WorldWideScience

Sample records for tissue imaging dti

  1. Histological validation of high-resolution DTI in human post mortem tissue

    NARCIS (Netherlands)

    Seehaus, A.; Roebroeck, A.; Bastiani, M.; Fonseca, L.; Bratzke, H.; Lori, N.; Vilanova, A.; Goebel, R.; Galuske, R.

    2015-01-01

    Diffusion tensor imaging (DTI) is amongst the simplest mathematical models available for diffusion magnetic resonance imaging, yet still by far the most used one. Despite the success of DTI as an imaging tool for white matter fibers, its anatomical underpinnings on a microstructural basis remain

  2. Illustrative uncertainty visualization of DTI fiber pathways

    NARCIS (Netherlands)

    Brecheisen, R.; Platel, B.; Haar Romeny, B.M. Ter; Vilanova, A.

    2013-01-01

    Diffusion Tensor Imaging (DTI) and fiber tracking provide unique insight into the 3D structure of fibrous tissues in the brain. However, the output of fiber tracking contains a significant amount of uncertainty accumulated in the various steps of the processing pipeline. Existing DTI visualization

  3. A preliminary study of DTI Fingerprinting on stroke analysis.

    Science.gov (United States)

    Ma, Heather T; Ye, Chenfei; Wu, Jun; Yang, Pengfei; Chen, Xuhui; Yang, Zhengyi; Ma, Jingbo

    2014-01-01

    DTI (Diffusion Tensor Imaging) is a well-known MRI (Magnetic Resonance Imaging) technique which provides useful structural information about human brain. However, the quantitative measurement to physiological variation of subtypes of ischemic stroke is not available. An automatically quantitative method for DTI analysis will enhance the DTI application in clinics. In this study, we proposed a DTI Fingerprinting technology to quantitatively analyze white matter tissue, which was applied in stroke classification. The TBSS (Tract Based Spatial Statistics) method was employed to generate mask automatically. To evaluate the clustering performance of the automatic method, lesion ROI (Region of Interest) is manually drawn on the DWI images as a reference. The results from the DTI Fingerprinting were compared with those obtained from the reference ROIs. It indicates that the DTI Fingerprinting could identify different states of ischemic stroke and has promising potential to provide a more comprehensive measure of the DTI data. Further development should be carried out to improve DTI Fingerprinting technology in clinics.

  4. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation.

    Science.gov (United States)

    Coenen, Volker Arnd; Schlaepfer, Thomas E; Allert, Niels; Mädler, Burkhard

    2012-01-01

    Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy

    NARCIS (Netherlands)

    Hooijmans, M. T.; Damon, B. M.; Froeling, M.; Versluis, M. J.; Burakiewicz, J.; Verschuuren, J. J G M; Niks, E. H.; Webb, A. G.; Kan, H. E.

    2015-01-01

    Diffusion tensor imaging (DTI) is a popular method to assess differences in fiber organization in diseased and healthy muscle tissue. Previous work has shown that muscle DTI measurements depend on signal-to-noise ratio (SNR), %fat, and tissue T2. The goal of this study was to evaluate the potential

  6. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy.

    Science.gov (United States)

    Hooijmans, M T; Damon, B M; Froeling, M; Versluis, M J; Burakiewicz, J; Verschuuren, J J G M; Niks, E H; Webb, A G; Kan, H E

    2015-11-01

    Diffusion tensor imaging (DTI) is a popular method to assess differences in fiber organization in diseased and healthy muscle tissue. Previous work has shown that muscle DTI measurements depend on signal-to-noise ratio (SNR), %fat, and tissue T2. The goal of this study was to evaluate the potential biasing effects of these factors on skeletal muscle DTI data in patients with Duchenne Muscular Dystrophy (DMD). MR images were obtained of the right lower leg of 21 DMD patients and 12 healthy controls on a Philips 3T system. DTI measurements were combined with quantitative in-vivo measures of mean water T2, %fat and SNR to evaluate their effect on DTI parameter estimation. All outcome measures were determined within ROIs drawn for six lower leg muscles. Between group analysis, using all ROIs, revealed a significantly elevated FA in the GCL, SOL and PER muscles (pDTI parameter estimation. These findings suggest that measuring mean water T2, %fat and SNR is essential to ascribe changes in DTI measures to intrinsic diffusion changes or to confounding influences. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  8. DTI analysis methods : Voxel-based analysis

    NARCIS (Netherlands)

    Van Hecke, Wim; Leemans, Alexander; Emsell, Louise

    2016-01-01

    Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does

  9. Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy)

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Stieltjes, B.; Weber, M.A.

    2007-01-01

    This contribution considers the possibilities involved with using functional methods in magnetic resonance imaging (MRI) diagnostics for brain tumors. Of the functional methods available, we discuss perfusion MRI (PWI), diffusion MRI (DWI and DTI) and MR spectroscopy (H-MRS). In cases of brain tumor, PWI aids in grading and better differentiation in diagnostics as well as for pre-therapeutic planning. In addition, the course of treatment, both after chemo- as well as radiotherapy in combination with surgical treatment, can be optimized. PWI allows better estimates of biological activity and aggressiveness in low grade brain tumors, and in the case of WHO grade II astrocytoma showing anaplastically transformed tumor areas, allows more rapid visualization and a better prediction of the course of the disease than conventional MRI diagnostics. Diffusion MRI, due to the directional dependence of the diffusion, can illustrate the course and direction of the nerve fibers, as well as reconstructing the nerve tracts in the cerebrum, pons and cerebellum 3-dimensionally. Diffusion imaging can be used for describing brain tumors, for evaluating contralateral involvement and the course of the nerve fibers near the tumor. Due to its operator dependence, DTI based fiber tracking for defining risk structures is controversial. DWI can also not differentiate accurately between cystic and necrotic brain tumors, or between metastases and brain abscesses. H-MRS provides information on cell membrane metabolism, neuronal integrity and the function of neuronal structures, energy metabolism and the formation of tumors and brain tissue necroses. Diagnostic problems such as the differentiation between neoplastic and non-neoplastic lesions, grading cerebral glioma and distinguishing between primary brain tumors and metastases can be resolved. An additional contribution will discuss the control of the course of glial tumors after radiotherapy. (orig.)

  10. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI.

    Science.gov (United States)

    Sigmund, E E; Baete, S H; Luo, T; Patel, K; Wang, D; Rossi, I; Duarte, A; Bruno, M; Mossa, D; Femia, A; Ramachandran, S; Stoffel, D; Babb, J S; Franks, A; Bencardino, J

    2018-06-04

    Dermatomyositis (DM) is an idiopathic inflammatory myopathy involving severe debilitation in need of diagnostics. We evaluated the proximal lower extremity musculature with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and dynamic DTI in DM patients and controls and compared with standard clinical workup.  METHODS: In this IRB-approved, HIPAA-compliant study with written informed consent, anatomical, Dixon fat/water and diffusion imaging were collected in bilateral thigh MRI of 22 controls and 27 DM patients in a 3T scanner. Compartments were scored on T1/T2 scales. Single voxel dynamic DTI metrics in quadriceps before and after 3-min leg exercise were measured. Spearman rank correlation and mixed model analysis of variance/covariance (ANOVA/ANCOVA) were used to correlate with T1 and T2 scores and to compare patients with controls. DM patients showed significantly lower pseudo-diffusion and volume in quadriceps than controls. All subjects showed significant correlation between T1 score and signal-weighted fat fraction; tissue diffusion and pseudo-diffusion varied significantly with T1 and T2 score in patients. Radial and mean diffusion exercise response in patients was significantly higher than controls. Static and dynamic diffusion imaging metrics show correlation with conventional imaging scores, reveal spatial heterogeneity, and provide means to differentiate dermatomyositis patients from controls. • Diffusion imaging shows regional differences between thigh muscles of dermatomyositis patients and controls. • Signal-weighted fat fraction and diffusion metrics correlate with T1/T2 scores of disease severity. • Dermatomyositis patients show significantly higher radial diffusion exercise response than controls.

  11. DTI measurements for Alzheimer’s classification

    Science.gov (United States)

    Maggipinto, Tommaso; Bellotti, Roberto; Amoroso, Nicola; Diacono, Domenico; Donvito, Giacinto; Lella, Eufemia; Monaco, Alfonso; Antonella Scelsi, Marzia; Tangaro, Sabina; Disease Neuroimaging Initiative, Alzheimer's.

    2017-03-01

    Diffusion tensor imaging (DTI) is a promising imaging technique that provides insight into white matter microstructure integrity and it has greatly helped identifying white matter regions affected by Alzheimer’s disease (AD) in its early stages. DTI can therefore be a valuable source of information when designing machine-learning strategies to discriminate between healthy control (HC) subjects, AD patients and subjects with mild cognitive impairment (MCI). Nonetheless, several studies have reported so far conflicting results, especially because of the adoption of biased feature selection strategies. In this paper we firstly analyzed DTI scans of 150 subjects from the Alzheimer’s disease neuroimaging initiative (ADNI) database. We measured a significant effect of the feature selection bias on the classification performance (p-value  informative content provided by DTI measurements for AD classification. Classification performances and biological insight, concerning brain regions related to the disease, provided by cross-validation analysis were both confirmed on the independent test.

  12. Correlations between Diffusion Tensor Imaging (DTI and Magnetic Resonance Spectroscopy (1H MRS in schizophrenic patients and normal controls

    Directory of Open Access Journals (Sweden)

    Ng Johnny

    2007-06-01

    Full Text Available Abstract Background Evidence suggests that white matter integrity may play an underlying pathophysiological role in schizophrenia. N-acetylaspartate (NAA, as measured by Magnetic Resonance Spectroscopy (MRS, is a neuronal marker and is decreased in white matter lesions and regions of axonal loss. It has also been found to be reduced in the prefrontal and temporal regions in patients with schizophrenia. Diffusion Tensor Imaging (DTI allows one to measure the orientations of axonal tracts as well as the coherence of axonal bundles. DTI is thus sensitive to demyelination and other structural abnormalities. DTI has also shown abnormalities in these regions. Methods MRS and DTI were obtained on 42 healthy subjects and 40 subjects with schizophrenia. The data was analyzed using regions of interests in the Dorso-Lateral Prefrontal white matter, Medial Temporal white matter and Occipital white matter using both imaging modalities. Results NAA was significantly reduced in the patient population in the Medial Temporal regions. DTI anisotropy indices were also reduced in the same Medial Temporal regions. NAA and DTI-anisotropy indices were also correlated in the left medial temporal region. Conclusion Our results implicate defects in the medial temporal white matter in patients with schizophrenia. Moreover, MRS and DTI are complementary modalities for the study of white matter disruptions in patients with schizophrenia.

  13. Direction-controlled DTI interpolation

    NARCIS (Netherlands)

    Florack, L.M.J.; Dela Haije, T.C.J.; Fuster, A.; Hotz, I.; Schultz, T.

    2015-01-01

    Diffusion Tensor Imaging (DTI) is a popular model for representing diffusion weighted magnetic resonance images due to its simplicity and the fact that it strikes a good balance between signal fit and robustness. Nevertheless, problematic issues remain. One of these concerns the problem of

  14. Diffusion tensor MR imaging (DTI) metrics in the cervical spinal cord in asymptomatic HIV-positive patients

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Mang, Christina; Mang, Thomas; Fruehwald-Pallamar, Julia; Weber, Michael; Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Law, Meng [University of Southern California, Los Angeles County Hospital and USC Medical Center, Department of Radiology, Keck School of Medicine, Los Angeles, CA (United States)

    2011-08-15

    This study was conducted to compare diffusion tensor MR imaging (DTI) metrics of the cervical spinal cord in asymptomatic human immunodeficiency virus (HIV)-positive patients with those measured in healthy volunteers, and to assess whether DTI is a valuable diagnostic tool in the early detection of HIV-associated myelopathy (HIVM). MR imaging of the cervical spinal cord was performed in 20 asymptomatic HIV-positive patients and in 20 healthy volunteers on a 3-T MR scanner. Average fractional anisotropy (FA), mean diffusivity (MD), and major (E1) and minor (E2, E3) eigenvalues were calculated within regions of interest (ROIs) at the C2/3 level (central and bilateral anterior, lateral and posterior white matter). Statistical analysis showed significant differences with regard to mean E3 values between patients and controls (p = 0.045; mixed-model analysis of variance (ANOVA) test). Mean FA was lower, and mean MD, mean E1, and mean E2 were higher in each measured ROI in patients compared to controls, but these differences were not statistically significant. Asymptomatic HIV-positive patients demonstrate only subtle changes in DTI metrics measured in the cervical spinal cord compared to healthy volunteers that currently do not support using DTI as a diagnostic tool for the early detection of HIVM. (orig.)

  15. Role of DTI neuroimaging in diagnosis of vascular dementia

    International Nuclear Information System (INIS)

    Kozarova, G.; Georgieva- Penev, L.

    2013-01-01

    Full text: Introduction: Since its introduction more than two decades ago, Magnetic Resonance Imaging (MRI) has not only allowed for visualization of the macrostructure of the CNS, but also has been able to study dynamic processes which constitute the substrate of currently available MRI variants. Materials and methods: In this presentation, the potential role of MRI techniques, particularly DTI, for the study of the relationship between changes in the microstructural integrity of WM and cognitive impairment in the context of cerebrovascular disease and particularly the vascular dementia (VaD) are discussed. Results: While conventional Diffusion Weighted Imaging (DWI) permits a robust visualization of lesions just a few minutes after the onset of cerebral ischemia, Diffusion Tensor Imaging (DTI) measures the magnitude and direction of diffusion, leading to the characterization of cerebral white matter (WM) microstructural integrity of white matter fibers using quantitative fractionated anisotropy (DTI-FA) and tractography (DTI-TR). DTI-FA is an important technique in considering the large extension of white matter, and has been previously applied in clinical practice. DTI-TR can visualize the bundles interconnecting various regions whose interruption can cause a range of different disconnection syndromes. The method is not routinely used in clinical practice.In this presentation, the potential role of MRI techniques, particularly DTI, for the study of the relationship between changes in the microstructural integrity of WM and cognitive impairment in the context of cerebrovascular disease and particularly the vascular dementia (VaD) are discussed. Conclusion: Significant correlations between cognitive function and regional anisotropy values are an example of the potential efficacy of DTI for in vivo studies of brain connectivity in vascular neurodegenerative conditions

  16. A DTI study to probe tumor microstructure and its connection with hypoxia.

    Science.gov (United States)

    Majumdar, Shreyan; Kotecha, Mrignayani; Triplett, William; Epel, Boris; Halpern, Howard

    2014-01-01

    Solid tumors have chaotic organization of blood vessels, disruptive nerve paths and muscle fibers that result in a hostile and heterogeneous microenvironment. These tumor regions are often hypoxic and resistant to radiation therapy. The knowledge of partial pressure of oxygen concentration (pO2), in conjunction with the information about tissue organization, can predict tissue health and may eventually be used in combination with intensity-modulated radiation therapy (IMRT) for targeted destruction of radiation-resistant areas, while sparing healthy tissues. Diffusion tensor imaging (DTI) based parameter fractional anisotropy (FA) can be used to assess organization of tissue microstructure, whereas the pO2 can be measured using electron paramagnetic resonance oxygen imaging (EPROI). This study is our first step to connect these two important physiological parameters. We calculated FA in fixed fibrosarcoma (FSa) grown in hind leg of nude mice (n = 6) using preclinical 9.4 T MRI. The FA in tumor region (0.34 ± 0.014) was found to be lower when compared to normal surrounding region (0.36 ± 0.013). We hypothesized that the change in FA is directly correlated with the change in oxygen concentration in tumor. We present preliminary in vivo results showing a positive correlation (R = 0.85, p = 0.017) between the FA and pO2 values acquired for MCa4 tumor (n = 1) using DTI and EPROI.

  17. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  18. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  19. Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Maria Isabel; Nguyen, Duy; Delavelle, Jacqueline [Geneva University Hospital, Department of Neuroradiology, DISIM, Geneve 14 (Switzerland); Viallon, Magalie [Geneva University Hospital and University of Geneva, Radiology, Geneva (Switzerland); Becker, Minerva [Geneva University Hospital and University of Geneva, Unit of Head and Neck Radiology, Geneva (Switzerland)

    2010-03-15

    The objective of this study was to assess the feasibility and potential clinical applications of diffusion tensor imaging (DTI) and tractography in the normal and pathologic brachial plexus prospectively. Six asymptomatic volunteers and 12 patients with symptoms related to the brachial plexus underwent DTI on a 1.5T system in addition to the routine anatomic plexus imaging protocol. Maps of the apparent diffusion coefficient (ADC) and of fractional anisotropy (FA), as well as tractography of the brachial plexus were obtained. Images were evaluated by two experienced neuroradiologists in a prospective fashion. Three patients underwent surgery, and nine patients underwent conservative medical treatment. Reconstructed DTI (17/18) were of good quality (one case could not be reconstructed due to artifacts). In all volunteers and in 11 patients, the roots and the trunks were clearly delineated with tractography. Mean FA and mean ADC values were as follows: 0.30{+-}0.079 and 1.70{+-}0.35 mm{sup 2}/s in normal fibers, 0.22{+-}0.04 and 1.49{+-}0.49 mm{sup 2}/s in benign neurogenic tumors, and 0.24{+-}0.08 and 1.51{+-}0.52 mm{sup 2}/s in malignant tumors, respectively. Although there was no statistically significant difference in FA and ADC values of normal fibers and fibers at the level of pathology, tractography revealed major differences regarding fiber architecture. In benign neurogenic tumors (n=4), tractography revealed fiber displacement alone (n=2) or fiber displacement and encasement by the tumor (n=2), whereas in the malignant tumors, either fiber disruption/destruction with complete disorganization (n=6) or fiber displacement (n=1) were seen. In patients with fiber displacement alone, surgery confirmed the tractography findings, and excision was successful without sequelae. Our preliminary data suggest that DTI with tractography is feasible in a clinical routine setting. DTI may demonstrate normal tracts, tract displacement, deformation, infiltration, disruption

  20. Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions

    International Nuclear Information System (INIS)

    Vargas, Maria Isabel; Nguyen, Duy; Delavelle, Jacqueline; Viallon, Magalie; Becker, Minerva

    2010-01-01

    The objective of this study was to assess the feasibility and potential clinical applications of diffusion tensor imaging (DTI) and tractography in the normal and pathologic brachial plexus prospectively. Six asymptomatic volunteers and 12 patients with symptoms related to the brachial plexus underwent DTI on a 1.5T system in addition to the routine anatomic plexus imaging protocol. Maps of the apparent diffusion coefficient (ADC) and of fractional anisotropy (FA), as well as tractography of the brachial plexus were obtained. Images were evaluated by two experienced neuroradiologists in a prospective fashion. Three patients underwent surgery, and nine patients underwent conservative medical treatment. Reconstructed DTI (17/18) were of good quality (one case could not be reconstructed due to artifacts). In all volunteers and in 11 patients, the roots and the trunks were clearly delineated with tractography. Mean FA and mean ADC values were as follows: 0.30±0.079 and 1.70±0.35 mm 2 /s in normal fibers, 0.22±0.04 and 1.49±0.49 mm 2 /s in benign neurogenic tumors, and 0.24±0.08 and 1.51±0.52 mm 2 /s in malignant tumors, respectively. Although there was no statistically significant difference in FA and ADC values of normal fibers and fibers at the level of pathology, tractography revealed major differences regarding fiber architecture. In benign neurogenic tumors (n=4), tractography revealed fiber displacement alone (n=2) or fiber displacement and encasement by the tumor (n=2), whereas in the malignant tumors, either fiber disruption/destruction with complete disorganization (n=6) or fiber displacement (n=1) were seen. In patients with fiber displacement alone, surgery confirmed the tractography findings, and excision was successful without sequelae. Our preliminary data suggest that DTI with tractography is feasible in a clinical routine setting. DTI may demonstrate normal tracts, tract displacement, deformation, infiltration, disruption, and disorganization of

  1. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sidek, S. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Medical Imaging Unit, Faculty of Medicine, Universiti Teknologi MARA, Selangor (Malaysia); Ramli, N. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Rahmat, K., E-mail: katt_xr2000@yahoo.com [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Ramli, N.M.; Abdulrahman, F. [Department of Ophthalmology, Faculty of Medicine, University Malaya, Kuala Lumpur (Malaysia); Tan, L.K. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia)

    2014-08-15

    Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity.

  2. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation

    International Nuclear Information System (INIS)

    Sidek, S.; Ramli, N.; Rahmat, K.; Ramli, N.M.; Abdulrahman, F.; Tan, L.K.

    2014-01-01

    Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity

  3. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  4. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    Directory of Open Access Journals (Sweden)

    Ghazikhanlou-sani K.

    2016-06-01

    Full Text Available Introduction: There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method: A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA maps were performed using the FSL (FMRI software library software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result: The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05. Conclusion: DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.

  5. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    International Nuclear Information System (INIS)

    Zijta, F.M.; Froeling, M.; Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J.; Lakeman, M.M.E.; Montauban van Swijndregt, A.D.; Strijkers, G.J.

    2011-01-01

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 ± 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 ± 0.02 to 0.30 ± 0.04, MD values from 1.30 ± 0.08 to 1.73 ± 0.12 x 10- 3 mm 2 /s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  6. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Zijta, F.M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Froeling, M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands); Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Lakeman, M.M.E. [University of Amsterdam, Department of Gynaecology, Academic Medical Center, Amsterdam (Netherlands); Montauban van Swijndregt, A.D. [Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Strijkers, G.J. [Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands)

    2011-06-15

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 {+-} 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues ({lambda}1, {lambda}2, {lambda}3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 {+-} 0.02 to 0.30 {+-} 0.04, MD values from 1.30 {+-} 0.08 to 1.73 {+-} 0.12 x 10-{sup 3} mm{sup 2}/s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  7. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review.

    Science.gov (United States)

    Asken, Breton Michael; DeKosky, Steven T; Clugston, James R; Jaffee, Michael S; Bauer, Russell M

    2018-04-01

    This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and

  8. Segmentation of DTI based on tensorial morphological gradient

    Science.gov (United States)

    Rittner, Leticia; de Alencar Lotufo, Roberto

    2009-02-01

    This paper presents a segmentation technique for diffusion tensor imaging (DTI). This technique is based on a tensorial morphological gradient (TMG), defined as the maximum dissimilarity over the neighborhood. Once this gradient is computed, the tensorial segmentation problem becomes an scalar one, which can be solved by conventional techniques, such as watershed transform and thresholding. Similarity functions, namely the dot product, the tensorial dot product, the J-divergence and the Frobenius norm, were compared, in order to understand their differences regarding the measurement of tensor dissimilarities. The study showed that the dot product and the tensorial dot product turned out to be inappropriate for computation of the TMG, while the Frobenius norm and the J-divergence were both capable of measuring tensor dissimilarities, despite the distortion of Frobenius norm, since it is not an affine invariant measure. In order to validate the TMG as a solution for DTI segmentation, its computation was performed using distinct similarity measures and structuring elements. TMG results were also compared to fractional anisotropy. Finally, synthetic and real DTI were used in the method validation. Experiments showed that the TMG enables the segmentation of DTI by watershed transform or by a simple choice of a threshold. The strength of the proposed segmentation method is its simplicity and robustness, consequences of TMG computation. It enables the use, not only of well-known algorithms and tools from the mathematical morphology, but also of any other segmentation method to segment DTI, since TMG computation transforms tensorial images in scalar ones.

