; Longo, U G; Gougoulias, N; Loppini, M; Denaro, V

    2010-01-01

    Injuries can counter the beneficial effects of sports participation at a young age if a child or adolescent is unable to continue to participate because of residual effects of injury. This paper reviews current knowledge in the field of long-term health outcomes of youth sports injuries to evaluate the evidence regarding children dropping out of sport due to injury, physeal injuries and growth disturbance, studies of injuries affecting the spine and knee of young and former athletes and surgical outcome of anterior cruciate ligament (ACL) reconstruction in children. Studies of dropping out of sport due to injury are limited primarily to gymnasts and implicate such injuries as ACL rupture and osteochondritis dissecans of the elbow joint in the early retirement of young athletes. Although most physeal injuries resolve with treatment and rest, there is evidence of disturbed physeal growth as a result of injury. Radiological findings implicate the effects of intense physical loading and injury in the development of spinal pathology and back pain during the growth of youth athletes; however, long-term effects are unclear. Follow-up studies of young athletes and adults indicate a high risk of osteoarthritis after meniscus or ACL injury. Prospective cohort studies with a follow-up into adulthood are needed to clarify the long-term health outcomes of youth sports injuries. Important to this research is meticulous documentation of injuries on injury report forms that include age-appropriate designations of the type of injury and accurate determination of exposure-based injury rates.

  9. Soft-tissue injuries from sports activities and traffic accidents--treatment with low-level laser therapy: a multicenter double-blind placebo-controlled clinical study on 132 patients

    Science.gov (United States)

    Simunovic, Zlatko; Trobonjaca, Tatjana

    2000-06-01

    The aim of current multicenter clinical study was to assess the efficacy of low energy-level laser therapy (LLLT) in the treatment of soft tissue injuries compared to the placebo and classical phyiotherapeutic procedures. This clinical study was conducted in two centers located in Locarno, Switzerland and Opatija, Croatia. Two types of irradiation techniques were used: (1) direct, skin contact technique for treatment of trigger points where IR diode laser 830 nm continuous wave was applied; and (2) scanning technique for irradiation of larger surface area with use of Helium Neon laser 632.8 nm combined with IR diode laser 904 nm pulsed wave. Results were evaluated according to clinical parameters like: hematoma, swelling, heat, pan and loss of function. The findings were statistically analyzed via chi- square test. Results have demonstrated that the recovery process was accelerated in 85 percent of patients treated with LLLT compared to the control group of patients. The results and advantages obtained proved once again the efficacy of LLLT as a new and successful way to treat soft tissue injuries.

  10. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  11. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  12. Cerebrospinal fluid pressures resulting from experimental traumatic spinal cord injuries in a pig model.

    Science.gov (United States)

    Jones, Claire F; Lee, Jae H T; Burstyn, Uri; Okon, Elena B; Kwon, Brian K; Cripton, Peter A

    2013-10-01

    Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high human-like severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7-1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8-83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its

  13. Seizure-related injuries in children and adolescents with epilepsy.

    Science.gov (United States)

    Lagunju, IkeOluwa A; Oyinlade, Alexander O; Babatunde, Olubusayo D

    2016-01-01

    Children with epilepsy are reported to be at a greater risk of injuries compared with their peers who do not have epilepsy. We set out to determine the frequency and pattern of seizure-related injuries in children with epilepsy seen at the University College Hospital (UCH), Ibadan, Nigeria. Consecutive cases of epilepsy seen at the pediatric neurology clinic of the UCH, Ibadan over a period of 6months were evaluated for injuries in the preceding 12months using a structured questionnaire. These were compared with age- and sex-matched controls. A total of 125 children with epilepsy and 125 age- and sex-matched controls were studied. Injuries occurred more frequently in children with epilepsy than in their peers (p=0.01, OR 1.935, 95% CI 1.142-3.280). Epilepsy was generalized in 80 (64.0%), and localization-related in 45 (36.0%). Idiopathic epilepsy accounted for 74 (59.2%), and the remaining 51 (40.8%) had remote symptomatic epilepsy. Fifty-seven (45.6%) children had suffered seizure-related injuries with multiple injuries in 31 (24.8%). The most frequent were skin/soft tissue lacerations (26.4%), injuries to the tongue and soft tissues of the mouth (19.2%), minor head injuries (15.2%), and dental injuries with tooth loss (8.0%). There was a statistically significant association between seizure frequency and seizure-related injuries (p=0.002). Children on polytherapy had a significantly higher frequency of seizure-related injuries (pEpilepsy is a major risk factor for injuries in childhood. High seizure frequency increases the risk of multiple injuries in children with epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load.

    Directory of Open Access Journals (Sweden)

    Olivera Stojadinovic

    Full Text Available Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load of 300 kPa (determined by pressure plate analyses of a person in a reclining position for 0.5-4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.

  15. The bone scan in traumatic and sports injuries

    International Nuclear Information System (INIS)

    Matin, P.

    1987-01-01

    There are several types of injuries which are not diagnosable by routine radiographic methods but can be detected easily by nuclear medicine techniques. This chapter describes four primary categories of injury where nuclear medicine techniques may be of use: stress fracture and periosteal injury; covert fractures; joint abnormalities and injuries to connective tissues, especially where they attach to bone; and acute skeletal muscle injury and rhabdomyolysis. One of the most important features of the use of nuclear medicine techniques in the evaluation of sports and traumatic injury is the ability, in most cases, to be able to differentiate among these various categories. Other uses of nuclear medicine techniques are discussed in this chapter

  16. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    Science.gov (United States)

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  17. Biomarkers of drug-induced vascular injury

    International Nuclear Information System (INIS)

    Brott, D.; Gould, S.; Jones, H.; Schofield, J.; Prior, H.; Valentin, J.P; Bjurstrom, S.; Kenne, K.; Schuppe-Koistinen, I.; Katein, A.; Foster-Brown, L.; Betton, G.; Richardson, R.; Evans, G.; Louden, C.

    2005-01-01

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  18. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p OSI were found to be significantly increased in the control group compared to others groups (p model.

  19. Pathomorphological features of the skin and muscle tissue of experimental animals in the case of lifetime and postmortem damage

    Directory of Open Access Journals (Sweden)

    A. V. Kis

    2013-04-01

    Full Text Available The problem of forensic medical diagnosis of tissue injury is currently the subject of numerous investigations. Pathomorphological changes of the skin and muscle tissue of experimental animals, resulting in the case of lifetime and postmortem traumatic injuries, depending on the time and temperature, were revealed by the author. Data obtained by the author is very necessary for improving the forensic medical diagnosis of traumatic soft tissue injuries.

  20. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    Science.gov (United States)

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (pelectrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  1. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2015-01-01

    Full Text Available Ischemia-reperfusion (IR injury is directly related to the formation of reactive oxygen species (ROS, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.

  2. Non-invasive assessment of radiation injury with electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Osterman, K Sunshine; Hoopes, P Jack; De Lorenzo, Christine; Gladstone, David J; Paulsen, Keith D

    2004-01-01

    A detailed understanding of non-targeted normal tissue response is necessary for the optimization of radiation treatment plans in cancer therapy. In this study, we evaluate the ability of electrical impedance spectroscopy (EIS) to non-invasively determine and quantify the injury response in soft tissue after high dose rate (HDR) irradiation, which is characterized by large localized dose distributions possessing steep spatial gradients. The HDR after-loading technique was employed to irradiate small volumes of muscle tissue with single doses (26-52 Gy targeted 5 mm away from the source). Impedance measurements were performed on 29 rats at 1, 2 and 3 month post-irradiation, employing 31 frequencies in the 1 kHz to 1 MHz range. Over the first 3 months, conductivity increased by 48% and 26% following target doses of 52 Gy and 26 Gy 5 mm from the HDR source, respectively. Injury, assessed independently through a grid-based scoring method showed a quadratic dependence on distance from source. A significant injury (50% of cells atrophied, necrotic or degenerating) in 1.2% of the volume, accompanied by more diffuse injury (25% of cells atrophied, necrotic or degenerating) in 9% of the tissue produced a conductivity increase of 0.02 S m -1 (8% over a baseline of 0.24 S m -1 ). This was not statistically significant at p 0.01. Among treatment groups, injury differences in 22% of the volume led to statistically significant differences in conductivity of 0.07 S m -1 (23% difference in conductivity). Despite limitations, the success of EIS in detecting responses in a fraction of the tissue probed, during these early post-irradiation time-points, is encouraging. Electrical impedance spectroscopy may provide a useful metric of atrophy and the development of fibrosis secondary to radiation that could be further developed into a low-cost imaging method for radiotherapy monitoring and assessment

  3. Traumatic colon injuries -- factors that influence surgical management.

    Science.gov (United States)

    Jinescu, G; Lica, I; Beuran, M

    2013-01-01

    This study sought to evaluate current trends in surgical management of colon injuries in a level I urban trauma centre, in the light of our increasing confidence in primary repair. Our retrospective study evaluates the results of 116 patients with colon injuries operated at Bucharest Clinical Emergency Hospital, in the light of some of the most commonly cited factors which could influence the surgeon decision-making process towards primary repair or colostomy. Blunt injuries were more common than penetrating injuries (65% vs. 31%). Significant other injuries occurred in 85 (73%) patients. Primary repair was performed in 95 patients (82%). Fecal diversion was used in 21 patients(18%). Multiple factors influence the decision-making process: shock, fecal contamination, associated injuries and higher scores on the Abdominal Trauma Index (ATI) and Colon Injury Scale (CIS). Colon related intra-abdominal complications occurred in 7% of patients in whom the colon injury was closed primarily and in 14% of patients in whom a stoma was created, ATI having a predictive role in their occurrence. The overall mortality rate was 19%. Primary repair of colon injuries, either by primary suture or resection and anastomosis, is a safe method in the management of the majority of colonic injuries. Colostomy is preferred for patients with ATI ≥ 30 and CIS ≥ 4. Surgical judgment remains the final arbiter in decision making. Celsius.

  4. Inflammatory and apoptotic alterations in serum and injured tissue after experimental polytrauma in mice: distinct early response compared with single trauma or "double-hit" injury.

    Science.gov (United States)

    Weckbach, Sebastian; Hohmann, Christoph; Braumueller, Sonja; Denk, Stephanie; Klohs, Bettina; Stahel, Philip F; Gebhard, Florian; Huber-Lang, Markus S; Perl, Mario

    2013-02-01

    The exact alterations of the immune system after polytrauma leading to sepsis and multiple-organ failure are poorly understood. Thus, the early local and systemic inflammatory and apoptotic response was characterized in a new polytrauma model and compared with the alterations seen after single or combined injuries. Anesthetized C57BL/6 mice were subjected to either blunt bilateral chest trauma (Tx), closed head injury, right femur fracture including contralateral soft tissue injury, or a combination of injuries (PTx). After 2 hours or 6 hours, animals were sacrificed, and the systemic as well as the local pulmonary immune response (bronchoalveolar lavage [BAL]/plasma cytokines, lung myeloperoxidase [MPO] activity, and alveolocapillary barrier dysfunction) were evaluated along with lung/brain apoptosis (lung caspase 3 Western blotting, immunohistochemistry, and polymorphonuclear leukocytes [PMN] Annexin V). Hemoglobin, PO2 saturation, and pH did not differ between the experimental groups. Local BAL cytokines/chemokines were significantly increased in almost all groups, which included Tx. There was no further enhancement of this local inflammatory response in the lungs in case of PTx. At 2 hours, all groups except sham and closed head injury alone revealed an increased activity of lung MPO. However, 6 hours after injury, lung MPO remained increased only in the PTx group. Increased BAL protein levels were found, reflecting enhanced lung leakage in all groups with Tx 6 hours after trauma. Only after PTx was neutrophil apoptosis significantly decreased, whereas lung caspase 3 and plasma interleukin 6/keratinocyte chemoattractant (KC) were substantially increased. The combination of different injuries leads to an earlier systemic inflammatory response when compared with the single insults. Interestingly, only after PTx but not after single or double hits was lung apoptosis increased, and PMN apoptosis was decreased along with a prolonged presence of neutrophils in the

  5. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  6. Sodium hypochlorite-induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Brandon W Peck

    2014-01-01

    Full Text Available Sodium hypochlorite (bleach is commonly used as an irrigant during dental proce-dures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI. In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis.

  7. The Effects of Motorcycle Helmet Legislation on Craniomaxillofacial Injuries.

    Science.gov (United States)

    Adams, Nicholas S; Newbury, Patrick A; Eichhorn, Mitchell G; Davis, Alan T; Mann, Robert J; Polley, John W; Girotto, John A

    2017-06-01

    Motorcycle helmet legislation has been a contentious topic for over a half-century. Benefits of helmet use in motorcycle trauma patients are well documented. In 2012, Michigan repealed its universal motorcycle helmet law in favor of a partial helmet law. The authors describe the early clinical effects on facial injuries throughout Michigan. Retrospective data from the Michigan Trauma Quality Improvement Program trauma database were evaluated. Included were 4643 motorcycle trauma patients presenting to 29 Level I and II trauma centers throughout Michigan 3 years before and after the law repeal (2009 to 2014). Demographics, external cause of injury codes, International Classification of Diseases, Ninth Revision diagnosis codes, and injury details were gathered. The proportion of unhelmeted trauma patients increased from 20 percent to 44 percent. Compared with helmeted trauma patients, unhelmeted patients were nearly twice as likely to sustain craniomaxillofacial injuries (relative risk, 1.90), including fractures (relative risk, 2.02) and soft-tissue injuries (relative risk, 1.94). Unhelmeted patients had a lower Glasgow Coma Scale score and higher Injury Severity Scores. Patients presenting after helmet law repeal were more likely to sustain craniomaxillofacial injuries (relative risk, 1.46), including fractures (relative risk, 1.28) and soft-tissue injuries (relative risk, 1.56). No significant differences were observed for age, sex, Injury Severity Score, or Glasgow Coma Scale score (p > 0.05). This study highlights the significant negative impact of relaxed motorcycle helmet laws leading to an increase in craniomaxillofacial injuries. The authors urge state and national legislators to reestablish universal motorcycle helmet laws.

  8. The Effects of Dexmedetomidine on Secondary Acute Lung and Kidney Injuries in the Rat Model of Intra-Abdominal Sepsis

    Directory of Open Access Journals (Sweden)

    Uğur Koca

    2013-01-01

    Full Text Available In the present study, the effects of dexmedetomidine on secondary lung and kidney injuries were studied in the rat model of intra-abdominal sepsis by immunohistological and biochemical examinations. We measured serum creatinine, kidney tissue malondialdehide and plasma neutrophil gelatinase-associated lipocalin levels. In order to evaluate tissue injury we determined kidney tissue mononuclear cell infiltration score, alveolar macrophage count, histological kidney and lung injury scores and kidney and lung tissue immunoreactivity scores. We demonstrated that dexmedetomidine attenuates sepsis-induced lung and kidney injuries and apoptosis in the rat model of sepsis. There is still need for comparative studies in order to determine the effects of dexmedetomidine on organ functions in early human sepsis.

  9. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Firework injuries: a ten-year study.

    Science.gov (United States)

    Puri, Vinita; Mahendru, Sanjay; Rana, Roshani; Deshpande, Manish

    2009-09-01

    Fireworks are used worldwide to celebrate popular events (e.g. festivals, official celebrations, weddings). The festival of lights (Diwali) is celebrated with fireworks in India. During this period, many patients from all age groups present to hospital with injuries due to fireworks. Prevalence, period of occurrence, sex and age variation, adult supervision, causative fireworks, mode of lighting, age groups prone to injury, patterns of injury caused by individual fireworks, and the body parts injured were studied. One hundred and fifty-seven cases (92 retrospective, 65 prospective) with injury due to fireworks presenting to the Department of Plastic Surgery at KEM Hospital between 1997 and 2006 were studied. The prevalence of injuries has decreased steadily over the last 10 years (41 cases in 1997, 3 cases in 2006). The maximum number of injuries (35%) was seen in the age group 5-14 years; 92% of these children were unsupervised. The commonest cause of injury was firework misuse (41% of cases), followed by device failure (35%). Device failure was commonest with flares/fountains (ground firework emitting sparks upwards) and aerial devices. Flare/fountains caused most injury (39%), sparklers the least (0.6%). Flare/fountains, ground spinners, sparklers, and gunpowder (explosive material from cracker, obtained by tearing paper wrapper and obtaining chemicals) caused only soft tissue burns; stringbombs (high-intensity fire cracker made by wrapping chemicals with jute strings/coir in layers) and rockets (aerial device that zooms upwards and bursts) caused blast injuries, leading to soft tissue disruption and bony injuries. Emergency surgery was done if indicated: tendon and/or neurovascular repair, fracture fixation, flap cover or amputation. Superficial burns were treated with dressings. Certain wounds needed only thorough cleansing of the wound and primary suturing. We concluded that, over a 10-year period, the prevalence of firework injury decreased due to increased

  11. Engineering Musculoskeletal Tissue Interfaces

    Directory of Open Access Journals (Sweden)

    Ece Bayrak

    2018-04-01

    Full Text Available Tissue engineering aims to bring together biomaterials, cells, and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that mimic the complex structural and functional features of tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet, and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

  12. Review of Injuries from Terrorist Bombings and Earthquakes

    Science.gov (United States)

    2016-08-31

    8.50% Compartment Syndrome 28 5.18% Hemopneumothorax 17 3.14% Abdominal Injury 17 3.14% Head Injury 14 2.59% Acute Renal Failure 22 4.07...typically involved the head and neck, extremities, and soft tissues. Glass shattering was a common source of injury. Eight earthquake case studies...car bomb equivalent to 80 kg of TNT exploded at 2:50 pm at The Old Bailey in London, resulting in 160 casualties (Frykberg and Tepas 1988; Caro and

  13. On associations between different factors and whiplash injury

    OpenAIRE

    Berglund, Anita

    2002-01-01

    The overall aim of this thesis was to evaluate associations between different factors and whiplash injury (defined as a soft tissue injury to the neck without fracture or dislocation), focusing on risk of initial and future complaints. The objectives in Paper 1 and II was to determine whether exposure to a rear-end collision, with or without whiplash injury, is associated with future neck or shoulder pain (Paper 1) and other health complaints, besides neck pain (Paper II). T...

  14. En-bloc excision debridement of spray paint injection injury to the ...

    African Journals Online (AJOL)

    Background: High pressure injection injuries to the hand are relatively uncommon. The potential and actual tissue injuries are often underestimated by the primary care giver. Patient: This is a report on a 27 year old dock worker who sustained a spray paint gun injury to the left hand with resulting digital neurovascular ...

  15. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  16. Injuries prevalence in elite male artistic gymnasts

    Directory of Open Access Journals (Sweden)

    Natália Batista Albuquerque GOULART

    2016-03-01

    Full Text Available Abstract The purpose of this study was to investigate the injuries prevalence in men elite artistic gymnasts. Twenty Brazilian senior gymnasts, aged 23.1 ± 6.5 years, 13.9 ± 5.0 years of practice and 36.5 ± 4.7 hours per week training, participated in this study. The athletes answered a morbidity questionnaire, formulated according to studies from the literature, for information on the injuries’ characteristics and circumstances. Information about the injury circumstances (gymnastic apparatus, overload training and physical exercises, the anatomic site injured, the affect biological tissue and the return to training after injury treatment were evaluated. Data were analyzed by descriptive statistics, absolute and relative frequencies. The training overload, and floor, pommel horse and vault were the events that presented higher injuries frequency. In relation to anatomic site, ankle, hands/fingers and shoulder were the most cited regions. The ligament, bone and articular capsule were the most affected biological tissues. In relation to gymnasts’ return to their sports activities, 56% of them reported a better condition at return, 33% reported to have returned at the same fitness level and 10% indicated that they were in a worse condition when they returned to the sports activities. The men’s artistic gymnastics injuries are related to the mechanical demands of this sport. The analysis of risk factors helps in understanding the injuries mechanisms in gymnastics, and provides relevant information that can assist in effective prevention strategies.

  17. Badminton injuries in youth competitive players.

    Science.gov (United States)

    Goh, S L; Mokhtar, A H; Mohamad Ali, M R

    2013-02-01

    The aim of the study was to examine sports injury pattern and establish cost of injuries in relation to training of 58 competitive badminton players in a Malaysian National Sports School. This one-year prospective observational study recruited all the 13-16 year old students after obtaining informed consent from their appointed guardian. All participants were requested to report any injuries, which were pain or disabilities that occur within the study period (September 1, 2008 to August 31, 2009) either during training or competition. Injured students were to seek treatment from the researcher(s) who made weekly visits and they were then followed up accordingly until they return to full training. Details and progress of the injuries were documented during each visit. Sixty-three injuries were recorded. Soft tissue sprains/strains were the commonest injury (64%). About one third of the injuries occurred in the lower limb especially the knees and was followed by back injuries; 38% of the injuries did not require training modification, half of these injuries resumed training within one week. Upon full training, half of them were still symptomatic. Injury risk was 57%; injury rate was 0.9 injuries/ player/1000 training hours. Badminton injuries mostly involved the lower limb and almost all overuse injuries occurred in the lower limb. However, badminton injuries as a whole were predominantly sprains and strains, and not overuse in nature as widely believed.

  18. Systematic Review on the Effects of Serious Games and Wearable Technology Used in Rehabilitation of Patients With Traumatic Bone and Soft Tissue Injuries.

    Science.gov (United States)

    Meijer, Henriëtte A; Graafland, Maurits; Goslings, J Carel; Schijven, Marlies P

    2017-11-11

    To assess the effects on functional outcomes and treatment adherence of wearable technology and serious games (ie, interactive computer applications with specific purposes useful in the "real world") currently used in physical rehabilitation of patients after traumatic bone and soft tissue injuries. PubMed, EMBASE, Cochrane Library, and Current Index to Nursing and Allied Health Literature were searched without publication date restrictions for the terms wearable, serious game, videogame or mobile application, and rehabilitation, exercise therapy, and physiotherapy. The search yielded 2704 eligible articles, which were screened by 2 independent reviewers. Studies comparing serious games to standard therapy were included. Methodology and results of the studies were critically appraised in conformity with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twelve articles were included, all of which tested "off-the-shelf" games. No studies on "wearable-controlled" games or games specifically developed for rehabilitation could be included. Medical conditions included postoperative rehabilitation and acute traumatic injuries. All studies were of low to moderate quality. Only 2 studies found beneficial effects of serious games compared to conventional therapy. One of 3 studies reporting pain scores found beneficial effects of serious games compared to physiotherapy. One of 5 trials reporting treatment adherence found a statistically significant advantage in the game group compared to conventional physiotherapy. Because of heterogeneity in study design and outcome measures, pooling of data was not possible. Serious games seem a safe alternative or addition to conventional physiotherapy after traumatic bone and soft tissue injuries. Future research should determine their validity and effectiveness in rehabilitation therapy, next to their cost-effectiveness and effect on treatment adherence. Copyright © 2017 American Congress of Rehabilitation

  19. Epimorphic regeneration approach to tissue replacement in adult mammals

    Science.gov (United States)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  20. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  1. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  2. Tumor and normal tissue responses to fractioned non-uniform dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kaellman, P; Aegren, A; Brahme, A [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1996-08-01

    The volume dependence of the radiation response of a tumor is straight forward to quantify because it depends primarily on the eradication of all its clonogenic cells. A tumor therefore has a parallel organization as any surviving clonogen in principle can repopulate the tumor. The difficulty with the response of the tumor is instead to know the density and sensitivity distribution of the most resistant clonogenic cells. The increase in the 50% tumor control dose and the decrease in the maximum normalized slope of the dose response relation, {gamma}, in presence of small compartments of resistant tumor cells have therefore been quantified to describe their influence on the dose response relation. Injury to normal tissue is a much more complex and gradual process. It depends on earlier effects induced long before depletion of the differentiated and clonogenic cells that in addition may have a complex structural and functional organization. The volume dependence of the dose response relation of normal tissues is therefore described here by the relative seriality, s, of the infrastructure of the organ. The model can also be generalized to describe the response of heterogeneous tissues to non uniform dose distributions. The new model is compared with clinical and experimental data on normal tissue response, and shows good agreement both with regard to the shape of dose response relation and the volume dependence of the isoeffect dose. The response of tumors and normal tissues are quantified for arbitrary dose fractionations using the linear quadratic cell survival parameters {alpha} and {beta}. The parameters of the dose response relation are derived both for a constant dose per fraction and a constant number of dose fractions, thus in the latter case accounting also for non uniform dose delivery. (author). 26 refs, 4 figs.

