WorldWideScience

Sample records for tissue immunocomplex generated

  1. Force generation within tissues during development

    Science.gov (United States)

    Kasza, Karen

    During embryonic development, multicellular tissues physically change shape, move, and grow. Changes in epithelial tissue organization are often accomplished by local movements of cells that are driven largely by forces generated by the motor protein myosin II. These forces are patterned to orient cell movements, resulting in changes in tissue shape and organization to build functional tissues and organs. To investigate the mechanisms of force generation in vivo, we use the fruit fly embryo as a model system. Spatial patterns of forces orient cell movements to drive rapid tissue elongation along the head-to-tail axis of the embryo. I will describe how studying embryos generated with engineered myosin variants provides insight into where, when, and how forces are generated to efficiently reorganize tissues. We found that a myosin variant that is locked-in to the active or ``on'' state accelerates cell movements, while two mutant myosin variants associated with human disease produce slowed cell movement. These myosin variants all disrupt tissue elongation, but live imaging and biophysical measurements reveal distinct effects on myosin organization and dynamics within cells and uncover mechanisms that control the spatial and temporal patterns of force generation. These studies shed light not only on how defects in force generation contribute to disease but also on physical principles at work in active, living materials.

  2. The (re)generation of splenic tissue

    Science.gov (United States)

    Hovius, J W R; Verberne, H J; Bennink, R J; Blok, W L

    2010-01-01

    A 48-year-old man with a history of a traumatic splenic rupture followed by splenectomy at the age of 5 years was referred to the outpatient clinic with markedly elevated liver enzymes. He was diagnosed with alcoholic liver cirrhosis. Ultrasound of the upper abdomen revealed hepatomegaly and suggested a central mass in the liver. Subsequent MRI of the abdomen did not show a hepatic mass, but revealed multiple intraperitoneal and retroperitoneal ovoid structures with a maximum diameter of 3 cm. A peripheral blood smear did not reveal Howell-Jolly bodies suggesting intact splenic function. The diagnosis splenosis—that is, autotransplantation of splenic tissue after iatrogenic/traumatic rupture of the spleen—was considered and confirmed by SPECT-CT with technetium-99m (99mTc) labelled heat-denatured autologous red blood cells. PMID:22778202

  3. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the

  4. The Combination of Tissue Dissection and External Volume Expansion Generates Large Volumes of Adipose Tissue.

    Science.gov (United States)

    He, Yunfan; Dong, Ziqing; Xie, Gan; Zhou, Tao; Lu, Feng

    2017-04-01

    Noninvasive external volume expansion device has been applied to stimulate nonsurgical breast enlargement in clinical settings. Although previous results demonstrate the capacity of external volume expansion to increase the number of adipocytes, this strategy alone is insufficient to reconstruct soft-tissue defects or increase breast mass. The authors combined a minimally invasive tissue dissection method with external volume expansion to generate large volumes of adipose tissue. In vitro, various densities of adipose-derived stem cells were prepared to evaluate relations between cell contacts and cell proliferation. In vivo, dorsal adipose tissue of rabbits was thoroughly dissected and the external volume expansion device was applied to maintain the released state. External volume expansion without tissue dissection served as the control. In the dissection group, the generated adipose tissue volume was much larger than that in the control group at all time points. A larger number of proliferating cells appeared in the dissection samples than in the control samples at the early stage after tissue dissection. At low cell density, adipose-derived stem cells displayed an increasing proliferation rate compared to high cell density. Protein expression analysis revealed that cell proliferation was mediated by a similar mechanism both in vivo and in vitro, involving the release of cell contact inhibition and Hippo/Yes-associated protein pathway activation. Adipose tissue dissection releases cell-to-cell contacts and induces adipose-derived stem cell proliferation. Preexpanded adipose-derived stem cells undergo adipogenesis under the adipogenic environment created by external volume expansion, leading to better adipose regeneration compared with the control.

  5. Generation of stomach tissue from mouse embryonic stem cells.

    Science.gov (United States)

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  6. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  7. A Renewable and Ultrasensitive Electrochemiluminescence Immunosenor Based on Magnetic RuL@SiO2-Au~RuL-Ab2 Sandwich-Type Nano-Immunocomplexes

    Directory of Open Access Journals (Sweden)

    Ning Gan

    2011-08-01

    Full Text Available An ultrasensitive and renewable electrochemiluminescence (ECL immunosensor was developed for the detection of tumor markers by combining a newly designed trace tag and streptavidin-coated magnetic particles (SCMPs. The trace tag (RuL@SiO2-Au~RuL-Ab2 was prepared by loading Ru(bpy32+(RuL-conjuged secondary antibodies (RuL-Ab2 on RuL@SiO2 (RuL-doped SiO2 doped Au (RuL@SiO2-Au. To fabricate the immunosensor, SCMPs were mixed with biotinylated AFP primary antibody (Biotin-Ab1, AFP, and RuL@SiO2-Au~RuL-Ab2 complexes, then the resulting SCMP/Biotin-Ab1/AFP/RuL@SiO2-Au~RuL-Ab2 (SBAR sandwich-type immunocomplexes were absorbed on screen printed carbon electrode (SPCE for detection. The immunocomplexes can be easily washed away from the surface of the SPCE when the magnetic field was removed, which made the immunosensor reusable. The present immunosensor showed a wide linear range of 0.05–100 ng mL–1 for detecting AFP, with a low detection limit of 0.02 ng mL–1 (defined as S/N = 3. The method takes advantage of three properties of the immunosensor: firstly, the RuL@SiO2-Au~RuL-Ab2 composite exhibited dual amplification since SiO2 could load large amount of reporter molecules (RuL for signal amplification. Gold particles could provide a large active surface to load more reporter molecules (RuL-Ab2. Accordingly, through the ECL response of RuL and tripropylamine (TPA, a strong ECL signal was obtained and an amplification analysis of protein interaction was achieved. Secondly, the sensor is renewable because the sandwich-type immunocomplexes can be readily absorbed or removed on the SPCE’s surface in a magnetic field. Thirdly, the SCMP modified probes can perform the rapid separation and purification of signal antibodies in a magnetic field. Thus, the present immunosensor can simultaneously realize separation, enrichment and determination. It showed potential application for the detection of AFP in human sera.

  8. The potential of prolonged tissue culture to reduce stress generation and retraction in engineered heart valve tissues.

    Science.gov (United States)

    van Vlimmeren, Marijke A A; Driessen-Mol, Anita; Oomens, Cees W J; Baaijens, Frank P T

    2013-03-01

    In tissue-engineered (TE) heart valves, cell-mediated processes cause tissue compaction during culture and leaflet retraction at time of implantation. We have quantified and correlated stress generation, compaction, retraction, and tissue quality during a prolonged culture period of 8 weeks. Polyglycolic acid/poly-4-hydroxybutyrate strips were seeded with vascular-derived cells and cultured for 4-8 weeks. Compaction in width, generated force, and stress was measured during culture. Retraction in length, generated force, and stress was measured after release of constraints at weeks 4, 6, and 8. Further, the amount of DNA, glycosaminoglycans (GAGs), collagen, and collagen cross-links was assessed. During culture, compaction and force generation increased to, respectively, 63.9% ± 0.8% and 43.7 ± 4.3 mN at week 4, after which they remained stable. Stress generation reached 27.7 ± 3.2 kPa at week 4, after which it decreased to ∼8.5 kPa. At release of constraints, tissue retraction was 44.0% ± 3.7% at week 4 and decreased to 29.2% ± 2.8% and 26.1% ± 2.2% at, respectively, 6 and 8 weeks. Generated force (8-16 mN) was lower at week 6 than at weeks 4 and 8. Generated stress decreased from 11.8 ± 0.9 kPa at week 4 to 1.4 ± 0.3 and 2.4 ± 0.4 kPa at, respectively, weeks 6 and 8. The amount of GAGs increased at weeks 6 and 8 compared to week 4 and correlated to the reduced stress and retraction. In summary, prolonged culture resulted in decreased stress generation and retraction, likely as a result of the increased amount of GAGs. These results demonstrate the potential of prolonged tissue culture in developing functional, nonretracting, TE heart valves.

  9. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  10. Generating an Engineered Adipose Tissue Flap Using an External Suspension Device.

    Science.gov (United States)

    Wan, Jinlin; Dong, Ziqing; Lei, Chen; Lu, Feng

    2016-07-01

    The tissue-engineering chamber technique can generate large volumes of adipose tissue, which provides a potential solution for the complex reconstruction of large soft-tissue defects. However, major drawbacks of this technique are the foreign-body reaction and the volume limitation imposed by the chamber. In this study, the authors developed a novel tissue-engineering method using a specially designed external suspension device that generates an optimized volume of adipose flap and avoids the implantation of foreign material. The rabbits were processed using two different tissue-engineering methods, the external suspension device technique and the traditional tissue-engineering chamber technique. The adipose flaps generated by the external suspension device had a normal adipose tissue structure that was as good as that generated by the traditional tissue-engineering chamber, but the flap volume was much larger. The final volume of the engineered adipose flap grew between weeks 0 and 36 from 5.1 ml to 30.7 ml in the traditional tissue-engineering chamber group and to 80.5 ml in the external suspension device group. During the generation process, there were no marked differences between the two methods in terms of structural and cellular changes of the flap, except that the flaps in the traditional tissue-engineering chamber group had a thicker capsule at the early stage. In addition, the enlarged flaps generated by the external suspension device could be reshaped into specific shapes by the implant chamber. This minimally invasive external suspension device technique can generate large-volume adipose flaps. Combined with a reshaping method, this technique should facilitate clinical application of adipose tissue engineering.

  11. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  12. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    Science.gov (United States)

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  13. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  14. The nucleic acid scavenger polyamidoamine third-generation dendrimer inhibits fibroblast activation and granulation tissue contraction.

    Science.gov (United States)

    Holl, Eda K; Bond, Jennifer E; Selim, Maria A; Ehanire, Tosan; Sullenger, Bruce; Levinson, Howard

    2014-09-01

    Pathologic cutaneous scarring affects over 40 million people worldwide and costs billions of dollars annually. Understanding mechanisms of fibroblast activation and granulation tissue contraction is the first step toward preventing pathologic scarring. The authors hypothesize that nucleic acids increase fibroblast activation and cause granulation tissue contraction and that sequestration of nucleic acids by application of a nucleic acid scavenger dendrimer, polyamidoamine third-generation dendrimer, will decrease pathologic scarring. In vitro experiments were performed to assess the effect of nucleic acids on pathologic scar-associated fibroblast activity. The effect of nucleic acids on cytokine production and migration on mouse fibroblasts was evaluated. Immunofluorescence microscopy was used to determine the effect of nucleic acids on the differentiation of human primary fibroblasts into myofibroblasts. Using a murine model, the effect of polyamidoamine third-generation dendrimer on granulation tissue contraction was evaluated by gross and histologic parameters. Mouse fibroblasts stimulated with nucleic acids had increased cytokine production (i.e., transforming growth factor-β, monocyte chemotactic protein 1, interleukin-10, tumor necrosis factor-α, and interferon-γ), migration, and differentiation into myofibroblasts. Polyamidoamine third-generation dendrimer blocked cytokine production, migration, and differentiation into myofibroblasts. Using a murine model of granulation tissue contraction, polyamidoamine third-generation dendrimer decreased wound contraction and angiogenesis. Collagen deposition in polyamidoamine third-generation dendrimer-treated tissues was aligned more randomly and whorl-like compared with control tissue. The data demonstrate that nucleic acid-stimulated fibroblast activation and granulation tissue contraction are blocked by polyamidoamine third-generation dendrimer. Sequestration of pathogen-associated molecular patterns may be an

  15. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  16. Angiotensin converting enzyme-independent, local angiotensin II-generation in human pancreatic ductal cancer tissues.

    Science.gov (United States)

    Ohta, Tetsuo; Amaya, Kohji; Yi, Shuangqin; Kitagawa, Hirohisa; Kayahara, Masato; Ninomiya, Itasu; Fushida, Sachio; Fujimura, Takashi; Nishimura, Gen-Ichi; Shimizu, Koichi; Miwa, Koichi

    2003-09-01

    Hypovascularity is an outstanding characteristic of pancreatic ductal cancer by diagnostic imaging: most pancreatic ductal cancers are hypovascular or avascular, and tumor vessels are seldom seen on angiography. However, we found that the vasculature was not always poor on angiography of surgically resected specimens of locally advanced pancreatic ductal cancers. To elucidate these controversial findings, we focused on angiotensin II, a vasoconstrictor which is directly produced from angiotensinogen at acidic pH by active trypsin. We examined whether a local angiotensin II-generating system exists in pancreatic ductal cancer tissue. We measured angiotensin II concentration and angiotensin converting enzyme (ACE) activity in tissues from normal pancreas, pancreatic ductal cancers, colon cancers, and hepatocellular carcinomas. After surgically resected specimens were homogenized, angiotensin II concentration and ACE activity in tissues were measured using the florisil method and the Kasahara method, respectively. Tissue angiotensin II levels in pancreatic ductal cancer (n=13) were significantly higher than those of normal pancreas (n=7), colon cancers (n=7), or hepatocellular carcinomas (n=7). However, there was no significant difference in the ACE activity in tissue between them. This study provides in vivo evidence of an ACE-independent, angiotensin II-generating system in pancreatic ductal cancer tissues and suggests that locally formed angiotensin II may act on the pre-existing pancreatic arteries around the tumor, leading to formation of hypovascular or avascular regions.

  17. Simulation on scattering features of biological tissue based on generated refractive-index model

    International Nuclear Information System (INIS)

    Wang Baoyong; Ding Zhihua

    2011-01-01

    Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition [1] is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry [2] , and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.

  18. Simulation on scattering features of biological tissue based on generated refractive-index model

    Energy Technology Data Exchange (ETDEWEB)

    Wang Baoyong; Ding Zhihua, E-mail: zh_ding@zju.edu.cn [State Key Lab of Modern Optical Instrumentation, Zhejiang University 38 Zheda Rd., Hangzhou 310027 (China)

    2011-01-01

    Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition{sup [1]} is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry{sup [2]}, and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.

  19. A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species.

    Science.gov (United States)

    Martin, John R; Gupta, Mukesh K; Page, Jonathan M; Yu, Fang; Davidson, Jeffrey M; Guelcher, Scott A; Duvall, Craig L

    2014-04-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous polyester-based biomaterials and provide a robust, cell-degradable substrate for guiding new tissue formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (biomaterials on the rigid substrates. By using laser-generated focused ultrasound without relying on sound-reflecting substrates, we demonstrate free-field cavitation in water and its application to high-precision cutting of tissue-mimicking gels. In the absence of a rigid boundary, strong pressure for cavitation was enabled by recently optimized photoacoustic lens with increased focal gain (>30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  1. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Antitumor activity of IL-2/anti-IL-2 mAb immunocomplexes exerts synergism with that of N-(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugate due to its low immunosuppressive activity

    Czech Academy of Sciences Publication Activity Database

    Tomala, Jakub; Chmelová, Helena; Strohalm, Jiří; Ulbrich, Karel; Šírová, Milada; Říhová, Blanka; Kovář, Marek

    2011-01-01

    Roč. 129, č. 8 (2011), s. 2002-2012 ISSN 0020-7136 R&D Projects: GA AV ČR IAA500200712; GA ČR GD310/08/H077; GA ČR GP301/07/P192; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40500505 Keywords : IL-2 immunocomplexes * NK cells * HPMA copolymer-bound doxorubicin Subject RIV: EC - Immunology Impact factor: 5.444, year: 2011

  3. Influences of Pre-formed Donor-Specific Anti-Human Leukocyte Antigen Antibodies in Living-Donor Renal Transplantation: Results With Graft Immunocomplex Capture Fluorescence Analysis.

    Science.gov (United States)

    Nakamura, T; Ushigome, H; Watabe, K; Imanishi, Y; Masuda, K; Matsuyama, T; Harada, S; Koshino, K; Iida, T; Nobori, S; Yoshimura, N

    2017-06-01

    Advances in immunosuppressants enable organ transplantation for sensitized patients. However, influences of pre-formed donor-specific anti-human leukocyte antigen (HLA) antibodies (DSA) have not been fully understood in renal transplantation (RT). On the other hand, immunocomplex capture fluorescence analysis (ICFA) is a reliable method to detect donor-specific anti-HLA antibodies and HLA antigen complexes. Graft ICFA can detect DSA in an allograft (g-DSA). To elucidate the consequences of pre-formed DSA, 198 patients who underwent living-donor RT were enrolled for this study (observation period: 57.8 ± 34.9 months); 187 patients in the DSA- group (excluding ABO-incompatible cases) and 11 patients in the DSA+ group. Before RT, all DSA+ patients had undergone rituximab administration and plasmapheresis. For a graft ICFA, the biopsy specimen (1 × 10 5 cells) was dissolved, and HLA antigens were captured by anti-HLA beads. Finally, DSA-HLA complexes were detected by means of PE-conjugated anti-human IgG antibodies and analyzed by use of a Luminex system. A ratio (sample/blank beads, mean of fluorescence intensity) was calculated: ≥1.0 was determined as positive g-DSA. There were no significant differences in 5-year graft survival (87.9%/100% in the DSA-/DSA+ groups, respectively). In terms of antibody-mediated rejection (AMR), within 1 month after RT, pathologically determined AMR occurred 3.2% and 63.4% in the DSA- and DSA+ groups, respectively (P < .0001). However, interestingly, more than half of them (57.1%) indicated only subclinical AMR, that is, no fluctuation of S-Cr. As representative of 2 cases of subclinical AMR, g-DSA deposition could be confirmed (1.15 ± 0.04) at 1 hour after reperfusion by graft ICFA. Furthermore, g-DSA shifted to 2.20 ± 0.98 at 3 weeks after transplantation, along with a decline in s-DSA mean of fluorescence intensity (1718-506.5). Although pathologically determined AMR occurred more frequently in pre-formed DSA+ recipients, it

  4. Robustness of Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue.

    Directory of Open Access Journals (Sweden)

    Danielle Mercatante Carrick

    Full Text Available Next Generation Sequencing (NGS technologies are used to detect somatic mutations in tumors and study germ line variation. Most NGS studies use DNA isolated from whole blood or fresh frozen tissue. However, formalin-fixed paraffin-embedded (FFPE tissues are one of the most widely available clinical specimens. Their potential utility as a source of DNA for NGS would greatly enhance population-based cancer studies. While preliminary studies suggest FFPE tissue may be used for NGS, the feasibility of using archived FFPE specimens in population based studies and the effect of storage time on these specimens needs to be determined. We conducted a study to determine whether DNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER registries Residual Tissue Repositories (RTR was present in sufficient quantity and quality for NGS assays. Fifty-nine FFPE tissues, stored from 3 to 32 years, were obtained from three SEER RTR sites. DNA was extracted, quantified, quality assessed, and subjected to whole exome sequencing (WES. Following DNA extraction, 58 of 59 specimens (98% yielded DNA and moved on to the library generation step followed by WES. Specimens stored for longer periods of time had significantly lower coverage of the target region (6% lower per 10 years, 95% CI: 3-10% and lower average read depth (40x lower per 10 years, 95% CI: 18-60, although sufficient quality and quantity of WES data was obtained for data mining. Overall, 90% (53/59 of specimens provided usable NGS data regardless of storage time. This feasibility study demonstrates FFPE specimens acquired from SEER registries after varying lengths of storage time and under varying storage conditions are a promising source of DNA for NGS.

  5. Development of a Three‐Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling

    Science.gov (United States)

    Wilkinson, Dan C.; Alva‐Ornelas, Jackelyn A.; Sucre, Jennifer M.S.; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J.; Paul, Manash K.; Karumbayaram, Saravanan; Dunn, Bruce

    2016-01-01

    Abstract Stem cell technologies, especially patient‐specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ‐level tissues. The generation of three‐dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self‐assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor‐β1 to single cell‐type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two‐dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell‐cell contact and recapitulating the lung microenvironment. Our bottom‐up approach for synthesizing patient‐specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies. Stem Cells Translational Medicine 2017;6:622–633 PMID:28191779

  6. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling.

    Science.gov (United States)

    Wilkinson, Dan C; Alva-Ornelas, Jackelyn A; Sucre, Jennifer M S; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J; Paul, Manash K; Karumbayaram, Saravanan; Dunn, Bruce; Gomperts, Brigitte N

    2017-02-01

    Stem cell technologies, especially patient-specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ-level tissues. The generation of three-dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self-assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor-β1 to single cell-type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two-dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell-cell contact and recapitulating the lung microenvironment. Our bottom-up approach for synthesizing patient-specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies. Stem Cells Translational Medicine 2017;6:622-633. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Advanced cell culture technology for generation of in vivo-like tissue models

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-06-01

    Full Text Available Human tissues are mostly composed of different cell types, that are often highly organised in relation to each other. Often cells are arranged in distinct layers that enable signalling and cell-to-cell interactions. Here we describe the application of scaffold-based technology, that can be used to create advanced organotypic 3D models of various tissue types that more closely resemble in vivo-like conditions (Knight et al., 2011. The scaffold comprises a highly porous polystyrene material, engineered into a 200 micron thick membrane that is presented in various ways including multi-welled plates and well inserts, for use with conventional culture plasticware and medium perfusion systems. This technology has been applied to generate numerous unique types of co-culture model. For example: 1 a full thickness human skin construct comprising dermal fibroblasts and keratinocytes, raised to the air-liquid interface to induce cornification of the upper layers (Fig.1 (Hill et al., 2015; 2 a neuron-glial co-culture to enable the study of neurite outgrowth interacting with astroglial cells to model and investigate the glial scar found in spinal cord injury (Clarke et al., 2016; 3 formation of a sub-mucosa consisting of a polarised simple epithelium, layer of ECM proteins simulating the basement membrane, and underlying stromal tissues (e.g. intestinal mucosa. These organotypic models demonstrate the versatility of scaffold membranes and the creation of advanced in vivo-like tissue models. Creating a layered arrangement more closely simulates the true anatomy and organisation of cells within many tissue types. The addition of different cell types in a temporal and spatial fashion can be used to study inter-cellular relationships and create more physiologically relevant in vivo-like cell-based assays. Methods that are relatively straightforward to use and that recreate the organised structure of real tissues will become valuable research tools for use in

  8. Decreased Endogenous Hydrogen Sulfide Generation in Penile Tissues of Diabetic Rats with Erectile Dysfunction.

    Science.gov (United States)

    Zhang, Yan; Yang, Jun; Wang, Tao; Wang, Shao-Gang; Liu, Ji-Hong; Yin, Chun-Ping; Ye, Zhang-Qun

    2016-03-01

    Hydrogen sulfide (H2S) is an endogenous gasotransmitter. The levels of H2S-generating enzyme expression and endogenous H2S production in diabetic rats with erectile dysfunction (ED) remain unknown. The aim of this study was to investigate the expression of the H2S-generating enzymes and endogenous production of H2S in penile tissues of diabetic ED rats. Experimental rats were randomly divided into normal control group, apomorphine (APO)-positive group and APO-negative group. Primary rat corpus cavernosum smooth muscle cells (CCSMCs) and aortic endothelial cells (AECs) were isolated and cultured in vitro under 3 different conditions: normal glucose (NG) condition, high glucose (HG) condition, and osmotic control (OC) condition. Erectile function; H2S concentrations in plasma or penile tissues; expression of H2S-generating enzymes and endogenous H2S production in penile tissues, CCSMCs, and AECs. Erectile function was significantly decreasedin the APO-negative group. In addition to significantly decreased expression of cysteine aminotransferase (CAT), d-amino acid oxidase (DAO), and 3-mercaptopyruvate sulfurtransferase (3-MST), the H2S concentrations in plasma and penile tissues and endogenous H2S production were significantly decreased in the APO-negative group. Endogenous H2S production by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) decreased to the same levels in the APO-negative and APO-positive groups as that in the normal control group. However, CBS and CSE expression remained unchanged in the 3 groups. Under HG conditions, H2S-generating enzyme expression in AECs did not change, while CAT, DAO, and 3-MST expression in CCSMCs was significantly decreased. In both cell types, H2S production by these enzymes was decreased in the HG group. Endogenous H2S production was significantly decreased in the diabetic ED rats' penile tissues due to downregulated expression of the CAT/3-MST and DAO/3-MST pathways and low activities of CBS and CSE

  9. Experimental testicular tissue banking to generate spermatogenesis in the future: A multidisciplinary team approach.

    Science.gov (United States)

    Sadri-Ardekani, Hooman; McLean, Thomas W; Kogan, Stanley; Sirintrapun, Joseph; Crowell, Kathryn; Yousif, Mustafa Q; Hodges, Steve J; Petty, John; Pranikoff, Thomas; Sieren, Leah; Zeller, Kristen; Atala, Anthony

    2016-04-15

    Spermatogonial stem cell (SSC) loss due to cancer treatment, developmental disorder or genetic abnormality may cause permanent infertility. Cryopreservation of ejaculated sperm is an effective method of fertility preservation in adult males at risk of infertility. However this is not an option in pre-pubertal boys because spermatogenesis has not yet started, and it is difficult in adolescents who are not sexually mature. Therefore testicular tissue cryopreservation to preserve SSCs for future generation of spermatogenesis, either in vivo or in vitro, could be an option for these groups of patients. Although SSC transplantation has been successful in several species including non-human primates, it is still experimental in humans. There are several remaining concerns which need to be addressed before initiating trials of human SSC autotransplantation. Establishment of a testicular tissue banking system is a fundamental step towards using SSC technology as a fertility preservation method. It is important to understand the consultation, harvesting the testicular tissue, histological evaluation, cryopreservation, and long term storage aspects. We describe here a multidisciplinary approach to establish testicular tissue banking for males at risk of infertility. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    Science.gov (United States)

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-10-12

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. © 2015. Published by The Company of Biologists Ltd.

  11. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids

    Directory of Open Access Journals (Sweden)

    Stacy R. Finkbeiner

    2015-11-01

    Full Text Available Short bowel syndrome (SBS is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs or induced pluripotent stem cells (iPSCs, called human intestinal organoids (HIOs, have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue.

  12. Biological Effects of Laser Radiation. Volume IV. Optical Second Harmonic Generation in Biological Tissues.

    Science.gov (United States)

    1978-10-17

    harmonic generation in ocular tissue may be of significance to vision (Fine and Hansen, 1971). Although second-harmonic radiation was observed from...efficiency of CC1 4 . The parameter values used in this computacion are listed below. -30 9/2 -1/2a) 8-6.24 x 10 cm erg for f - 1, and assuming imaginary...sise Lt La a moorfeW, coLlsmme Usmwu ad, La imma, sight be sopmed to 1ase wediaeto. tou~saie ~ the eve am bo -~atm tow Visions (YOLIM60 eg at, * .5

  13. Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays.

    Science.gov (United States)

    Hisada, Yohei; Alexander, Wyeth; Kasthuri, Raj; Voorhees, Peter; Mobarrez, Fariborz; Taylor, Angela; McNamara, Coleen; Wallen, Hakan; Witkowski, Marco; Key, Nigel S; Rauch, Ursula; Mackman, Nigel

    2016-03-01

    Thrombosis is a leading cause of morbidity and mortality. Detection of a prothrombotic state using biomarkers would be of great benefit to identify patients at risk of thrombosis that would benefit from thromboprophylaxis. Tissue factor (TF) is a highly procoagulant protein that under normal conditions is not present in the blood. However, increased levels of TF in the blood in the form of microparticles (MPs) (also called extracellular vesicles) are observed under various pathological conditions. In this review, we will discuss studies that have measured MP-TF activity in a variety of diseases using two similar FXa generation assay. One of the most robust signals for MP-TF activity (16-26 fold higher than healthy controls) is observed in pancreatic cancer patients with venous thromboembolism. In this case, the TF+ MPs appear to be derived from the cancer cells. Surprisingly, cirrhosis and acute liver injury are associated with 17-fold and 38-fold increases in MP-TF activity, respectively. Based on mouse models, we speculate that the TF+ MPs are derived from hepatocytes. More modest increases are observed in patients with urinary tract infections (6-fold) and in a human endotoxemia model (9-fold) where monocytes are the likely source of the TF+ MPs. Finally, there is no increase in MP-TF activity in the majority of cardiovascular disease patients. These studies indicate that MP-TF activity may be a useful biomarker to identify patients with particular diseases that have an increased risk of thrombosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Combining mechanical foaming and thermally induced phase separation to generate chitosan scaffolds for soft tissue engineering.

    Science.gov (United States)

    Biswas, D P; Tran, P A; Tallon, C; O'Connor, A J

    2017-02-01

    In this paper, a novel foaming methodology consisting of turbulent mixing and thermally induced phase separation (TIPS) was used to generate scaffolds for tissue engineering. Air bubbles were mechanically introduced into a chitosan solution which forms the continuous polymer/liquid phase in the foam created. The air bubbles entrained in the foam act as a template for the macroporous architecture of the final scaffolds. Wet foams were crosslinked via glutaraldehyde and frozen at -20 °C to induce TIPS in order to limit film drainage, bubble coalescence and Ostwald ripening. The effects of production parameters, including mixing speed, surfactant concentration and chitosan concentration, on foaming are explored. Using this method, hydrogel scaffolds were successfully produced with up to 80% porosity, average pore sizes of 120 μm and readily tuneable compressive modulus in the range of 2.6 to 25 kPa relevant to soft tissue engineering applications. These scaffolds supported 3T3 fibroblast cell proliferation and penetration and therefore show significant potential for application in soft tissue engineering.

  15. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B.; Petrov, Panayot K. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Serafimovski, Ivan [Food Institute, Faculty of Veterinary Medicine, Sts. Cyril and Methodius University, P.O. Box 95, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Stafilov, Trajce [Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, P.O. Box 162, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)], E-mail: tsalev@chem.uni-sofia.bg

    2007-03-15

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 {mu}g Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 {mu}mol of zirconium and then with 0.10 {mu}mol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely

  16. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  17. Generation, annotation, and analysis of ESTs from midgut tissue of adult female Anopheles stephensi mosquitoes

    Directory of Open Access Journals (Sweden)

    Bhagwat Bhakti

    2009-08-01

    Full Text Available Abstract Background Malaria is a tropical disease caused by protozoan parasite, Plasmodium, which is transmitted to humans by various species of female anopheline mosquitoes. Anopheles stephensi is one such major malaria vector in urban parts of the Indian subcontinent. Unlike Anopheles gambiae, an African malaria vector, transcriptome of A. stephensi midgut tissue is less explored. We have therefore carried out generation, annotation, and analysis of expressed sequence tags from sugar-fed and Plasmodium yoelii infected blood-fed (post 24 h adult female A. stephensi midgut tissue. Results We obtained 7061 and 8306 ESTs from the sugar-fed and P. yoelii infected mosquito midgut tissue libraries, respectively. ESTs from the combined dataset formed 1319 contigs and 2627 singlets, totaling to 3946 unique transcripts. Putative functions were assigned to 1615 (40.9% transcripts using BLASTX against UniProtKB database. Amongst unannotated transcripts, we identified 1513 putative novel transcripts and 818 potential untranslated regions (UTRs. Statistical comparison of annotated and unannotated ESTs from the two libraries identified 119 differentially regulated genes. Out of 3946 unique transcripts, only 1387 transcripts were mapped on the A. gambiae genome. These also included 189 novel transcripts, which were mapped to the unannotated regions of the genome. The EST data is available as ESTDB at http://mycompdb.bioinfo-portal.cdac.in/cgi-bin/est/index.cgi. Conclusion 3946 unique transcripts were successfully identified from the adult female A. stephensi midgut tissue. These data can be used for microarray development for better understanding of vector-parasite relationship and to study differences or similarities with other malaria vectors. Mapping of putative novel transcripts from A. stephensi on the A. gambiae genome proved fruitful in identification and annotation of several genes. Failure of some novel transcripts to map on the A. gambiae genome

  18. Generation of Immunoglobulin diversity in human gut-associated lymphoid tissue.

    Science.gov (United States)

    Spencer, Jo; Barone, Francesca; Dunn-Walters, Deborah

    2009-06-01

    The organised gut associated lymphoid tissue (GALT) exists adjacent to an extensive and diverse luminal flora. The follicle associated epithelium and associated dendritic cells and lymphocytes form a tightly fortified gateway between the flora and the host that permits connectivity between them and chronic activation of the lymphoid compartment. As a consequence, plasma cell precursors are generated continuously, and in abundance, in GALT by clonal proliferation. Clonal proliferation alone on this scale would reduce the spectrum of B cell specificity. To compensate, GALT also houses molecular machinery that diversifies the receptor repertoire by somatic hypermutation, class switch recombination and receptor revision. These three processes of enhancing the diversity of mature B cells ensure that although clonally related plasma cells may secrete immunoglobulin side by side in the mucosa they rarely have identical antigen binding sites.

  19. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  20. The Role of Cellular Coupling in the Spontaneous Generation of Electrical Activity in Uterine Tissue

    Science.gov (United States)

    Xu, Jinshan; Menon, Shakti N.; Singh, Rajeev; Garnier, Nicolas B.; Sinha, Sitabhra; Pumir, Alain

    2015-01-01

    The spontaneous emergence of contraction-inducing electrical activity in the uterus at the beginning of labor remains poorly understood, partly due to the seemingly contradictory observation that isolated uterine cells are not spontaneously active. It is known, however, that the expression of gap junctions increases dramatically in the approach to parturition, by more than one order of magnitude, which results in a significant increase in inter-cellular electrical coupling. In this paper, we build upon previous studies of the activity of electrically excitable smooth muscle cells (myocytes) and investigate the mechanism through which the coupling of these cells to electrically passive cells results in the generation of spontaneous activity in the uterus. Using a recently developed, realistic model of uterine muscle cell dynamics, we investigate a system consisting of a myocyte coupled to passive cells. We then extend our analysis to a simple two-dimensional lattice model of the tissue, with each myocyte being coupled to its neighbors, as well as to a random number of passive cells. We observe that different dynamical regimes can be observed over a range of gap junction conductances: at low coupling strength, corresponding to values measured long before delivery, the activity is confined to cell clusters, while the activity for high coupling, compatible with values measured shortly before delivery, may spread across the entire tissue. Additionally, we find that the system supports the spontaneous generation of spiral wave activity. Our results are both qualitatively and quantitatively consistent with observations from in vitro experiments. In particular, we demonstrate that the increase in inter-cellular electrical coupling observed experimentally strongly facilitates the appearance of spontaneous action potentials that may eventually lead to parturition. PMID:25793276

  1. The Nucleic Acid Scavenger Dendrimer Polyamidoamine Third-Generation Dendrimer Inhibits Fibroblast Activation and Inhibits Granulation Tissue Contraction

    Science.gov (United States)

    Holl, Eda K.; Bond, Jennifer E.; Selim, Maria A.; Ehanire, Tosan; Sullenger, Bruce; Levinson, Howard

    2014-01-01

    Background Pathologic cutaneous scarring affects over 40 million people worldwide and costs billions of dollars annually. Understanding mechanisms of fibroblast activation and granulation tissue contraction is the first step toward preventing pathologic scarring. The authors hypothesize that nucleic acids increase fibroblast activation and cause granulation tissue contraction and sequestration of nucleic acids by application of a nucleic acid scavenger dendrimer, polyamidoamine third-generation dendrimer, will decrease pathologic scarring. Methods In vitro experiments were performed to assess the effect of nucleic acids on pathologic scar–associated fibroblast activity. The effect of nucleic acids on cytokine production (polymerase chain reaction) and migration on mouse fibroblasts was evaluated. Immunofluorescence microscopy was used to determine the effect of nucleic acids on the differentiation of human primary fibroblasts into myofibroblasts. Using a murine model, the effect of polyamidoamine third-generation dendrimer on granulation tissue contraction was evaluated by gross and histologic parameters. Results Mouse fibroblasts stimulated with nucleic acids had increased cytokine production (i.e., transforming growth factor-β, monocyte chemotactic protein 1, interleukin-10, tumor necrosis factor-α, and interferon-γ), migration, and differentiation into myofibroblasts. Polyamidoamine third-generation dendrimer blocked cytokine production, migration, and differentiation into myofibroblasts. Using a murine model of granulation tissue contraction, polyamidoamine third-generation dendrimer decreased wound contraction and angiogenesis. Collagen deposition in polyamidoamine third-generation dendrimer–treated tissues was aligned more randomly and whorl-like compared with control tissue. Conclusions The data demonstrate that nucleic acid–stimulated fibroblast activation and granulation tissue contraction is blocked by polyamidoamine third-generation dendrimer

  2. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Microgravity, stem cells, and embryonic development: challenges and opportunities for 3D tissue generation

    Science.gov (United States)

    Andreazzoli, Massimiliano; Angeloni, Debora; Broccoli, Vania; Demontis, Gian C.