  9. Magnetic resonance imaging DTI-FT study on schizophrenic patients with typical negative first symptoms.

    Science.gov (United States)

    Gu, Chengyu; Zhang, Ying; Wei, Fuquan; Cheng, Yougen; Cao, Yulin; Hou, Hongtao

    2016-09-01

    Magnetic resonance imaging (MRI) with diffusion-tensor imaging (DTI) together with a white matter fiber tracking (FT) technique was used to assess different brain white matter structures and functionalities in schizophrenic patients with typical first negative symptoms. In total, 30 schizophrenic patients with typical first negative symptoms, comprising an observation group were paired 1:1 according to gender, age, right-handedness, and education, with 30 healthy individuals in a control group. Individuals in each group underwent routine MRI and DTI examination of the brain, and diffusion-tensor tractography (DTT) data were obtained through whole brain analysis based on voxel and tractography. The results were expressed by fractional anisotropy (FA) values. The schizophrenic patients were evaluated using a positive and negative symptom scale (PANSS) as well as a Global Assessment Scale (GAS). The results of the study showed that routine MRIs identified no differences between the two groups. However, compared with the control group, the FA values obtained by DTT from the deep left prefrontal cortex, the right deep temporal lobe, the white matter of the inferior frontal gyrus and part of the corpus callosum were significantly lower in the observation group (Pscale value in the observation group averaged 7.7±1.5, and the negative scale averaged 46.6±5.9, while the general psychopathology scale averaged 65.4±10.3, and GAS averaged 53.8±19.2. The Pearson statistical analysis, the left deep prefrontal cortex, the right deep temporal lobe, the white matter of the inferior frontal gyrus and the FA value of part of the corpus callosum in the observation group was negatively correlated with the negative scale (Pnegative symptoms and the application of MRI DTI-FT can improve diagnostic accuracy.

  10. Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging.

    Science.gov (United States)

    Teh, Irvin; McClymont, Darryl; Zdora, Marie-Christine; Whittington, Hannah J; Davidoiu, Valentina; Lee, Jack; Lygate, Craig A; Rau, Christoph; Zanette, Irene; Schneider, Jürgen E

    2017-03-10

    Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HA DTI-STSRI  = -1.4° ± 23.2° and TA DTI-STSRI  = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical

  11. Preliminary clinical applications of DTI in human cervical spinal cord

    International Nuclear Information System (INIS)

    Song Ting; Mai Weiwen; Liang Biling; Shen Jun; Huang Suiqiao; Hu Chunhong

    2007-01-01

    Objective: To condcut preliminary study of the value of DTI(diffusion tensor imaging) in human cervical spinal cord. Methods: Twenty-one patients suffering from cervical spondylotic myelopathy and twenty volunteers without any clinical symptoms underwent routine MRI and DTI examination. DTI was performed in six non-collinear directions with single-shot fast spin echo echo, planar imaging sequence(b value = 400 s·mm -2 ). ADC(apparent diffusion coefficient) and FA(fractional anisotropy)values were measured by ROIs(regions of interest) in 4 different level segment spinal cord (C 2/3 , C 3/4 , C 4/5 , C 5/6 ) in normal volunteers, in lesions and normal segmental spinal cord in clinical cases respectively. DTI original images were automatically processed by using IDL (Version 5.6) soft- ware to produce color tensor images. SPSS11.0 software for windows was used for t-test and one-way ANOVA analysis. The difference was considered statistically significant if P 2/3 , C 3/4 , C 4/5 , C 5/6 , were analyzed and it was found that FA value between them had a significant difference by ANOVA, F=159.24, P 2/3 level. However, ADC value between 4 segments had no significant difference(F=2.191, P>0.05). (2)In patients of cervical spondylotic myelopathy, routine MRI T2WI showed abnormal signal in 9 cases, and showed no abnormal signal in 12 dases. In sixteen cases it was found that abnormal patchy green signal on colorized tensor maps appeared on the normal blue spinal cord. Also, in patients of cervical spondylotic myelopathy, there was significant difference in ADC and FA value between lesions and normal spinal cord (paired t test, for ADC, t=2.88, P 2/3 level segment spinal cord in normal volunteers (0.85 ± 0.03) is the highest among other segments. FA value decreases gradually along cervical spinal cord towards the caudal direction. However, the difference of ADC values amongst 4 segments is not significant. DTI colorized tensor maps can show more lesions than routine MRI

  12. Myocardial response to a triathlon in male athletes evaluated by Doppler tissue imaging and biochemical parameters

    DEFF Research Database (Denmark)

    Leetmaa, T H; Dam, A; Glintborg, D

    2008-01-01

    (cTnT) and pro-brain natriuretic peptide (pro-BNP)] and echocardiography. Conventional echocardiography techniques and new Doppler tissue imaging (DTI) modalities were applied before and immediately after the competition. Blood samples were drawn 1 week before, immediately after and 12-24 h post...... and systolic velocities decreased, thus suggesting reversible cardiac fatigue. When using cardiac markers and echocardiographic findings, a triathlon was found to have no significant negative effects on left ventricular function or myocardial tissue in male athletes....

  13. Diagnostic utility of DTI in prostate cancer

    International Nuclear Information System (INIS)

    Guerses, Bengi; Tasdelen, Neslihan; Yencilek, Faruk; Kilickesmez, N. Ozguer; Alp, Turgut; Firat, Zeynep; Albayrak, M. Selami; Ulug, Aziz M.; Guermen, A. Nevzat

    2011-01-01

    Purpose: The aim of this study was to compare the diffusion tensor parameters of prostate cancer, prostatitis and normal prostate tissue. Materials and Methods: A total of 25 patients with the suspicion of prostate cancer were included in the study. MRI was performed with 3 T system (Intera Achieva, Philips Medical Systems, The Netherlands). T2 TSE and DTI with ss-EPI were obtained in each subject. TRUS-guided prostate biopsy was performed after the MRI examination. Images were analyzed by two radiologists using a special software system. ROI's were drawn according to biopsy zones which are apex, midgland, base and central zone on each sides of the gland. FA and ADC values in areas of cancer, chronic prostatitis and normal prostate tissue were compared using Student's t-test. Results: Histopathological analysis revealed carcinoma in 68, chronic prostatitis in 67 and was reported as normal in 65 zones. The mean FA of cancerous tissue was significantly higher (p < 0.01) than the FA of chronic prostatitis and normal gland. The mean ADC of cancerous tissue was found to be significantly lower (p < 0.01), compared with non-cancerous tissue. Conclusion: Decreased ADC and increased FA are compatible with the hypercellular nature of prostate tumors. These differences may increase the accuracy of MRI in the detection of carcinoma and to differentiate between cancer and prostatitis.

  14. Diagnostic utility of DTI in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guerses, Bengi, E-mail: bengur0@yahoo.com [Yeditepe University Medical Faculty, Department of Radiology, Istanbul (Turkey); Tasdelen, Neslihan [Yeditepe University Medical Faculty, Department of Radiology, Istanbul (Turkey); Yencilek, Faruk [Yeditepe University Medical Faculty, Department of Urology, Istanbul (Turkey); Kilickesmez, N. Ozguer [Yeditepe University Medical Faculty, Department of Radiology, Istanbul (Turkey); Alp, Turgut [Fatih Sultan Mehmet Training and Research Hospital, Division of Urology, Istanbul (Turkey); Firat, Zeynep [Yeditepe University Medical Faculty, Department of Radiology, Istanbul (Turkey); Albayrak, M. Selami [Kartal Training and Research Hospital, Division of Urology, Istanbul (Turkey); Ulug, Aziz M. [Yeditepe University Department of Biomedical Engineering, Istanbul (Turkey); The Feinstein Institute for Medical Research, Manhasset, New York (United States); Guermen, A. Nevzat [Yeditepe University Medical Faculty, Department of Radiology, Istanbul (Turkey)

    2011-08-15

    Purpose: The aim of this study was to compare the diffusion tensor parameters of prostate cancer, prostatitis and normal prostate tissue. Materials and Methods: A total of 25 patients with the suspicion of prostate cancer were included in the study. MRI was performed with 3 T system (Intera Achieva, Philips Medical Systems, The Netherlands). T2 TSE and DTI with ss-EPI were obtained in each subject. TRUS-guided prostate biopsy was performed after the MRI examination. Images were analyzed by two radiologists using a special software system. ROI's were drawn according to biopsy zones which are apex, midgland, base and central zone on each sides of the gland. FA and ADC values in areas of cancer, chronic prostatitis and normal prostate tissue were compared using Student's t-test. Results: Histopathological analysis revealed carcinoma in 68, chronic prostatitis in 67 and was reported as normal in 65 zones. The mean FA of cancerous tissue was significantly higher (p < 0.01) than the FA of chronic prostatitis and normal gland. The mean ADC of cancerous tissue was found to be significantly lower (p < 0.01), compared with non-cancerous tissue. Conclusion: Decreased ADC and increased FA are compatible with the hypercellular nature of prostate tumors. These differences may increase the accuracy of MRI in the detection of carcinoma and to differentiate between cancer and prostatitis.

  15. White Matter Changes in Bipolar Disorder, Alzheimer Disease, and Mild Cognitive Impairment: New Insights from DTI

    Directory of Open Access Journals (Sweden)

    Aikaterini Xekardaki

    2011-01-01

    Full Text Available Neuropathological and neuroimaging studies have reported significant changes in white matter in psychiatric and neurodegenerative diseases. Diffusion tensor imaging (DTI, a recently developed technique, enables the detection of microstructural changes in white matter. It is a noninvasive in vivo technique that assesses water molecules' diffusion in brain tissues. The most commonly used parameters are axial and radial diffusivity reflecting diffusion along and perpendicular to the axons, as well as mean diffusivity and fractional anisotropy representing global diffusion. Although the combination of these parameters provides valuable information about the integrity of brain circuits, their physiological meaning still remains controversial. After reviewing the basic principles of DTI, we report on recent contributions that used this technique to explore subtle structural changes in white matter occurring in elderly patients with bipolar disorder and Alzheimer disease.

  16. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    NARCIS (Netherlands)

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy

  17. DTI Analysis of Presbycusis Using Voxel-Based Analysis.

    Science.gov (United States)

    Ma, W; Li, M; Gao, F; Zhang, X; Shi, L; Yu, L; Zhao, B; Chen, W; Wang, G; Wang, X

    2016-07-14

    Presbycusis is the most common sensory deficit in the aging population. A recent study reported using a DTI-based tractography technique to identify a lack of integrity in a portion of the auditory pathway in patients with presbycusis. The aim of our study was to investigate the white matter pathology of patients with presbycusis by using a voxel-based analysis that is highly sensitive to local intensity changes in DTI data. Fifteen patients with presbycusis and 14 age- and sex-matched healthy controls were scanned on a 3T scanner. Fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were obtained from the DTI data. Intergroup statistics were implemented on these measurements, which were transformed to Montreal Neurological Institute coordinates by using a nonrigid image registration method called large deformation diffeomorphic metric mapping. Increased axial diffusivity, radial diffusivity, and mean diffusivity and decreased fractional anisotropy were found near the right-side hearing-related areas in patients with presbycusis. Increased radial diffusivity and mean diffusivity were also found near a language-related area (Broca area) in patients with presbycusis. Our findings could be important for exploring reliable imaging evidence of presbycusis and could complement an ROI-based approach. © 2016 American Society of Neuroradiology.

  18. Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN)

    International Nuclear Information System (INIS)

    Ling, Xueying; Tang, Wen; Liu, Guosheng; Huang, Li; Li, Bingxiao; Li, Xiaofei; Liu, Sirun; Xu, Jing

    2013-01-01

    Purpose: To assess the brain maturation of preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN). Materials and methods: Conventional magnetic resonance imaging (MRI), DTI and ESWAN were performed in 60 preterm infants and 21 term controls. 60 preterm infants were subgrouped to two groups according to the age at imaging: before and at term-equivalent age (TEA). Fractional anisotropy (FA), apparent diffusion coefficient (ADC) map from DTI, T 2 * and R 2 * maps from ESWAN were post-processed at an off-line workstation. The values of FA, ADC, T 2 * and R 2 * from the posterior limb of internal capsule (PLIC), frontal white matter (FWM), occipital white matter (OWM) and lentiform nuclei (LN) were determined. These parameters were compared between preterm and term infants. Correlations of DTI and ESWAN parameters with the gestational age, postmenstrual age and postnatal age were analyzed. Results: ADCs of FWM, OWM and LN, and T 2 * values of the PLIC and LN were higher in the preterm infants at TEA compared with the term controls. The correlations were existed between the postmenstrual age and the values of FA, ADC, T 2 *, R 2 * from the PLIC, values of ADC, T 2 *, R 2 * from the LN, T 2 * value from the OWM. The correlations were also found between the postnatal age and the values of FA, ADC, T 2 * from the PLIC, and T 2 * value from the LN. Conclusion: The maturity of preterm brain around TEA was different from that of term controls and appeared to be independent of the prematurity at birth. T 2 * was one of valuable indices to evaluate brain maturation in preterm infants

  19. Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xueying, E-mail: lingxuey@163.com [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Tang, Wen [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Liu, Guosheng [Neonatal Intensive Care Unit, the First Affiliated Hospital, Jinan University, Guangzhou (China); Huang, Li [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Bingxiao [Neonatal Intensive Care Unit, the First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Xiaofei; Liu, Sirun [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Xu, Jing [Neonatal Intensive Care Unit, the First Affiliated Hospital, Jinan University, Guangzhou (China)

    2013-09-15

    Purpose: To assess the brain maturation of preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN). Materials and methods: Conventional magnetic resonance imaging (MRI), DTI and ESWAN were performed in 60 preterm infants and 21 term controls. 60 preterm infants were subgrouped to two groups according to the age at imaging: before and at term-equivalent age (TEA). Fractional anisotropy (FA), apparent diffusion coefficient (ADC) map from DTI, T{sub 2}* and R{sub 2}* maps from ESWAN were post-processed at an off-line workstation. The values of FA, ADC, T{sub 2}* and R{sub 2}* from the posterior limb of internal capsule (PLIC), frontal white matter (FWM), occipital white matter (OWM) and lentiform nuclei (LN) were determined. These parameters were compared between preterm and term infants. Correlations of DTI and ESWAN parameters with the gestational age, postmenstrual age and postnatal age were analyzed. Results: ADCs of FWM, OWM and LN, and T{sub 2}* values of the PLIC and LN were higher in the preterm infants at TEA compared with the term controls. The correlations were existed between the postmenstrual age and the values of FA, ADC, T{sub 2}*, R{sub 2}* from the PLIC, values of ADC, T{sub 2}*, R{sub 2}* from the LN, T{sub 2}* value from the OWM. The correlations were also found between the postnatal age and the values of FA, ADC, T{sub 2}* from the PLIC, and T{sub 2}* value from the LN. Conclusion: The maturity of preterm brain around TEA was different from that of term controls and appeared to be independent of the prematurity at birth. T{sub 2}* was one of valuable indices to evaluate brain maturation in preterm infants.

  20. Microstructural integrity of white matter tracts amongst older fallers: A DTI study.

    Directory of Open Access Journals (Sweden)

    Yoke Queen Wong

    Full Text Available This study assesses the whole brain microstructural integrity of white matter tracts (WMT among older individuals with a history of falls compared to non-fallers.85 participants (43 fallers, 42 non-fallers were evaluated with conventional MRI and diffusion tensor imaging (DTI sequences of the brain. DTI metrics were obtained from selected WMT using tract-based spatial statistics (TBSS method. This was followed by binary logistic regression to investigate the clinical variables that could act as confounding elements on the outcomes. The TBSS analysis was then repeated, but this time including all significant predictor variables from the regression analysis as TBSS covariates.The mean diffusivity (MD and axial diffusivity (AD and to a lesser extent radial diffusivity (RD values of the projection fibers and commissural bundles were significantly different in fallers (p < 0.05 compared to non-fallers. However, the final logistic regression model obtained showed that only functional reach, white matter lesion volume, hypertension and orthostatic hypotension demonstrated statistical significant differences between fallers and non-fallers. No significant differences were found in the DTI metrics when taking into account age and the four variables as covariates in the repeated analysis.This DTI study of 85 subjects, do not support DTI metrics as a singular factor that contributes independently to the fall outcomes. Other clinical and imaging factors have to be taken into account.

  1. DTI study of Children with Congenital Hydrocephalus: 1 Year Post-Surgical Outcomes

    Science.gov (United States)

    Mangano, Francesco T.; Altaye, Mekibib; McKinstry, Robert C.; Shimony, Joshua S.; Powell, Stephanie K.; Phillips, Jannel M.; Barnard, Holly; Limbrick, David D.; Holland, Scott K.; Jones, Blaise V.; Dodd, Jonathon; Simpson, Sarah; Deanna, Mercer; Rajagopal, Akila; Bidwell, Sarah; Yuan, Weihong

    2016-01-01

    Object To investigate white matter structural abnormalities using diffusion tensor imaging (DTI) in children with hydrocephalus before CSF diversionary surgery (including ventriculoperitoneal shunting and endoscopic third ventriculoscopy) and the course of recovery post-surgery in association with neuropsychological and behavioral outcome. Methods This was a prospective study that included 54 children with congenital hydrocephalus (21F/33M; age range: 0.03–194.5 months) who underwent surgery and 64 normal controls (30F/34M, age range: 0.30–197.75 months). DTI and neurodevelopmental outcome data were collected once in the control group and at pre-surgery, 3-month, and 12-month post-surgery in the patients. DTI measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values were extracted from the genu of corpus callosum (gCC) and the posterior limb of internal capsule (PLIC). Group analysis was performed first cross-sectionally to quantify DTI abnormalities at three time points by comparing the controls and the patients group at the three time points separately. Longitudinal comparisons were conducted pairwise between different time points in patients whose data were acquired at multiple time points. Neurodevelopmental data were collected and analyzed using the Adaptive Behavior Assessment System, Second Edition (ABAS-II) and the Bayley Scales of Infant Development, Third Edition (Bayley-III). Correlation analyses were performed between DTI and behavioral outcomes. Results Significant DTI abnormalities were found in both the gCC (lower FA and higher MD, AD, and RD) and the PLIC (higher FA, lower AD and RD) at pre-surgery. The DTI measures in the gCC remained mostly abnormal at 3-month and 12-month post-surgery. The DTI abnormalities in the PLIC were significant in FA and AD at 3-month post-surgery but did nor persist when tested at 12-month post-surgery. Significant longitudinal DTI changes in the

  2. Structural brain alterations in bipolar disorder II: a combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study.

    Science.gov (United States)

    Ambrosi, Elisa; Rossi-Espagnet, Maria Camilla; Kotzalidis, Georgios D; Comparelli, Anna; Del Casale, Antonio; Carducci, Filippo; Romano, Andrea; Manfredi, Giovanni; Tatarelli, Roberto; Bozzao, Alessandro; Girardi, Paolo

    2013-09-05

    Brain structural changes have been described in bipolar disorder (BP), but usually studies focused on both I and II subtypes indiscriminately and investigated changes in either brain volume or white matter (WM) integrity. We used combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis to track changes in the grey matter (GM) and WM in the brains of patients affected by BPII, as compared to healthy controls. Using VBM and DTI, we scanned 20 DSM-IV-TR BPII patients in their euthymic phase and 21 healthy, age- and gender-matched volunteers with no psychiatric history. VBM showed decreases in GM of BPII patients, compared to controls, which were diffuse in nature and most prominent in the right middle frontal gyrus and in the right superior temporal gurus. DTI showed significant and widespread FA reduction in BPII patients in all major WM tracts, including cortico-cortical association tracts. The small sample size limits the generalisability of our findings. Reduced GM volumes and WM integrity changes in BPII patients are not prominent like those previously reported in bipolar disorder type-I and involve cortical structures and their related association tracts. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. UNC-Utah NA-MIC Framework for DTI Fiber Tract Analysis

    Directory of Open Access Journals (Sweden)

    Audrey Rose Verde

    2014-01-01

    Full Text Available Diffusion tensor imaging has become an important modality in the field ofneuroimaging to capture changes in micro-organization and to assess white matterintegrity or development. While there exists a number of tractography toolsets,these usually lack tools for preprocessing or to analyze diffusion properties alongthe fiber tracts. Currently, the field is in critical need of a coherent end-to-endtoolset for performing an along-fiber tract analysis, accessible to non-technicalneuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents acoherent, open source, end-to-end toolset for atlas fiber tract based DTI analysisencompassing DICOM data conversion, quality control, atlas building, fibertractography, fiber parameterization, and statistical analysis of diffusionproperties. Most steps utilize graphical user interfaces (GUI to simplifyinteraction and provide an extensive DTI analysis framework for non-technicalresearchers/investigators. We illustrate the use of our framework on a smallsample, cross sectional neuroimaging study of 8 healthy 1-year-old children fromthe Infant Brain Imaging Study (IBIS Network. In this limited test study, weillustrate the power of our method by quantifying the diffusion properties at 1year of age on the genu and splenium fiber tracts.

  4. UNC-Utah NA-MIC framework for DTI fiber tract analysis.

    Science.gov (United States)

    Verde, Audrey R; Budin, Francois; Berger, Jean-Baptiste; Gupta, Aditya; Farzinfar, Mahshid; Kaiser, Adrien; Ahn, Mihye; Johnson, Hans; Matsui, Joy; Hazlett, Heather C; Sharma, Anuja; Goodlett, Casey; Shi, Yundi; Gouttard, Sylvain; Vachet, Clement; Piven, Joseph; Zhu, Hongtu; Gerig, Guido; Styner, Martin

    2014-01-01

    Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents a coherent, open source, end-to-end toolset for atlas fiber tract based DTI analysis encompassing DICOM data conversion, quality control, atlas building, fiber tractography, fiber parameterization, and statistical analysis of diffusion properties. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-technical researchers/investigators. We illustrate the use of our framework on a small sample, cross sectional neuroimaging study of eight healthy 1-year-old children from the Infant Brain Imaging Study (IBIS) Network. In this limited test study, we illustrate the power of our method by quantifying the diffusion properties at 1 year of age on the genu and splenium fiber tracts.

  5. Review of diffusion tensor imaging and its application in children

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2015-09-15

    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  6. Preoperative DTI and probabilistic tractography in an amputee with deep brain stimulation for lower limb stump pain.

    Science.gov (United States)

    Owen, S L F; Heath, J; Kringelbach, M L; Stein, J F; Aziz, T Z

    2007-10-01

    This study aimed to find out whether preoperative diffusion tensor imaging (DTI) and probabilistic tractography could help with surgical planning for deep brain stimulation in the periaqueductal/periventricular grey area (PAG/PVG) in a patient with lower leg stump pain. A preoperative DTI was obtained from the patient, who then received DBS surgery in the PAG/PVG area with good pain relief. The postoperative MRI scan showing electrode placement was used to calculate four seed areas to represent the contacts on the Medtronic 3387 electrode. Probabilistic tractography was then performed from the pre-operative DTI image. Tracts were seen to connect to many areas within the pain network from the four different contacts. These initial findings suggest that preoperative DTI scanning and probabilistic tractography may be able to assist surgical planning in the future.

  7. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.

    Directory of Open Access Journals (Sweden)

    Ken Sakaie

    Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.

  8. A pilot DTI analysis in patients with recent onset post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Liang; Li, Baojuan; Zhang, Xi; Lu, Hongbing

    2016-03-01

    To explore the alteration in white matter between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, who survived from the same coal mine flood disaster, the diffusion tensor imaging (DTI) sequences were analyzed using DTI studio and statistical parametric mapping (SPM) packages in this paper. From DTI sequence, the fractional anisotropy (FA) value describes the degree of anisotropy of a diffusion process, while the apparent diffusion coefficient (ADC) value reflects the magnitude of water diffusion. The DTI analyses between PTSD and non-PTSD indicate lower FA values in the right caudate nucleus, right middle temporal gyrus, right fusiform gyrus, and right superior temporal gyrus, and higher ADC values in the right superior temporal gyrus and right corpus callosum of the subjects with PTSD. These results are partly in line with our previous volume and cortical thickness analyses, indicating the importance of multi-modality analysis for PTSD.