  3. [Algorithms for treatment of complex hand injuries].

    Science.gov (United States)

    Pillukat, T; Prommersberger, K-J

    2011-07-01

    The primary treatment strongly influences the course and prognosis of hand injuries. Complex injuries which compromise functional recovery are especially challenging. Despite an apparently unlimited number of injury patterns it is possible to develop strategies which facilitate a standardized approach to operative treatment. In this situation algorithms can be important guidelines for a rational approach. The following algorithms have been proven in the treatment of complex injuries of the hand by our own experience. They were modified according to the current literature and refer to prehospital care, emergency room management, basic strategy in general and reconstruction of bone and joints, vessels, nerves, tendons and soft tissue coverage in detail. Algorithms facilitate the treatment of severe hand injuries. Applying simple yes/no decisions complex injury patterns are split into distinct partial problems which can be managed step by step.

  4. Meat grinder injuries to the upper extremity.

    Science.gov (United States)

    Brandner, M; Bunkis, J; Trengove-Jones, G

    1985-05-01

    Three cases of hand injury caused by meat grinders are presented. All 3 injuries involved the dominant hand and resulted in varying degrees of deformity. Two of the 3 patients arrived in the emergency room with the injured hand still firmly wedged in the meat grinder. Although these injuries continue to prove very mutilating, maximum restoration of the injured hand can be accomplished by careful extrication, followed by preservation and reconstruction of all viable tissues. Perioperative antibiotics and wound irrigation with antibiotic solution are recommended. Microsurgical technique can be of value in treating selected patients.

  5. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    those that go beyond the soft tissue and include head injuries and fractures. We feel that these more significant injuries MAY TO SOME EXTENT BE attributable to the increasing physical demands and technical difficulty required of the teams now participating in a more competitive environment over the last four years.

  6. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice.

    Directory of Open Access Journals (Sweden)

    David Hardy

    Full Text Available A longstanding goal in regenerative medicine is to reconstitute functional tissues or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised.We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite cells (SC and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®.We compared the 4 most commonly used injury models i.e. freeze injury (FI, barium chloride (BaCl2, notexin (NTX and cardiotoxin (CTX. The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature leaving a "dead zone" devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models.Our studies show that the nature of the injury model should be chosen carefully depending on the experimental design and desired

  7. Motorcycle accident is the main cause of maxillofacial injuries in the Penang Mainland, Malaysia.

    Science.gov (United States)

    Hashim, Hasnah; Iqbal, Syed

    2011-02-01

    Maxillofacial injuries are among the commonest forms of body injuries. There are three divisions, namely, facial bone fractures, soft tissue injuries, and dentoalveolar injuries. Etiologies include motor vehicle accidents, assaults, falls, and sporting injuries. The aim of this study was to determine the profiles including the causes of maxillofacial injuries seen in an urban government hospital in the mainland of Penang State, Malaysia. This was a cross-sectional study that recruited cases reported within a period of 1 year. The source population was maxillofacial injury patients presenting to the Oral and Maxillofacial Surgery Department of an urban hospital in the Penang Mainland, North Malaysia between May 2007 and May 2008. Cases of patients involved in accidents that occurred outside the reference vicinity were excluded. A case report form was developed and completed by the attending clinicians. Data were analyzed using spss version 12.0. A total of 194 cases were studied, with the mean patient age being 27.8 (SD 15.20) years. The majority of patients were Malay men between 20 and 29 years of age. The main cause of injury was motorcycle accident (53.6%). The commonest injury (in isolation/combination with other injuries) involved the soft tissues (87.2%), dentoalveolar region (33.4%), and facial bones (23.9%). Laceration was the commonest soft tissue injury, and crown fracture was the most frequent dentoalveolar injury. The facial bone that was most highly involved in the injury was the zygoma. Subjects involved in motorcycle accidents had a significantly higher incidence of sustaining facial bone fractures. Motorcycle accidents were the commonest cause of maxillofacial injuries in the Penang Mainland, Malaysia. Most patients were young men. Hence, it is prudent to reinforce appropriate road safety and awareness interventions particularly focusing young male motorcyclists so as to reduce the risk of accidents. © 2011 John Wiley & Sons A/S.

  8. Iso-effect tables and therapeutic ratios for epidermoid cancer and normal tissue stroma

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on radiation injury to normal tissue stroma and ablation of epidermoid carcinoma was surveyed. Computer programs (RAD3 and RAD1) were then used to derive cell kinetic parameters and generate iso-effect tables for the relevant tissues. The two tables provide a set of limiting doses for tolerance of normal connective tissue (16% risk of injury) and for ablation of epidermoid cancer (16% risk of recurrence) covering a wide range of treatment schedules. Calculating the ratios of normal tissue tolerance to tumor control doses for each treatment scheme provides an array of therapeutic ratios, from which appropriate treatment schemes can be selected

  9. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  10. Skateboarding injuries of today

    Science.gov (United States)

    Forsman, L; Eriksson, A

    2001-01-01

    Background—Skateboarding injuries have increased with the rise in popularity of the sport, and the injury pattern can be expected to have changed with the development of both skateboard tricks and the materials used for skateboard construction. Objective—To describe the injury pattern of today. Methods—The pattern of injuries, circumstances, and severity were investigated in a study of all 139 people injured in skateboarding accidents during the period 1995–1998 inclusive and admitted to the University Hospital of Umeå. This is the only hospital in the area, serving a population of 135 000. Results—Three of the 139 injured were pedestrians hit by a skateboard rider; the rest were riders. The age range was 7–47 years (mean 16). The severity of the injuries was minor (AIS 1) to moderate (AIS 2); fractures were classified as moderate. The annual number of injuries increased during the study period. Fractures were found in 29% of the casualties, and four children had concussion. The most common fractures were of the ankle and wrist. Older patients had less severe injuries, mainly sprains and soft tissue injuries. Most children were injured while skateboarding on ramps and at arenas; only 12 (9%) were injured while skateboarding on roads. Some 37% of the injuries occurred because of a loss of balance, and 26% because of a failed trick attempt. Falls caused by surface irregularities resulted in the highest proportion of the moderate injuries. Conclusions—Skateboarding should be restricted to supervised skateboard parks, and skateboarders should be required to wear protective gear. These measures would reduce the number of skateboarders injured in motor vehicle collisions, reduce the personal injuries among skateboarders, and reduce the number of pedestrians injured in collisions with skateboarders. Key Words: skateboard; injury; prevention PMID:11579065

  11. Toxicogenomic multigene biomarker for predicting the future onset of proximal tubular injury in rats

    International Nuclear Information System (INIS)

    Minowa, Yohsuke; Kondo, Chiaki; Uehara, Takeki; Morikawa, Yuji; Okuno, Yasushi; Nakatsu, Noriyuki; Ono, Atsushi; Maruyama, Toshiyuki; Kato, Ikuo; Yamate, Jyoji; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2012-01-01

    Drug-induced renal tubular injury is a major concern in the preclinical safety evaluation of drug candidates. Toxicogenomics is now a generally accepted tool for identifying chemicals with potential safety problems. The specific aim of the present study was to develop a model for use in predicting the future onset of drug-induced proximal tubular injury following repeated dosing with various nephrotoxicants. In total, 41 nephrotoxic and nonnephrotoxic compounds were used for the present analysis. Male Sprague-Dawley rats were dosed orally or intravenously once daily. Animals were exposed to three different doses (low, middle, and high) of each compound, and kidney tissue was collected at 3, 6, 9, and 24 h after single dosing, and on days 4, 8, 15, and 29 after repeated dosing. Gene expression profiles were generated from kidney total RNA using Affymetrix DNA microarrays. Filter-type gene selection and linear classification algorithms were employed to discriminate future onset of proximal tubular injury. We identified genomic biomarkers for use in future onset prediction using the gene expression profiles determined on day 1, when most of the nephrotoxicants had yet to produce detectable histopathological changes. The model was evaluated using a five-fold cross validation, and achieved a sensitivity of 93% and selectivity of 90% with 19 probes. We also found that the prediction accuracy of the optimized model was substantially higher than that produced by any of the single genomic biomarkers or histopathology. The genes included in our model were primarily involved in DNA replication, cell cycle control, apoptosis, and responses to oxidative stress and chemical stimuli. In summary, our toxicogenomic model is particularly useful for predicting the future onset of proximal tubular injury.

  12. Effects of knee injury primary prevention programs on anterior cruciate ligament injury rates in female athletes in different sports: a systematic review.

    Science.gov (United States)

    Michaelidis, Michael; Koumantakis, George A

    2014-08-01

    Anterior Cruciate Ligament (ACL) injury is frequently encountered in sports. To analyze the effects of ACL injury prevention programs on injury rates in female athletes between different sports. A comprehensive literature search was performed in September 2012 using Pubmed Central, Science Direct, CINAHL, PEDro, Cochrane Library, SCOPUS, SPORTDiscus. The key words used were: 'anterior cruciate ligament', 'ACL', 'knee joint', 'knee injuries', 'female', 'athletes', 'neuromuscular', 'training', 'prevention'. The inclusion criteria applied were: (1) ACL injury prevention training programs for female athletes; (2) Athlete-exposure data reporting; (3) Effect of training on ACL incidence rates for female athletes. 13 studies met the inclusion criteria. Three training programs in soccer and one in handball led to reduced ACL injury incidence. In basketball no effective training intervention was found. In season training was more effective than preseason in ACL injury prevention. A combination of strength training, plyometrics, balance training, technique monitoring with feedback, produced the most favorable results. Comparing the main components of ACL injury prevention programs for female athletes, some sports-dependent training specificity issues may need addressing in future studies, related primarily to the individual biomechanics of each sport but also their most effective method of delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Image-guided percutaneous removal of ballistic foreign bodies secondary to air gun injuries.

    Science.gov (United States)

    Rothermund, Jacob L; Rabe, Andrew J; Zumberge, Nicholas A; Murakami, James W; Warren, Patrick S; Hogan, Mark J

    2018-01-01

    Ballistic injuries with retained foreign bodies from air guns is a relatively common problem, particularly in children and adolescents. If not removed in a timely fashion, the foreign bodies can result in complications, including pain and infection. Diagnostic methods to identify the presence of the foreign body run the entire gamut of radiology, particularly radiography, ultrasound (US) and computed tomography (CT). Removal of the foreign bodies can be performed by primary care, emergency, surgical, and radiologic clinicians, with or without imaging guidance. To evaluate the modalities of radiologic detection and the experience of image-guided ballistic foreign body removal related to air gun injuries within the interventional radiology department of a large pediatric hospital. A database of more than 1,000 foreign bodies that were removed with imaging guidance by the interventional radiologists at our institution was searched for ballistic foreign bodies from air guns. The location, dimensions, diagnostic modality, duration, complications and imaging modality used for removal were recorded. In addition, the use of sedation and anesthesia required for the procedures was also recorded. Sixty-one patients with ballistic foreign bodies were identified. All foreign bodies were metallic BBs or pellets. The age of the patients ranged from 5 to 20 years. The initial diagnostic modality to detect the foreign bodies was primarily radiography. The primary modality to assist in removal was US, closely followed by fluoroscopy. For the procedure, 32.7% of the patients required some level of sedation. Only two patients had an active infection at the time of the removal. The foreign bodies were primarily in the soft tissues; however, successful removal was also performed from intraosseous, intraglandular and intratendinous locations. All cases resulted in successful removal without complications. Image-guided removal of ballistic foreign bodies secondary to air guns is a very

  14. Sports injuries in Plus League volleyball players.

    Science.gov (United States)

    Cieśla, E; Dutkiewicz, R; Mgłosiek, M; Nowak-Starz, G; Markowska, M; Jasiński, P; Dudek, J

    2015-06-01

    Although physical activity brings a range of lifelong health benefits, it may also lead to injuries that pose a significant threat to health. It is particularly noticeable in people involved in professional sports where sport-related injuries commonly occur and are associated with intense exercise which aims to improve physical fitness. The article attempts to determine incidence of sports injuries reported by Plus League volleyball players, as well as to identify their most common types and causes. The research project involved 90 Plus League volleyball players aged 18-37 with the average age of 25.11 (SD±5.378). A method of diagnostic survey was applied to collect empirical data by means of questionnaire developed by the authors (researchers). The results were statistically analysed and verified with the analysis of variance (ANOVA) and χ2 test at the significance level (or critical P-value) of P≤0.05. Over 87% of the respondents suffered from at least one sport-related injury. In total, 362 injuries occurred, on average 4.02 injuries per one volleyball player. The most common sports injuries involved ankle or talocrural joint (46 injuries), knee and lower leg muscles (30), interphalangeal articulations of fingers (30) as well as shoulder joint. More than half of the injuries (57%) occurred twice or three times. Volleyball players commonly sustain injuries through contact with an opposing player in competition. Sport-specific injuries may also occur due to exhaustion, lack of rest and undertreated injuries. The most common volleyball-related injuries are primarily talocrural joint, hand and shoulder injuries. Common types of injuries that can affect volleyball players include muscles, joints and ligaments injuries, sprains and strains as well as bruises. Most of these injuries are caused by exhaustion, contact with an opposing player during competition and fatigue. The incidence of sport-related injuries seems to be influenced by such factors as somatic

  15. Acute and late effects of multimodal therapy on normal tissues

    International Nuclear Information System (INIS)

    Phillips, T.L.; Fu, K.K.

    1977-01-01

    The increasing use of combined radiation, chemotherapy, and surgery has led to an increased incidence of acute and late complications. The complications are, in general, similar to those seen with each modality alone, but occur with increased incidence. Enhanced effects of combined radiation and surgery are modest in number and consist primarily of problems with wound healing and fibrosis, as well as late gastrointestinal damage. Combinations of radiotherapy and chemotherapy have shown a greater degree of enhanced acute and late reactions. Drugs, such as actinomycin-D and Adriamycin, are particularly dangerous if the marked enhancement of radiation effects caused by the drugs in almost all organs is not appreciated and the radiation dose not adjusted accordingly. Proper selection of drugs can lead to enhanced local control by radiotherapy and/or surgery, as well as eradication of microscopic distant metastases, without increased normal tissue injury. Late induction of malignancy can occur with either radiation or chemotherapy alone and, in some cases, this appears to be enhanced when they are combined

  16. Suicide bomb attack causing penetrating craniocerebral injury

    Directory of Open Access Journals (Sweden)

    Hussain Manzar

    2013-02-01

    Full Text Available 【Abstract】Penetrating cerebral injuries caused by foreign bodies are rare in civilian neurosurgical trauma, al-though there are various reports of blast or gunshot inju-ries in warfare due to multiple foreign bodies like pellets and nails. In our case, a 30-year-old man presented to neurosur-gery clinic with signs and symptoms of right-sided weak-ness after suicide bomb attack. The skull X-ray showed a single intracranial nail. Small craniotomy was done and the nail was removed with caution to avoid injury to surround-ing normal brain tissue. At 6 months’ follow-up his right-sided power improved to against gravity. Key words: Head injury, penetrating; Bombs; Nails

  17. Traumatic injuries: imaging of head injuries

    Energy Technology Data Exchange (ETDEWEB)

    Besenski, N. [Croatian Institute for Brain Research, Zagreb (Croatia)

    2002-06-01

    Due to the forces of acceleration, linear translation, as well as rotational and angular acceleration, the brain undergoes deformation and distortion depending on the site of impact of traumatizing force direction, severity of the traumatizing force, and tissue resistance of the brain. Linear translation of accereration in a closed-head injury can run along the shorter diameter of the skull in latero-lateral direction causing mostly extra-axial lesions (subdural hematoma,epidural hematoma, subarachnoidal hemorrhage) or quite pronounced coup and countercoup contusions. Contusions are considerably less frequently present in medial or paramedial centroaxial blows (fronto-occipital or occipito-frontal). The centroaxial blows produce a different pattern of lesions mostly in the deep structures, causing in some cases a special category of the brain injury, the diffuse axonal injury (DAI). The brain stem can also be damaged, but it is damaged more often in patients who have suffered centroaxial traumatic force direction. Computed tomography and MRI are the most common techniques in patients who have suffered brain injury. Computed tomography is currently the first imaging technique to be used after head injury, in those settings where CT is available. Using CT, scalp, bone, extra-axial hematomas, and parenchymal injury can be demonstrated. Computed tomography is rapid and easily performed also in monitored patients. It is the most relevant imaging procedure for surgical lesions. Computed tomography is a suitable method to follow the dynamics of lesion development giving an insight into the corresponding pathological development of the brain injury. Magnetic resonance imaging is more sensitive for all posttraumatic lesions except skull fractures and subarachnoidal hemorrhage, but scanning time is longer, and the problem with the monitoring of patients outside the MRI field is present. If CT does not demonstrate pathology as can adequately be explained to account for

  18. Traumatic injuries: imaging of head injuries

    International Nuclear Information System (INIS)

    Besenski, N.

    2002-01-01

    Due to the forces of acceleration, linear translation, as well as rotational and angular acceleration, the brain undergoes deformation and distortion depending on the site of impact of traumatizing force direction, severity of the traumatizing force, and tissue resistance of the brain. Linear translation of accereration in a closed-head injury can run along the shorter diameter of the skull in latero-lateral direction causing mostly extra-axial lesions (subdural hematoma,epidural hematoma, subarachnoidal hemorrhage) or quite pronounced coup and countercoup contusions. Contusions are considerably less frequently present in medial or paramedial centroaxial blows (fronto-occipital or occipito-frontal). The centroaxial blows produce a different pattern of lesions mostly in the deep structures, causing in some cases a special category of the brain injury, the diffuse axonal injury (DAI). The brain stem can also be damaged, but it is damaged more often in patients who have suffered centroaxial traumatic force direction. Computed tomography and MRI are the most common techniques in patients who have suffered brain injury. Computed tomography is currently the first imaging technique to be used after head injury, in those settings where CT is available. Using CT, scalp, bone, extra-axial hematomas, and parenchymal injury can be demonstrated. Computed tomography is rapid and easily performed also in monitored patients. It is the most relevant imaging procedure for surgical lesions. Computed tomography is a suitable method to follow the dynamics of lesion development giving an insight into the corresponding pathological development of the brain injury. Magnetic resonance imaging is more sensitive for all posttraumatic lesions except skull fractures and subarachnoidal hemorrhage, but scanning time is longer, and the problem with the monitoring of patients outside the MRI field is present. If CT does not demonstrate pathology as can adequately be explained to account for

  19. Nanomedicine for treating spinal cord injury

    Science.gov (United States)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  20. Research progress of immune tolerance in the treatment of brain injury

    Directory of Open Access Journals (Sweden)

    Hua YAN

    2014-08-01

    Full Text Available Due to its special anatomical structures and immune pathophysiological mechanisms, brain damage repair is greatly different from damage repair of other systems. Secondary brain injury and inflammation are closely related. As a "double-edged sword", inflammation scavenges hazardous substances on the early stage of injury, but has side effects on normal brain tissue. The use of immunosuppressive therapy or hypothermia can inhibit immune injury, but the presence of reduced immunity may result in infection and tumorigenesis in the long term. Only reducing the autoimmune attack against brain tissue without affecting other immune capacity of the body will be optimized solution, and this paper will make a review on the research of immune tolerance in the treatment of brain injury with optimized program. doi: 10.3969/j.issn.1672-6731.2014.08.017

  1. Injuries in competitive boxing. A prospective study.

    Science.gov (United States)

    Siewe, J; Rudat, J; Zarghooni, K; Sobottke, R; Eysel, P; Herren, C; Knöll, P; Illgner, U; Michael, J

    2015-03-01

    Boxing remains a subject of controversy and is often classified as dangerous. But the discussion is based mostly on retrospective studies. This survey was conducted as a prospective study. From October 2012 to September 2013, 44 competitive boxers were asked to report their injuries once a month. The questionnaire collected general information (training, competition) and recorded the number of bouts fought, injuries and resulting lost days. A total of 192 injuries were recorded, 133 of which resulted in interruption of training or competition. Each boxer sustained 3 injuries per year on average. The injury rate was 12.8 injuries per 1 000 h of training. Boxers fighting more than 3 bouts per year sustain more injuries (p=0.0075). The injury rate does is not a function of age (age≤19 vs. > 19a, p=0.53). Injuries to the head and the upper limbs occur most frequently. The most common injuries are soft tissue lacerations and contusions. Head injuries with neurological symptoms rarely occur (4.2%). Boxing has a high injury rate that is comparable with other contact sports, but most injuries are minor. Injury frequency is not a function of whether the boxer competes in the junior or adult category. Athletes fighting many bouts per year have a greater risk of injury. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Whiplash Injuries: An Update

    Directory of Open Access Journals (Sweden)

    Robert W Teasell

    1998-01-01

    Full Text Available Whiplash injuries remain a significant public health problem throughout the developed industrialized world, with significant socioeconomic consequences. Studies looking at the natural history of whiplash injuries have suffered from problems of selection bias, retrospective reviewing and unclear outcomes. Etiology continues to be controversial, largely because of the misconception that all soft tissue injuries heal within six weeks. Recent studies have implicated the cervical facet joint as a cause of whiplash injury pain. A recent treatment study that successfully eliminated whiplash-associated facet joint pain demonstrated abnormal psychological profiles secondary to pain which normalized with successful pain elimination. The impact of compensation on recovery remains controversial, while the concept that mild traumatic brain injury occurs in the absence of loss of consciousness has been largely refuted. The Quebec Task Force on Whiplash-Associated Disorders recently published a report in which the scientific literature was exhaustively reviewed and has made recommendations regarding the prevention and treatment of whiplash and its associated disorders. The Quebec Task Force highlighted the paucity of good scientific evidence; however, they still provided consensus treatment guidelines, which have not been validated. There continues to be a need for further research.

  3. Update and Overview of Spinal Injuries in Canadian Ice Hockey, 1943 to 2011: The Continuing Need for Injury Prevention and Education.

    Science.gov (United States)

    Tator, Charles H; Provvidenza, Christine; Cassidy, J David

    2016-05-01

    To identify spinal injuries in Canadian ice hockey from 2006 to 2011 and to discuss data from 1943 to 2011 and impact of injury prevention programs. Data about spinal injuries with and without spinal cord injury in ice hockey have been collected by ThinkFirst's (now Parachute Canada) Canadian Ice Hockey Spinal Injuries Registry since 1981 through questionnaires from practitioners, ice hockey organizations, and media. All Canadian provinces and territories. All registered Canadian ice hockey players. Age, gender, level of play, location, mechanism of injury. Incidence, incidence rate, prevalence, and nature (morbidity) of the injuries. Between 2006 and 2011, 44 cases occurred, 4 (9.1%) of which were severe. The incidence in the recent years continues to be lower than the peak years. From 1943 to 2011, 355 cases have been documented, primarily males (97.7%) and cervical spine injuries (78.9%), resulting from impact with the boards (64.2%). Check or push from behind (36.0%) was still the most common cause of injury, although slightly lower during 2006 to 2011. From 1943 to 2011, Prince Edward Island, New Brunswick, and British Columbia/Yukon had the highest injury rates. Ontario and Quebec continued to show markedly different injury rates, with Ontario more than twice that of Quebec. Current data for 2006 to 2011 indicate that spinal injuries in ice hockey continue to occur, although still at lower rates than the peak years 1982 to 1995. It is imperative to continue educating players and team officials about spinal injury prevention and to reinforce the rules against checking or pushing from behind to reduce the incidence of these serious injuries.