    2017-04-01

    Space is a challenging environment for the human body, due to the combined effects of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity range from the blood redistribution that affects the cardiovascular system and the eye to muscle wasting, bone loss, anemia and immune depression. About cosmic radiation, the shielding provided by the spaceship hull is far less efficient than that afforded at ground level by the combined effects of the Earth atmosphere and magnetic field. The eye and its nervous layer (the retina) are affected by both microgravity and heavy ions exposure. Considering the importance of sight for long-term manned flights, visual research aimed at devising measures to protect the eye from environmental conditions of the outer space represents a special challenge to meet. In this review we focus on the impact of microgravity on embryonic development, discussing the roles of mechanical forces in the context of the neutral buoyancy the embryo experiences in the womb. At variance with its adverse effects on the adult human body, simulated microgravity may provide a unique tool for understanding the biomechanical events involved in the development and assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the development of novel safety measures to protect the human eye from cosmic radiation in microgravity during long-term manned spaceflights in the outer space, as well as the generation of human 3D-retinas with its supporting structures to develop innovative and effective therapeutic options for degenerative eye diseases.

  4. Extracellular Histones Increase Tissue Factor Activity and Enhance Thrombin Generation by Human Blood Monocytes.

    Science.gov (United States)

    Gould, Travis J; Lysov, Zakhar; Swystun, Laura L; Dwivedi, Dhruva J; Zarychanski, Ryan; Fox-Robichaud, Alison E; Liaw, Patricia C

    2016-12-01

    Sepsis is characterized by systemic activation of inflammatory and coagulation pathways in response to infection. Recently, it was demonstrated that histones released into the circulation by dying/activated cells may contribute to sepsis pathology. Although the ability of extracellular histones to modulate the procoagulant activities of several cell types has been investigated, the influence of histones on the hemostatic functions of circulating monocytes is unknown. To address this, we investigated the ability of histones to modulate the procoagulant potential of THP-1 cells and peripheral blood monocytes, and examined the effects of plasmas obtained from septic patients to induce a procoagulant phenotype on monocytic cells. Tissue factor (TF) activity assays were performed on histone-treated THP-1 cells and blood monocytes. Exposure of monocytic cells to histones resulted in increases in TF activity, TF antigen, and phosphatidylserine exposure. Histones modulate the procoagulant activity via engagement of Toll-like receptors 2 and 4, and this effect was abrogated with inhibitory antibodies. Increased TF activity of histone-treated cells corresponded to enhanced thrombin generation in plasma determined by calibrated automated thrombography. Finally, TF activity was increased on monocytes exposed to plasma from septic patients, an effect that was attenuated in plasma from patients receiving unfractionated heparin (UFH). Our studies suggest that increased levels of extracellular histones found in sepsis contribute to dysregulated coagulation by increasing TF activity of monocytes. These procoagulant effects can be partially ameliorated in sepsis patients receiving UFH, thereby identifying extracellular histones as a potential therapeutic target for sepsis treatment.

  5. Microgravity, Stem Cells, and Embryonic Development: Challenges and Opportunities for 3D Tissue Generation

    International Nuclear Information System (INIS)

    Andreazzoli, Massimiliano; Angeloni, Debora; Broccoli, Vania; Demontis, Gian C.

    2017-01-01

    Space is a challenging environment for the human body, due to the combined effects of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity range from the blood redistribution that affects the cardiovascular system and the eye to muscle wasting, bone loss, anemia, and immune depression. About cosmic radiation, the shielding provided by the spaceship hull is far less efficient than that afforded at ground level by the combined effects of the Earth atmosphere and magnetic field. The eye and its nervous layer (the retina) are affected by both microgravity and heavy ions exposure. Considering the importance of sight for long-term manned flights, visual research aimed at devising measures to protect the eye from environmental conditions of the outer space represents a special challenge to meet. In this review we focus on the impact of microgravity on embryonic development, discussing the roles of mechanical forces in the context of the neutral buoyancy the embryo experiences in the womb. At variance with its adverse effects on the adult human body, simulated microgravity may provide a unique tool for understanding the biomechanical events involved in the development and assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the development of novel safety measures to protect the human eye from cosmic radiation in microgravity during long-term manned spaceflights in the outer space, as well as the generation of human 3D-retinas with its supporting structures to develop innovative and effective therapeutic options for degenerative eye diseases.

  6. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Science.gov (United States)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  7. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elien Gevaert

    Full Text Available The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  8. Microgravity, Stem Cells, and Embryonic Development: Challenges and Opportunities for 3D Tissue Generation

    Energy Technology Data Exchange (ETDEWEB)

    Andreazzoli, Massimiliano [Department of Biology, University of Pisa, Pisa (Italy); Angeloni, Debora [Institute of Life Sciences, Scuola Superiore Sant' Anna, Pisa (Italy); Broccoli, Vania [National Research Council, Institute of Neuroscience, Milan (Italy); Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan (Italy); Demontis, Gian C., E-mail: giancarlo.demontis@farm.unipi.it [Department of Pharmacy and Centro D' Ateneo “E. Piaggio”, University of Pisa, Pisa (Italy)

    2017-04-25

    Space is a challenging environment for the human body, due to the combined effects of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity range from the blood redistribution that affects the cardiovascular system and the eye to muscle wasting, bone loss, anemia, and immune depression. About cosmic radiation, the shielding provided by the spaceship hull is far less efficient than that afforded at ground level by the combined effects of the Earth atmosphere and magnetic field. The eye and its nervous layer (the retina) are affected by both microgravity and heavy ions exposure. Considering the importance of sight for long-term manned flights, visual research aimed at devising measures to protect the eye from environmental conditions of the outer space represents a special challenge to meet. In this review we focus on the impact of microgravity on embryonic development, discussing the roles of mechanical forces in the context of the neutral buoyancy the embryo experiences in the womb. At variance with its adverse effects on the adult human body, simulated microgravity may provide a unique tool for understanding the biomechanical events involved in the development and assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the development of novel safety measures to protect the human eye from cosmic radiation in microgravity during long-term manned spaceflights in the outer space, as well as the generation of human 3D-retinas with its supporting structures to develop innovative and effective therapeutic options for degenerative eye diseases.

  9. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    Science.gov (United States)

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate

  10. Generating Exome Enriched Sequencing Libraries from Formalin-Fixed, Paraffin-Embedded Tissue DNA for Next Generation Sequencing

    Science.gov (United States)

    Marosy, Beth A.; Craig, Brian D.; Hetrick, Kurt N.; Witmer, P. Dane; Ling, Hua; Griffith, Sean M.; Myers, Ben; Ostrander, Elaine A.; Stanford, Janet L.; Brody, Lawrence C.; Doheny, Kimberly F.

    2016-01-01

    This unit describes a protocol for generating exome enriched sequencing libraries using DNA extracted from Formalin Fixed Paraffin Embedded (FFPE) samples. Utilizing commercially available kits, we present a low input FFPE workflow starting with 50ng of DNA. This procedure includes a repair step to address damage caused by FFPE preservation that improves sequence quality. Subsequently, libraries undergo an in-solution targeted selection for exons, followed by sequencing using the Illumina next generation short read sequencing platform. PMID:28075488

  11. Generating Exome Enriched Sequencing Libraries from Formalin-Fixed, Paraffin-Embedded Tissue DNA for Next-Generation Sequencing.

    Science.gov (United States)

    Marosy, Beth A; Craig, Brian D; Hetrick, Kurt N; Witmer, P Dane; Ling, Hua; Griffith, Sean M; Myers, Benjamin; Ostrander, Elaine A; Stanford, Janet L; Brody, Lawrence C; Doheny, Kimberly F

    2017-01-11

    This unit describes a technique for generating exome-enriched sequencing libraries using DNA extracted from formalin-fixed paraffin-embedded (FFPE) samples. Utilizing commercially available kits, we present a low-input FFPE workflow starting with 50 ng of DNA. This procedure includes a repair step to address damage caused by FFPE preservation that improves sequence quality. Subsequently, libraries undergo an in-solution-targeted selection for exons, followed by sequencing using the Illumina next-generation short-read sequencing platform. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. Pitfalls of improperly procured adjacent non-neoplastic tissue for somatic mutation analysis using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Lei Wei

    2016-10-01

    Full Text Available Abstract Background The rapid adoption of next-generation sequencing provides an efficient system for detecting somatic alterations in neoplasms. The detection of such alterations requires a matched non-neoplastic sample for adequate filtering of non-somatic events such as germline polymorphisms. Non-neoplastic tissue adjacent to the excised neoplasm is often used for this purpose as it is simultaneously collected and generally contains the same tissue type as the neoplasm. Following NGS analysis, we and others have frequently observed low-level somatic mutations in these non-neoplastic tissues, which may impose additional challenges to somatic mutation detection as it complicates germline variant filtering. Methods We hypothesized that the low-level somatic mutation observed in non-neoplastic tissues may be entirely or partially caused by inadvertent contamination by neoplastic cells during the surgical pathology gross assessment or tissue procurement process. To test this hypothesis, we applied a systematic protocol designed to collect multiple grossly non-neoplastic tissues using different methods surrounding each single neoplasm. The procedure was applied in two breast cancer lumpectomy specimens. In each case, all samples were first sequenced by whole-exome sequencing to identify somatic mutations in the neoplasm and determine their presence in the adjacent non-neoplastic tissues. We then generated ultra-deep coverage using targeted sequencing to assess the levels of contamination in non-neoplastic tissue samples collected under different conditions. Results Contamination levels in non-neoplastic tissues ranged up to 3.5 and 20.9 % respectively in the two cases tested, with consistent pattern correlated with the manner of grossing and procurement. By carefully controlling the conditions of various steps during this process, we were able to eliminate any detectable contamination in both patients. Conclusion The results demonstrated that the

  13. Monocyte IL-10 produced in response to lipopolysaccharide modulates thrombin generation by inhibiting tissue factor expression and release of active tissue factor-bound microparticles.

    Science.gov (United States)

    Poitevin, Stéphane; Cochery-Nouvellon, Eva; Dupont, Annick; Nguyen, Philippe

    2007-04-01

    Lipopolysaccharide (LPS)-stimulated monocytes are known to have a procoagulant effect. This property is currently explained by the fact that monocytes, in response to LPS, can express tissue factor (TF) and undergo a process of membrane microvesiculation. Interleukin-10 (IL-10) has been shown to downregulate TF expression and inhibit procoagulant activity (PCA). In order to further characterize the inhibitory effect of IL-10 on LPS-induced PCA, we used the integrated system of analysis of kinetics of thrombin generation in normal plasma (thrombinography). For this, we developed an original method of elutriation allowing to obtain a highly purified monocyte preparation, under endotoxin-free conditions. Thrombin generation was measured using a highly sensitive and specific fluorogenic method which we adapted to inhibit the contact factor pathway. Results show that recombinant human IL-10 decreased the kinetics of thrombin generation in a dose-dependent manner. Furthermore, the inhibition of endogenous IL-10 released by monocytes in response to LPS is associated with an increase in the kinetics of thrombin generation. We demonstrated that this effect was a consequence of the up-regulation of TF expression and TF-bound microparticle release. In conclusion, we report that IL-10 can regulate thrombin generation in conditions close to physiology as allowed by thrombinography, and that endogenous IL-10 regulates TF expression and release of active TF-bound microparticles by a negative feed back loop through IL-10 receptor alpha.

  14. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage.

    Science.gov (United States)

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-03-22

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking-a well-known textile technology-to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering.

  15. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    OpenAIRE

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-01-01

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechani...

  16. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue

    Science.gov (United States)

    Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel

    2016-05-01

    Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.

  17. Evaluation of Therapeutic Tissue Crosslinking (TXL) for Myopia Using Second Harmonic Generation Signal Microscopy in Rabbit Sclera.

    Science.gov (United States)

    Zyablitskaya, Mariya; Takaoka, Anna; Munteanu, Emilia L; Nagasaki, Takayuki; Trokel, Stephen L; Paik, David C

    2017-01-01

    Second harmonic generation signals (SHG) are emitted preferentially from collagenous tissue structures and have been used to evaluate photochemically-induced (CXL) crosslinking changes in the cornea. Since therapeutic tissue crosslinking (TXL) using sodium hydroxymethylglycinate (SMG) of the sclera is a potential treatment for high myopia, we explored the use of SHG microscopy to evaluate the effects. Single sub-Tenon's (sT) injections (400 μL) using SMG (40-400 mM) were made at the equatorial 12 o'clock position of the right eye of cadaveric rabbit heads (n = 16 pairs). After 3.5 hours, confocal microscopy (CM) was performed using 860 nm two-photon excitation and 400 to 450 nm emission. Pixel density and fiber bundle "waviness" analyses were performed on the images. Crosslinking effects were confirmed using thermal denaturation (Tm) temperature. Comparison experiments with riboflavin photochemical crosslinking were done. Therapeutic tissue crosslinking localization studies indicated that crosslinking changes occurred at the site of injection and in adjacent sectors. Second harmonic generation signals revealed large fibrous collagenous bundled structures that displayed various degrees of waviness. Histogram analysis showed a nearly 6-fold signal increase in 400 mM SMG over 40 mM. This corresponded to a ΔTm = 13°C for 400 mM versus ΔTm = 4°C for 40 mM. Waviness analysis indicated increased fiber straightening as a result of SMG CXL. Second harmonic generation signal intensity and fiber bundle waviness is altered by scleral tissue crosslinking using SMG. These changes provide insights into the macromolecular changes that are induced by therapeutic crosslinking technology and may provide a method to evaluate connective tissue protein changes induced by scleral crosslinking therapies.

  18. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    2017-05-01

    Full Text Available Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time.Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems.Availability: Virtual Plant Tissue is available as open source (EUPL license on Bitbucket (https://bitbucket.org/vptissue/vptissue. The project has a website https://vptissue.bitbucket.io.

  19. Biomaterials innovation for next generation ex vivo immune tissue engineering.

    Science.gov (United States)

    Singh, Ankur

    2017-06-01

    Primary and secondary lymphoid organs are tissues that facilitate differentiation of B and T cells, leading to the induction of adaptive immune responses. These organs are present in the body from birth and are also recognized as locations where self-reactive B and T cells can be eliminated during the natural selection process. Many insights into the mechanisms that control the process of immune cell development and maturation in response to infection come from the analysis of various gene-deficient mice that lack some or all hallmark features of lymphoid tissues. The complexity of such animal models limits our ability to modulate the parameters that control the process of immune cell development, differentiation, and immunomodulation. Engineering functional, living immune tissues using biomaterials can grant researchers the ability to reproduce immunological events with tunable parameters for more rapid development of immunotherapeutics, cell-based therapy, and enhancing our understanding of fundamental biology as well as improving efforts in regenerative medicine. Here the author provides his review and perspective on the bioengineering of primary and secondary lymphoid tissues, and biomaterials innovation needed for the construction of these immune organs in tissue culture plates and on-chip. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    Science.gov (United States)

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-01-01

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering. PMID:28817062

  1. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    Directory of Open Access Journals (Sweden)

    Thomas Hanke

    2012-03-01

    Full Text Available Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering.

  2. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering

    NARCIS (Netherlands)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart A.; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the

  4. Performance of peanut mutants and their offspring generated from mixed high-energy particle field radiation and tissue culture.

    Science.gov (United States)

    Wang, J S; Qiao, L X; Zhao, L S; Wang, P; Guo, B T; Liu, L X; Sui, J M

    2015-09-09

    To develop new ways to breed peanut, we irradiated seeds of the Luhua 11 cultivar with a mixed high-energy particle field at different doses. The embryonic leaflets were extracted as explants and incubated on somatic embryo induction medium and then on somatic embryo germination and regeneration medium. After being grafted, the M1-generation plants were transplanted, and seeds from each M1-generation plant were harvested. In the following year, the M2-generation seeds were planted separately. Some M2-generation plants showed distinct character segregation relative to the mutagenic parent in terms of vigor, fertility, plant height, branch number, and pod size and shape. M2-generation plants that had a high pod weight per plant tended to produce M3-generation offspring that also had a high pod weight per plant, much higher than that of the mutagenic parent, Luhua 11. M4-generation seeds varied greatly in quality, and 35 individuals with an increased fat content (>55%) were obtained. Overall, the results indicate that the combination of mutagenesis via mixed high-energy particle field exposure and tissue culture is promising for peanut breeding.

  5. Generation of benchmark DVH's for normal tissues in IMRT for base of tongue and tonsil cancer patients

    International Nuclear Information System (INIS)

    Rana, B.S.; Arun Singh, O.; Goswami, P.; Bhardwaj, A.; Santam; Susmita, Goshal; Sharma, S.C.

    2007-01-01

    IMRT is the treatment of choice for treatment of prostate and H and N cancer treatment but it take quality of time to generate an optimal treatment plan and Dose Volume Histogram (DVH) varies significantly from one plan to other patient plan which is difficult to compare. Here the authors propose to generate bench mark DVH's for normal tissues for Base of tongue (BOT) and Tonsil cancer treatment to bring consistency in selection of plans and reduce the overall time of planning and comparison b/n different plan will be simpler and easier. Here the authors propose to generate benchmark DVH for spinal cord, larynx, pharynx, parotid and brain stem for BOT and tonsil patients treated with Intensity modulated radiotherapy in Postgraduate Institute of Medical Education and Research. And to see whether Benchmark DVH can be effectively used in IMRT for BOT and Ca Tonsil

  6. Numerical prediction and measurement of optoacoustic signals generated in PVA-H tissue phantoms

    Science.gov (United States)

    Melchert, Oliver; Blumenröther, Elias; Wollweber, Merve; Roth, Bernhard

    2018-01-01

    We present numerical simulations of optoacoustic (OA) signals, complementing laboratory experiments on melanin doped polyvinyl alcohol hydrogel (PVA-H) tissue phantoms. We review the computational approach to model the underlying mechanisms, i.e. optical absorption of laser energy and acoustic propagation of mechanical stress, geared toward experiments that involve absorbing media with homogeneous acoustic properties. We apply the numerical procedure to predict signals observed in the acoustic near- and farfield in both, forward and backward detection mode, in PVA-H tissue phantoms (i.e. an elastic solid). Further, we report on verification tests of our research code based on OA experiments on dye solution (i.e. a liquid) detailed in the literature and benchmark our 3D procedure via limiting cases described in terms of effectively 1D theoretical approaches.

  7. On the cause and control of residual voltage generated by electrical stimulation of neural tissue.

    Science.gov (United States)

    Krishnan, Ashwati; Kelly, Shawn K

    2012-01-01

    Functional electrical stimulation of neural tissue is traditionally performed with symmetric cathodic-first biphasic pulses of current through an electrode/electrolyte interface. When the interface is modeled by a series R-C circuit, as is sometimes done for stimulator circuit design, the appearance of a net residual voltage across the electrode cannot be explained. Residual voltage can cause polarization of the electrode and pose a problem for safe electrical stimulation. This paper aims to (1) theoretically explain one reason for the residual voltage, which is the inclusion of the Faradaic impedance (2) suggest a simple dynamic feedback mechanism to eliminate residual voltage.

  8. Temperature simulations in tissue with a realistic computer generated vessel network

    International Nuclear Information System (INIS)

    Van Leeuwen, G.M.J.; Kotte, A.N.T.J.; Raaymakers, B.W.; Lagendijk, J.J.W.

    2000-01-01

    The practical use of a discrete vessel thermal model for hyperthermia treatment planning requires a number of choices with respect to the unknown part of the patient's vasculature. This work presents a study of the thermal effects of blood flow in a simple tissue geometry with a detailed artificial vessel network. The simulations presented here demonstrate that an incomplete discrete description of the detailed network results in a better prediction of the temperature distribution than is obtained using the conventional bio-heatsink equation. Therefore, efforts to obtain information on the positions of the large vessels in an individual hyperthermia patient will be rewarded with a more accurate prediction of the temperature distribution. (author)

  9. Generation of Dopamine-Secreting Cells from Human Adipose Tissue-Derived Stem Cells In Vitro.

    Science.gov (United States)

    Soheilifar, Mohammad Hasan; Javeri, Arash; Amini, Hossein; Taha, Masoumeh Fakhr

    2018-03-12

    Several studies have demonstrated the differentiation of human adipose tissue-derived stem cells (hADSCs) to neuronal and glial phenotypes, but directing the fate of these cells toward dopaminergic neurons has not been frequently reported. The aim of this study was to investigate dopaminergic specification of hADSCs in vitro. ADSCs were isolated from subcutaneous abdominal adipose tissue and were characterized. For dopaminergic differentiation, a cocktail of sonic hedgehog, fibroblast growth factor 8, basic fibroblast growth factor, and brain-derived neurotrophic factor were used under a low serum condition. As the control group, the ADSCs were cultured under the same low serum condition without the dopaminergic cocktail. At the end of differentiation period, the cells expressed neuron-specific markers, NES, NSE, and NEFL, and dopaminergic markers, EN1, NURR1, PITX3, VMAT2, TH, and GIRK2 genes. TH, NURR1, and EN1 mRNAs were upregulated in the dopaminergic group compared with the control group. NEFL and TH proteins were also expressed in the differentiated cells. A total of 27.9% of the cells differentiated in dopaminergic induction medium showed positive staining for TH protein. Based on reversed-phase high-performance liquid chromatography analysis, the differentiated cells released a significant amount of dopamine in response to KCl-induced depolarization. In conclusion, results of this study indicate that hADSCs can be induced by a growth factor cocktail to produce dopamine secreting cells with possible applications for future cell replacement therapy of Parkinson's disease.

  10. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma.

    Science.gov (United States)

    Feng, Zipei; Puri, Sachin; Moudgil, Tarsem; Wood, William; Hoyt, Clifford C; Wang, Chichung; Urba, Walter J; Curti, Brendan D; Bifulco, Carlo B; Fox, Bernard A

    2015-01-01

    Adoptive T cell therapy (ACT) has shown great promise in melanoma, with over 50 % response rate in patients where autologous tumor-reactive tumor-infiltrating lymphocytes (TIL) can be cultured and expanded. A major limitation of ACT is the inability to generate or expand autologous tumor-reactive TIL in 25-45 % of patients tested. Methods that successfully identify tumors that are not suitable for TIL generation by standard methods would eliminate the costs of fruitless expansion and enable these patients to receive alternate therapy immediately. Multispectral fluorescent immunohistochemistry with a panel including CD3, CD8, FoxP3, CD163, PD-L1 was used to analyze the tumor microenvironment in 17 patients with melanoma among our 36-patient cohort to predict successful TIL generation. Additionally, we compared tumor fragments and enzymatic digestion of tumor samples for efficiency in generating tumor-reactive TIL. Tumor-reactive TIL were generated from 21/36 (58 %) of melanomas and for 12/13 (92 %) tumors where both enzymatic and fragment methods were compared. TIL generation was successful in 10/13 enzymatic preparations and in 10/13 fragment cultures; combination of both methods resulted in successful generation of autologous tumor-reactive TIL in 12/13 patients. In 17 patients for whom tissue blocks were available, IHC analysis identified that while the presence of CD8(+) T cells alone was insufficient to predict successful TIL generation, the CD8(+) to FoxP3(+) ratio was predictive with a positive-predictive value (PPV) of 91 % and negative-predictive value (NPV) of 86 %. Incorporation of CD163+ macrophage numbers and CD8:PD-L1 ratio did not improve the PPV. However, the NPV could be improved to 100 % by including the ratio of CD8(+):PD-L1(+) expressing cells. This is the first study to apply 7-color multispectral immunohistochemistry to analyze the immune environment of tumors from patients with melanoma. Assessment of the data using unsupervised

  11. Rose (Rosa hybrida L.) tissue culture mutagenesis for new mutants generation

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Rusli Ibrahim

    2004-01-01

    Tissue culture technique can be used to obtain complete regeneration of plant cells from shoots, rots, flowers, axillary buds and other parts of the plant. In this study, axillary buds from stem cuttings of Cutting Red, Christine Dior and Mini Rose varieties were used as the stating explants. Murashige and Skoog (1962) media supplemented with 6-Benzylaminopurine (BAP, at 4.44 - 8.88μM/l), Napthaleneacetic acid (NAA at 0.54μM/l),, nad 3% sucrose were used for plantlet initiation and regeneration. Cultured axillary buds were exposed to gamma ray (0.250 Gy/s) at 0, 15, 25, 35, 45, 55, 65 and 75 Gy for radiosensitivity test. From the dose respond curve, LD 5 0 the value for cutting red variety was 25 Gy, Christion Dior 30 Gy and Mini Rose 38 Gy, yet 22% of Mini Rose samples survived at 65 Gy and another 10% at 70 Gy. Screening of M3 plants of irradiated cultured shoots, 2 colour variations were obtained at 40 Gy for Cutting Red variety, while 3 colour variations for Mini Rose at 20 Gy. When 6 varieties of Fragrance Rose were irradiated at 40 Gy, 1 colour variation was obtained from 99 screened plants. This study suggests that the dose range of 20 to 45 can be considered for rose mutagenesis study to produce mutants. (Author)

  12. A comparison of small-field tissue phantom ratio data generation methods for an Elekta Agility 6 MV photon beam.

    Science.gov (United States)

    Richmond, Neil; Brackenridge, Robert

    2014-01-01

    Tissue-phantom ratios (TPRs) are a common dosimetric quantity used to describe the change in dose with depth in tissue. These can be challenging and time consuming to measure. The conversion of percentage depth dose (PDD) data using standard formulae is widely employed as an alternative method in generating TPR. However, the applicability of these formulae for small fields has been questioned in the literature. Functional representation has also been proposed for small-field TPR production. This article compares measured TPR data for small 6 MV photon fields against that generated by conversion of PDD using standard formulae to assess the efficacy of the conversion data. By functionally fitting the measured TPR data for square fields greater than 4cm in length, the TPR curves for smaller fields are generated and compared with measurements. TPRs and PDDs were measured in a water tank for a range of square field sizes. The PDDs were converted to TPRs using standard formulae. TPRs for fields of 4 × 4cm(2) and larger were used to create functional fits. The parameterization coefficients were used to construct extrapolated TPR curves for 1 × 1 cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields. The TPR data generated using standard formulae were in excellent agreement with direct TPR measurements. The TPR data for 1 × 1-cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields created by extrapolation of the larger field functional fits gave inaccurate initial results. The corresponding mean differences for the 3 fields were 4.0%, 2.0%, and 0.9%. Generation of TPR data using a standard PDD-conversion methodology has been shown to give good agreement with our directly measured data for small fields. However, extrapolation of TPR data using the functional fit to fields of 4 × 4cm(2) or larger resulted in generation of TPR curves that did not compare well with the measured data. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical

  13. Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components

    Directory of Open Access Journals (Sweden)

    Arnold N. Onyango

    2016-01-01

    Full Text Available Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.

  14. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Thrombin generation and fibrin clot formation under hypothermic conditions: an in vitro evaluation of tissue factor initiated whole blood coagulation.

    Science.gov (United States)

    Whelihan, Matthew F; Kiankhooy, Armin; Brummel-Ziedins, Kathleen E

    2014-02-01

    Despite trauma-induced hypothermic coagulopathy being familiar in the clinical setting, empirical experimentation concerning this phenomenon is lacking. In this study, we investigated the effects of hypothermia on thrombin generation, clot formation, and global hemostatic functions in an in vitro environment using a whole blood model and thromboelastography, which can recapitulate hypothermia. Blood was collected from healthy individuals through venipuncture and treated with corn trypsin inhibitor, to block the contact pathway. Coagulation was initiated with 5pM tissue factor at temperatures 37°C, 32°C, and 27°C. Reactions were quenched over time, with soluble and insoluble components analyzed for thrombin generation, fibrinogen consumption, factor (f)XIII activation, and fibrin deposition. Global coagulation potential was evaluated through thromboelastography. Data showed that thrombin generation in samples at 37°C and 32°C had comparable rates, whereas 27°C had a much lower rate (39.2 ± 1.1 and 43 ± 2.4 nM/min vs 28.6 ± 4.4 nM/min, respectively). Fibrinogen consumption and fXIII activation were highest at 37°C, followed by 32°C and 27°C. Fibrin formation as seen through clot weights also followed this trend. Thromboelastography data showed that clot formation was fastest in samples at 37°C and lowest at 27°C. Maximum clot strength was similar for each temperature. Also, percent lysis of clots was highest at 37°C followed by 32°C and then 27°C. Induced hypothermic conditions directly affect the rate of thrombin generation and clot formation, whereas global clot stability remains intact. © 2013.

  16. A Novel Through-Thickness Perfusion Bioreactor for the Generation of Scaffold-Free Tissue Engineered Cartilage

    Directory of Open Access Journals (Sweden)

    Eric Gilbert

    2014-08-01

    Full Text Available The objective of this study was to characterize our designed through-thickness perfusion bioreactor which could generate large scaffold-free tissue engineered cartilage constructs. The hypothesis being that through-thickness perfusion could accelerate maturation of scaffold-free tissue engineered cartilage, grown in transwell culture inserts large enough to repair typical size chondral lesions in the human knee. Internal cell culture media temperature and pH were examined over time, upon implementation of the bioreactor perfusion system inside a CO2 incubator, to ensure adequate regulation conducive to cell viability. Results indicate that temperature and pH both equilibrate within approximately 3 h. The bioreactor was tested for its efficacy to support formation of 4.5 cm2 constructs by porcine neonatal chondrocytes. Tests were conducted under three conditions: immediate perfusion with flow from bottom to top, immediate perfusion with media flow from top to bottom, and bottom to top perfusion after four weeks of static culture, giving the cells time to self-aggregate into a consolidated construct prior to perfusion. The best cell culture results were obtained when perfusion was delayed for four weeks relative to the immediate perfusion of the other methods, and this should be further investigated.

  17. Next-generation in situ hybridization approaches to define and quantify HIV and SIV reservoirs in tissue microenvironments.

    Science.gov (United States)

    Deleage, Claire; Chan, Chi N; Busman-Sahay, Kathleen; Estes, Jacob D

    2018-01-09

    The development of increasingly safe and effective antiretroviral treatments for human immunodeficiency virus (HIV) over the past several decades has led to vastly improved patient survival when treatment is available and affordable, an outcome that relies on uninterrupted adherence to combination antiretroviral therapy for life. Looking to the future, the discovery of an elusive 'cure' for HIV will necessitate highly sensitive methods for detecting, understanding, and eliminating viral reservoirs. Next-generation, in situ hybridization (ISH) approaches offer unique and complementary insights into viral reservoirs within their native tissue environments with a high degree of specificity and sensitivity. In this review, we will discuss how modern ISH techniques can be used, either alone or in conjunction with phenotypic characterization, to probe viral reservoir establishment and maintenance. In addition to focusing on how these techniques have already furthered our understanding of HIV reservoirs, we discuss potential avenues for how high-throughput, next-generation ISH may be applied. Finally, we will review how ISH could allow deeper phenotypic and contextual insights into HIV reservoir biology that should prove instrumental in moving the field closer to viral reservoir elimination needed for an 'HIV cure' to be realized.

  18. Measuring the effect of a Western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy.

    Science.gov (United States)

    Ranjit, Suman; Dvornikov, Alexander; Dobrinskikh, Evgenia; Wang, Xiaoxin; Luo, Yuhuan; Levi, Moshe; Gratton, Enrico

    2017-07-01

    The phasor approach to auto-fluorescence lifetime imaging was used to identify and characterize a long lifetime species (LLS) (~7.8 ns) in livers of mice fed with a Western diet. The size of the areas containing this LLS species depends on the type of diet and the size distribution shows Western diet has much larger LLS sizes. Combination of third harmonic generation images with FLIM identified the LLS species with fat droplets and the droplet size distribution was estimated. Second harmonic generation microscopy combined with phasor FLIM shows that there is an increase in fibrosis with a Western diet. A new decomposition in three components of the phasor plot shows that a Western diet is correlated with a higher fraction of free NADH, signifying more reducing condition and more glycolytic condition. Multiparametric analysis of phasor distribution shows that from the distribution of phasor points, a Western diet fed versus a low fat diet fed samples of mice livers can be separated. The phasor approach for the analysis of FLIM images of autofluorescence in liver specimens can result in discovery of new fluorescent species and then these new fluorescent species can help assess tissue architecture. Finally integrating FLIM and second and third harmonic analysis provides a measure of the advancement of fibrosis as an effect of diet.

  19. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  20. Improved contractile force generation of tissue-engineered skeletal muscle constructs by IGF-I and Bcl-2 gene transfer with electrical pulse stimulation

    OpenAIRE

    Ikeda, Kazushi; Ito, Akira; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2016-01-01

    Introduction: Tissue-engineered skeletal muscle constructs should be designed to generate contractile force with directional movement. Because electrical impulses from a somatic nervous system are crucial for in vivo skeletal muscle development, electrical pulse stimulation (EPS) culture as an artificial exercise is essential to fabricate functional skeletal muscle tissues in vitro. To further improve muscle functions, the activation of cell-signaling pathways from myogenic growth factors, su...

  1. Thrombin generation assay and transmission electron microscopy: a useful combination to study tissue factor-bearing microvesicles

    Directory of Open Access Journals (Sweden)

    Damien Gheldof

    2013-03-01

    Full Text Available Introduction. Patients with cancer have a 7- to 10-fold increased risk of developing venous thromboembolism. Circulating microvesicles could be a useful predictive biomarker for venous thromboembolism in cancer. Validated and standardised techniques that could be used to determine the complete microvesicle phenotype are required. These were two-fold: a to characterise tissue factor (TF-bearing microvesicles released by cultured breast cancer cells MDA-MB-231 by flow cytometry (FCM, transmission electron microscopy (TEM and thrombin generation assay (TGA; and b to validate the sensitivity and variability intra/inter-assay of TGA as a useful method to study the procoagulant activity (PCA of microvesicles. Methods. Cultured breast cancer cells MDA-MB-231 were incubated for 45 minutes at 37°C. Samples were then centrifuged or not at 4,500 g for 15 minutes, and cells and MVs or MV-containing supernatants were used for TEM, FCM and TGA. In activity assays, microvesicles (i.e. cell-depleted supernatants were incubated with anti-TF antibodies or with annexin V to assess the contribution of TF and phospholipids to the PCA. Alternatively, supernatants were filtered through 0.1, 0.22, 0.45 or 0.65 µm membranes and subjected to TGA. Results. The majority of the PCA was associated with microvesicles smaller than 0.1 µm, and the mean microvesicle size estimated by TEM after 10,000 g centrifugation was 121±54 nm with a majority of vesicles between 100 and 200 nm. Microvesicles derived from 5,000 MDA-MB-231cells/ml were sufficient to significantly increase the thrombin generation of normal pooled plasma. Conclusions. TEM, FCM and filtration coupled to TGA represent a useful combination to study the PCA of TF-bearing microvesicles, whatever their size. And it will be interesting to implement these techniques in patients.

  2. Generation of Femtosecond Laser-Cut Decellularized Corneal Lenticule Using Hypotonic Trypsin-EDTA Solution for Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Man-Il Huh

    2018-01-01

    Full Text Available Purpose. To establish an optimized and standardized protocol for the development of optimal scaffold for bioengineering corneal substitutes, we used femtosecond laser to process human corneal tissue into stromal lenticules and studied to find the most efficient decellularization method among various reagents with different tonicities. Methods. The decellularization efficacy of several agents (0.1%, 0.25%, and 0.5% of Triton X-100, SDS, and trypsin-EDTA (TE, resp. with different tonicities was evaluated. Of all protocols, the decellularization methods, which efficiently removed nuclear materials examined as detected by immunofluorescent staining, were quantitatively tested for sample DNA and glycosaminoglycan (GAG contents, recellularization efficacy, and biocompatibilities. Results. 0.5% SDS in hypertonic and isotonic buffer, 0.25% TE in hypotonic buffer, and 0.5% TE in all tonicities completely decellularized the corneal lenticules. Of the protocols, decellularization with hypotonic 0.25 and 0.5% TE showed the lowest DNA contents, while the GAG content was the highest. Furthermore, the recellularization efficacy of the hypotonic TE method was better than that of the SDS-based method. Hypotonic TE-treated decellularized corneal lenticules (DCLs were sufficiently transparent and biocompatible. Conclusion. We generated an ideal protocol for DCLs using a novel method. Furthermore, it is possible to create a scaffold using a bioengineered corneal substitute.

  3. Molecular analysis of BRCA1 and BRCA2 genes by next generation sequencing and ultrastructural aspects of breast tumor tissue.