  9. Progressive decline in fractional anisotropy on serial DTI examinations of the corpus callosum: a putative marker of disease activity and progression in SPMS

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wei; Zhu, Tong; Zhong, Jianhui; Liu, Xiang [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); Rao, Praveen; Segal, Benjamin M. [University of Michigan, Department of Neurology, Holtom-Garrett Program in Neuroimmunology, Ann Arbor, MI (United States); Ekholm, Sven [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); University of Rochester Medical Center, Division of Diagnostic and Interventional Neuroradiology, Rochester, NY (United States)

    2012-04-15

    Clinical trials of secondary progressive multiple sclerosis (SPMS) is lacking reliable biomarkers or outcome measures that reflect tissue injury incurred within a 1- to 2-year observation period. Diffusion tensor imaging (DTI) is sensitive in detecting acute brain tissue damage. We monitored SPMS patients over 12 months for diffusion changes within the corpus callosum (CC). Bimonthly MRI examinations over a 1-year period were performed on 11 SPMS patients. The protocol included postcontrast T1-weighted images and DTI. Based on the appearance of T1 enhancing lesion(s) during the study period, the patients were divided into enhancing (five patients) and nonenhancing (six patients) groups. Fractional anisotropy (FA) and mean diffusivity (MD) of the genu, body, and splenium of the CC were measured and temporal changes in mean FA and MD were evaluated for each group as well as between groups. Immunology data from peripheral blood mononuclear cells were also collected on a monthly basis. The enhancing group showed significant, progressive decrease in FA in body (p = 0.012) and splenium (p = 0.033) of CC, and significantly higher lymphotoxin-{beta} levels. No significant FA changes were seen in the nonenhancing group. Moreover, the FA decline in the enhancing group deviated significantly from the nonenhancing group, which remained essentially stable. Although MD increased slightly in both groups, there was no significant difference between the two groups. Based on the MR and immunology findings, the results of our study suggest that DTI undergo more rapid and longitudinal changes in SPMS patients with inflammatory activity. (orig.)

  10. Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Ohtomo, Kuni

    2010-01-01

    To evaluate the differences in gray- and white-matter asymmetry between schizophrenia patients and normal subjects. Forty-eight right-handed patients with chronic schizophrenia (24 males and 24 females) and 48 right-handed age- and sex-matched healthy controls (24 males and 24 females) were included in this study. The effects of diagnosis on gray-matter volume asymmetry and white-matter fractional anisotropy (FA) asymmetry were evaluated with use of voxel-based morphometry (VBM) and voxel-based analysis of FA maps derived from diffusion tensor imaging (DTI), respectively. The mean gray- and white-matter volumes were significantly smaller in the schizophrenia group than in the control group. The voxel-based morphometry (VBM) showed no significant effect of diagnosis on gray-matter volume asymmetry. The voxel-based analysis of DTI also showed no significant effect of diagnosis on white-matter FA asymmetry. Our results of voxel-based analyses showed no significant differences in either gray-matter volume asymmetry or white-matter FA asymmetry between schizophrenia patients and normal subjects. (c) 2009 Wiley-Liss, Inc.

  11. Diffusion tensor microscopy data (15.6 μm in-plane of white matter tracts in the human, pig, and rat spinal cord with corresponding tissue histology

    Directory of Open Access Journals (Sweden)

    Jeremy J. Flint

    2016-12-01

    Full Text Available The following article contains nine diffusion tensor imaging (DTI datasets acquired with magnetic resonance microscopy (MRM, 15.6 μm in-plane. All data was collected in the region bordering the ventral horn and white matter of cross sections from the spinal cord enlargements along with each sample׳s corresponding tissue histology. These data are collected in fixed spinal cord sections of varying thicknesses taken from rat (2×21 direction DTI datasets, pig (1×21 direction DTI dataset, and human (5×21 direction DTI datasets + 1×6 direction DTI dataset tissue sources. Following MRM acquisition, the sections were histologically processed using Nissl or Black-Gold II (Histo-Chem Inc., 1BGII myelin stain and imaged again using light microscopy techniques. Methodological procedures are an amalgamation of protocol components described previously (doi:10.1016/j.neuroimage.2010.04.031 [1], doi:10.1016/j.neuroimage.2011.04.052 [2].

  12. Machine learning for the assessment of Alzheimer's disease through DTI

    Science.gov (United States)

    Lella, Eufemia; Amoroso, Nicola; Bellotti, Roberto; Diacono, Domenico; La Rocca, Marianna; Maggipinto, Tommaso; Monaco, Alfonso; Tangaro, Sabina

    2017-09-01

    Digital imaging techniques have found several medical applications in the development of computer aided detection systems, especially in neuroimaging. Recent advances in Diffusion Tensor Imaging (DTI) aim to discover biological markers for the early diagnosis of Alzheimer's disease (AD), one of the most widespread neurodegenerative disorders. We explore here how different supervised classification models provide a robust support to the diagnosis of AD patients. We use DTI measures, assessing the structural integrity of white matter (WM) fiber tracts, to reveal patterns of disrupted brain connectivity. In particular, we provide a voxel-wise measure of fractional anisotropy (FA) and mean diffusivity (MD), thus identifying the regions of the brain mostly affected by neurodegeneration, and then computing intensity features to feed supervised classification algorithms. In particular, we evaluate the accuracy of discrimination of AD patients from healthy controls (HC) with a dataset of 80 subjects (40 HC, 40 AD), from the Alzheimer's Disease Neurodegenerative Initiative (ADNI). In this study, we compare three state-of-the-art classification models: Random Forests, Naive Bayes and Support Vector Machines (SVMs). We use a repeated five-fold cross validation framework with nested feature selection to perform a fair comparison between these algorithms and evaluate the information content they provide. Results show that AD patterns are well localized within the brain, thus DTI features can support the AD diagnosis.

  13. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space.

    Science.gov (United States)

    Feng, Lei; Jeon, Tina; Yu, Qiaowen; Ouyang, Minhui; Peng, Qinmu; Mishra, Virendra; Pletikos, Mihovil; Sestan, Nenad; Miller, Michael I; Mori, Susumu; Hsiao, Steven; Liu, Shuwei; Huang, Hao

    2017-12-01

    Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.

  14. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    OpenAIRE

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy pattern enabling the reconstruction of the nervous fibers - dubbed tractography. DMRI constitutes a powerful tool to analyse the structure of the white matter within a voxel, but also to investigate the...

  15. MR muscle tractography study on VX2 soft-tissue tumor in rabbits

    International Nuclear Information System (INIS)

    Li Yonggang; Guo Liang; Xie Daohai; Hu Chunhogn; Guo Maofeng; Zhu Wei; Chen Jianhua; Xing Jianming; Wang Renfa

    2008-01-01

    Objective: To determine if diffusion tensor imaging (DTI) and muscle fiber tracts of muscle disease are feasible. Methods: Twenty Newzealand white rabbits were implanted with 0.2 ml VX 2 tumor tissue suspension in the right proximal thighs. MRI and DTI were performed on these rabbits and DTI of muscle fiber tracts in the muscles around the lesions were reconstructed. The fractional anisotropy(FA) and volume ratio anisotropy(VrA) of the tumor and the normal muscle were analyzed. The correlation study between MRI and pathological findings was done. Results: All experimental animal models of rabbit VX 2 soft tissue tumors were successfully established. The difference of FA between the central parenchyma area and the necrosis area, the peripheral area of the tumor, the adjacent and contralateral normal muscle was statistically significant (P 0.05). The difference of FA and VrA between the adjacent and contralateral normal muscle was not statistically significant (P>0.05). The arrangement of normal muscle was regular on DTI of muscle tract. The muscle around the tumor lesions was infiltrated and destructed, which demonstrated irregular and interrupted muscle fiber on muscle tractography. Conclusion: DTI is advantageous to demonstrate the structure of soft tissue tumors and its border, which should be helpful in the structure and function research of muscle, as well as in the diagnosis of muscle diseases. (authors)

  16. High angular resolution diffusion imaging : processing & visualization

    NARCIS (Netherlands)

    Prckovska, V.

    2010-01-01

    Diffusion tensor imaging (DTI) is a recent magnetic resonance imaging (MRI) technique that can map the orientation architecture of neural tissues in a completely non-invasive way by measuring the directional specificity (anisotropy) of the local water diffusion. However, in areas of complex fiber

  17. MARCHIAFAVA-BIGNAMI DISEASE (MBD AND DIFFUSION TENSOR IMAGE (DTI TRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Priscilla Chukwueke

    2015-06-01

    Full Text Available Marchiafava-Bignami Disease (MBD is a rare central nervous system (CNS disease characterized by demyelination of the corpus callosum. It is mostly found in men with alcohol use disorder and malnutrition with cases reported worldwide across all races. The onset of the disease may be sudden presenting with stupor, coma or seizures while some may present with gait abnormality (spasticity, psychiatric problems, hemiparesis, aphasia, apraxia and incontinence with a resultant high morbidity and mortality rates. Case description: patient is a 30 year old left handed African-American, who presented with c/o altered mental status, urinary incontinence, slurred speech and left-sided weakness. The diagnosis of MBD was confirmed with DTI Tractography which showed significantly diminished commissural fibers extending to the right central semiovale lesion, near absent or significantly diminished commissural fiber extending through the corpus callosum indicating demyelination. Discussion: MBD is often an incidental diagnosis with high morbidity and mortality. This is different from previous casas because of earlier onset as opposed to onset around age 45, rapid recovery and minimal disability as he could walk independently before discharge from hospital. This case also shows added benefit of the DTI tractography in the diagnosis of MBD.

  18. Fast imaging of mean, axial and radial diffusion kurtosis

    DEFF Research Database (Denmark)

    Hansen, Brian; Shemesh, Noam; Jespersen, Sune Nørhøj

    2016-01-01

    Abstract Diffusion kurtosis imaging (DKI) is being increasingly reported to provide sensitive biomarkers of subtle changes in tissue microstructure. However, DKI also imposes larger data requirements than diffusion tensor imaging (DTI), hence, the widespread adaptation and exploration of DKI woul...

  19. Acute radial nerve entrapment at the spiral groove: detection by DTI-based neurography

    Energy Technology Data Exchange (ETDEWEB)

    Jengojan, Suren; Breitenseher, Julia; Weber, Michael; Prayer, Daniela; Kasprian, Gregor [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Neuro- and Musculosceletal Radiology, Vienna (Austria); Kovar, Florian [Medical University of Vienna, Department of Trauma-Surgery, Vienna (Austria)

    2015-06-01

    This study evaluated the potential of three-tesla diffusion tensor imaging (DTI) and tractography to detect changes of the radial (RN) and median (MN) nerves during transient upper arm compression by a silicon ring tourniquet. Axial T2-weighted and DTI sequences (b = 700 s/mm{sup 2}, 16 gradient encoding directions) of 13 healthy volunteers were obtained. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the MN and RN were measured at the spiral groove and further visualized in 3D by deterministic tractography (thresholds: FA =.15, angle change = 27 ). Local/lesional RN FA values increased (p = 0.001) and ADC values decreased (p = 0.02) during a 20-min upper arm compression, whereas no significant FA (p = 0.49) or ADC (p = 0.73) changes of the MN were detected. There were no T2-w nerve signal changes or alterations of nerve trajectories in 3D. Acute nerve compression of the RN leads to changes of its three-tesla DTI metrics. Peripheral nerve DTI provides non-invasive insights into the ''selective'' vulnerability of the RN at the spiral groove. (orig.)

  20. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases.

    Science.gov (United States)

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-04-01

    The activity of the glymphatic system is impaired in animal models of Alzheimer's disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along the perivascular spaces as well as projection fibers and association fibers separately, to acquire an index for diffusivity along the perivascular space (ALPS-index) and correlated them with the mini mental state examinations (MMSE) score. We found a significant negative correlation between diffusivity along the projection fibers and association fibers. We also observed a significant positive correlation between diffusivity along perivascular spaces shown as ALPS-index and the MMSE score, indicating lower water diffusivity along the perivascular space in relation to AD severity. Activity of the glymphatic system may be evaluated with diffusion images. Lower diffusivity along the perivascular space on DTI-APLS seems to reflect impairment of the glymphatic system. This method may be useful for evaluating the activity of the glymphatic system.

  1. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T; Chapman, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States); Tsien, C [Washington University at St. Louis, St. Louis, MO (United States)

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines

  2. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Carolyn B Lauzon

    Full Text Available Diffusion tensor imaging (DTI enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio. However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70% while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA

  3. Strain-time cell death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury

    NARCIS (Netherlands)

    Gefen, A.; Nierop, van B.J.; Bader, D.L.; Oomens, C.W.J.

    2008-01-01

    Deep tissue injury (DTI) is a severe pressure ulcer that results from sustained deformation of muscle tissue overlying bony prominences. In order to understand the etiology of DTI, it is essential to determine the tolerance of muscle cells to large mechanical strains. In this study, a new

  4. Does the use of hormonal contraceptives cause microstructural changes in cerebral white matter? Preliminary results of a DTI and tractography study.

    Science.gov (United States)

    De Bondt, Timo; Van Hecke, Wim; Veraart, Jelle; Leemans, Alexander; Sijbers, Jan; Sunaert, Stefan; Jacquemyn, Yves; Parizel, Paul M

    2013-01-01

    To evaluate the effect of monophasic combined oral contraceptive pill (COCP) and menstrual cycle phase in healthy young women on white matter (WM) organization using diffusion tensor imaging (DTI). Thirty young women were included in the study; 15 women used COCP and 15 women had a natural cycle. All subjects underwent DTI magnetic resonance imaging during the follicular and luteal phase of their cycle, or in different COCP cycle phases. DTI parameters were obtained in different WM structures by performing diffusion tensor fibre tractography. Fractional anisotropy and mean diffusivity were calculated for different WM structures. Hormonal plasma concentrations were measured in peripheral venous blood samples and correlated with the DTI findings. We found a significant difference in mean diffusivity in the fornix between the COCP and the natural cycle group. Mean diffusivity values in the fornix were negatively correlated with luteinizing hormone and estradiol blood concentrations. An important part in the limbic system, the fornix, regulates emotional processes. Differences in diffusion parameters in the fornix may contribute to behavioural alternations related to COCP use. This finding also suggests that the use of oral contraceptives needs to be taken into account when designing DTI group studies.

  5. Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Antonella; Iadanza, Antonella; Falini, Andrea [San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Neuroradiology Unit and CERMAC, Milano (Italy); Donativi, Marina [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); Ruda, Roberta; Bertero, Luca; Soffietti, Riccardo [University of Torino, Department of Neuro-oncology, Turin (Italy); De Nunzio, Giorgio [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); INFN (National Institute of Nuclear Physics), Lecce (Italy); Riva, Marco; Bello, Lorenzo [Universita degli Studi di Milano, Milan, and Humanitas Research Hospital, Department of Medical Biotechnology and Translational Medicine, Rozzano, MI (Italy); Rucco, Matteo [University of Camerino, School of Science and Technology, Computer Science Division, Camerino, MC (Italy)

    2016-05-15

    To explore the role of diffusion tensor imaging (DTI)-based histogram analysis and functional diffusion maps (fDMs) in evaluating structural changes of low-grade gliomas (LGGs) receiving temozolomide (TMZ) chemotherapy. Twenty-one LGG patients underwent 3T-MR examinations before and after three and six cycles of dose-dense TMZ, including 3D-fluid-attenuated inversion recovery (FLAIR) sequences and DTI (b = 1000 s/mm{sup 2}, 32 directions). Mean diffusivity (MD), fractional anisotropy (FA), and tensor-decomposition DTI maps (p and q) were obtained. Histogram and fDM analyses were performed on co-registered baseline and post-chemotherapy maps. DTI changes were compared with modifications of tumour area and volume [according to Response Assessment in Neuro-Oncology (RANO) criteria], and seizure response. After three cycles of TMZ, 20/21 patients were stable according to RANO criteria, but DTI changes were observed in all patients (Wilcoxon test, P ≤ 0.03). After six cycles, DTI changes were more pronounced (P ≤ 0.005). Seventy-five percent of patients had early seizure response with significant improvement of DTI values, maintaining stability on FLAIR. Early changes of the 25th percentiles of p and MD predicted final volume change (R{sup 2} = 0.614 and 0.561, P < 0.0005, respectively). TMZ-related changes were located mainly at tumour borders on p and MD fDMs. DTI-based histogram and fDM analyses are useful techniques to evaluate the early effects of TMZ chemotherapy in LGG patients. (orig.)

  6. Active brain changes after initiating fingolimod therapy in multiple sclerosis patients using individual voxel-based analyses for diffusion tensor imaging.

    Science.gov (United States)

    Senda, Joe; Watanabe, Hirohisa; Endo, Kuniyuki; Yasui, Keizo; Hawsegawa, Yasuhiro; Yoneyama, Noritaka; Tsuboi, Takashi; Hara, Kazuhiro; Ito, Mizuki; Atsuta, Naoki; Epifanio, Bagarinao; Katsuno, Masahisa; Naganawa, Shinji; Sobue, Gen

    2016-12-01

    Voxel-based analysis (VBA) of diffusion tensor images (DTI) and voxel-based morphometry (VBM) in patients with multiple sclerosis (MS) can sensitively detect occult tissue damage that underlies pathological changes in the brain. In the present study, both at the start of fingolimod and post-four months clinical remission, we assessed four patients with MS who were evaluated with VBA of DTI, VBM, and fluid-attenuated inversion recovery (FLAIR). DTI images for all four patients showed widespread areas of increased mean diffusivity (MD) and decreased fractional anisotropy (FA) that were beyond the high-intensity signal areas across images. After four months of continuous fingolimod therapy, DTI abnormalities progressed; in particular, MD was significantly increased, while brain volume and high-intensity signals were unchanged. These findings suggest that VBA of DTI (e.g., MD) may help assess MS demyelination as neuroinflammatory conditions, even though clinical manifestations of MS appear to be in complete remission during fingolimod.

  7. An introduction to visualization of diffusion tensor imaging and its applications

    NARCIS (Netherlands)

    Vilanova, A.; Zhang, S.; Kindlmann, G.; Laidlaw, D.H.; Weickert, J.; Hagen, H.

    2005-01-01

    Summary. Water diffusion is anisotropic in organized tissues such as white matter and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, measures water self-diffusion rates and thus gives an indication of the underlying tissue microstructure. The diffusion rate is often expressed

  8. Language pathway tracking: comparing nTMS-based DTI fiber tracking with a cubic ROIs-based protocol.

    Science.gov (United States)

    Negwer, Chiara; Sollmann, Nico; Ille, Sebastian; Hauck, Theresa; Maurer, Stefanie; Kirschke, Jan S; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2017-03-01

    OBJECTIVE Diffusion tensor imaging (DTI) fiber tracking (FT) has been widely used in glioma surgery in recent years. It can provide helpful information about subcortical structures, especially in patients with eloquent space-occupying lesions. This study compared the newly developed navigated transcranial magnetic stimulation (nTMS)-based DTI FT of language pathways with the most reproducible protocol for language pathway tractography, using cubic regions of interest (ROIs) for the arcuate fascicle. METHODS Thirty-seven patients with left-sided perisylvian lesions underwent language mapping by repetitive nTMS. DTI FT was performed using the cubic ROIs-based protocol and the authors' nTMS-based DTI FT approach. The same minimal fiber length and fractional anisotropy were chosen (50 mm and 0.2, respectively). Both protocols were performed with standard clinical tractography software. RESULTS Both methods visualized language-related fiber tracts (i.e., corticonuclear tract, arcuate fascicle, uncinate fascicle, superior longitudinal fascicle, inferior longitudinal fascicle, arcuate fibers, commissural fibers, corticothalamic fibers, and frontooccipital fascicle) in all 37 patients. Using the cubic ROIs-based protocol, 39.9% of these language-related fiber tracts were detected in the examined patients, as opposed to 76.0% when performing nTMS-based DTI FT. For specifically tracking the arcuate fascicle, however, the cubic ROIs-based approach showed better results (97.3% vs 75.7% with nTMS-based DTI FT). CONCLUSIONS The cubic ROIs-based protocol was designed for arcuate fascicle tractography, and this study shows that it is still useful for this intention. However, superior results were obtained using the nTMS-based DTI FT for visualization of other language-related fiber tracts.

  9. Analysis of DTI-Derived Tensor Metrics in Differential Diagnosis between Low-grade and High-grade Gliomas.

    Science.gov (United States)

    Jiang, Liang; Xiao, Chao-Yong; Xu, Quan; Sun, Jun; Chen, Huiyou; Chen, Yu-Chen; Yin, Xindao

    2017-01-01

    Purpose: It is critical and difficult to accurately discriminate between high- and low-grade gliomas preoperatively. This study aimed to ascertain the role of several scalar measures in distinguishing high-grade from low-grade gliomas, especially the axial diffusivity (AD), radial diffusivity (RD), planar tensor (Cp), spherical tensor (Cs), and linear tensor (Cl) derived from diffusion tensor imaging (DTI). Materials and Methods: Fifty-three patients with pathologically confirmed brain gliomas (21 low-grade and 32 high-grade) were included. Contrast-enhanced T1-weighted images and DTI were performed in all patients. The AD, RD, Cp, Cs, and Cl values in the tumor zone, peritumoral edema zone, white matter (WM) adjacent to edema and contralateral normal-appearing white matter (NAWM) were calculated. The DTI parameters and tumor grades were statistically analyzed, and receiver operating characteristic (ROC) curve analysis was also performed. Results: The DTI metrics in the affected hemisphere showed significant differences from those in the NAWM, except for the AD values in the tumor zone and the RD values in WM adjacent to edema in the low-grade groups, as well as the Cp values in WM adjacent to edema in the high-grade groups. AD in the tumor zone as well as Cs and Cl in WM adjacent to edema revealed significant differences between the low- and high-grade gliomas. The areas under the curve (Az) of all three metrics were greater than 0.5 in distinguishing low-grade from high-grade gliomas by ROC curve analysis, and the best DTI metric was Cs in WM adjacent to edema (Az: 0.692). Conclusion: AD in the tumor zone as well as Cs and Cl in WM adjacent to edema will provide additional information to better classify gliomas and can be used as non-invasive reliable biomarkers in glioma grading.

  10. The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3-T MRI

    International Nuclear Information System (INIS)

    Kara, Batuhan; Celik, Azim; Karadereler, Selhan; Ulusoy, Levent; Ganiyusufoglu, Kursat; Onat, Levent; Mutlu, Ayhan; Sirvanci, Mustafa; Ornek, Ibrahim; Hamzaoglu, Azmi

    2011-01-01

    The radiological diagnosis of cervical spondylotic myelopathy (CSM) has to be made as soon as possible, since surgery performed in earlier stages during the course of CSM was reported to be more successful when compared with later stages. We hypothesized that diffusion tensor imaging (DTI) may detect CSM in earlier stages, before the appearance of signal increase in T2-weighted sequences. A total of 16 patients with neurological signs and symptoms of CSM but without hyperintensity in spinal cord on T2-weighted sequences enrolled in the study. The magnetic resonance (MR) examinations were performed on a 3-T MR imaging system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps were generated on axial plane. The ADC and FA measurements in each individual were made at the level of most severe cervical canal stenosis and at a nonstenotic level. Student's t test was used to compare FA and ADC values of the spinal cord in stenotic and nonstenotic segments. We also investigated if there was a correlation between DTI parametrics and duration of clinical symptoms by using Pearson correlation analysis. All patients showed changes in DTI parametrics at stenotic segments. While FA values of the spinal cord at the stenotic level showed a statistically significant reduction, there was a statistically significant increase in the measured ADC values (p < 0.001). There was no statistical correlation between the duration of symptoms and DTI parametrics. Our preliminary findings indicate that DTI may show abnormalities in the spinal cord before the development of T2 hyperintensity on conventional sequences in patients with CSM. (orig.)

  11. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases

    OpenAIRE

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-01-01

    Purpose: The activity of the glymphatic system is impaired in animal models of Alzheimer’s disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Materials and methods: Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along t...