  4. Terrorist attacks in the largest metropolitan city of Pakistan: Profile of soft tissue and skeletal injuries from a single trauma center.

    Science.gov (United States)

    Khan, Muhammad Shahid; Waheed, Shahan; Ali, Arif; Mumtaz, Narjis; Feroze, Asher; Noordin, Shahryar

    2015-01-01

    Pakistan has been hugely struck with massive bomb explosions (car and suicide bombs) resulting in multiple casualties in the past few years. The aim of this study is to present the patterns of skeletal and soft tissue injuries and to review the outcome of the victims who presented to our hospital. This is a retrospective chart review from January 2008 to December 2012. The medical record numbers of patients were obtained from the hospital Health Information and Management Sciences (HIMS) as per the ICD-9 coding. During the study period, more than 100 suicide and implanted bomb blast attacks took place in the public proceedings, government offices, residential areas and other places of the city. Altogether 262 patients were enrolled in the study. The mean age of the patients was 31±14 years. The shrapnel inflicted wounds were present on to the upper limb in 24 patients and the lower limb in 50. Long bone fractures were the most common skeletal injuries. The fractures were complicated by penetrating fragments and nails which result in post operative infections and prolonged hospital stay.

  5. Tissue banking for management of nuclear casualties

    International Nuclear Information System (INIS)

    Singh, Rita

    2014-01-01

    The proliferation of nuclear material and technology has made the acquisition and adversarial use more probable than ever. Devastating medical consequences would follow a nuclear detonation due to the thermal, blast and radiation effects of the weapon. Atomic explosions at Hiroshima and Nagasaki demonstrated the human agonies on vast scale. A full range of medical modalities are required to decrease the morbidity and mortality as a result of the use of nuclear weapons. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Processed tissues can be provided by the tissue banks and can be of great assistance in the treatment of injuries due to the nuclear weapon. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. The aim of the tissue bank is to provide a wide range of processed biological tissues free from any transmissible disease, that help to restore the growth and function of the damaged tissues. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone allografts can be used for reconstructive approaches to the skeletal system. Tissue banking would thus ensure health care to the military personnel and population following a nuclear detonation. (author)

  6. Neck injury tolerance under inertial loads in side impacts.

    Science.gov (United States)

    McIntosh, Andrew S; Kallieris, Dimitrios; Frechede, Bertrand

    2007-03-01

    Neck injury remains a major issue in road safety. Current side impact dummies and side impact crashworthiness assessments do not assess the risk of neck injury. These assessments are limited by biofidelity and knowledge regarding neck injury criteria and tolerance levels in side impacts. Side impact tests with PMHS were performed at the Heidelberg University in the 1980s and 1990s to improve primarily the understanding of trunk dynamics, injury mechanisms and criteria. In order to contribute to the definition of human tolerances at neck level, this study presents an analysis of the head/neck biomechanical parameters that were measured in these tests and their relationship to neck injury severity. Data from 15 impact tests were analysed. Head accelerations, and neck forces and moments were calculated from 9-accelerometer array head data, X-rays and anthropometric data. Statistically significant relationships were observed between resultant head acceleration and neck force and neck injury severity. The average resultant head acceleration for AIS 2 neck injuries was 112 g, while resultant neck force was 4925 N and moment 241 Nm. The data compared well to other test data on cadavers and volunteers. It is hoped that the paper will assist in the understanding of neck injuries and the development of tolerance criteria.

  7. Characterization of American Football Injuries in Children and Adolescents.

    Science.gov (United States)

    Smith, Patrick J; Hollins, Anthony M; Sawyer, Jeffrey R; Spence, David D; Outlaw, Shane; Kelly, Derek M

    2018-02-01

    As a collision sport, football carries a significant risk of injury, as indicated by the large number of pediatric football-related injuries seen in emergency departments. There is little information in the medical literature focusing on the age-related injury patterns of this sport. Our purpose was to evaluate the types of football-related injuries that occur in children and adolescents and assess which patient characteristics, if any, affect injury pattern. Retrospective chart review was performed of football-related injuries treated at a level 1 pediatric referral hospital emergency department and surrounding urgent care clinics between January 2010 and January 2014. Patients with e-codes for tackle football selected from the electronic medical record were divided into 4 age groups: younger than 8 years old, 8 to 11, 12 to 14, and 15 to 18 years. Data collected included diagnosis codes, procedure codes, and hospital admission status. Review identified 1494 patients with 1664 football-related injuries, including 596 appendicular skeleton fractures, 310 sprains, 335 contusions, 170 closed head injuries, 62 dislocations, 9 spinal cord injuries, and 14 solid organ injuries. There were 646 (43.2%) athletes with upper extremity injuries and 487 (32.6%) with injuries to the lower extremity. Hospital admissions were required in 109 (7.3%) patients. Fracture was the most common injury in all four patient age groups, but occurred at a lower rate in the 15 to 18 years old age group. The rate of soft tissue injury was higher in the 15 to 18 years old age group. The rate of closed head injury, which included concussions, was highest in the younger than 8 years old age group. Age does influence the rates of certain football-related injuries in children and adolescents. Fractures decrease with increasing age, while the rate of soft tissue trauma increases with increasing age. Younger patients (younger than 8 y old) trended toward higher rates of closed head injury compared

  8. Multidetector CT of blunt traumatic venous injuries in the chest, abdomen, and pelvis.

    Science.gov (United States)

    Holly, Brian P; Steenburg, Scott D

    2011-01-01

    Venous injuries as a result of blunt trauma are rare. Even though current protocols for multidetector computed tomography (CT) of patients with trauma are designed to evaluate primarily the solid organs and arteries, blunt venous injuries may nevertheless be identified, or at least suspected, on the basis of the multidetector CT findings. Venous injuries are associated with high morbidity and mortality rates. Diagnosis of a possible venous injury is crucial because the physical findings of a venous injury are nonspecific and may be absent. This article aims to make the radiologist aware of various venous injuries caused by blunt trauma and to provide helpful hints to aid in the identification of venous injuries. Multidetector CT technology, in combination with interactive manipulation of the raw dataset, can be useful in the creation of multiplanar reconstructed images and in the identification of a venous injury caused by blunt trauma. Familiarity with direct and indirect signs of venous injuries, as well as with examples of blunt traumatic venous injuries in the chest, abdomen, and pelvis, will help in the diagnosis of these injuries.

  9. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel.

    Science.gov (United States)

    Oh, Se Heang; Kang, Jun Goo; Lee, Jin Ho

    2018-01-01

    Although the tissue adhesion which leads to various complications frequently occurs after surgery, the development of an ideal tissue adhesion barrier is still a challenge. In this study, a thermo-sensitive hydrogel, which can fulfill the essential requirements of tissue adhesion barrier (that is, ease of handling for surgeon, flowing down prevention after application, stable residence on the injury during wound healing, and no use of toxic additives), was developed using biocompatible polyethylene glycol-polypropylene glycol copolymers (Pluronic F127/F68/P123 mixture). From the in vitro cell culture and in vivo animal study, it was observed that the Pluronic mixtures showed sol-gel transition at approximately body temperature (for easy injection or coating on the injury site and flowing down prevention after application) and prolonged residence stability in aqueous environment (> ∼7 days for stable protection of injury tissues/organs during wound healing), and thus was highly effective for the prevention of tissue adhesion without adverse tissue responses. Based on these results, the Pluronic F127/F68/P123 mixture itself (without any additives) can be a good candidate as an injectable or coatable tissue adhesion barrier hydrogel applicable to various injury tissues in terms of ease of use, effectiveness, and safety. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 172-182, 2018. © 2016 Wiley Periodicals, Inc.

  10. Traumatic injuries of the hip.

    LENUS (Irish Health Repository)

    Marshall, Nina

    2009-11-01

    Traumatic lesions of the hip in athletes may be clinically challenging because of the overlap in clinical presentation due to differing pathologies and the presence of multiple injuries. Imaging of the hip in the athlete has undergone a recent resurgence of interest and understanding related to the increasing accessibility and use of hip arthroscopy, which expands the treatment options available for intra-articular pathology. MR imaging and MR arthrography have a unique role in diagnosis of these pathologies, guiding the surgeon, arthroscopist, and referring clinician in their management of bony and soft tissue injury.

  11. Maggot therapy in treatment of a complex hand injury complicated by mycotic infection.

    Science.gov (United States)

    Bohac, M; Cambal, M; Zamborsky, R; Takac, P; Fedeles, J

    2015-01-01

    Complex injuries of the hand remain a therapeutic challenge for surgeons. We present the case of a male who suffered a devastating injury of the hand caused by a conveyor belt. The patient developed a progressive Absidia corymbifera infection of the affected soft tissues. Initial treatments with serial surgical debridement and topical and intravenous itraconazole were unsuccessful in eliminating the infection. We decided to use maggot debridement therapy in a new special design to debride all necrotic, devitalized tissue and preserve only healthy tissue and functioning structures. This maneuverer followed by negative pressure therapy allowed progressive healing. In such complex hand injuries, maggot debridement combined with negative pressure therapy could be considered to achieve effective and considerable results, although future functional morbidity may occur (Fig. 4, Ref. 18).

  12. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  13. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  14. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies

    Directory of Open Access Journals (Sweden)

    Arumugam S

    2011-01-01

    Full Text Available Introduction: The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury Materials & Methods: Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain and Immunohistochemistry (S-100 staining.Results: The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Conclusion: Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any

  15. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies.

    Science.gov (United States)

    Arumugam, S; Manjunath, S; Senthilkumar, R; Rajendiran, S; Yoshioka, H; Mori, Y; Abraham, S

    2011-01-01

    The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP) is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury. Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain) and Immunohistochemistry (S-100 staining). The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any adverse reactions and upon confirmation of safety following completion of the

  16. Experimental evaluation of neural probe’s insertion induced injury based on digital image correlation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenguang, E-mail: zhwg@sjtu.edu.cn; Ma, Yakun; Li, Zhengwei [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    Purpose: The application of neural probes in clinic has been challenged by probes’ short lifetime when implanted into brain tissue. The primary goal is to develop an evaluation system for testing brain tissue injury induced by neural probe’s insertion using microscope based digital image correlation method. Methods: A brain tissue phantom made of silicone rubber with speckle pattern on its surface was fabricated. To obtain the optimal speckle pattern, mean intensity gradient parameter was used for quality assessment. The designed testing system consists of three modules: (a) load module for simulating neural electrode implantation process; (b) data acquisition module to capture micrographs of speckle pattern and to obtain reactive forces during the insertion of the probe; (c) postprocessing module for extracting tissue deformation information from the captured speckle patterns. On the basis of the evaluation system, the effects of probe wedge angle, insertion speed, and probe streamline on insertion induced tissue injury were investigated. Results: The optimal quality speckle pattern can be attained by the following fabrication parameters: spin coating rate—1000 r/min, silicone rubber component A: silicone rubber component B: softener: graphite = 5 ml: 5 ml: 2 ml: 0.6 g. The probe wedge angle has a significant effect on tissue injury. Compared to wedge angle 40° and 20°, maximum principal strain of 60° wedge angle was increased by 40.3% and 87.5%, respectively; compared with a relatively higher speed (500 μm/s), the maximum principle strain within the tissue induced by slow insertion speed (100 μm/s) was increased by 14.3%; insertion force required by probe with convex streamline was smaller than the force of traditional probe. Based on the experimental results, a novel neural probe that has a rounded tip covered by a biodegradable silk protein coating with convex streamline was proposed, which has both lower insertion and micromotion induced tissue

  17. Complex Foot Injury: Early and Definite Management.

    Science.gov (United States)

    Schepers, Tim; Rammelt, Stefan

    2017-03-01

    Complex foot injuries occur infrequently, but are life-changing events. They often present with other injuries as the result of a high-energy trauma. After initial stabilization, early assessment should be regarding salvagability. All treatment strategies are intensive. The initial treatment includes prevention of progression ischemia/necrosis, prevention of infection, and considering salvage or amputation. Definitive treatment for salvage includes anatomic reconstruction with stable internal fixation and early soft tissue coverage followed by aggressive rehabilitation. Prognosis after complex injuries is hard to predict. The various stages of the treatment are reviewed and recommendations are made. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Common injuries related to weightlifting: MR imaging perspective.

    Science.gov (United States)

    Yu, Joseph S; Habib, Paula A

    2005-12-01

    Weightlifting has evolved to become a ubiquitous form of exercise. Resistance training has been shown to have beneficial effects on both muscle and osseous maintenance and development. Competitive weightlifting sports continue to enjoy tremendous popularity, with participants striving to establish new standards in performance and more demanding personal goals. Thus, it is not surprising that we have also seen an increase in injuries related to weightlifting. Many of these injuries are radiographically occult and are best suited for evaluation by magnetic resonance (MR) imaging because many involve the soft tissues. In this article, we discuss some of the factors that contribute to these injuries and address the mechanisms of injury and the MR imaging manifestations of the more common injuries.

  19. Impact of location on outcome after penetrating colon injuries.

    Science.gov (United States)

    Sharpe, John P; Magnotti, Louis J; Weinberg, Jordan A; Zarzaur, Ben L; Shahan, Charles P; Parks, Nancy A; Fabian, Timothy C; Croce, Martin A

    2012-12-01

    Most studies examining suture line failure after penetrating colon injuries have focused on right- versus left-sided injuries. In our institution, operative decisions (resection plus anastomosis vs. diversion) are based on a defined management algorithm regardless of injury location. The purpose of this study was to evaluate the effect of injury location on outcomes after penetrating colon injuries. Consecutive patients with full thickness penetrating colon injuries for 13 years were stratified by age, injury location and mechanism, and severity of shock. According to the algorithm, patients with nondestructive injuries underwent primary repair. Destructive wounds underwent resection plus anastomosis in the absence of comorbidities or large preoperative or intraoperative transfusion requirements (>6 U of packed red blood cells); otherwise, they were diverted. Injury location was defined as ascending, transverse, descending (including splenic flexure), and sigmoid. Multivariable logistic regression was performed to determine whether injury location was an independent predictor of either morbidity or mortality. Four hundred sixty-nine patients were identified: 314 (67%) underwent primary repair and 155 (33%) underwent resection. Most injuries involved the transverse colon (39%), followed by the ascending colon (26%), the descending colon (21%), and the sigmoid colon (14%). Overall, there were 13 suture line failures (3%) and 72 abscesses (15%). Most suture line failures involved injuries to the descending colon (p = 0.06), whereas most abscesses followed injuries to the ascending colon (p = 0.37). Multivariable logistic regression failed to identify injury location as an independent predictor of either morbidity or mortality after adjusting for 24-hour transfusions, base excess, shock index, injury mechanism, and operative management. Injury location did not affect morbidity or mortality after penetrating colon injuries. Nondestructive injuries should be primarily

  20. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    Science.gov (United States)

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Babcock, Alicia A; Owens, Trevor

    2008-01-01

    Tissue response to injury includes expression of genes encoding cytokines and chemokines. These regulate entry of immune cells to the injured tissue. The synthesis of many cytokines and chemokines involves NF-kappaB and signal transducers and activators of transcription (STAT). Injury to the CNS ...

  2. Long-term outcome of high-energy open Lisfranc injuries: a retrospective study.

    Science.gov (United States)

    Nithyananth, Manasseh; Boopalan, Palapattu R J V C; Titus, Vijay T K; Sundararaj, Gabriel D; Lee, Vernon N

    2011-03-01

    The outcome of open Lisfranc injuries has been reported infrequently. Should these injuries be managed as closed injuries and is their outcome different? We undertook a retrospective study of high-energy, open Lisfranc injuries treated between 1999 and 2005. The types of dislocation, the associated injuries to the same foot, the radiologic and functional outcome, and the complications were studied. There were 22 patients. Five patients died. One had amputation. Of the remaining 16 patients, 13 men were followed up at a mean of 56 months (range, 29-88 months). The average age was 36 years (range, 7-55 years). According to the modified Hardcastle classification, type B2 injury was the commonest. Ten patients had additional forefoot or midfoot injury. All patients were treated with debridement, open reduction, and multiple Kirschner (K) wire fixation. All injuries were Gustilo Anderson type IIIa or IIIb. Nine patients had split skin graft for soft tissue cover. Mean time taken for wound healing was 16 days (range, 10-30 days). Ten patients (77%) had fracture comminution. Eight patients had anatomic reduction, whereas five had nonanatomic reduction. Ten of 13 (77%) patients had at least one spontaneous tarsometatarsal joint fusion. The mean American Orthopaedic Foot and Ankle Society score was 82 (range, 59-100). Nonanatomic reduction, osteomyelitis, deformity of toes, planus foot, and mild discomfort on prolonged walking were the unfavorable outcomes present. In open Lisfranc injuries, multiple K wire fixation should be considered especially in the presence of comminution and soft tissue loss. Although anatomic reduction is always not obtained, the treatment principles should include adequate debridement, maintaining alignment with multiple K wires, and obtaining early soft tissue cover. There is a high incidence of fusion across tarsometatarsal joints. Copyright © 2011 by Lippincott Williams & Wilkins

  3. Pediatric sports injuries: an age comparison of children versus adolescents.

    Science.gov (United States)

    Stracciolini, Andrea; Casciano, Rebecca; Levey Friedman, Hilary; Meehan, William P; Micheli, Lyle J

    2013-08-01

    Significant knowledge deficits exist regarding sports injuries in the young child. Children continue to engage in physically demanding, organized sports to a greater extent despite the lack of physical readiness, predisposing themselves to injury. To evaluate sports injuries sustained in very young children (5-12 years) versus their older counterparts (13-17 years) with regard to the type and location of injuries, severity, and diagnosis. Cross-sectional study; Level of evidence, 3. A retrospective chart review was performed on a 5% random probability sample (final N = 2133) of 5- to 17-year-old patients treated for sports injuries in the Division of Sports Medicine at a large, academic pediatric medical center between 2000 and 2009. Using descriptive statistics, correlates of injuries by age group, injury type, and body area are shown. Five- to 12-year-old patients differed in key ways from older patients. Children in this category sustained injuries that were more often traumatic in nature and more commonly of the upper extremity. Older patients (13-17 years) were more likely to be treated for injuries to the chest, hip/pelvis, and spine. A greater proportion of the older children were treated for overuse injuries, as compared with their younger counterparts (54.4% vs. 49.2%, respectively), and a much larger proportion of these injuries were classified as soft tissue injuries as opposed to bony injuries (37.9% vs. 26.1%, respectively). Injury diagnosis differed between the 2 age groups. The 13- to 17-year age group sustained more anterior cruciate ligament injuries, meniscal tears, and spondylolysis, while younger children were diagnosed with fractures, including physeal fractures, apophysitis, and osteochondritis dissecans. The 5- to 12-year-old patients treated for spine injuries were disproportionately female (75.8%); most of these injuries were overuse (78.8%) and bony (60.6%); over one third of the youngest children were diagnosed with spondylolysis. Surgery

  4. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  5. Principles of Tissue Engineering for Food

    NARCIS (Netherlands)

    Post, M.; Weele, van der Cor

    2014-01-01

    The technology required for tissue-engineering food is the same as for medical applications, and in fact is derived from it. There are major differences in the implementation of those technologies, primarily related to the enormous scale required for food production and the different economical

  6. Mechanisms of injury and protection in cells and tissues at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1976-06-01

    The survival of frozen-thawed cells is importantly influenced by the cooling rate. In general, cells exhibit maximum survival at an intermediate cooling rate, the numerical value of which depends on the type of cell, the additive present, and the warming rate. Theory and experiment now strongly indicate that death at supraoptimal cooling rates is the result of the formation of intracellular ice crystals during cooling and their growth to damaging size during warming. The causes of death in cells cooled at suboptimal rates, on the other hand, are more complex and more uncertain. Although additives like glycerol and dimethyl sulfoxide do not protect against injury at supraoptimal rates, they are generally essential for the survival of slowly frozen mammalian cells. The two major theories of slow freezing injury predict that protection is chiefly a colligative effect and that it requires the presence of additive inside the cell as well as outside. The evidence of the colligative aspects of protection is conflicting. The evidence on the requirement for permeation is increasingly negative, a fact which suggests that to protect the whole cell it may be sufficient to protect the cell surface. Slow freezing injury appears due to a number of sequential events. The first may well be high electrolyte concentrations. Additives protect against these, but may themselves introduce other forms of injury, the most likely of which is osmotic shock.

  7. Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair.

    Science.gov (United States)

    Monibi, Farrah A; Cook, James L

    2017-08-01

    Musculoskeletal injuries are a common problem in orthopedic practice. Given the long-term consequences of unaddressed cartilage and meniscal pathology, a number of treatments have been attempted to stimulate repair or to replace the injured tissue. Despite advances in orthopedic surgery, effective treatments for cartilage and meniscus injuries remain a significant clinical challenge. Tissue engineering is a developing field that aims to regenerate injured tissues with a combination of cells, scaffolds, and signals. Many natural and synthetic scaffold materials have been developed and tested for the repair and restoration of a number of musculoskeletal tissues. Among these, biological scaffolds derived from cell and tissue-derived extracellular matrix (ECM) have shown great promise in tissue engineering given the critical role of the ECM for maintaining the biological and biomechanical properties, structure, and function of native tissues. This review article presents emerging applications for tissue-derived ECM scaffolds in cartilage and meniscus repair. We examine normal ECM composition and the current and future methods for potential treatment of articular cartilage and meniscal defects with decellularized scaffolds.

  8. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  9. Comparison of whole-body post mortem 3D CT and autopsy evaluation in accidental blunt force traumatic death using the abbreviated injury scale classification.

    Science.gov (United States)

    Daly, Barry; Abboud, Samir; Ali, Zabiullah; Sliker, Clint; Fowler, David

    2013-02-10

    Although 3D CT imaging data are available on survivors of accidental blunt trauma, little similar data has been collected and classified on major injuries in victims of fatal injuries. This study compared the sensitivity of post mortem computed tomography (PMCT) with that of conventional autopsy for major trauma findings classified according to the trauma Abbreviated Injury Scale (AIS). Whole-body 3D PMCT imaging data and full autopsy findings were analyzed on 21 victims of accidental blunt force trauma death. All major injuries were classified on the AIS scale with ratings from 3 (serious) to 6 (unsurvivable). Agreement between sensitivity of autopsy and PMCT for major injuries was determined. A total of 195 major injuries were detected (mean per fatality, 9.3; range, 1-14). Skeletal injuries by AIS grade included 37 grade 3, 45 grade 4, 12 grade 5, and 2 grade 6 major findings. Soft tissue injuries included 10 grade 3, 68 grade 4, 16 grade 5, and 5 grade 6 major findings. Of these, PMCT detected 165 (88 skeletal, 77 soft tissue), and autopsy detected 127 (59 skeletal, 68 soft tissue). PMCT agreed with autopsy in 86% and 76% of skeletal and soft tissue injuries, respectively. PMCT detected an additional 37 skeletal and 31 soft tissue injuries that were not identified at autopsy. Autopsy detected 8 skeletal and 22 soft tissue injuries that were not detected by PMCT. PMCT was more sensitive for skeletal (P=0.05) and head and neck region injury (P=0.043) detection. PMCT showed a trend for greater sensitivity than autopsy, but this did not reach statistical significance (P=0.083). 3D PMCT detected significantly more skeletal injuries than autopsy and a similar number of soft tissue injuries to autopsy and promises to be a sensitive tool for detection and classification of skeletal injuries in fatal blunt force accidental trauma. Use of the AIS scale allows standardized categorization and quantification of injuries that contribute to death in such cases and allows more

  10. Local cooling does not prevent hyperalgesia following burn injury in humans

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Pedersen, Juri L

    2002-01-01

    One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti-inflammato......One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti...... and mechanical detection thresholds, thermal and mechanical pain responses, area of secondary hyperalgesia), first degree burn injuries were induced on both calves by contact thermodes (12.5 cm(2), 47 degrees C for 7 min). Eight minutes after the burn injury, contact thermodes (12.5 cm(2)) were again applied...... on the burns. One of the thermodes cooled the burn (8 degrees C for 30 min) whereas the other thermode was a non-active dummy on the control burn. Inflammatory and sensory variables were followed for 160 min after end of the cooling procedure. The burn injury induced significant increases in skin temperature...