    Science.gov (United States)

    Mihalcea, Corina Elena; Moroşanu, Ana Maria; Murăraşu, Daniela; Puiu, Liliana; Cinca, Sabin Aurel; Voinea, Silviu Cristian; Mirancea, Nicolae

    2017-01-01

    In this paper, we focus our interest on the dynamics alterations of the tumor-stroma interface at the ultrastructural level and to detect BRCA1 and BRCA2 mutations using next generation sequencing (NGS) of breast tumor tissue. Electron microscopic investigation revealed some peculiar infrastructural alterations of the tumor cells per se as well as of the tumor-stroma interface: invadopodia, shedding microvesicles, altered morphology and reduced number of telocytes, different abnormalities of the microvasculature. Tumor suppressor genes BRCA1 and BRCA2 are the genes with most hereditary predisposition to breast and ovarian cancer. An early identification of mutation within these genes is essential for determining classification and therapeutic approach to patients. Genetic tests used to determine mutations in BRCA1 and BRCA2 genes are laborious analysis methods which include, among others, NGS. We analyzed a total of eight samples, in which genomic DNA was amplified using Ion AmpliSeq panel BRCA1 and BRCA2. DNA libraries were created, amplified and sequenced with Ion Torrent Personal Genome Machine. The bio-information data obtained allow us to detect all known pathogenic mutation and uncertain polymorphisms.

  4. Ancient Expansion of the Hox Cluster in Lepidoptera Generated Four Homeobox Genes Implicated in Extra-Embryonic Tissue Formation

    Science.gov (United States)

    Taylor, William R.; Gibbs, Melanie; Breuker, Casper J.; Holland, Peter W. H.

    2014-01-01

    Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks. PMID:25340822

  5. Generation of Evc2/Limbin global and conditional KO mice and its roles during mineralized tissue formation.

    Science.gov (United States)

    Zhang, Honghao; Takeda, Haruko; Tsuji, Takehito; Kamiya, Nobuhiro; Rajderkar, Sudha; Louie, Ke'Ale; Collier, Crystal; Scott, Greg; Ray, Manas; Mochida, Yoshiyuki; Kaartinen, Vesa; Kunieda, Tetsuo; Mishina, Yuji

    2015-07-28

    Ellis-van Creveld (EvC) syndrome (OMIM 225500) is an autosomal recessive disease characterized with chondrodysplastic dwarfism in association with abnormalities in oral cavity. Ciliary proteins EVC and EVC2 have been identified as causative genes and they play an important role on Hedgehog signal transduction. We have also identified a causative gene LIMBIN for bovine chondrodysplastic dwarfism (bcd) that is later identified as the bovine ortholog of EVC2. Here, we report generation of conventional and conditional mutant Evc2/Limbin alleles that mimics mutations found in EvC patients and bcd cattle. Resulted homozygous mice showed no ciliary localization of EVC2 and EVC and displayed reduced Hedgehog signaling activity in association with skeletal and oral defects similar to the EvC patients. Cartilage-specific disruption of Evc2/Limbin resulted in similar but milder skeletal defects, whereas osteoblast-specific disruption did not cause overt changes in skeletal system. Neural crest-specific disruption of Evc2/Limbin resulted in defective incisor growth similar to that seen in conventional knockouts; however, differentiation of amelobolasts was relatively normal in the conditional knockouts. These results showcased functions of EVC2/LIMBIN during formation of mineralized tissues. Availability of the conditional allele for this gene should facilitate further detailed analyses of the role of EVC2/LIMBIN in pathogenesis of EvC syndrome. genesis, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. PAMAM (generation 4) incorporated gelatin 3D matrix as an improved dermal substitute for skin tissue engineering.

    Science.gov (United States)

    Maji, Somnath; Agarwal, Tarun; Maiti, Tapas Kumar

    2017-07-01

    The study explored the prospects of PAMAM (generation 4) applicability in gelatin based scaffolds for skin tissue engineering. The effect of PAMAM on physico-chemical and biological characteristics of gelatin scaffolds was evaluated. Gelatin scaffolds (with/without PAMAM) were prepared by lyophilization, chemically crosslinked by glutaraldehyde and characterized for their morphology (pore size), chemical features (bond nature), water adsorption, biodegradation and biological compatibility. The study demonstrated that addition of PAMAM did not significantly alter the pore size distribution or porosity of the scaffolds. However, water adsorption potential and collagenase mediated degradation significantly enhanced over period of the study. Both the scaffolds (with/without PAMAM) were highly biocompatible and hemocompatible. PAMAM (G4) blended scaffolds showed relatively higher cellular adhesion and proliferation of both keratinocytes and fibroblasts with an improved gene expression profile of native collagen type I of fibroblasts. Moreover, expression of angiogenesis inducing genes, HIF1α and VEGF were also higher in PAMAM blended gelatin matrix. Also, PAMAM incorporated gelatin matrix showed a slower rate of drug release which confirms its suitability for therapeutic delivery during wound healing. These results clearly suggest that blending PAMAM (G4) into the matrix could provide an additional support to scaffold assisted wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Generation of monoclonal antibodies and development of an immunofluorometric assay for the detection of CUZD1 in tissues and biological fluids.

    Science.gov (United States)

    Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M

    2017-12-01

    CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  9. Next-Generation Sequencing of RNA and DNA Isolated from Paired Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Samples of Human Cancer and Normal Tissue

    Science.gov (United States)

    Hedegaard, Jakob; Thorsen, Kasper; Lund, Mette Katrine; Hein, Anne-Mette K.; Hamilton-Dutoit, Stephen Jacques; Vang, Søren; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Kruhøffer, Mogens; Hager, Henrik; Knudsen, Bjarne; Andersen, Claus Lindbjerg; Sørensen, Karina Dalsgaard; Pedersen, Jakob Skou; Ørntoft, Torben Falck; Dyrskjøt, Lars

    2014-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable resource for clinical research. However, nucleic acids extracted from FFPE tissues are fragmented and chemically modified making them challenging to use in molecular studies. We analysed 23 fresh-frozen (FF), 35 FFPE and 38 paired FF/FFPE specimens, representing six different human tissue types (bladder, prostate and colon carcinoma; liver and colon normal tissue; reactive tonsil) in order to examine the potential use of FFPE samples in next-generation sequencing (NGS) based retrospective and prospective clinical studies. Two methods for DNA and three methods for RNA extraction from FFPE tissues were compared and were found to affect nucleic acid quantity and quality. DNA and RNA from selected FFPE and paired FF/FFPE specimens were used for exome and transcriptome analysis. Preparations of DNA Exome-Seq libraries was more challenging (29.5% success) than that of RNA-Seq libraries, presumably because of modifications to FFPE tissue-derived DNA. Libraries could still be prepared from RNA isolated from two-decade old FFPE tissues. Data were analysed using the CLC Bio Genomics Workbench and revealed systematic differences between FF and FFPE tissue-derived nucleic acid libraries. In spite of this, pairwise analysis of DNA Exome-Seq data showed concordance for 70–80% of variants in FF and FFPE samples stored for fewer than three years. RNA-Seq data showed high correlation of expression profiles in FF/FFPE pairs (Pearson Correlations of 0.90 +/- 0.05), irrespective of storage time (up to 244 months) and tissue type. A common set of 1,494 genes was identified with expression profiles that were significantly different between paired FF and FFPE samples irrespective of tissue type. Our results are promising and suggest that NGS can be used to study FFPE specimens in both prospective and retrospective archive-based studies in which FF specimens are not available. PMID:24878701

  10. Re-generation of tissue about an animal-based scaffold: AMS studies of the fate of the scaffold

    Science.gov (United States)

    Rickey, Frank A.; Elmore, David; Hillegonds, Darren; Badylak, Stephen; Record, Rae; Simmons-Byrd, Abby

    2000-10-01

    Small intestinal submucosa (SIS) is an unusual tissue, which shows great promise for the repair of damaged tissues in humans. When the SIS is used as a surgical implant, the porcine-derived material is not rejected by the host immune system, and in fact stimulates the constructive re-modeling of damaged tissue. In dogs, these SIS scaffolds have been used to grow new arteries, tendons, and urinary bladders. Moreover, the SIS scaffold tissue seems to disappear from the implant region after a few months. The fate of this SIS tissue is of considerable importance if it is to be used in human tissue repair. SIS is obtained from pigs. We have labeled the SIS in several pigs by intraveneous administration of 14C enriched proline from the age of three weeks until they reach market weight. The prepared SIS was then implanted in dogs as scaffolds for urinary bladder patches. During the remaining life of each dog, blood, urine and feces samples were collected on a regular schedule. AMS analyses of these specimens were performed to measure the elimination rate of the SIS. At different intervals, the dogs were sacrificed. Tissue samples were analyzed by AMS to determine the whole-body distribution of the labeled SIS.

  11. Transforming growth factor-beta1 inhibits tissue engineering cartilage absorption via inducing the generation of regulatory T cells.

    Science.gov (United States)

    Li, Chichi; Bi, Wei; Gong, Yiming; Ding, Xiaojun; Guo, Xuehua; Sun, Jian; Cui, Lei; Yu, Youcheng

    2016-02-01

    The objective of the present study was to explore the mechanisms of transforming growth factor (TGF)-β1 inhibiting the absorption of tissue engineering cartilage. We transfected TGF-β1 gene into bone marrow mesenchymal stem cells (BMMSCs) and co-cultured with interferon (IFN)-γ and tumour necrosis factor (TNF)-α and CD4(+) CD25(-) T lymphocytes. We then characterized the morphological changes, apoptosis and characterization of chondrogenic-committed cells from TGF-β1(+) BMMSCs and explored their mechanisms. Results showed that BMMSCs apoptosis and tissue engineering cartilage absorption in the group with added IFN-γ and TNF-α were greater than in the control group. In contrast, there was little BMMSC apoptosis and absorption by tissue engineering cartilage in the group with added CD4(+) CD25(-) T lymphocytes; Foxp3(+) T cells and CD25(+) CD39(+) T cells were found. In contrast, no type II collagen or Foxp3(+) T cells or CD25(+) CD39(+) T cells was found in the TGF-β1(-) BMMSC group. The data suggest that IFN-γ and TNF-α induced BMMSCs apoptosis and absorption of tissue engineering cartilage, but the newborn regulatory T (Treg) cells inhibited the function of IFN-γ and TNF-α and protected BMMSCs and tissue engineering cartilage. TGF-β1not only played a cartilage inductive role, but also inhibited the absorption of tissue engineering cartilage. The pathway proposed in our study may simulate the actual reaction procedure after implantation of BMMSCs and tissue engineering cartilage in vivo. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Experimental study of the effect of Nd:YAG laser on dental hard tissues: comparison between multi-pulse and free-generation emission code

    International Nuclear Information System (INIS)

    Carballosa Amor, A.; Tellez Jimenez, H.; Ponce Flores, E.; Flores Reyes, T.

    2016-01-01

    The aim of this study is to compare and contrast the morphological changes on dental hard tissue when irradiated with a Nd: YAG laser both on multi-pulse mode, with a Q: Switch of Cr: YAG passive, and on free generation mode. The experimental sample consisted of 6 healthy third molars which were divided equally and randomly between the two emission methods. The depths of each perforation were measured by optical coherence tomography (OCT). It was noted that, despite being less energy in the multi-pulse mode, the first three shots in this achieved deeper cavities than the ones on the free generation mode. Also, less damage to surrounding tissue were obtained on multi-pulse mode. (Author)

  13. Nonthermal Ablation by Using Intravascular Oxygen Radical Generation with WST11: Dynamic Tissue Effects and Implications for Focal Therapy.

    Science.gov (United States)

    Kimm, Simon Y; Tarin, Tatum V; Monette, Sébastien; Srimathveeravalli, Govindarajan; Gerber, Daniel; Durack, Jeremy C; Solomon, Stephen B; Scardino, Peter T; Scherz, Avigdor; Coleman, Jonathan

    2016-10-01

    Purpose To examine the hypothesis that vascular-targeted photodynamic therapy (VTP) with WST11 and clinically relevant parameters can be used to ablate target tissues in a non-tumor-bearing large-animal model while selectively sparing blood vessels and collagen. Materials and Methods By using an institutional animal care and use committee-approved protocol, 68 ablations were performed in the kidneys (cortex and medulla) and livers of 27 adult pigs. Posttreatment evaluation was conducted with contrast material-enhanced computed tomography in the live animals at 24 hours. Immunohistochemistry was evaluated and histologic examination with hematoxylin-eosin staining was performed at 4 hours, 24 hours, and 7 days. Intravenous infusion of WST11 (4 mg per kilogram of body weight) was followed by using near-infrared illumination (753 nm for 20 minutes) through optical fibers prepositioned in target tissues by using a fixed template. Treated areas were scanned, measured, and statistically analyzed by using the Student t test and two-way analysis of variance. Results Focal WST11 VTP treatment in the liver and kidney by using a single optical fiber resulted in well-demarcated cylindrical zones of nonthermal necrosis concentrically oriented around the light-emitting diffuser, with no intervening viable parenchymal cells. The radius of ablated tissue increased from approximately 5 mm at 150 mW to approximately 7 mm at 415 mW (P the peripheral ablation zone, blood vessels at least 40 μm in diameter were selectively preserved and remained functional at 7 days. Ablated tissues exhibited progressive fibrosis and chronic inflammatory cell infiltrates. No histologic changes consistent with thermal injury were observed in blood vessels or collagen. The renal hilum and collecting system did not show treatment effect, despite treatment proximity. Conclusion WST11 VTP induces nonthermal tissue ablation in target tissue while preserving critical organ structures and bystander blood

  14. A Map of General and Specialized Chromatin Readers in Mouse Tissues Generated by Label-free Interaction Proteomics

    DEFF Research Database (Denmark)

    Eberl, H.C.; Mann, M.; Spruijt, C.G.

    2013-01-01

    , liver, kidney, and testis. A large class of proteins were specifically repelled by H3K4me3. Our screen reached near-saturation of direct interactors, most of which are ubiquitously expressed. In addition, it revealed a number of specialized readers in tissues such as testis. Apart from defining...

  15. Generation of Femtosecond Laser-Cut Decellularized Corneal Lenticule Using Hypotonic Trypsin-EDTA Solution for Corneal Tissue Engineering

    OpenAIRE

    Huh, Man-Il; Lee, Kyoung-Pil; Kim, Jeongho; Yi, Soojin; Park, Byeong-Ung; Kim, Hong Kyun

    2018-01-01

    Purpose. To establish an optimized and standardized protocol for the development of optimal scaffold for bioengineering corneal substitutes, we used femtosecond laser to process human corneal tissue into stromal lenticules and studied to find the most efficient decellularization method among various reagents with different tonicities. Methods. The decellularization efficacy of several agents (0.1%, 0.25%, and 0.5% of Triton X-100, SDS, and trypsin-EDTA (TE), resp.) with different tonicities w...

  16. Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter

    Science.gov (United States)

    Franceschini, Maria-Angela; Wallace, Don J.; Barbieri, Beniamino B.; Fantini, Sergio; Mantulin, William W.; Pratesi, Simone; Donzelli, Gian Paolo; Gratton, Enrico

    1997-08-01

    We present a re-engineered frequency-domain tissue oximeter operating in the near-infrared spectral region. This instrument is based on the multi-distance measurement protocol, which we have implemented in our original design by multiplexing multiple light sources. The new instrument uses intensity modulated (110 MHz) laser diodes emitting at 750 and 840 nm. The laser diodes are coupled to glass optical fibers (600 micrometer core diameter). The average light intensity delivered to the tissue is about 3 mW. The multiplexing electronics are based on solid state switches that allow for acquisition times per point as short as tens of milliseconds. Our tests on phantoms and in vivo with the new oximeter have shown significant improvement in terms of stability, reliability, and reproducibility with respect to the original prototype. Furthermore, by using optical fibers we achieve a high versatility in the design of the measuring probe, permitting custom design for various tissue contours and different measurements. To verify the improved performance of the new oximeter, we have performed an in vivo test consisting of monitoring the hemoglobin saturation (Y) and concentration (THC) on the calf of 18 healthy volunteers during walking and running routines.

  17. Effects of third generation mobile phone-emitted electromagnetic radiation on oxidative stress parameters in eye tissue and blood of rats.

    Science.gov (United States)

    Demirel, Soner; Doganay, Selim; Turkoz, Yusuf; Dogan, Zümrüt; Turan, Bahadir; Firat, Penpe Gul Bozgul

    2012-06-01

    To investigate the effects of electromagnetic radiation (EMR) emitted by a third generation (3G) mobile phone on the antioxidant and oxidative stress parameters in eye tissue and blood of rats. Eighteen Wistar albino rats were randomly assigned into two groups: Group I (n = 9) received a standardized a daily dose of 3G mobile phone EMR for 20 days, and Group II served as the control group (n = 9), receiving no exposure to EMR. Glutathione peroxidase (GSH-Px) and catalase (CAT) levels were measured in eye tissues; in addition, malondialdehyde (MDA) and reduced GSH levels were measured in blood. There was no significant difference between groups in GSH-Px (p = 0.99) and CAT (p = 0.18) activity in eye tissue. There was no significant difference between groups in MDA (p = 0.69) and GSH levels (p = 0.83) in blood. The results of this study suggest that under a short period of exposure, 3G mobile phone radiation does not lead to harmful effects on eye tissue and blood in rats.

  18. Generation of live piglets for the first time using sperm retrieved from immature testicular tissue cryopreserved and grafted into nude mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kaneko

    Full Text Available Cryopreservation of immature testicular tissues is essential for increasing the possibilities of offspring generation by testicular xenografting for agricultural or medical purposes. However, successful production of offspring from the sperm involved has never been reported previously. In the present study, therefore, using intracytoplasmic sperm injection (ICSI, we examined whether xenogeneic sperm obtained from immature pig testicular tissue after cryopreservation would have the capacity to produce live piglets. Testicular fragments from 9- to 11-day-old piglets were vitrified after 10- or 20-min immersion in vitrification solution containing ethylene glycol (EG, polyvinyl pyrrolidone (PVP and trehalose as cryoprotectants, and then stored in liquid nitrogen for more than 140 days. Thirty nude mice were assigned to each immersion-time group. Testicular fragments were transplanted under the back skin of castrated mice immediately after warming and removal of the cryoprotectants. Blood and testicular grafts were then recovered from the recipient mice on days 60, 120, 180 and 230-350 (day 0 =  grafting. Histological assessment of the testicular grafts and analyses of inhibin and testosterone production revealed no significant differences between the two immersion-time groups, indicating equal growth activity of the cryopreserved tissues. A single sperm obtained from a mouse in each group on day 230-350 was injected into an in vitro-matured porcine oocyte, and then the ICSI oocytes were transferred to the oviducts of estrus-synchronized recipient gilts. One out of 4 gilts that had received oocytes fertilized using sperm from the 10-min immersion group delivered 2 live piglets, and one of another 4 gilts from the 20-min group delivered 4 live piglets. Thus, we have successfully generated porcine offspring utilizing sperm from immature testicular tissues after cryopreservation and transplantation into nude mice. The present model using pigs will

  19. Heat generated by Er:YAG laser in the pulp chamber of teeth submitted to removal of dental tissue and composite resin

    Science.gov (United States)

    Zanin, Fatima; Brugnera, Aldo, Jr.; Pecora, Jesus D.; Pinheiro, Antonio; Spano, Julio; Barbin, Eduardo; Marchesan, Melissa A.

    2004-05-01

    The knowledge about and control of thermal energy produced by Er:YAG laser after irradiating hard dental tissues and compound resin is important because the pulp, like all vital biological tissue, has a certain capacity for supporting stimulus. The objective of this study was to analyze the thermal variation generated by Er:YAG laser (λ=2.94μm) during the preparation of a Class I cavity in the dental structure and in the removal of microhybrid Z100 (3M) compound resin. An evaluation was made of 30 maxillary human pre-molar teeth from the bank of the Endodontic Laboratory Center of Ribeirao Preto Dental School, Brasil. The sample was divided into 6 groups of 5 teeth each: Group 1, preparation of Class I cavity with Er:YAG laser (350mJ, 3Hz, 343 impulses, 120J, 113 seconds); Group 2, preparation of Class I cavity with Er:YAG laser (350mJ, 4Hz, 343 impulses, 120J, 81 seconds); Group 3, preparation of Class I cavity with Er:YAG laser (350mJ, 6Hz, 343 impulses, 120J, 58 seconds); Group 4, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 3Hz, 258 impulses, 90J, 85 seconds); Group 5, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 4Hz, 258 impulses, 90J, 67 seconds); Group 6, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 6Hz, 258 impulses, 42 seconds). The laser used was KaVo Key 2 (Biberach, Germany), λ=2,94μm, P=3 Watts, pulse duration of 250μs, with air-water cooling. The increase in temperature during dental preparation and the removal of the compound resin was evaluated by means of a Tektronix DMM916 Thermocouple (Consitec, Brasil). The results showed that the application of laser for the removal of the hard dental tissues and for the removal of compound resins with the pulse frequencies 3, 4 and 6 Hz did not generate heating greater than 3.1°C and remained within the histopathological limits permitted for pulp tissue (5.5°C) and there was a significant statistical

  20. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H2O2 in (peri)vascular tissue induced by sunlight and paraquat.

    Science.gov (United States)

    Vidović, Marija; Morina, Filis; Prokić, Ljiljana; Milić-Komić, Sonja; Živanović, Bojana; Jovanović, Sonja Veljović

    2016-11-01

    In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm -2 s -1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H 2 O 2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H 2 O 2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H 2 O 2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H 2 O 2 in signaling were discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Removal of reprogramming transgenes improves the tissue reconstitution potential of keratinocytes generated from human induced pluripotent stem cells.

    Science.gov (United States)

    Igawa, Ken; Kokubu, Chikara; Yusa, Kosuke; Horie, Kyoji; Yoshimura, Yasuhide; Yamauchi, Kaori; Suemori, Hirofumi; Yokozeki, Hiroo; Toyoda, Masashi; Kiyokawa, Nobutaka; Okita, Hajime; Miyagawa, Yoshitaka; Akutsu, Hidenori; Umezawa, Akihiro; Katayama, Ichiro; Takeda, Junji

    2014-09-01

    Human induced pluripotent stem cell (hiPSC) lines have a great potential for therapeutics because customized cells and organs can be induced from such cells. Assessment of the residual reprogramming factors after the generation of hiPSC lines is required, but an ideal system has been lacking. Here, we generated hiPSC lines from normal human dermal fibroblasts with piggyBac transposon bearing reprogramming transgenes followed by removal of the transposon by the transposase. Under this condition, we compared the phenotypes of transgene-residual and -free hiPSCs of the same genetic background. The transgene-residual hiPSCs, in which the transcription levels of the reprogramming transgenes were eventually suppressed, were quite similar to the transgene-free hiPSCs in a pluripotent state. However, after differentiation into keratinocytes, clear differences were observed. Morphological, functional, and molecular analyses including single-cell gene expression profiling revealed that keratinocytes from transgene-free hiPSC lines were more similar to normal human keratinocytes than those from transgene-residual hiPSC lines, which may be partly explained by reactivation of residual transgenes upon induction of keratinocyte differentiation. These results suggest that transgene-free hiPSC lines should be chosen for therapeutic purposes. ©AlphaMed Press.

  2. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    Science.gov (United States)

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  3. Three different and tissue-specific NAD-malic enzymes generated by alternative subunit association in Arabidopsis thaliana.

    Science.gov (United States)

    Tronconi, Marcos A; Maurino, Verónica G; Andreo, Carlos S; Drincovich, María F

    2010-04-16

    The Arabidopsis thaliana genome contains two genes encoding the mitochondrial NAD-malic enzyme (NAD-ME), NAD-ME1 (At2g13560) and NAD-ME2 (At4g00570). The characterization of recombinant NAD-ME1 and -2 indicated that both enzymes assemble as active homodimers; however, a heterodimeric enzyme (NAD-MEH) can also be detected by electrophoretic studies. To analyze the metabolic contribution of each enzymatic entity, NAD-MEH was obtained by a co-expression-based recombinant approach, and its kinetic and regulatory properties were analyzed. The three NAD-MEs show similar kinetic properties, although they differ in the regulation by several metabolic effectors. In this regard, whereas fumarate activates NAD-ME1 and CoA activates NAD-ME2, both compounds act synergistically on NAD-MEH activity. The characterization of two chimeric enzymes between NAD-ME1 and -2 allowed specific domains of the primary structure, which are involved in the differential allosteric regulation, to be identified. NAD-ME1 and -2 subunits showed a distinct pattern of accumulation in the separate components of the floral organ. In sepals, the NAD-ME1 subunit is present at a slightly higher proportion than the NAD-ME2 subunit, and thus, NAD-MEH and NAD-ME1 act in concert in this tissue. On the other hand, NAD-ME2 is the only isoform present in anthers. In view of the different properties of NAD-ME1, -2, and -H, we suggest that mitochondrial NAD-ME activity may be regulated by varying native association in vivo, rendering enzymatic entities with distinct allosteric regulation to fulfill specific roles. The presence of three different NAD-ME entities, which originate by alternative associations of two subunits, is suggested to be a novel phenomenon unique to plant mitochondria.

  4. Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin

    Science.gov (United States)

    Migliarini, Sara; Pacini, Giulia; Pasqualetti, Massimo

    2015-01-01

    Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84–178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2null/null mice. Finally, we set up

  5. Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin.

    Directory of Open Access Journals (Sweden)

    Barbara Pelosi

    Full Text Available Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84-178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2null/null mice

  6. Analytical and numerical solutions of the potential and electric field generated by different electrode arrays in a tumor tissue under electrotherapy.

    Science.gov (United States)

    Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M

    2011-09-24

    Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.

  7. Analytical and numerical solutions of the potential and electric field generated by different electrode arrays in a tumor tissue under electrotherapy

    Directory of Open Access Journals (Sweden)

    Bergues Cabrales Jesús M

    2011-09-01

    Full Text Available Abstract Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola. Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic. Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.

  8. Efficient Generation of Human Embryonic Stem Cell-Derived Cardiac Progenitors Based on Tissue-Specific Enhanced Green Fluorescence Protein Expression

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I.; Sarkadi, Balázs

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFPhigh rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFPhigh rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFPhigh rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications. PMID:24734786

  9. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    Science.gov (United States)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Alteration of gene expression in Pisum sativum tissue cultures caused by the free radical-generating agent 2,2`-azobis (2-amidinipropane) dihydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Henkow, L. [Sveriges Lantbruksuniv., Inst. foer Vaextfoeraedling, Uppsala (Sweden); Strid, Aa.; Rydstroem, J. [Goeteborgs Univ. och Chalmers Tekniska Hoegskola, Inst. foer Biokemi och Biofysik, Goeteborg (Sweden); Berglund, T.; Ohlsson, A.B. [Kungliga Tekniska Hoegskolan, Inst. foer Biokemi och biokemisk Teknologi, Stockholm (Sweden)

    1996-04-01

    Root-differentiated tissue cultures (PS-R) from Pisum sativum (cv. Greenfeast) were exposed to a 5 mM solution of the free radical-generating compound 2,2`-azobis (2-amidinopropane) dihydrochloride (AAPH). The levels of mRNA transcripts for two genes were examined: chs2, encoding a chalcone synthase isozyme, and cab, encoding the chlorophyll a/b-binding protein of the light-harvesting antenna complex. In light-grown PS-R, cab mRNA transcript levels decreased to 14% of controls after 6 h of exposure, whereas chs2 mRNA levels increased 50-fold. In dark-grown PS-R, chs2 mRNA transcripts increased by 40-fold compared with the controls. Glutathione determination inlight-grown PS-R showed no substantial difference in total glutathione (GSH{sub tot}), whereas oxidized glutathione (GSSG) increased by 66% after 12 h of exposure. However, in dark-grown PS-R a decrease in both GSH{sub tot} and GSSG after 6 h was followed by an increase of about 70%, as compared with the controls, after 12 h of exposure. In conclusion AAPH generated oxidative stress, reflected in changed glutathione levels and induced expression of the chs2 gene of the flavonoid biosynthetic pathway and also caused a decreased level of mRNA for the photosynthetic cab gene. (au) 39 refs.

  11. Assessment of the quality of DNA from various formalin-fixed paraffin-embedded (FFPE) tissues and the use of this DNA for next-generation sequencing (NGS) with no artifactual mutation.

    Science.gov (United States)

    Einaga, Naoki; Yoshida, Akio; Noda, Hiroko; Suemitsu, Masaaki; Nakayama, Yuki; Sakurada, Akihisa; Kawaji, Yoshiko; Yamaguchi, Hiromi; Sasaki, Yasushi; Tokino, Takashi; Esumi, Mariko

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues used for pathological diagnosis are valuable for studying cancer genomics. In particular, laser-capture microdissection of target cells determined by histopathology combined with FFPE tissue section immunohistochemistry (IHC) enables precise analysis by next-generation sequencing (NGS) of the genetic events occurring in cancer. The result is a new strategy for a pathological tool for cancer diagnosis: 'microgenomics'. To more conveniently and precisely perform microgenomics, we revealed by systematic analysis the following three details regarding FFPE DNA compared with paired frozen tissue DNA. 1) The best quality of FFPE DNA is obtained by tissue fixation with 10% neutral buffered formalin for 1 day and heat treatment of tissue lysates at 95°C for 30 minutes. 2) IHC staining of FFPE tissues decreases the quantity and quality of FFPE DNA to one-fourth, and antigen retrieval (at 120°C for 15 minutes, pH 6.0) is the major reason for this decrease. 3) FFPE DNA prepared as described herein is sufficient for NGS. For non-mutated tissue specimens, no artifactual mutation occurs during FFPE preparation, as shown by precise comparison of NGS of FFPE DNA and paired frozen tissue DNA followed by validation. These results demonstrate that even FFPE tissues used for routine clinical diagnosis can be utilized to obtain reliable NGS data if appropriate conditions of fixation and validation are applied.

  12. The hookworm tissue inhibitor of metalloproteases (Ac-TMP-1 modifies dendritic cell function and induces generation of CD4 and CD8 suppressor T cells.

    Directory of Open Access Journals (Sweden)

    Carmen Cuéllar

    Full Text Available Hookworm infection is a major cause of disease burden for humans. Recent studies have described hookworm-related immunosuppression in endemic populations and animal models. A Tissue Inhibitor of Metalloproteases (Ac-TMP-1 has been identified as one of the most abundant proteins released by the adult parasite. We investigated the effect of recombinant Ac-TMP-1 on dendritic cell (DC and T cell function. Splenic T cells from C57BL/6 mice injected with Ac-TMP-1 showed reduced proliferation to restimulation with anti CD3 or bystander antigens such as OVA. Incubation of bone marrow-derived DCs with Ac-TMP-1 decreased MHC Class I and, especially, Class II expression but increased CD86 and IL-10 expression. Co-incubation of splenic T cells with DCs pulsed with Ac-TMP-1 induced their differentiation into CD4+ and, particularly, CD8+ CD25+Foxp3+ T cells that expressed IL-10. These cells were able to suppress proliferation of naïve and activated CD4+ T cells by TGF-Beta-dependent (CD4+ suppressors or independent (CD8+ suppressors mechanisms. Priming of DCs with non-hookworm antigens, such as OVA, did not result in the generation of suppressor T cells. These data indicate that Ac-TMP-1 initiates the development of a regulatory response through modifications in DC function and generation of suppressor T cells. This is the first report to propose a role of suppressor CD8+ T cells in gastrointestinal helminthic infections.

  13. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM).

    Science.gov (United States)

    Steinbach, G; Pawlak, K; Pomozi, I; Tóth, E A; Molnár, A; Matkó, J; Garab, G

    2014-02-24

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples-e.g. cells and tissues-measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the 'conventional' imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  14. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification....... Although other methods exist, we concentrate on Bayesian modeling approaches, in which generative image models are constructed and subsequently ‘inverted’ to obtain automated segmentations. This general framework encompasses a large number of segmentation methods, including those implemented in widely used...

  15. In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential.

    Science.gov (United States)

    Ando, Wataru; Tateishi, Kosuke; Katakai, Daisuke; Hart, David A; Higuchi, Chikahisa; Nakata, Ken; Hashimoto, Jun; Fujie, Hiromichi; Shino, Konsei; Yoshikawa, Hideki; Nakamura, Norimasa

    2008-12-01

    The purpose of this study was to characterize a tissue-engineered construct (TEC) generated with human synovial mesenchymal stem cells (MSCs). MSCs were cultured in medium with ascorbic acid 2-phosphate (Asc-2P) and were subsequently detached from the substratum. The detached cell/matrix complex spontaneously contracted to develop a basic TEC. The volume of the TEC assessed by varying initial cell density showed that it was proportional to initial cell densities up to 4 x 10(5) cells/cm(2). Assessment of the mechanical properties of TEC using a custom device showed that the load at failure and stiffness of the constructs significantly increased with time of culture in the presence of Asc-2P, while in the absence of Asc-2P, the constructs were mechanically weak. Thus, the basic TEC possesses sufficiently self-supporting mechanical properties in spite of not containing artificial scaffolding. TEC further cultured in chondrogenic media exhibited positive alcian blue staining with elevated expression of chondrogenic marker genes. Based on these findings, such human TEC may be a promising method to promote cartilage repair for future clinical application.

  16. Advanced Diffusion-weighted Imaging Modeling for Prostate Cancer Characterization: Correlation with Quantitative Histopathologic Tumor Tissue Composition-A Hypothesis-generating Study.

    Science.gov (United States)

    Hectors, Stefanie J; Semaan, Sahar; Song, Christopher; Lewis, Sara; Haines, George K; Tewari, Ashutosh; Rastinehad, Ardeshir R; Taouli, Bachir

    2018-03-01

    Purpose To correlate quantitative diffusion-weighted imaging (DWI) parameters derived from conventional monoexponential DWI, stretched exponential DWI, diffusion kurtosis imaging (DKI), and diffusion-tensor imaging (DTI) with quantitative histopathologic tumor tissue composition in prostate cancer in a preliminary hypothesis-generating study. Materials and Methods This retrospective institutional review board-approved study included 24 patients with prostate cancer (mean age, 63 years) who underwent magnetic resonance (MR) imaging, including high-b-value DWI and DTI at 3.0 T, before prostatectomy. The following parameters were calculated in index tumors and nontumoral peripheral zone (PZ): apparent diffusion coefficient (ADC) obtained with monoexponential fit (ADC ME ), ADC obtained with stretched exponential modeling (ADC SE ), anomalous exponent (α) obtained at stretched exponential DWI, ADC obtained with DKI modeling (ADC DKI ), kurtosis with DKI, ADC obtained with DTI (ADC DTI ), and fractional anisotropy (FA) at DTI. Parameters in prostate cancer and PZ were compared by using paired Student t tests. Pearson correlations between tumor DWI and quantitative histologic parameters (nuclear, cytoplasmic, cellular, stromal, luminal fractions) were determined. Results All DWI parameters were significantly different between prostate cancer and PZ (P < .012). ADC ME , ADC SE , and ADC DKI all showed significant negative correlation with cytoplasmic and cellular fractions (r = -0.546 to -0.435; P < .034) and positive correlation with stromal fractions (r = 0.619-0.669; P < .001). ADC DTI and FA showed correlation only with stromal fraction (r = 0.512 and -0.413, respectively; P < .045). α did not correlate with histologic parameters, whereas kurtosis showed significant correlations with histopathologic parameters (r = 0.487, 0.485, -0.422 for cytoplasmic, cellular, and stromal fractions, respectively; P < .040). Conclusion Advanced DWI methods showed significant

  17. In-vivo Generation of Dental Pulp-Like Tissue Using Human Pulpal Stem Cells, a Collagen Scaffold and Dentin Matrix Protein 1 Following Subcutaneous Transplantation in Mice

    Science.gov (United States)

    Prescott, Rebecca S.; Alsanea, Rajaa; Fayad, Mohamed I.; Johnson, Bradford R.; Wenckus, Christopher S.; Hao, Jianjun; John, Asha S.; George, Anne

    2008-01-01

    The presence of a perforation is known to significantly compromise the outcome of endodontic treatment. One potential use of regenerative endodontic therapy may be the repair of root canal perforations. In addition to nutrients and systemic in-situ interactions, the three main components believed to be essential for tissue regeneration are: stem cells, scaffold, and growth factors. This study investigated the role of each component of the tissue engineering triad in the organization and differentiation of Dental Pulp Stem Cells (DPSCs) in a simulated furcal perforation site using a mouse model. Collagen served as the scaffold and dentin matrix protein 1 (DMP1) was the growth factor. Materials were placed in simulated perforation sites in dentin slices. MTA was the control repair material. At six weeks, the animals were sacrificed and the perforation sites were evaluated by light microscopy and histological staining. Organization of newly derived pulp tissue was seen in the group containing the triad of DPSCs, a collagen scaffold, and DMP1. The other four groups did not demonstrate any apparent tissue organization. Under the conditions of the present study, it may be concluded that the triad of DPSCs, a collagen scaffold, and DMP1 can induce an organized matrix formation similar to that of pulpal tissue, which may lead to hard tissue formation. PMID:18358888

  18. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined two photon fluorescence, second-harmonic generation and CARS microscopy

    Science.gov (United States)

    Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.