  12. Acute Effects of Hemodialysis on Left and Right Ventricular Function: A Doppler Tissue Imaging Study

    Directory of Open Access Journals (Sweden)

    Tansel Erol

    2012-08-01

    Full Text Available Purpose: Doppler tissue imaging (DTI allows noninvasive assessment of both left ventricular (LV and right ventricular (RV function. The aim of this study was to evaluate the effect of hemodialysis (HD on LV and RV function using DTI. Method: Our study group included 30 patients on chronic HD program (mean age 45 15 years. Myocardial (Sm, Em, Am and annular velocities (Ea, Aa were measured in several cardiac territories before and after HD. Results: After HD, Ea significantly reduced from 10.8 3.4 cm/s to 9.6 2.4 cm/s (p = 0.029. Patients exhibited a lower Em following HD in all measured territories. Em/Am ratio was also reduced for each LV wall investigated after HD in all measured territories. At the RV segments, Sm, Em, and Am decreased significantly in all measured territories. Em of the anterior wall was positively related to ultrafiltration volume (r = 0.25, p = 0.006, whereas the decrease of Sm of RV basal segment correlated with a decrease of diastolic blood pressure (r = 0.23, p < 0.01. Conclusion: Our data indicate that a single HD session is associated with acute changes of systolic and diastolic parameters of LV and RV. [Cukurova Med J 2012; 37(4.000: 215-222

  13. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven; Wetzel, Stephan G. [University Hospital Basel, Institute of Radiology, Department of Neuroradiology, Basel (Switzerland); Luetschg, Juerg [University Children' s Hospital (UKBB), Basel (Switzerland)

    2008-05-15

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  14. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    International Nuclear Information System (INIS)

    Haller, Sven; Wetzel, Stephan G.; Luetschg, Juerg

    2008-01-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  15. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis.

    Science.gov (United States)

    Haller, Sven; Wetzel, Stephan G; Lütschg, Jürg

    2008-05-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network.

  16. Imaging Arterial Fibres Using Diffusion Tensor Imaging—Feasibility Study and Preliminary Results

    Directory of Open Access Journals (Sweden)

    Kerskens Christian

    2010-01-01

    Full Text Available Abstract MR diffusion tensor imaging (DTI was used to analyze the fibrous structure of aortic tissue. A fresh porcine aorta was imaged at 7T using a spin echo sequence with the following parameters: matrix 128 128 pixel; slice thickness 0.5 mm; interslice spacing 0.1 mm; number of slices 16; echo time 20.3 s; field of view 28 mm 28 mm. Eigenvectors from the diffusion tensor images were calculated for the central image slice and the averaged tensors and the eigenvector corresponding to the largest eigenvalue showed two distinct angles corresponding to near and to the transverse plane of the aorta. Fibre tractography within the aortic volume imaged confirmed that fibre angles were oriented helically with lead angles of and . The findings correspond to current histological and microscopy data on the fibrous structure of aortic tissue, and therefore the eigenvector maps and fibre tractography appear to reflect the alignment of the fibers in the aorta. In view of current efforts to develop noninvasive diagnostic tools for cardiovascular diseases, DTI may offer a technique to assess the structural properties of arterial tissue and hence any changes or degradation in arterial tissue.

  17. Diffusion tensor magnetic resonance imaging of the breast: a pilot study

    International Nuclear Information System (INIS)

    Baltzer, Pascal A.T.; Schaefer, Anja; Dietzel, Matthias; Kaiser, Werner A.; Graessel, David; Gajda, Mieczyslaw; Camara, Oumar

    2011-01-01

    Diffusion-weighted MR imaging has shown diagnostic value for differential diagnosis of breast lesions. Diffusion tensor imaging (DTI) adds information about tissue microstructure by addressing diffusion direction. We have examined the diagnostic application of DTI of the breast. A total of 59 patients (71 lesions: 54 malignant, 17 benign) successfully underwent prospective echo planar imaging-DTI (EPI-DTI) (1.5 T). First, diffusion direction both of parenchyma as well as lesions was assessed on parametric maps. Subsequently, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured. Statistics included univariate (Mann-Whitney U test, receiver operating analysis) and multivariate (logistic regression analysis, LRA) tests. Main diffusion direction of parenchyma was anterior-posterior in the majority of cases (66.1%), whereas lesions (benign, malignant) showed no predominant diffusion direction in the majority of cases (23.9%). ADC values showed highest differences between benign and malignant lesions (P < 0.001) with resulting area under the curve (AUC) of 0.899. FA values were lower in benign (interquartile range, IR, 0.14-0.24) compared to malignant lesions (IR 0.21-0.35, P < 0.002) with an AUC of 0.751-0.770. Following LRA, FA did not prove to have incremental value for differential diagnosis over ADC values. Microanatomical differences between benign and malignant breast lesions as well as breast parenchyma can be visualized by using DTI. (orig.)

  18. Diagnostic value of conventional MRI combined with DTI for neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Ruifang Yan

    2018-04-01

    Full Text Available Background: Neonatal hyperbilirubinemia (NHB is a common clinical disease and can cause bilirubin encephalopathy in severe cases. It is now widely accepted that increased signal intensity in the globus pallidus on MR T1WI is an important sign of neonatal bilirubin encephalopathy. And brain diffusion tensor imaging (DTI has not been used extensively to study hyperbilirubinemia (HB. So we compared newborns with different hyperbilirubinemia of different severities and healthy newborns in order to determine the relationships among MRI signal intensities, serum bilirubin levels, and the molecular changes in brain water diffusion in hyperbilirubinemia. Methods: Seventy-three newborns with hyperbilirubinemia were grouped into three groups: the mild increase group (M, 27 cases, the moderate increase group (O, 28 cases, and the severe group (S, 18 cases. The groups were based on serum bilirubin levels. We performed cranial MRI in these newborns, as well as 29 healthy full-term infants (group N. We compared and analyzed the mean signal values for the globus pallidus and the relationship between the bilirubin level and the score on the neonatal behavioral neurological assessment. Fifteen, 10, and 10 patients in groups M, O + S, and N were successfully examined using diffusion tensor imaging (DTI. We assessed the relationships among the signal from the globus pallidus, fractional anisotropy (FA, and average diffusion coefficient (DCav of the posterior limb of the internal capsule (PLIC. Results: There were significant differences in the mean signal value of bilateral globus pallidus between group O/S and group N [p = 0.029 and 0.000 (left, 0.038 and 0.000 (right]. There were no significant differences in bilateral FA or DCav values between the patient groups and group N. The bilateral PLIC-FA and DCav values were significantly different between the patient groups and group N (P = 0.014 and 0.047, respectively. Conclusions: Increased signal intensity

  19. The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3-T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Batuhan [Bakirkoey Dr. Sadi Konuk Teaching Hospital, Department of Radiology, Istanbul (Turkey); Celik, Azim [General Electric Healthcare, Istanbul (Turkey); Karadereler, Selhan [Florence Nightingale Hospital, Department of Neurosurgery, Istanbul (Turkey); Ulusoy, Levent; Ganiyusufoglu, Kursat; Onat, Levent; Mutlu, Ayhan; Sirvanci, Mustafa [Florence Nightingale Hospital, Department of Radiology, Istanbul (Turkey); Ornek, Ibrahim [Florence Nightingale Hospital, Department of Neurology, Istanbul (Turkey); Hamzaoglu, Azmi [Florence Nightingale Hospital, Department of Orthopedic Surgery, Istanbul (Turkey)

    2011-08-15

    The radiological diagnosis of cervical spondylotic myelopathy (CSM) has to be made as soon as possible, since surgery performed in earlier stages during the course of CSM was reported to be more successful when compared with later stages. We hypothesized that diffusion tensor imaging (DTI) may detect CSM in earlier stages, before the appearance of signal increase in T2-weighted sequences. A total of 16 patients with neurological signs and symptoms of CSM but without hyperintensity in spinal cord on T2-weighted sequences enrolled in the study. The magnetic resonance (MR) examinations were performed on a 3-T MR imaging system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps were generated on axial plane. The ADC and FA measurements in each individual were made at the level of most severe cervical canal stenosis and at a nonstenotic level. Student's t test was used to compare FA and ADC values of the spinal cord in stenotic and nonstenotic segments. We also investigated if there was a correlation between DTI parametrics and duration of clinical symptoms by using Pearson correlation analysis. All patients showed changes in DTI parametrics at stenotic segments. While FA values of the spinal cord at the stenotic level showed a statistically significant reduction, there was a statistically significant increase in the measured ADC values (p < 0.001). There was no statistical correlation between the duration of symptoms and DTI parametrics. Our preliminary findings indicate that DTI may show abnormalities in the spinal cord before the development of T2 hyperintensity on conventional sequences in patients with CSM. (orig.)

  20. Revised DTI Guidelines for Petroleum Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.; Philip, L.N.

    1997-07-01

    The DTI's guidelines on petroleum measurement have been extensively revised and enlarged. The new guidelines cover a much wider scope of measurement situations than before. Included in the new issue is guidance on allocation measurement, well testing, multiphase flow measurement, new technology acceptance procedures and operating procedures for different types of measurement systems. Significant changes have taken place in recent years both in the way the oil and gas industry conducts its business and in the fiscal regime operated by the UK government. New developments in flow measurement have progressed to such an extent that they have now been adopted by the industry or are close to being adopted as beneficial methods of the measurement of hydrocarbons in whatever form they present themselves for measurement. The rapid pace of development has left the standards-making bodies behind and in some cases there is insufficient quality data to enable the standards makers to produce guidance of the generic type appropriate for national or international standards. The case-by-case approach of the DTI in approving methods of measurement lends itself better to consideration of new technology where there may be no existing standards. These, amongst other considerations, make it appropriate for the DTI to extend the scope of its guidance into these new areas. The policy developments behind the changes in the new guidelines are not static and this new document has been produced in response to an evolutionary process which is still continuing but it is right to collate and make defining statements from time to time to put on record the current status of measurement requirements for the purpose of attaining DTI approval. (author)

  1. Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia

    Directory of Open Access Journals (Sweden)

    Jiajia Zhu

    2015-01-01

    Full Text Available Diffusion kurtosis imaging (DKI is an extension of diffusion tensor imaging (DTI, exhibiting improved sensitivity and specificity in detecting developmental and pathological changes in neural tissues. However, little attention was paid to the performances of DKI and DTI in detecting white matter abnormality in schizophrenia. In this study, DKI and DTI were performed in 94 schizophrenia patients and 91 sex- and age-matched healthy controls. White matter integrity was assessed by fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (AD, radial diffusivity (RD, mean kurtosis (MK, axial kurtosis (AK and radial kurtosis (RK of DKI and FA, MD, AD and RD of DTI. Group differences in these parameters were compared using tract-based spatial statistics (TBSS (P  AK (20% > RK (3% and RD (37% > FA (24% > MD (21% for DKI, and RD (43% > FA (30% > MD (21% for DTI. DKI-derived diffusion parameters (RD, FA and MD were sensitive to detect abnormality in white matter regions (the corpus callosum and anterior limb of internal capsule with coherent fiber arrangement; however, the kurtosis parameters (MK and AK were sensitive to reveal abnormality in white matter regions (the juxtacortical white matter and corona radiata with complex fiber arrangement. In schizophrenia, the decreased AK suggests axonal damage; however, the increased RD indicates myelin impairment. These findings suggest that diffusion and kurtosis parameters could provide complementary information and they should be jointly used to reveal pathological changes in schizophrenia.

  2. Brain structure in narcissistic personality disorder: a VBM and DTI pilot study.

    Science.gov (United States)

    Nenadic, Igor; Güllmar, Daniel; Dietzek, Maren; Langbein, Kerstin; Steinke, Johanna; Gaser, Christian

    2015-02-28

    We analysed T1-weighted MRI scans using voxel-based morphometry (VBM) and tract-based spatial statistics (TBBS) on diffusion tensor images (DTI) in narcissistic personality disorder (NaPD) patients and healthy controls. Grey matter deficits include right prefrontal and bilateral medial prefrontal/anterior cingulate cortices, and decreased fractional anisotropy in right frontal lobe white matter. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Colgan, N

    2015-10-23

    Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer\\'s disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer\\'s disease.

  4. Imaging Arterial Fibres Using Diffusion Tensor Imaging—Feasibility Study and Preliminary Results

    Directory of Open Access Journals (Sweden)

    Ciaran K. Simms

    2010-01-01

    Full Text Available MR diffusion tensor imaging (DTI was used to analyze the fibrous structure of aortic tissue. A fresh porcine aorta was imaged at 7T using a spin echo sequence with the following parameters: matrix 128 × 128 pixel; slice thickness 0.5 mm; interslice spacing 0.1 mm; number of slices 16; echo time 20.3 s; field of view 28 mm × 28 mm. Eigenvectors from the diffusion tensor images were calculated for the central image slice and the averaged tensors and the eigenvector corresponding to the largest eigenvalue showed two distinct angles corresponding to near 0∘ and 180∘ to the transverse plane of the aorta. Fibre tractography within the aortic volume imaged confirmed that fibre angles were oriented helically with lead angles of 15±2.5∘ and 175±2.5∘. The findings correspond to current histological and microscopy data on the fibrous structure of aortic tissue, and therefore the eigenvector maps and fibre tractography appear to reflect the alignment of the fibers in the aorta. In view of current efforts to develop noninvasive diagnostic tools for cardiovascular diseases, DTI may offer a technique to assess the structural properties of arterial tissue and hence any changes or degradation in arterial tissue.

  5. Improved olefinic fat suppression in skeletal muscle DTI using a magnitude-based dixon method.

    Science.gov (United States)

    Burakiewicz, Jedrzej; Hooijmans, Melissa T; Webb, Andrew G; Verschuuren, Jan J G M; Niks, Erik H; Kan, Hermien E

    2018-01-01

    To develop a method of suppressing the multi-resonance fat signal in diffusion-weighted imaging of skeletal muscle. This is particularly important when imaging patients with muscular dystrophies, a group of diseases which cause gradual replacement of muscle tissue by fat. The signal from the olefinic fat peak at 5.3 ppm can significantly confound diffusion-tensor imaging measurements. Dixon olefinic fat suppression (DOFS), a magnitude-based chemical-shift-based method of suppressing the olefinic peak, is proposed. It is verified in vivo by performing diffusion tensor imaging (DTI)-based quantification in the lower leg of seven healthy volunteers, and compared to two previously described fat-suppression techniques in regions with and without fat contamination. In the region without fat contamination, DOFS produces similar results to existing techniques, whereas in muscle contaminated by subcutaneous fat signal moved due to the chemical shift artefact, it consistently showed significantly higher (P = 0.018) mean diffusivity (MD). Because fat presence lowers MD, this suggests improved fat suppression. DOFS offers superior fat suppression and enhances quantitative measurements in the muscle in the presence of fat. DOFS is an alternative to spectral olefinic fat suppression. Magn Reson Med 79:152-159, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. White matter mapping by DTI-based tractography for neurosurgery

    International Nuclear Information System (INIS)

    Kamada, Kyousuke

    2009-01-01

    To validate the corticospinal tract (CST) and arcuate fasciculus (AF) illustrated by diffusion tensor imaging (DTI), we used CST- and AF-tractography integrated neuronavigation and monopolar and bipolar direct fiber stimulation. Forty seven patients with brain lesions adjacent to the CST and AF were studied. During lesion resection, direct fiber stimulation was applied to the CST and AF to elicit motor responses (fiber-motor evoked potential (MEP)) and the impairment of language-related functions to identify the CST and AF. The minimum distance between the resection border and illustrated CST was measured on postoperative images. Direct fiber stimulation demonstrated that CST- and AF-tractography accurately reflected anatomical CST functioning. The cortical stimulation to the gyrus, including the language-functional MRI (fMRI) activation, evoked speech arrest, while the subcortical stimulation close to the AF reproducibly caused 'paranomia' without speech arrest. There were strong correlations between stimulus intensity for the fiber-MEP and the distance between eloquent fibers and the stimulus points. The convergent calculation formulated 1.8 mA as the electrical threshold of CST for the fiber-MEP, which was much smaller than that of the hand motor area. Validated tractography demonstrated the mean distance and intersection angle between CST and AF were 5 mm and 107 deg, respectively. In addition, the anisotropic diffusion-weighted image (ADWI) and CST-tractography clearly indicated the locations of the primary motor area (PMA) and the central sulcus and well reflected the anatomical characteristics of the corticospinal tract in the human brain. DTI-based tractography is a reliable way to map the white matter connections in the entire brain in clinical and basic neuroscience. By combining these techniques, investigating the cortico-subcortical connections in the human central nervous system could contribute to elucidating the neural networks of the human brain and

  7. White matter mapping by DTI-based tractography for neurosurgery

    International Nuclear Information System (INIS)

    Kamada, Kyousuke

    2011-01-01

    The purpose of this study was to validate the corticospinal tract (CST) and arcuate fasciculus (AF) illustrated by diffusion tensor imaging (DTI), we used CST- and AF-tractography integrated neuronavigation and monopolar and bipolar direct fiber stimulation. Forty seven patients with brain lesions adjacent to the CST and AF were studied. During lesion resection, direct fiber stimulation was applied to the CST and AF to elicit motor responses (fiber-MEP) and the impairment of language-related functions to identify the CST and AF. The minimum distance between the resection border and illustrated CST was measured on postoperative images. Direct fiber stimulation demonstrated that CST- and AF-tractography accurately reflected anatomical CST functioning. The cortical stimulation to the gyrus, including the language-fMRI activation, evoked speech arrest, while the subcortical stimulation close to the AF reproducibly caused 'paranomia' without speech arrest. There were strong correlations between stimulus intensity for the fiber-MEP and the distance between eloquent fibers and the stimulus points. The convergent calculation formulated 1.8 mA as the electrical threshold of CST for the fiber-MEP, which was much smaller than that of the hand motor area. Validated tractography demonstrated the mean distance and intersection angle between CST and AF were 5 mm and 107 deg, respectively. In addition, the anisotropic diffusion-weighted image (ADWI) and CST-tractography clearly indicated the locations of the primary motor area (PMA) and the central sulcus and well reflected the anatomical characteristics of the corticospinal tract in the human brain. DTI-based tractography is a reliable way to map the white matter connections in the entire brain in clinical and basic neuroscience. By combining these techniques, investigating the cortico-subcortical connections in the human central nervous system could contribute to elucidating the neural networks of the human brain and shed light

  8. Diffusion tensor magnetic resonance imaging of the pancreas.

    Directory of Open Access Journals (Sweden)

    Noam Nissan

    Full Text Available To develop a diffusion-tensor-imaging (DTI protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues.Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC, were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI, whereas a standard clinical protocol complemented the PDAC patients' scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC, and fractional anisotropy (FA, as well as a λ1-vector map, and a main diffusion-direction map.DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm² yielded: λ1 = (2.65±0.35×10⁻³, λ2 = (1.87±0.22×10⁻³, λ3 = (1.20±0.18×10⁻³, ADC = (1.91±0.22×10⁻³ (all in mm²/s units and FA = 0.38±0.06. Using b-values of 100,500 s/mm² led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001 and a significant increase (p<0.0001 in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM component at b≤100 s/mm², which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm² and 100,500 s/mm² b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue.DTI using two reference b-values 0 and 100 s/mm² enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC

  9. Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging.

    Science.gov (United States)

    Kaufman, Jason A; Ahrens, Eric T; Laidlaw, David H; Zhang, Song; Allman, John M

    2005-11-01

    This report presents initial results of a multimodal analysis of tissue volume and microstructure in the brain of an aye-aye (Daubentonia madagascariensis). The left hemisphere of an aye-aye brain was scanned using T2-weighted structural magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) prior to histological processing and staining for Nissl substance and myelinated fibers. The objectives of the experiment were to estimate the volume of gross brain regions for comparison with published data on other prosimians and to validate DTI data on fiber anisotropy with histological measurements of fiber spread. Measurements of brain structure volumes in the specimen are consistent with those reported in the literature: the aye-aye has a very large brain for its body size, a reduced volume of visual structures (V1 and LGN), and an increased volume of the olfactory lobe. This trade-off between visual and olfactory reliance is likely a reflection of the nocturnal extractive foraging behavior practiced by Daubentonia. Additionally, frontal cortex volume is large in the aye-aye, a feature that may also be related to its complex foraging behavior and sensorimotor demands. Analysis of DTI data in the anterior cingulum bundle demonstrates a strong correlation between fiber spread as measured from histological sections and fiber spread as measured from DTI. These results represent the first quantitative comparison of DTI data and fiber-stained histology in the brain. (c) 2005 Wiley-Liss, Inc.

  10. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain.

    Science.gov (United States)

    Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei

    2017-12-01

    Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.

  11. A novel DTI-QA tool: Automated metric extraction exploiting the sphericity of an agar filled phantom.

    Science.gov (United States)

    Chavez, Sofia; Viviano, Joseph; Zamyadi, Mojdeh; Kingsley, Peter B; Kochunov, Peter; Strother, Stephen; Voineskos, Aristotle

    2018-02-01

    To develop a quality assurance (QA) tool (acquisition guidelines and automated processing) for diffusion tensor imaging (DTI) data using a common agar-based phantom used for fMRI QA. The goal is to produce a comprehensive set of automated, sensitive and robust QA metrics. A readily available agar phantom was scanned with and without parallel imaging reconstruction. Other scanning parameters were matched to the human scans. A central slab made up of either a thick slice or an average of a few slices, was extracted and all processing was performed on that image. The proposed QA relies on the creation of two ROIs for processing: (i) a preset central circular region of interest (ccROI) and (ii) a signal mask for all images in the dataset. The ccROI enables computation of average signal for SNR calculations as well as average FA values. The production of the signal masks enables automated measurements of eddy current and B0 inhomogeneity induced distortions by exploiting the sphericity of the phantom. Also, the signal masks allow automated background localization to assess levels of Nyquist ghosting. The proposed DTI-QA was shown to produce eleven metrics which are robust yet sensitive to image quality changes within site and differences across sites. It can be performed in a reasonable amount of scan time (~15min) and the code for automated processing has been made publicly available. A novel DTI-QA tool has been proposed. It has been applied successfully on data from several scanners/platforms. The novelty lies in the exploitation of the sphericity of the phantom for distortion measurements. Other novel contributions are: the computation of an SNR value per gradient direction for the diffusion weighted images (DWIs) and an SNR value per non-DWI, an automated background detection for the Nyquist ghosting measurement and an error metric reflecting the contribution of EPI instability to the eddy current induced shape changes observed for DWIs. Copyright © 2017 Elsevier

  12. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis.