  11. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK

    2009-01-01

    Full Text Available Ever since man invented fire he has been more frequently burning himself by this creation than by the naturally occurring bushfires. It is estimated that over 1.152 million people in India suffer from burn injuries requiring treatment every year and majority of them are women aged between 16-40 years and most of them occur in the kitchen. The treatment for burns basically involves autologous skin grafting, which originated in India more than two thousand years ago (Sushruta Samhita, is still the gold standard for the wound resurfacing, although, autografting is difficult where graftable donor sites are limited. Although, Cadaver skin, porcine or bovine xenografts are used alternatively over the past thirty years, modern approaches like the Bioengineering of skin substitutes emerged during the past 20 years as advanced wound management technologies with no social impediment. They can be broadly categorized as Acellular and Cellular biotechnological products. The acellular products like Alloderm (LifeCell Corporation, Integra (Integra Life Sciences act like template and depend on natural regeneration, while the cellular ones are either ‘Off-the-Shelf’ products like Apligraf (Organogenesis Inc and Orcel (Ortec International have allogenic elements and ‘home grown’ autologous cell products like Cultured Epithelial Autograft (CEA and epidermal-dermal composite skin use synthetic or natural non-human matrices. The CEA is based on the ex-vivo epidermal stem cell-expansion and our laboratory has been engaged in CEA technique development with innovative cost-effective approach and yielded promising preliminary clinical success. The basic methodological approach in CEA technique which is still clinically adopted by several developed countries involves the use of growth arrested mouse dermal fibroblasts as growth supportive matrix and is thus considered a drawback as a whole. Additionally, there is no superior enough method available to augment the

  12. Injury trends and prevention in rugby union football.

    Science.gov (United States)

    MacQueen, Amy E; Dexter, William W

    2010-01-01

    Rugby union football has long been one of the most popular sports in the world. Its popularity and number of participants continue to increase in the United States. Until 1995, rugby union primarily was an amateur sport. Worldwide there are now flourishing professional leagues in many countries, and after a long absence, rugby union will be returning to the Olympic games in 2016. In the United States, rugby participation continues to increase, particularly at the collegiate and high school levels. With the increase in rugby professional athletes and the reported increase in aggressive play, there have been changes to the injury patterns in the sport. There is still significant need for further epidemiologic data as there is evidence that injury prevention programs and rule changes have been successful in decreasing the number of catastrophic injuries in rugby union.

  13. Apophysomyces trapeziformis infection associated with a tornado-related injury.

    Science.gov (United States)

    Weddle, Gina; Gandy, Kimberly; Bratcher, Denise; Pahud, Barbara; Jackson, Mary Anne

    2012-06-01

    This report defines the role of Apophysomyces as an aggressive fungal pathogen seen after a tornado injury. Clinical and laboratory manifestations of infections after environmentally contaminated wounds incurred during a tornado are outlined, emphasizing mechanism of injury, comorbidities, and diagnostic and treatment challenges. Therapy with systemic antifungal therapy and aggressive serial tissue debridement was successful in achieving cure.

  14. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  15. Medial patellofemoral ligament: Research progress in anatomy and injury imaging

    International Nuclear Information System (INIS)

    Zheng Lei; Zhao Bin

    2013-01-01

    The medial patellofemoral ligament (MPFL) is considered as the most important soft tissue restraint providing medial stability of the patellofemoral joint. During patellar dislocation, the MPFL is subjected to severe stretching forces, resulting in injuries of the ligament in the most patients. With the development of medical imaging technology, a variety of non-invasive diagnostic imaging methods have been becoming important means in diagnosis of MPFL injury. In this paper, MPFL anatomy, the applications of medical imaging technology in diagnosis of MPFL injury and the distributions of MPFL injury site were reviewed. (authors)

  16. Protective effect of gel form of gastric gavage applicated aloe vera on ischemia reperfusion injury in renal and lung tissue.

    Science.gov (United States)

    Sahin, Hasan; Yener, Ali Umit; Karaboga, Ihsan; Sehitoglu, Muserref Hilal; Dogu, Tugba; Altinisik, Hatice Betul; Altinisik, Ugur; Simsek, Tuncer

    2017-12-30

    The aloe vera plant has become increasingly popular in recent years. This study aimed to research the effect of aloe vera to prevent renal and lung tissue damage in an experimental ischemia-reperfusion (I/R) injury model. The study included 21 male Wistar Albino rats, which were categorized into control group, n = 7 (no procedures), Sham group n = 7 (I/R); and aloe vera therapy group, n = 7 (aloe vera and I/R). Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) were evaluated from lung and kidney tissues for biochemical investigations. As histopathological, hematoxylin and eosin and anti-iNOS were also examined. In biochemical investigations, SOD, CAT, and GPx levels of the Sham group were found to be lower compared with the other groups (P < 0.05). The aloe vera therapy group was not statistically different from control groups but significantly different compared with the Sham group. In the same way, the MDA levels of kidney and lung tissues were statistically significant in the aloe vera therapy group, compared to the Sham group. In the Sham group, the peribronchial and perialveolar edema were observed in lung parenchyma. Also, excess interstitial hemorrhage, leukocyte infiltration, and alveolar wall thickening were identified in ischemic groups. The histopathological changes were much lighter than in the aloe vera therapy group. In renal tissues, excess epithelial cell deterioration, tubular desqumination, and glomerular atrophy were observed in the Sham group. The histopathological changes were markedly reduced in the aloe vera therapy  group. In the kidney and lung tissue, the level of iNOS activity in the Sham group was significantly higher than in the control and aloe vera therapy group. This study indicated that aloe vera is protective against oxidative damage formed by I/R in distant organs like the lungs and kidneys.

  17. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  18. Fingertip injuries: an update on management.

    Science.gov (United States)

    Lee, Donald H; Mignemi, Megan E; Crosby, Samuel N

    2013-12-01

    Injuries to the fingertip are common. The goal of treatment is restoration of a painless, functional digit with protective sensation. The amount of soft-tissue loss, the integrity of the nail bed, and the age and physical demands of the patient should be considered when selecting a treatment method. Some new products are effective for management of injuries to the fingertip. The use of 2-octylcyanoacrylate for nail bed repair is faster than suture repair, with equivalent results reported. Dermal regeneration template is effective for coverage of digital injuries with exposed tendons or bones that lack peritenon or periosteum. Although fingertip replantation offers better functional results than does revision amputation, replantation is more technically demanding and requires longer recovery time. Complications associated with management of injuries to the fingertip include nail deformities, insensate digits, and painful neuromas.

  19. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy

    International Nuclear Information System (INIS)

    Horton, Jureta W.

    2003-01-01

    Burn trauma produces significant fluid shifts that, in turn, reduce cardiac output and tissue perfusion. Treatment approaches to major burn injury include administration of crystalloid solutions to correct hypovolemia and to restore peripheral perfusion. While this aggressive postburn volume replacement increases oxygen delivery to previously ischemic tissue, this restoration of oxygen delivery is thought to initiate a series of deleterious events that exacerbate ischemia-related tissue injury. While persistent hypoperfusion after burn trauma would produce cell death, volume resuscitation may exacerbate the tissue injury that occurred during low flow state. It is clear that after burn trauma, tissue adenosine triphosphate (ATP) levels gradually fall, and increased adenosine monophosphate (AMP) is converted to hypoxanthine, providing substrate for xanthine oxidase. These complicated reactions produce hydrogen peroxide and superoxide, clearly recognized deleterious free radicals. In addition to xanthine oxidase related free radical generation in burn trauma, adherent-activated neutrophils produce additional free radicals. Enhanced free radical production is paralleled by impaired antioxidant mechanisms; as indicated by burn-related decreases in superoxide dismutase, catalase, glutathione, alpha tocopherol, and ascorbic acid levels. Burn related upregulation of inducible nitric oxide synthase (iNOS) may produce peripheral vasodilatation, upregulate the transcription factor nuclear factor kappa B (NF-κB), and promote transcription and translation of numerous inflammatory cytokines. NO may also interact with the superoxide radical to yield peroxynitrite, a highly reactive mediator of tissue injury. Free radical mediated cell injury has been supported by postburn increases in systemic and tissue levels of lipid peroxidation products such as conjugated dienes, thiobarbituric acid reaction products, or malondialdehyde (MDA) levels. Antioxidant therapy in burn therapy

  20. Tissue Engineering Strategies in Ligament Regeneration

    OpenAIRE

    Yilgor, Caglar; Yilgor Huri, Pinar; Huri, Gazi

    2011-01-01

    Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue eng...

  1. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    Science.gov (United States)

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  2. Ring Avulsion Injuries: A Systematic Review.

    Science.gov (United States)

    Bamba, Ravinder; Malhotra, Gautam; Bueno, Reuben A; Thayer, Wesley P; Shack, R Bruce

    2018-01-01

    Ring avulsion injuries can range from soft tissue injury to complete amputation. Grading systems have been developed to guide treatment, but there is controversy with high-grade injuries. Traditionally, advanced ring injuries have been treated with completion amputation, but there is evidence that severe ring injuries can be salvaged. The purpose of this systematic review was to pool the current published data on ring injuries. A systematic review of the English literature published from 1980 to 2015 in PubMed and MEDLINE databases was conducted to identify patients who underwent treatment for ring avulsion injuries. Twenty studies of ring avulsion injuries met the inclusion criteria. There were a total of 572 patients reported with ring avulsion injuries. The Urbaniak class breakdown was class I (54 patients), class II (204 patients), and class III (314 patients). The average total arc of motion (TAM) for patients with a class I injury was 201.25 (n = 40). The average 2-point discrimination was 5.6 (n = 10). The average TAM for patients with a class II injury undergoing microsurgical revascularization was 187.0 (n = 114), and the average 2-point discrimination was 8.3 (n = 40). The average TAM for patients with a class III injury undergoing microsurgical revascularization was 168.2 (n = 170), and the average 2-point discrimination was 10.5 (n = 97). Ring avulsion injuries are commonly classified with the Urbaniak class system. Outcomes are superior for class I and II injuries, and there are select class III injuries that can be treated with replantation. Shared decision making with patients is imperative to determine whether replantation is appropriate.

  3. Rehabilitation of muscle after injury - the role of anti-inflammatory drugs

    DEFF Research Database (Denmark)

    Mackey, Abigail; Mikkelsen, U R; Magnusson, S P

    2012-01-01

    junction, whereas contusion or overload injury can damage both myofibers and intramuscular connective tissue. The role of NSAIDs in muscle repair is complicated by differences in injury models used, variables evaluated, and time point(s) selected for evaluations. While the temporal pattern of the influence...

  4. MRI in the assessment of the supportive soft tissues of the cervical spine in acute trauma in children

    Energy Technology Data Exchange (ETDEWEB)

    Keiper, M.D.; Zimmerman, R.A.; Bilaniuk, L.T. [Department of Radiology, Children`s Hospital of Philadelphia, PA (United States)

    1998-06-01

    We carried out a retrospective analysis of imaging and clinical findings in 52 children with a history of cervical spinal trauma. No patient had evidence of a fracture on plain films or CT. All had MRI at 1.5 T because of persistent or delayed symptoms, unexplained findings of injury or instability, or as further assessment of the extent of soft-tissue injury. Clinical follow-up ranged from 6 months to 3.5 years. MRI was evaluated for its influence on therapy and outcome. MRI was positive in 16 (31 %) of 52 patients. Posterior soft-tissue or ligamentous injury was the most common finding in the 10 patients with mild to moderate trauma, while acute disc bulges and longitudinal ligament disruption, each seen in one case, were uncommon. MRI was superior to CT for assessment of the extent of soft-tissue injury and for identification of spinal cord injuries and intracanalicular hemorrhage in the six patients with more severe trauma. MRI specifically influenced the management of all four patients requiring surgery by extending the level of posterior stabilization. No patients with normal MRI or any of the 10 with radiographically stable soft-tissue injury on MRI, developed delayed clinical or radiographic evidence of instability or deformity. (orig.) With 2 figs., 2 tabs., 24 refs.

  5. [Fall from height--surprising autopsy diagnosis in primarily unclear initial situations].

    Science.gov (United States)

    Schyma, Christian; Doberentz, Elke; Madea, Burkhard

    2012-01-01

    External post-mortem examination and first police assessments are often not consistent with subsequent autopsy results. This is all the more surprising the more serious the injuries found at autopsy are. Such discrepancies result especially from an absence of gross external injuries, as demonstrated by four examples. A 42-year-old, externally uninjured male was found at night time in a helpless condition in the street and died in spite of resuscitation. Autopsy showed severe polytrauma with traumatic brain injury and lesions of the thoracic and abdominal organs. A jump from the third floor was identified as the cause. At dawn, a twenty-year-old male was found dead on the grounds of the adjacent house. Because of the blood-covered head the police assumed a traumatic head injury by strike impact. The external examination revealed only abrasions on the forehead and to a minor extent on the back. At autopsy a midfacial fracture, a trauma of the thorax and abdomen and fractures of the spine and pelvis were detected. Afterwards investigations showed that the man, intoxicated by alcohol, had fallen from the flat roof of a multistoried house. A 77-year-old man was found unconscious on his terrace at day time; a cerebral seizure was assumed. He was transferred to emergency care where he died. The corpse was externally inconspicuous. Autopsy revealed serious traumatic injuries of the brain, thorax, abdomen and pelvis, which could be explained by a fall from the balcony. A 47-year-old homeless person without any external injuries was found dead in a barn. An alcohol intoxication was assumed. At autopsy severe injuries of the brain and cervical spine were found which were the result of a fall from a height of 5 m. On the basis of an external post-mortem examination alone gross blunt force trauma cannot be reliably excluded.

  6. Gasoline-related injuries and fatalities in the United States, 1995-2014.

    Science.gov (United States)

    Drago, Dorothy A

    2018-02-12

    This descriptive study examines twenty years of gasoline-related fatalities and emergency department treated injuries in the United States, based on data from the US Consumer Product Safety Commission. Thermal burns consistently accounted for the majority (56%) of gasoline-related injuries and for most (82%) gasoline-related deaths, and were commonly (57-71%) associated with the use of gasoline as an accelerant. Poisoning accounted for 13% of injuries and 17% of deaths. The primary poisoning injury pattern was ingestion; the primary fatality pattern was inhalation, with about half of those associated with deliberate abuse. The estimated number of ingestions decreased from 60 to 23% of poisoning-related injuries, while injuries associated with inhalation abuse increased from 6 to 23%. Chemical burns and dermatitis were less represented in the injury data and were primarily associated with gasoline spills or splashes. Gasoline cans reportedly ignited or exploded in about 5% of thermal burn injuries and fatalities. While mandatory requirements for child resistant closures on gasoline cans (a primary intervention) have potentially impacted poisonings, the use of flame mitigation devices to address thermal injuries, if successful, would be a secondary intervention, and could address only a small percentage (about 5%) of injuries and deaths.

  7. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  8. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines.

    Science.gov (United States)

    Salama, Samir A; Arab, Hany H; Omar, Hany A; Gad, Hesham S; Abd-Allah, Gamil M; Maghrabi, Ibrahim A; Al Robaian, Majed M

    2018-04-01

    UVA comprises more than 90% of the solar UV radiation reaching the Earth. Artificial lightening lamps have also been reported to emit significant amounts of UVA. Exposure to UVA has been associated with dermatological disorders including skin cancer. At the molecular level, UVA damages different cellular biomolecules and triggers inflammatory responses. The current study was devoted to investigate the potential protective effect of L-carnitine against UVA-induced skin tissue injury using rats as a mammalian model. Rats were distributed into normal control group (NC), L-carnitine control group (LC), UVA-Exposed group (UVA), and UVA-Exposed and L-carnitine-treated group (UVA-LC). L-carnitine significantly attenuated UVA-induced elevation of the DNA damage markers 8-oxo-2'-deoxyguanosine (8-oxo-dG) and cyclobutane pyrimidine dimers (CPDs) as well as decreased DNA fragmentation and the activity of the apoptotic marker caspase-3. In addition, L-carnitine substantially reduced the levels of lipid peroxidation marker (TBARS) and protein oxidation marker (PCC) and significantly elevated the levels of the total antioxidant capacity (TAC) and the antioxidant reduced glutathione (GSH) in the skin tissues. Interestingly, L-carnitine upregulated the level of the DNA repair protein proliferating cell nuclear antigen (PCNA). Besides it mitigated the UVA-induced activation of the oxidative stress-sensitive signaling protein p38 and its downstream target c-Fos. Moreover, L-carnitine significantly downregulated the levels of the early response proinflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, our results highlight, for the first time, the potential attenuating effects of L-carnitine on UVA-induced skin tissue injury in rats that is potentially mediated through suppression of UVA-induced oxidative stress and inflammatory responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  10. Soluble TGF-β type II receptor gene therapy reduces TGF-β activity in irradiated lung tissue and protects lungs from radiation-induced injury

    International Nuclear Information System (INIS)

    Vujaskovic, Z.; Rabbani, Z.; Zhang, X.; Samulski, T.V.; Li, C.-Y.; Anscher, M.S.

    2003-01-01

    Full text: The objective was to determine whether administration of recombinant human adenoviral vector carrying soluble TGF-β1 type II receptor (TβR-II) gene reduces availability of active TGFβ1 and protects lung from radiation-induced injury. Female Fisher-344 rats were randomized into four groups to receive: 1) Control 2) Adenoviral green fluorescent protein vector (AdGFP) alone 3) Radiation (RT) + Adenoviral vector with TGF-β1 type II receptor gene (AdexTβR-II-Fc) 4) RT alone. Animals were irradiated to right hemithorax using a single dose of 30 Gy. The packaging and production of a recombinant adenovirus carrying the fused human TβR-II-IgG1 Fc gene was achieved by use of the AdEasy system. The treatment vector AdexTbR-II-Fc (1.5*1010 PFU) and control vector AdGFP (1*109 PFU) were injected i.v. 24 hrs after RT. Respiratory rate was measured as an index of pulmonary function weekly for 5 weeks post RT. Structural damage was scored histologically. Immunohistochemistry was performed to identify activated macrophages. ELISA was used to quantify active TGF-β1 in tissue homogenate. Western blot was used to determine TβR-II expression in plasma and lung tissue. Animals receiving treatment vector AdexTbR-II-Fc have elevated plasma levels of soluble TβR-II at 24 and 48 hours after injection. In the RT+AdexTbR-II-Fc group, there was a significant reduction in respiratory rate (p = 0.002) at four weeks after treatment compared to RT alone group. Histology revealed a significant reduction in lung structural damage in animals receiving gene therapy after RT vs RT alone (p=0.0013). There was also a decrease in the number of activated macrophage (p= 0.02) in RT+AdexTbR-II-Fc group vs RT alone. The tissue protein expression of active TGF-β1 was significantly reduced in rats receiving RT+AdexTbR-II-Fc treatment (p<0.05). This study shows the ability of adenovirus mediated soluble TβR-II gene therapy to reduce tissue levels of active TGF-β1 and ameliorate radiation

  11. Facet joint injuries in acute cervical spine trauma : evaluation with CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeon Ju; Kim, Dong Hyun; Lee, Jeong Hwa; Lee, Keon; Kwon, Hyeok Po; Kwon, Jung Hyeok; Yun, Seong Mun [Dongkang General Hospital, Seoul (Korea, Republic of)

    1999-05-01

    To evaluate injury patterns of facet joints and associated soft tissue injuries in patients with acute traumatic cervical facet joint injuries. From among patients with cervical spine trauma, 27 with facet joint injuries, as seen on CT and MRI, were chosen for this study. CT scans were analyzed with regard to the location of facet joint injury, the presence or absence of facet dislocation or fracture, and other associated fractures. MR images were analyzed with regard to ligament injury, intervertebral disc injury, intervertebral disc herniation, and spinal cord injury. The most common location of facet joint injury was C6-7 level(n=10), followed by C5-6(n=8). Among these 27 patients with facet joint injuries, 12(44%) had bilateral injuries and 15(56%) unilateral injuries. Facet fractures were present in 17 cases(63%) and the fracture of inferior facet was more frequent than superior. Patterns of fracture were vertical, transverse, or comminuted, but vertical fracture was the most common. Various degrees of dislocation were observed in patients with facet fractures. Fractures other than facet included pillar(n=11), lamina(n=6), transverse process(n=14), body(n=13), and spinous process(n=3). On MR images, anterior longitudinal ligament injury was found in 8 patients(30%), posterior longitudinal ligament injury in 4(15%), and interspinous ligament injury in 20(74%). Twelve patients(44%) had spinal cord injuries including edema(n=8) and hemorrhage(n=4). Among patients with disc abnormalities, 11(41%) had intervertebral disc injuries, and traumatic disc herniations were found in nine. Traumatic cervical facet joint injuries were manifested as various patterns and frequently associated with other fractures or soft tissue injuries. Analysis of CT and MR findings of these injury patterns helped formulate a therapeutic plan and determine of prognosis.

  12. Protective effects of edaravone combined puerarin on inhalation lung injury induced by black gunpowder smog.

    Science.gov (United States)

    Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin

    2015-05-01

    The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all pedaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Regulatory effect of neuroglobin in the recovery of spinal cord injury.

    Science.gov (United States)

    Dai, Ji-Lin; Lin, Yun; Yuan, Yong-Jian; Xing, Shi-Tong; Xu, Yi; Zhang, Qiang-Hua; Min, Ji-Kang

    2017-11-16

    The present study was aimed to investigate the therapeutic potential of neuroglobin in the recovery of spinal cord injury. The male albino Wistar strain rats were used as an experimental model, and adeno associated virus (AAV) was administered in the T12 section of spinal cord ten days prior to the injury. Basso Beattie Bresnahan (BBB) locomotor rating scale was used to determine the recovery of the hind limb during four weeks post-operation. Malondialdehyde (MDA), catalase and superoxide dismutase (SOD) were determined in the spinal cord tissues. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was carried out to determine the presence of apoptotic cells. Immunofluorescence analysis was carried out to determine the neuroglobin expression. Western blot analysis was carried out to determine the protein expressions of caspase-3, cytochrome c, bax and bcl-2 in the spinal cord tissues. Experimental results showed that rats were recovered from the spinal cord injury due to increased neuroglobin expression. Lipid peroxidation was reduced, whereas catalase and SOD activity were increased in the spinal cord tissues. Apoptosis and lesions were significantly reduced in the spinal cord tissues. Caspase-3, cytochrome c and bax levels were significantly reduced, whereas bcl-2 expression was reduced in the spinal cord tissues. Taking all these data together, it is suggested that the increased neuroglobin expression could improve the locomotor function.