    2014-02-01

    Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires a morpho-functional approach. Multimodal non-linear microscopy has the potential to bridge this gap by providing morpho-functional information on the examined tissues in a label-free way. Here we employed multiple non-linear microscopy techniques, including CARS, TPF, and SHG to provide intrinsic optical contrast from various tissue components in both arterial wall and atherosclerotic plaques. CARS and TPF microscopy were used to respectively image lipid depositions within plaques and elastin in the arterial wall. Cholesterol deposition in the lumen and collagen in the arterial wall were selectively imaged by SHG microscopy and distinguished by forward-backward SHG ratio. Image pattern analysis allowed characterizing collagen organization in different tissue regions. Different values of fiber mean size, distribution and anisotropy are calculated for lumen and media prospectively allowing for automated classification of atherosclerotic lesions. The presented method represents a promising diagnostic tool for evaluating atherosclerotic tissue and has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.

  19. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  20. Tissue bionics: examples in biomimetic tissue engineering.

    Science.gov (United States)

    Green, David W

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  1. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  2. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface

    NARCIS (Netherlands)

    Weeterings, Cees; de Groot, Philip G.; Adelmeijer, Jelle; Lisman, Ton

    2008-01-01

    Several lines of evidence suggest that recombinant factor VIIa (rFVIIa) is able to activate factor X on an activated platelet, in a tissue factor-independent manner. We hypothesized that, besides the anionic surface, a receptor on the activated platelet surface is involved in this process. Here, we

  3. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering

    NARCIS (Netherlands)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A. M.; Poot, Andre A.; Harmsen, Martin C.

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived

  4. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering

    NARCIS (Netherlands)

    Parvizi, M.; Bolhuis-Versteeg, Lydia A.M.; Poot, Andreas A.; Harmsen, M.C.

    2016-01-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived

  5. Tissue engineered aortic valve

    OpenAIRE

    Dohmen, P M

    2012-01-01

    Several prostheses are available to replace degenerative diseased aortic valves with unique advantages and disadvantages. Bioprotheses show excellent hemodynamic behavior and low risk of thromboembolic complications, but are limited by tissue deterioration. Mechanical heart valves have extended durability, but permanent anticoagulation is mandatory. Tissue engineering created a new generation heart valve, which overcome limitations of biological and mechanical heart valves due to remodelling,...

  6. What can surrogate tissues tell us about the oxidative stress status of the prostate? A hypothesis-generating in-vivo study.

    Directory of Open Access Journals (Sweden)

    Kaitlyn F Whelan

    Full Text Available BACKGROUND: Prostatic oxidative stress (OS is androgen-regulated and a key event in the development of prostate cancer (PC. Thus, reducing prostatic OS is an attractive target for PC prevention strategies. We sought to determine if the individual's prostatic OS status can be determined by examining the OS in surrogate androgen regulated tissues from the same host. METHODOLOGY/PRINCIPAL FINDINGS: Adult male rats were divided equally into three groups: (A- underwent bilateral orchiectomy, (A+ received continuous testosterone supplementation or (C were eugonadal. Serum testosterone, 8-hydroxy-2-deoxyguanosine (8-OHdG and anti-oxidative capacity (AOC were determined after 72 hrs and the prostate, salivary glands and the hair follicles' Dermal Papillary Cells (DPC from each animal were harvested, embedded into tissue microarray and examined for the expression of 8-OHdG by immuno-staining. Multi-variate regression was used to analyze inter-individual differences in OS staining within each androgen group and if there was a correlation between serum testosterone, 8-OHdG or AOC and Prostatic OS in tissues of same host. At the group level, 8-OHdG staining intensity directly correlated with serum testosterone levels in all three target tissues (p>0.01, Mann-Whitney Test. Although different levels of prostatic OS were noted between rats with similar serum testosterone levels and similar systemic OS measurements (p<0.01, there were no intra-individual differences between the OS status of the prostate and DPC (p<0.05. CONCLUSIONS/SIGNIFICANCE: The level of prostatic OS is correlated with the OS of hair follicles and salivary glands, but not systemic OS. Moreover, systemic AOC negatively correlates with both prostatic and hair follicle OS. This suggests that hair follicle and salivary gland OS can serve as surrogate markers for the efficiency of OS reduction. This has tremendous potential for the rational evaluation of patient response to prevention strategies.

  7. Modality and risk management for orthodontic extrusion procedures in interdisciplinary treatment for generating proper bone and tissue contours for the planned implant: a case report.

    Science.gov (United States)

    Maeda, Sachiko; Sasaki, Takeshi

    2015-12-01

    In adult interdisciplinary treatments with using dental implants, limited orthodontic treatment, especially orthodontic extrusion (OE), offers many benefits by both correcting teeth alignment and by contributing to the regeneration of periodontal tissues. However, orthodontic procedures carry some risks and unpredictabilities that might compromise tooth and/or periodontal tissue health. Especially in complex cases, it is difficult to decide which orthodontic treatment modalities should be combined, in what sequences they should be applied, and what their force systems and treatment times are.To achieve optimum results, some cases require two or more OEs to the same site being carried out at different times while taking the treatment effects into consideration. Such staged OE offers minimum intervention and maximum efficiency. In this case report, OE was first applied for orthodontic extraction. After bone regeneration followed by an implant placement and another surgical operation, a second OE was applied to align the inclination of an adjacent tooth. As a result, a predictable prognosis of implants as well as greatly improved esthetics and periodontal tissue health were achieved.

  8. Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS: Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE Samples

    Directory of Open Access Journals (Sweden)

    Gladys Arreaza

    2016-09-01

    Full Text Available In cancer drug discovery, it is important to investigate the genetic determinants of response or resistance to cancer therapy as well as factors that contribute to adverse events in the course of clinical trials. Despite the emergence of new technologies and the ability to measure more diverse analytes (e.g., circulating tumor cell (CTC, circulating tumor DNA (ctDNA, etc., tumor tissue is still the most common and reliable source for biomarker investigation. Because of its worldwide use and ability to preserve samples for many decades at ambient temperature, formalin-fixed, paraffin-embedded tumor tissue (FFPE is likely to be the preferred choice for tissue preservation in clinical practice for the foreseeable future. Multiple analyses are routinely performed on the same FFPE samples (such as Immunohistochemistry (IHC, in situ hybridization, RNAseq, DNAseq, TILseq, Methyl-Seq, etc.. Thus, specimen prioritization and optimization of the isolation of analytes is critical to ensure successful completion of each assay. FFPE is notorious for producing suboptimal DNA quality and low DNA yield. However, commercial vendors tend to request higher DNA sample mass than what is actually required for downstream assays, which restricts the breadth of biomarker work that can be performed. We evaluated multiple genomics service laboratories to assess the current state of NGS pre-analytical processing of FFPE. Significant differences in pre-analytical capabilities were observed. Key aspects are highlighted and recommendations are made to improve the current practice in translational research.

  9. Waiting to be born: the ethical implications of the generation of "NUBorn" and "NUAge" mice from pre-pubertal ovarian tissue.

    Science.gov (United States)

    Zoloth, Laurie; Backhus, Leilah; Woodruff, Teresa

    2008-06-01

    Oncofertility is one of the 9 NIH Roadmap Initiatives, federal grants intended to explore previously intractable questions, and it describes a new field that exists in the liminal space between cancer treatment and its sequelae, IVF clinics and their yearning, and basic research in cell growth, biomaterials, and reproductive science and its tempting promises. Cancer diagnoses, which were once thought universally fatal, now often entail management of a chronic disease. Yet the therapies are rigorous, must start immediately, and in many cases result in premature failure of the body's reproductive ability. In women, this loss is especially poignant; unlike the routine storage of sperm, which is done in men and boys facing similar treatment decisions, freezing oocytes in anticipation of fertility loss is not possible in most cases, and creating an embryo within days of diagnosis raises significant moral, social and medical challenges. Oncofertility is the study of how to harvest ovarian tissue in women facing cancer to preserve their gametes for future use with IVF, thus allowing the decisions about childbearing to be deferred and reproductive choices to be preserved. The research endeavor uses the capacity of the ovarian follicle to produce eggs in vitro. Developing the human follicle to ovulate successfully outside the body is scientifically difficult and ethically challenging. Infertility is linked to long-standing religious and moral traditions, and is intertwined with deeply contentious social narratives about women, families, illness and birth. Is the research morally permissible? Perhaps imperative if understood as a repair from iatrogenic harms? How are considerations of justice central to the work? How will vulnerable subjects be protected? What are the moral implications of the work for women, children and families? What are the implications for society if women could store ovarian tissue as a way of stopping the biological clock? What are the moral

  10. Differential effects of selective cyclooxygenase (COX)-1 and COX-2 inhibitors on anorexic response and prostaglandin generation in various tissues induced by zymosan.

    Science.gov (United States)

    Naoi, Kazuhisa; Kogure, Suguru; Saito, Masataka; Hamazaki, Tomohito; Watanabe, Shiro

    2006-07-01

    We have shown that anorexic response is induced by intraperitoneal injection of zymosan in mice, although the role of prostaglandins in this response is relatively unknown as compared with lipopolysaccharide (LPS)-induced anorexic response. Indomethacin (0.5 and 2.0 mg/kg), a non-selective cyclooxygenase (COX) inhibitor, as well as meloxicam (0.5 mg/kg), a selective COX-2 inhibitor, but not FR122047 (2.0 mg/kg), a selective COX-1 inhibitor, attenuated zymosan-induced anorexia. Zymosan injection elevated COX-2 expression in brain and liver but not in small intestine and colon. Meloxicam (0.5 mg/kg) and FR122047 treatment (2.0 mg/kg) similarly suppressed the generation of brain prostaglandin E(2) (PGE(2)) and peritoneal prostacyclin (PGI(2)) upon zymosan injection. PGE(2) generation in liver upon zymosan injection was suppressed by meloxicam (0.5 mg/kg) but not by FR122047 treatment (2.0 mg/kg). Our observations suggest that COX-2 plays an important role in zymosan-induced anorexia, which is a similar feature in LPS-induced anorexic response. However, non-selective inhibition by selective COX-1 and COX-2 inhibitors of brain PGE(2) generation upon zymosan injection does not support the role of COX-2 expressed in brain in zymosan-induced anorexic response. PGE(2) generation in liver may account for peripheral role of COX-2 in zymosan-induced anorexic response.

  11. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  12. SU-G-JeP2-01: A New Approach for MR-Only Treatment Planning: Tissue Segmentation-Based Pseudo-CT Generation Using T1-Weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Leszczynski, K [N Eastern Ontario Cancer Center, Sudbury, ON (Canada); Lee, Y; Chugh, B; Tseng, C; Campbell, M; Sahgal, A [Sunnybrook Health Sciences Center, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: To evaluate MR-only treatment planning for brain Stereotactic Ablative Radiotherapy (SABR) based on pseudo-CT (pCT) generation using one set of T1-weighted MRI. Methods: T1-weighted MR and CT images from 12 patients who were eligible for brain SABR were retrospectively acquired for this study. MR-based pCT was generated by using a newly in-house developed algorithm based on MR tissue segmentation and voxel-based electron density (ED) assignment (pCTv). pCTs using bulk density assignment (pCTb where bone and soft tissue were assigned 800HU and 0HU,respectively), and water density assignment (pCTw where all tissues were assigned 0HU) were generated for comparison of ED assignment techniques. The pCTs were registered with CTs and contours of radiation targets and Organs-at-Risk (OARs) from clinical CT-based plans were copied to co-registered pCTs. Volumetric-Modulated-Arc-Therapy(VMAT) plans were independently created for pCTv and CT using the same optimization settings and a prescription (50Gy/10 fractions) to planning-target-volume (PTV) mean dose. pCTv-based plans and CT-based plans were compared with dosimetry parameters and monitor units (MUs). Beam fluence maps of CT-based plans were transferred to co-registered pCTs, and dose was recalculated on pCTs. Dose distribution agreement between pCTs and CT plans were quantified using Gamma analysis (2%/2mm, 1%/1mm with a 10% cut-off threshold) in axial, coronal and sagittal planes across PTV. Results: The average differences of PTV mean and maximum doses, and monitor units between independently created pCTv-based and CT-based plans were 0.5%, 1.5% and 1.1%, respectively. Gamma analysis of dose distributions of the pCTs and the CT calculated using the same fluence map resulted in average agreements of 92.6%/79.1%/52.6% with 1%/1mm criterion, and 98.7%/97.4%/71.5% with 2%/2mm criterion, for pCTv/CT, pCTb/CT and pCTw/CT, respectively. Conclusion: Plans produced on Voxel-based pCT is dosimetrically more similar to

  13. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    Science.gov (United States)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  14. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    International Nuclear Information System (INIS)

    Steinbach, G; Pawlak, K; Garab, G; Pomozi, I; Tóth, E A; Molnár, A; Matkó, J

    2014-01-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316–25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM. (paper)

  15. Identification and Functional Annotation of Genes Differentially Expressed in the Reproductive Tissues of the Olive Tree (Olea europaeaL.) through the Generation of Subtractive Libraries.

    Science.gov (United States)

    Zafra, Adoración; Carmona, Rosario; Traverso, José A; Hancock, John T; Goldman, Maria H S; Claros, M Gonzalo; Hiscock, Simon J; Alche, Juan D

    2017-01-01

    The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of

  16. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  17. Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions

    Directory of Open Access Journals (Sweden)

    Ruiz Manuel

    2008-10-01

    Full Text Available Abstract Background Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Results Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species. Gene Ontology (GO annotation was applied to distribute the ESTs among the main GO categories. A specific information system (ESTtik was constructed to process, store and manage this EST collection allowing the user to query a database. To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection. A large collection of new genetic markers was provided by this ESTs collection. Conclusion This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow

  18. Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions.

    Science.gov (United States)

    Argout, Xavier; Fouet, Olivier; Wincker, Patrick; Gramacho, Karina; Legavre, Thierry; Sabau, Xavier; Risterucci, Ange Marie; Da Silva, Corinne; Cascardo, Julio; Allegre, Mathilde; Kuhn, David; Verica, Joseph; Courtois, Brigitte; Loor, Gaston; Babin, Regis; Sounigo, Olivier; Ducamp, Michel; Guiltinan, Mark J; Ruiz, Manuel; Alemanno, Laurence; Machado, Regina; Phillips, Wilberth; Schnell, Ray; Gilmour, Martin; Rosenquist, Eric; Butler, David; Maximova, Siela; Lanaud, Claire

    2008-10-30

    Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species.Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories.A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database.To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection.A large collection of new genetic markers was provided by this ESTs collection. This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high density gene map of T. cacao

  19. Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions

    Science.gov (United States)

    Argout, Xavier; Fouet, Olivier; Wincker, Patrick; Gramacho, Karina; Legavre, Thierry; Sabau, Xavier; Risterucci, Ange Marie; Da Silva, Corinne; Cascardo, Julio; Allegre, Mathilde; Kuhn, David; Verica, Joseph; Courtois, Brigitte; Loor, Gaston; Babin, Regis; Sounigo, Olivier; Ducamp, Michel; Guiltinan, Mark J; Ruiz, Manuel; Alemanno, Laurence; Machado, Regina; Phillips, Wilberth; Schnell, Ray; Gilmour, Martin; Rosenquist, Eric; Butler, David; Maximova, Siela; Lanaud, Claire

    2008-01-01

    Background Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Results Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species. Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories. A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database. To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection. A large collection of new genetic markers was provided by this ESTs collection. Conclusion This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high

  20. Tissue Photolithography

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil; Shibata, Darryl; Taylor, Clive

    2011-01-01

    Tissue lithography will enable physicians and researchers to obtain macromolecules with high purity (greater than 90 percent) from desired cells in conventionally processed, clinical tissues by simply annotating the desired cells on a computer screen. After identifying the desired cells, a suitable lithography mask will be generated to protect the contents of the desired cells while allowing destruction of all undesired cells by irradiation with ultraviolet light. The DNA from the protected cells can be used in a number of downstream applications including DNA sequencing. The purity (i.e., macromolecules isolated form specific cell types) of such specimens will greatly enhance the value and information of downstream applications. In this method, the specific cells are isolated on a microscope slide using photolithography, which will be faster, more specific, and less expensive than current methods. It relies on the fact that many biological molecules such as DNA are photosensitive and can be destroyed by ultraviolet irradiation. Therefore, it is possible to protect the contents of desired cells, yet destroy undesired cells. This approach leverages the technologies of the microelectronics industry, which can make features smaller than 1 micrometer with photolithography. A variety of ways has been created to achieve identification of the desired cell, and also to designate the other cells for destruction. This can be accomplished through chrome masks, direct laser writing, and also active masking using dynamic arrays. Image recognition is envisioned as one method for identifying cell nuclei and cell membranes. The pathologist can identify the cells of interest using a microscopic computerized image of the slide, and appropriate custom software. In one of the approaches described in this work, the software converts the selection into a digital mask that can be fed into a direct laser writer, e.g. the Heidelberg DWL66. Such a machine uses a metalized glass plate (with

  1. Technical Advances for the Clinical Genomic Evaluation of Sudden Cardiac Death: Verification of Next-Generation Sequencing Panels for Hereditary Cardiovascular Conditions Using Formalin-Fixed Paraffin-Embedded Tissues and Dried Blood Spots.

    Science.gov (United States)

    Baudhuin, Linnea M; Leduc, Charles; Train, Laura J; Avula, Rajeswari; Kluge, Michelle L; Kotzer, Katrina E; Lin, Peter T; Ackerman, Michael J; Maleszewski, Joseph J

    2017-12-01

    Postmortem genetic testing for heritable cardiovascular (CV) disorders is often lacking because ideal specimens (ie, whole blood) are not retained routinely at autopsy. Formalin-fixed paraffin-embedded tissue (FFPET) is ubiquitously collected at autopsy, but DNA quality hampers its use with traditional sequencing methods. Targeted next-generation sequencing may offer the ability to circumvent such limitations, but a method has not been previously described. The primary aim of this study was to develop and evaluate the use of FFPET for heritable CV disorders via next-generation sequencing. Nineteen FFPET (heart) and blood (whole blood or dried blood spot) specimens underwent targeted next-generation sequencing using a custom panel of 101 CV-associated genes. Nucleic acid yield and quality metrics were evaluated in relation to FFPET specimen age (6 months to 15 years; n=14) and specimen type (FFPET versus whole blood and dried blood spot; n=12). Four FFPET cases with a clinical phenotype of heritable CV disorder were analyzed. Accuracy and precision were 100% concordant between all sample types, with read depths >100× for most regions tested. Lower read depth, as low as 40×, was occasionally observed with FFPET and dried blood spot. High-quality DNA was obtained from FFPET samples as old as 15 years. Genomic analysis of FFPET from the 4 phenotype-positive/genotype unknown cases all revealed putative disease-causing variants. Similar performance characteristics were observed for next-generation sequencing of FFPET, whole blood, and dried blood spot in the evaluation of inherited CV disorders. Although blood is preferable for genetic analyses, this study offers an alternative when only FFPET is available. © 2017 American Heart Association, Inc.

  2. Tissue types (image)

    Science.gov (United States)

    There are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue ... and binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of ...

  3. Force transmission in epithelial tissues.

    Science.gov (United States)

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  4. The (re)generation of splenic tissue

    NARCIS (Netherlands)

    Hovius, J. W. R.; Verberne, H. J.; Bennink, R. J.; Blok, W. L.

    2010-01-01

    A 48-year-old man with a history of a traumatic splenic rupture followed by splenectomy at the age of 5 years was referred to the outpatient clinic with markedly elevated liver enzymes. He was diagnosed with alcoholic liver cirrhosis. Ultrasound of the upper abdomen revealed hepatomegaly and

  5. The (re)generation of splenic tissue

    OpenAIRE

    Hovius, J W R; Verberne, H J; Bennink, R J; Blok, W L

    2010-01-01

    A 48-year-old man with a history of a traumatic splenic rupture followed by splenectomy at the age of 5 years was referred to the outpatient clinic with markedly elevated liver enzymes. He was diagnosed with alcoholic liver cirrhosis. Ultrasound of the upper abdomen revealed hepatomegaly and suggested a central mass in the liver. Subsequent MRI of the abdomen did not show a hepatic mass, but revealed multiple intraperitoneal and retroperitoneal ovoid structures with a maximum diameter of 3 cm...

  6. Tissue Classification

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    The project began as a e ort to support InLight and Lumidigm. With the sale of the companies to a non-New Mexico entity, the project then focused on supporting a new company Medici Technologies. The Small Business (SB) is attempting to quantify glucose in tissue using a series of short interferometer scans of the nger. Each scan is produced from a novel presentation of the nger to the device. The intent of the project is to identify and, if possible, implement improved methods for classi cation, feature selection, and training to improve the performance of predictive algorithms used for tissue classi cation.

  7. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    maintained their neurogenic potential throughout 77 days of propagation, while the ability of anterior NTS to generate neurons severely declined from day 40. The present procedure describes isolation and long-term expansion of forebrain SVZ tissue with potential preservation of the endogenous cellular......By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... derived from three rostro-caudal levels of the lateral ventricles (anterior, intermediate and posterior) and propagated separately. Explants from all three levels produced proliferating NTS, but "anterior" NTS in general grew to smaller sizes than "intermediate" and "posterior" NTS. Posterior NTS moreover...

  8. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  9. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  10. Transcatheter tissue engineered heart valves.

    Science.gov (United States)

    Emmert, Maximilian Y; Weber, Benedikt; Falk, Volkmar; Hoerstrup, Simon P

    2014-01-01

    Valvular heart disease represents a leading cause of mortality worldwide. Transcatheter heart valve replacement techniques have been recently introduced into the clinical routine expanding the treatment options for affected patients. However, despite this technical progress toward minimally invasive, transcatheter strategies, the available heart valve prostheses for these techniques are bioprosthetic and associated with progressive degeneration. To overcome such limitations, the concept of heart valve tissue engineering has been repeatedly suggested for future therapy concepts. Ideally, a clinically relevant heart valve tissue engineering concept would combine minimally invasive strategies for both, living autologous valve generation as well as valve implantation. Therefore, merging transcatheter techniques with living tissue engineered heart valves into a trascatheter tissue engineered heart valve concept could significantly improve current treatment options for patients suffering from valvular heart disease. This report provides an overview on transcatheter tissue engineered heart valves and summarizes available pre-clinical data.

  11. Photochemical tissue bonding

    Science.gov (United States)

    Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  12. Tissue engineering scheming by artificial intelligence.

    Science.gov (United States)

    Xu, J; Ge, H; Zhou, X; Yang, D

    2005-01-01

    Tissue engineers are often confused when seeking the most effective, economical and secure scheme for tissue engineering. The aim of this study is to generate tissue engineering schemes with artificial intelligence instead of human intelligence. The experimental data of tissue engineered cartilage were integrated and standardized with a centralized database, and a scheme engine was developed using artificial intelligent methods (artificial neural networks and decision trees). The scheme engine was trained with existing cases in the database, and then was used to generate tissue engineering schemes for new experimental animals. Following the schemes generated by the artificial intelligent system, we cured 18 of the 20 experimental animals. In conclusion, artificial intelligence is a powerful method for decision making in the tissue engineering realm.

  13. In vivo tissue engineering of musculoskeletal tissues.

    Science.gov (United States)

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Tissue engineering; strategies, tissues, and biomaterials.

    Science.gov (United States)

    Bakhshandeh, Behnaz; Zarrintaj, Payam; Oftadeh, Mohammad Omid; Keramati, Farid; Fouladiha, Hamideh; Sohrabi-Jahromi, Salma; Ziraksaz, Zarrintaj

    2017-10-01

    Current tissue regenerative strategies rely mainly on tissue repair by transplantation of the synthetic/natural implants. However, limitations of the existing strategies have increased the demand for tissue engineering approaches. Appropriate cell source, effective cell modification, and proper supportive matrices are three bases of tissue engineering. Selection of appropriate methods for cell stimulation, scaffold synthesis, and tissue transplantation play a definitive role in successful tissue engineering. Although the variety of the players are available, but proper combination and functional synergism determine the practical efficacy. Hence, in this review, a comprehensive view of tissue engineering and its different aspects are investigated.

  15. Generating Units

    Data.gov (United States)

    Department of Homeland Security — Generating Units are any combination of physically connected generators, reactors, boilers, combustion turbines, and other prime movers operated together to produce...

  16. Estudo comparativo de modelos computacionais gerados sobre representações de imagens de coloscopia: tecido de mucosa normal VS tecido de mucosa de pólipo cólico Comparative study of computacional models generated from representations of colonoscopic images: normal mucosal tissues VS mucosal tissues of colic polyp

    Directory of Open Access Journals (Sweden)

    Carlos Andres Ferrero

    2009-03-01

    Full Text Available OBJETIVO: analisar a qualidade preditiva de modelos computacionais para a diferenciação de tecidos cólicos, construídos a partir da representação de Imagens de Coloscopia (IC como Matrizes de Co-ocorrência (MC. MATERIAIS E MÉTODOS: os modelos foram construídos aplicando técnicas de análise de imagens e de inteligência artificial. Foram utilizadas 67 IC, contendo pólipos, a partir das quais foram extraídas uma imagem da parte de tecido de pólipo e outra de tecido sem pólipo adjacente, totalizando 134 imagens. Para cada imagem, foram construídas MC para diferentes valores do parâmetro distância, D = 1 a 5, e extraídas 11 características de textura. Com essa representação, foram criados cinco modelos computacionais baseados em árvores de decisão. Os modelos foram avaliados utilizando: (a validação cruzada e (b tabelas de contingência. RESULTADOS: na análise (a, o modelo de D = 3 apresentou o menor erro médio (22,25% ± 11,85%. Na análise (b, os modelos de D = 1 e 3 apresentaram os melhores valores de precisão. CONCLUSÃO: os valores do parâmetro de distância D = 1 e 3 apresentaram os modelos com as melhores qualidades preditivas. Os resultados mostraram que os modelos construídos apresentaram-se promissores para a construção de sistemas computacionais de suporte à decisão.PURPOSE: to evaluate the predictive quality of computational models to differentiate colic tissues, based on Cooccorrurence Matrices (MC representation of Coloscopic Images (IC. MATERIALS AND METHODS: image analysis and artificial intelligence methods were employed to construct computational models. Sixty seven IC images, containing polyp, were considered in this work, from which a part containing a polypus and another without it were collected given origin to 134 images. For each one of these, different MC were constructed considering five distance parameters (D = 1 to 5 and the extraction of 11 texture characteristics. With this

  17. Generational diversity.

    Science.gov (United States)

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions.

  18. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  19. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  20. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  1. Instant Generation

    Science.gov (United States)

    Loveland, Elaina

    2017-01-01

    Generation Z students (born between 1995-2010) have replaced millennials on college campuses. Generation Z students are entrepreneurial, desire practical skills with their education, and are concerned about the cost of college. This article presents what need to be known about this new generation of students.

  2. Isotope generator

    International Nuclear Information System (INIS)

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  3. Cross-talk between the glucocorticoid receptor and MyoD family inhibitor domain-containing protein provides a new mechanism for generating tissue-specific responses to glucocorticoids.

    Science.gov (United States)

    Oakley, Robert H; Busillo, John M; Cidlowski, John A

    2017-04-07

    Glucocorticoids are primary stress hormones that regulate many physiological processes, and synthetic derivatives of these molecules are widely used in the clinic. The molecular factors that govern tissue specificity of glucocorticoids, however, are poorly understood. The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR). To discover new proteins that interact with GR and modulate its function, we performed a yeast two-hybrid assay. The MyoD family inhibitor domain-containing protein (MDFIC) was identified as a binding partner for GR. MDFIC associated with GR in the cytoplasm of cells, and treatment with glucocorticoids resulted in the dissociation of the GR-MDFIC complex. To investigate the function of the GR-MDFIC interaction, we performed a genome-wide microarray in intact and MDFIC-deficient A549 cells that were treated with glucocorticoids. A large cohort of genes was differentially regulated by GR depending on the presence or absence of MDFIC. These gene changes were strongly associated with inflammation, and glucocorticoid regulation of the inflammatory response was altered in MDFIC-deficient cells. At a molecular level, the interaction of MDFIC with GR altered the phosphorylation status of the receptor. We demonstrate in COS-1 cells that changes in receptor phosphorylation underlie the ability of MDFIC to regulate the transcriptional activity of GR. Finally, we show that GR directly represses the MDFIC gene, revealing a negative feedback loop by which glucocorticoids limit MDFIC activity. These findings identify a new binding partner for cytoplasmic GR that modulates the receptor transcriptome and contributes to the tissue-specific actions of glucocorticoids. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.

    Science.gov (United States)

    Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier

    2016-02-01

    In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multiphoton tomography for tissue engineering

    Science.gov (United States)

    König, Karsten

    2008-02-01

    Femtosecond laser multiphoton tomography has been employed in the field of tissue engineering to perform 3D high-resolution imaging of the extracellular matrix proteins elastin and collagen as well as of living cells without any fixation, slicing, and staining. Near infrared 80 MHz picojoule femtosecond laser pulses are able to excite the endogenous fluorophores NAD(P)H, flavoproteins, melanin, and elastin via a non-resonant two-photon excitation process. In addition, collagen can be imaged by second harmonic generation. Using a two-PMT detection system, the ratio of elastin to collagen was determined during optical sectioning. A high submicron spatial resolution and 50 picosecond temporal resolution was achieved using galvoscan mirrors and piezodriven focusing optics as well as a time-correlated single photon counting module with a fast microchannel plate detector and fast photomultipliers. Multiphoton tomography has been used to optimize the tissue engineering of heart valves and vessels in bioincubators as well as to characterize artificial skin. Stem cell characterization and manipulation are of major interest for the field of tissue engineering. Using the novel sub-20 femtosecond multiphoton nanoprocessing laser microscope FemtOgene, the differentiation of human stem cells within spheroids has been in vivo monitored with submicron resolution. In addition, the efficient targeted transfection has been demonstrated. Clinical studies on the interaction of tissue-engineered products with the natural tissue environment can be performed with in vivo multiphoton tomograph DermaInspect.

  6. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  7. Generative Semantics.

    Science.gov (United States)

    King, Margaret

    The first section of this paper deals with the attempts within the framework of transformational grammar to make semantics a systematic part of linguistic description, and outlines the characteristics of the generative semantics position. The second section takes a critical look at generative semantics in its later manifestations, and makes a case…

  8. Generative collectives

    NARCIS (Netherlands)

    van Osch, W.; Avital, M.; Sabherwal, R.; Sumner, M.

    2010-01-01

    Analyzing generative group activities against the backdrop of an increasingly connected world, this theory development paper introduces the concept of "generative collectives" as a new framework for classifying internet-based collectives and a novel theoretical lens for explaining why some

  9. Generational Phenomenology

    African Journals Online (AJOL)

    denise

    by Xers, and how Millennials not only accept but expect diversity (320 ff.). However, nothing is actually said to the effect that generational relations might be affected by the different styles of thinking, speaking, and values of women. Moreover, it seems likely that generations and their relations are different for people of color,.

  10. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  11. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  12. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  13. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  14. Generative Semantics

    Science.gov (United States)

    Bagha, Karim Nazari

    2011-01-01

    Generative semantics is (or perhaps was) a research program within linguistics, initiated by the work of George Lakoff, John R. Ross, Paul Postal and later McCawley. The approach developed out of transformational generative grammar in the mid 1960s, but stood largely in opposition to work by Noam Chomsky and his students. The nature and genesis of…

  15. FRD tissue archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The fishery genetics tissue collection has over 80,000 tissues stored in 95% ethanol representing fishes and invertebrates collected globally but with a focus on the...

  16. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  17. Breast Cancer Tissue Repository

    National Research Council Canada - National Science Library

    Iglehart, J

    1997-01-01

    The Breast Tissue Repository at Duke enters its fourth year of finding. The purpose of the Repository at Duke is to provide substantial quantities of frozen tissue for explorative molecular studies...

  18. Flywheel Generator

    OpenAIRE

    Yuniarsih, Pratitis; Bachtiyar, Fahmi; Rosyidin, Mufti; Prabawanto, Trisakti

    2014-01-01

    Lately, the needs of energy is increasing but its availability is very limited. Therefore,it is important to do more research on energy reform. Generator is one of the alternative energy which commonly used by the public, but it has a minus value such as the voltage instability and low efficiency of the generator . Based on those issues,so we made an application flywheel in electrical generator, which aims to produce a concept of power efficiency increase, stabilize the output voltage of the ...

  19. Vascularization Tissue Engineering

    NARCIS (Netherlands)

    Rouwkema, Jeroen; Rivron, N.C.; van Blitterswijk, Clemens

    2008-01-01

    Tissue engineering has been an active field of research for several decades now. However, the amount of clinical applications in the field of tissue engineering is still limited. One of the current limitations of tissue engineering is its inability to provide sufficient blood supply in the initial

  20. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    The success of plant biotechnology relies on the fundamental techniques of plant tissue culture. Understanding basic biol- ogy of plants is a prerequisite for proper utilization of the plant system or parts thereof. Plant tissue culture helps in providing a basic understanding of physical and chemical requirements of cell, tissue, ...

  1. Tissue engineering of reproductive tissues and organs.

    Science.gov (United States)

    Atala, Anthony

    2012-07-01

    Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Next-Generation Pathology.

    Science.gov (United States)

    Caie, Peter D; Harrison, David J

    2016-01-01

    The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.

  3. Introduction to tissue engineering applications and challenges

    CERN Document Server

    Birla, Ravi

    2014-01-01

    Covering a progressive medical field, Tissue Engineering describes the innovative process of regenerating human cells to restore or establish normal function in defective organs. As pioneering individuals look ahead to the possibility of generating entire organ systems, students may turn to this textbook for a comprehensive understanding and preparation for the future of regenerative medicine. This book explains chemical stimulations, the bioengineering of specific organs, and treatment plans for chronic diseases. It is a must-read for tissue engineering students and practitioners.

  4. Automated tissue dissociation for rapid extraction of viable cells

    OpenAIRE

    McBeth, Christine; Gutermuth, Angela; Ochs, Jelena; Sharon, Andre; Sauer-Budge, Alexis F.

    2017-01-01

    Viable cells from healthy tissues are a rich resource in high demand for many next-generation therapeutics and regenerative medicine applications. Cell extraction from the dense connective matrix of most tissues is a labor-intensive task and high variability makes cGMP compliance difficult. To reduce costs and ensure greater reproducibility, automated tissue dissociators compatible with robotic liquid handling systems are required. Here we demonstrate the utility of our automated tissue disso...

  5. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  6. Scaffolds for tissue engineering of cardiac valves.

    Science.gov (United States)

    Jana, S; Tefft, B J; Spoon, D B; Simari, R D

    2014-07-01

    Tissue engineered heart valves offer a promising alternative for the replacement of diseased heart valves avoiding the limitations faced with currently available bioprosthetic and mechanical heart valves. In the paradigm of tissue engineering, a three-dimensional platform - the so-called scaffold - is essential for cell proliferation, growth and differentiation, as well as the ultimate generation of a functional tissue. A foundation for success in heart valve tissue engineering is a recapitulation of the complex design and diverse mechanical properties of a native valve. This article reviews technological details of the scaffolds that have been applied to date in heart valve tissue engineering research. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. PULSE GENERATOR

    Science.gov (United States)

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  8. Engineering functional bladder tissues.

    Science.gov (United States)

    Horst, Maya; Madduri, Srinivas; Gobet, Rita; Sulser, Tullio; Milleret, Vinzent; Hall, Heike; Atala, Anthony; Eberli, Daniel

    2013-07-01

    End stage bladder disease can seriously affect patient quality of life and often requires surgical reconstruction with bowel tissue, which is associated with numerous complications. Bioengineering of functional bladder tissue using tissue-engineering techniques could provide new functional tissues for reconstruction. In this review, we discuss the current state of this field and address different approaches to enable physiologic voiding in engineered bladder tissues in the near future. In a collaborative effort, we gathered researchers from four institutions to discuss the current state of functional bladder engineering. A MEDLINE® and PubMed® search was conducted for articles related to tissue engineering of the bladder, with special focus on the cells and biomaterials employed as well as the microenvironment, vascularisation and innervation strategies used. Over the last decade, advances in tissue engineering technology have laid the groundwork for the development of a biological substitute for bladder tissue that can support storage of urine and restore physiologic voiding. Although many researchers have been able to demonstrate the formation of engineered tissue with a structure similar to that of native bladder tissue, restoration of physiologic voiding using these constructs has never been demonstrated. The main issues hindering the development of larger contractile tissues that allow physiologic voiding include the development of correct muscle alignment, proper innervation and vascularization. Tissue engineering of a construct that will support the contractile properties that allow physiologic voiding is a complex process. The combination of smart scaffolds with controlled topography, the ability to deliver multiple trophic factors and an optimal cell source will allow for the engineering of functional bladder tissues in the near future. Copyright © 2012 John Wiley & Sons, Ltd.