    Science.gov (United States)

    Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci

    2017-11-01

    To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Measuring Fractional Anisotropy of the Corpus Callosum Using Diffusion Tensor Imaging: Mid-Sagittal versus Axial Imaging Planes

    International Nuclear Information System (INIS)

    Kim, Eung Yeop; Park, Hae Jeong; Kim, Dong Hyun; Lee, Seung Koo; Kim, Jin Na

    2008-01-01

    Many diffusion tensor imaging (DTI) studies of the corpus callosum (CC) have been performed with a relatively thick slice thickness in the axial plane, which may result in underestimating the fractional anisotropy (FA) of the CC due to a partial volume effect. We hypothesized that the FA of the CC can be more accurately measured by using mid-sagittal DTI. We compared the FA values of the CC between the axial and mid-sagittal DTI. Fourteen healthy volunteers underwent MRI at 3.0 T. DTI was performed in both the mid-sagittal and axial planes. One 5-mm mid-sagittal image and twenty-five 2-mm axial images were obtained for the CC. The five regions of interest (ROIs) that included the prefrontal (I), premotor and supplementary motor (II), motor (III), sensory (IV) and parietal, temporal and occipital regions (V) were drawn along the border of the CC on each sagittal FA map. The FA values obtained from each region were compared between the two sagittal maps. The FA values of all the regions, except for region V, were significantly increased on the mid-sagittal imaging. The FA values in region IV were significantly underestimated on the mid-sagittal image from the axial imaging, compared with those in the regions I and V (p = 0.037 and p = 0.001, respectively). The FA values of the CC were significantly higher on the midsagittal DTI than those on the axial DTI in regions I-IV, and particularly in the region IV. Mid-sagittal DTI may provide more accurate FA values of the CC than can the axial DTI, and mid-sagittal DTI may be more desirable for studies that compare between patients and healthy subjects

  14. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    Science.gov (United States)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  15. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    International Nuclear Information System (INIS)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi; Has, Arzu Ceylan; Ogur, Methiye Gonul; Alhan, Aslihan

    2017-01-01

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  16. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  17. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  18. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kamagata, Koji; Kamiya, Kouhei; Suzuki, Michimasa; Hori, Masaaki; Yoshida, Mariko; Aoki, Shigeki [Juntendo University School of Medicine, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Tomiyama, Hiroyuki; Hatano, Taku; Motoi, Yumiko; Hattori, Nobutaka [Juntendo University School of Medicine, Department of Neurology, Tokyo (Japan); Abe, Osamu [Nihon University School of Medicine, Department of Radiology, Tokyo (Japan); Shimoji, Keigo [National Center of Neurology and Psychiatry Hospital, Department of Radiology, Tokyo (Japan)

    2014-03-15

    Diffusional kurtosis imaging (DKI) is a more sensitive technique than conventional diffusion tensor imaging (DTI) for assessing tissue microstructure. In particular, it quantifies the microstructural integrity of white matter, even in the presence of crossing fibers. The aim of this preliminary study was to compare how DKI and DTI show white matter alterations in Parkinson disease (PD). DKI scans were obtained with a 3-T magnetic resonance imager from 12 patients with PD and 10 healthy controls matched by age and sex. Tract-based spatial statistics were used to compare the mean kurtosis (MK), mean diffusivity (MD), and fractional anisotropy (FA) maps of the PD patient group and the control group. In addition, a region-of-interest analysis was performed for the area of the posterior corona radiata and superior longitudinal fasciculus (SLF) fiber crossing. FA values in the frontal white matter were significantly lower in PD patients than in healthy controls. Reductions in MK occurred more extensively throughout the brain: in addition to frontal white matter, MK was lower in the parietal, occipital, and right temporal white matter. The MK value of the area of the posterior corona radiata and SLF fiber crossing was also lower in the PD group. DKI detects changes in the cerebral white matter of PD patients more sensitively than conventional DTI. In addition, DKI is useful for evaluating crossing fibers. By providing a sensitive index of brain pathology in PD, DKI may enable improved monitoring of disease progression. (orig.)

  20. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Raja, Rajikha; Sinha, Neelam [International Institute of Information Technology-Bangalore, Bangalore (India); Saini, Jitender; Mahadevan, Anita; Rao, K.V.L. Narasinga; Swaminathan, Aarthi [National Institute of Mental Health and Neurosciences, Bangalore (India)

    2016-12-15

    In this work, we aim to assess the significance of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameters in grading gliomas. Retrospective studies were performed on 53 subjects with gliomas belonging to WHO grade II (n = 19), grade III (n = 20) and grade IV (n = 14). Expert marked regions of interest (ROIs) covering the tumour on T2-weighted images. Statistical texture measures such as entropy and busyness calculated over ROIs on diffusion parametric maps were used to assess the tumour heterogeneity. Additionally, we propose a volume heterogeneity index derived from cross correlation (CC) analysis as a tool for grading gliomas. The texture measures were compared between grades by performing the Mann-Whitney test followed by receiver operating characteristic (ROC) analysis for evaluating diagnostic accuracy. Entropy, busyness and volume heterogeneity index for all diffusion parameters except fractional anisotropy and anisotropy of kurtosis showed significant differences between grades. The Mann-Whitney test on mean diffusivity (MD), among DTI parameters, resulted in the highest discriminability with values of P = 0.029 (0.0421) for grade II vs. III and P = 0.0312 (0.0415) for III vs. IV for entropy (busyness). In DKI, mean kurtosis (MK) showed the highest discriminability, P = 0.018 (0.038) for grade II vs. III and P = 0.022 (0.04) for III vs. IV for entropy (busyness). Results of CC analysis illustrate the existence of homogeneity in volume (uniformity across slices) for lower grades, as compared to higher grades. Hypothesis testing performed on volume heterogeneity index showed P values of 0.0002 (0.0001) and 0.0003 (0.0003) between grades II vs. III and III vs. IV, respectively, for MD (MK). In summary, the studies demonstrated great potential towards automating grading gliomas by employing tumour heterogeneity measures on DTI and DKI parameters. (orig.)

  1. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas

    International Nuclear Information System (INIS)

    Raja, Rajikha; Sinha, Neelam; Saini, Jitender; Mahadevan, Anita; Rao, K.V.L. Narasinga; Swaminathan, Aarthi

    2016-01-01

    In this work, we aim to assess the significance of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameters in grading gliomas. Retrospective studies were performed on 53 subjects with gliomas belonging to WHO grade II (n = 19), grade III (n = 20) and grade IV (n = 14). Expert marked regions of interest (ROIs) covering the tumour on T2-weighted images. Statistical texture measures such as entropy and busyness calculated over ROIs on diffusion parametric maps were used to assess the tumour heterogeneity. Additionally, we propose a volume heterogeneity index derived from cross correlation (CC) analysis as a tool for grading gliomas. The texture measures were compared between grades by performing the Mann-Whitney test followed by receiver operating characteristic (ROC) analysis for evaluating diagnostic accuracy. Entropy, busyness and volume heterogeneity index for all diffusion parameters except fractional anisotropy and anisotropy of kurtosis showed significant differences between grades. The Mann-Whitney test on mean diffusivity (MD), among DTI parameters, resulted in the highest discriminability with values of P = 0.029 (0.0421) for grade II vs. III and P = 0.0312 (0.0415) for III vs. IV for entropy (busyness). In DKI, mean kurtosis (MK) showed the highest discriminability, P = 0.018 (0.038) for grade II vs. III and P = 0.022 (0.04) for III vs. IV for entropy (busyness). Results of CC analysis illustrate the existence of homogeneity in volume (uniformity across slices) for lower grades, as compared to higher grades. Hypothesis testing performed on volume heterogeneity index showed P values of 0.0002 (0.0001) and 0.0003 (0.0003) between grades II vs. III and III vs. IV, respectively, for MD (MK). In summary, the studies demonstrated great potential towards automating grading gliomas by employing tumour heterogeneity measures on DTI and DKI parameters. (orig.)

  2. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi [Ondokuz Mayis University, Faculty of Medicine, Department of Radiology, Kurupelit, Samsun (Turkey); Has, Arzu Ceylan [Bilkent University, National Magnetic Resonance Research Center, Ankara (Turkey); Ogur, Methiye Gonul [Ondokuz Mayis University, Department of Genetics, Samsun (Turkey); Alhan, Aslihan [Ufuk University, Department of Statistics, Ankara (Turkey)

    2017-07-15

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  3. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  4. Pre-surgical integration of FMRI and DTI of the sensorimotor system in transcortical resection of a high-grade insular astrocytoma

    Directory of Open Access Journals (Sweden)

    Chelsea eEkstrand

    2016-03-01

    Full Text Available Herein we report on a patient with a WHO Grade III astrocytoma in the right insular region in close proximity to the internal capsule who underwent a right frontotemporal craniotomy. Total gross resection of insular gliomas remains surgically challenging based on the possibility of damage to the corticospinal tracts. However, maximizing the extent of resection has been shown to decrease future adverse outcomes. Thus, the goal of such surgeries should focus on maximizing extent of resection while minimizing possible adverse outcomes. In this case, pre-surgical planning included integration of functional magnetic resonance imaging (fMRI and diffusion tensor imaging (DTI, to localize motor and sensory pathways. Novel fMRI tasks were individually developed for the patient to maximize both somatosensory and motor activation simultaneously in areas in close proximity to the tumor. Information obtained was used to optimize resection trajectory and extent, facilitating gross total resection of the astrocytoma. Across all three motor-sensory tasks administered, fMRI revealed an area of interest just superior and lateral to the astrocytoma. Further, DTI analyses showed displacement of the corona radiata around the superior dorsal surface of the astrocytoma, extending in the direction of the activation found using fMRI. Taking into account these results, a transcortical superior temporal gyrus surgical approach was chosen in order to avoid the area of interest identified by fMRI and DTI. Total gross resection was achieved and minor post-surgical motor and sensory deficits were temporary. This case highlights the utility of comprehensive pre-surgical planning, including fMRI and DTI, to maximize surgical outcomes on a case-by-case basis.

  5. Imaging of musculoskeletal soft tissue infections

    Energy Technology Data Exchange (ETDEWEB)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F. [University of Arizona HSC, Department of Radiology, Tucson, AZ (United States); Stubbs, Alana Y. [Southern Arizona VA Health Care System, Department of Radiology, Tucson, AZ (United States); Graham, Anna R. [University of Arizona HSC, Department of Pathology, Tucson, AZ (United States)

    2010-10-15

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  6. Imaging of musculoskeletal soft tissue infections

    International Nuclear Information System (INIS)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F.; Stubbs, Alana Y.; Graham, Anna R.

    2010-01-01

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  7. A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help?

    Science.gov (United States)

    Sheelakumari, R; Madhusoodanan, M; Radhakrishnan, A; Ranjith, G; Thomas, B

    2016-02-01

    Iron-mediated oxidative stress plays a pivotal role in the pathogenesis of amyotrophic lateral sclerosis. This study aimed to assess iron deposition qualitatively and quantitatively by using SWI and microstructural changes in the corticospinal tract by using DTI in patients with amyotrophic lateral sclerosis. Seventeen patients with amyotrophic lateral sclerosis and 15 age- and sex-matched controls underwent brain MR imaging with SWI and DTI. SWI was analyzed for both signal-intensity scoring and quantitative estimation of iron deposition in the anterior and posterior banks of the motor and sensory cortices and deep gray nuclei. The diffusion measurements along the corticospinal tract at the level of pons and medulla were obtained by ROI analysis. Patients with amyotrophic lateral sclerosis showed reduced signal-intensity grades in the posterior bank of the motor cortex bilaterally. Quantitative analysis confirmed significantly higher iron content in the posterior bank of the motor cortex in patients with amyotrophic lateral sclerosis. In contrast, no significant differences were noted for the anterior bank of the motor cortex, anterior and posterior banks of the sensory cortex, and deep nuclei. Receiver operating characteristic comparison showed a cutoff of 35μg Fe/g of tissue with an area under the curve of 0.78 (P = .008) for the posterior bank of the motor cortex in discriminating patients with amyotrophic lateral sclerosis from controls. Fractional anisotropy was lower in the pyramidal tracts of patients with amyotrophic lateral sclerosis at the pons and medulla on either side, along with higher directionally averaged mean diffusivity values. The combination of SWI and DTI revealed an area under the curve of 0.784 for differentiating patients with amyotrophic lateral sclerosis from controls. Measurements of motor cortex iron deposition and diffusion tensor parameters of the corticospinal tract may be useful biomarkers for the diagnosis of clinically suspected

  8. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  9. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  10. Integration of BOLD-fMRI and DTI into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinal tracts

    International Nuclear Information System (INIS)

    Wang, Minglei; Ma, Hui; Wang, Xiaodong; Guo, Yanhong; Xia, Xinshe; Xia, Hechun; Guo, Yulin; Huang, Xueying; He, Hong; Jia, Xiaoxiong; Xie, Yan

    2015-01-01

    The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs). A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score ≥ 70) before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT, IMRT and IMRT-PMC&CST) were developed by 3 different physicists using the Pinnacle planning system. Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased in IMRT-PMC&CST group (p < 0.001). In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target volume could be clearly marked as OARs and spared during treatment

  11. Integrating retrogenesis theory to Alzheimer's disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity.

    Science.gov (United States)

    Alves, Gilberto Sousa; Oertel Knöchel, Viola; Knöchel, Christian; Carvalho, André Férrer; Pantel, Johannes; Engelhardt, Eliasz; Laks, Jerson

    2015-01-01

    Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD) and may reflect primary or secondary circuitry degeneration (i.e., due to cortical atrophy). The interpretation of diffusion tensor imaging (DTI) eigenvectors, known as multiple indices, may provide new insights into the main pathological models supporting primary or secondary patterns of WM disruption in AD, the retrogenesis, and Wallerian degeneration models, respectively. The aim of this review is to analyze the current literature on the contribution of DTI multiple indices to the understanding of AD neuropathology, taking the retrogenesis model as a reference for discussion. A systematic review using MEDLINE, EMBASE, and PUBMED was performed. Evidence suggests that AD evolves through distinct patterns of WM disruption, in which retrogenesis or, alternatively, the Wallerian degeneration may prevail. Distinct patterns of WM atrophy may be influenced by complex interactions which comprise disease status and progression, fiber localization, concurrent risk factors (i.e., vascular disease, gender), and cognitive reserve. The use of DTI multiple indices in addition to other standard multimodal methods in dementia research may help to determine the contribution of retrogenesis hypothesis to the understanding of neuropathological hallmarks that lead to AD.

  12. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI.

    Science.gov (United States)

    Martin, Allan R; Aleksanderek, Izabela; Cohen-Adad, Julien; Tarmohamed, Zenovia; Tetreault, Lindsay; Smith, Nathaniel; Cadotte, David W; Crawley, Adrian; Ginsberg, Howard; Mikulis, David J; Fehlings, Michael G

    2016-01-01

    studies, rendering direct comparisons of metrics invalid. The DTI metric fractional anisotropy (FA) had the strongest evidence of utility, with moderate quality evidence for its use as a biomarker showing correlation with disability in several clinical pathologies, and a low level of evidence that it identifies tissue injury (in terms of group differences) compared with healthy controls. However, insufficient evidence exists to determine its utility as a sensitive and specific diagnostic test or as a tool to predict clinical outcomes. Very low quality evidence suggests that other metrics also show group differences compared with controls, including DTI metrics mean diffusivity (MD) and radial diffusivity (RD), the diffusional kurtosis imaging (DKI) metric mean kurtosis (MK), MT metrics MT ratio (MTR) and MT cerebrospinal fluid ratio (MTCSF), and the MRS metric of N-acetylaspartate (NAA) concentration, although these results were somewhat inconsistent. State-of-the-art spinal cord MRI techniques are emerging with great potential to improve the diagnosis and management of various spinal pathologies, but the current body of evidence has only showed limited clinical utility to date. Among these imaging tools DTI is the most mature, but further work is necessary to standardize and validate its use before it will be adopted in the clinical realm. Large, well-designed studies with a priori hypotheses, standardized acquisition methods, detailed clinical data collection, and robust automated analysis techniques are needed to fully demonstrate the potential of these rapidly evolving techniques.

  13. Harmonization of multi-site diffusion tensor imaging data.

    Science.gov (United States)

    Fortin, Jean-Philippe; Parker, Drew; Tunç, Birkan; Watanabe, Takanori; Elliott, Mark A; Ruparel, Kosha; Roalf, David R; Satterthwaite, Theodore D; Gur, Ruben C; Gur, Raquel E; Schultz, Robert T; Verma, Ragini; Shinohara, Russell T

    2017-11-01

    Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI) technique used for studying microstructural changes in the white matter. As with many other imaging modalities, DTI images suffer from technical between-scanner variation that hinders comparisons of images across imaging sites, scanners and over time. Using fractional anisotropy (FA) and mean diffusivity (MD) maps of 205 healthy participants acquired on two different scanners, we show that the DTI measurements are highly site-specific, highlighting the need of correcting for site effects before performing downstream statistical analyses. We first show evidence that combining DTI data from multiple sites, without harmonization, may be counter-productive and negatively impacts the inference. Then, we propose and compare several harmonization approaches for DTI data, and show that ComBat, a popular batch-effect correction tool used in genomics, performs best at modeling and removing the unwanted inter-site variability in FA and MD maps. Using age as a biological phenotype of interest, we show that ComBat both preserves biological variability and removes the unwanted variation introduced by site. Finally, we assess the different harmonization methods in the presence of different levels of confounding between site and age, in addition to test robustness to small sample size studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    Science.gov (United States)

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  15. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI

    International Nuclear Information System (INIS)

    Lindberg, Paavel G.; Sanchez, Katherine; Rannou, Francois; Poiraudeau, Serge; Ozcan, Fidan; Feydy, Antoine; Maier, Marc A.

    2016-01-01

    The aim of this study was to investigate spinal cord structure in patients with cervical spondylosis where conventional MRI fails to reveal spinal cord damage. We performed a cross-sectional study of patients with cervical spondylosis without conventional MRI findings of spinal cord damage and healthy controls. Subjects were studied using spinal diffusion tensor imaging (DTI), precision grip and foot force-tracking tasks, and a clinical examination including assessment of neurological signs. A regional analysis of lateral and medial spinal white matter across multiple cervical levels (C1-C5) was performed. DTI revealed reduced fractional anisotropy (FA) and increased radial diffusivity (RD) in the lateral spinal cord at the level of greatest compression (lowest Pavlov ratio) in patients (p < 0.05). Patients with spondylosis had greater error and longer release duration in both grip and foot force-tracking. Similar spinal cord deficits were present in patients without neurological signs. Increased error in grip and foot tracking (low accuracy) correlated with increased RD in the lateral spinal cord at the level of greatest compression (p ≤ 0.01). Spinal DTI can detect subtle spinal cord damage of functional relevance in cervical spondylosis, even in patients without signs on conventional T2-imaging and without neurological signs. (orig.)

  16. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Paavel G. [Universite Paris Descartes, Sorbonne Paris Cite, FR 3636 Neurosciences, Paris (France); Centre de Psychiatrie et Neurosciences, Inserm U894, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, Paris (France); Universite Paris Descartes, Service de Radiologie B, APHP, CHU Cochin, Faculte de Medecine, Paris (France); Sanchez, Katherine; Rannou, Francois; Poiraudeau, Serge [Universite Paris Descartes, Sorbonne Paris Cite, Paris (France); Service de Medecine Physique et de Readaptation, APHP, CHU Cochin, Paris (France); INSERM U1153 Epidemiologie Clinique des Maladies Osteo-Articulaires, Paris (France); Ozcan, Fidan [Universite Paris Descartes, Sorbonne Paris Cite, FR 3636 Neurosciences, Paris (France); Feydy, Antoine [Universite Paris Descartes, Sorbonne Paris Cite, FR 3636 Neurosciences, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, Paris (France); Universite Paris Descartes, Service de Radiologie B, APHP, CHU Cochin, Faculte de Medecine, Paris (France); Maier, Marc A. [Universite Paris Descartes, Sorbonne Paris Cite, FR 3636 Neurosciences, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, Paris (France); Universite Paris Diderot, Sorbonne Paris Cite, Paris (France)

    2016-03-15

    The aim of this study was to investigate spinal cord structure in patients with cervical spondylosis where conventional MRI fails to reveal spinal cord damage. We performed a cross-sectional study of patients with cervical spondylosis without conventional MRI findings of spinal cord damage and healthy controls. Subjects were studied using spinal diffusion tensor imaging (DTI), precision grip and foot force-tracking tasks, and a clinical examination including assessment of neurological signs. A regional analysis of lateral and medial spinal white matter across multiple cervical levels (C1-C5) was performed. DTI revealed reduced fractional anisotropy (FA) and increased radial diffusivity (RD) in the lateral spinal cord at the level of greatest compression (lowest Pavlov ratio) in patients (p < 0.05). Patients with spondylosis had greater error and longer release duration in both grip and foot force-tracking. Similar spinal cord deficits were present in patients without neurological signs. Increased error in grip and foot tracking (low accuracy) correlated with increased RD in the lateral spinal cord at the level of greatest compression (p ≤ 0.01). Spinal DTI can detect subtle spinal cord damage of functional relevance in cervical spondylosis, even in patients without signs on conventional T2-imaging and without neurological signs. (orig.)

  17. Identifying the white matter impairments among ART-naive HIV patients: a multivariate pattern analysis of DTI data

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenchao [Shandong University, School of Mechanical, Electrical and Information Engineering, Weihai, Shandong Province (China); Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing (China); Liu, Zhenyu; Yang, Xin; Wang, Shuo; Yu, Dongdong [Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing (China); Li, Ruili; Li, Hongjun [Beijing YouAn Hospital, Capital Medical University, Department of Radiology, Beijing (China); Cui, Xingwei [Zhengzhou University, Cooperative Innovation Center of Internet Healthcare, Zhengzhou (China); Dong, Enqing [Shandong University, School of Mechanical, Electrical and Information Engineering, Weihai, Shandong Province (China); Tian, Jie [Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-10-15

    To identify the white matter (WM) impairments of the antiretroviral therapy (ART)-naive HIV patients by conducting a multivariate pattern analysis (MVPA) of Diffusion Tensor Imaging (DTI) data We enrolled 33 ART-naive HIV patients and 32 Normal controls in the current study. Firstly, the DTI metrics in whole brain WM tracts were extracted for each subject and feed into the Least Absolute Shrinkage and Selection Operators procedure (LASSO)-Logistic regression model to identify the impaired WM tracts. Then, Support Vector Machines (SVM) model was constructed based on the DTI metrics in the impaired WM tracts to make HIV-control group classification. Pearson correlations between the WM impairments and HIV clinical statics were also investigated. Extensive HIV-related impairments were observed in the WM tracts associated with motor function, the corpus callosum (CC) and the frontal WM. With leave-one-out cross validation, accuracy of 83.08% (P=0.002) and the area under the Receiver Operating Characteristic curve of 0.9110 were obtained in the SVM classification model. The impairments of the CC were significantly correlated with the HIV clinic statics. The MVPA was sensitive to detect the HIV-related WM changes. Our findings indicated that the MVPA had considerable potential in exploring the HIV-related WM impairments. (orig.)

  18. Identifying the white matter impairments among ART-naive HIV patients: a multivariate pattern analysis of DTI data

    International Nuclear Information System (INIS)

    Tang, Zhenchao; Liu, Zhenyu; Yang, Xin; Wang, Shuo; Yu, Dongdong; Li, Ruili; Li, Hongjun; Cui, Xingwei; Dong, Enqing; Tian, Jie

    2017-01-01

    To identify the white matter (WM) impairments of the antiretroviral therapy (ART)-naive HIV patients by conducting a multivariate pattern analysis (MVPA) of Diffusion Tensor Imaging (DTI) data We enrolled 33 ART-naive HIV patients and 32 Normal controls in the current study. Firstly, the DTI metrics in whole brain WM tracts were extracted for each subject and feed into the Least Absolute Shrinkage and Selection Operators procedure (LASSO)-Logistic regression model to identify the impaired WM tracts. Then, Support Vector Machines (SVM) model was constructed based on the DTI metrics in the impaired WM tracts to make HIV-control group classification. Pearson correlations between the WM impairments and HIV clinical statics were also investigated. Extensive HIV-related impairments were observed in the WM tracts associated with motor function, the corpus callosum (CC) and the frontal WM. With leave-one-out cross validation, accuracy of 83.08% (P=0.002) and the area under the Receiver Operating Characteristic curve of 0.9110 were obtained in the SVM classification model. The impairments of the CC were significantly correlated with the HIV clinic statics. The MVPA was sensitive to detect the HIV-related WM changes. Our findings indicated that the MVPA had considerable potential in exploring the HIV-related WM impairments. (orig.)