  14. Bipolar fracture dislocation of clavicle: A report of osteosynthesis and early soft tissue reconstruction

    Directory of Open Access Journals (Sweden)

    Renaldi Prasetia

    Full Text Available Introduction: Bipolar dislocation of the clavicle, also called bifocal or pan-articular dislocation or floating clavicle, is an uncommon traumatic injury. The injury of this case is also concomitant with distal third clavicle and coracoid fracture. This article aimed to report the experience of performing osteosynthesis and early soft tissue reconstruction on these injuries. Case report: We reported a case of bipolar clavicle fracture-dislocation in concomitant with coracoid fracture in a man, aged 32 years old, successfully treated 24 days after accident by fixation of both fractures and early simultaneous reconstruction of sternoclavicular- acromioclavicular-coracoclavicular joints. Discussion: These injuries are rare and capable of causing many complications if they are treated improperly. It is compulsory to carefully assess any fractured clavicle along its whole length, both clinically and radiologically. Various options, from non-operative to operative, have been reported to manage such of these cases. Early bony fixation and soft tissue reconstruction can correct the alignment of clavicle and recover the function of sterno-clavicular and acromio-clavicular- joints promptly. Conclusion: Fracture osteosynthesis and early soft tissue reconstruction can be regarded as an option treatment for bipolar fracture-dislocation of the clavicle to facilitate prompt treatment and early rehabilitation. Keywords: Bipolar dislocation, Floating clavicle, Early reconstruction, Soft tissue reconstruction

  15. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  16. COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby.

    Science.gov (United States)

    Heffernan, Shane M; Kilduff, Liam P; Erskine, Robert M; Day, Stephen H; Stebbings, Georgina K; Cook, Christian J; Raleigh, Stuart M; Bennett, Mark A; Wang, Guan; Collins, Malcolm; Pitsiladis, Yannis P; Williams, Alun G

    2017-11-14

    Two common single nucleotide polymorphisms within the COL5A1 gene (SNPs; rs12722 C/T and rs3196378 C/A) have previously been associated with tendon and ligament pathologies. Given the high incidence of tendon and ligament injuries in elite rugby athletes, we hypothesised that both SNPs would be associated with career success. In 1105 participants (RugbyGene project), comprising 460 elite rugby union (RU), 88 elite rugby league athletes and 565 non-athlete controls, DNA was collected and genotyped for the COL5A1 rs12722 and rs3196378 variants using real-time PCR. For rs12722, the injury-protective CC genotype and C allele were more common in all athletes (21% and 47%, respectively) and RU athletes (22% and 48%) than in controls (16% and 41%, P ≤ 0.01). For rs3196378, the CC genotype and C allele were overrepresented in all athletes (23% and 48%) and RU athletes (24% and 49%) compared with controls (16% and 41%, P ≤ 0.02). The CC genotype in particular was overrepresented in the back and centres (24%) compared with controls, with more than twice the odds (OR = 2.25, P = 0.006) of possessing the injury-protective CC genotype. Furthermore, when considering both SNPs simultaneously, the CC-CC SNP-SNP combination and C-C inferred allele combination were higher in all the athlete groups (≥18% and ≥43%) compared with controls (13% and 40%; P = 0.01). However, no genotype differences were identified for either SNP when RU playing positions were compared directly with each other. It appears that the C alleles, CC genotypes and resulting combinations of both rs12722 and rs3196378 are beneficial for rugby athletes to achieve elite status and carriage of these variants may impart an inherited resistance against soft tissue injury, despite exposure to the high-risk environment of elite rugby. These data have implications for the management of inter-individual differences in injury risk amongst elite athletes.

  17. Blunt Traumatic Extracranial Cerebrovascular Injury and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Paul M. Foreman

    2017-04-01

    Full Text Available Background: Ischemic stroke occurs in a significant subset of patients with blunt traumatic cerebrovascular injury (TCVI. The patients are victims of motor vehicle crashes, assaults or other high-energy collisions, and suffer ischemic stroke due to injury to the extracranial carotid or vertebral arteries. Summary: An increasing number of patients with TCVI are being identified, largely because of the expanding use of computed tomography angiography for screening patients with blunt trauma. Patients with TCVI are particularly challenging to manage because they often suffer polytrauma, that is, numerous additional injuries including orthopedic, chest, abdominal, and head injuries. Presently, there is no consensus about optimal management. Key Messages: Most literature about TCVI and stroke has been published in trauma, general surgery, and neurosurgery journals; because of this, and because these patients are managed primarily by trauma surgeons, patients with stroke due to TCVI have been essentially hidden from view of neurologists. This review is intended to bring this clinical entity to the attention of clinicians and investigators with specific expertise in neurology and stroke.

  18. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  19. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Heng-Li Tian

    2016-01-01

    Progressive hemorrhagic injury (PHI) can be divided into coagulopathy-related PHI and normal coagulation PHI.Coagulation disorders after traumatic brain injuries can be included in trauma-induced coagulopathy (TIC).Some studies showed that TIC is associated with PHI and increases the rates of disability and mortality.In this review,we discussed some mechanisms in TIC,which is of great importance in the development of PHI,including tissue factor (TF) hypothesis,protein C pathway and thrombocytopenia.The main mechanism in the relation of TIC to PHI is hypocoagulability.We also reviewed some coagulopathy parameters and proposed some possible risk factors,predictors and therapies.

  20. A Review of Traumatic Axonal Injury following Whiplash Injury As Demonstrated by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2018-02-01

    Full Text Available Whiplash is a bony or soft tissue injury resulting from an acceleration–deceleration energy transfer in the neck. Although patients with whiplash injury often complain of cerebral symptoms, and previous studies have reported evidence indicating brain injury, such an association has not been clearly elucidated. Traumatic axonal injury (TAI is tearing of axons due to indirect shearing forces during acceleration, deceleration, and rotation of the brain or to direct head trauma. Diffusion tensor imaging (DTI has a unique advantage to detect TAI in patients whose conventional brain CT or magnetic resonance imaging (MRI results were negative following head trauma. Since the introduction of DTI, six studies using diffusion tensor tractography (DTT based on DTI data have reported TAI in patients with whiplash injury, even though conventional brain CT or MRI results were negative. A precise TAI diagnosis in whiplash patients is clinically important for proper management and prognosis. Among the methods employed to diagnose TAI in the six previous studies, the common diagnostic approach for neural tract TAI in individual patients with whiplash injury were (1 whiplash injury history due to car accident; (2 development of new clinical symptoms and signs after whiplash injury; (3 evidence of neural tract TAI in DTT results, mainly via configurational analysis; and (4 coincidence of newly developed clinical manifestations and the function of injured neural tracts. All six studies were individual patient case studies; therefore, further prospective studies involving larger number of subjects should be encouraged.

  1. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    Science.gov (United States)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  2. Ligament Tissue Engineering

    OpenAIRE

    Khan, Wasim Sardar

    2016-01-01

    Ligaments are commonly injured in the knee joint, and have a poor capacity for healing due to their relative avascularity. Ligament reconstruction is well established for injuries such as anterior cruciate ligament rupture, however the use of autografts and allografts for ligament reconstruction are associated with complications, and outcomes are variable. Ligament tissue engineering using stem cells, growth factors and scaffolds is a novel technique that has the potential to provide an unlim...

  3. Epiphyseal injuries of the distal tibia. Does MRI provide useful additional information?

    International Nuclear Information System (INIS)

    Iwinska-Zelder, J.; Schmidt, S.; Ishaque, N.; Klose, K.J.; Hoppe, M.; Schmitt, J.; Gotzen, L.

    1999-01-01

    Plain film radiography often underestimates the extent of injury in children with epiphyseal fracture. Especially Salter-Harris V fractures (crush fracture of the epiphyseal plate) are often primarily not detected. MRI of the ankle was performed in 10 children aged 9-17 (mean 14) years with suspected epiphyseal injury using 1.0-T Magnetom Expert. The fractures were classified according to the Salter-Harris-Rang-Odgen classification and compared with the results of plain radiography. In one case MRI could exclude epiphyseal injury; in four cases the MRI findings changed the therapeutic management. The visualisation of the fracture in three orthogonal planes and the possibility of detection of cartilage and ligamentous injury in MR imaging makes this method superior to conventional radiography and CT. With respect to radiation exposure MRI instead of CT should be used for the diagnosis of epiphyseal injuries in children. (orig.) [de

  4. Radiation injury caused by internal contamination

    International Nuclear Information System (INIS)

    Petyrek, P.

    1988-01-01

    Basic data are given of radiation injury of the respiratory organs, digestive tract, hematogenous tissues and the thyroid due to internal contamination. Attention is drawn to the complexity of the problem and to the effect of the various factors affecting the picture and course of the radiation damage. The treatment is based on the assumption that fundamental is the damage of the stem cells of the critical organs. Discussed are also the basic clinical pictures that can occur due to internal contamination with activities causing radiation injury. (B.S.). 27 refs

  5. State-of-the-art ultrasonographic findings in lower extremity sports injuries.

    Science.gov (United States)

    Suzue, Naoto; Matsuura, Tetsuya; Iwame, Toshiyuki; Higashino, Kosaku; Sakai, Toshinori; Hamada, Daisuke; Goto, Tomohiro; Takata, Yoichiro; Nishisho, Toshihiko; Goda, Yuichiro; Tsutsui, Takahiko; Tonogai, Ichiro; Miyagi, Ryo; Abe, Mitsunobu; Morimoto, Masatoshi; Mineta, Kazuaki; Kimura, Tetsuya; Nitta, Akihiro; Higuchi, Tadahiro; Hama, Shingo; C Jha, Subash; Takahashi, Rui; Fukuta, Shoji; Sairyo, Koichi

    2015-01-01

    Athletes sometimes experience overuse injuries. To diagnose these injuries, ultrasonography is often more useful than plain radiography, computed tomography (CT), or magnetic resonance imaging (MRI). Ultrasonography can show both bone and soft tissue from various angles as needed, providing great detail in many cases. In conditions such as osteochondrosis or enthesopathies such as Osgood-Schlatter disease, Sinding-Larsen-Johansson disease, bipartite patella, osteochondritis dissecans of the knee, painful accessory navicular,and jumper's knee, ultrasonography can reveal certain types of bony irregularities or neovascularization of the surrounding tissue. In patients of enthesopathy, ultrasonography can show the degenerative changes at the insertion of the tendon. Given its usefulness in treatment, ultrasonography is expected to become essential in the management of overuse injuries affecting the lower limb in athletes. J. Med. Invest. 62: 109-113, August, 2015.

  6. Penetrating spinal injuries and their management

    Directory of Open Access Journals (Sweden)

    A Kumar

    2011-01-01

    Full Text Available Penetrating spinal trauma due to missile/gunshot injuries has been well reported in the literature and has remained the domain of military warfare more often. Civic society′s recent upsurge in gunshot injuries has created a dilemma for the treating neurosurgeon in many ways as their management has always involved certain debatable and controversial issues. Both conservative and surgical management of penetrating spinal injuries (PSI have been practiced widely. The chief neurosurgical concern in these types of firearm injuries is the degree of damage sustained during the bullet traversing through the neural tissue and the after-effects of the same in long term. We had an interesting case of a penetrating bullet injury to cervical spine at C2 vertebral level. He was operated and the bullets were removed from posterior midline approach. Usually, the management of such cases differs from region to region depending on the preference of the surgeon but still certain common principles are followed world over. Thus, we realized the need to review the literature regarding spinal injuries with special emphasis on PSI and to study the recent guidelines for their treatment in light of our case.

  7. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  8. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yafei [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Brott, David [Patient Safety, AstraZeneca R and D Wilmington, DE 19850 (United States); Luo, Wenli [Discovery Statistics, AstraZeneca R and D Waltham, MA 02451 (United States); Gangl, Eric [DMPK, AstraZeneca R and D Waltham, MA 02451 (United States); Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Valentin, Jean-Pierre [Global Safety Assessment, AstraZeneca R and D Alderley Park, Macclesfield, SK10 4TG (United Kingdom); Bialecki, Russell, E-mail: russell.bialecki@astrazeneca.com [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States)

    2013-05-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development.

  9. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    International Nuclear Information System (INIS)

    Chen, Yafei; Brott, David; Luo, Wenli; Gangl, Eric; Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis; Valentin, Jean-Pierre; Bialecki, Russell

    2013-01-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development

  10. Macrophage activation and its role in repair and pathology after spinal cord injury.

    Science.gov (United States)

    Gensel, John C; Zhang, Bei

    2015-09-04

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Pediatric trampoline injuries.

    Science.gov (United States)

    Hurson, Conor; Browne, Katherine; Callender, Orla; O'Donnell, Turlough; O'Neill, Anthony; Moore, David P; Fogarty, Esmond E; Dowling, Francis E

    2007-01-01

    The recreational use of trampolines has increased dramatically during the last 10 years. There has been a striking increase in the number of children presenting to fracture clinics with injuries associated with trampoline use. This increase in trampoline injuries has been reported in North America, but there has been a paucity of research in this area in Europe. We prospectively recorded details of patients presenting to our institution, Our Lady's Children's Hospital, Crumlin (Dublin, Ireland), during the busy summer months of June, July, and August 2005. Details recorded included type and mechanism of injury, the mode of referral, treatment, inpatient days, outpatient visits, specific details relating to trampoline safety, and an analysis of the cost of medical care. There were 101 patients treated for trampoline-related injuries in 3 months from June to August 2005. This represented 1.5% of the total attendances to the emergency department. The average age was 8.5 years (range, 1.4-17.4 years). There were 55 fractures, 38 soft tissue injuries, 5 head injuries, and 5 neck injuries, with an average Pediatric Trauma Score of 11.4. Fifty seven percent (58/101) of patients were on the trampoline with at least 1 other person. Twenty patients (19.8%) were admitted to hospital requiring 71 inpatient days. Twelve patients were treated in theatre. There were 163 fracture clinic visits, 212 x-rays, and 2 magnetic resonance imaging scans. Trampolines are a high-risk activity with the potential for significant orthopaedic injury. In Ireland, we have recently seen a dramatic increase in pediatric trampoline-related injuries mirroring the trend in the United States during the last 10 to 15 years. We found that more than 1 individual on a trampoline is a major risk factor for injury, where the lightest person is 14 times more likely to be injured than the heavier. The lighter person also has a greater chance of being injured with smaller numbers on the trampoline. We reiterate

  12. Femoral quadriceps muscle injury: ultrasonography and magnetic resonance

    International Nuclear Information System (INIS)

    Rodriguez, P.; Manjon, P.; Revilla, Y.; Ciudad, E.; Buj, M.J.

    1998-01-01

    Femoral quadriceps muscle (FQM) injury is a common lesion amongathletes, especially soccer players. It is important to determine the extension of the lesion and whether or not here is accompanying hematoma. Ultrasound and magnetic resonance (MR) are excellent methods for studying these lesions. To assess the ultrasonographic and MR findings associated with FQM injury to aid in its diagnosis and the determination of its extension. We review the ultrasonographic studies in 9 patients with FQM injury and the corresponding MR studies in five of these patients. Ultrasound and MR reveal the rupture of the muscle fibers, the mass effect produced by the hematoma between the ruptured fiber and the changes in echogenicity and typical signal changes in the hematoma. Chronic cases presented fibrous scar tissue and intermittent mass effects mimicking those of tumors. Ultrasound and MR demonstrate that these masses correspond to normal contractions of the muscle fibers among the fibrous scar tissue, ruling our their tumor-related etiology. Although both ultrasound and MR are excellent methods and of similar value in the study of muscle injury, we consider the former to be more readily available and inexpensive. Moreover, the ultrasonographic study is more suitable for the study of the intermittent mass effect produced by abnormal contraction of chronically injured muscles. (Author) 5 refs

  13. Evaluation of an In Vitro of Human Immune Activation Induced by Freeze-Thaw Tissue Damage

    National Research Council Canada - National Science Library

    DuBose, D

    2002-01-01

    In training and in combat, soldiers are under the constant threat of injury. Injury that results in tissue necrosis can activate the immune system and ultimately enhance disturbances in organ function...

  14. Paediatric injury from indoor trampoline centres.

    Science.gov (United States)

    Mulligan, Christopher S; Adams, Susan; Brown, Julie

    2017-10-01

    Indoor trampoline parks are increasing as a source of injuries among children. We conducted a prospective cohort study, with semi-structured interview and medical record review, of children aged trampoline park. In a 6-month period in 2014, 40 such children (55% female) presented to the department. Common mechanisms were individual jumpers falling while attempting a somersault or trick, landing awkwardly on an obstacle such as a ball or protective padding, and multiple users on a single trampoline. Most sustained soft tissue injuries (n=22, 55%) and fractured bones (n=15, 37.5%). One child sustained an unstable cervical fracture/dislocation. Unlike domestic trampolines, where the majority of injuries occur from falling off, most trampoline-park injuries occur on the trampoline surface. These differences require injury prevention strategies that engage children, carers and businesses to meet best practice design and management standards. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration.

    Science.gov (United States)

    Ebrahim, Martrez; Mulay, Shrikant R; Anders, Hans-Joachim; Thomasova, Dana

    2015-11-01

    Murine double minute (MDM)-2 is an intracellular molecule with diverse biological functions. It was first described to limit p53-mediated cell cycle arrest and apoptosis, hence, gain of function mutations are associated with malignancies. This generated a rationale for MDM2 being a potential therapeutic target in cancer therapy. Meanwhile, several additional functions and pathogenic roles of MDM2 have been identified that either enforce therapeutic MDM2 blockade or raise caution about potential side effects. MDM2 is also required for organ development and tissue homeostasis because unopposed p53 activation leads to p53-overactivation-dependent cell death, referred to as podoptosis. Podoptosis is caspase-independent and, therefore, different from apoptosis. The mitogenic role of MDM2 is also needed for wound healing upon tissue injury, while MDM2 inhibition impairs re-epithelialization upon epithelial damage. In addition, MDM2 has p53-independent transcription factor-like effects in nuclear factor-kappa beta (NFκB) activation. Therefore, MDM2 promotes tissue inflammation and MDM2 inhibition has potent anti-inflammatory effects in tissue injury. Here we review the biology of MDM2 in the context of tissue development, homeostasis, and injury and discuss how the divergent roles of MDM2 could be used for certain therapeutic purposes. MDM2 blockade had mostly anti-inflammatory and anti-mitotic effects that can be of additive therapeutic efficacy in inflammatory and hyperproliferative disorders such as certain cancers or lymphoproliferative autoimmunity, such as systemic lupus erythematosus or crescentic glomerulonephritis.

  16. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    Science.gov (United States)

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  17. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    Science.gov (United States)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  18. Radiation-induced heart injury

    International Nuclear Information System (INIS)

    Suzuki, Yoshihiko; Niibe, Hideo

    1975-01-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the internal between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue. (Evans, G.)

  19. Brain hemorrhage after electrical burn injury: Case report and probable mechanism

    OpenAIRE

    Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose

    2016-01-01

    Background: High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Case Description: Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He ...

  20. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    Science.gov (United States)

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  1. A correlation study of the expression of resistin and glycometabolism in muscle tissue after traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jin Peng; Zhu Lielie; Zhang Jiasheng; Xie Songling; Pan Da; Wen Hao; Meng Weiyang

    2014-01-01

    Objective:To investigate the expression pattern of resistin (RSTN) in skeletal muscle tissue and its influence on glycometabolism in rats with traumatic brain injury (TBI).Methods:Seventy-eight SD rats were randomly divided into traumatic group (n=36),RSTN group (n=36) and sham operation group (n=6).Fluid percussion TBI model was developed in traumatic and RSTN groups and the latter received additional 1 mg RSTN antibody treatment for each rat.At respectively 12 h,24 h,72 h,1 w,2 w,and 4 w after operation,venous blood was collected and the right hind leg skeletal muscle tissue was sampled.We used real-time PCR to determine mRNA expression of RSTN in skeletal muscles,western blot to determine RSTN protein expression and ELISA to assess serum insulin as well as fasting blood glucose (FBG) levels.Calculation of the quantitative insulin sensitivity check index (Q value) was also conducted.The above mentioned indicators and their correction were statistically analyzed.Results:Compared with sham operation group,the RSTN expression in the skeletal muscle as well as serum insulin and FBG levels revealed significant elevation (P<0.05),and reduced Q value (P<0.05) in traumatic group.Single factor linear correlation analysis showed a significant negative correlation between RSTN expression and Q values (P<0.001) in traumatic group.Conclusion:The expression of RSTN has been greatly increased in the muscular tissue of TBI rats and it was closely related to the index of glycometabolism.RSTN may play an important role in the process of insulin resistance after TBI.

  2. In vivo studies of peritendinous tissue in exercise

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, Henning; Skovgaard, D

    2000-01-01

    Soft tissue injury of tendons represents a major problem within sports medicine. Although several animal and cell culture studies have addressed this, human experiments have been limited in their ability to follow changes in specific tissue directly in response to interventions. Recently, methods...... have allowed for in vivo determination of tissue concentrations and release rates of substances involved in metabolism, inflammation and collagen synthesis, together with the measurement of tissue blood flow and oxygenation in the peritendinous region around the Achilles tendon in humans during...... exercise. This coincides with a surprisingly marked drop in tissue pressure during contraction. With regards to both circulation, metabolism and collagen formation, peritendinous tissue represents a dynamic, responsive region that adapts markedly to acute muscular activity....

  3. Real-time optical monitoring of permanent lesion progression in radiofrequency ablated cardiac tissue (Conference Presentation)

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Hendon, Christine P.

    2016-02-01

    Despite considerable advances in guidance of radiofrequency ablation (RFA) therapies for atrial fibrillation, success rates have been hampered by an inability to intraoperatively characterize the extent of permanent injury. Insufficient lesions can elusively create transient conduction blockages that eventually reconduct. Prior studies suggest significantly greater met-myoglobin (Mmb) concentrations in the lesion core than those in the healthy myocardium and may serve as a marker for irreversible tissue damage. In this work, we present real-time monitoring of permanent injury through spectroscopic assessment of Mmb concentrations at the catheter tip. Atrial wedges (n=6) were excised from four fresh swine hearts and submerged under pulsatile flow of warm (37oC) phosphate buffered saline. A commercial RFA catheter inserted into a fiber optic sheath allowed for simultaneous measurement of tissue diffuse reflectance (DR) spectra (500-650nm) during application of RF energy. Optical measurements were continuously acquired before, during, and post-ablation, in addition to healthy neighboring tissue. Met-myoglobin, oxy-myoglobin, and deoxy-myoglobin concentrations were extracted from each spectrum using an inverse Monte Carlo method. Tissue injury was validated with Masson's trichrome and hematoxylin and eosin staining. Time courses revealed a rapid increase in tissue Mmb concentrations at the onset of RFA treatment and a gradual plateauing thereafter. Extracted Mmb concentrations were significantly greater post-ablation (p<0.0001) as compared to healthy tissue and correlated well with histological assessment of severe thermal tissue destruction. On going studies are aimed at integrating these findings with prior work on near infrared spectroscopic lesion depth assessment. These results support the use of spectroscopy-facilitated guidance of RFA therapies for real-time permanent injury estimation.

  4. Efficacy and tolerability of a new ibuprofen 200mg plaster in patients with acute sports-related traumatic blunt soft tissue injury/contusion.