  9. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  10. Generation Next

    Science.gov (United States)

    Hawkins, B. Denise

    2010-01-01

    There is a shortage of accounting professors with Ph.D.s who can prepare the next generation. To help reverse the faculty deficit, the American Institute of Certified Public Accountants (CPAs) has created the new Accounting Doctoral Scholars program by pooling more than $17 million and soliciting commitments from more than 70 of the nation's…

  11. Generative Contexts

    Science.gov (United States)

    Lyles, Dan Allen

    Educational research has identified how science, technology, engineering, and mathematics (STEM) practice and education have underperforming metrics in racial and gender diversity, despite decades of intervention. These disparities are part of the construction of a culture of science that is alienating to these populations. Recent studies in a social science framework described as "Generative Justice" have suggested that the context of social and scientific practice might be modified to bring about more just and equitable relations among the disenfranchised by circulating the value they and their non-human allies create back to them in unalienated forms. What is not known are the underlying principles of social and material space that makes a system more or less generative. I employ an autoethnographic method at four sites: a high school science class; a farm committed to "Black and Brown liberation"; a summer program geared towards youth environmental mapping; and a summer workshop for Harlem middle school students. My findings suggest that by identifying instances where material affinity, participatory voice, and creative solidarity are mutually reinforcing, it is possible to create educational contexts that generate unalienated value, and circulate it back to the producers themselves. This cycle of generation may help explain how to create systems of justice that strengthen and grow themselves through successive iterations. The problem of lack of diversity in STEM may be addressed not merely by recruiting the best and the brightest from underrepresented populations, but by changing the context of STEM education to provide tools for its own systematic restructuring.

  12. Tissue engineering in dentistry.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the

  13. Nonlinear spectral imaging of biological tissues

    Science.gov (United States)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  14. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  15. Synovial tissue research

    DEFF Research Database (Denmark)

    Orr, Carl; Sousa, Elsa; Boyle, David L

    2017-01-01

    The synovium is the major target tissue of inflammatory arthritides such as rheumatoid arthritis. The study of synovial tissue has advanced considerably throughout the past few decades from arthroplasty and blind needle biopsy to the use of arthroscopic and ultrasonographic technologies that enab...

  16. Soft Tissue Sarcoma

    Science.gov (United States)

    ... removed Causes In most cases, it's not clear what causes soft tissue sarcoma. In general, cancer occurs when cells develop ... of cell that develops the genetic mutation determines what type of soft tissue sarcoma you have. For example, angiosarcoma begins in ...

  17. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-01-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea from a biodegradable polymer-based scaffold (polycaprolactone, PCL. Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale. The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy and poly(styrene sulfonate (PSS in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF.

  18. Magnet Free Generators - 3rd Generation Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Henriksen, Matthew Lee

    2013-01-01

    This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A comp....... A comparison of the rare earth usage in different topologies of permanent magnet generators and superconducting generators is also presented....

  19. Cells for tissue engineering of cardiac valves.

    Science.gov (United States)

    Jana, Soumen; Tranquillo, Robert T; Lerman, Amir

    2016-10-01

    Heart valve tissue engineering is a promising alternative to prostheses for the replacement of diseased or damaged heart valves, because tissue-engineered valves have the ability to remodel, regenerate and grow. To engineer heart valves, cells are harvested, seeded onto or into a three-dimensional (3D) matrix platform to generate a tissue-engineered construct in vitro, and then implanted into a patient's body. Successful engineering of heart valves requires a thorough understanding of the different types of cells that can be used to obtain the essential phenotypes that are expressed in native heart valves. This article reviews different cell types that have been used in heart valve engineering, cell sources for harvesting, phenotypic expression in constructs and suitability in heart valve tissue engineering. Natural and synthetic biomaterials that have been applied as scaffold systems or cell-delivery platforms are discussed with each cell type. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  1. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  2. Idea generation

    DEFF Research Database (Denmark)

    Tollestrup, Christian H. T.; Laursen, Linda Nhu

    2015-01-01

    . Using a straight proposal creation process is expected to create proposals that operate within the present sociocultural meaning. Whereas an approach seeking ambiguity and discrepancy in the initial ideation sparks a deeper sense-making process, which in return creates proposals that can be interpreted...... as having new sociocultural meaning in line with Vergantis definition of radical innovation. This paper discusses the results of an experiment with 32 students on idea generation and product concept development. The experiment was setup as and A-B comparison between two set of students with the same...... objective: designing a new coffee machine for a specific brand, but one group was asked to seek ambiguity and dissonance before creating proposals. Results indicate a very clear difference in the outcome in terms of radical changes in relation to. Group A produced 12 out of 16 proposals in the Styling...

  3. Nonfreezing Tissue Injuries

    Science.gov (United States)

    ... News) Small Study Uncovers Brain Disease in Former Soccer Players (Video) Anterior Cruciate Ligament (Video) Resisted Finger Abduction and Extension With Putty Additional Content Medical News Nonfreezing Tissue Injuries (Chilblains [Pernio]; Frostnip; Immersion Foot [Trench Foot]) By ...

  4. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation...... that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets...... in this thesis that alpha-ketoglutarate, a tricarboxylic acid cycle metabolite, has the potential to control the metabolism of this particular tissue. Finally, a new microscopic method is introduced which allows the study of thermal denaturation of fibrillar collagen and myofibers in real time without any label...

  5. Breast reconstruction - natural tissue

    Science.gov (United States)

    ... After a mastectomy , some women choose to have cosmetic surgery to remake their breast. This type of surgery ... cancer - breast reconstruction with natural tissue Patient Instructions Cosmetic breast surgery - discharge Mastectomy and breast reconstruction - what to ask ...

  6. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

    that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets......  The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation....... Collagen, being the major protein in connective tissue, has been extensively investigated with regard to its relation to meat tenderness, but the results have been rather conflicting. Meat from older animals is tougher than that from younger animals, and changes in the properties of the collagen due...

  7. [Tissue toxicity of antiseptics].

    Science.gov (United States)

    Kalteis, T; Lüring, C; Schaumburger, J; Perlick, L; Bäthis, H; Grifka, J

    2003-01-01

    Local antiseptics are used for desinfection of skin and for lavage of wounds. The aim of this study was to determine the tissue toxicity of different antiseptics and to measure the irritation score (IS) and the irritation threshold (IT) for each substance. The tissue compatibilities of Dibromol, Kodan, Jodobac, Octenisept, Lavasept 0.2 %, hydrogen peroxide, chlorhexidindigluconate 0.5 % and 2-propanol 60 % were evaluated in the in vivo hens eggs chorion-allantoic membrane test (HET-CAM). We found the most severe tissue toxicity for chlorhexidin digluconate 0.5 % (IS 20) and Kodan (IS 18). Irritating values were found for Dibromol (IS 14), Octenisept (IS 14) and 2-propanol 60 % (IS 13). Moderate vascular injuries were caused by Jodobac (IS 2). In the HET-CAM test Lavasept 0.2 % (IS 0) and hydrogen peroxide (IS 0) showed no tissue toxicity. Our results show that some of the tested antiseptics might cause severe vascular injuries as a sign of tissue toxicity. The tissue compatibility of Lavasept 0.2 % and hydrogen peroxide is much better than the compatibility of the other tested substances. With focus on the literature and our results, Lavasept 0.2 % can be recommended as the local antiseptic of choice.

  8. PULP TISSUE REACTIONS TO SPECIFIC ORTHODONTIC MOVEMENTS: A LITERATURE REVIEW

    OpenAIRE

    Quintero Builes, Paula; Yepes Chamorro, Eliana; Rendón, Jaime

    2014-01-01

    A dental movement during an orthodontic treatment may generate an inflammatory or degenerative response on pulp tissue. As this tissue exposed to a mechanical load under different magnitude, frequency and length, it expresses both macroscopic and microscopic changes by induction of circulatory and vascular changes. However, most cases the pulp tissue has a tendency to recover itself keeping its structure and function. It has therefore been suggested that injury upon pulp produced by orthodont...

  9. From static to animated: Measuring mechanical forces in tissues.

    Science.gov (United States)

    Nelson, Celeste M

    2017-01-02

    Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology. © 2017 Nelson.

  10. Tissue engineering and surgery: from translational studies to human trials

    Directory of Open Access Journals (Sweden)

    Vranckx Jan Jeroen

    2017-06-01

    Full Text Available Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.

  11. Plasma generator

    International Nuclear Information System (INIS)

    Omichi, Takeo; Yamanaka, Toshiyuki.

    1976-01-01

    Object: To recycle a coolant in a sealed hollow portion formed interiorly of a plasma limiter itself to thereby to cause direct contact between the coolant and the plasma limiter and increase of contact area therebetween to cool the plasma limiter. Structure: The heat resulting from plasma generated during operation and applied to the body of the plasma limiter is transmitted to the coolant, which recycles through an inlet and outlet pipe, an inlet and outlet nozzle and a hollow portion to hold the plasma limiter at a level less than a predetermined temperature. On the other hand, the heater wire is, at the time of emergency operation, energized to heat the plasma limiter, but this heat is transmitted to the limiter body to increase the temperature thereof. However, the coolant recycling the hollow portion comes into direct contact with the limiter body, and since the plasma limiter surround the hollow portion, the heat amount transmitted from the limiter body to the coolant increases to sufficiently cool the plasma limiter. (Yoshihara, H.)

  12. Tissue-resident memory T cells.

    Science.gov (United States)

    Shin, Haina; Iwasaki, Akiko

    2013-09-01

    Tissues such as the genital tract, skin, and lung act as barriers against invading pathogens. To protect the host, incoming microbes must be quickly and efficiently controlled by the immune system at the portal of entry. Memory is a hallmark of the adaptive immune system, which confers long-term protection and is the basis for efficacious vaccines. While the majority of existing vaccines rely on circulating antibody for protection, struggles to develop antibody-based vaccines against infections such as herpes simplex virus (HSV) and human immunodeficiency virus (HIV) have underscored the need to generate memory T cells for robust antiviral control. The circulating memory T-cell population is generally divided into two subsets: effector memory (TEM ) and central memory (TCM ). These two subsets can be distinguished by their localization, as TCM home to secondary lymphoid organs and TEM circulate through non-lymphoid tissues. More recently, studies have identified a third subset, called tissue-resident memory (TRM ) cells, based on its migratory properties. This subset is found in peripheral tissues that require expression of specific chemoattractants and homing receptors for T-cell recruitment and retention, including barrier sites such as the skin and genital tract. In this review, we categorize different tissues in the body based on patterns of memory T-cell migration and tissue residency. This review also describes the rules for TRM generation and the properties that distinguish them from circulating TEM and TCM cells. Finally, based on the failure of recent T-cell-based vaccines to provide optimal protection, we also discuss the potential role of TRM cells in vaccine design against microbes that invade through the peripheral tissues and highlight new vaccination strategies that take advantage of this newly described memory T-cell subset. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...... indicating regions of much higher thermal stability. It is seen that the benefits of the structural and temporal information available from SHG microscopy reveals complementary information to a traditional DSC measurement and enables a more complete understanding of the thermal denaturation process....

  14. Tissue proteomics of the human mammary gland

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Cabezón, Teresa; Gromova, Irina

    2010-01-01

    Our limited understanding of the biological impact of the whole spectrum of early breast lesions together with a lack of accurate molecular-based risk criteria for the diagnosis and assignment of prognostic significance to biopsy findings presents an important problem in the clinical management...... of these limitations and here we present our efforts to search for biomarkers using normal fresh tissue from non-neoplastic breast samples. From the data generated by the 2D gel-based proteomic profiling we were able to compile a protein database of normal human breast epithelial tissue that was used to support...

  15. Alteration of tissue vanadium content in diabetes.

    Science.gov (United States)

    Hamel, F G; Solomon, S S; Jespersen, A S; Blotcky, A; Rack, E; Duckworth, W C

    1993-12-01

    A great deal of interest in the element vanadium has been generated recently because of its potential as a therapeutic agent for diabetes mellitus. Vanadium's insulin-mimetic properties and its requirement for proper growth and development suggest that it may be involved in insulin's mechanism of action. We have therefore examined vanadium levels in kidney, muscle, and liver tissues from normal and diabetic BB Wistar rats. Our results indicate that diabetes mellitus can decrease the tissue vanadium content of liver, suggesting that the trace element vanadium may be important in insulin action.

  16. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  17. Optimized tissue heating by adopting high frequency electrotherapy

    Directory of Open Access Journals (Sweden)

    Jae-cheol Lee

    2015-11-01

    Full Text Available We have developed an electronics circuit that generates a high voltage with a frequency of 0.3–2 MHz to build an electro therapy system that can optimize tissue heating characteristics. These characteristics are used in medical applications. This paper is focused on the analysis of high frequency electro-therapy system to optimize tissue heating with the help of a high voltage pulse signal, which peak voltage is almost 2 kV. This optimized tissue heating between the inner tissue and the thermal distributions has examined in terms of frequency and voltage. The target tissue heating is composed of a single electrode in an experiment that has especially conducted to find the tissue heating characteristics. In the end, a new method for electro-therapy is developed, which is applicable to a specific tissue depth.

  18. Autopsy Tissue Program

    International Nuclear Information System (INIS)

    Fox, T.; Tietjen, G.

    1979-01-01

    The Autopsy Tissue Program was begun in 1960. To date, tissues on 900 or more persons in 7 geographic regions have been collected and analyzed for plutonium content. The tissues generally consist of lung, liver, kidney, lymph, bone, and gonadal tissue for each individual. The original objective of the program was to determine the level of plutonium in human tissues due solely to fall-out from weapons testing. The baseline thus established was to be used to evaluate future changes. From the first, this program was beset with chemical and statistical difficulties. Many factors whose effects were not recognized and not planned for were found later to be important. Privacy and ethical considerations hindered the gathering of adequate data. Since the chemists were looking for amounts of plutonium very close to background, possible contamination was a very real problem. Widely used chemical techniques introduced a host of statistical problems. The difficulties encountered touch on areas common to large data sets, unusual outlier detection methods, minimum detection limits, problems with Aliquot sizes, and time-trends in the data. The conclusions point out areas to which the biologists will have to devote much more careful attention than was believed

  19. Morphology of urethral tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  20. Designing Smart Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ferdous Khan

    2017-12-01

    Full Text Available The engineering of human tissues to cure diseases is an interdisciplinary and a very attractive field of research both in academia and the biotechnology industrial sector. Three-dimensional (3D biomaterial scaffolds can play a critical role in the development of new tissue morphogenesis via interacting with human cells. Although simple polymeric biomaterials can provide mechanical and physical properties required for tissue development, insufficient biomimetic property and lack of interactions with human progenitor cells remain problematic for the promotion of functional tissue formation. Therefore, the developments of advanced functional biomaterials that respond to stimulus could be the next choice to generate smart 3D biomimetic scaffolds, actively interacting with human stem cells and progenitors along with structural integrity to form functional tissue within a short period. To date, smart biomaterials are designed to interact with biological systems for a wide range of biomedical applications, from the delivery of bioactive molecules and cell adhesion mediators to cellular functioning for the engineering of functional tissues to treat diseases.

  1. Clinical relevance of fascial tissue and dysfunctions.

    Science.gov (United States)

    Klingler, W; Velders, M; Hoppe, K; Pedro, M; Schleip, R

    2014-01-01

    Fascia is composed of collagenous connective tissue surrounding and interpenetrating skeletal muscle, joints, organs, nerves, and vascular beds. Fascial tissue forms a whole-body, continuous three-dimensional viscoelastic matrix of structural support. The classical concept of its mere passive role in force transmission has recently been disproven. Fascial tissue contains contractile elements enabling a modulating role in force generation and also mechanosensory fine-tuning. This hypothesis is supported by in vitro studies demonstrating an autonomous contraction of human lumbar fascia and a pharmacological induction of temporary contraction in rat fascial tissue. The ability of spontaneous regulation of fascial stiffness over a time period ranging from minutes to hours contributes more actively to musculoskeletal dynamics. Imbalance of this regulatory mechanism results in increased or decreased myofascial tonus, or diminished neuromuscular coordination, which are key contributors to the pathomechanisms of several musculoskeletal pathologies and pain syndromes. Here, we summarize anatomical and biomechanical properties of fascial tissue with a special focus on fascial dysfunctions and resulting clinical manifestations. Finally, we discuss current and future potential treatment options that can influence clinical manifestations of pain syndromes associated with fascial tissues.

  2. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  3. Negating Tissue Contracture Improves Volume Maintenance and Longevity of In Vivo Engineered Tissues.

    Science.gov (United States)

    Lytle, Ian F; Kozlow, Jeffrey H; Zhang, Wen X; Buffington, Deborah A; Humes, H David; Brown, David L

    2015-10-01

    Engineering large, complex tissues in vivo requires robust vascularization to optimize survival, growth, and function. Previously, the authors used a "chamber" model that promotes intense angiogenesis in vivo as a platform for functional three-dimensional muscle and renal engineering. A silicone membrane used to define the structure and to contain the constructs is successful in the short term. However, over time, generated tissues contract and decrease in size in a manner similar to capsular contracture seen around many commonly used surgical implants. The authors hypothesized that modification of the chamber structure or internal surface would promote tissue adherence and maintain construct volume. Three chamber configurations were tested against volume maintenance. Previously studied, smooth silicone surfaces were compared to chambers modified for improved tissue adherence, with multiple transmembrane perforations or lined with a commercially available textured surface. Tissues were allowed to mature long term in a rat model, before analysis. On explantation, average tissue masses were 49, 102, and 122 mg; average volumes were 74, 158 and 176 μl; and average cross-sectional areas were 1.6, 6.7, and 8.7 mm for the smooth, perforated, and textured groups, respectively. Both perforated and textured designs demonstrated significantly greater measures than the smooth-surfaced constructs in all respects. By modifying the design of chambers supporting vascularized, three-dimensional, in vivo tissue engineering constructs, generated tissue mass, volume, and area can be maintained over a long time course. Successful progress in the scale-up of construct size should follow, leading to improved potential for development of increasingly complex engineered tissues.

  4. Human tissue in systems medicine.

    Science.gov (United States)

    Caie, Peter D; Schuur, Klaas; Oniscu, Anca; Mullen, Peter; Reynolds, Paul A; Harrison, David J

    2013-12-01

    Histopathology, the examination of an architecturally artefactual, two-dimensional and static image remains a potent tool allowing diagnosis and empirical expectation of prognosis. Considerable optimism exists that the advent of molecular genetic testing and other biomarker strategies will improve or even replace this ancient technology. A number of biomarkers already add considerable value for prediction of whether a treatment will work. In this short review we argue that a systems medicine approach to pathology will not seek to replace traditional pathology, but rather augment it. Systems approaches need to incorporate quantitative morphological, protein, mRNA and DNA data. A significant challenge for clinical implementation of systems pathology is how to optimize information available from tissue, which is frequently sub-optimal in quality and amount, and yet generate useful predictive models that work. The transition of histopathology to systems pathophysiology and the use of multiscale data sets usher in a new era in diagnosis, prognosis and prediction based on the analysis of human tissue. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  5. Utilizing stem cells for three-dimensional neural tissue engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs.

  6. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biomechanics of brain tissue.

    Science.gov (United States)

    Prevost, Thibault P; Balakrishnan, Asha; Suresh, Subra; Socrate, Simona

    2011-01-01

    The dynamic behavior of porcine brain tissue, obtained from a series of in vitro observations and experiments, is analyzed and described here with the aid of a large strain, nonlinear, viscoelastic constitutive model. Mixed gray and white matter samples excised from the superior cortex were tested in unconfined uniaxial compression within 15h post mortem. The test sequence consisted of three successive load-unload segments at strain rates of 1, 0.1 and 0.01 s⁻¹, followed by stress relaxation (n=25). The volumetric compliance of the tissue was assessed for a subset of specimens (n=7) using video extensometry techniques. The tissue response exhibited moderate compressibility, substantial nonlinearity, hysteresis, conditioning and rate dependence. A large strain kinematics nonlinear viscoelastic model was developed to account for the essential features of the tissue response over the entire deformation history. The corresponding material parameters were obtained by fitting the model to the measured conditioned response (axial and volumetric) via a numerical optimization scheme. The model successfully captures the observed complexities of the material response in loading, unloading and relaxation over the entire range of strain rates. The accuracy of the model was further verified by comparing model predictions with the tissue response in unconfined compression at higher strain rate (10 s⁻¹) and with literature data in uniaxial tension. The proposed constitutive framework was also found to be adequate to model the loading response of brain tissue in uniaxial compression over a wider range of strain rates (0.01-3000 s⁻¹), thereby providing a valuable tool for simulations of dynamic transients (impact, blast/shock wave propagation) leading to traumatic brain injury. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.

    Science.gov (United States)

    Mekhileri, N V; Lim, K S; Brown, G C J; Mutreja, I; Schon, B S; Hooper, G J; Woodfield, T B F

    2018-01-12

    Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was

  9. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... of a hydrogel to create an additional interpenetrating network (IPN) of hydrogel nanodeposits. Biocompatible IPNs of silicone elastomer with poly(2-hydroxyethyl methacrylate) (pHEMA) and Poly(ethylene glycol) methylether acrylate (PEGMEA) hydrogel 3D scaffolds were produced in this way. The model drug...... of hiPSC-derived DE cells cultured for 25 days in a 3D perfusion bioreactor system with an array of 16 small-scale tissue-bioreactors with integrated dual-pore pore scaffolds and flow rates. Hepatic differentiation and functionality of hiPSC-derived hepatocytes were successfully assessed and compared...

  10. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  11. Transcriptomics resources of human tissues and organs

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Hallström, Björn M.; Lindskog, Cecilia

    2016-01-01

    a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome......Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide...

  12. Trip generation characteristics of special generators

    Science.gov (United States)

    2010-03-01

    Special generators are introduced in the sequential four-step modeling procedure to represent certain types of facilities whose trip generation characteristics are not fully captured by the standard trip generation module. They are also used in the t...

  13. Soft Tissue Extramedullary Plasmacytoma

    Directory of Open Access Journals (Sweden)

    Fernando Ruiz Santiago

    2010-01-01

    Full Text Available We present the uncommon case of a subcutaneous fascia-based extramedullary plasmacytoma in the leg, which was confirmed by the pathology report and followed up until its remission. We report the differential diagnosis with other more common soft tissue masses. Imaging findings are nonspecific but are important to determine the tumour extension and to plan the biopsy.

  14. Tissue culture and neurotoxicology

    NARCIS (Netherlands)

    Hooisma, J.

    1982-01-01

    Application of tissue culture in neurotoxicology may serve two purposes. First, they may be used to unravel the mechanism of action of neurotoxic compounds and secondly, they may be used for the screening of neurotoxic agents. Studies belonging to the first group can be subdivided into those aiming

  15. Tissue Engineering Initiative

    Science.gov (United States)

    2002-08-01

    connective tissue, the extracellular matrix of hypertrophic cartilage and the lacunae of osteocytes resembling cortical bone [54]. In the long shaft of...cells. Canadian Journal of Cardiology 12(3): 231-236, 1996. 9. Oakes BW, Batty AC, Handley CJ, Sandberg LB. The synthesis of elastin, collagen, and

  16. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 8. Plant Tissue Culture - Historical Developments and Applied Aspects. H R Dagla. General Article Volume 17 Issue 8 August 2012 pp 759-767. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Soft tissue mixed tumor

    Directory of Open Access Journals (Sweden)

    Eiichi Hiraishi

    2009-12-01

    Full Text Available Mixed tumors are relatively common in the skin and salivary glands, but extremely rare in soft tissues, often resulting in diagnostic problems. The occurrence of these tumors in the hand is especially limited. In this article we report the clinical, radiological, and histological features of a mixed tumor of the hypothenar region of the right hand.

  18. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    closely linked with the discovery and characterization of plant hormones, and has facilitated our understanding of plant growth and development. Furthermore, the ability to grow plant cells and tissues in culture and to control their development forms the basis of many practical applications in agriculture, horticulture indus-.

  19. Plant Tissue Culture Studies.

    Science.gov (United States)

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  20. Mixed Connective Tissue Disease

    Science.gov (United States)

    ... complicated. Early signs and symptoms often involve the hands. Fingers might swell like sausages, and the fingertips become white and numb. In later stages, some organs — such as the lungs, heart and kidneys — may be affected. There's no cure for mixed connective tissue disease. The signs and ...

  1. Transient Mechanical Response of Lung Airway Tissue during Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Israr Bin Muhammad Ibrahim

    2016-01-01

    Full Text Available Patients with acute lung injury, airway and other pulmonary diseases often require Mechanical Ventilation (MV. Knowledge of the stress/strain environment in lung airway tissues is very important in order to avoid lung injuries for patients undergoing MV. Airway tissue strains responsible for stressing the lung’s fiber network and rupturing the lung due to compliant airways are very difficult to measure experimentally. Multi-level modeling is adopted to investigate the transient mechanical response of the tissue under MV. First, airflow through a lung airway bifurcation (Generation 4–6 is modeled using Computational Fluid Dynamics (CFD to obtain air pressure during 2 seconds of MV breathing. Next, the transient air pressure was used in structural analysis to obtain mechanical strain experienced by the airway tissue wall. Structural analysis showed that airway tissue from Generation 5 in one bifurcation can stretch eight times that of airway tissue of the same generation number but with different bifurcation. The results suggest sensitivity of load to geometrical features. Furthermore, the results of strain levels obtained from the tissue analysis are very important because these strains at the cellular-level can create inflammatory responses, thus damaging the airway tissues.

  2. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis.

    Science.gov (United States)

    Nerger, Bryan A; Siedlik, Michael J; Nelson, Celeste M

    2017-05-01

    Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces.

  3. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    Science.gov (United States)

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  4. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  5. Joint and Soft Tissue Injections

    Science.gov (United States)

    ... Injections Joint and Soft Tissue Injections Share Print What is a joint and soft tissue injection? Joint and soft tissue injections are shots ... many injections do I need and how often? What restrictions do I have after an ... tissue injection, treatment April 1, 2004 Copyright © American Academy ...

  6. Gram stain of tissue biopsy

    Science.gov (United States)

    ... suspected. Normal Results Whether there are bacteria, and what type there are, depends on the tissue being biopsied. Some tissues in the body are ... about the meaning of your specific test results. What Abnormal Results Mean ... results usually mean there is an infection in the tissue. More tests, such as culturing the tissue that ...

  7. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    Science.gov (United States)

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  8. Robust in vivo expansion of activated naive CD8+ T cells and NK cells by IL-2 immunocomplexes

    Czech Academy of Sciences Publication Activity Database

    Kovář, Marek; Tomala, Jakub; Chmelová, Helena; Říhová, Blanka

    2009-01-01

    Roč. 39, - (2009), s. 753-753 ISSN 0014-2980. [European Congress of Immunology /2./. 13.09.2009-16.09.2009, Berlin] Institutional research plan: CEZ:AV0Z50200510 Keywords : mouse model * IL-2 * nk cells Subject RIV: EC - Immunology

  9. IL-2/anti-IL-2 mAb immunocomplexes: A renascence of IL-2 in cancer immunotherapy?

    Czech Academy of Sciences Publication Activity Database

    Tomala, Jakub; Kovář, Marek

    2016-01-01

    Roč. 5, č. 3 (2016), e1102829 ISSN 2162-402X R&D Projects: GA ČR GA13-12885S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Anti-IL-2 mAb * cancer immunotherapy * IL-2 Subject RIV: EE - Microbiology, Virology Impact factor: 7.719, year: 2016

  10. 3D Nanoprinting Technologies for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    2015-01-01

    Full Text Available Tissue engineering recovers an original function of tissue by replacing the damaged part with a new tissue or organ regenerated using various engineering technologies. This technology uses a scaffold to support three-dimensional (3D tissue formation. Conventional scaffold fabrication methods do not control the architecture, pore shape, porosity, or interconnectivity of the scaffold, so it has limited ability to stimulate cell growth and to generate new tissue. 3D printing technologies may overcome these disadvantages of traditional fabrication methods. These technologies use computers to assist in design and fabrication, so the 3D scaffolds can be fabricated as designed and standardized. Particularly, because nanofabrication technology based on two-photon absorption (2PA and on controlled electrospinning can generate structures with submicron resolution, these methods have been evaluated in various areas of tissue engineering. Recent combinations of 3D nanoprinting technologies with methods from molecular biology and cell dynamics have suggested new possibilities for improved tissue regeneration. If the interaction between cells and scaffold system with biomolecules can be understood and controlled and if an optimal 3D environment for tissue regeneration can be realized, 3D nanoprinting will become an important tool in tissue engineering.

  11. Isolation of Precursor Cells from Waste Solid Fat Tissue

    Science.gov (United States)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  12. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  13. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  14. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Self generation, small generation, and embedded generation issues

    International Nuclear Information System (INIS)

    2001-01-01

    The New Brunswick Market Design Committee for electric power restructuring has been directed to examine issues regarding cogeneration and small-scale, on-site generation and how they will fit within the framework of the bilateral contract market. The Committee will also have to deal with issues of generation embedded in a distribution system. The Committee has defined cogeneration as the simultaneous production of electricity and useful thermal energy. Self-generation has been defined as small-scale power generation by an end-user, while embedded generation has been defined as a generation facility that is located within a distribution utility but is not directly connected to the transmission system. The Committee has postponed its decision on whether embedded generation will be eligible to participate under the bilateral contract market for electricity. This report discusses general issues such as the physical support of generation, market support of generation, transition issues and policy issues. It also discusses generation support issues such as operating reserves, transmission tariff issues, and distribution tariffs. Market support issues such as transmission access for generation sales were also considered, along with market access for generation sales, and net metering for behind the meter generation. 7 refs., 1 tab

  16. Nicotine and periodontal tissues

    Directory of Open Access Journals (Sweden)

    Malhotra Ranjan

    2010-01-01

    Full Text Available Tobacco use has been recognized to be a significant risk factor for the development and progression of periodontal disease. Its use is associated with increased pocket depths, loss of periodontal attachment, alveolar bone and a higher rate of tooth loss. Nicotine, a major component and most pharmacologically active agent in tobacco is likely to be a significant contributing factor for the exacerbation of periodontal diseases. Available literature suggests that nicotine affects gingival blood flow, cytokine production, neutrophil and other immune cell function; connective tissue turnover, which can be the possible mechanisms responsible for overall effects of tobacco on periodontal tissues. Inclusion of tobacco cessation as a part of periodontal therapy encourages dental professionals to become more active in tobacco cessation counseling. This will have far reaching positive effects on our patients′ oral and general health.

  17. Transcriptome analysis of reproductive tissue differentiation in Jatropha curcas Linn.

    Directory of Open Access Journals (Sweden)

    Nisha Govender

    2017-09-01

    Full Text Available Shoot and inflorescence are central physiological and developmental tissues of plants. Flowering is one of the most important agronomic traits for improvement of crop yield. To analyze the vegetative to reproductive tissue transition in Jatropha curcas, gene expression profiles were generated from shoot and inflorescence tissues. RNA isolated from both tissues was sequenced using the Ilumina HiSeq 2500 platform. Differential gene expression analysis identified key biological processes associated with vegetative to reproductive tissue transition. The present data for J. curcas may inform the design of breeding strategies particularly with respect to reproductive tissue transition. The raw data of this study has been deposited in the NCBI's Sequence Read Archive (SRA database with the accession number SRP090662.

  18. Vertex models: from cell mechanics to tissue morphogenesis.

    Science.gov (United States)

    Alt, Silvanus; Ganguly, Poulami; Salbreux, Guillaume

    2017-05-19

    Tissue morphogenesis requires the collective, coordinated motion and deformation of a large number of cells. Vertex model simulations for tissue mechanics have been developed to bridge the scales between force generation at the cellular level and tissue deformation and flows. We review here various formulations of vertex models that have been proposed for describing tissues in two and three dimensions. We discuss a generic formulation using a virtual work differential, and we review applications of vertex models to biological morphogenetic processes. We also highlight recent efforts to obtain continuum theories of tissue mechanics, which are effective, coarse-grained descriptions of vertex models.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'. © 2017 The Authors.

  19. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  20. The plant tissue culture

    International Nuclear Information System (INIS)

    Crocomo, O.J.; Sharp, W.R.

    1973-01-01

    Progress in the field of plant tissue culture at the Plant Biochemistry Sector, Centro de Energia na Agricultura (CENA), Piracicaba, S.P., Brazil, pertains to the simplification of development in 'Phaseolus vulgaris' by dividing the organism into its component organs, tissues, and cells and the maintenance of these components on defined culture media 'in vitro'. This achievement has set the stage for probing the basis for the stability of the differentiated states and/or the reentry of mature differentiated cells into the mitotic cell cycle and their subsequent redifferentiation. Data from such studies at the cytological and biochemical level have been invaluable in the elucidation of the control mechanisms responsible for expression of the cellular phenotype. Unlimited possibilities exist for the application of tissue culture in the vegetative propagation of 'Phaseolus' and other important cultivars in providing genocopies or a large scale and/or readily obtaining plantlets from haploid cell lines or from protoplast (wall-less cells) hybridization products following genetic manipulation. These tools are being applied in this laboratory for the development and selection of high protein synthesizing 'Phaseolus' cultivars

  1. Ultrasonic Histotripsy for Tissue Therapy

    International Nuclear Information System (INIS)

    Pahk, K J; Saffari, N; Dhar, D K; Malago, M

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  2. Ultrasonic Histotripsy for Tissue Therapy

    Science.gov (United States)

    Pahk, K. J.; Dhar, D. K.; Malago, M.; Saffari, N.

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  3. Necrotizing Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Sahil Aggarwal, BS

    2018-04-01

    Full Text Available History of present illness: A 71-year-old woman with a history of metastatic ovarian cancer presented with sudden onset, rapidly progressing painful rash in the genital region and lower abdominal wall. She was febrile to 103°F, heart rate was 114 beats per minute, and respiratory rate was 24 per minute. Her exam was notable for a toxic-appearing female with extensive areas of erythema, tenderness, and induration to her lower abdomen, intertriginous areas, and perineum with intermittent segments of crepitus without hemorrhagic bullae or skin breakdown. Significant findings: Computed tomography (CT of the abdominal and pelvis with intravenous (IV contrast revealed inflammatory changes, including gas and fluid collections within the ventral abdominal wall extending to the vulva, consistent with a necrotizing soft tissue infection. Discussion: Necrotizing fasciitis is a serious infection of the skin and soft tissues that requires an early diagnosis to reduce morbidity and mortality. Classified into several subtypes based on the type of microbial infection, necrotizing fasciitis can rapidly progress to septic shock or death if left untreated.1 Diagnosing necrotizing fasciitis requires a high index of suspicion based on patient risk factors, presentation, and exam findings. Definitive treatment involves prompt surgical exploration and debridement coupled with IV antibiotics.2,3 Clinical characteristics such as swelling, disproportionate pain, erythema, crepitus, and necrotic tissue should be a guide to further diagnostic tests.4 Unfortunately, lab values such as white blood cell count and lactate imaging studies have high sensitivity but low specificity, making the diagnosis of necrotizing fasciitis still largely a clinical one.4,5 CT is a reliable method to exclude the diagnosis of necrotizing soft tissue infections (sensitivity of 100%, but is only moderately reliable in correctly identifying such infections (specificity of 81%.5 Given the emergent

  4. Emergent material properties of developing epithelial tissues.

    Science.gov (United States)

    Machado, Pedro F; Duque, Julia; Étienne, Jocelyn; Martinez-Arias, Alfonso; Blanchard, Guy B; Gorfinkiel, Nicole

    2015-11-23

    Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. Our results show that in an epithelial

  5. Leading Generation Y

    National Research Council Canada - National Science Library

    Newman, Jill M

    2008-01-01

    .... Whether referred to as the Millennial Generation, Generation Y or the Next Generation, the Army needs to consider the gap between Boomers, Generation X and the Soldiers that fill our junior ranks...

  6. Blood cell-derived tissue factor influences host response during murine endotoxemia

    NARCIS (Netherlands)

    Schoenmakers, Saskia H. H. F.; Groot, Angelique P.; Florquin, Sandrine; Reitsma, Pieter H.; Spek, C. Arnold

    2004-01-01

    During endotoxemia, blood coagulation becomes activated due to tissue factor (TF) expression on leukocytes and/or endothelial cells. We investigated the influence of blood cell-derived tissue factor on murine endotoxemia. Therefore, we generated mice that lack tissue factor on their blood cells by

  7. Role of gene therapy in tissue engineering procedures in rheumatology: the use of animal models.

    NARCIS (Netherlands)

    Kraan, P.M. van der; Loo, F.A.J. van de; Berg, W.B. van den

    2004-01-01

    Tissue engineering is not only the application of cells and scaffolds to generate a new tissue but should also bring into play biological principles to guide cellular behavior. A way to modify cellular behavior is genetic modification of the cells used for tissue engineering (gene therapy). In the

  8. 3D Printing of Personalized Organs and Tissues

    Science.gov (United States)

    Ye, Kaiming

    2015-03-01

    Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.