  19. Visualizing whole-brain DTI tractography with GPU-based Tuboids and LoD management.

    Science.gov (United States)

    Petrovic, Vid; Fallon, James; Kuester, Falko

    2007-01-01

    Diffusion Tensor Imaging (DTI) of the human brain, coupled with tractography techniques, enable the extraction of large-collections of three-dimensional tract pathways per subject. These pathways and pathway bundles represent the connectivity between different brain regions and are critical for the understanding of brain related diseases. A flexible and efficient GPU-based rendering technique for DTI tractography data is presented that addresses common performance bottlenecks and image-quality issues, allowing interactive render rates to be achieved on commodity hardware. An occlusion query-based pathway LoD management system for streamlines/streamtubes/tuboids is introduced that optimizes input geometry, vertex processing, and fragment processing loads, and helps reduce overdraw. The tuboid, a fully-shaded streamtube impostor constructed entirely on the GPU from streamline vertices, is also introduced. Unlike full streamtubes and other impostor constructs, tuboids require little to no preprocessing or extra space over the original streamline data. The supported fragment processing levels of detail range from texture-based draft shading to full raycast normal computation, Phong shading, environment mapping, and curvature-correct text labeling. The presented text labeling technique for tuboids provides adaptive, aesthetically pleasing labels that appear attached to the surface of the tubes. Furthermore, an occlusion query aggregating and scheduling scheme for tuboids is described that reduces the query overhead. Results for a tractography dataset are presented, and demonstrate that LoD-managed tuboids offer benefits over traditional streamtubes both in performance and appearance.

  20. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  1. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    Science.gov (United States)

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  2. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  3. Pressure induced deep tissue injury explained

    NARCIS (Netherlands)

    Oomens, C.W.J.; Bader, D.L.; Loerakker, S.; Baaijens, F.P.T.

    The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This

  4. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Bhat, Himanshu; Runge, Val M; Guggenberger, Roman

    2016-06-01

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.

  5. The Compression Intensity Index: a practical anatomical estimate of the biomechanical risk for a deep tissue injury.

    Science.gov (United States)

    Gefen, Amit

    2008-01-01

    Pressure-related deep tissue injury (DTI) is a severe form of pressure ulcer that initiates in compressed muscle tissues under bony prominences, and progresses superficially towards the skin. Patients with impaired motosensory capacities are at high risk of developing DTI. There is a critical medical need for developing risk assessment tools for DTI. A new anatomical index, the Compression Intensity Index: CII=(BW/Rt);[1/2], which depends on the body weight (BW), radius of curvature of the ischial tuberosities (R) and thickness of the underlying gluteus muscles (t), is suggested for approximating the loading intensity in muscle tissue during sitting in permanent wheelchair users, as part of a clinically-oriented risk assessment for DTI. Preliminary CII data were calculated for 6 healthy and 4 paraplegic subjects following MRI scans, and data were compared between the groups and with respect to a gold standard, being a previously developed subject-specific MRI-finite-element (MRI-FE) method of calculating muscle tissue stresses (Linder-Ganz et al., J. Biomech. 2007). Marked differences between the R and t parameters of the two groups caused the CII values of the paraplegics to be approximately 1.6-fold higher than for the healthy (pbedridden patients. Hence, CII measurements can be integrated into DTI-risk-assessment tools, the need of which is now being discussed intensively in the American and European Pressure Ulcer Advisory Panel meetings.

  6. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Seshamani, Sharmishtaa; Kroenke, Christopher

    2014-01-01

    to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction...... (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired...

  7. Diffusion-Weighted Imaging and Diffusion Tensor Imaging of Asymptomatic Lumbar Disc Herniation

    OpenAIRE

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; Bhatia, Nitin N.; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performedon a healthy 31-year-old man with asymptomatic lumbar disc herniation. Althoughthe left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic...

  8. A Riemannian scalar measure for diffusion tensor images

    NARCIS (Netherlands)

    Astola, L.J.; Fuster, A.; Florack, L.M.J.

    2010-01-01

    We study a well-known scalar quantity in Riemannian geometry, the Ricci scalar, in the context of Diffusion Tensor Imaging (DTI), which is an emerging non-invasive medical imaging modality. We derive a physical interpretation for the Ricci scalar and explore experimentally its significance in DTI.

  9. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The neuroanatomy of subthreshold depressive symptoms in Huntington's disease: a combined diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) study.

    Science.gov (United States)

    Sprengelmeyer, R; Orth, M; Müller, H-P; Wolf, R C; Grön, G; Depping, M S; Kassubek, J; Justo, D; Rees, E M; Haider, S; Cole, J H; Hobbs, N Z; Roos, R A C; Dürr, A; Tabrizi, S J; Süssmuth, S D; Landwehrmeyer, G B

    2014-07-01

    Depressive symptoms are prominent psychopathological features of Huntington's disease (HD), making a negative impact on social functioning and well-being. We compared the frequencies of a history of depression, previous suicide attempts and current subthreshold depression between 61 early-stage HD participants and 40 matched controls. The HD group was then split based on the overall HD group's median Hospital Anxiety and Depression Scale-depression score into a group of 30 non-depressed participants (mean 0.8, s.d. = 0.7) and a group of 31 participants with subthreshold depressive symptoms (mean 7.3, s.d. = 3.5) to explore the neuroanatomy underlying subthreshold depressive symptoms in HD using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). Frequencies of history of depression, previous suicide attempts or current subthreshold depressive symptoms were higher in HD than in controls. The severity of current depressive symptoms was also higher in HD, but not associated with the severity of HD motor signs or disease burden. Compared with the non-depressed HD group DTI revealed lower fractional anisotropy (FA) values in the frontal cortex, anterior cingulate cortex, insula and cerebellum of the HD group with subthreshold depressive symptoms. In contrast, VBM measures were similar in both HD groups. A history of depression, the severity of HD motor signs or disease burden did not correlate with FA values of these regions. Current subthreshold depressive symptoms in early HD are associated with microstructural changes - without concomitant brain volume loss - in brain regions known to be involved in major depressive disorder, but not those typically associated with HD pathology.

  11. Muscle changes detected with diffusion-tensor imaging after long-distance running.

    Science.gov (United States)

    Froeling, Martijn; Oudeman, Jos; Strijkers, Gustav J; Maas, Mario; Drost, Maarten R; Nicolay, Klaas; Nederveen, Aart J

    2015-02-01

    To develop a protocol for diffusion-tensor imaging (DTI) of the complete upper legs and to demonstrate feasibility of detection of subclinical sports-related muscle changes in athletes after strenuous exercise, which remain undetected by using conventional T2-weighted magnetic resonance (MR) imaging with fat suppression. The research was approved by the institutional ethics committee review board, and the volunteers provided written consent before the study. Five male amateur long-distance runners underwent an MR examination (DTI, T1-weighted MR imaging, and T2-weighted MR imaging with fat suppression) of both upper legs 1 week before, 2 days after, and 3 weeks after they participated in a marathon. The tensor eigenvalues (λ1, λ2, and λ3), the mean diffusivity, and the fractional anisotropy (FA) were derived from the DTI data. Data per muscle from the three time-points were compared by using a two-way mixed-design analysis of variance with a Bonferroni posthoc test. The DTI protocol allowed imaging of both complete upper legs with adequate signal-to-noise ratio and within a 20-minute imaging time. After the marathon, T2-weighted MR imaging revealed grade 1 muscle strains in nine of the 180 investigated muscles. The three eigenvalues, mean diffusivity, and FA were significantly increased (P DTI measurements of the upper legs was developed that fully included frequently injured muscles, such as hamstrings, in one single imaging session. This study also revealed changes in DTI parameters that over time were not revealed by qualitative T2-weighted MR imaging with fat suppression. © RSNA, 2014.

  12. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline.

    Science.gov (United States)

    Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H

    2012-07-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.

  13. Detection of high GS risk group prostate tumors by diffusion tensor imaging and logistic regression modelling.

    Science.gov (United States)

    Ertas, Gokhan

    2018-07-01

    To assess the value of joint evaluation of diffusion tensor imaging (DTI) measures by using logistic regression modelling to detect high GS risk group prostate tumors. Fifty tumors imaged using DTI on a 3 T MRI device were analyzed. Regions of interests focusing on the center of tumor foci and noncancerous tissue on the maps of mean diffusivity (MD) and fractional anisotropy (FA) were used to extract the minimum, the maximum and the mean measures. Measure ratio was computed by dividing tumor measure by noncancerous tissue measure. Logistic regression models were fitted for all possible pair combinations of the measures using 5-fold cross validation. Systematic differences are present for all MD measures and also for all FA measures in distinguishing the high risk tumors [GS ≥ 7(4 + 3)] from the low risk tumors [GS ≤ 7(3 + 4)] (P Logistic regression modelling provides a favorable solution for the joint evaluations easily adoptable in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  15. Three-dimensional display of peripheral nerves in the wrist region based on MR diffusion tensor imaging and maximum intensity projection post-processing

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wen Quan, E-mail: dingwenquan1982@163.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Zhou, Xue Jun, E-mail: zxj0925101@sina.com [Department of Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Tang, Jin Bo, E-mail: jinbotang@yahoo.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Gu, Jian Hui, E-mail: gujianhuint@163.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Jin, Dong Sheng, E-mail: jindongshengnj@aliyun.com [Department of Radiology, Jiangsu Province Official Hospital, Nanjing, Jiangsu (China)

    2015-06-15

    Highlights: • 3D displays of peripheral nerves can be achieved by 2 MIP post-processing methods. • The median nerves’ FA and ADC values can be accurately measured by using DTI6 data. • Adopting 6-direction DTI scan and MIP can evaluate peripheral nerves efficiently. - Abstract: Objectives: To achieve 3-dimensional (3D) display of peripheral nerves in the wrist region by using maximum intensity projection (MIP) post-processing methods to reconstruct raw images acquired by a diffusion tensor imaging (DTI) scan, and to explore its clinical applications. Methods: We performed DTI scans in 6 (DTI6) and 25 (DTI25) diffusion directions on 20 wrists of 10 healthy young volunteers, 6 wrists of 5 patients with carpal tunnel syndrome, 6 wrists of 6 patients with nerve lacerations, and one patient with neurofibroma. The MIP post-processing methods employed 2 types of DTI raw images: (1) single-direction and (2) T{sub 2}-weighted trace. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the median and ulnar nerves were measured at multiple testing sites. Two radiologists used custom evaluation scales to assess the 3D nerve imaging quality independently. Results: In both DTI6 and DTI25, nerves in the wrist region could be displayed clearly by the 2 MIP post-processing methods. The FA and ADC values were not significantly different between DTI6 and DTI25, except for the FA values of the ulnar nerves at the level of pisiform bone (p = 0.03). As to the imaging quality of each MIP post-processing method, there were no significant differences between DTI6 and DTI25 (p > 0.05). The imaging quality of single-direction MIP post-processing was better than that from T{sub 2}-weighted traces (p < 0.05) because of the higher nerve signal intensity. Conclusions: Three-dimensional displays of peripheral nerves in the wrist region can be achieved by MIP post-processing for single-direction images and T{sub 2}-weighted trace images for both DTI6 and DTI25

  16. Application of diffusion tensor imaging in neurosurgery; Anwendung der Diffusions-Tensor-Bildgebung in der Neurochirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Saur, R. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Augenklinik des Universitaetsklinikums Tuebingen (Germany); Klinik fuer Psychiatrie und Psychotherapie des Universitaetsklinikums Tuebingen (Germany); Gharabaghi, A. [Klinik fuer Neurochirurgie des Universitaetsklinikums Tuebingen (Germany); Erb, M. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany)

    2007-07-01

    Knowledge about integrity and location of fibre tracts arising from eloquent cortical areas is important to plan neurosurgical interventions and to allow maximization of resection of pathological tissue while preserving vital white matter tracts. Diffusion Tensor Imaging (DTI) is so far the only method to get preoperatively an impression of the individual complexity of nerve bundles. Thereby nerve fibres are not mapped directly. They are derived indirectly by analysis of the directional distribution of diffusion of water molecules which is influenced mainly by large fibre tracts. From acquisition to reconstruction and visualisation of the fibre tracts many representational stages and working steps have to be passed. Exact knowledge about problems of Diffusion Imaging is important for interpretation of the results. Particularly, brain tumor edema, intraoperative brain shift, MR-artefacts and limitations of the mathematical models and algorithms challenge DTI-developers and applicants. (orig.)

  17. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns

    Science.gov (United States)

    Taylor, Paul A.; Jacobson, Sandra W.; van der Kouwe, André; Molteno, Christopher D.; Chen, Gang; Wintermark, Pia; Alhamud, Alkathafi; Jacobson, Joseph L.; Meintjes, Ernesta M.

    2014-01-01

    Prenatal alcohol exposure is known to have severe, long-term consequences for brain and behavioral development already detectable in infancy and childhood. Resulting features of fetal alcohol spectrum disorders (FASD) include cognitive and behavioral effects, as well as facial anomalies and growth deficits. Diffusion tensor imaging (DTI) and tractography were used to analyze white matter development in 11 newborns (age since conception <45 weeks) whose mothers were recruited during pregnancy. Comparisons were made with 9 age-matched controls born to abstainers or light drinkers from the same Cape Coloured (mixed ancestry) community near Cape Town, South Africa. DTI parameters, T1 relaxation time, proton density and volumes were used to quantify and investigate group differences in white matter (WM) in the newborn brains. Probabilistic tractography was used to estimate and to delineate similar tract locations among the subjects for transcallosal pathways, cortico-spinal projection fibers and cortico-cortical association fibers. In each of these WM networks, the axial diffusivity AD was the parameter that showed the strongest association with maternal drinking. The strongest relations were observed in medial and inferior WM, regions in which the myelination process typically begins. In contrast to studies of older individuals with prenatal alcohol exposure, FA did not exhibit a consistent and significant relation with alcohol exposure. To our knowledge, this is the first DTI-tractography study of prenatally alcohol exposed newborns. PMID:25182535

  18. Structural MRI research in patients with nasopharyngeal carcinoma following radiotherapy: A DTI and VBM study.

    Science.gov (United States)

    Leng, Xi; Fang, Peng; Lin, Huan; An, Jie; Tan, Xin; Zhang, Chi; Wu, Donglin; Shen, Wen; Qiu, Shijun

    2017-11-01

    The aim of the present study was to investigate the microstructural characteristics of the brain lobes following radiotherapy (RT) for patients with nasopharyngeal carcinoma (NPC) at distinct times. Diffusion tensor imaging (DTI) and 3D-T1-weighted imaging was performed in 70 age- and sex-matched subjects, 24 of whom were pre-treatment patients. The patients were divided into three groups, according to the time following completion of RT. Fractional anisotropy (FA) and gray matter (GM) volume were determined. The DTI data were analyzed using tract-based spatial statistics and the GM volume was analyzed using voxel-based morphometry (VBM). Compared with the pre-RT group, the mean FA values in the left parietal lobe white matter (WM) and right cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05). In addition, the mean FA values in the right parietal lobe WM decreased significantly in the post-RT 6-12 month group (P<0.05), compared with the pre-RT group. The FA level in the right temporal lobe remained significantly decreased, compared with that in the pre-RT group (P<0.05) for 1 year after RT. Furthermore, compared with pre-RT group, the GM volume in the bilateral frontal lobe, right occipital lobe, left parietal lobe, right temporal lobe and left cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05), and in the bilateral temporal lobe, parietal lobe, right frontal lobe and left cerebellum, the GM volume decreased significantly in the post-RT 6-12 month group (P<0.05). The GM volume in the right temporal lobe, bilateral frontal lobe and bilateral cerebellum remained significantly decreased compared with that in the pre-RT group (P<0.05) for 1 year after RT. A combination of DTI and VBM may be used to determine radiation-induced brain injury in patients treated for NPC.

  19. Study of the Myocardial Contraction and Relaxation Velocities through Doppler Tissue Imaging Echocardiography: A New Alternative in the Assessment of the Segmental Ventricular Function

    Directory of Open Access Journals (Sweden)

    Silva Carlos Eduardo Suaide

    2002-01-01

    Full Text Available OBJECTIVE: Doppler tissue imaging (DTI enables the study of the velocity of contraction and relaxation of myocardial segments. We established standards for the peak velocity of the different myocardial segments of the left ventricle in systole and diastole, and correlated them with the electrocardiogram. METHODS: We studied 35 healthy individuals (27 were male with ages ranging from 12 to 59 years (32.9 ± 10.6. Systolic and diastolic peak velocities were assessed by Doppler tissue imaging in 12 segments of the left ventricle, establishing their mean values and the temporal correlation with the cardiac cycle. RESULTS: The means (and standard deviation of the peak velocities in the basal, medial, and apical regions (of the septal, anterior, lateral, and posterior left ventricle walls were respectively, in cm/s, 7.35(1.64, 5.26(1.88, and 3.33(1.58 in systole and 10.56(2.34, 7.92(2.37, and 3.98(1.64 in diastole. The mean time in which systolic peak velocity was recorded was 131.59ms (±19.12ms, and diastolic was 459.18ms (±18.13ms based on the peak of the R wave of the electrocardiogram. CONCLUSION: In healthy individuals, maximum left ventricle segment velocities decreased from the bases to the ventricular apex, with certain proportionality between contraction and relaxation (P<0.05. The use of Doppler tissue imaging may be very helpful in detecting early alterations in ventricular contraction and relaxation.

  20. Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer's Disease: A Diffusion MRI Study with DTI and HARDI Models.

    Science.gov (United States)

    Wang, Tao; Shi, Feng; Jin, Yan; Yap, Pew-Thian; Wee, Chong-Yaw; Zhang, Jianye; Yang, Cece; Li, Xia; Xiao, Shifu; Shen, Dinggang

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in elderly people. It is an irreversible and progressive brain disease. In this paper, we utilized diffusion-weighted imaging (DWI) to detect abnormal topological organization of white matter (WM) structural networks. We compared the differences between WM connectivity characteristics at global, regional, and local levels in 26 patients with probable AD and 16 normal control (NC) elderly subjects, using connectivity networks constructed with the diffusion tensor imaging (DTI) model and the high angular resolution diffusion imaging (HARDI) model, respectively. At the global level, we found that the WM structural networks of both AD and NC groups had a small-world topology; however, the AD group showed a significant decrease in both global and local efficiency, but an increase in clustering coefficient and the average shortest path length. We further found that the AD patients had significantly decreased nodal efficiency at the regional level, as well as weaker connections in multiple local cortical and subcortical regions, such as precuneus, temporal lobe, hippocampus, and thalamus. The HARDI model was found to be more advantageous than the DTI model, as it was more sensitive to the deficiencies in AD at all of the three levels.

  1. Diffusion tensor imaging of the spinal cord: a review Imagen de difusión tensora de la médula espinal: una revisión Imagem da medula espinal por tensor de difusão

    Directory of Open Access Journals (Sweden)

    Aditya Vedantam

    2013-01-01

    Full Text Available Diffusion tensor imaging (DTI is a magnetic resonance technique capable of measuring the magnitude and direction of water molecule diffusion in various tissues. The use of DTI is being expanded to evaluate a variety of spinal cord disorders both for prognostication and to guide therapy. The purpose of this article is to review the literature on spinal cord DTI in both animal models and humans in different neurosurgical conditions. DTI of the spinal cord shows promise in traumatic spinal cord injury, cervical spondylotic myelopathy, and intramedullary tumors. However, scanning protocols and image processing need to be refined and standardized.La técnica de imagen por difusión tensora (DTI, Diffusion tensor imaging es una técnica de resonancia magnética que mide la magnitud y dirección de la difusión de moléculas de agua en varios tejidos. El uso de DTI se ha expandido para evaluar una variedad de disturbios de la columna vertebral tanto para pronóstico como para orientación de la terapia. La finalidad de este artículo es revisar la literatura sobre DTI de la médula espinal tanto en modelos animales como en humanos en diferentes condiciones neuroquirúrgicas. La DTI de la médula espinal se muestra promisora en las lesiones traumáticas de la médula, en la mielopatía espondilótica cervical y en los tumores intramedulares. Sin embargo, los protocolos de barrido y el procesamiento de imágenes necesitan ser refinados y estandarizados.O exame por imagem de ressonância magnética utilizando a técnica de tensores de difusão (DTI, Diffusion tensor imaging consegue medir a magnitude e direção da difusão de moléculas de água em vários tecidos. A DTI está começando a ser usada para avaliar uma série de patologias da medula espinal, tanto para prognósticos como para orientar o tratamento. O presente artigo revisa a literatura sobre DTI da medula espinhal, em modelos animais e humanos, em diferentes condições neurocirúrgicas. A

  2. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  3. A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.

    Science.gov (United States)

    Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W

    2009-03-01

    We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.

  4. Near-infrared spectroscopic tissue imaging for medical applications

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  5. CUDA-accelerated geodesic ray-tracing for fiber-tracking

    NARCIS (Netherlands)

    van Aart, Evert; Sepasian, N.; Jalba, A.C.; Vilanova, A.

    2011-01-01

    Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking

  6. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment

    International Nuclear Information System (INIS)

    Neuner, Irene; Kaffanke, Joachim B.; Langen, Karl-Josef; Kops, Elena Rota; Tellmann, Lutz; Stoffels, Gabriele; Weirich, Christoph; Filss, Christian; Scheins, Juergen; Herzog, Hans; Shah, N. Jon

    2012-01-01

    The development of integrated magnetic resonance (MR)-positron emission tomography (PET) hybrid imaging opens up new horizons for imaging in neuro-oncology. In cerebral gliomas the definition of tumour extent may be difficult to ascertain using standard MR imaging (MRI) only. The differentiation of post-therapeutic scar tissue, tumour rests and tumour recurrence is challenging. The relationship to structures such as the pyramidal tract to the tumour mass influences the therapeutic neurosurgical approach. The diagnostic information may be enriched by sophisticated MR techniques such as diffusion tensor imaging (DTI), multiple-volume proton MR spectroscopic imaging (MRSI) and functional MRI (fMRI). Metabolic imaging with PET, especially using amino acid tracers such as 18 F-fluoroethyl-l-tyrosine (FET) or 11 C-l-methionine (MET) will indicate tumour extent and response to treatment. The new technologies comprising MR-PET hybrid systems have the advantage of providing comprehensive answers by a one-stop-job of 40-50 min. The combined approach provides data of different modalities using the same iso-centre, resulting in optimal spatial and temporal realignment. All images are acquired exactly under the same physiological conditions. We describe the imaging protocol in detail and provide patient examples for the different imaging modalities such as FET-PET, standard structural imaging (T1-weighted, T2-weighted, T1-weighted contrast agent enhanced), DTI, MRSI and fMRI. (orig.)

  7. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, Irene [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany); Kaffanke, Joachim B. [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); MR-Transfer e.K., Wuppertal (Germany); Langen, Karl-Josef; Kops, Elena Rota; Tellmann, Lutz; Stoffels, Gabriele; Weirich, Christoph; Filss, Christian; Scheins, Juergen; Herzog, Hans [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Neurology, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany)

    2012-12-15

    The development of integrated magnetic resonance (MR)-positron emission tomography (PET) hybrid imaging opens up new horizons for imaging in neuro-oncology. In cerebral gliomas the definition of tumour extent may be difficult to ascertain using standard MR imaging (MRI) only. The differentiation of post-therapeutic scar tissue, tumour rests and tumour recurrence is challenging. The relationship to structures such as the pyramidal tract to the tumour mass influences the therapeutic neurosurgical approach. The diagnostic information may be enriched by sophisticated MR techniques such as diffusion tensor imaging (DTI), multiple-volume proton MR spectroscopic imaging (MRSI) and functional MRI (fMRI). Metabolic imaging with PET, especially using amino acid tracers such as {sup 18}F-fluoroethyl-l-tyrosine (FET) or {sup 11}C-l-methionine (MET) will indicate tumour extent and response to treatment. The new technologies comprising MR-PET hybrid systems have the advantage of providing comprehensive answers by a one-stop-job of 40-50 min. The combined approach provides data of different modalities using the same iso-centre, resulting in optimal spatial and temporal realignment. All images are acquired exactly under the same physiological conditions. We describe the imaging protocol in detail and provide patient examples for the different imaging modalities such as FET-PET, standard structural imaging (T1-weighted, T2-weighted, T1-weighted contrast agent enhanced), DTI, MRSI and fMRI. (orig.)

  8. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  9. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain.