    Science.gov (United States)

    Predel, Hans-Georg; Giannetti, Bruno; Connolly, Mark P; Lewis, Fraser; Bhatt, Aomesh

    2018-01-01

    Ibuprofen is used for the treatment of non-serious pain. This study assessed the efficacy and safety of a new ibuprofen plaster for the treatment of pain associated with acute sports impact injuries/contusions. In this randomised, double-blind, multi-centre, placebo controlled, parallel group study, adults (n = 130; 18-58 years of age) diagnosed with acute sports-related blunt soft tissue injury/contusion were randomized to receive either ibuprofen 200 mg plaster or placebo plaster. Plasters were administered once daily for five consecutive days. The primary assessment was area under the visual analogue scale (VAS) of pain on movement (POM) over 0 to three days (VAS AUC 0-3d ). Other endpoints included algometry AUC from 0 to three days (AUC 0-3d ) and 0 to five days (AUC 0-5d ), to evaluate improvement of sensitivity at the injured site, and patient and investigator global assessment of efficacy. Safety was monitored throughout the study. The ibuprofen plaster resulted in superior reduction in AUC 0-3d compared with placebo; the Least Squares (LS) mean difference was 662.82 mm*h in favour of the ibuprofen 200mg plaster (P = 0.0011). The greater improvement in VAS AUC of POM was also observed after 12 h, 24 h, and five days of therapy. Tenderness also significantly improved with the ibuprofen plaster compared with placebo; LS mean difference in algometry/tenderness AUC 0-3d was 1.87 N/cm 2 *d and AUC 0-5d was 1.87 N/cm 2 *d (P values ≤0.0004). At all study timepoints, a greater percentage of patients and investigators rated the effectiveness of the ibuprofen 200 mg plaster as good/excellent than the placebo plaster. Treatment-emergent adverse events for the ibuprofen plaster were few (≤1.5%) and were mild in severity. The results of this study indicate 200 mg plaster is effective and safe for the treatment of pain due to acute sports-related traumatic blunt soft tissue injury/contusion in adults.

  5. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    Science.gov (United States)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  6. Injury Rate and Patterns Among CrossFit Athletes.

    Science.gov (United States)

    Weisenthal, Benjamin M; Beck, Christopher A; Maloney, Michael D; DeHaven, Kenneth E; Giordano, Brian D

    2014-04-01

    CrossFit is a type of competitive exercise program that has gained widespread recognition. To date, there have been no studies that have formally examined injury rates among CrossFit participants or factors that may contribute to injury rates. To establish an injury rate among CrossFit participants and to identify trends and associations between injury rates and demographic categories, gym characteristics, and athletic abilities among CrossFit participants. Descriptive epidemiology study. A survey was conducted, based on validated epidemiologic injury surveillance methods, to identify patterns of injury among CrossFit participants. It was sent to CrossFit gyms in Rochester, New York; New York City, New York; and Philadelphia, Pennsylvania, and made available via a posting on the main CrossFit website. Participants were encouraged to distribute it further, and as such, there were responses from a wide geographical location. Inclusion criteria included participating in CrossFit training at a CrossFit gym in the United States. Data were collected from October 2012 to February 2013. Data analysis was performed using Fisher exact tests and chi-square tests. A total of 486 CrossFit participants completed the survey, and 386 met the inclusion criteria. The overall injury rate was determined to be 19.4% (75/386). Males (53/231) were injured more frequently than females (21/150; P = .03). Across all exercises, injury rates were significantly different (P CrossFit was approximately 20%. Males were more likely to sustain an injury than females. The involvement of trainers in coaching participants on their form and guiding them through the workout correlates with a decreased injury rate. The shoulder and lower back were the most commonly injured in gymnastic and power lifting movements, respectively. Participants reported primarily acute and fairly mild injuries.

  7. Radiogenomics: predicting clinical normal tissue radiosensitivity

    DEFF Research Database (Denmark)

    Alsner, Jan

    2006-01-01

    Studies on the genetic basis of normal tissue radiosensitivity, or  'radiogenomics', aims at predicting clinical radiosensitivity and optimize treatment from individual genetic profiles. Several studies have now reported links between variations in certain genes related to the biological response...... to radiation injury and risk of normal tissue morbidity in cancer patients treated with radiotherapy. However, after these initial association studies including few genes, we are still far from being able to predict clinical radiosensitivity on an individual level. Recent data from our own studies on risk...

  8. Investigations of Tissue-Level Mechanisms of Primary Blast Injury Through Modeling, Simulation, Neuroimaging and Neuropathological Studies

    Science.gov (United States)

    2012-07-10

    2007;25(1):97-98. [19] Stewart C. Blast Injuries. Colorado Springs: USAF Academy Hospital; 2006. 88 p. [20] Cernak I, Wang Z, Jiang J, Bian X, Savic J...Wang Z, Jiang J, Bian X, Savic J. Ultrastructural and Functional Characteristics of Blast Injury- Induced Neurotrauma. Journal of Trauma: Injury

  9. New products tissue-engineering in the treatment of spinal cord injury

    Science.gov (United States)

    Bolshakov, I. N.; Sergienko, V. I.; Kiselev, S. L.; Lagarkova, M. A.; Remigaylo, A. A.; Mihaylov, A. A.; Prokopenko, S. V.

    2015-11-01

    In the treatment of patients with complicated spinal cord injury the Russian Health spends about one million rubles for each patient in the acute and the interim period after the injury. The number of complicated spinal cord injury is different in geographical areas Russian Federation from 30 to 50 people per 1 million that is affected by the year 5600. Applied to the present surgical and pharmacological techniques provide unsatisfactory results or minimally effective treatment. Transplantation of 100 thousand neuronal mouse predecessors (24 rats) or human neuronal predecessors (18 rats) in the anatomical gap rat spinal cord, followed by analysis of neurological deficit. The neuro-matrix implantation in the rat spinal cord containing 100 thousand neuronal precursors hESC, repeatable control neuro-matrix transplantation, non-cell mass, eliminating neurological deficit for 14 weeks after transplantation about 5-9 points on the scale of the BBB. The cultivation under conditions in vitro human induced pluripotent stem cells on collagen-chitosan matrix (hIPSC) showed that neurons differentiated from induced pluripotent stem cells grown on scaffolds as compact groups and has no neurites. Cells do not penetrate into the matrix during long-term cultivation and formed near the surface of the spherical structures resembling neurospheres. At least 90% of the cells were positive for the neuronal marker tubulin b3. Further studies should be performed to examine the compatibility of neuronal cultures and matrices.

  10. NKT cells are important mediators of hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Richards, James A; Wigmore, Stephen J; Anderton, Stephen M; Howie, Sarah E M

    2017-12-01

    IRI results from the interruption then reinstatement of an organ's blood supply, and this poses a significant problem in liver transplantation and resectional surgery. In this paper, we explore the role T cells play in the pathogenesis of this injury. We used an in vivo murine model of warm partial hepatic IRI, genetically-modified mice, in vivo antibody depletion, adoptive cell transfer and flow cytometry to determine which lymphocyte subsets contribute to pathology. Injury was assessed by measuring serum alanine aminotransfersase (ALT) and by histological examination of liver tissue sections. The absence of T cells (CD3εKO) is associated with significant protection from injury (p=0.010). Through a strategy of antibody depletion it appears that NKT cells (p=0.0025), rather than conventional T (CD4+ or CD8+) (p=0.11) cells that are the key mediators of injury. Our results indicate that tissue-resident NKT cells, but not other lymphocyte populations are responsible for the injury in hepatic IRI. Targeting the activation of NKT cells and/or their effector apparatus would be a novel approach in protecting the liver during transplantation and resection surgery; this may allow us to expand our current criteria for surgery. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Identification of Hollow Viscus Injury with FAST Examination in Kurdistan, Iraq.

    Science.gov (United States)

    Al-Sindy, Ruj; Alaqrawy, Heleen; Hafdullah, Mahmood Sh; Butts, Christine

    2018-01-01

    Point-of-care ultrasound has become indispensable in the evaluation of trauma, particularly in low resource areas, where it may be the only rapidly available imaging modality. The FAST (Focused Assessment with Sonography in Trauma) in particular can be lifesaving, by rapidly detecting signs of intra-abdominal hemorrhage. However, the FAST is primarily designed to identify free fluid associated with solid organ injury and is thought to have less sensitivity and power in identifying evidence of hollow viscus injury. We present a case of an unidentified man that presented to a hospital in the Kurdistan region of northern Iraq, a region of low resources, surrounded by war. The FAST exam proved to be the key to identifying this patient's injuries.

  12. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  13. The epidemiology, evaluation, and management of stingray injuries.

    Science.gov (United States)

    Diaz, James H

    2007-01-01

    A descriptive analysis and review of the world's salient scientific literature on stingray injuries was conducted in light of recent high-profile cases of fatal and near-fatal thoracic stingray injuries to guide clinicians in evaluating and managing stingray injuries. Data was extracted from observational and longitudinal studies over the period, 1950-2006, to permit (1) a stratification of stingray injuries as bites, penetrating lacerations with and without envenoming, and combinations of deeply penetrating and envenoming wounds; and (2) an assessment of new management strategies for thoracoabdominal penetrating trauma and non-healing, necrotic stingray wounds. Unlike their Chondrichthyes classmates, the sharks, stingrays are docile and non-aggressive; and will not attack with their spined tails, unless provoked. Although some occupations are predisposed to stingray injuries, most stingray injuries can be avoided by observing seafloors and adopting simple practices when wading, swimming, diving, or fishing in temperate oceans and some tropical freshwater river systems. All stingray injuries should be managed initially with wound irrigation to dislodge retained spine fragments and envenoming tissues and warm water immersion to inactivate heat-labile toxins.

  14. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    Science.gov (United States)

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Radiation-induced skin injury in the animal model of scleroderma: implications for post-radiotherapy fibrosis

    International Nuclear Information System (INIS)

    Kumar, Sanath; Kolozsvary, Andrew; Kohl, Robert; Lu, Mei; Brown, Stephen; Kim, Jae Ho

    2008-01-01

    Radiation therapy is generally contraindicated for cancer patients with collagen vascular diseases (CVD) such as scleroderma due to an increased risk of fibrosis. The tight skin (TSK) mouse has skin which, in some respects, mimics that of patients with scleroderma. The skin radiation response of TSK mice has not been previously reported. If TSK mice are shown to have radiation sensitive skin, they may prove to be a useful model to examine the mechanisms underlying skin radiation injury, protection, mitigation and treatment. The hind limbs of TSK and parental control C57BL/6 mice received a radiation exposure sufficient to cause approximately the same level of acute injury. Endpoints included skin damage scored using a non-linear, semi-quantitative scale and tissue fibrosis assessed by measuring passive leg extension. In addition, TGF-β1 cytokine levels were measured monthly in skin tissue. Contrary to our expectations, TSK mice were more resistant (i.e. 20%) to radiation than parental control mice. Although acute skin reactions were similar in both mouse strains, radiation injury in TSK mice continued to decrease with time such that several months after radiation there was significantly less skin damage and leg contraction compared to C57BL/6 mice (p < 0.05). Consistent with the expected association of transforming growth factor beta-1 (TGF-β1) with late tissue injury, levels of the cytokine were significantly higher in the skin of the C57BL/6 mouse compared to TSK mouse at all time points (p < 0.05). TSK mice are not recommended as a model of scleroderma involving radiation injury. The genetic and molecular basis for reduced radiation injury observed in TSK mice warrants further investigation particularly to identify mechanisms capable of reducing tissue fibrosis after radiation injury

  16. Low-energy Shock Wave Therapy Ameliorates Erectile Dysfunction in a Pelvic Neurovascular Injuries Rat Model.

    Science.gov (United States)

    Li, Huixi; Matheu, Melanie P; Sun, Fionna; Wang, Lin; Sanford, Melissa T; Ning, Hongxiu; Banie, Lia; Lee, Yung-Chin; Xin, Zhongcheng; Guo, Yinglu; Lin, Guiting; Lue, Tom F

    2016-01-01

    Erectile dysfunction (ED) caused by pelvic injuries is a common complication of civil and battlefield trauma with multiple neurovascular factors involved, and no effective therapeutic approach is available. To test the effect and mechanisms of low-energy shock wave (LESW) therapy in a rat ED model induced by pelvic neurovascular injuries. Thirty-two male Sprague-Dawley rats injected with 5-ethynyl-2'-deoxyuridine (EdU) at newborn were divided into 4 groups: sham surgery (Sham), pelvic neurovascular injury by bilateral cavernous nerve injury and internal pudendal bundle injury (PVNI), PVNI treated with LESW at low energy (Low), and PVNI treated with LESW at high energy (High). After LESW treatment, rats underwent erectile function measurement and the tissues were harvested for histologic and molecular study. To examine the effect of LESW on Schwann cells, in vitro studies were conducted. The intracavernous pressure (ICP) measurement, histological examination, and Western blot (WB) were conducted. Cell cycle, Schwann cell activation-related markers were examined in in vitro experiments. LESW treatment improves erectile function in a rat model of pelvic neurovascular injury by leading to angiogenesis, tissue restoration, and nerve generation with more endogenous EdU(+) progenitor cells recruited to the damaged area and activation of Schwann cells. LESW facilitates more complete re-innervation of penile tissue with regeneration of neuronal nitric oxide synthase (nNOS)-positive nerves from the MPG to the penis. In vitro experiments demonstrated that LESW has a direct effect on Schwann cell proliferation. Schwann cell activation-related markers including p-Erk1/2 and p75 were upregulated after LESW treatment. LESW-induced endogenous progenitor cell recruitment and Schwann cell activation coincides with angiogenesis, tissue, and nerve generation in a rat model of pelvic neurovascular injuries. Copyright © 2016 International Society for Sexual Medicine. Published by

  17. MR imaging of rectus femoris origin injuries

    International Nuclear Information System (INIS)

    Ouellette, Hugue; Thomas, Bijoy J.; Nelson, Erik; Torriani, Martin

    2006-01-01

    To describe the MR imaging findings of acute and chronic rectus femoris origin (RFO) injuries. A retrospective review of pelvic and hip MR imaging procedures was performed over a 4-year period for detection of cases with injuries to the RFO. Subjects were classified as having either acute or chronic symptoms. MR imaging studies, radiographs, CT scans, radiology reports, medical records, and operative notes were reviewed. Imaging analysis was directed to assess injuries affecting the direct and indirect heads of the RFO. Concurrent osseous, cartilaginous and musculotendinous injuries were tabulated. The incidence of RFO injuries on MR imaging was 0.5% (17/3160). With the exception of one case of anterior inferior iliac spine apophysis avulsion and partial tear of the direct head of RFO, all subjects had indirect head of RFO injuries (acute injury 8/9, chronic injury 8/8). Partial tear of the direct head of RFO was less frequently seen (acute injury 3/9, chronic injury 2/8). Partial tears of the conjoint tendon were least frequent (acute 1/9, chronic 2/8). No full-thickness tears of the RFO were noted. Associated labral tears were seen in only one case, with no other concomitant abnormality of the articular cartilage or surrounding soft tissues. All RFO injuries were treated non-operatively. Injuries of the RFO are uncommon on MR examinations of pelvis/hips and may occur in a sequence progressing from indirect head injury to involvement of direct head and conjoint tendon in more severe cases. (orig.)

  18. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  19. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  20. Cobalt-55 positron emission tomography in traumatic brain injury : A pilot study

    NARCIS (Netherlands)

    Jansen, HML; vanderNaalt, J; vanZomeren, AH; Paans, AMJ; VeenmavanderDuin, L; Hew, JM; Pruim, J; Minderhoud, JM; Korf, J

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Go-PET) as a calcium tracer enables

  1. Lightning injuries in sports and recreation.

    Science.gov (United States)

    Thomson, Eric M; Howard, Thomas M

    2013-01-01

    The powers of lightning have been worshiped and feared by all known human cultures. While the chance of being struck by lightning is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 lightning-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing lightning-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on lightning safety. Challenges remain in educating the general population involved in recreational outdoor activities that do not fall under the guidelines of organized sports.

  2. Tissue Engineering: Current Strategies and Future Directions

    OpenAIRE

    Olson, Jennifer L.; Atala, Anthony; Yoo, James J.

    2011-01-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue eng...

  3. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  4. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  5. The use of recombinant nAG protein In spinal cord crush injury in a rat model

    International Nuclear Information System (INIS)

    Al-Qattan, M.M.; Al-Motairi, M.; Ah-Habib, A.

    2017-01-01

    Objective: To evaluate the therapeutic properties of nAG protein during the recovery following acute spinal cord injuries in the rat. Study Design: An experimental study. Place and Duration of Study: King Saud University, Riyadh, Saudi Arabia, from September 2014 to September 2015. Methodology: Eight rats were studied (4 control rats and 4 experimental rats; and hence 50% were controls and 50% were experimental). All rats were subjected to an acute spinal cord injury using the aneurysmal clip injury model. Immediately after the injury, a single intra-dural injection of either normal saline (in the control group) or the nAG protein (in the experimental group) was done. Assessment of both groups was done over a 6-week period with regard to weight maintenance, motor recovery scores, MRI and histopathology of the injury site. Results: Weight maintenance was seen in the experimental and not in the control rats. Starting at 3 weeks after injury, the motor recovery was significantly (p<0.05) better in the experimental group. MRI assessment at 6 weeks showed better maintenance of cord continuity and less fluid accumulation at the injury site in the nAG-treated group. Just proximal to the injury site, there was less gliosis in the experimental group compared to the control group. At the crush injury site, there was less tissue architecture distortion, less vacuole formation, and less granulation tissue formation in the experimental group. Conclusion: The local injection nAG protein enhances neuro-restoration, reduces gliosis, and reduces vacuole/ granulation tissue formation following acute spinal cord crush injury in the rat aneurysmal clip animal model. (author)

  6. New trends in spinal cord tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka

    2015-01-01

    Roč. 10, č. 2 (2015), s. 129-145 ISSN 1479-6708 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : biomaterial * cell therapy * regenerative medicine * spinal cord injury * stem cells scaffold * tissue engineering Subject RIV: FH - Neurology

  7. Effect-independent measures of tissue response to fractionated radiation

    International Nuclear Information System (INIS)

    Thames, H.D.

    1984-01-01

    Tissue repair factors are measures of sparing from dose fractionation, in the absence of proliferation. A desirable feature of any repair factor is that it be independent of the level of injury induced in the tissue, since otherwise the comparison of tissues on the basis of the factor would not be meaningful. The repair factors F/sub R/ and F/sub rec/ are increasing functions of D/sub 1/, and depend on level of skin reaction after fractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow. For late fibrotic reactions in the kidney, there was an increase in β/α with increased levels of injury that was statistically insignificant. The halftime, T/sub 1/2/, for intracellular repair processes in tissues is a measure of repair kinetics. Effect-independence is defend for T/sub 1/2/ as independence from size of dose per fraction. T/sub 1/2/ is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (less than 1 hour), with skin as the exception (1.3 hours). Therefore, early and late-responding normal tissues may be distinguished in terms of both repair capacity and repair kinetics: repair is slower in late-responding tissues, which are also more sensitive to changes in dose fractionation

  8. Injuries associated with police use of force.

    Science.gov (United States)

    Bozeman, William P; Stopyra, Jason P; Klinger, David A; Martin, Brian P; Graham, Derrel D; Johnson, James C; Mahoney-Tesoriero, Katherine; Vail, Sydney J

    2018-03-01

    Use of force [UOF] by police can result in serious injuries and fatalities. The risk of significant injuries associated with different force modalities is poorly defined. We sought to determine the incidence of police UOF and compare the likelihood of significant injury with different force modalities. A prospective multicenter observational study of all UOF incidents was conducted via mandatory UOF investigations at three mid-sized police agencies over a two year period. Expert physicians reviewed police and medical records to determine injury severity using a priori injury severity stratification criteria. There were 893 UOF incidents, representing a UOF rate of 0.086% of 1,041,737 calls for service (1 in 1167) and 0.78% of 114,064 criminal arrests(1 in 128). Suspects were primarily young (mean age, 31 years; range, 12-86 years) males (89%). The 1,399 force utilizations included unarmed physical force (n = 710, 51%), CEWs (504, 30%), chemical (88, 6.3%), canines (47, 3.4%), impact weapons (9, 0.6%), kinetic impact munitions (8, 0.6%), firearms (6, 0.4%), and other (27, 1.9%). Among 914 suspects, 898 (98%) sustained no or mild injury after police UOF. Significant (moderate or severe) injuries occurred in 16 (1.8%) subjects. Logistic regression analysis shows these are most associated with firearm and canine use. There was one fatality (0.1%) due to gunshots. No significant injuries occurred among 504 CEW uses (0%; 95% confidence interval, 0.0-0.9%). Of the 355 suspects transported to a medical facility, 78 (22%) were hospitalized. The majority of hospitalizations were unrelated to UOF (n = 59, 76%), whereas a minority (n = 19, 24%) were due to injuries related to police UOF. Police UOF is rare. When force is used officers most commonly rely on unarmed physical force and CEWs. Significant injuries are rare. Transport for medical evaluation is a poor surrogate for significant injury due to UOF. Epidemiological, level II.

  9. Erdosteine and ebselen as useful agents in intestinal ischemia/reperfusion injury.

    Science.gov (United States)

    Tunc, Turan; Uysal, Bulent; Atabek, Cuneyt; Kesik, Vural; Caliskan, Bahadir; Oztas, Emin; Ersoz, Nail; Oter, Sukru; Guven, Ahmet

    2009-08-01

    Reactive oxygen and nitrogen species generated during reperfusion of the tissue are characteristic of ischemia/reperfusion (I/R) injury. The purpose of the present study was to investigate whether erdosteine and ebselen, molecules with antioxidant properties and peroxynitrite scavenging capability, respectively, can reduce oxidative stress and histological damage in the rat small bowel subjected to mesenteric I/R injury. Forty Sprague-Dawley rats were divided into five groups equally: sham, I/R, I/R plus erdosteine, I/R plus ebselen, and I/R plus erdosteine and ebselen. Intestinal ischemia for 45 min and reperfusion for 3 d were carried out. Ileal specimens were obtained to determine the tissue levels of malondialdehide (MDA), protein carbonyl content (PCC), superoxide dismutase (SOD), glutathione peroxidase (GPx), nitrite/nitrate (NO(x)) level and histological changes. Intestinal I/R resulted in increased tissue MDA, PCC, and NO(x) levels and decreased SOD and GPx activities. Both erdosteine and ebselen alone significantly decreased MDA, PCC, and NO(x) levels and increased antioxidant enzymes activities, but all values were different from control. These changes almost returned to control values in the group treated with erdostein and ebselen. Histopathologically, the intestinal injury in rats treated with erdosteine and ebselen as well as combination were less than I/R group. Both erdosteine and ebselen were able to attenuate I/R injury of the intestine via inhibition of lipid peroxidation and protein oxidation, maintenance of antioxidant, and free radical scavenger properties. Nevertheless, combination treatment showed more promising results, suggesting that scavenging peroxynitrite nearby antioxidant activity is important in preventing intestinal I/R injury.

  10. Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-01-01

    Full Text Available Repetitive mild traumatic brain injury (rmTBI is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart were induced in juvenile rats. Hyperbaric oxygen (HBO was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI. Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures.