  9. Macrophages Undergo M1-to-M2 Transition in Adipose Tissue Regeneration in a Rat Tissue Engineering Model.

    Science.gov (United States)

    Li, Zhijin; Xu, Fangfang; Wang, Zhifa; Dai, Taiqiang; Ma, Chao; Liu, Bin; Liu, Yanpu

    2016-10-01

    Macrophages are involved in the full processes of tissue healing or regeneration and play an important role in the regeneration of a variety of tissues. Although recent evidence suggests the role of different macrophage phenotypes in adipose tissue expansion, metabolism, and remodeling, the spectrum of macrophage phenotype in the adipose tissue engineering field remains unknown. The present study established a rat model of adipose tissue regeneration using a tissue engineering chamber. Macrophage phenotypes were assessed during the regenerative process in the model. Neo-adipose tissue was generated 6 weeks after implantation. Macrophages were obvious in the chamber constructs 3 days after implantation, peaked at day 7, and significantly decreased thereafter. At day 3, macrophages were predominantly M1 macrophages (CCR7+), and there were few M2 macrophages (CD206+). At day 7, the percentage of M2 macrophages significantly increased and remained stable at day 14. M2 macrophages became the predominant macrophage population at 42 days. Enzyme-linked immunosorbent assay demonstrated transition of cytokines from pro-inflammatory to anti-inflammatory, which was consistent with the transition of macrophage phenotype from M1 to M2. These results showed distinct transition of macrophage phenotypes from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 in adipose tissue regeneration in our tissue engineering model. This study provides new insight into macrophage phenotype transition in the regeneration of adipose tissue. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Tissue bank: Sri Lanka

    International Nuclear Information System (INIS)

    2003-01-01

    Human degenerative diseases and congenital defects are common throughout the world. Many people suffer also from burns, fractures and nerve damage resulting from traumatic accidents and outbreaks of violence which occur all too frequently, especially in poorer countries. Far too many people are impaired for life because they have no access to treatment or simply cannot afford it. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Division of Nuclear Medicine, to improve facilities at the Sri Lanka Tissue Bank. (IAEA)

  11. Microsurgical Composite Tissue Transplantation

    Science.gov (United States)

    Serafin, Donald; Georgiade, Nicholas G.

    1978-01-01

    Since 1974, 69 patients with extensive defects have undergone reconstruction by microsurgical composite tissue transplantation. Using this method, donor composite tissue is isolated on its blood supply, removed to a distant recipient site, and the continuity of blood flow re-established by microvascular anastomoses. In this series, 56 patients (81%) were completely successful. There have been eight (12%) failures, primarily in the extremities. There have been five (7%) partial successes, (i.e., a microvascular flap in which a portion was lost requiring a secondary procedure such as a split thickness graft). In those patients with a severely injured lower extremity, the failure rate was the greatest. Most of these were arterial (six of seven). These failures occurred early in the series and were thought to be related to a severely damaged recipient vasculature. This problem has been circumvented by an autogenous interpositional vein graft, permitting more mobility of flap placement. In the upper extremity, all but one case were successful. Early motion was permitted, preventing joint capsular contractures and loss of function. Twenty-three cases in the head and neck region were successful (one partial success). This included two composite rib grafts to the mandible. Prolonged delays in reconstruction following extirpation of a malignancy were avoided. A rapid return to society following complete reconstruction was ensured. Nine patients presented for reconstruction of the breast and thorax following radical mastectomy. All were successfully reconstructed with this new technique except one patient. Its many advantages include immediate reconstruction without delayed procedures and no secondary deformity of the donor site. Healthy, well vascularized tissue can now be transferred to a previously irradiated area with no tissue loss. This new method offers many advantages to older methods of reconstruction. Length of hospital stay and immobilization are reduced. The

  12. Radiation effects in normal tissues

    International Nuclear Information System (INIS)

    Trott, K.R.; Herrmann, T.; Doerr, W.

    2002-01-01

    Knowledge of radiation effects in normal tissues is fundamental for optimal planning of radiotherapy. Therefore, this book presents a review on the following aspects: General pathogenesis of acute radiation effects in normal tissues; general pathogenesis of chronic radiation effects in normal tissues; quantification of acute and chronic radiation effects in normal tissues; pathogenesis, pathology and radiation biology of various organs and organ systems. (MG) [de

  13. [Tissue engineering and osteoarthritis].

    Science.gov (United States)

    Ibarra, Clemente; Garciadiego, David; Martínez, Valentín; Velasquillo, Cristina

    2007-10-01

    Articular cartilage lesions predispose to the development of early osteoarthritis. Most current surgical techniques give rise to the formation of fibrocartilage with biochemical and biomechanical properties inferior to those or articular cartilage. Tissue engineering could offer a modern alternative to the treatment of these lesions and in this way, prevent the development of early osteoarthritis in young active patients. Different tissue engineering approaches rely on the current use of autologous chondrocytes, or the potential use of mesenchymal stem cells. Other variables rely on the type of scaffold to use such as synthetic biodegradable polymers, fibrin or collagen-derived scaffolds of different sources, bovine, porcine, rat tail, etc, in the form of gels, sponges, mesh, etc, and all of these with or without growth factors. The use of autologous chondrocytes is a reality at the present time, whether injected under a periosteum patch or seeded on collagen. However, most investigators and biotech companies are in search of onestep surgical procedures, for which reason stem cells have to be kept in mind, as well as systems that will allow arthroscopic implantation. Copyright © 2007 Elsevier España S.L Barcelona. Published by Elsevier Espana. All rights reserved.

  14. Fundamentals of bladder tissue engineering

    African Journals Online (AJOL)

    W. Mahfouz

    Stem cells;. Bladder tissue engineering;. Decellularization;. Bladder acellular matrix. Abstract. A wide range of injuries could affect the bladder and lead to eventual loss ... Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on scaffolds and lastly ..... Clinical trials in bladder tissue engineering.

  15. Banking brain tissue for research

    NARCIS (Netherlands)

    Klioueva, Natasja; Bovenberg, Jasper; Huitinga, I.

    2017-01-01

    Well-characterized human brain tissue is crucial for scientific breakthroughs in research of the human brain and brain diseases. However, the collection, characterization, management, and accessibility of brain human tissue are rather complex. Well-characterized human brain tissue is often provided

  16. Combining Electrolysis and Electroporation for Tissue Ablation.

    Science.gov (United States)

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time. © The Author(s) 2014.

  17. Localization of IAA transporting tissue by tissue printing and autoradiography

    International Nuclear Information System (INIS)

    Mee-Rye Cha; Evans, M.L.; Hangarter, R.P.

    1991-01-01

    Tissue printing on nitrocellulose membranes provides a useful technique for visualizing anatomical details of tissue morphology of cut ends of stem segments. Basal ends of Coleus stem and corn coleoptile segments that were transporting 14 C-IAA were gently blotted onto DEAE-nitrocellulose for several minutes to allow 14 C-IAA to efflux from the tissue. Because of the anion exchange properties of DEAE-nitrocellulose the 14 C-IAA remains on the membrane at the point it leaves the transporting tissue. Autoradiography of the DEAE membrane allowed indirect visualization of the tissues preferentially involved in auxin transport. The authors observed that polar transport through the stem segments occurred primarily through or in association with vascular tissues. However, in Coleus stems, substantial amounts of the label appeared to move through the tissue by diffusion as well as by active transport

  18. Methods and apparatus for microwave tissue welding for wound closure

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Phan, Chau T. (Inventor); Byerly, Diane L. (Inventor); Dusl, John R. (Inventor); Sognier, Marguerite A. (Inventor); Carl, James R. (Inventor)

    2013-01-01

    Methods and apparatus for joining biological tissue together are provided. In at least one specific embodiment, a method for joining biological tissue together can include applying a biological solder on a wound. A barrier layer can be disposed on the biological solder. An antenna can be located in proximate spatial relationship to the barrier layer. An impedance of the antenna can be matched to an impedance of the wound. Microwaves from a signal generator can be transmitted through the antenna to weld two or more biological tissue pieces of the wound together. A power of the microwaves can be adjusted by a control circuit disposed between the antenna and the signal generator. The heating profile within the tissue may be adjusted and controlled by the placement of metallic microspheres in or around the wound.

  19. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.

    Science.gov (United States)

    Weinberger, Florian; Mannhardt, Ingra; Eschenhagen, Thomas

    2017-04-28

    Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair. © 2017 American Heart Association, Inc.

  20. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues.

    Science.gov (United States)

    Mehrali, Mehdi; Thakur, Ashish; Pennisi, Christian Pablo; Talebian, Sepehr; Arpanaei, Ayyoob; Nikkhah, Mehdi; Dolatshahi-Pirouz, Alireza

    2017-02-01

    Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs needs to be further explored to address a broad range of physiological demands of the body. In this regard, the incorporation of nanomaterials within hydrogels has shown great promise, as a simple one-step approach, to generate multifunctional scaffolds with previously unattainable biological, mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle. Additionally, some potential uses of nanoreinforced hydrogels within the emerging disciplines of cyborganics, bionics, and soft biorobotics are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High contrast soft tissue imaging based on multi-energy x-ray

    Science.gov (United States)

    Oh, Hyun-Hwa; Sung, Young-Hun; Kim, Sung-Su; Kwon, Jae-Hyun; Lee, Seong-Deok; Kim, Chang-Yeong

    2011-03-01

    Breast soft tissues have similar x-ray attenuations to mass tissue. Overlapping breast tissue structure often obscures mass and microcalcification, essential to the early detection of breast cancer. In this paper, we propose new method to generate the high contrast mammogram with distinctive features of a breast cancer by using multiple images with different x-ray energy spectra. On the experiments with mammography simulation and real breast tissues, the proposed method has provided noticeable images with obvious mass structure and microcalifications.

  2. Engineering complex tissue-like microgel arrays for evaluating stem cell differentiation

    DEFF Research Database (Denmark)

    Guermani, Enrico; Shaki, Hossein; Mohanty, Soumyaranjan

    2016-01-01

    Development of tissue engineering scaffolds with native-like biology and microarchitectures is a prerequisite for stem cell mediated generation of off-the-shelf-tissues. So far, the field of tissue engineering has not full-filled its grand potential of engineering such combinatorial scaffolds...... for engineering functional tissues. This is primarily due to the many challenges associated with finding the right microarchitectures and ECM compositions for optimal tissue regeneration. Here, we have developed a new microgel array to address this grand challenge through robotic printing of complex stem cell...... platform will be used for high-throughput identification of combinatorial and native-like scaffolds for tissue engineering of functional organs....

  3. Electrical power generating system. [for windpowered generation

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  4. Real-time optoacoustic monitoring of temperature in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Larina, Irina V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Larin, Kirill V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Esenaliev, Rinat O [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States)

    2005-08-07

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser ({lambda} = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1{sup 0}C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy.

  5. A systematic survey of lipids across mouse tissues

    Science.gov (United States)

    Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.

    2014-01-01

    Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676

  6. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  7. Generation of antiviral transgenic chicken using spermatogonial ...

    African Journals Online (AJOL)

    This study was conducted in order to generate anti-viral transgenic chickens through transfected spermatogonial stem cell with fusion gene EGFP-MMx. After injecting fusion gene EGFP-MMx into testes, tissues frozen section, polymerase chain reaction (PCR) and dot blot of testes was performed at 30, 40, 50, 60, 70 and 80 ...

  8. Generation of antiviral transgenic chicken using spermatogonial ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2011-11-09

    Nov 9, 2011 ... This study was conducted in order to generate anti-viral transgenic chickens through transfected spermatogonial stem cell with fusion gene EGFP-MMx. After injecting fusion gene EGFP-MMx into testes, tissues frozen section, polymerase chain reaction (PCR) and dot blot of testes was performed at. 30, 40 ...

  9. Distributed generation induction and permanent magnet generators

    CERN Document Server

    Lai, L

    2007-01-01

    Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generators (IGs) are the cheapest and most commonly used technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive. Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples o better demonstrate how the integration of energy sources can be accomplished. The book also provides the ...

  10. Nanocomposites for bone tissue regeneration.

    Science.gov (United States)

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  11. Mixed connective tissue disease.

    Science.gov (United States)

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies. Copyright © 2016. Published by Elsevier Ltd.

  12. Nonlinear Rheology in a Model Biological Tissue.

    Science.gov (United States)

    Matoz-Fernandez, D A; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-14

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  13. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  14. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  15. Hypericin-mediated selective photomodification of connective tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hovhannisyan, V., E-mail: hovv@phys.ntu.edu.tw; Guo, H. W.; Chen, Y. F., E-mail: yfchen@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Hovhannisyan, A. [Multimedia and Programming, European Regional Education Academy, Yerevan 0037 (Armenia); Ghukasyan, V. [Neuroscience Center, University of North Carolina at Chapel Hill, North Carolina 27514 (United States); Dong, C. Y., E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2014-12-29

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.

  16. Hazardous Waste Generators

    Data.gov (United States)

    Vermont Center for Geographic Information — The HazWaste database contains generator (companies and/or individuals) site and mailing address information, waste generation, the amount of waste generated etc. of...

  17. MHD Power Generation

    Science.gov (United States)

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  18. Integrating soft and hard tissues via interface tissue engineering.

    Science.gov (United States)

    Patel, Sahishnu; Caldwell, Jon-Michael; Doty, Stephen B; Levine, William N; Rodeo, Scott; Soslowsky, Louis J; Thomopoulos, Stavros; Lu, Helen H

    2017-11-17

    The enthesis, or interface between bone and soft tissues such as ligament and tendon, is prone to injury and often does not heal, even post surgical intervention. Interface tissue engineering represents an integrative strategy for regenerating the native enthesis by functionally connecting soft and hard tissues and thereby improving clinical outcome. This review focuses on integrative and cell-instructive scaffold designs that target the healing of the two most commonly injured soft tissue-bone junctions: tendon-bone interface (e.g., rotator cuff) and ligament-bone interface (e.g., anterior cruciate ligament). The inherent connectivity between soft and hard tissues is instrumental for musculoskeletal motion and is therefore a key design criterion for soft tissue regeneration. To this end, scaffold design for soft tissue regeneration have progressed from single tissue systems to the emerging focus on pre-integrated and functional composite tissue units. Specifically, a multifaceted, bioinspired approach has been pursued wherein scaffolds are tailored to stimulate relevant cell responses using spatially patterned structural and chemical cues, growth factors, and/or mechanical stimulation. Moreover, current efforts to elucidate the essential scaffold design criteria via strategic biomimicry are emphasized as these will reduce complexity in composite tissue regeneration and ease the related burden for clinical translation. These innovative studies underscore the clinical relevance of engineering connective tissue integration and have broader impact in the formation of complex tissues and total joint regeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  20. Brown adipose tissue in cetacean blubber.

    Directory of Open Access Journals (Sweden)

    Osamu Hashimoto

    Full Text Available Brown adipose tissue (BAT plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1, within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool

  1. Brown adipose tissue in cetacean blubber.

    Science.gov (United States)

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  2. An informatics model for tissue banks – Lessons learned from the Cooperative Prostate Cancer Tissue Resource

    Directory of Open Access Journals (Sweden)

    Melamed Jonathan

    2006-05-01

    Full Text Available Abstract Background Advances in molecular biology and growing requirements from biomarker validation studies have generated a need for tissue banks to provide quality-controlled tissue samples with standardized clinical annotation. The NCI Cooperative Prostate Cancer Tissue Resource (CPCTR is a distributed tissue bank that comprises four academic centers and provides thousands of clinically annotated prostate cancer specimens to researchers. Here we describe the CPCTR information management system architecture, common data element (CDE development, query interfaces, data curation, and quality control. Methods Data managers review the medical records to collect and continuously update information for the 145 clinical, pathological and inventorial CDEs that the Resource maintains for each case. An Access-based data entry tool provides de-identification and a standard communication mechanism between each group and a central CPCTR database. Standardized automated quality control audits have been implemented. Centrally, an Oracle database has web interfaces allowing multiple user-types, including the general public, to mine de-identified information from all of the sites with three levels of specificity and granularity as well as to request tissues through a formal letter of intent. Results Since July 2003, CPCTR has offered over 6,000 cases (38,000 blocks of highly characterized prostate cancer biospecimens, including several tissue microarrays (TMA. The Resource developed a website with interfaces for the general public as well as researchers and internal members. These user groups have utilized the web-tools for public query of summary data on the cases that were available, to prepare requests, and to receive tissues. As of December 2005, the Resource received over 130 tissue requests, of which 45 have been reviewed, approved and filled. Additionally, the Resource implemented the TMA Data Exchange Specification in its TMA program and created a

  3. Tritium metabolism in rat tissues

    International Nuclear Information System (INIS)

    Takeda, H.

    1982-01-01

    As part of a series of studies designed to evaluate the relative radiotoxicity of various tritiated compounds, metabolism of tritium in rat tissues was studied after administration of tritiated water, leucine, thymidine, and glucose. The distribution and retention of tritium varied widely, depending on the chemical compound administered. Tritium introduced as tritiated water behaved essentially as body water and became uniformly distributed among the tissues. However, tritium administered as organic compounds resulted in relatively high incorporation into tissue constituents other than water, and its distribution differed among the various tissues. Moreover, the excretion rate of tritium from tissues was slower for tritiated organic compounds than for tritiated water. Administrationof tritiated organic compounds results in higher radiation doses to the tissues than does administration of tritiated water. Among the tritiated compounds examined, for equal radioactivity administered, leucine gave the highest radiation dose, followed in turn by thymidine, glucose, and water. (author)

  4. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  6. Soft tissue angiosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, P.H.; Lindberg, R.D.; Barkley, H.T.

    1981-12-01

    From 1949 to 1979, 12 patients with soft tissue angiosarcoma received radiotherapy (alone or in combination with other modalities of treatment) with curative intent at The University of Texas M.D. Anderson Hospital and Tumor Institute. The primary site was the head and neck in six patients (scalp, four; maxillary antrum, one; and oral tongue, one), the breast in four patients, and the thigh in two patients. All four patients with angiosarcoma of the scalp had advanced multifocal tumors, and two of them had clinically positive neck nodes. None of these tumors were controlled locally, and local recurrences occurred within and/or at a distance from the generous fields of irradiation. The remaining two patients with head and neck lesions had their disease controlled by surgery and postoperative irradiation. Three of the four angiosarcomas of the breast were primary cases which were treated by a combination of surgery (excisional biopsy, simple mastectomy, radical mastectomy) and postoperative irradiation. One patient also received adjuvant chemotherapy. The fourth patient was treated for scar recurrence after radical mastectomy. All four patients had their disease locally controlled, and two of them have survived over 5 years. The two patients with angiosarcoma of the thigh were treated by conservative surgical excision and postoperative irradiation. One patient had her disease controlled; the other had a local recurrence requiring hip disarticulation and subsequent hemipelvectomy for salvage.

  7. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  8. Generation of functional organs from stem cells

    Directory of Open Access Journals (Sweden)

    Yunying Liu

    2013-01-01

    Full Text Available We are now well entering the exciting era of stem cells. Potential stem cell therapy holds great promise for the treatment of many diseases such as stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral-sclerosis, myocardial infarction, muscular dystrophy, diabetes, and etc. It is generally believed that transplantation of specific stem cells into the injured tissue to replace the lost cells is an effective way to repair the tissue. In fact, organ transplantation has been successfully practiced in clinics for liver or kidney failure. However, the severe shortage of donor organs has been a major obstacle for the expansion of organ transplantation programs. Toward that direction, generation of transplantable organs using stem cells is a desirable approach for organ replacement and would be of great interest for both basic and clinical scientists. Here we review recent progress in the field of organ generation using various methods including single adult tissue stem cells, a blastocyst complementation system, tissue decellularization/recellularization and a combination of stem cells and tissue engineering.

  9. Clinical management of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Pinedo, H.M.; Verweij, J.

    1986-01-01

    This book is concerned with the clinical management of soft tissue sarcomas. Topics covered include: Radiotherapy; Pathology of soft tissue sarcomas; Surgical treatment of soft tissue sarcomas; and Chemotherapy in advanced soft tissue sarcomas

  10. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  11. Minding the Generation Gap

    Science.gov (United States)

    Field, John

    2011-01-01

    Generational conflict is back. After years of relative silence, and mutual ignorance, the young and old are once more at war. With youth unemployment high on the political agenda, the fortunes of the "jobless generation" are being contrasted with those of the "golden generation" of baby boomers, but is one generation really…

  12. Work Values across Generations

    Science.gov (United States)

    Hansen, Jo-Ida C.; Leuty, Melanie E.

    2012-01-01

    Mainstream publication discussions of differences in generational cohorts in the workplace suggest that individuals of more recent generations, such as Generation X and Y, have different work values than do individuals of the Silent and Baby Boom generations. Although extant research suggests that age may influence work values, few of the…

  13. Talkin' 'bout My Generation

    Science.gov (United States)

    Rickes, Persis C.

    2010-01-01

    The monikers are many: (1) "Generation Y"; (2) "Echo Boomers"; (3) "GenMe"; (4) the "Net Generation"; (5) "RenGen"; and (6) "Generation Next". One name that appears to be gaining currency is "Millennials," perhaps as a way to better differentiate the current generation from its…

  14. Undiagnosed connective tissue diseases

    Science.gov (United States)

    Cavagna, Lorenzo; Codullo, Veronica; Ghio, Stefano; Scirè, Carlo Alberto; Guzzafame, Eleonora; Scelsi, Laura; Rossi, Silvia; Montecucco, Carlomaurizio; Caporali, Roberto

    2016-01-01

    Abstract Among different subgroups of pulmonary arterial hypertension (PAH), those associated with connective tissue diseases (CTDs) have distinct hemodynamic and prognostic features; a correct etiologic diagnosis is thus mandatory. To estimate frequency and prognosis of previously undiagnosed CTDs in a suspect idiopathic (i) PAH cohort. Consecutive patients with PAH confirmed by right heart catheterization referred at the Cardiology Division of our Hospital without a previous rheumatological assessment or the occurrence of other conditions explaining PAH were checked for CTD by a clinical, laboratory, and instrumental evaluation. Survival in each group has also been analyzed. In our study 17 of 49 patients were classified as CTD-PAH, corresponding to a prevalence (95% CI) of 34.7% (21.7–49.6%). ANA positivity had 94% (71.3–99.9%) sensitivity and 78.1% (60–90.7%) specificity for a diagnosis of CTD-PAH; Raynaud phenomenon (RP) showed 83.3% (51.6–97.9%) sensitivity and 100% (90.5–100%) specificity for the diagnosis of Systemic Sclerosis (SSc)-PAH. At diagnosis, SSc patients were older and had a lower creatinine clearance compared with iPAH and other CTD-PAH. After a median follow-up of 44 (2–132) months, 18 of 49 (36.7%) patients died: 31.2% in the iPAH group, 20% in the CTD-, and 58.3% in the SSc-PAH group. Mortality was significantly higher in SSc-PAH (HR 3.32, 1.11–9.95, P <0.05) versus iPAH. We show a high prevalence of undiagnosed CTDs in patients with iPAH without a previous rheumatological assessment. All patients with RP were diagnosed with SSc. Our data stress the importance of a rheumatological assessment in PAH, especially because of the unfavorable prognostic impact of an associated SSc. PMID:27684814

  15. Obesity Decreases Perioperative Tissue Oxygenation

    Science.gov (United States)

    Kabon, Barbara; Nagele, Angelika; Reddy, Dayakar; Eagon, Chris; Fleshman, James W.; Sessler, Daniel I.; Kurz, Andrea

    2005-01-01

    Background: Obesity is an important risk factor for surgical site infections. The incidence of surgical wound infections is directly related to tissue perfusion and oxygenation. Fat tissue mass expands without a concomitant increase in blood flow per cell, which might result in a relative hypoperfusion with decreased tissue oxygenation. Consequently, we tested the hypotheses that perioperative tissue oxygen tension is reduced in obese surgical patients. Furthermore, we compared the effect of supplemental oxygen administration on tissue oxygenation in obese and non-obese patients. Methods: Forty-six patients undergoing major abdominal surgery were assigned to one of two groups according to their body mass index (BMI): BMI < 30 kg/m2 (non-obese) and BMI ≥ 30 kg/m2 (obese). Intraoperative oxygen administration was adjusted to arterial oxygen tensions of ≈150 mmHg and ≈300 mmHg in random order. Anesthesia technique and perioperative fluid management were standardized. Subcutaneous tissue oxygen tension was measured with a polarographic electrode positioned within a subcutaneous tonometer in the lateral upper arm during surgery, in the recovery room, and on the first postoperative day. Postoperative tissue oxygen was also measured adjacent to the wound. Data were compared with unpaired two tailed t-tests and Wilcoxon rank-sum tests; P < 0.05 was considered statistically significant. Results: Intraoperative subcutaneous tissue oxygen tension was significantly less in the obese patients at baseline (36 vs. 57 mmHg, P = 0.002) and with supplemental oxygen administration (47 vs. 76 mmHg, P = 0.014). Immediate postoperative tissue oxygen tension was also significantly less in subcutaneous tissue of the upper arm (43 vs. 54 mmHg, P = 0.011) as well as near the incision (42 vs. 62 mmHg, P = 0.012) in obese patients. In contrast, tissue oxygen tension was comparable in each group on the first postoperative morning. Conclusion: Wound and tissue hypoxia were common in obese

  16. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  17. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  18. Cryobanking of human ovarian tissue

    DEFF Research Database (Denmark)

    Ernst, Erik; Andersen, Anders Nyboe; Andersen, Claus Yding

    2014-01-01

    Cryopreservation of ovarian tissue is one way of preserving fertility in young women with a malignant disease or other disorders that require gonadotoxic treatment. The purpose of the study was to explore how many women remained interested in continued cryostorage of their ovarian tissue beyond a...

  19. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  20. Mechanical device for tissue regeneration

    NARCIS (Netherlands)

    Herder, J.L.; Maij, E.

    2010-01-01

    The invention relates to a mechanical device for tissue- regeneration inside a patient, comprising means (2, 3) to place a scaffold for the tissue under mechanical stress. Said means comprise a first device-part (2) and a second device-part (3) which parts are arranged to be movable with respect to

  1. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  2. Tissue engineering of the meniscus.

    NARCIS (Netherlands)

    Buma, P.; Ramrattan, N.N.; Tienen, T. van; Veth, R.P.H.

    2004-01-01

    Meniscus lesions are among the most frequent injuries in orthopaedic practice and they will inevitably lead to degeneration of the knee articular cartilage. The fibro-cartilage-like tissue of the meniscus is notorious for its limited regenerative capacity. Tissue engineering could offer new

  3. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    Science.gov (United States)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  4. A real time hyperelastic tissue model.

    Science.gov (United States)

    Zhong, Hualiang; Peters, Terry

    2007-06-01

    Real-time soft tissue modeling has a potential application in medical training, procedure planning and image-guided therapy. This paper characterizes the mechanical properties of organ tissue using a hyperelastic material model, an approach which is then incorporated into a real-time finite element framework. While generalizable, in this paper we use the published mechanical properties of pig liver to characterize an example application. Specifically, we calibrate the parameters of an exponential model, with a least-squares method (LSM) using the assumption that the material is isotropic and incompressible in a uniaxial compression test. From the parameters obtained, the stress-strain curves generated from the LSM are compared to those from the corresponding computational model solved by ABAQUS and also to experimental data, resulting in mean errors of 1.9 and 4.8%, respectively, which are considerably better than those obtained when employing the Neo-Hookean model. We demonstrate our approach through the simulation of a biopsy procedure, employing a tetrahedral mesh representation of human liver generated from a CT image. Using the material properties along with the geometric model, we develop a nonlinear finite element framework to simulate the behaviour of liver during an interventional procedure with a real-time performance achieved through the use of an interpolation approach.

  5. Genetic and hormonal control of vascular tissue proliferation

    NARCIS (Netherlands)

    Smet, Wouter; Rybel, De Bert

    2016-01-01

    The plant vascular system develops from a handful of provascular initial cells in the early embryo into a whole range of different cell types in the mature plant. In order to account for such proliferation and to generate this kind of diversity, vascular tissue development relies on a large

  6. Gelatin-Methacryloyl Hydrogels : Towards Biofabrication-Based Tissue Repair

    NARCIS (Netherlands)

    Klotz, Barbara J|info:eu-repo/dai/nl/411265938; Gawlitta, Debby; Rosenberg, Antoine J W P; Malda, Jos|info:eu-repo/dai/nl/412461099; Melchels, Ferry P W

    Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context,

  7. Extraction of low molecular weight RNA from Citrus trifolita tissues ...

    African Journals Online (AJOL)

    We employed a simple and quick method involving trizol for total RNA extraction from citrus tissues, then generation of LMW RNA using 4M LiCl, which have been successfully utilized in studies in our laboratory. Compared with traditional methods, this method is less expensive and produced high RNA yields while avoiding ...

  8. Tracking the Penetration of Plasma Reactive Species in Tissue Models.

    Science.gov (United States)

    Szili, Endre J; Hong, Sung-Ha; Oh, Jun-Seok; Gaur, Nishtha; Short, Robert D

    2017-08-23

    Electrically generated cold atmospheric plasma is being intensively researched for novel applications in biology and medicine. Significant attention is being given to reactive oxygen and nitrogen species (RONS), initially generated upon plasma-air interactions, and subsequently delivered to biological systems. Effects of plasma exposure are observed to millimeter depths within tissue. However, the exact nature of the initial plasma-tissue interactions remains unknown, including RONS speciation and delivery depth, or how plasma-derived RONS intervene in biological processes. Herein, we focus on current research using tissue and cell models to learn more about the plasma delivery of RONS into biological environments. We argue that this research is vital in underpinning the knowledge required to realize the full potential of plasma in biology and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  10. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Tissue Restricted Splice Junctions Originate Not Only from Tissue-Specific Gene Loci, but Gene Loci with a Broad Pattern of Expression.

    Directory of Open Access Journals (Sweden)

    Matthew S Hestand

    Full Text Available Cellular mechanisms that achieve protein diversity in eukaryotes are multifaceted, including transcriptional components such as RNA splicing. Through alternative splicing, a single protein-coding gene can generate multiple mRNA transcripts and protein isoforms, some of which are tissue-specific. We have conducted qualitative and quantitative analyses of the Bodymap 2.0 messenger RNA-sequencing data from 16 human tissue samples and identified 209,363 splice junctions. Of these, 22,231 (10.6% were not previously annotated and 21,650 (10.3% were expressed in a tissue-restricted pattern. Tissue-restricted alternative splicing was found to be widespread, with approximately 65% of expressed multi-exon genes containing at least one tissue-specific splice junction. Interestingly, we observed many tissue-specific splice junctions not only in genes expressed in one or a few tissues, but also from gene loci with a broad pattern of expression.

  12. Next Generation Biopharmaceuticals: Product Development.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian

    2018-04-11

    Therapeutic proteins show a rapid market growth. The relatively young biotech industry already represents 20 % of the total global pharma market. The biotech industry environment has traditionally been fast-pasted and intellectually stimulated. Nowadays the top ten best selling drugs are dominated by monoclonal antibodies (mABs).Despite mABs being the biggest medical breakthrough in the last 25 years, technical innovation does not stand still.The goal remains to preserve the benefits of a conventional mAB (serum half-life and specificity) whilst further improving efficacy and safety and to open new and better avenues for treating patients, e.g., improving the potency of molecules, target binding, tissue penetration, tailored pharmacokinetics, and reduced adverse effects or immunogenicity.The next generation of biopharmaceuticals can pose specific chemistry, manufacturing, and control (CMC) challenges. In contrast to conventional proteins, next-generation biopharmaceuticals often require lyophilization of the final drug product to ensure storage stability over shelf-life time. In addition, next-generation biopharmaceuticals require analytical methods that cover different ways of possible degradation patterns and pathways, and product development is a long way from being straight forward. The element of "prior knowledge" does not exist equally for most novel formats compared to antibodies, and thus the assessment of critical quality attributes (CQAs) and the definition of CQA assessment criteria and specifications is difficult, especially in early-stage development.

  13. Trip generation studies for special generators.

    Science.gov (United States)

    2010-02-01

    This research examines the effects of town centers and senior housing developments on : surrounding roadways and nearby transit. The Institute of Transportation Engineers (ITE) : Trip Generation Manual, which determines number of trips produced or at...

  14. Refrigeration generation using expander-generator units

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  15. Interaction of laser radiation with tissue

    Science.gov (United States)

    Weber, Heinz P.; Zweig, Adrian D.; Frenz, Martin; Romano, Valerio

    1990-09-01

    The iiin reason to use lasers for cutting tissue is the instant generation of a coagulated zone along the incision walls . This zone acts baertota however if it becone-s too thi it leads to undesired scar forxrtion durir the healing process. The thickness of the coagulated zone is strongly dependent on the details of the cutting rrecbanisrn that itself is determined by the laser and material pararreters. We studied the influence of laser penetration depth intensity and focal geoirtry as well as physical tissue properties on the resultir laser incisions . We iide our investigations on a ndel substance in as well as on freshly excis animal dermis . Laser pulses of 250 p. s duration and 4 Hz repetition rate were eniployed . We corrared incisions made with an laser at 2 . 94 imi to incisions from a laser. We studiI cutting for various focusing conditions . We found that often hydrodynaxnic instabilities developed within the crater and also learned how they can be avoided . The extensions of thermal damage zones depend much stronger on focusing geometry arid intensity than on the optical penetration depth of the cutting beam. Tissue material is eated liquefied and partially ejected during laser cutting. We show that the deree of thermal damage originates from the aimunt of hot material that is not ejected out of the crater of incision. Further we that tissue material is elastically displaced during laser cutting and recoils after cuttir back to exactly its initial position. In soft materials usually the incisions close at the upper end of the hole alnxst instantaneously after termination of the laser pulse . The vacancies left behind are filled with hot water vapor that condenses upon cooling leading to a strong suction process . Thus material from the surface can be pulled into the depth of the incision without being biologically deactivated. 1.

  16. Comparative in silico profiling of epigenetic modifiers in human tissues.

    Science.gov (United States)

    Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-04-06

    The technology of tissue differentiation from human pluripotent stem cells has attracted attention as a useful resource for regenerative medicine, disease modeling and drug development. Recent studies have suggested various key factors and specific culture methods to improve the successful tissue differentiation and efficient generation of human induced pluripotent stem cells. Among these methods, epigenetic regulation and epigenetic signatures are regarded as an important hurdle to overcome during reprogramming and differentiation. Thus, in this study, we developed an in silico epigenetic panel and performed a comparative analysis of epigenetic modifiers in the RNA-seq results of 32 human tissues. We demonstrated that an in silico epigenetic panel can identify epigenetic modifiers in order to overcome epigenetic barriers to tissue-specific differentiation.

  17. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  18. YAP is essential for tissue tension to ensure vertebrate 3D body shape.

    Science.gov (United States)

    Porazinski, Sean; Wang, Huijia; Asaoka, Yoichi; Behrndt, Martin; Miyamoto, Tatsuo; Morita, Hitoshi; Hata, Shoji; Sasaki, Takashi; Krens, S F Gabriel; Osada, Yumi; Asaka, Satoshi; Momoi, Akihiro; Linton, Sarah; Miesfeld, Joel B; Link, Brian A; Senga, Takeshi; Shimizu, Nobuyoshi; Nagase, Hideaki; Matsuura, Shinya; Bagby, Stefan; Kondoh, Hisato; Nishina, Hiroshi; Heisenberg, Carl-Philipp; Furutani-Seiki, Makoto

    2015-05-14

    Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.