    Science.gov (United States)

    Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T

    2014-03-01

    Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Runge, Val M.; Guggenberger, Roman [University Hospital of Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Piccirelli, Marco [University Hospital of Zurich, Department of Neuroradiology, Zurich (Switzerland); Bhat, Himanshu [Siemens Medical Solutions USA Inc, Charlestown, MA (United States)

    2016-06-15

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm{sup 2}; 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm{sup 2}/s; twofold acceleration: 1.016 ± 0.123 mm{sup 2}/s; threefold acceleration: 0.979 ± 0.153 mm{sup 2}/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. (orig.)

  11. A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.

    Science.gov (United States)

    Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui

    2018-06-01

    The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.

  12. An introduction to diffusion tensor image analysis.

    Science.gov (United States)

    O'Donnell, Lauren J; Westin, Carl-Fredrik

    2011-04-01

    Diffusion tensor magnetic resonance imaging (DTI) is a relatively new technology that is popular for imaging the white matter of the brain. This article provides a basic and broad overview of DTI to enable the reader to develop an intuitive understanding of these types of data, and an awareness of their strengths and weaknesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles.

    Science.gov (United States)

    Sigmund, Eric E; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; McGorty, KellyAnne; Hodnett, Philip A; Bencardino, Jenny

    2013-11-01

    To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2 -weighted (T2w) imaging. Using an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2w imaging and stimulated echo DTI were applied to eight healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in seven calf muscle compartments, which in patients were classified by their response on T2w: normal (20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post/pre-exercise ratios) of DTI parameters. All diffusivities significantly increased (P DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. Copyright © 2013 Wiley Periodicals, Inc.

  14. Value of Diffusion Tensor Imaging of Prostate Cancer: Comparison with Systemic Prostate Biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seong Kuk; Kim, Dong Won; Ha, Dong Ho; Kwon, Hee Jin; Kang, Myong Jin; Choi, Sun Seob; Nam, Kyung Jin; Kim, Jung Il [Dong-A University, Medical Center, Busan (Korea, Republic of)

    2011-02-15

    This study was performed to evaluate the usefulness of diffusion tensor imaging (DTI) and to correlate systemic twelve biopsy in prostate cancer. Thirty-one patients with suspected prostate cancer underwent MR imaging. DTI was performed prior to a prostate biopsy. We prospectively calculated the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) value in each corresponding biopsy site. Twenty-three of 31 patients had histopathologically proven adenocarcinoma. Among the 276 biopsy cores of 23 patients with prostate cancer, 109 cores showed positive results (39%). The ADC and FA value of positive cores were 1.31 {+-} 0.34x10-3 mm2/s and 0.68 {+-} 0.07, and those of the negative cores were 1.74 {+-} 0.45x10-3 mm2/s and 0.54 {+-} 0.09, respectively. Eight patients without carcinoma showed an ADC value of 1.83 {+-} 0.26x10-3 mm2/s and an FA value of 0.47 {+-} 0.07. The ADC and FA value of positive cores were significantly lower and higher than those of negative cores and cancer-free patients, respectively (p < 0.05). The ADC and FA values using DTI may provide useful diagnostic information in the differentiation of cancerous tissues, although there is overlap in some cases

  15. Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer’s Disease: A Diffusion MRI Study with DTI and HARDI Models

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia in elderly people. It is an irreversible and progressive brain disease. In this paper, we utilized diffusion-weighted imaging (DWI to detect abnormal topological organization of white matter (WM structural networks. We compared the differences between WM connectivity characteristics at global, regional, and local levels in 26 patients with probable AD and 16 normal control (NC elderly subjects, using connectivity networks constructed with the diffusion tensor imaging (DTI model and the high angular resolution diffusion imaging (HARDI model, respectively. At the global level, we found that the WM structural networks of both AD and NC groups had a small-world topology; however, the AD group showed a significant decrease in both global and local efficiency, but an increase in clustering coefficient and the average shortest path length. We further found that the AD patients had significantly decreased nodal efficiency at the regional level, as well as weaker connections in multiple local cortical and subcortical regions, such as precuneus, temporal lobe, hippocampus, and thalamus. The HARDI model was found to be more advantageous than the DTI model, as it was more sensitive to the deficiencies in AD at all of the three levels.

  16. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  17. Neuromyelitis optica: a diffusional kurtosis imaging study.

    Science.gov (United States)

    Doring, T M; Lopes, F C R; Kubo, T T A; Tukamoto, G; Kimura, M C; Strecker, R M; Domingues, R C; Gasparetto, E L

    2014-12-01

    Conventional MR imaging typically yields normal images of the brain or indicates lesions in areas of high aquaporin expression in patients with neuromyelitis optica. Diffusional kurtosis imaging was applied in patients with neuromyelitis optica to determine whether this technique could detect alterations in diffusion and diffusional kurtosis parameters in normal-appearing white matter and to explore the relationship between diffusional kurtosis imaging and DTI parameters. Thirteen patients with neuromyelitis optica and 13 healthy controls underwent MR imaging of the brain with conventional and diffusional kurtosis imaging sequences. Tract-based spatial statistics and region-of-interest-based analyses were conducted to identify differences between patients with neuromyelitis optica and controls through conventional DTI and diffusional kurtosis imaging parameters. The parameters were correlated to determine the potential relationship between them. Compared with healthy controls, several diffusional kurtosis imaging and DTI parameters were altered in various fiber tracts of patients with neuromyelitis optica (P optica. We found a negative correlation between diffusional kurtosis imaging (radial kurtosis, axial kurtosis, mean kurtosis) and the corresponding DTI parameters (radial diffusivity, axial diffusivity, mean diffusivity). Positive correlations were found for radial kurtosis and mean kurtosis with fractional anisotropy. This study demonstrated differences in conventional diffusion and diffusional kurtosis parameters, especially radial kurtosis, in the normal-appearing white matter of patients with neuromyelitis optica compared with healthy controls. Larger studies of patients with neuromyelitis optica should be performed to assess the potential clinical impact of these findings. © 2014 by American Journal of Neuroradiology.

  18. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    International Nuclear Information System (INIS)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M.; Rahmat, K.; Ariffin, H.

    2012-01-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  19. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Rahmat, K. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); University Malaya, Biomedical Imaging Department, Kuala Lumpur (Malaysia); Ariffin, H. [University of Malaya, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2012-07-15

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  20. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome

    Science.gov (United States)

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-01-01

    Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748

  1. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.

    Science.gov (United States)

    Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo

    2018-06-01

    Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.

  2. Development of model DTY-104 radon measuring meter

    International Nuclear Information System (INIS)

    Shi Zhixia; Zhang Aiming; Li Yachun; Wang Qingheng

    2000-01-01

    Model DTY-104 radon measuring meter is an improvement on Model DTY-103. 'Difference value method' is used, which has been strictly developed and makes the radon exhalation rate more accurate, instead of using 'simplified difference value method'. The electronic circuit is redesigned and 80C31 single chip processor is used, which makes the operation more convenient and the function strengthened. In a more reasonable manner, the humidity sensor is mounted in the collection chamber. The collection efficiency can be automatically corrected. The technique of exchanging the collection mylar reduces the waiting time and improves work efficiency. The apparatus is applied to the measurement of the radon concentration in the environment and the radon exhalation from the surface of the building materials, walls and ground. The lower detection limit is about 4Bq/m 3 for 222 Rn concentration and 5 x 10 -5 Bq/s/m 2 for 222 Rn exhalation rate

  3. Comparison of quality control software tools for diffusion tensor imaging.

    Science.gov (United States)

    Liu, Bilan; Zhu, Tong; Zhong, Jianhui

    2015-04-01

    Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Demyelinating evidences in CMS rat model of depression: a DTI study at 7 T.

    Science.gov (United States)

    Hemanth Kumar, B S; Mishra, S K; Trivedi, R; Singh, S; Rana, P; Khushu, S

    2014-09-05

    Depression is among the most debilitating diseases worldwide. Long-term exposure to stressors plays a major role in development of human depression. Chronic mild stress (CMS) seems to be a valid animal model for depression. Diffusion tensor imaging (DTI) is capable of inferring microstructural abnormalities of the white matter and has shown to serve as non-invasive marker of specific pathology. We developed a CMS rat model of depression and validated with behavioral experiments. We measured the diffusion indices (mean diffusivity (MD), fractional anisotropy (FA), axial (λ∥) and radial (λ⊥) diffusivity) to investigate the changes in CMS rat brain during depression onset. Diffusion indices have shown to be useful to discriminate myelin damage from axon loss. DTI was performed in both control and CMS rats (n=10, in each group) and maps of FA, MD, λ∥ and λ⊥ diffusivity values were generated using in-house built software. The diffusion indices were calculated by region of interest (ROI) analysis in different brain regions like the frontal cortex, hippocampus, hypothalamus, cingulum, thalamus, caudate putamen, corpus callosum, cerebral peduncle and sensory motor cortex. The results showed signs of demyelination, reflected by increased MD, decreased FA and increased λ⊥. The results also suggest a possible role of edema or inflammation concerning the brain morphology in CMS rats. The overall finding using DTI suggests there might be a major role of loss of myelin sheath, which leads to disrupted connectivity between the limbic area and the prefrontal cortex during the onset of depression. Our findings indicate that interpretation of these indices may provide crucial information about the type and severity of mood disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    Science.gov (United States)

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK

  6. Radionuclide imaging of soft tissue neoplasms

    International Nuclear Information System (INIS)

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-01-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone

  7. Diffusion tensor imaging. Theory, sequence optimization and application in Alzheimer's disease

    International Nuclear Information System (INIS)

    Stieltjes, B.; Schlueter, M.; Hahn, H.K.; Wilhelm, T.; Essig, M.

    2003-01-01

    Diffusion tensor imaging (DTI) offers an in vivo view into the microarchitecture of the brain. Furthermore it allows a three-dimensional reconstruction of fiber tracts. We will discuss the principles of DTI and possibilities for sequence optimization. Finally we will give an overview of DTI and its application in Alzheimer's disease. (orig.) [de

  8. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.

    Science.gov (United States)

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  9. Improved characterisation of stroke phenotype using sequential MR diffusion tensor imaging at 3 tesla

    International Nuclear Information System (INIS)

    Green, H.; Price, C.J.S.; Warburton, E; Pena, A.; Donovan, T.; Carpenter, T.A.; Pickard, J.D.; Gillard, J.H.

    2002-01-01

    Full text: MR diffusion weighted imaging (DWI) enables the identification of early ischemia in acute stroke. Recent advances in DWI allow the identification of anisotropic white matter tracts with diffusion tensor imaging (DTI).We used DTI to study patients with recent stroke in a high field MR system to establish the type of phenotypic abnormalities demonstrated and to determine whether DTI could produce an alternative tool that might be used in studies of clinical outcome and recovery. 25 patients with recent stroke were imaged at 3 Telsa. The extent of abnormality on the conventional and tensor images were compared. Regions of interest were drawn within the area of ischemia and in the contralateral hemisphere. The relative anisotropy index for these areas was calculated and compared. DTI studies were repeated in 11 patients at 1 week and 8 patients at 3 months. DTI was successfully performed in 21 patients. There were 21 men, mean age 58 years (range 25-86 years) imaged at a median of 1 day (range 6 hours to 14 days) from the known time of stroke onset. 19/21 patients demonstrated DWI changes on the b = 1000s/mm2 trace image. DTI imaging was initially normal in 6 patients. The abnormalities consisted of actual disruption of white matter tracts in 13 patients. Ansiotropy indices were reduced to 0.21 in the ischaemic areas compared with 0.34 in normal appearing contralateral white matter (p = 0.016). 2 patients demonstrated distortion of white matter tracts around ischemia induced mass effect. One patient without tract disruption initially had progressed to tract disruption when re-imaged six days from stroke onset. A further patient had distortion of white matter tracts around an infarct and had a good clinical outcome. DTI is able to quantify the extent of white matter tract disruption in acute stroke. The extent or lack of tract destruction may be prognostically important as it provides information that is not available with conventional diffusion or perfusion

  10. Physics of tissue harmonic imaging by ultrasound

    Science.gov (United States)

    Jing, Yuan

    Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with

  11. A CAD system for cerebral glioma based on texture features in DT-MR images

    Energy Technology Data Exchange (ETDEWEB)

    De Nunzio, G., E-mail: giorgio.denunzio@unisalento.it [Dept. of Materials Science, University of Salento, Via Monteroni, 73100 Lecce (Italy); Pastore, G. [PO ' Vito Fazzi' , UOC Fisica Sanitaria, Lecce (Italy); Donativi, M. [Dept. of Materials Science, University of Salento, Via Monteroni, 73100 Lecce (Italy); Castellano, A.; Falini, A. [Neuroradiology Unit and CERMAC Scientific Institute and University Vita-Salute San Raffaele, Milan (Italy)

    2011-08-21

    Tumor cells in cerebral glioma invade the surrounding tissues preferentially along white-matter tracts, spreading beyond the abnormal area seen on conventional MR images. Diffusion Tensor Imaging can reveal large peritumoral abnormalities in gliomas, which are not apparent on MRI. Our aim was to characterize pathological vs. healthy tissue in DTI datasets by 3D statistical Texture Analysis, developing an automatic segmentation technique (CAD, Computer Assisted Detection) for cerebral glioma based on a supervised classifier (an artificial neural network). A Matlab GUI (Graphical User Interface) was created to help the physician in the assisted diagnosis process and to optimize interactivity with the segmentation system, especially for patient follow-up during chemotherapy, and for preoperative assessment of tumor extension. Preliminary tissue classification results were obtained for the p map (the calculated area under the ROC curve, AUC, was 0.96) and the FA map (AUC=0.98). Test images were automatically segmented by tissue classification; manual and automatic segmentations were compared, showing good concordance.

  12. A CAD system for cerebral glioma based on texture features in DT-MR images

    International Nuclear Information System (INIS)

    De Nunzio, G.; Pastore, G.; Donativi, M.; Castellano, A.; Falini, A.

    2011-01-01

    Tumor cells in cerebral glioma invade the surrounding tissues preferentially along white-matter tracts, spreading beyond the abnormal area seen on conventional MR images. Diffusion Tensor Imaging can reveal large peritumoral abnormalities in gliomas, which are not apparent on MRI. Our aim was to characterize pathological vs. healthy tissue in DTI datasets by 3D statistical Texture Analysis, developing an automatic segmentation technique (CAD, Computer Assisted Detection) for cerebral glioma based on a supervised classifier (an artificial neural network). A Matlab GUI (Graphical User Interface) was created to help the physician in the assisted diagnosis process and to optimize interactivity with the segmentation system, especially for patient follow-up during chemotherapy, and for preoperative assessment of tumor extension. Preliminary tissue classification results were obtained for the p map (the calculated area under the ROC curve, AUC, was 0.96) and the FA map (AUC=0.98). Test images were automatically segmented by tissue classification; manual and automatic segmentations were compared, showing good concordance.

  13. Diffusion tensor imaging of brain tumours at 3 T: A potential tool for assessing White matter tract invasion?

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.J.; Burnet, N.G.; Donovan, T.; Green, H.A.L.; Pena, A.; Antoun, N.M.; Pickard, J.D.; Carpenter, T.A.; Gillard, J.H. E-mail: jhg21@cam.ac.uk

    2003-06-01

    AIM: To determine whether diffusion tensor imaging (DTI) of brain tumours can demonstrate abnormalities distal to hyperintensities on T2-weighted images, and possibly relate these to tumour grade. MATERIALS AND METHODS: Twenty patients with histologically confirmed supratentorial tumours, both gliomas (high and low grade) and metastases, were imaged at 3 T using T2-weighted and DTI sequences. Regions of interest (ROI) were drawn within the tumour, in white matter at various distances from the tumour and in areas of abnormality on DTI that appeared normal on T2-weighted images. The relative anisotropy index (RAI)--a measure of white matter organization, was calculated for these ROI. RESULTS: The abnormality on DTI was larger than that seen on T2-weighted images in 10/13 patients (77%) with high-grade gliomas. New abnormalities were seen in the contralateral white matter in 4/13 (30%) of these cases. In these high-grade tumours the RAI in areas of white matter disruption with normal appearance on T2-weighted images was reduced (0.19{+-}0.04). Even excluding patients with previous radiotherapy this difference remains significant. In all non high-grade tumours (WHO grade II gliomas and metastases) the tumour extent on DTI was identical to the abnormalities shown on T2-weighted imaging and RAI measurements were not reduced (0.3{+-}0.04). CONCLUSIONS: Subtle white matter disruption can be identified using DTI in patients with high-grade gliomas. Such disruption is not identified in association with metastases or low-grade gliomas despite these tumours producing significant mass effect and oedema. We suggest the changes in DTI may be due to tumour infiltration and that the DTI may provide a useful method of detecting occult white matter invasion by gliomas.

  14. Diffusion tensor imaging of brain tumours at 3 T: A potential tool for assessing White matter tract invasion?

    International Nuclear Information System (INIS)

    Price, S.J.; Burnet, N.G.; Donovan, T.; Green, H.A.L.; Pena, A.; Antoun, N.M.; Pickard, J.D.; Carpenter, T.A.; Gillard, J.H.

    2003-01-01

    AIM: To determine whether diffusion tensor imaging (DTI) of brain tumours can demonstrate abnormalities distal to hyperintensities on T2-weighted images, and possibly relate these to tumour grade. MATERIALS AND METHODS: Twenty patients with histologically confirmed supratentorial tumours, both gliomas (high and low grade) and metastases, were imaged at 3 T using T2-weighted and DTI sequences. Regions of interest (ROI) were drawn within the tumour, in white matter at various distances from the tumour and in areas of abnormality on DTI that appeared normal on T2-weighted images. The relative anisotropy index (RAI)--a measure of white matter organization, was calculated for these ROI. RESULTS: The abnormality on DTI was larger than that seen on T2-weighted images in 10/13 patients (77%) with high-grade gliomas. New abnormalities were seen in the contralateral white matter in 4/13 (30%) of these cases. In these high-grade tumours the RAI in areas of white matter disruption with normal appearance on T2-weighted images was reduced (0.19±0.04). Even excluding patients with previous radiotherapy this difference remains significant. In all non high-grade tumours (WHO grade II gliomas and metastases) the tumour extent on DTI was identical to the abnormalities shown on T2-weighted imaging and RAI measurements were not reduced (0.3±0.04). CONCLUSIONS: Subtle white matter disruption can be identified using DTI in patients with high-grade gliomas. Such disruption is not identified in association with metastases or low-grade gliomas despite these tumours producing significant mass effect and oedema. We suggest the changes in DTI may be due to tumour infiltration and that the DTI may provide a useful method of detecting occult white matter invasion by gliomas

  15. NMR imaging of soft tissue tumors

    International Nuclear Information System (INIS)

    Laval-Jeantet, M.; Tobolsk, F.; Delepine, N.; Delepine, G.; Roger, B.; Cabanis, E.A.

    1986-01-01

    Preliminary findings on NMR imaging of 30 soft tissue tumors demonstrated the indispensable value of this examination (particularly when a surface antenna is used) for preoperative investigation and diagnosis of tumoral recurrence when compared with other radiologic techniques. The possible potential of NMR imaging for characterization of tissues, apart from lipoma or liposarcoma, cannot be evaluated at the present time [fr

  16. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  17. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    International Nuclear Information System (INIS)

    Sreedharan, Ruma Madhu; Menon, Amitha C.; Thomas, Sanjeev V.; James, Jija S.; Kesavadas, Chandrasekharan

    2015-01-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm 3 ) as compared to the right (1824.11 ± 582.81 mm 3 ) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  18. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Ruma Madhu [Government Medical College Hospital, Department of Radiology, Trivandrum, Kerala (India); Menon, Amitha C.; Thomas, Sanjeev V. [Sree Chitra, Thirunal Institute for Medical Sciences and Technology, Department of Neurology, Thiruvananthapuram, Kerala (India); James, Jija S.; Kesavadas, Chandrasekharan [SCTIMST, Department of Imaging Science and Interventional Radiology, Trivandrum, Kerala (India)

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm{sup 3}) as compared to the right (1824.11 ± 582.81 mm{sup 3}) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  19. Comparison of mechanisms involved in image enhancement of Tissue Harmonic Imaging

    Science.gov (United States)

    Cleveland, Robin O.; Jing, Yuan

    2006-05-01

    Processes that have been suggested as responsible for the improved imaging in Tissue Harmonic Imaging (THI) include: 1) reduced sensitivity to reverberation, 2) reduced sensitivity to aberration, and 3) reduction in the amplitude of diffraction side lobes. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed and solved using a time-domain code. The numerical simulations were validated through experiments with tissue mimicking phantoms. The impact of aberration from tissue-like media was determined through simulations using three-dimensional maps of tissue properties derived from datasets available through the Visible Female Project. The experiments and simulations demonstrated that second harmonic imaging suffers less clutter from reverberation and side-lobes but is not immune to aberration effects. The results indicate that side lobe suppression is the most significant reason for the improvement of second harmonic imaging.

  20. Imaging the hard/soft tissue interface.

    Science.gov (United States)

    Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M

    2014-03-01

    Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.

  1. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.; Loenneker, Thomas; Barta, Gerd; Bellemann, Matthias E.; Hennig, Juergen; Fischer, Joachim E.; Il'yasov, Kamil A.

    2006-01-01

    The objectives were to study the ''impact'' of the magnetic field strength on diffusion tensor imaging (DTI) metrics and also to determine whether magnetic-field-related differences in T2-relaxation times of brain tissue influence DTI measurements. DTI was performed on 12 healthy volunteers at 1.5 and 3.0 Tesla (within 2 h) using identical DTI scan parameters. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured at multiple gray and white matter locations. ADC and FA values were compared and analyzed for statistically significant differences. In addition, DTI measurements were performed at different echo times (TE) for both field strengths. ADC values for gray and white matter were statistically significantly lower at 3.0 Tesla compared with 1.5 Tesla (% change between -1.94% and -9.79%). FA values were statistically significantly higher at 3.0 Tesla compared with 1.5 Tesla (% change between +4.04 and 11.15%). ADC and FA values are not significantly different for TE=91 ms and TE=125 ms. Thus, ADC and FA values vary with the used field strength. Comparative clinical studies using ADC or FA values should consequently compare ADC or FA results with normative ADC or FA values that have been determined for the field strength used. (orig.)

  2. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly

    Science.gov (United States)

    Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

  3. Brain imaging studies of sleep disorder

    International Nuclear Information System (INIS)

    Nakamura, Masaki; Inoue, Yuichi

    2014-01-01

    Brain imaging studies of narcolepsy (NA)/cataplexy (CA), a typical sleep disorder, are summarized together with techniques of functional and structural imaging means. single photon emission CT (SPECT) is based on the distribution of tracers labeled by single photon emitters like 99m Tc and 123 I for seeing the blood flow and receptors. PET using positron emitters like 15 O and 18 F for blood flow and for glucose metabolism, respectively, is of higher resolution and more quantitative than SPECT. Functional MRI (fMRI) depicts the cerebral activity through signal difference by blood oxygenation level dependence (BOLD) effect, and MR spectroscopy (MRS) depicts and quantifies biomaterials through the difference of their nuclear chemical shifts in the magnetic field. Morphologic imaging studies involve the measurement of the volume of the region of interest by comparison with the reference region such as the whole brain volume. Voxel-based morphometry (VBM) has changed to its more advanced surface-based analysis (SBA) of T1-enhanced image. Diffusion tensor imaging (DTI) is based on the tissue water diffusion. Functional SPECT/PET studies have suggested the decrease of blood flow and metabolic activity in the hypothalamus (HT) and other related regions at the conscious resting state, and locally increased blood flow in cingulate gyrus (CG) and amygdaloid complex (AC) at affective CA/PA seizure. fMRI has suggested the hypoactivity of HT and hyperactivity of AC at the seizure. VBM-based studies have not given the consistent results, but DTI studies have suggested an important participation of AC at the seizure. (T.T.)