  11. Anesthesia for plastic reconstruction surgery of radiation injury of neck

    International Nuclear Information System (INIS)

    Lu Yafen; Zhang Junmin; Huang Zhiqin

    1993-01-01

    The management of anesthesia used in the plastic reconstruction of 18 cases of radiation injury of neck is reported. 17 cases were malignant tumor patients. After radiotherapy, their general condition was weak. The injury of neck skin and surrounding tissues was severe. Most operations were excision of the focus and repairing the wound using adjacent flap. The choice of anesthesia depended on the general condition, degree of injury and the procedure. Good pre-operative preparation, close monitoring and satisfactory airway control during operation are very important

  12. Radiated-induced brain injury: advance of molecular mechanisms and neuroprotection strategies

    International Nuclear Information System (INIS)

    Gao Bo; Wang Xuejian

    2007-01-01

    The underlying mechanisms of radiated-induced brain injury (RBI) remain incompletely clear. Pathophysiological data indicate that the development of RBI involves complex and dynamic interactions between neurons, glia, and vascular endothelial cells within thecentral nervous system (CNS). Radiated-induced injury in the CNS can be modulated by the therapies directed at altering steps in the cascade of events leading to the clinical expression of normal tissue injury. Some neuroprotective strategies are also addressed in the review. (authors)

  13. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Atorvastatin protects against ischemia-reperfusion injury in fructose-induced insulin resistant rats.

    Science.gov (United States)

    Prakash, Prem; Khanna, Vivek; Singh, Vishal; Jyoti, Anupam; Jain, Manish; Keshari, Ravi Shankar; Barthwal, Manoj Kumar; Dikshit, Madhu

    2011-08-01

    High fructose (HFr) intake is known to cause insulin resistance syndrome (IRS), however its effect against acute coronary events remains elusive. The present study was undertaken to evaluate the effect of HFr (60%) diet on myocardial ischemia-reperfusion (MI-RP) injury and its modulation by atorvastatin treatment. Wistar rats kept on HFr/chow feeding for 10 weeks, received atorvastatin (30 mg/kg, per oral) or vehicle for two additional weeks followed by MI-RP injury. MI-RP injury was significantly augmented in HFr fed rats, as evident by the increase in infarct size (IS, 65 ± 5% vs. 43 ± 7%) and activities of cardiac injury biomarkers [serum lactate dehydrogenase (LDH, 698 ± 57 vs. 444 ± 26 U/L), creatinine kinase (CK-MB, 584 ± 58 vs. 435 ± 28 U/L) and tissue myeloperoxidase (MPO, 235 ± 15 vs. 101 ± 11 μM/min/100 mg tissue)]. Insulin resistance (plasma glucose, 64 ± 5 vs. 100 ± 5 mg/dl; AUC (0-120 min), p < 0.05), MI-RP injury (IS 20 ± 5%, LDH 292 ± 28 U/L, CK-MB 257 ± 13 U/L, MPO 95 ± 5 μM/min/100 mg tissue) and triglyceride (TG) level were significantly reduced, while myocardial Akt, p-Akt, eNOS, p-eNOS and iNOS protein expression were significantly enhanced following atorvastatin treatment in comparison to HFr fed rats. Oxidative stress marker, malondialdehyde and circulating levels of inflammatory cytokines (CRP, IL-6, IFN-γ and TNF) were significantly reduced, while total nitrite content in the tissue and plasma was significantly augmented in atorvastatin treated rats. Atorvastatin also ameliorated endothelial dysfunction and significantly enhanced aortic Akt and eNOS protein expression. Atorvastatin conferred significant protection against MI-RP injury and alleviated HFr induced IRS possibly by increasing NOS expression through Akt dependent pathway.

  15. [Knee and shoulder arthroscopy. Positioning and thermal injuries].

    Science.gov (United States)

    Meyer, S; Lobenhoffer, P

    2008-11-01

    Intraoperative positioning injuries during shoulder- and knee arthroscopy are rare complications and affect mainly nerves and soft tissue. Although the majority of these complications are reversible, in some cases serious negative consequences for the patient persist. This article describes the frequency of several positioning injuries including their prevention and the appropriate treatment. The legal responsibilities are illustrated as well as the importance of an intense preoperative investigation of preexisting diseases and possible risk factors. Furthermore, a review of possible thermal injuries of the patient during arthroscopy caused by e.g. electrosurgical instruments or the cold light source, is given as well as prevention strategies.

  16. Sexuality and sexual life in women with spinal cord injury: a controlled study

    DEFF Research Database (Denmark)

    Kreuter, M.; Siosteen, A.; Biering-Sørensen, Fin

    2008-01-01

    OBJECTIVE: To describe sexual life in women with spinal cord injury. DESIGN: Controlled cross-sectional, questionnaire. PARTICIPANTS AND METHODS: Women, 18-65 years, treated at spinal cord centres in Sweden, Denmark, Norway, Finland and Iceland. 545 women (57%) completed the questionnaires. The age......-matched control group consisted of 507 women. The 104-item Spinal Cord Injury Women Questionnaire, was designed to assess different dimensions of sexuality. RESULTS: 80% of the women with spinal cord injury had engaged in sex after the injury. Reasons for not wanting or not having the courage to be intimate...... and sexual were physical problems, low sexual desire, low self-esteem and feelings of being unattractive. The motivations of both the women with spinal cord injury and controls to engage in sexual activity were intimacy-based rather than primarily sexual. Being in the right mood both before and during sex...

  17. Surgical management of colorectal injuries: colostomy or primary repair?

    Science.gov (United States)

    Papadopoulos, V N; Michalopoulos, A; Apostolidis, S; Paramythiotis, D; Ioannidis, A; Mekras, A; Panidis, S; Stavrou, G; Basdanis, G

    2011-10-01

    Several factors have been considered important for the decision between diversion and primary repair in the surgical management of colorectal injuries. The aim of this study is to clarify whether patients with colorectal injuries need diversion or not. From 2008 to 2010, ten patients with colorectal injuries were surgically treated by primary repair or by a staged repair. The patients were five men and five women, with median age 40 years (20-55). Two men and two women had rectal injuries, while 6 patients had colon injuries. The mechanism of trauma in two patients was firearm injuries, in two patients was a stab injury, in four patients was a motor vehicle accident, in one woman was iatrogenic injury during vaginal delivery, and one case was the transanal foreign body insertion. Primary repair was possible in six patients, while diversion was necessary in four patients. Primary repair should be attempted in the initial surgical management of all penetrating colon and intraperitoneal rectal injuries. Diversion of colonic injuries should only be considered if the colon tissue itself is inappropriate for repair due to severe edema or ischemia. The role of diversion in the management of unrepaired extraperitoneal rectal injuries and in cases with anal sphincter injuries is mandatory.

  18. Validation of a Radiography-Based Quantification Designed to Longitudinally Monitor Soft Tissue Calcification in Skeletal Muscle.

    Science.gov (United States)

    Moore, Stephanie N; Hawley, Gregory D; Smith, Emily N; Mignemi, Nicholas A; Ihejirika, Rivka C; Yuasa, Masato; Cates, Justin M M; Liu, Xulei; Schoenecker, Jonathan G

    2016-01-01

    Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate

  19. Combined pancreatic and duodenal transection injury: A case report.

    Science.gov (United States)

    Mungazi, Simbarashe Gift; Mbanje, Chenesa; Chihaka, Onesai; Madziva, Noah

    2017-01-01

    Combined pancreatic-duodenal injuries in blunt abdominal trauma are rare. These injuries are associated with high morbidity and mortality, and their emergent management is a challenge. We report a case of combined complete pancreatic (through the neck) and duodenal (first part) transections in a 24-year-old male secondary to blunt abdominal trauma following a motor vehicle crash. The duodenal stumps were closed separately and a gastrojejunostomy performed for intestinal continuity. The transacted head of pancreas main duct was suture ligated and parenchyma was over sewn and buttressed with omentum. The edge of the body and tail pancreatic segment was freshened and an end to side pancreatico-jejunostomy was fashioned. A drain was left in situ. Post operatively the patient developed a pancreatic fistula which resolved with conservative management. After ten months of follow up the patient was well and showed no signs and symptoms of pancreatic insufficiency. Lengthy, complex procedures in pancreatic injuries have been associated with poor outcomes. Distal pancreatectomy or Whipple's procedure for trauma are viable options for complete pancreatic transections. But when there is concern that the residual proximal pancreatic tissue is inadequate to provide endocrine or exocrine function, preservation of the pancreatic tissue distal to the injury becomes an option. Combined pancreatic and duodenal injuries are rare and often fatal. Early identification, resuscitation and surgical intervention is warranted. Because of the large number of possible combinations of injuries to the pancreas and duodenum, no one form of therapy is appropriate for all patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The Role of Nerve Exploration in Supracondylar Humerus Fracture in Children with Nerve Injury

    Directory of Open Access Journals (Sweden)

    Anuar RIM

    2015-11-01

    Full Text Available The supracondylar humerus fracture (SCHF in children is common and can be complicated with nerve injury either primarily immediate post-trauma or secondarily posttreatment. The concept of neurapraxic nerve injury makes most surgeons choose to ‘watch and see’ the nerve recovery before deciding second surgery if the nerve does not recover. We report three cases of nerve injury in SCHF, all of which underwent nerve exploration for different reasons. Early reduction in the Casualty is important to release the nerve tension before transferring the patient to the operation room. If close reduction fails, we proceed to explore the nerve together with open reduction of the fracture. In iatrogenic nerve injury, we recommend nerve exploration to determine the surgical procedure that is causing the injury. Primary nerve exploration will allow early assessment of the injured nerve and minimize subsequent surgery.

  1. Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis.

    Science.gov (United States)

    Schmidt-Bleek, Katharina; Kwee, Brian J; Mooney, David J; Duda, Georg N

    2015-08-01

    Delayed healing or nonhealing of bone is an important clinical concern. Although bone, one of the two tissues with scar-free healing capacity, heals in most cases, healing is delayed in more than 10% of clinical cases. Treatment of such delayed healing condition is often painful, risky, time consuming, and expensive. Tissue healing is a multistage regenerative process involving complex and well-orchestrated steps, which are initiated in response to injury. At best, these steps lead to scar-free tissue formation. At the onset of healing, during the inflammatory phase, stationary and attracted macrophages and other immune cells at the fracture site release cytokines in response to injury. This initial reaction to injury is followed by the recruitment, proliferation, and differentiation of mesenchymal stromal cells, synthesis of extracellular matrix proteins, angiogenesis, and finally tissue remodeling. Failure to heal is often associated with poor revascularization. Since blood vessels mediate the transport of circulating cells, oxygen, nutrients, and waste products, they appear essential for successful healing. The strategy of endogenous regeneration in a tissue such as bone is interesting to analyze since it may represent a blueprint of successful tissue formation. This review highlights the interdependency of the time cascades of inflammation, angiogenesis, and tissue regeneration. A better understanding of these inter-relations is mandatory to early identify patients at risk as well as to overcome critical clinical conditions that limit healing. Instead of purely tolerating the inflammatory phase, modulations of inflammation (immunomodulation) might represent a valid therapeutic strategy to enhance angiogenesis and foster later phases of tissue regeneration.

  2. Pediatric lower extremity mower injuries.

    Science.gov (United States)

    Hill, Sean M; Elwood, Eric T

    2011-09-01

    Lawn mower injuries in children represent an unfortunate common problem to the plastic reconstructive surgeon. There are approximately 68,000 per year reported in the United States. Compounding this problem is the fact that a standard treatment algorithm does not exist. This study follows a series of 7 pediatric patients treated for lower extremity mower injuries by a single plastic surgeon. The extent of soft tissue injury varied. All patients were treated with negative pressure wound therapy as a bridge to definitive closure. Of the 7 patients, 4 required skin grafts, 1 required primary closure, 1 underwent a lower extremity amputation secondary to wounds, and 1 was repaired using a cross-leg flap. Function limitations were minimal for all of our patients after reconstruction. Our basic treatment algorithm is presented with initial debridement followed by the simplest method possible for wound closure using negative pressure wound therapy, if necessary.

  3. A rat model of concurrent combined injuries (polytrauma)

    Science.gov (United States)

    Akscyn, Robert M; Franklin, J Lee; Gavrikova, Tatyana A; Schwacha, Martin G; Messina, Joseph L

    2015-01-01

    Polytrauma, a combination of injuries to more than one body part or organ system, is common in modern warfare and in automobile and industrial accidents. The combination of injuries can include burn injury, fracture, hemorrhage, trauma to the extremities, and trauma to specific organ systems. To investigate the effects of combined injuries, we have developed a new and highly reproducible model of polytrauma. This model combines burn injury with soft tissue and gastrointestinal (GI) tract trauma. Male Sprague Dawley rats were subjected to a 15-20% total body surface area scald burn, or a single puncture of the cecum with a G30 needle, or the combination of both injuries (polytrauma). Unlike many ‘double hit’ models, the injuries in our model were performed simultaneously. We asked whether multiple minor injuries, when combined, would result in a distinct phenotype, different from single minor injuries or a more severe single injury. There were differences between the single injuries and polytrauma in the maintenance of blood glucose, body temperature, body weight, hepatic mRNA and circulating levels of TNF-α, IL-1β and IL-6, and hepatic ER-stress. It has been suggested that models utilizing combinatorial injuries may be needed to more accurately model the human condition. We believe our model is ideal for studying the complex sequelae of polytrauma, which differs from single injuries. Insights gained from this model may suggest better treatment options to improve patient outcomes. PMID:26884923

  4. Fatty acid profiles in tissues of mice fed conjugated linoleic acid

    DEFF Research Database (Denmark)

    Gøttsche, Jesper; Straarup, Ellen Marie

    2006-01-01

    The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11- and t10,c12-CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols...... (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11- and t10,c12-CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11-CLA was indicated by our results, as both fatty acids were...... incorporated into all the analyzed tissues when a diet containing VA but not c9,t11-CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the CA group. Thus, CLA increased n-3 polyunsaturated...

  5. Evaluation of a 15-year experience with splenic injuries in a state trauma system.

    Science.gov (United States)

    Harbrecht, Brian G; Zenati, Mazen S; Ochoa, Juan B; Puyana, Juan C; Alarcon, Louis H; Peitzman, Andrew B

    2007-02-01

    The management of splenic injuries has evolved with a greater emphasis on nonoperative management. Although several institutions have demonstrated that nonoperative management of splenic injuries can be performed with an increasing degree of success, the impact of this treatment shift on outcome for all patients with splenic injuries remains unknown. We hypothesized that outcomes for patients with splenic injuries have improved as the paradigm for splenic injury treatment has shifted. Consecutive patients from 1987 to 2001 with splenic injuries who were entered into a state trauma registry were reviewed. Demographic variables, injury characteristics, and outcome data were collected. The number of patients who were diagnosed with splenic injuries increased from 1987 through 2001, despite a stable number of institutions submitting data to the registry. The number of minor injuries and severe splenic injuries remained stable, and the number of moderately severe injuries significantly increased over time. Overall mortality rate improved but primarily reflected the decreased mortality rates of moderately severe injuries; the mortality rate for severe splenic injuries was unchanged. Trauma centers are seeing increasing numbers of splenic injuries that are less severe in magnitude, although the number of the most severe splenic injuries is stable. The increased proportion of patients with less severe splenic injuries who are being admitted to trauma centers is a significant factor in the increased use and success rate of nonoperative management.

  6. Traumatic injuries of the temporomandibular joint

    International Nuclear Information System (INIS)

    Puig, S.; Krestan, C.; Lomoschitz, F.; Robinson, S.; Glaser, C.; Staudenherz, A.

    2001-01-01

    Injuries of the temporomandibular joint are mostly due to injuries or fractures of the mandibular condyle. Fractures of the skull base involving the temporomandibular joint are rare. Classification of fractures refers to their anatomical positions and the presence or absence of a luxation. Further, it is important whether the fracture is intra- or extra-capsular. The primary imaging method should be orthopantomography. As for therapy planning, especially surgery, also evaluation of soft tissue is necessary, computed tomography is the imaging method of choice. For diagnosis of complications or internal derangement of the temporomandibular joint, magnetic resonance imaging is to be recommended. (orig.) [de

  7. THROWING INJURIES IN THE ADOLESCENT ATHLETE

    Science.gov (United States)

    Thigpen, Chuck

    2013-01-01

    Introduction: Adolescents ranging in age from 11–15 (early‐mid adolescence) comprise the largest percentage of baseball and softball athletes in the United States. Shoulder and elbow injuries are commonly experienced by these athletes with baseball pitchers and softball position players most likely to be injured. Common Injuries: Physeal injury often termed “Little League” shoulder or elbow is common and should be differentiated from soft tissue injuries such as biceps, rotator cuff, or UCL injuries. Regardless of diagnosis, rehabilitation of these athletes’ shoulder and elbow injuries provide a unique challenge given their rapidly changing physical status. Treatment: Common impairments include alterations in shoulder range of motion, decreased muscle performance, and poor neuromuscular control of the scapula, core, and lower extremity. A criterion based, progressive rehabilitation program is presented. Discharge from formal rehabilitation should occur only when the athlete has demonstrated a resolution of symptoms, acceptable ROM, muscle performance, and neuromuscular control while progressing through a symptom free return to sport. Prevention of Reinjury: Reintegration into the desired level of sport participation should be guided by the sports medicine professional with a focus on long‐term durability in sport performance as well as injury prevention. A prevention program which includes parent, coach, and athlete education, regular screening to identify those athletes at the highest risk, and monitoring athletes for the development of risk factors or warning signs of injury over the course of participation is indicated. Level of Evidence: 5 PMID:24175142

  8. Nitric oxide as a mediator of gastrointestinal mucosal injury?—Say it ain't so

    Directory of Open Access Journals (Sweden)

    Paul Kubes

    1995-01-01

    Full Text Available Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury.

  9. Mountain biking injuries in rural England.

    Science.gov (United States)

    Jeys, L M; Cribb, G; Toms, A D; Hay, S M

    2001-06-01

    Off road mountain biking is now an extremely popular recreation and a potent cause of serious injury. To establish the morbidity associated with this sport. Data were collected prospectively over one year on all patients presenting with an injury caused by either recreational or competitive off road mountain biking. Eighty four patients were identified, 70 males and 14 females, with a mean age of 22.5 years (range 8-71). Most accidents occurred during the summer months, most commonly in August. Each patient had an average of 1.6 injuries (n = 133) and these were divided into 15 categories, ranging from minor soft tissue to potentially life threatening. Operative intervention was indicated for 19 patients (23%) and several required multiple procedures. The commonest injuries were clavicle fractures (13%), shoulder injuries (12%), and distal radial fractures (11%). However, of a more sinister nature, one patient had a C2/3 dislocation requiring urgent stabilisation, one required a chest drain for a haemopneumothorax, and another required an emergency and life saving nephrectomy. This sport has recently experienced an explosion in popularity, and, as it carries a significant risk of potentially life threatening injury across all levels of participation, the use of protective equipment to reduce this significant morbidity may be advisable.

  10. Treatment for unstable pulmonary sequestration injury in patient with severe blunt trauma: A case report.

    Science.gov (United States)

    Hiraki, Sakiko; Okada, Yohei; Arai, Yusuke; Ishii, Wataru; Iiduka, Ryoji

    2017-08-01

    Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma.

  11. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  12. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  13. Wallerian degeneration: the innate-immune response to traumatic nerve injury

    Directory of Open Access Journals (Sweden)

    Rotshenker Shlomo

    2011-08-01

    Full Text Available Abstract Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.

  14. Risk Factors for Pressure Ulcers Including Suspected Deep Tissue Injury in Nursing Home Facility Residents: Analysis of National Minimum Data Set 3.0.

    Science.gov (United States)

    Ahn, Hyochol; Cowan, Linda; Garvan, Cynthia; Lyon, Debra; Stechmiller, Joyce

    2016-04-01

    To provide information on risk factors associated with pressure ulcers (PrUs), including suspected deep tissue injury (sDTI), in nursing home residents in the United States. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Examine the literature related to risk factors for the development of PrUs.2. Compare risk factors associated with the prevalence of PrUs and sDTI from the revised Minimum Data Set 3.0 2012 using a modified Defloor's conceptual model of PrUs as a theoretical framework. This study aims to characterize and compare risk factors associated with pressure ulcers (PrUs), including suspected deep tissue injury (sDTI), in nursing home (NH) residents in the United States. Secondary analysis of the 2012 Minimum Data Set (MDS 3.0). Medicare- or Medicaid-certified NHs in the United States. Nursing home residents (n = 2,936,146) 18 years or older with complete PrU data, who received comprehensive assessments from January to December 2012. Pressure ulcer by stage was the outcome variable. Explanatory variables (age, gender, race and ethnicity, body mass index, skin integrity, system failure, disease, infection, mobility, and cognition) from the MDS 3.0 were aligned with the 4 elements of Defloor's conceptual model: compressive forces, shearing forces, tissue tolerance for pressure, and tissue tolerance for oxygen. Of 2,936,146 NH residents who had complete data for PrU, 89.9% had no PrU; 8.4% had a Stage 2, 3, or 4 or unstagable PrU; and 1.7% had an sDTI. The MDS variables corresponding to the 4 elements of Defloor's model were significantly predictive of both PrU and sDTI. Black residents had the highest risk of any-stage PrU, and Hispanic residents had the highest risk of sDTI. Skin integrity, system failure, infection, and disease risk factors had larger effect sizes for sDTI than for other PrU stages

  15. Adipose derived stem cells in radiotherapy injury: a new frontier

    Directory of Open Access Journals (Sweden)

    Lipi eShukla

    2015-01-01

    Full Text Available Radiotherapy is increasingly used to treat numerous human malignancies. In addition to the beneficial anti-cancer effects, there are a series of undesirable effects on normal host tissues surrounding the target tumour. Whilst the early effects of radiotherapy (desquamation, erythema and hair loss typically resolve, the chronic effects persist as unpredictable and often troublesome sequelae of cancer treatment, long after oncological treatment has been completed. Plastic surgeons are often called upon to treat the problems subsequently arising in irradiated tissues, such as recurrent infection, impaired healing, fibrosis, contracture and/or lymphoedema. Recently, it was anecdotally noted - then validated in more robust animal and human studies - that fat grafting can ameliorate some of these chronic tissue effects. Despite the widespread usage of fat grafting, the mechanism of its action remains poorly understood. This review provides an overview of the current understanding of (i mechanisms of chronic radiation injury and its clinical manifestations; (ii biological properties of fat grafts and their key constituent, Adipose-Derived Stem Cells (ADSCs; (iii the role of ADSCs in radiotherapy-induced soft-tissue injury.

  16. Maxillofacial trauma: managing potentially dangerous and disfiguring complex injuries [digest].

    Science.gov (United States)

    Das, Devjani; Salazar, Lea; Zaurova, Milana

    2017-04-22

    Patients with maxillofacial trauma require a careful evaluation due to the anatomical proximity of the maxillofacial region to the head and neck. Facial injuries can range from soft-tissue lacerations and nondisplaced nasal fractures to severe, complex fractures, eye injuries, and possible brain injury. Though the Advanced Trauma Life Support (ATLS) guidelines provide a framework for the management of trauma patients, they do not provide a detailed reference for many subtle or complex facial injuries. This issue adds a more comprehensive and systematic approach to the secondary survey of the maxillofacial area and emergency department management of injuries to the face. In addition to an overall review of maxillofacial trauma pathophysiology, associated injuries, and physical examination, this review will also discuss relevant imaging, treatment, and disposition plans. [Points & Pearls is a digest of Emergency Medicine Practice].

  17. Effects of hydroxyl radical induced-Injury in atrial versus ventricular myocardium of dog and rabbit

    Directory of Open Access Journals (Sweden)

    Nitisha Hiranandani

    2010-09-01

    Full Text Available Aim: Despite the widespread use of ventricular tissue in the investigation involving hydroxyl-radical (OH* injury, one of the most potent mediators in ischemia-reperfusion injury, little is known about the impact on atrial myocardium. In this study we thus compared the OH*-induced injury response between atrial and right ventricular muscles from both rabbits and dogs under identical experimental conditions. Methods: Small, contracting ventricular and atrial rabbit and dog trabeculae were directly exposed to OH*, and contractile properties were examined and quantified. Results: A brief OH* exposure led to transient rigor like contracture with marked elevation of diastolic tension and depression of developed force. Although the injury response showed similarities between atrial and ventricular myocardium, there were significant differences as well. In rabbit atrial muscles, the development of the contracture and its peak was much faster as compared to ventricular muscles. Also, at the peak of contracture, both rabbit and dog atrial muscles show a lesser degree of contractile dysfunction. Conclusion: These results indicate that both atrial and ventricular muscles develop a rigor like contracture after acute OH*-induced injury, and atrial muscles showed a lesser degree of contractile dysfunction. Comparison of dog versus rabbit tissue shows that the response was similar in magnitude, but slower to develop in dog tissue.