  19. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  20. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  1. Biological aspects of application of nanomaterials in tissue engineering

    Directory of Open Access Journals (Sweden)

    Markovic Dejan

    2016-01-01

    Full Text Available Millions of patients worldwide need surgery to repair or replace tissue that has been damaged through trauma or disease. To solve the problem of lost tissue, a major emphasis of tissue engineering (TE is on tissue regeneration. Stem cells and highly porous biomaterials used as cell carriers (scaffolds have an essential role in the production of new tissue by TE. Cellular component is important for the generation and establishment of the extracellular matrix, while a scaffold is necessary to determine the shape of the newly formed tissue and facilitate migration of cells into the desired location, as well as their growth and differentiation. This review describes the types, characteristics and classification of stem cells. Furthermore, it includes functional features of cell carriers - biocompatibility, biodegradability and mechanical properties of biomaterials used in developing state-of-the-art scaffolds for TE applications, as well as suitability for different tissues. Moreover, it explains the importance of nanotechnology and defines the challenges and the purpose of future research in this rapidly advancing field. [Projekat Ministarstva nauke Republike Srbije, br. 41030 i br. 172026

  2. Protein based devices for oral tissue repair and regeneration

    Directory of Open Access Journals (Sweden)

    Iriczalli Cruz-Maya

    2018-03-01

    Full Text Available In the last decades, a goal of tissue engineering has been devoted to the design of devices with multiple micro- or nano-structures and loaded with bioactive molecules, to mimic the extracellular matrix (ECM so generating a conducive microenvironment for new tissue replacement/regeneration. The ECM, naturally, is composed of fibrous proteins which provide structural support for tissues, mainly regulating cells behavior in terms of proliferation, growth, survival, shape, migration and differentiation by cell-matrix interactions. Several studies have been just investigated the fabrication of different platforms for the regeneration of teeth, oral mucosa, salivary glands, bone, and periodontium. In this context, many proteins—from a natural or biological source—have been used as instructive substances to in vitro guide tissue organization and functions. In particular, new advances in the definition of protein-based formulations currently represent a great challenge to promote a more effective regeneration of dental tissues to be transplanted into patients to replace damaged, diseased or missing tissues. Hence, the purpose of this review is to discuss the use of protein-based systems for the regeneration of oral tissues.

  3. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  4. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  5. Meet the Millennial Generation.

    Science.gov (United States)

    O'Reilly, Brian

    2000-01-01

    The "Millennial Generation" has grown up with prosperity, working parents, the Internet, divorce, and Columbine. They are fundamentally different in outlook and ambition from preceding generations and have their own ideas about how they want to live and work. (JOW)

  6. Quantum random number generator

    Science.gov (United States)

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  7. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  8. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.; Barr, H.N.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  9. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  10. Novel miniature electrostatic generator

    Science.gov (United States)

    Bakhoum, Ezzat G.

    2008-01-01

    A new and unusual design for an electrostatic high voltage generator is introduced. The prototype device built by the author can generate a voltage up to approximately 180kV; yet, its physical size is only a fraction of the size of a comparable Van de Graaff generator. In recent years there has been increasing demand for high voltage generators that are also very compact and lightweight. The new design introduced here fulfills that requirement.

  11. Generation and Context Memory

    Science.gov (United States)

    Mulligan, Neil W.; Lozito, Jeffrey P.; Rosner, Zachary A.

    2006-01-01

    Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget…

  12. Radio-isotope generator

    International Nuclear Information System (INIS)

    Benjamins, H.M.

    1983-01-01

    A device is claimed for interrupting an elution process in a radioisotope generator before an elution vial is entirely filled. The generator is simultaneously exposed to sterile air both in the direction of the generator column and of the elution vial

  13. Uniform random number generators

    Science.gov (United States)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  14. Generational Pension Plan Designs

    NARCIS (Netherlands)

    Huang, Xiaohong; Mahieu, Ronald

    2010-01-01

    We propose a generational plan for the occupational pension provision in which people from the same generation are pooled in a generational fund. Each fund can set its own policies independently. This plan provides the benefits of differentiation missing in the prevailing collective plan and the

  15. Soft tissue expansion before vertical ridge augmentation: Inflatable silicone balloons or self-filling osmotic tissue expanders?

    Directory of Open Access Journals (Sweden)

    Prasad Vijayrao Dhadse

    2014-01-01

    Full Text Available Recent advances in periodontal plastic surgical procedures allow the clinician to reconstruct deficient alveolar ridges in more predictable ways than previously possible. Placement of implant/s in resorbed ridges poses numerous challenges to the clinician for successful esthetic and functional rehabilitation. The reconstruction frequently utilizes one or combination of periodontal plastic surgical procedures in conjunction with autogenous bone grafting, allogenic bone block grafting, ridge split techniques, distraction osteogenesis, or guided bone regeneration (GBR for most predictable outcomes. Current surgical modalities used in reconstruction of alveolar ridge (horizontal and/or vertical component often involve the need of flap transfer. Moreover, there is compromise in tissue integrity and color match owing to different surgical site and the tissue utilized is insufficient in quantity leading to post surgical graft exposition and/or loss of grafted bone. Soft tissue expansion (STE by implantation of inflatable silicone balloon or self filling osmotic tissue expanders before reconstructive surgery can overcome these disadvantages and certainly holds a promise for effective method for generation of soft tissue thereby achieving predictable augmentation of deficient alveolar ridges for the implant success. This article focuses and compares these distinct tissue expanders for their clinical efficacy of achieving excess tissue that predominantly seems to be prerequisite for ridge augmentation which can be reasonably followed by successful placement of endosseous fixtures.

  16. Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in -w magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu Shao-De; Wu Shi-Bin; Xie Yao-Qin; Wang Hao-Yu; Wei Xin-Hua; Chen Xin; Pan Wan-Long; Hu Jiani

    2015-01-01

    Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of weighted magnetic resonance imaging However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo . Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation. (paper)

  17. Tissue Engineering in Vesical Reconstruction

    African Journals Online (AJOL)

    mn

    Azhar University, Assiut, Egypt. ABSTRACT. Objectives: This review summarizes the basic principles of tissue engineering (TE) and describes the possible future clinical application in bladder reconstruction. Material and Methods: This review ...

  18. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB....... The first part of the scientific contribution investigates an implementation of pulse inversion for THI on the experimental ultrasound system SARUS. The technique is initially implemented for linear array transducers and then expanded for convex array transducers. The technique is evaluated based on spatial...

  19. Heritable Disorders of Connective Tissue

    Science.gov (United States)

    ... skin. Epidermolysis bullosa affects the skin, causing blisters. Marfan syndrome can affect the heart, blood vessels, lungs, eyes, ... Disorders of Connective Tissue, Questions and Answers about Marfan Syndrome, Questions and Answers about Marfan Syndrome, Easy-to- ...

  20. Microdissection of stained archival tissue.

    Science.gov (United States)

    Gupta, S K; Douglas-Jones, A G; Morgan, J M

    1997-08-01

    In many tissues the preinvasive stage of neoplastic progression can be identified histologically as dysplasia or in situ disease. There is much interest in defining the molecular events associated with the early stages of neoplasia. Retrieval of histologically recognisable preinvasive neoplastic tissue uncontaminated by inflammatory or stromal cells is important for genetic studies using polymerase chain reaction (PCR) assay. A novel method for microdissection is described in which 10 microns sections are dewaxed, stained with haematoxylin and eosin, dried, covered with Sellotape, and the tissue cut out using a scalpel blade under direct visual control. The method is quick, eliminates problems of operator tremor, preserves the architecture of the micro-dissected tissue (for photographic documentation) and requires no special equipment. The presence of Sellotape and adhesive in the reaction mixture has no detrimental effect on the ability to extract DNA or to perform PCR.

  1. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  2. Necrotizing soft-tissue infections.

    Science.gov (United States)

    Ahrenholz, D H

    1988-02-01

    A variety of infections are encountered by the practicing surgeon. Uncommonly, a patient presents with minimal external manifestations of a deep surgical soft-tissue infection. Early aggressive intervention is required to minimize the morbidity in these often debilitated patients.

  3. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  4. PEPTIDASE DISTRIBUTION IN LYMPHATIC TISSUE

    Science.gov (United States)

    Doyle, William L.

    1955-01-01

    The lymphatic tissue of the rabbit contains a labile peptidase as measured by the hydrolysis of alanylglycine. Some characteristics of the enzyme were determined. This enzyme increases in amount when the numbers of macrophages in the tissue are increased and it is also present in the extracellular fluid in high concentration. The extracellular fluid value for this activity is calculated to be about 8 times the value for serum. Based on a correlation between the types of cells present and the amount of peptidase found in the tissue the following relative activities are assigned to the tissue components per unit volume: lymphocytes 1.0, tissue fluid 11.0, serum 1.4, phagocytes (macrophages) 30.0, reticular cells 12.0. The amount of chloride space varied from 35 to 55 per cent. The relative amounts of acid phosphatase per unit volume in the same elements were calculated to be: lymphocytes 1.0, tissue fluid 0, phagocytes 20.0, and reticular cells 4.0. Analysis of the distribution of peptidase was facilitated by simultaneous determination of acid phosphatase whose primary localization in one cell type was known. The over-all contribution of lymphocytes to the labile peptidase content of lymphatic tissue is relatively minor and was not found to exceed 5 per cent of the average value for the entire nodular tissue. In the absence of large numbers of macrophages the intercellular fluid of the nodule accounts for half or more of the peptidase content of the nodules. PMID:13242588

  5. Magnetic resonance of calcified tissues

    Science.gov (United States)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  6. Microdissection of stained archival tissue.

    OpenAIRE

    Gupta, S K; Douglas-Jones, A G; Morgan, J M

    1997-01-01

    In many tissues the preinvasive stage of neoplastic progression can be identified histologically as dysplasia or in situ disease. There is much interest in defining the molecular events associated with the early stages of neoplasia. Retrieval of histologically recognisable preinvasive neoplastic tissue uncontaminated by inflammatory or stromal cells is important for genetic studies using polymerase chain reaction (PCR) assay. A novel method for microdissection is described in which 10 microns...

  7. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Rouwkema, Jeroen; Zhang, Y.S.; Nasajpour, A.; Dokmeci, M.R.; Khademhosseini, A.

    2016-01-01

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in

  8. Characterization of human carotid atherosclerotic tissues imaged by combining multiple multiphoton microscopy techniques

    Science.gov (United States)

    Baria, E.; Cicchi, R.; Nesi, G.; Massi, D.; Pavone, F. S.

    2017-07-01

    We combined Second Harmonic Generation, Two-Photon Fluorescence and Fluorescence Lifetime Imaging Microscopy for studying human carotid ex vivo tissue sections affected by atherosclerosis, resulting in the discrimination of different arterial regions within the plaques.

  9. The mechanism of tissue-restricted antigen gene expression by AIRE.

    Science.gov (United States)

    Zumer, Kristina; Saksela, Kalle; Peterlin, B Matija

    2013-03-15

    The autoimmune regulator is a critical transcription factor for generating central tolerance in the thymus. Recent studies have revealed how the autoimmune regulator targets many otherwise tissue-restricted Ag genes to enable negative selection of autoreactive T cells.

  10. [Soft tissue rheumatism in erderly].

    Science.gov (United States)

    Szczepański, Leszek

    2008-01-01

    Disorders of soft, peri-articular tissues are a common cause of musculoskeletal pain in elderly patients. Nevertheless, most physicians underestimate the role of soft tissue rheumatism in the pathomechanism of the pain. The impairments of soft tissue can not be diagnosed by X-rays examinations, whereas degenerative lesions of joints are easy diagnosed using this method even despite of their uncertain role in producing the symptoms. The incidence of pain syndromes originated from soft tissues differ regarding to the age of patients. In young subjects the incidence of all of them is generally low. Syndromes provoked by overloading during work: repetitive strain syndrome, canal tunnel syndrome, tennis elbow, golfers elbow, shoulder tendon coin disorders and myofascial pain syndrome are common in middle-aged patients. The morbidity of fibromialgia syndrome is also lower in old people probably as the result of diminished numbers and degenerative changes in nociceptive fibers. The syndromes prevailing in elderly patients include trochanteric syndrome and the pain syndromes provoked by muscle spasm depended on posture abnormalities. In the soft tissue pain syndrome prevention adapted to old age kinesitherapy and avoiding muscle overloading are recommended. Soft tissue pain syndromes are usually treated with non steroidal anti inflammatory drugs. In local pain syndromes better results can be obtained by local treatment. Local injections of glikocorticosteroids are usually very effective and safe.

  11. In vitro neoplastic transformation of plant callus tissue by γ-radiation

    International Nuclear Information System (INIS)

    Pandey, K.N.; Sabharwal, P.S.

    1979-01-01

    Tumours have been induced by γ-radiation in callus tissue derived from a monocotyledonous flowering plant, Haworthia mirabilis Haw. The transformed tissue exhibited compact texture, excessive cell proliferation and loss of capacity for organogenesis. Tumors were characterized by their ability to undergo continuous autonomous growth on minimal media in the subsequent 4 generations of subculture. In contrast, the nonirradiated control tissue grew with friable texture, required inositol or growth hormones and showed prolific differentiation of vegetative buds. (Auth.)

  12. Three-dimensional radiofrequency tissue tightening: a proposed mechanism and applications for body contouring.

    Science.gov (United States)

    Paul, Malcolm; Blugerman, G; Kreindel, M; Mulholland, R S

    2011-02-01

    The use of radiofrequency energy to produce collagen matrix contraction is presented. Controlling the depth of energy delivery, the power applied, the target skin temperature, and the duration of application of energy at various soft tissue levels produces soft tissue contraction, which is measurable. This technology allows precise soft tissue modeling at multiple levels to enhance the result achieved over traditional suction-assisted lipectomy as well as other forms of energy such as ultrasonic and laser-generated lipolysis.

  13. Tissue Banking: Current procedures, ethical consideration and ...

    African Journals Online (AJOL)

    Tissue banking provides safe and effective cells and tissues for transplantation in reconstruction surgery. Bone, amnion, skin, cartilage, heart valves and xenograft tissues are the most commonly used biological tissues. Acquisition of tissue is dependent on elaborate donor screening criteria based on medical and social ...

  14. Reconstruction of human mammary tissues in a mouse model.

    Science.gov (United States)

    Proia, David A; Kuperwasser, Charlotte

    2006-01-01

    Establishing a model system that more accurately recapitulates both normal and neoplastic breast epithelial development in rodents is central to studying human breast carcinogenesis. However, the inability of human breast epithelial cells to colonize mouse mammary fat pads is problematic. Considering that the human breast is a more fibrous tissue than is the adipose-rich stroma of the murine mammary gland, our group sought to bypass the effects of the rodent microenvironment through incorporation of human stromal fibroblasts. We have been successful in reproducibly recreating functionally normal breast tissues from reduction mammoplasty tissues, in what we term the human-in-mouse (HIM) model. Here we describe our relatively simple and inexpensive techniques for generating this orthotopic xenograft model. Whether the model is to be applied for understanding normal human breast development or tumorigenesis, investigators with minimal animal surgery skills, basic cell culture techniques and access to human breast tissue will be able to generate humanized mouse glands within 3 months. Clearing the mouse of its endogenous epithelium with subsequent stromal humanization takes 1 month. The subsequent implantation of co-mixed human epithelial cells and stromal cells occurs 2 weeks after humanization, so investigators should expect to observe the desired outgrowths 2 months afterward. As a whole, this model system has the potential to improve the understanding of crosstalk between tissue stroma and the epithelium as well as factors involved in breast stem cell biology tumor initiation and progression.

  15. Artery Soft-Tissue Modelling for Stent Implant Training System

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-08-01

    Full Text Available Virtual reality technology can be utilised to provide new systematic training methods for surgical procedures. Our aim is to build a simulator that allows medical students to practice the coronary stent implant procedure and avoids exposing patients to risks. The designed simulation system consists of a virtual environment and a haptic interface, in order to provide both the visualization of the coronary arteries and the tactile and force feedback generated during the interactions of the surgical instruments in the virtual environment. Since the arteries are soft tissues, their shape may change during an operation; for this reason physical modelling of the organs is necessary to render their behaviour under the influence of surgeon's instruments. The idea is to define a model that computes the displacement of the tissue versus time; from the displacement it is possible to calculate the response of the tissue to the surgical tool external stimuli. Information about tools displacements and tissue responses are also used to graphically model the artery wall and virtual surgical instrument deformations generated as a consequence of their coming into contact. In order to obtain a realistic simulation, the Finite Element Method has been used to model the soft tissues of the artery, using linear elasticity to reduce computational time and speed up interaction rates.

  16. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    well-being (loss of muscle and skeletal tissues [15-17]) and gene- and cell-level responses to the mechanical environment [13,14,18]. All five of the spaceflight bioreactor studies described above utilized three-dimensional cell culture systems in which the cells were associated with biodegradable polymer scaffolds [17], collagen gel [16], or microcarrier beads [13-15,18] in order to promote the expression of differentiated cell function. In four of the five spaceflight bioreactor studies [15-18], cells were cultured in perfused vessels (cartridges or rotating bioreactors) within recirculating loops designed to maintain medium composition within target ranges by a combination of gas exchange and fresh medium supply. Future spaceflight studies of cells and tissues are likely to involve a three-dimensional culture system, to promote cellular differentiation, and perfusion with or without rotation, to provide a gravity-independent mechanism for fluid mixing and mass transport. Previous spaceflight studies have guided the ongoing development of NASA flight hardware for the ISS (e.g. the EDU-2 and the CCU). This next generation of hardware will have extended operational capabilities including on-line microscopy, in-line sensors for the monitoring and control of metabolic parameters, modular design for replicate cultures, and, perhaps most importantly of all, compatibility with the ISS centrifuge. The latter will permit in-flight, 1 g control cultures, and thereby allow the experimental variable to be gravity itself rather than the more general "spaceflight environment". Technical limitations of spaceflight studies (e.g. allowable size, mass, and power) continue to motivate a creative approach to system design and to result in "spin-off" technologies (e.g. the STLV) for ground-based cell and tissue culture research. The increasing scientific and medical relevance of this work is evidenced by the growing number of publications in which advanced bioreactors are used for in

  17. Human tissues in a dish : The research and ethical implications of organoid technology

    NARCIS (Netherlands)

    Bredenoord, Annelien L; Clevers, Hans; Knoblich, Juergen A

    2017-01-01

    The ability to generate human tissues in vitro from stem cells has raised enormous expectations among the biomedical research community, patients, and the general public. These organoids enable studies of normal development and disease and allow the testing of compounds directly on human tissue.

  18. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.

    NARCIS (Netherlands)

    Levato, Riccardo; Visser, Jetze; Planell, Josep a; Engel, Elisabeth; Malda, Jos; Mateos-Timoneda, Miguel a

    2014-01-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the

  19. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    Directory of Open Access Journals (Sweden)

    Bressan Eriberto

    2012-01-01

    Full Text Available Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering.

  20. Melanin content of hamster tissues, human tissues, and various melanomas

    Energy Technology Data Exchange (ETDEWEB)

    Watts, K.P.; Fairchild, R.G.; Slatkin, D.N.; Greenberg, D.; Packer, S.; Atkins, H.L.; Hannon, S.J.

    1981-02-01

    Melanin content (percentage by weight) was determined in both pigmented and nonpigmented tissues of Syrian golden hamsters bearing Greene melanoma. Melanin content was also measured in various other melanoma models (B-16 in C57 mice, Harding-Passey in BALB/c mice, and KHDD in C3H mice) and in nine human melanomas, as well as in selected normal tissues. The purpose was to evaluate the possible efficacy of chlorpromazine, which is known to bind to melanin, as a vehicle for boron transport in neutron capture therapy. Successful therapy would depend upon selective uptake and absolute concentration of borated compounds in tumors; these parameters will in turn depend upon melanin concentration in melanomas and nonpigmented ''background'' tissues. Hamster whole eyes, hamster melanomas, and other well-pigmented animal melanomas were found to contain 0.3 to 0.8% melanin by weight, whereas human melanomas varied from 0.1 to 0.9% (average, 0.35%). Other tissues, with the exception of skin, were lower in content by a factor of greater than or equal to30. Melanin pigment was extracted from tissues, and the melanin content was determined spectrophotometrically. Measurements were found to be sensitive to the presence of other proteins. Previous procedures for isolating and quantifying melanin often neglected the importance of removing proteins and other interfering nonmelanic substances.

  1. Soft tissue engineering with micronized-gingival connective tissues.

    Science.gov (United States)

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2018-01-01

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm 3 ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.

  2. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  3. Determination of friction coefficient in unconfined compression of brain tissue.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Pericytes at the intersection between tissue regeneration and pathology.

    Science.gov (United States)

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, Maria Laura; Mintz, Akiva; Delbono, Osvaldo

    2015-01-01

    Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.

  5. Tissue-specific glucocorticoid action: a family affair.

    Science.gov (United States)

    Gross, Katherine L; Cidlowski, John A

    2008-11-01

    Glucocorticoids exert a wide variety of physiological and pathological responses, most of which are mediated by the ubiquitously expressed glucocorticoid receptor (GR). The glucocorticoid response varies among individuals, as well as within tissues from the same individual, and this phenomenon can be partially explained through understanding the process of generating bioavailable ligand and the molecular heterogeneity of GR. This review focuses on the recent advances in our understanding of prereceptor ligand metabolism, GR subtypes and GR polymorphisms. Furthermore, we evaluate the impact of tissue- and individual-specific diversity in the glucocorticoid pathway on human health and disease.

  6. An economic survey of the emerging tissue engineering industry.

    Science.gov (United States)

    Lysaght, M J; Nguy, N A; Sullivan, K

    1998-01-01

    The contemporary scope of worldwide tissue engineering research and development was estimated by totaling the relevant annual spending and other economic parameters of firms involved the field. Operating expenses allocated to tissue engineering in 1997 exceed $450 million and fund the activities of nearly 2,500 scientists and support personnel. Growth rate is 22.5% per annum. Most activity is centered in the United States. Government spending in this field represents investment and valuation represents a remarkable act of faith in the future of a technology yet to produce its first significant revenue-generating product.

  7. Photochemical Tissue Bonding: Photons for Healing

    National Research Council Canada - National Science Library

    Redmond, Robert W; Kochevar, Irene E; Amann, Christopher; Chan, Barbara P; Farinelli, William A; Anderson, R. R; Azar, Dimitri T; Johnson, T. S; Winograd, J; Randolph, Mark A

    2004-01-01

    ...) formed between protein molecules bind the tissue surfaces together. In our PTB approach the photosensitizer used superficially stains the tissue such that effects are limited to the tissue interface...

  8. Generational Accounting in Iran

    Directory of Open Access Journals (Sweden)

    Mahdi Salehi

    2013-09-01

    Full Text Available The aim of this paper is to study of the generation accounts for Iranian’s generation. We applied the method of Auerbach, Gokhale and Kotlihoff (1991 on the period 1967-2008 in Iran. Our calculation shows with compare to industrial countries, fiscal burden for Iranian’s population is very chip and that depend on fiscal system in Iran. Except the recent years the rate of tax in Iran has been very low. The generation account for the old people (40 olds is 2117 $ but the future generation (t+1 is 36985 $. The share of male and female, during the years, in this burden is similar. Fiscal burden for Iranian’s generation is low but this population should support other burden that calls inflation. Because when the government do not receive the tax income, a low generation account transfer to price general level.

  9. Communicating with the Net Generation

    Science.gov (United States)

    2011-03-11

    Generation Y or Millennial Generation . This generation has learned to survive and thrive in the connected era. The Net Generation has... Generation is often referred to as Generation Y or Millennial Generation . This generation has learned to survive and thrive in the connected era. The Net...rich, digitally constructed communication and information world.2 Although this generation is often referred to as Generation Y or

  10. Modern Reactive Power Generators

    Science.gov (United States)

    Chubraeva, L.; Timofeev, S.

    2018-02-01

    The paper reviews main stages of development of reactive power generators, describes the 1-st and 2-nd generation of synchronous condensers with conventional cooling systems and a new generation – superconductive synchronous condensers. Asynchronous non- salient pole condensers expand the class of rotating compensating devices. Comparison of dynamic performance of conventional synchronous condensers, cryogenic condensers and SVC is presented. The variant of a model 5 MVA HTSC synchronous condenser intended for wind power plants is described.

  11. Leading Generation Y

    Science.gov (United States)

    2008-04-01

    quantify the scientific evidence of popular literature but focus on generational trends and assessing the Army’s ability to shape its culture and leaders...based, but there is evidence in trends among this generation that Generation X freelance writer and former human resources generalist and trainer...of life... It’s a backlash, a return to tradition and ritual. Millenials overwhelmingly favor the teaching of values in school.”71 The Army culture

  12. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  13. Solar fuels generator

    Science.gov (United States)

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  14. Radiosensitivity of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Hirano, Toru; Iwasaki, Katsuro; Suzuki, Ryohei; Monzen, Yoshio; Hombo, Zenichiro

    1989-01-01

    The correlation between the effectiveness of radiation therapy and the histology of soft tissue sarcomas was investigated. Of 31 cases with a soft tissue sarcoma of an extremity treated by conservative surgery and postoperative radiation of 3,000-6,000 cGy, local recurrence occurred in 12; 5 out of 7 synovial sarcomas, 4 of 9 MFH, one of 8 liposarcomas, none of 4 rhabdomyosarcomas and 2 of 3 others. As for the histological subtyping, the 31 soft tissue sarcomas were divided into spindle cell, pleomorphic cell, myxoid and round cell type, and recurrence rates were 75%, 33.3%, 16.7% and 0%, respectively. From the remarkable difference in recurrent rate, it was suggested that round cell and myxoid type of soft tissue sarcomas showed a high radiosensitivity compared to the spindle cell type with low sensitivity. Clarifying the degree of radiosensitivity is helpful in deciding on the management of limb salvage in soft tissue sarcomas of an extremity. (author)

  15. Bone tissue engineering in osteoporosis.

    Science.gov (United States)

    Jakob, Franz; Ebert, Regina; Ignatius, Anita; Matsushita, Takashi; Watanabe, Yoshinobu; Groll, Juergen; Walles, Heike

    2013-06-01

    Osteoporosis is a polygenetic, environmentally modifiable disease, which precipitates into fragility fractures of vertebrae, hip and radius and also confers a high risk of fractures in accidents and trauma. Aging and the genetic molecular background of osteoporosis cause delayed healing and impair regeneration. The worldwide burden of disease is huge and steadily increasing while the average life expectancy is also on the rise. The clinical need for bone regeneration applications, systemic or in situ guided bone regeneration and bone tissue engineering, will increase and become a challenge for health care systems. Apart from in situ guided tissue regeneration classical ex vivo tissue engineering of bone has not yet reached the level of routine clinical application although a wealth of scaffolds and growth factors has been developed. Engineering of complex bone constructs in vitro requires scaffolds, growth and differentiation factors, precursor cells for angiogenesis and osteogenesis and suitable bioreactors in various combinations. The development of applications for ex vivo tissue engineering of bone faces technical challenges concerning rapid vascularization for the survival of constructs in vivo. Recent new ideas and developments in the fields of bone biology, materials science and bioreactor technology will enable us to develop standard operating procedures for ex vivo tissue engineering of bone in the near future. Once prototyped such applications will rapidly be tailored for compromised conditions like vitamin D and sex hormone deficiencies, cellular deficits and high production of regeneration inhibitors, as they are prevalent in osteoporosis and in higher age. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Decoupling tissue and cell scale stresses using embedded oil microdroplets

    Science.gov (United States)

    Shelton, Elijah; Serwane, Friedhelm; Mongera, Alessandro; Lucio, Adam; Campàs, Otger

    Embryonic development and organ morphogenesis require mechanical stresses to be patterned in space and time over length scales ranging from cellular to tissue level. While several approaches use 4D live-imaging to infer forces from the observed flow fields, few techniques allow direct measurements of stress in vivo and in situ. We use oil microdroplets injected in between cells as direct stress sensors. Through confocal imaging and custom software for high resolution 3D droplet surface reconstruction, we can directly measure the patterns of stress by looking at the deformations of the drop. This analysis allows us to decouple the stresses at the tissue scale from those generated at cellular scales by disentangling ellipsoidal drop deformation modes from higher order drop deformations. Using this technique we measure both tissue and cell scale stresses within aggregates of mesenchymal cells as well as within developing zebrafish embryonic tissues. The decoupling of mechanical stresses at cell and tissue scales makes our technique uniquely suited for understanding how tissue scale reorganizations emerge from cell scale interactions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

  17. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  18. Dynamics of HIV infection in lymphoid tissue network.

    Science.gov (United States)

    Nakaoka, Shinji; Iwami, Shingo; Sato, Kei

    2016-03-01

    Human immunodeficiency virus (HIV) is a fast replicating ribonucleic acid virus, which can easily mutate in order to escape the effects of drug administration. Hence, understanding the basic mechanisms underlying HIV persistence in the body is essential in the development of new therapies that could eradicate HIV infection. Lymphoid tissues are the primary sites of HIV infection. Despite the recent progress in real-time monitoring technology, HIV infection dynamics in a whole body is unknown. Mathematical modeling and simulations provide speculations on global behavior of HIV infection in the lymphatic system. We propose a new mathematical model that describes the spread of HIV infection throughout the lymphoid tissue network. In order to represent the volume difference between lymphoid tissues, we propose the proportionality of several kinetic parameters to the lymphoid tissues' volume distribution. Under this assumption, we perform extensive numerical computations in order to simulate the spread of HIV infection in the lymphoid tissue network. Numerical computations simulate single drug treatments of an HIV infection. One of the important biological speculations derived from this study is a drug saturation effect generated by lymphoid network connection. This implies that a portion of reservoir lymphoid tissues to which drug is not sufficiently delivered would inhibit HIV eradication despite of extensive drug injection.

  19. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Adipose tissue oxygenation: Effects on metabolic function

    OpenAIRE

    Hodson, Leanne

    2013-01-01

    With the increasing prevalence of obesity there is a concomitant increase in white adipose tissue dysfunction, with the tissue moving toward a proinflammatory phenotype. Adipose tissue hypoxia has been proposed as a key underlying mechanism triggering tissue dysfunction but data from human, in vivo studies, to support this hypothesis is limited. Human adipose tissue oxygenation has been investigated by direct assessment of tissue oxygen tension (pO2) or by expression of hypoxia-sensitive gene...

  1. Third generation coaching

    DEFF Research Database (Denmark)

    Stelter, Reinhard

    2014-01-01

    Third generation coaching unfolds a new universe for coaching and coaching psychology in the framework of current social research, new learning theories and discourses about personal leadership. Third generation coaching views coaching in a societal perspective. Coaching has become important...... transformation. Coaching thus facilitates new reflections and perspectives, as well as empowerment and support for self-Bildung processes. Third generation coaching focuses on the coach and the coachee in their narrative collaborative partnership. Unlike first generation coaching, where the goal is to help...

  2. Thermophotovoltaic energy generation

    Science.gov (United States)

    Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter

    2015-08-25

    Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.

  3. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  4. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Hittman, F.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 2 claims, 4 drawing figures

  5. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Barr, H.N.

    1978-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 4 claims, 4 figures

  6. SMUG: Scientific Music Generator

    DEFF Research Database (Denmark)

    Scirea, Marco; A B Barros, Gabriella; Togelius, Julian

    2015-01-01

    Music is based on the real world. Composers use their day-to-day lives as inspiration to create rhythm and lyrics. Procedural music generators are capable of creating good quality pieces, and while some already use the world as inspiration, there is still much to be explored in this. We describe...... a system to generate lyrics and melodies from real-world data, in particular from academic papers. Through this we want to create a playful experience and establish a novel way of generating content (textual and musical) that could be applied to other domains, in particular to games. For melody generation...

  7. Protocol Implementation Generator

    DEFF Research Database (Denmark)

    Carvalho Quaresma, Jose Nuno; Probst, Christian W.

    2010-01-01

    necessary tools. In this paper, we present the Protocol Implementation Generator (PiG), a framework that can be used to add protocol generation to protocol negotiation, or to easily share and implement new protocols throughout a network. PiG enables the sharing, verification, and translation...... of communication protocols. With it, partners can suggest a new protocol by sending its specification. After formally verifying the specification, each partner generates an implementation, which can then be used for establishing communication. We also present a practical realisation of the Protocol Implementation...... Generator framework based on the LySatool and a translator from the LySa language into C or Java....

  8. Advances and perspectives in tooth tissue engineering.

    Science.gov (United States)

    Monteiro, Nelson; Yelick, Pamela C

    2017-09-01

    Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Chronic systemic inflammation originating from epithelial tissues.

    Science.gov (United States)

    Uluçkan, Özge; Wagner, Erwin F

    2017-02-01

    Chronic systemic inflammation (CSI) has recently been identified as a major contributor to common diseases ranging from cancer to metabolic disorders and neurologic alterations. In the last decade, we and others have generated genetically engineered mouse models for inflammatory diseases, which enable studying the molecular mechanisms of CSI. Recently, organ cross-talk induced by CSI under homeostatic and pathological conditions has begun to be appreciated. In this review, we will revisit whole organism physiology in relation to CSI originating from epithelial tissues, such as the skin and gut. Furthermore, we will discuss the current knowledge regarding the mechanisms, the specific immune cells and molecules responsible for inducing the most common comorbidities, such as cardiovascular, metabolic, and neurological complications, as well as bone loss, in heterogeneous diseases like psoriasis, atopic dermatitis, and inflammatory bowel disease. As it would be impossible to discuss all comorbidities of these diseases as well as all epithelial tissues, we present an overview with a special emphasis on our recent findings linking skin inflammation to bone loss. © 2016 Federation of European Biochemical Societies.

  10. Tissue microarray profiling in human heart failure.

    Science.gov (United States)

    Lal, Sean; Nguyen, Lisa; Tezone, Rhenan; Ponten, Fredrik; Odeberg, Jacob; Li, Amy; Dos Remedios, Cristobal

    2016-09-01

    Tissue MicroArrays (TMAs) are a versatile tool for high-throughput protein screening, allowing qualitative analysis of a large number of samples on a single slide. We have developed a customizable TMA system that uniquely utilizes cryopreserved human cardiac samples from both heart failure and donor patients to produce formalin-fixed paraffin-embedded sections. Confirmatory upstream or downstream molecular studies can then be performed on the same (biobanked) cryopreserved tissue. In a pilot study, we applied our TMAs to screen for the expression of four-and-a-half LIM-domain 2 (FHL2), a member of the four-and-a-half LIM family. This protein has been implicated in the pathogenesis of heart failure in a variety of animal models. While FHL2 is abundant in the heart, not much is known about its expression in human heart failure. For this purpose, we generated an affinity-purified rabbit polyclonal anti-human FHL2 antibody. Our TMAs allowed high-throughput profiling of FHL2 protein using qualitative and semiquantitative immunohistochemistry that proved complementary to Western blot analysis. We demonstrated a significant relative reduction in FHL2 protein expression across different forms of human heart failure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  12. Engineered Muscle Actuators: Cells and Tissues

    National Research Council Canada - National Science Library

    Dennis, Robert G; Herr, Hugh; Parker, Kevin K; Larkin, Lisa; Arruda, Ellen; Baar, Keith

    2007-01-01

    .... Our primary objectives were to engineer living skeletal muscle actuators in culture using integrated bioreactors to guide tissue development and to maintain tissue contractility, to achieve 50...

  13. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  14. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  15. Tissue transplantation in plastic surgery.

    Science.gov (United States)

    Siemionow, Maria; Agaoglu, Galip

    2007-04-01

    The functional and aesthetic outcome following application of conventional reconstructive procedures or prosthetic materials is not satisfactory, especially in patients who have severe deformities and disabilities. Since the first successful hand transplantation in France in 1998, composite tissue allograft transplantation has gained a great deal of interest in the field of plastic surgery. It is obvious that composite tissue allograft transplantation will improve patients' life quality, but this might be at the expense of decreasing life expectancy. Currently, the main obstacle for composite tissue allograft transplantation is the use of life-long immunosuppression therapy because of their well-known side effects. In addition, the ethical, social, and psychologic issues are raised when discussing face transplantation. The long-term results of the recently performed partial face transplantations will be critical to judge the future applications of partial or total face transplantation.

  16. Tissue Friendly Pendulum: Soft Liner to prevent Tissue Irritation

    Directory of Open Access Journals (Sweden)

    Siddharth Shashidhar Revankar

    2014-01-01

    Full Text Available Palatal mucosal irritation is commonly encountered with the Pendulum appliance. The efficiency of soft liners in reducing tissue irritation has been well documented in the field of prosthodontics. The following article describes an innovative technique where soft liner can be used to reduce palatal mucosal irritation caused by pendulum appliance.

  17. Orbital soft-tissue trauma.

    Science.gov (United States)

    Chazen, J Levi; Lantos, Joshua; Gupta, Ajay; Lelli, Gary J; Phillips, C Douglas

    2014-08-01

    In the clinical assessment of orbital trauma, visual acuity and extraocular muscle motility are critical for rapid evaluation of injury severity. However, assessment of these parameters may be limited by edema and concomitant injuries. Imaging may further delineate the trauma pattern and extent of injury. This review focuses on orbital soft-tissue injuries that can exist with or without orbital fracture. Imaging techniques and soft-tissue injuries, including those involving the anterior chamber, iris and ciliary body, lens, globe, posterior segment, and optic nerve, are reviewed, in addition to intraocular foreign bodies and cavernous-carotid fistulas. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Advances in Meniscal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Meniscal tears are the most common knee injuries and have a poor ability of healing. In the last few decades, several techniques have been increasingly used to optimize meniscal healing. Current research efforts of tissue engineering try to combine cell-based therapy, growth factors, gene therapy, and reabsorbable scaffolds to promote healing of meniscal defects. Preliminary studies did not allow to draw definitive conclusions on the use of these techniques for routine management of meniscal lesions. We performed a review of the available literature on current techniques of tissue engineering for the management of meniscal tears.