  18. Self-Inflicted Needle Injuries to the Eye: A Curing Pain

    Directory of Open Access Journals (Sweden)

    Shahrokh Amiri

    2015-01-01

    Full Text Available There are few reports of severe self-injury to eyes in patients with schizophrenia. We report on a 41-year-old woman, primarily visiting for symptoms of endophthalmitis resulting from self-inflicted needles. Further evaluations established the diagnosis of schizophrenia because of arguing and commenting on auditory hallucinations and negative symptoms including social isolation, decreased self-care, blunt affect, and a monotone voice. The patient had been suffering from auditory hallucinations for several years and found relief in bodily pain caused by needles. The patient received 6 mg of risperidone. Hallucinations were resolved and self-injury behaviour was not repeated.

  19. Linking Ventilator Injury-Induced Leak across the Blood-Gas Barrier to Derangements in Murine Lung Function

    Directory of Open Access Journals (Sweden)

    Bradford J. Smith

    2017-07-01

    Full Text Available Mechanical ventilation is vital to the management of acute respiratory distress syndrome, but it frequently leads to ventilator-induced lung injury (VILI. Understanding the pathophysiological processes involved in the development of VILI is an essential prerequisite for improving lung-protective ventilation strategies. The goal of this study was to relate the amount and nature of material accumulated in the airspaces to biomarkers of injury and the derecruitment behavior of the lung in VILI. Forty-nine BALB/c mice were mechanically ventilated with combinations of tidal volume and end-expiratory pressures to produce varying degrees of overdistension and atelectasis while lung function was periodically assessed. Total protein, serum protein, and E-Cadherin levels were measured in bronchoalveolar lavage fluid (BALF. Tissue injury was assessed by histological scoring. We found that both high tidal volume and zero positive end-expiratory pressure were necessary to produce significant VILI. Increased BALF protein content was correlated with increased lung derecruitability, elevated peak pressures, and histological evidence of tissue injury. Blood derived molecules were present in the BALF in proportion to histological injury scores and epithelial injury, reflected by E-Cadherin levels in BALF. We conclude that repetitive recruitment is an important factor in the pathogenesis of VILI that exacerbates injury associated with tidal overdistension. Furthermore, the dynamic mechanical behavior of the injured lung provides a means to assess both the degree of tissue injury and the nature and amount of blood-derived fluid and proteins that accumulate in the airspaces.

  20. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  1. Engineering complex tissue-like microgel arrays for evaluating stem cell differentiation

    DEFF Research Database (Denmark)

    Guermani, Enrico; Shaki, Hossein; Mohanty, Soumyaranjan

    2016-01-01

    Development of tissue engineering scaffolds with native-like biology and microarchitectures is a prerequisite for stem cell mediated generation of off-the-shelf-tissues. So far, the field of tissue engineering has not full-filled its grand potential of engineering such combinatorial scaffolds...... for engineering functional tissues. This is primarily due to the many challenges associated with finding the right microarchitectures and ECM compositions for optimal tissue regeneration. Here, we have developed a new microgel array to address this grand challenge through robotic printing of complex stem cell...... platform will be used for high-throughput identification of combinatorial and native-like scaffolds for tissue engineering of functional organs....

  2. Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: high sensitivity to injury.

    Science.gov (United States)

    Delaney, Kevin J

    2012-04-01

    Variable indirect photosynthetic rate (P(n)) responses occur on injured leaves after insect herbivory. It is important to understand factors that influence indirect P(n) reductions after injury. The current study examines the relationship between gas exchange and chlorophyll a fluorescence parameters with injury intensity (% single leaf tissue removal) from clipping or Spodoptera eridania Stoll (Noctuidae) herbivory on Nerium oleander L. (Apocynaceae). Two experiments showed intercellular [CO(2)] increases but P(n) and stomatal conductance reductions with increasing injury intensity, suggesting non-stomatal P(n) limitation. Also, P(n) recovery was incomplete at 3d post-injury. This is the first report of a negative exponential P(n) impairment function with leaf injury intensity to suggest high N. oleander leaf sensitivity to indirect P(n) impairment. Negative linear functions occurred between most other gas exchange and chlorophyll a fluorescence parameters with injury intensity. The degree of light harvesting impairment increased with injury intensity via lower (1) photochemical efficiency indicated lower energy transfer efficiency from reaction centers to PSII, (2) photochemical quenching indicated reaction center closure, and (3) electron transport rates indicated less energy traveling through PSII. Future studies can examine additional mechanisms (mesophyll conductance, carbon fixation, and cardenolide induction) to cause N. oleander indirect leaf P(n) reductions after injury. Published by Elsevier Ireland Ltd.

  3. Effect of low-energy extracorporeal shock wave on vascular regeneration after spinal cord injury and the recovery of motor function.

    Science.gov (United States)

    Wang, Lei; Jiang, Yuquan; Jiang, Zheng; Han, Lizhang

    2016-01-01

    Latest studies show that low-energy extracorporeal shock wave therapy (ESWT) can upregulate levels of vascular endothelial growth factor (VEGF). VEGF can ease nervous tissue harm after spinal cord injury (SCI). This study aims to explore whether low-energy ESWT can promote expression of VEGF, protect nervous tissue after SCI, and improve motor function. Ninety adult female rats were divided into the following groups: Group A (simple laminectomy), Group B (laminectomy and low-energy ESWT), Group C (spinal cord injury), and Group D (spinal cord injury and low-energy ESWT). Impinger was used to cause thoracic spinal cord injury. Low-energy ESWT was applied as treatment after injury three times a week, for 3 weeks. After SCI, the Basso, Beattie, and Bresnahan (BBB) scale was used to evaluate motor function over a period of 42 days at different time points. Hematoxylin and eosin (HE) staining was used to evaluate nerve tissue injury. Neuronal nuclear antigen (NeuN) staining was also used to evaluate loss of neurons. Polymerase chain reaction was used to detect messenger RNA (mRNA) expression of VEGF and its receptor fms-like tyrosine kinase 1 (Flt-1). Immunostaining was used to evaluate VEGF protein expression level in myeloid tissue. BBB scores of Groups A and B showed no significant result related to dyskinesia. HE and NeuN staining indicated that only using low-energy ESWT could not cause damage of nervous tissue in Group B. Recovery of motor function at 7, 35, and 42 days after SCI in Group D was better than that in Group C (Pfunction. It can be regarded as one mode of clinical routine adjunctive therapy for spinal injury.

  4. Brain tissue analysis of impacts to American football helmets.

    Science.gov (United States)

    Post, Andrew; Kendall, Marshall; Cournoyer, Janie; Karton, Clara; Oeur, R Anna; Dawson, Lauren; Hoshizaki, T Blaine

    2018-02-01

    Concussion in American football is a prevalent concern. Research has been conducted examining frequencies, location, and thresholds for concussion from impacts. Little work has been done examining how impact location may affect risk of concussive injury. The purpose of this research was to examine how impact site on the helmet and type of impact, affects the risk of concussive injury as quantified using finite element modelling of the human head and brain. A linear impactor was used to impact a helmeted Hybrid III headform in several locations and using centric and non-centric impact vectors. The resulting dynamic response was used as input for the Wayne State Brain Injury Model to determine the risk of concussive injury by utilizing maximum principal strain as the predictive variable. The results demonstrated that impacts that occur primarily to the side of the head resulted in higher magnitudes of strain in the grey and white matter, as well as the brain stem. Finally, commonly worn American football helmets were used in this research and significant risk of injury was incurred for all impacts. These results suggest that improvements in American football helmets are warranted, in particular for impacts to the side of the helmet.

  5. Correlation between hypermobility score and injury rate in artistic gymnastics.

    Science.gov (United States)

    Bukva, Bojan; Vrgoč, Goran; Madić, Dejan; Sporiš, Goran; Trajković, Nebojša

    2018-01-10

    Generalized Joint Hypermobility (GJH) is suggested as a contributing factor for injuries in young athletes and adults. It is presumed that GJH causes decreased joint stability, thereby increasing the risk of joint and soft tissue injuries during sports activities. The aim of this study was to determine the correlation between the hypermobility rate (using the Beighton`s modification of the Carter-Wilkinson criteria of hypermobility) in gymnasts and injury rate, during the period of one year. This study observed 24 artistic gymnasts (11-26 years old), members of Qatar National Team in artistic gymnastics. We examined the Beighton joint hypermobility screen and a seasonal injury survey. The gymnasts characteristics (age, gender) and gymnastics characteristics (training per day and number of years in training artistic gymnastics) and its' relations to injury rate were also included. The most common injury was the lower back pain injury, followed by knee, shoulder, hip and ankle injuries. We found strong correlation of number of years gymnastics training and injury rate (p0.05). According to this study there is no correlation between GJH rate and injury rate in artistic gymnasts in Qatar. Total training period in gymnastics have greater contribution in injury rate.

  6. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  7. [Bullet and shrapnel injuries in the face and neck regions. Current aspects of wound ballistics].

    Science.gov (United States)

    Hauer, T; Huschitt, N; Kulla, M; Kneubuehl, B; Willy, C

    2011-08-01

    A basic understanding of the ballistic behaviour of projectiles or fragments after entering the human body is essential for the head and neck surgeon in the military environment in order to anticipate the diagnostic and therapeutic consequences of this type of injury. Although a large number of factors influence the missile in flight and after penetration of the body, the most important factor is the amount of energy transmitted to the tissue. Long guns (rifles or shotguns) have a much higher muzzle energy compared to handguns, explaining why the remote effects beyond the bullet track play a major role. While most full metal jacket bullets release their energy after 12-20 cm (depending on the calibre), soft point bullets release their energy immediately after entry into the human body. This results in a major difference in extremity wounds, but not so much in injuries with long bullet paths (e.g. diagonal shots). Shrapnel wounds are usually produced with similarly high kinetic energy to those caused by hand- and long guns. However, fragments tend to dissipate the entire amount of energy within the body, which increases the degree of tissue disruption. Of all relevant injuries in the head and neck region, soft tissue injuries make up the largest proportion (60%), while injuries to the face are seen three times more often than injuries to the neck. Concomitant intracranial or spinal injury is seen in 30% of cases. Due to high levels of wound contamination, the infection rate is approximately 15%, often associated with a complicated and/or multiresistant spectrum of germs.

  8. Brain hemorrhage after electrical burn injury: Case report and probable mechanism.

    Science.gov (United States)

    Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose

    2016-01-01

    High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.

  9. Significance of focal relaxation times in head injury

    Energy Technology Data Exchange (ETDEWEB)

    Inao, Suguru; Furuse, Masahiro; Saso, Katsuyoshi; Yoshida, Kazuo; Motegi, Yoshimasa; Kaneoke, Yoshiki; Izawa, Akira

    1987-11-01

    Serial examinations by nuclear magnetic resonance-computed tomography were carried out in 35 head-injured patients aged 7 to 77 years. The injuries were classified as cerebral contusion (nine cases), acute epidural hematoma (eight cases), acute cerebral swelling (two cases), and chronic subdural hematoma (16 cases). The results of 92 measurements were divided into two groups: acute stage (within 3 days of injury) and chronic stage (2 weeks or longer after injury). The spin-lattice relaxation times (T/sub 1/) of brain tissue adjacent to chronic subdural hematoma were evaluated pre- and postoperatively. A Fonar QED 80-alpha system was used for magnetic resonance imaging and measurement of focal T/sub 1/. The T/sub 1/ values at the region of interest were measured 3 to 5 times by the field focusing technique (468 gauss in the focused spot), and the mean value was used for evaluation. The standard T/sub 1/ values obtained from healthy subjects were 290 +- 41 msec in the cerebral cortex and 230 +- 34 msec in the white matter. Prolongation of T/sub 1/ in perifocal brain gradually shortened over time and normalized in the chronic stage. The degree of contusional edema may have been reflected in alterations in T/sub 1/. In contrast, parenchymal injury resulted in a progressive T/sub 1/ elevation, which far exceeded 500 msec in the chronic stage. Such time courses of T/sub 1/ may indicate irreversible tissue damage. There were no noticeable changes in tissue T/sub 1/ over time in patients with acute diffuse cerebral swelling or those who underwent evacuation of acute epidural or chronic subdural hematomas. The underlying pathophysiology in such situations seems to be not brain edema but cerebral hyperemia. In the presence of ischemia, the T/sub 1/ value was prolonged in the early stage, reflecting progression of is chemic edema. (Abstract Truncated)

  10. Thermal injury secondary to laparoscopic fiber-optic cables.

    Science.gov (United States)

    Hindle, A Katharine; Brody, Fred; Hopkins, Vernon; Rosales, Greg; Gonzalez, Florencia; Schwartz, Arnold

    2009-08-01

    Laparoscopy requires a reliable light source to provide adequate visualization. However, thermal energy is produced as a by-product from the optical cable. This study attempts to quantify the degree of possible thermal damage secondary to the fiber-optic light source. Using a digital thermometer, temperature measurements were recorded at the tip of optical cables from five different light sources (Karl Storz, Inc., Tuttlingen, Germany). Temperature measurements were recorded with new and old bulbs. The tip of the cable was applied to surgical drapes and the time to charring was recorded. Subsequently, the tip of the optical cable was applied to a porcine model and tissue samples were obtained after varying amounts of time (5, 15, 30, 60, and 90 s). Sections of the damaged tissue were prepared for microscopic evaluation. Parameters for thermal injury included extent of epidermal, dermal, and subcutaneous fat damage and necrosis. The lateral extent and depth of injury were measured. The maximum temperature at the tip of the optical cable varied between 119.5 degrees C and 268.6 degrees C. When surgical drapes were exposed to the tip of the light source, the time to char was 3-6 s. The degree and volume of injury increased with longer exposure times, and significant injury was recorded with the optical cable 3 mm from the skin. This study demonstrates that the temperature at the tip of the optical light cord can induce extensive damage. The by-product of light, heat, can produce immediate superficial tissue necrosis that can extend into the subcutaneous fat even when the optical tip is not in direct contact with the skin. In addition, our study shows the variation in temperature that exists between light sources and bulb status. Overall, surgeons must realize and respect the potential complications associated with optical technology.

  11. Respiratory Syncytial Virus Aggravates Renal Injury through Cytokines and Direct Renal Injury

    Directory of Open Access Journals (Sweden)

    Songhui Zhai

    2016-09-01

    Full Text Available The purpose of this study was to investigate the relationship between renal injury and reinfection that is caused by respiratory syncytial virus (RSV and to analyze the mechanism of renal injury. Rats were repeatedly infected with RSV on days 4, 8, 14, and 28, then sacrificed and examined on day 56 after the primary infection. Renal injury was examined by transmission electron microscopy and histopathology. The F protein of RSV was detected in the renal tissue by indirect immunofluorescence. Proteinuria and urinary glycosaminoglycans (GAGs, serum levels of albumin, urea nitrogen, and creatinine, secretion of cytokines, T lymphocyte population and subsets, and dendritic cell (DC activation state were examined. The results showed that renal injury was more serious in the reinfection group than in the primary infection group. At a higher infection dose, 6×106 PFU, the renal injury was more severe, accompanied by higher levels of proteinuria and urinary GAGs excretion, and lower levels of serum albumin. Podocyte foot effacement was more extensive, and hyperplasia of mesangial cells and proliferation of mesangial matrix were observed. The maturation state of DCs was specific, compared with the primary infection. There was also a decrease in the ratio of CD4+ to CD8+T lymphocytes, due to an increase in the percentage of CD8+T lymphocytes and a decrease in the percentage of CD4+T lymphocytes, and a dramatic increase in the levels of IL-6 and IL-17. In terms of the different reinfection times, the day 14 reinfection group yielded the most serious renal injury and the most significant change in immune function. RSV F protein was still expressed in the glomeruli 56 days after RSV infection. Altogether, these results reveal that RSV infection could aggravate renal injury, which might be due to direct renal injury caused by RSV and the inflammatory lesions caused by the anti-virus response induced by RSV.

  12. Melatonin and mitochondrial function during ischemia/reperfusion injury.

    Science.gov (United States)

    Ma, Zhiqiang; Xin, Zhenlong; Di, Wencheng; Yan, Xiaolong; Li, Xiaofei; Reiter, Russel J; Yang, Yang

    2017-11-01

    Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.

  13. Examining the role of sex in self-injurious thoughts and behaviors.

    Science.gov (United States)

    Fox, Kathryn R; Millner, Alexander J; Mukerji, Cora E; Nock, Matthew K

    2017-09-28

    Self-injurious thoughts and behaviors (SITBs), including nonsuicidal self-injury, suicidal thoughts, suicide attempts, and suicide death exhibit substantial sex differences. Across most countries, men die by suicide more frequently than women; yet, women think about and attempt suicide more frequently than men. Research on sex differences in nonsuicidal self-injury is less developed; however, nonsuicidal self-injury is historically understood as a primarily female phenomenon. This review describes current research on sex differences across SITBs with a focus on factors that moderate these effects, such as age, race, geographic region, and time. Additionally, this review describes factors that may help to explain why sex differences across SITBs exist, including differences in culture, access to lethal suicide methods, rates of mental illness, and utilization of health care. The role of gender, and particularly non-binary gender, is also discussed. Current understanding of these sex differences is described with an eye toward future research on this topic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    Science.gov (United States)

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  15. Injury to ulnar collateral ligament of thumb.

    Science.gov (United States)

    Madan, Simerjit Singh; Pai, Dinker R; Kaur, Avneet; Dixit, Ruchita

    2014-02-01

    Injury of the ulnar collateral ligament (UCL) of thumb can be incapacitating if untreated or not treated properly. This injury is notorious for frequently being missed by inexperienced health care personnel in emergency departments. It has frequently been described in skiers, but also occurs in other sports such as rugby, soccer, handball, basketball, volleyball and even after a handshake. The UCL of the thumb acts as a primary restraint to valgus stress and is injured if hyperabduction and hyperextension forces are applied to the first metacarpophalangeal joint. The diagnosis is best established clinically, though MRI is the imaging modality of choice. Many treatment options exist, surgical treatment being offered depending on various factors, including timing of presentation (acute or chronic), grade (severity of injury), displacement (Stener lesion), location of tear (mid-substance or peripheral), associated or concomitant surrounding tissue injury (bone, volar plate, etc.), and patient-related factors (occupational demands, etc.). This review aims to identify the optimal diagnostic techniques and management options for UCL injury available thus far. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  16. Prevalence of Oral and Maxillofacial Injuries among Patients ...

    African Journals Online (AJOL)

    Diagnoses of the different types of hard and soft tissue injuries were done by ... a result of wounding or external violence. ... traffic accident (RTA), falls, assaults, sports, domestic and ..... With regard to gender, male to female ratio distribution.

  17. [The role of disequilibrium of expression of matrix metalloproteinase-2/9 and their tissue inhibitors in pathogenesis of hyperoxia-induced acute lung injury in mice].

    Science.gov (United States)

    Zhang, Xiang-feng; Zhu, Guang-fa; Liu, Shuang; Foda, Hussein D

    2008-10-01

    To investigate the role of matrix metalloproteinase-2/9 (MMP-2/9) and their tissue inhibitors (TIMP-1/2) in pathogenesis of acute lung injury (ALI) induced by hyperoxia. Seventy-two C57BL/6 mice were randomly divided into normal control group, hyperoxia for 24 hours group, hyperoxia for 48 hours group, and hyperoxia for 72 hours group, with 18 mice in each group. The mice in hyperoxia groups were exposed to >98% oxygen in sealed cages, and the normal control group were placed outside of the cage to breathe room air. At the end of the exposure time the animals were euthanized, the right lung was removed and phosphate buffer solution (PBS) was used to lavage the lung through the endotracheal catheter. The wet/dry weight ratio, broncho-alveolar lavage fluid (BALF) protein content and the volume of pleural fluid were measured, the severity of lung injury was assessed; the expression of MMP-2/9 and TIMP-1/2 mRNA in lung tissue at 24, 48 and 72 hours of hyperoxia were assessed by reverse transcript-polymerase chain reaction (RT-PCR); the amount of MMP-2/9 and TIMP-1/2 protein in lung tissue were measured by enzyme-linked immunosorbent assay (ELISA). Hyperoxia caused ALI as evidenced by the increase in lung wet/dry weight ratio, BALF protein content and the volume of pleural fluid as compared with the normal control group (P<0.05 or P<0.01). RT-PCR study showed increased expression of MMP-2/9 and TIMP-1 mRNA in lung tissues (P<0.05 or P<0.01), and ELISA assay also demonstrated upregulation of MMP-2/9 and an increase in TIMP-1 amount in BALF compared with their normal control group (P<0.05 or P<0.01). The ratios of both MMP-2 mRNA/TIMP-2 mRNA and MMP-2 protein/TIMP-2 protein were all increased in hyperoxia groups as compared with their normal control group (all P<0.01). Hyperoxia causes ALI in mice, and disturbance of MMP-2/TIMP-2 balance plays an important role in the development of hyperoxia-induced ALI in mice.

  18. Sport injuries in the paediatric and adolescent patient: a growing problem

    Energy Technology Data Exchange (ETDEWEB)

    Kerssemakers, Steven P. [General Hospital, Department of Radiology, Thessaloniki (Greece); Dept. of Radiology, Medical Center, Alkmaar (Netherlands); Fotiadou, Anastasia N.; Karantanas, Apostolos H. [General Hospital, Department of Radiology, Thessaloniki (Greece); Jonge, Milko C. de; Maas, Mario

    2009-05-15

    With an increasing number of paediatric and adolescent athletes presenting with injuries due to overuse, a greater demand is put on clinicians and radiologists to assess the specific type of injury. Repetitive forces applied to the immature skeleton cause a different type of injury than those seen in adults due to the differences in vulnerability of the musculoskeletal system, especially at the site of the growth cartilage. Intrinsic and extrinsic risk factors all play a role in the development of overuse injuries. MRI plays a key role in imaging overuse injuries due to its high potential for depicting cartilaginous and soft-tissue structures. Sport-specific biomechanics are described, since this knowledge is essential for adequate MRI assessment. An overview of several sport-related injuries is presented, based on anatomical location. (orig.)

  19. Sport injuries in the paediatric and adolescent patient: a growing problem

    International Nuclear Information System (INIS)

    Kerssemakers, Steven P.; Fotiadou, Anastasia N.; Karantanas, Apostolos H.; Jonge, Milko C. de; Maas, Mario

    2009-01-01

    With an increasing number of paediatric and adolescent athletes presenting with injuries due to overuse, a greater demand is put on clinicians and radiologists to assess the specific type of injury. Repetitive forces applied to the immature skeleton cause a different type of injury than those seen in adults due to the differences in vulnerability of the musculoskeletal system, especially at the site of the growth cartilage. Intrinsic and extrinsic risk factors all play a role in the development of overuse injuries. MRI plays a key role in imaging overuse injuries due to its high potential for depicting cartilaginous and soft-tissue structures. Sport-specific biomechanics are described, since this knowledge is essential for adequate MRI assessment. An overview of several sport-related injuries is presented, based on anatomical location. (orig.)

  20. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    Science.gov (United States)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.