  19. Collective pulsatile expansion and swirls in proliferating tumor tissue

    Science.gov (United States)

    Yang, Taeseok Daniel; Kim, Hyun; Yoon, Changhyeong; Baek, Seung-Kuk; Lee, Kyoung J.

    2016-10-01

    Understanding the dynamics of expanding biological tissues is essential to a wide range of phenomena in morphogenesis, wound healing and tumor proliferation. Increasing evidence suggests that many of the relevant phenomena originate from complex collective dynamics, inherently nonlinear, of constituent cells that are physically active. Here, we investigate thin disk layers of proliferating, cohesive, monoclonal tumor cells and report the discovery of macroscopic, periodic, soliton-like mechanical waves with which cells are collectively ratcheting, as in the traveling-wave chemotaxis of dictyostelium discodium amoeba cells. The relevant length-scale of the waves is remarkably large (∼1 mm), compared to the thickness of a mono-layer tissue (∼ 10 μ {{m}}). During the tissue expansion, the waves are found to repeat several times with a quite well defined period of approximately 4 h. Our analyses suggest that the waves are initiated by the leading edge that actively pulls the tissue in the outward direction, while the cells within the bulk tissue do not seem to generate a strong self-propulsion. Subsequently, we demonstrate that a simple mathematical model chain of nonlinear springs that are constantly pulled in the outward direction at the leading edge recapitulates the observed phenomena well. As the areal cell density becomes too high, the tissue expansion stalls and the periodic traveling waves yield to multiple swirling vortices. Cancer cells are known to possess a broad spectrum of migration mechanisms. Yet, our finding has established a new unusual mode of tumor tissue expansion, and it may be equally applicable for many different expanding thin layers of cell tissues.

  20. Third trimester ultrasound soft-tissue measurements accurately predicts macrosomia.

    Science.gov (United States)

    Maruotti, Giuseppe Maria; Saccone, Gabriele; Martinelli, Pasquale

    2017-04-01

    To evaluate the accuracy of sonographic measurements of fetal soft tissue in the prediction of macrosomia. Electronic databases were searched from their inception until September 2015 with no limit for language. We included only studies assessing the accuracy of sonographic measurements of fetal soft tissue in the abdomen or thigh in the prediction of macrosomia  ≥34 weeks of gestation. The primary outcome was the accuracy of sonographic measurements of fetal soft tissue in the prediction of macrosomia. We generated the forest plot for the pooled sensitivity and specificity with 95% confidence interval (CI). Additionally, summary receiver-operating characteristics (ROC) curves were plotted and the area under the curve (AUC) was also computed to evaluate the overall performance of the diagnostic test accuracy. Three studies, including 287 singleton gestations, were analyzed. The pooled sensitivity of sonographic measurements of abdominal or thigh fetal soft tissue in the prediction of macrosomia was 80% (95% CI: 66-89%) and the pooled specificity was 95% (95% CI: 91-97%). The AUC for diagnostic accuracy of sonographic measurements of fetal soft tissue in the prediction of macrosomia was 0.92 and suggested high diagnostic accuracy. Third-trimester sonographic measurements of fetal soft tissue after 34 weeks may help to detect macrosomia with a high degree of accuracy. The pooled detection rate was 80%. A standardization of measurements criteria, reproducibility, building reference charts of fetal subcutaneous tissue and large studies to assess the optimal cutoff of fetal adipose thickness are necessary before the introduction of fetal soft-tissue markers in the clinical practice.

  1. Hospitality services generate revenue.

    Science.gov (United States)

    Bizouati, S

    1993-01-01

    An increasing number of hospitals are undertaking external revenue-generating activities to supplement their shrinking budgets. Written at the request of Leadership, this article outlines an example of a successful catering service -- a money-generating business that more Canadian hospitals could profitably consider.

  2. Managing Generational Diversity

    Science.gov (United States)

    O'Donovan, Eamonn

    2009-01-01

    Many school leaders have explored the issue of diversity when it comes to students, teachers and staff. Their focus typically has been on gender and ethnicity. However, generational diversity, an area of diversity that warrants serious consideration, has received less attention. Generational intelligence is important today for two reasons. First…

  3. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  4. Generation Y Perspectives

    Science.gov (United States)

    Skytland, Nicholas; Painting, Kristen; Barrera, Aaron; Fitzpatrick, Garret

    2008-01-01

    This viewgraph presentation reviews the perception of NASA and the importance of engaging those people born between 1977 and 2000, also known as Generation Y. It examines some of the differences in attitudes and experiences, and how it reflects on how they view NASA. It also discusses use of the internet in connecting to the people from that generation.

  5. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  6. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  7. When Generations Collide

    Science.gov (United States)

    Fogg, Piper

    2008-01-01

    When four generations converge in the academic workplace, it can create serious culture clashes. It is happening across college campuses--in offices as diverse as admissions, student affairs, legal affairs, and technology. It is especially striking in the faculty ranks, where generational challenges have extra significance amid recruiting efforts,…

  8. Generative Processes: Thick Drawing

    Science.gov (United States)

    Wallick, Karl

    2012-01-01

    This article presents techniques and theories of generative drawing as a means for developing complex content in architecture design studios. Appending the word "generative" to drawing adds specificity to the most common representation tool and clarifies that such drawings are not singularly about communication or documentation but are…

  9. Internal split field generator

    Science.gov (United States)

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  10. A plasma needle generates nitric oxide

    International Nuclear Information System (INIS)

    Stoffels, E; Gonzalvo, Y Aranda; Whitmore, T D; Seymour, D L; Rees, J A

    2006-01-01

    Generation of nitric oxide (NO) by a plasma needle is studied by means of mass spectrometry. The plasma needle is an atmospheric glow generated by a radio-frequency excitation in a mixture of helium and air. This source is used for the treatment of living tissues, and nitric oxide may be one of the most important active agents in plasma therapy. Efficient NO generation is of particular importance in the treatment of cardiovascular diseases. Mass spectrometric measurements have been performed under various plasma conditions; gas composition in the plasma and conversion of feed gases (nitrogen and oxygen) into other species has been studied. Up to 30% of the N 2 and O 2 input is consumed in the discharge, and NO has been identified as the main conversion product

  11. Procedure generation and verification

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Department of Energy has used Artificial Intelligence of ''AI'' concepts to develop two powerful new computer-based techniques to enhance safety in nuclear applications. The Procedure Generation System, and the Procedure Verification System, can be adapted to other commercial applications, such as a manufacturing plant. The Procedure Generation System can create a procedure to deal with the off-normal condition. The operator can then take correct actions on the system in minimal time. The Verification System evaluates the logic of the Procedure Generator's conclusions. This evaluation uses logic techniques totally independent of the Procedure Generator. The rapid, accurate generation and verification of corrective procedures can greatly reduce the human error, possible in a complex (stressful/high stress) situation

  12. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  13. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  14. Optoacoustic laser monitoring of cooling and freezing of tissues

    International Nuclear Information System (INIS)

    Larin, Kirill V; Larina, I V; Motamedi, M; Esenaliev, R O

    2002-01-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast. (laser biology and medicine)

  15. Current Concepts in Scaffolding for Bone Tissue Engineering.

    Science.gov (United States)

    Ghassemi, Toktam; Shahroodi, Azadeh; Ebrahimzadeh, Mohammad H; Mousavian, Alireza; Movaffagh, Jebraeel; Moradi, Ali

    2018-03-01

    Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bone tissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials and functional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissue engineering. While osteoconductive materials such as hydroxyapatite and tricalcium phosphate ceramics as well as some biodegradable polymers are suggested, much interest has recently focused on the use of osteoinductive materials like demineralized bone matrix or bone derivatives. However, physiochemical modifications in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, mineralization and osteogenic differentiation are required. This paper reviews studies on bone tissue engineering from the biomaterial point of view in scaffolding. Level of evidence: I.

  16. Articular cartilage tissue engineering: the role of signaling molecules

    Science.gov (United States)

    Kwon, Heenam; Paschos, Nikolaos K.; Hu, Jerry C.; Athanasiou, Kyriacos

    2017-01-01

    Effective early disease modifying options for osteoarthritis remain lacking. Tissue engineering approach to generate cartilage in vitro has emerged as a promising option for articular cartilage repair and regeneration. Signaling molecules and matrix modifying agents, derived from knowledge of cartilage development and homeostasis, have been used as biochemical stimuli toward cartilage tissue engineering and have led to improvements in the functionality of engineered cartilage. Clinical translation of neocartilage faces challenges, such as phenotypic instability of the engineered cartilage, poor integration, inflammation, and catabolic factors in the arthritic environment; these can all contribute to failure of implanted neocartilage. A comprehensive understanding of signaling molecules involved in osteoarthritis pathogenesis and their actions on engineered cartilage will be crucial. Thus, while it is important to continue deriving inspiration from cartilage development and homeostasis, it has become increasing necessary to incorporate knowledge from osteoarthritis pathogenesis into cartilage tissue engineering. PMID:26811234

  17. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication.

    Science.gov (United States)

    Jun, Indong; Han, Hyung-Seop; Edwards, James R; Jeon, Hojeong

    2018-03-06

    Electrospinning has been used for the fabrication of extracellular matrix (ECM)-mimicking fibrous scaffolds for several decades. Electrospun fibrous scaffolds provide nanoscale/microscale fibrous structures with interconnecting pores, resembling natural ECM in tissues, and showing a high potential to facilitate the formation of artificial functional tissues. In this review, we summarize the fundamental principles of electrospinning processes for generating complex fibrous scaffold geometries that are similar in structural complexity to the ECM of living tissues. Moreover, several approaches for the formation of three-dimensional fibrous scaffolds arranged in hierarchical structures for tissue engineering are also presented.

  18. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication

    Directory of Open Access Journals (Sweden)

    Indong Jun

    2018-03-01

    Full Text Available Electrospinning has been used for the fabrication of extracellular matrix (ECM-mimicking fibrous scaffolds for several decades. Electrospun fibrous scaffolds provide nanoscale/microscale fibrous structures with interconnecting pores, resembling natural ECM in tissues, and showing a high potential to facilitate the formation of artificial functional tissues. In this review, we summarize the fundamental principles of electrospinning processes for generating complex fibrous scaffold geometries that are similar in structural complexity to the ECM of living tissues. Moreover, several approaches for the formation of three-dimensional fibrous scaffolds arranged in hierarchical structures for tissue engineering are also presented.

  19. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication

    Science.gov (United States)

    Jun, Indong; Han, Hyung-Seop; Edwards, James R.; Jeon, Hojeong

    2018-01-01

    Electrospinning has been used for the fabrication of extracellular matrix (ECM)-mimicking fibrous scaffolds for several decades. Electrospun fibrous scaffolds provide nanoscale/microscale fibrous structures with interconnecting pores, resembling natural ECM in tissues, and showing a high potential to facilitate the formation of artificial functional tissues. In this review, we summarize the fundamental principles of electrospinning processes for generating complex fibrous scaffold geometries that are similar in structural complexity to the ECM of living tissues. Moreover, several approaches for the formation of three-dimensional fibrous scaffolds arranged in hierarchical structures for tissue engineering are also presented. PMID:29509688

  20. Iso-effect tables and therapeutic ratios for epidermoid cancer and normal tissue stroma

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on radiation injury to normal tissue stroma and ablation of epidermoid carcinoma was surveyed. Computer programs (RAD3 and RAD1) were then used to derive cell kinetic parameters and generate iso-effect tables for the relevant tissues. The two tables provide a set of limiting doses for tolerance of normal connective tissue (16% risk of injury) and for ablation of epidermoid cancer (16% risk of recurrence) covering a wide range of treatment schedules. Calculating the ratios of normal tissue tolerance to tumor control doses for each treatment scheme provides an array of therapeutic ratios, from which appropriate treatment schemes can be selected

  1. Injectable gels for tissue engineering.

    Science.gov (United States)

    Gutowska, A; Jeong, B; Jasionowski, M

    2001-08-01

    Recently, tissue engineering approaches using injectable, in situ gel forming systems have been reported. In this review, the gelation processes and several injectable systems that exhibit in situ gel formation at physiological conditions are discussed. Applications of selected injectable systems (alginate, chitosan, hyaluronan, polyethylene oxide/polypropylene oxide) in tissue engineering are also described. Injectable polymer formulation can gel in vivo in response to temperature change (thermal gelation), pH change, ionic cross-linking, or solvent exchange. Kinetics of gelation is directly affected by its mechanism. Injectable formulations offer specific advantages over preformed scaffolds such as: possibility of a minimally invasive implantation, an ability to fill a desired shape, and easy incorporation of various therapeutic agents. Several factors need to be considered before an injectable gel can be selected as a candidate for tissue engineering applications. Apart from tissue-specific cell-matrix interactions, the following gel properties need to be considered: gelation kinetics, matrix resorption rate, possible toxicity of degradation products and their elimination routes, and finally possible interference of the gel matrix with histogenesis. Copyright 2001 Wiley-Liss, Inc.

  2. Frenotomy and keratinized tissue augmentation.

    Science.gov (United States)

    Peacock, M E

    1998-01-01

    Aberrant frenula can be an important etiological factor in progressive gingival recession. When separating or removing frenula, augmentation with keratinized tissue is the treatment of choice in most circumstances. A case is described as a mandibular labial frenotomy in combination with a free gingival graft.

  3. White adipose tissue: Getting nervous

    NARCIS (Netherlands)

    Fliers, E.; Kreier, F.; Voshol, P. J.; Havekes, L. M.; Sauerwein, H. P.; Kalsbeek, A.; Buijs, R. M.; Romijn, J. A.

    2003-01-01

    Neuroendocrine research has altered the traditional perspective of white adipose tissue (WAT) as a passive store of triglycerides. In addition to fatty acids, WAT produces many hormones and can therefore be designated as a traditional endocrine gland actively participating in the integrative

  4. Gradient polymers for tissue engineering

    NARCIS (Netherlands)

    Klein Gunnewiek, Michel

    2015-01-01

    With increasing life expectancy, there is an constant demand for finding solutions to restore damaged or diseased tissues and organs. Regenerative medicine holds the promise to create continuous body-part replacements through the combination of cells, biological factors, and synthetic scaffolds.

  5. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  6. Platelets, inflammation and tissue regeneration.

    Science.gov (United States)

    Nurden, Alan T

    2011-05-01

    Blood platelets have long been recognised to bring about primary haemostasis with deficiencies in platelet production and function manifesting in bleeding while upregulated function favourises arterial thrombosis. Yet increasing evidence indicates that platelets fulfil a much wider role in health and disease. First, they store and release a wide range of biologically active substances including the panoply of growth factors, chemokines and cytokines released from a-granules. Membrane budding gives rise to microparticles (MPs), another active participant within the blood stream. Platelets are essential for the innate immune response and combat infection (viruses, bacteria, micro-organisms). They help maintain and modulate inflammation and are a major source of pro-inflammatory molecules (e.g. P-selectin, tissue factor, CD40L, metalloproteinases). As well as promoting coagulation, they are active in fibrinolysis; wound healing, angiogenesis and bone formation as well as in maternal tissue and foetal vascular remodelling. Activated platelets and MPs intervene in the propagation of major diseases. They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth. They participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth. The above mentioned roles of platelets are now discussed.

  7. Fundamentals of bladder tissue engineering

    African Journals Online (AJOL)

    W. Mahfouz

    promote angiogenesis and neurogenesis of the regenerated organs. The choice of the scaffold and the type of cells is a crucial and fundamental step in regenerative medicine. In this review article, we demonstrated these three crucial factors of bladder tissue engineering, with the pros and cons of each scaffold type and.

  8. History of plant tissue culture.

    Science.gov (United States)

    Thorpe, Trevor

    2012-01-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the beginning of the twentieth century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology in the twenty-first century. The historical development of these in vitro technologies and their applications is the focus of this chapter.

  9. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  10. Use of diathermy for weeding heterogeneous tissue cultures.

    Science.gov (United States)

    Marks, R M; Penny, R

    1986-06-01

    Cultures generated from tissues consisting of multiple types of cells are often heterogeneous. Unless the cell type of interest has or can be given some selective growth advantage it may be overgrown by other cells. While developing techniques for the tissue culture of microvascular endothelial cells we evaluated an electrosurgical generator (diathermy) to selectively kill nonendothelial cells. Primary cell cultures were observed at X 100 magnification under phase contrast microscopy and a needle electrode apposed to the cell to be destroyed. A return electrode was constructed by placing a sterile clip in contact with the culture medium. The diathermy power setting controlled the area of lysis. Use of this technique allowed weeding of unwanted cells without damage to endothelial cells, which were able to grow to confluence in pure culture.

  11. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  12. OMG: Open Molecule Generator.

    Science.gov (United States)

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  13. Histopathology of mucosa-associated lymphoid tissue

    NARCIS (Netherlands)

    Kuper, C.F.

    2006-01-01

    Mucosa-associated lymphoid tissue (MALT) is a generalized term incorporating a disseminated collection of lymphoid tissues in multiple sites throughout the body. MALT sites that have been/are primarily studied include bronchus-associated lymphoid tissue (BALT), gut-associated lymphoid tissue (GALT),

  14. 21 CFR 878.4010 - Tissue adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue adhesive for the topical approximation of skin—(1) Identification. A tissue adhesive for the topical...

  15. Owl: electronic datasheet generator.

    Science.gov (United States)

    Appleton, Evan; Tao, Jenhan; Wheatley, F Carter; Desai, Devina H; Lozanoski, Thomas M; Shah, Pooja D; Awtry, Jake A; Jin, Shawn S; Haddock, Traci L; Densmore, Douglas M

    2014-12-19

    Owl ( www.owlcad.org ) is a biodesign automation tool that generates electronic datasheets for synthetic biological parts using common formatting. Data can be retrieved automatically from existing repositories and modified in the Owl user interface (UI). Owl uses the data to generate an HTML page with standard typesetting that can be saved as a PDF file. Here we present the Owl software tool in its alpha version, its current UI, its description of input data for generating a datasheet, its example datasheets, and the vision of the tool's role in biodesign automation.

  16. Philosophy of power generation

    International Nuclear Information System (INIS)

    Amein, H.; Joyia, Y.; Qureshi, M.N.; Asif, M.

    1995-01-01

    In view of the huge power demand in future, the capital investment requirements for the development of power projects to meet the future energy requirements are so alarming that public sector alone cannot manage to raise funds and participation of the private sector in power generation development has become imperative. This paper discusses a power generation philosophy based on preference to the exploitation of indigenous resources and participation of private sector. In order to have diversification in generation resources, due consideration has been given to the development of nuclear power and even non-conventional but promising technologies of solar, wind, biomass and geothermal etc. (author)

  17. Synthetic guide star generation

    Science.gov (United States)

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  18. Next generation mobile broadcasting

    CERN Document Server

    Gómez-Barquero, David

    2013-01-01

    Next Generation Mobile Broadcasting provides an overview of the past, present, and future of mobile multimedia broadcasting. The first part of the book-Mobile Broadcasting Worldwide-summarizes next-generation mobile broadcasting technologies currently available. This part covers the evolutions of the Japanese mobile broadcasting standard ISDB-T One-Seg, ISDB-Tmm and ISDB-TSB; the evolution of the South Korean T-DMB mobile broadcasting technology AT-DMB; the American mobile broadcasting standard ATSC-M/H; the Chinese broadcasting technologies DTMB and CMMB; second-generation digital terrestrial

  19. Harmonic arbitrary waveform generator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  20. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  1. Nanosecond neutron generator

    International Nuclear Information System (INIS)

    Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.

    1991-01-01

    High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered

  2. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  3. Random number generation

    International Nuclear Information System (INIS)

    Coveyou, R.R.

    1974-01-01

    The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)

  4. Graph Generator Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  5. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  6. A new method to determine tissue specific tissue factor thrombomodulin activities: endotoxin and particulate air pollution induced disbalance

    Directory of Open Access Journals (Sweden)

    Gerlofs-Nijland Miriam E

    2008-10-01

    Full Text Available Abstract Background Increase in tissue factor (TF and loss in thrombomodulin (TM antigen levels has been described in various inflammatory disorders. The functional consequences of such changes in antigen concentrations in the coagulation balance are, however, not known. This study was designed to assess the consequences of inflammation-driven organ specific functional properties of the procoagulant response. Methods Tissue specific procoagulant activity was assessed by adding tissue homogenate to normal human pool plasma and recording of the thrombin generation curve. The new technique was subsequently applied on two inflammation driven animal models: 1 mouse lipopolysaccharide (LPS induced endotoxemia and 2 spontaneously hypertensive rats exposed to environmental air pollution (particulate matter (PM. Results Addition of lung tissue from untreated animals to human plasma suppressed the endogenous thrombin potential (ETP (175 ± 61 vs. 1437 ± 112 nM.min for control. This inhibitory effect was due to TM, because a it was absent in protein C deficient plasma and b lungs from TMpro/pro mice allowed full thrombin generation (ETP: 1686 ± 209 nM.min. The inhibitory effect of TM was lost after LPS administration to mice, which induced TF activity in lungs of C57Bl/6 mice as well as increased the ETP (941 ± 523 vs. 194 ± 159 nM.min for control. Another pro-inflammatory stimulus, PM dose-dependently increased TF in the lungs of spontaneously hypertensive rats at 4 and 48 hours after PM exposure. The ETP increased up to 48 hours at the highest concentration of PM (1441 ± 289 nM.min vs. saline: 164 ± 64 nM.min, p Conclusion Inflammation associated procoagulant effects in tissues are dependent on variations in activity of the TF-TM balance. The application of these novel organ specific functional assays is a useful tool to monitor inflammation-driven shifts in the coagulation balance within animal or human tissues.

  7. Oscillating fluid power generator

    Science.gov (United States)

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  8. NSWC Sensor Generator

    National Research Council Canada - National Science Library

    Bass, John

    2000-01-01

    .... As an example, the generator would be attached to a structure, such as the hull of a ship, and utilized the difference in temperature between the ambient temperature within the compartment and the hull structure...

  9. Next Generation Hydro Software

    NARCIS (Netherlands)

    Donchyts, G.; Baart, F.; Van Dam, A.; De Goede, E.; Icke, J.; Putten, H.

    2014-01-01

    An overview paper, describes motivation and main deliverables of the Next Generation Hydro Software (NGHS) project. Important technological innovations include development of the new computational core Delft3D Flexible Mesh, as well as the open modelling environment Delta Shell.

  10. Generators for Miranda

    Energy Technology Data Exchange (ETDEWEB)

    Angiolini, G.; Borgna, H.; Garcia, A.; Fernandez, M.; Piriz, H.; Verdu, C. [IMPSA Hydrogenerators (Argentina)

    2000-10-01

    The three generators at the Miranda hydroelectric power plant on the Araguari river northwest of Belo Horizonte in the state of Minas Gerais began operation in 1998. All the electromechanical equipment for the project was supplied by IMPSA. The generators, which are driven by Francis turbines, are vertical shaft, three-phase, salient-pole synchronous machines with an output of 137 MVA. The generators successfully completed a series of studies and trials before commercial operation began and Companhia Energetica de Minas Gerais (CEMIG) is considering increasing the operation power to 150 MVA. The specification and design of the electrical aspects, stator winding, rotor, bearings, shaft line, generator cooling system, excitation system and monitoring systems are described. Electromagnetic requirements and acceptance testing results are given in two summary tables.

  11. Standard Firebrand Generator

    Data.gov (United States)

    Federal Laboratory Consortium — This apparatus, developed at EL, has been constructed to generate a controlled and repeatable size and mass distribution of glowing firebrands. The purpose of NIST...

  12. French steam generator

    International Nuclear Information System (INIS)

    Remond, A.

    1986-01-01

    After recalling the potential damage mode of tubes of steam generator, the author recalls the safety criteria used in France. The improvements and the process of damage prejudice and reparation for tubular bundle are presented [fr

  13. Financing Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.

    2001-06-29

    This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

  14. Generative Design Masterclass

    OpenAIRE

    Dean, Lionel T.

    2017-01-01

    A two day masterclass in generative design delivered by Dean at University of Technology, Sydney, Australia. The audience were University staff and research students. The demonstration used the Grasshopper scripting plug-in for the Computer Aided Design package Rhino.

  15. Financing Distributed Generation

    International Nuclear Information System (INIS)

    Walker, A.

    2001-01-01

    This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market

  16. Compact SAW aerosol generator

    OpenAIRE

    Winkler, A.; Harazim, S.; Collins, D.J.; Br?nig, R.; Schmidt, H.; Menzel, S.B.

    2017-01-01

    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present ...

  17. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  18. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  19. FAMILIAL GENERATIONS TUTORIAL

    OpenAIRE

    Denham, Woodrow W

    2011-01-01

    This tutorial explores the dimensions and contours of Australian Aboriginal generations focusing on the implications of asymmetrical generation intervals with regard to bilateral cross cousin marriage, circulating connubia, senior/junior marriage systems and generic age biased marriage systems. It is based on recent data showing that on average men in Australian Aboriginal societies are 14+ years older than their wives, much greater than the worldwide mean wife-husband age difference of 3 to ...

  20. Future generations in democracy

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2015-01-01

    of future generations. The analysis reveals that they tend to overlook the democratic costs of such representation (violation of political equality, risk of distortion of the deliberation and undermining of autonomy), while they seem to ignore the alternative of giving consideration to the interests...... of future generations within current democracy. It is concluded that what really matters in terms of the democratic ideal is to ensure an impartial deliberation which takes the interests of all affected parties sufficiently into account....

  1. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  2. Interactive DIF Generator

    Science.gov (United States)

    Preheim, Larry E.; Amy, Laraine; Young, Jimmie D.

    1993-01-01

    Interactive DIF Generator (IDG) computer program serves as utility to generate and manipulate directory interchange format (DIF) files. Creates and updates DIF files, sent to NASA's Master Directory, also referred to as International Global Change Directory at Goddard Space Flight Center. Many government and university data systems use Master Directory to advertise availability of research data. IDG is interactive software tool and requires mouse or trackball to operate. Written in C language.

  3. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  4. Generator rotor dovetail cracking

    International Nuclear Information System (INIS)

    Toth, J.

    2004-01-01

    In the presentation the dovetail control and recommended arrangements of the large steam turbine generators are described. The company General Electric established a complete package comprising working schedule of rotor control and solutions of the problems of the dovetail cracking of the large steam turbine generator rotors with long-term operation. A part of the article is also the recommended packet including more items. (author)

  5. Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2016-01-01

    Deep generative models parameterized by neural networks have recently achieved state-of-the-art performance in unsupervised and semi-supervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave...... faster with better results. We show state-of-the-art performance within semi-supervised learning on MNIST (0.96%), SVHN (16.61%) and NORB (9.40%) datasets....

  6. Nuclear power generation device

    International Nuclear Information System (INIS)

    Sugai, Hideto.

    1993-01-01

    In a PWR type reactor, a free piston type stirling engine is disposed instead of a conventional steam generator and a turbine. Since the stirling engine does not cause radiation leakage in view of the structure, safety and reliability of the nuclear power generation are improved. Further, the thermal cycle, if it operates theoretically, is equivalent with a Carnot cycle having the highest thermodynamical heat efficiency, thereby enabling to obtain a high heat efficiency in an actual engine. (N.H.)

  7. Automated lattice data generation

    Directory of Open Access Journals (Sweden)

    Ayyar Venkitesh

    2018-01-01

    Full Text Available The process of generating ensembles of gauge configurations (and measuring various observables over them can be tedious and error-prone when done “by hand”. In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.

  8. Natural language generation

    Science.gov (United States)

    Maybury, Mark T.

    The goal of natural language generation is to replicate human writers or speakers: to generate fluent, grammatical, and coherent text or speech. Produced language, using both explicit and implicit means, must clearly and effectively express some intended message. This demands the use of a lexicon and a grammar together with mechanisms which exploit semantic, discourse and pragmatic knowledge to constrain production. Furthermore, special processors may be required to guide focus, extract presuppositions, and maintain coherency. As with interpretation, generation may require knowledge of the world, including information about the discourse participants as well as knowledge of the specific domain of discourse. All of these processes and knowledge sources must cooperate to produce well-written, unambiguous language. Natural language generation has received less attention than language interpretation due to the nature of language: it is important to interpret all the ways of expressing a message but we need to generate only one. Furthermore, the generative task can often be accomplished by canned text (e.g., error messages or user instructions). The advent of more sophisticated computer systems, however, has intensified the need to express multisentential English.

  9. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  10. Lamellipodium-driven tissue reshaping: a parametric study.

    Science.gov (United States)

    Brodland, G W; Veldhuis, J H

    2006-02-01

    We recently showed that lamellipodia are able to generate forces of the right type to drive convergent extension (CE), an important class of tissue reshaping, in early stage embryos. The purpose of the present work is to quantify the mechanics of this process using parametric analyses. We use finite elements to implement a gamma-mu model in which a net interfacial tension gamma acts along each cell boundary and the cytoplasm exhibits an effective viscosity mu. The stress-strain characteristics of a rectangular patch of model tissue are investigated in terms of the rate r at which lamellipodia form and the relative strength q of their contractions. In tissues that are not constrained in-plane by adjacent tissues, the rate of tissue reshaping is proportional to r the rate of lamellipodium formation and its dependence on q is nonlinear and, near its expected value of 2 highly sensitive to q. Cell elongation, a central characteristic of CE, and stress is found to vary linearly with e the degree of kinematic restraint. Relevant "mechanical pathways" are also identified.

  11. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  12. The paradox of the neutrophil's role in tissue injury.

    Science.gov (United States)

    Segel, George B; Halterman, Marc W; Lichtman, Marshall A

    2011-03-01

    The neutrophil is an essential component of the innate immune system, and its function is vital to human life. Its production increases in response to virtually all forms of inflammation, and subsequently, it can accumulate in blood and tissue to varying degrees. Although its participation in the inflammatory response is often salutary by nature of its normal interaction with vascular endothelium and its capability to enter tissues and respond to chemotactic gradients and to phagocytize and kill microrganisms, it can contribute to processes that impair vascular integrity and blood flow. The mechanisms that the neutrophil uses to kill microorganisms also have the potential to injure normal tissue under special circumstances. Its paradoxical role in the pathophysiology of disease is particularly, but not exclusively, notable in seven circumstances: 1) diabetic retinopathy, 2) sickle cell disease, 3) TRALI, 4) ARDS, 5) renal microvasculopathy, 6) stroke, and 7) acute coronary artery syndrome. The activated neutrophil's capability to become adhesive to endothelium, to generate highly ROS, and to secrete proteases gives it the potential to induce local vascular and tissue injury. In this review, we summarize the evidence for its role as a mediator of tissue injury in these seven conditions, making it or its products potential therapeutic targets.

  13. Tissue design: how Drosophila tumors remodel their neighborhood.

    Science.gov (United States)

    Patel, Parthive H; Edgar, Bruce A

    2014-04-01

    Drosophila genetics has long been appreciated as a powerful approach for discovering the normal functions of genes that act as oncogenes and tumor suppressors in human cancer. Recent studies have also highlighted its advantages for deciphering how such genes function during tumorigenesis itself. Here we detail studies relating to how tumors, generated in developing organs and adult stem cell-based tissues, remodel the tissue landscape to their benefit. Like mammalian tumors, insect tumors can dissolve extracellular matrix, recruit blood cells, migrate and invade other tissues. While much is known about how mammalian fibroblasts, immune cells and vasculature promote late tumorigenesis, less is understood about the very earliest stages of tumor development in mammals. Because Drosophila has fewer mitotic cells and a simpler tissue architecture, it affords easy detection and analysis of early clonal tumor growth. Drosophila studies have revealed both cooperative and competitive interactions between tumor and normal cells during early tumor growth. During development, these interactions typically occur with other proliferative progenitor cells, but in adult stem cell-based tissues, the stem cell niche can fuel tumor growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Tissue architecture: the ultimate regulator of breast epithelial function

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Mian, Saira

    2003-10-20

    A problem in developmental biology that continues to take center stage is how higher organisms generate diverse tissues and organs given the same cellular genotype. In cell and tumor biology, the key question is not the production of form, but its preservation: how do tissues and organs maintain homeostasis, and how do cells within tissues lose or overcome these controls in cancer? Undoubtedly, mechanisms that maintain tissue specificity should share features with those employed to drive formation of the tissues. However, they are unlikely to be identical. At a simplistic level, developmental pathways may be thought of as a series of extremely rapid short-term events. Each new step depends on what came before, and the outcome is the organism itself at birth. All organs, with a few notable exceptions, such as the mammary gland and the brain, 'arrive' together and are complete when the organism is born. In mice and humans, these events occur in a mere 21 days and 9 months respectively. The stability of the differentiated state and the homeostasis of the organism, on the other hand, will last 40-110 times longer. How does the organism achieve this feat? How are tissues maintained? These questions also relate fundamentally to how tissues become malignant and, although not discussed here, to aging. While there is much literature on differentiation - loosely defined as the gain of a single or a series of functions - we know much less about the forces and the pathways that maintain organ morphology and function as a unit. This may be partly because it is difficult to study a tissue as a unit in vivo and there are few techniques that allow maintenance of organs in vitro long enough and in such a way as to make cell and molecular biology experiments possible. Techniques for culturing cells in three-dimensional gels (3D) as a surrogate for tissues, however, have been steadily improving and the method is now used by several laboratories. In this commentary we

  15. Second Harmonic Generation of Unpolarized Light

    Science.gov (United States)

    Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.

    2017-11-01

    A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.

  16. Neutron generator (HIRRAC) and dosimetry study.

    Science.gov (United States)

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  17. T lymphocytes and normal tissue responses to radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; McBride, William H.

    2012-01-01

    There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.

  18. THROMBIN GENERATION AND BLEEDING IN HEMOPHILIA A

    Science.gov (United States)

    Brummel-Ziedins, Kathleen E.; Whelihan, Matthew F.; Gissel, Matthew; Mann, Kenneth G.; Rivard, Georges E.

    2012-01-01

    Introduction Hemophilia A displays phenotypic heterogeneity with respect to clinical severity. Aim To determine if tissue factor (TF)-initiated thrombin generation profiles in whole blood in the presence of corn trypsin inhibitor (CTI) are predictive of bleeding risk in hemophilia A. Methods We studied factor(F) VIII deficient individuals (11 mild, 4 moderate and 12 severe) with a well-characterized five-year bleeding history that included hemarthrosis, soft tissue hematoma and annual FVIII concentrate usage. This clinical information was used to generate a bleeding score. The bleeding scores (range 0–32) were separated into three groups (bleeding score groupings: 0, 0 and ≤9.6, >9.6), with the higher bleeding tendency having a higher score. Whole blood collected by phlebotomy and contact pathway suppressed by 100μg/mL CTI was stimulated to react by the addition of 5pM TF. Reactions were quenched at 20min by inhibitors. Thrombin generation, determined by ELISA for thrombin – antithrombin was evaluated in terms of clot time (CT), maximum level (MaxL) and maximum rate (MaxR) and compared to the bleeding score. Results Data are shown as the mean±SD. MaxL was significantly different (phemophilia A. PMID:19563500

  19. Postgraduate programme in tissue banking

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    1999-01-01

    In 1992 in the Project Formulation Meeting of IAEA, the masters degree programme was proposed by Dr. Youngyudh Vajaradul, Thailand to upgrade the personnel of tissue bank and the person who had been working and involving in tissue banking. After The Bangkok Biomaterial Center proposed the degree programme and presented to Mahidol University, this programme was accepted by Ministry of University Affairs in 1998 and the masters degree programme under the name of 'Masters of Science in Biomaterial for Implantation' will be started in April 1999. IAEA will support the fellowship candidates from the region to study in masters degree programme. The programme includes 6 months of course work in Bangkok that is 12 credits and 24 is for the dissertation work which would be done in any country. The time of validity is 5 years

  20. Periodontal tissue damage in smokers

    Directory of Open Access Journals (Sweden)

    Hutojo Djajakusuma

    2006-09-01

    Full Text Available Dental plaque is the primary etiological factor in periodontal diseases. However, there are many factors that can modify how an individual periodontal tissue will respond to the accumulation of dental plaque. Among such risk factors, there is increasing evidence that smoking tobacco products alters the expression and rate of progression of periodontal diseases. The aim of this study was to find out the loss of periodontal tissue adhesion in smokers by measuring pocket depth using probe, and by measuring alveolar bone damage using Bone Loss Score (BLS radiographic methods on teeth 12, 11, 21, 22, 32, 31, 41, 42. Based on T Test statistical analysis, there were significant differences in pocket depth damage of alveolar bone in smokers and non smokers. In conclusion there were increasing pocket depth and alveolar bone damage in smokers.