  4. MR imaging of soft-tissue masses

    International Nuclear Information System (INIS)

    Fujimoto, H.; Murakami, K.; Ichikawa, T.; Matsubara, T.; Tsumurai, Y.; Masuda, S.; Terauchi, M.; Ozawa, K.; Arimizu, N.

    1990-01-01

    This paper evaluates the ability of T2*-weighted gradient-field-echo (T2*FE) MR imaging to image soft-tissue masses. The series included 26 cases, including 17 benign tumors, four malignant tumors, and five others. Images were obtained on a 0.5-T magnet with T2*FE imaging (300/22 [repetition time msec/echo time msec], 20 degree). Results were compared with those of T1-weighted spin-echo (SE) images (500/20--40) and T2-weighted SE (T2SE) images (2,000/80). T2*FE images were similar to T2SE images with respect to the signal intensity and internal architecture of the masses in many cases. In some instances, they were superior to T2SE images in depicting special features such as a hemosiderin deposit or in delineating the masses and adjacent fat tissues. Shorter (about one-third or two-thirds) scanning time was required to obtain T2*FE images than to obtain T2SE images

  5. Combination of Resting state fMRI, DTI and sMRI Data to Discriminate Schizophrenia by N-way MCCA+jICA

    Directory of Open Access Journals (Sweden)

    Jing eSui

    2013-05-01

    Full Text Available Multimodal brain imaging data have shown increasing utility in answering both scientifically interesting and clinically relevant questions. Each brain imaging technique provides a different view of brain function or structure, while multimodal fusion capitalizes on the strength of each and may uncover hidden relationships that can merge findings from separate neuroimaging studies. However, most current approaches have focused on pair-wise fusion and there is still relatively little work on N-way data fusion and examination of the relationships among multiple data types. We recently developed an approach called mCCA+jICA" as a novel multi-way fusion method which is able to investigate the disease risk factors that are either shared or distinct across multiple modalities as well as the full correspondence across modalities. In this paper, we applied this model to combine resting state fMRI (amplitude of low-frequency fluctuation, ALFF, grey matter density (GM and DTI (fractional anisotropy, FA data, in order to elucidate the abnormalities underlying schizophrenia patients (SZs, n=35 relative to healthy controls (HCs, n=28. Both modality-common and modality-unique abnormal regions were identified in SZs, which were then used for successful classification for 7 modality-combinations, showing the potential for a broad applicability of the mCCA+jICA model and its results. In addition, a pair of GM-DTI components showed significant correlation with the positive symptom subscale of Positive and Negative Syndrome Scale (PANSS, suggesting that gray matter density changes in default model network along with white matter disruption in anterior thalamic radiation are associated with increased positive PANSS. Findings suggest the DTI anisotropy changes in frontal lobe may relate to the corresponding functional/structural changes in prefrontal cortex and superior temporal gyrus that are thought to play a role in the clinical expression of schizophrenia.

  6. POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES

    Directory of Open Access Journals (Sweden)

    DONGZHI LI

    2013-07-01

    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  7. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Provata, A.; Katsaloulis, P.; Verganelakis, D.A.

    2012-01-01

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  8. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    Science.gov (United States)

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  9. A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters

    Science.gov (United States)

    De Geeter, N.; Crevecoeur, G.; Dupré, L.; Van Hecke, W.; Leemans, A.

    2012-04-01

    Accurate simulations on detailed realistic head models are necessary to gain a better understanding of the response to transcranial magnetic stimulation (TMS). Hitherto, head models with simplified geometries and constant isotropic material properties are often used, whereas some biological tissues have anisotropic characteristics which vary naturally with frequency. Moreover, most computational methods do not take the tissue permittivity into account. Therefore, we calculate the electromagnetic behaviour due to TMS in a head model with realistic geometry and where realistic dispersive anisotropic tissue properties are incorporated, based on T1-weighted and diffusion-weighted magnetic resonance images. This paper studies the impact of tissue anisotropy, permittivity and frequency dependence, using the anisotropic independent impedance method. The results show that anisotropy yields differences up to 32% and 19% of the maximum induced currents and electric field, respectively. Neglecting the permittivity values leads to a decrease of about 72% and 24% of the maximum currents and field, respectively. Implementing the dispersive effects of biological tissues results in a difference of 6% of the maximum currents. The cerebral voxels show limited sensitivity of the induced electric field to changes in conductivity and permittivity, whereas the field varies approximately linearly with frequency. These findings illustrate the importance of including each of the above parameters in the model and confirm the need for accuracy in the applied patient-specific method, which can be used in computer-assisted TMS.

  10. In vivo 3D neuroanatomical evaluation of periprostatic nerve plexus with 3T-MR Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Panebianco, Valeria; Barchetti, Flavio; Sciarra, Alessandro; Marcantonio, Andrea; Zini, Chiara; Salciccia, Stefano; Collettini, Federico; Gentile, Vincenzo; Hamm, Bernard; Catalano, Carlo

    2013-01-01

    Objectives: To evaluate if Diffusion Tensor Imaging technique (DTI) can improve the visualization of periprostatic nerve fibers describing the location and distribution of entire neurovascular plexus around the prostate in patients who are candidates for prostatectomy. Materials and methods: Magnetic Resonance Imaging (MRI), including a 2D T2-weighted FSE sequence in 3 planes, 3D T2-weighted and DTI using 16 gradient directions and b = 0 and 1000, was performed on 36 patients. Three out of 36 patients were excluded from the analysis due to poor image quality (blurring N = 2, artifact N = 1). The study was approved by local ethics committee and all patients gave an informed consent. Images were evaluated by two radiologists with different experience in MRI. DTI images were analyzed qualitatively using dedicated software. Also 2D and 3D T2 images were independently considered. Results: 3D-DTI allowed description of the entire plexus of the periprostatic nerve fibers in all directions, while 2D and 3D T2 morphological sequences depicted part of the fibers, in a plane by plane analysis of fiber courses. DTI demonstrated in all patients the dispersion of nerve fibers around the prostate on both sides including the significant percentage present in the anterior and anterolateral sectors. Conclusions: DTI offers optimal representation of the widely distributed periprostatic plexus. If validated, it may help guide nerve-sparing radical prostatectomy

  11. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    Science.gov (United States)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Diffusion imaging and tractography of congenital brain malformations

    International Nuclear Information System (INIS)

    Wahl, Michael; Barkovich, A.J.; Mukherjee, Pratik

    2010-01-01

    Diffusion imaging is an MRI modality that measures the microscopic molecular motion of water in order to investigate white matter microstructure. The modality has been used extensively in recent years to investigate the neuroanatomical basis of congenital brain malformations. We review the basic principles of diffusion imaging and of specific techniques, including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI). We show how DTI and HARDI, and their application to fiber tractography, has elucidated the aberrant connectivity underlying a number of congenital brain malformations. Finally, we discuss potential uses for diffusion imaging of developmental disorders in the clinical and research realms. (orig.)

  13. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    Science.gov (United States)

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p laterality in children with a high degree of correlation between the two imaging modalities.

  14. Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18-22 mo of age: an MRI and DTI study.

    Science.gov (United States)

    Rose, Jessica; Cahill-Rowley, Katelyn; Vassar, Rachel; Yeom, Kristen W; Stecher, Ximena; Stevenson, David K; Hintz, Susan R; Barnea-Goraly, Naama

    2015-12-01

    Near-term brain structure was examined in preterm infants in relation to neurodevelopment. We hypothesized that near-term macrostructural brain abnormalities identified using conventional magnetic resonance imaging (MRI), and white matter (WM) microstructure detected using diffusion tensor imaging (DTI), would correlate with lower cognitive and motor development and slower, less-stable gait at 18-22 mo of age. One hundred and two very-low-birth-weight preterm infants (≤1,500 g birth weight; ≤32 wk gestational age) were recruited prior to routine near-term brain MRI at 36.6 ± 1.8 wk postmenstrual age. Cerebellar and WM macrostructure was assessed on conventional structural MRI. DTI was obtained in 66 out of 102 and WM microstructure was assessed using fractional anisotropy and mean diffusivity (MD) in six subcortical brain regions defined by DiffeoMap neonatal atlas. Neurodevelopment was assessed with Bayley-Scales-of-Infant-Toddler-Development, 3rd-Edition (BSID-III); gait was assessed using an instrumented mat. Neonates with cerebellar abnormalities identified using MRI demonstrated lower mean BSID-III cognitive composite scores (89.0 ± 10.1 vs. 97.8 ± 12.4; P = 0.002) at 18-22 mo. Neonates with higher DTI-derived left posterior limb of internal capsule (PLIC) MD demonstrated lower cognitive and motor composite scores (r = -0.368; P = 0.004; r = -0.354; P = 0.006) at 18-22 mo; neonates with higher genu MD demonstrated slower gait velocity (r = -0.374; P = 0.007). Multivariate linear regression significantly predicted cognitive (adjusted r(2) = 0.247; P = 0.002) and motor score (adjusted r(2) = 0.131; P = 0.017). Near-term cerebellar macrostructure and PLIC and genu microstructure were predictive of early neurodevelopment and gait.

  15. Predicting patterns of glioma recurrence using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Price, Stephen J.; Pickard, John D.; Jena, Rajesh; Burnet, Neil G.; Carpenter, T.A.; Gillard, Jonathan H.

    2007-01-01

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T 2 -weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  16. Predicting patterns of glioma recurrence using diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen J.; Pickard, John D. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Academic Neurosurgery Unit (United Kingdom); University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Jena, Rajesh; Burnet, Neil G. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Oncology (United Kingdom); Carpenter, T.A. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Gillard, Jonathan H. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Radiology (United Kingdom)

    2007-07-15

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T{sub 2}-weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  17. Bayesian regularization of diffusion tensor images

    DEFF Research Database (Denmark)

    Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif

    2007-01-01

    Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...

  18. Teaching the physics of medical imaging: an active learning approach involving imaging of biological tissue

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pihl, Michael Johannes; Lonsdale, Markus Nowak

    2008-01-01

    Introduction to medical imaging is an experimentally oriented course in the physics of medical imaging, where the students record, process and analyse 3D data of an unknown piece of formalin fixed animal tissue embedded in agar in order to estimate the tissue types present. Planar X-ray, CT, MRI......, ultrasound and SPECT/PET images are recorded, showing the tissue in very different ways. In order for the students to estimate the tissue type, they need to study the physical principles of the imaging modalities. The “true” answer is subsequently revealed by slicing the tissue....

  19. Exposure to internal muscle tissue loads under the ischial tuberosities during sitting is elevated at abnormally high or low body mass indices.

    Science.gov (United States)

    Sopher, Ran; Nixon, Jane; Gorecki, Claudia; Gefen, Amit

    2010-01-19

    Deep tissue injury (DTI) is a severe pressure ulcer characteristic of chairfast or bedfast individuals, such as those with impaired mobility or neurological disorders. A DTI differs from superficial pressure ulcers in that the onset of DTI occurs under intact skin, in skeletal muscle tissue overlying bony prominences, and progression of the wound continues subcutaneously until skin breakdown. Due to the nature of this silently progressing wound, it is highly important to screen potentially susceptible individuals for their risk of developing a DTI. Abnormally low and high values of the body mass index (BMI) have been proposed to be associated with pressure ulcers, but a clear mechanism is lacking. We hypothesize that during sitting, exposure to internal muscle tissue loads under the ischial tuberosities (IT) is elevated at abnormally high or low body mass indices. Our aims in this study were: (a) to develop biomechanical models of the IT region in the buttocks that represent an individual who is gaining or losing weight drastically. (b) To determine changes in internal tissue load measures: principal compression strain, strain energy density (SED), principal compression stress and von Mises stress versus the BMI. (c) To determine percentage volumes of muscle tissue exposed to critical levels of the above load measures, which were defined based on our previous animal and tissue engineered model experiments: strain>or=50%, stress>or=2 kPa, SED>or=0.5 kPa. A set of 21 finite element models, which represented the same individual, but with different BMI values within the normal range, above it and below it, was solved for the outcome measures listed above. The models had the same IT shape, size, distance between the IT, and (non-linear) mechanical properties for all soft tissues, but different thicknesses of gluteus muscles and fat tissue layers, corresponding to the BMI level. The resulted data indicated a trend of progressive increase in internal tissue loading

  20. Continuous wave terahertz reflection imaging of human colorectal tissue

    Science.gov (United States)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2013-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, non-ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue were obtained from surgeries performed at the University of Massachusetts Medical School, Worcester. Reflection measurements of thick sections of colorectal tissues, mounted in an aluminum sample holder, were obtained for both fresh and formalin fixed tissues. The two-dimensional reflection images were acquired by using an optically pumped far-infrared molecular gas laser operating at 584 GHz with liquid Helium cooled silicon bolometer detector. Using polarizers in the experiment both co-polarized and cross-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co- and cross-polarized images of both normal and formalin fixed tissues showed uniform terahertz response over the entire sample area. Initial measurements indicated a co-polarized reflectance of 16%, and a cross-polarized reflectance of 0.55% from fresh excisions of normal colonic tissues.

  1. In utero diffusion tensor imaging of the fetal brain: A reproducibility study.

    Science.gov (United States)

    Jakab, András; Tuura, Ruth; Kellenberger, Christian; Scheer, Ianina

    2017-01-01

    Our purpose was to evaluate the within-subject reproducibility of in utero diffusion tensor imaging (DTI) metrics and the visibility of major white matter structures. Images for 30 fetuses (20-33. postmenstrual weeks, normal neurodevelopment: 6 cases, cerebral pathology: 24 cases) were acquired on 1.5 T or 3.0 T MRI. DTI with 15 diffusion-weighting directions was repeated three times for each case, TR/TE: 2200/63 ms, voxel size: 1 ∗ 1 mm, slice thickness: 3-5 mm, b-factor: 700 s/mm 2 . Reproducibility was evaluated from structure detectability, variability of DTI measures using the coefficient of variation (CV), image correlation and structural similarity across repeated scans for six selected structures. The effect of age, scanner type, presence of pathology was determined using Wilcoxon rank sum test. White matter structures were detectable in the following percentage of fetuses in at least two of the three repeated scans: corpus callosum genu 76%, splenium 64%, internal capsule, posterior limb 60%, brainstem fibers 40% and temporooccipital association pathways 60%. The mean CV of DTI metrics ranged between 3% and 14.6% and we measured higher reproducibility in fetuses with normal brain development. Head motion was negatively correlated with reproducibility, this effect was partially ameliorated by motion-correction algorithm using image registration. Structures on 3.0 T had higher variability both with- and without motion correction. Fetal DTI is reproducible for projection and commissural bundles during mid-gestation, however, in 16-30% of the cases, data were corrupted by artifacts, resulting in impaired detection of white matter structures. To achieve robust results for the quantitative analysis of diffusivity and anisotropy values, fetal-specific image processing is recommended and repeated DTI is needed to ensure the detectability of fiber pathways.

  2. Stokes polarimetry imaging of dog prostate tissue

    Science.gov (United States)

    Kim, Jihoon; Johnston, William K., III; Walsh, Joseph T., Jr.

    2010-02-01

    Prostate cancer is the second leading cause of death in the United States in 2009. Radical prostatectomy (complete removal of the prostate) is the most common treatment for prostate cancer, however, differentiating prostate tissue from adjacent bladder, nerves, and muscle is difficult. Improved visualization could improve oncologic outcomes and decrease damage to adjacent nerves and muscle important for preservation of potency and continence. A novel Stokes polarimetry imaging (SPI) system was developed and evaluated using a dog prostate specimen in order to examine the feasibility of the system to differentiate prostate from bladder. The degree of linear polarization (DOLP) image maps from linearly polarized light illumination at different visible wavelengths (475, 510, and 650 nm) were constructed. The SPI system used the polarization property of the prostate tissue. The DOLP images allowed advanced differentiation by distinguishing glandular tissue of prostate from the muscular-stromal tissue in the bladder. The DOLP image at 650 nm effectively differentiated prostate and bladder by strong DOLP in bladder. SPI system has the potential to improve surgical outcomes in open or robotic-assisted laparoscopic removal of the prostate. Further in vivo testing is warranted.

  3. Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population.

    Science.gov (United States)

    Wei, Liang-Feng; Wang, Shou-Sen; Zheng, Zhao-Cong; Tian, Jun; Xue, Liang

    2017-05-01

    Diffusion tensor imaging (DTI) shows great advantage in the diagnosis of brain diseases, including cervical spinal cord (CSC) disease. This study aims to obtain the normal values of the DTI parameters for a healthy population and to establish a baseline for CSC disease diagnosis using DTI. A total of 36 healthy adults were subjected to magnetic resonance imaging (MRI) for the entire CSC using the Siemens 3.0 T MR System. Sagittal DTI acquisition was carried out with a single-shot spin-echo echo-planar imaging (EPI) sequence along 12 non-collinear directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels using a region of interest (ROI) method, following which they were correlated with parameters, like age and sex. Further, diffusion tensor tracking (DTT) was carried out to reconstruct the white matter fiber bundles of the CSC. The full and complete fiber bundle structure of a normal CSC was confirmed in both the T2-weighted and DTI images. The FA and ADC values were significantly negatively correlated with each other and showed strongly negative and positive correlations with age, respectively, but not with sex. Additionally, there was no significant difference between the FA and the ADC values at different cervical levels. The DTI technique can act as an important supplement to the conventional MRI technique for CSC observation. Moreover, the FA and ADC values can be used as sensitive parameters in the DTI study on the CSC by taking the effects of age into consideration.

  4. Magnetic resonance imaging of pediatric soft-tissue vascular anomalies

    International Nuclear Information System (INIS)

    Navarro, Oscar M.

    2016-01-01

    Magnetic resonance (MR) imaging can be used in the management of pediatric soft-tissue vascular anomalies for diagnosing and assessing extent of lesions and for evaluating response to therapy. MR imaging studies often involve a combination of T1- and T2-weighted images in addition to MR angiography and fat-suppressed post-contrast sequences. The MR imaging features of these vascular anomalies when combined with clinical findings can aid in diagnosis. In cases of complex vascular malformations and syndromes associated with vascular anomalies, MR imaging can be used to evaluate accompanying soft-tissue and bone anomalies. This article reviews the MR imaging protocols and appearances of the most common pediatric soft-tissue vascular anomalies. (orig.)

  5. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue

    Science.gov (United States)

    Antonopoulos, Markos; Stamatakos, Georgios

    2015-01-01

    Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided. PMID:26309390

  6. Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma?

    Science.gov (United States)

    Hiremath, S B; Muraleedharan, A; Kumar, S; Nagesh, C; Kesavadas, C; Abraham, M; Kapilamoorthy, T R; Thomas, B

    2017-04-01

    Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics ( p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas ( P = .049) from tumefactive demyelinating lesions. DTI metrics ( p : q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas ( P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive

  7. Noninvasive Doppler tissue measurement of pulmonary artery compliance in children with pulmonary hypertension.

    Science.gov (United States)

    Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin

    2006-04-01

    We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Dynamic compliance (C(dyn)) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. C(dyn) was calculated as: [(D(s) - D(d))/(D(d) x P(s))] x 10(4); where D(s) = systolic diameter, D(d) = diastolic diameter, and P(s) = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. C(dyn) was also measured in an additional 13 patients undergoing reactivity studies. Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, C(dyn) calculated by CMM DTI agreed with C(dyn) calculated using invasive techniques (23.4 +/- 16.8 vs 29.1 +/- 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower C(dyn) values than control subjects (P < .01). C(dyn) values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress-strain behavior of these arteries. Reactivity in C(dyn) agreed with reactivity measured using impedance techniques. The C(dyn) method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension.

  8. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging.

    Science.gov (United States)

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-02-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed during nerve conduction studies. Computed tomography and magnetic resonance imaging indicated bilateral L5 lumbar foraminal stenosis. DTI imaging was done. The extraforaminal values were decreased and tractography was interrupted in the foraminal region. Bilateral L5 vertebral foraminal stenosis was treated by transforaminal lumbar interbody fusion and the pain in both legs disappeared. The case indicates the value of DTI for diagnosing vertebral foraminal stenosis.

  9. The relationship between functional magnetic resonance imaging activation, diffusion tensor imaging, and training effects.

    Science.gov (United States)

    Farrar, Danielle; Budson, Andrew E

    2017-04-01

    While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.

  10. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    International Nuclear Information System (INIS)

    Tosun, Mesude; Inan, Nagihan; Sarisoy, Hasan Tahsin; Akansel, Gur; Gumustas, Sevtap; Gürbüz, Yeşim; Demirci, Ali

    2013-01-01

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm 2 . ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm 2 , the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade

  11. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, Mesude, E-mail: mesude.tosun@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Inan, Nagihan, E-mail: inannagihan@ekolay.net [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Sarisoy, Hasan Tahsin, E-mail: htssarisoy@yahoo.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Akansel, Gur, E-mail: gakansel@gmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gumustas, Sevtap, E-mail: svtgumustas@hotmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gürbüz, Yeşim, E-mail: yesimgurbuz2002@yahoo.com [Department of Pathology, School of Medicine, University of Kocaeli (Turkey); Demirci, Ali, E-mail: alidemirci@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey)

    2013-02-15

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm{sup 2}. ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm{sup 2}, the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade.

  12. Image-guided urologic surgery: intraoperative optical imaging and tissue interrogation (Conference Presentation)

    Science.gov (United States)

    Liao, Joseph C.

    2017-02-01

    Emerging optical imaging technologies can be integrated in the operating room environment during minimally invasive and open urologic surgery, including oncologic surgery of the bladder, prostate, and kidney. These technologies include macroscopic fluorescence imaging that provides contrast enhancement between normal and diseased tissue and microscopic imaging that provides tissue characterization. Optical imaging technologies that have reached the clinical arena in urologic surgery are reviewed, including photodynamic diagnosis, near infrared fluorescence imaging, optical coherence tomography, and confocal laser endomicroscopy. Molecular imaging represents an exciting future arena in conjugating cancer-specific contrast agents to fluorophores to improve the specificity of disease detection. Ongoing efforts are underway to translate optimal targeting agents and imaging modalities, with the goal to improve cancer-specific and functional outcomes.

  13. Functional imaging of small tissue volumes with diffuse optical tomography

    Science.gov (United States)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  14. Combined spectroscopic imaging and chemometric approach for automatically partitioning tissue types in human prostate tissue biopsies

    Science.gov (United States)

    Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil

    2001-07-01

    We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.

  15. Medio-dorsal thalamus and confabulations: Evidence from a clinical case and combined MRI/DTI study

    Directory of Open Access Journals (Sweden)

    Valeria Onofrj

    2016-01-01

    Full Text Available The Medio-Dorsal Nuclei (MDN including the thalamic magnocellular and parvocellular thalamic regions has been implicated in verbal memory function. In a 77 year old lady, with a prior history of a clinically silent infarct of the left MDN, we observed the acute onset of spontaneous confabulations when an isolated new infarct occurred in the right MDN. The patient and five age-matched healthy subjects underwent Magnetic Resonance Imaging (MRI and Diffusion Tensor Imaging (DTI. The thalamic lesions were localized by overlapping Morel Thalamic Atlas with structural MRI data. DTI was used to assess: i white matter alterations (Fractional Anisotropy, FA within fibers connecting the ischemic areas to cortex; ii the micro-structural damage (Mean Diffusivity within the thalamic sub-regions defined by their structural connectivity to the Anterior Cingulate Cortex (ACC and to the temporal lobes. These target regions were chosen because their damage is considered associated with the appearance of confabulations. Thalamic lesions were localized within the parvocellular regions of the right and left MDNs. The structural connectivity study showed that the fiber tracts, connecting the bilaterally damaged thalamic regions with the frontal cortex, corresponded to the anterior thalamic radiations (ATR. FA within these tracts was significantly lower in the patient as compared to controls. Mean diffusivity within the MDNs projecting to Broadman area (BA 24, BA25 and BA32 of ACC was significantly higher in the patient than in control group. Mean diffusivity values within the MDN projecting to temporal lobes in contrast were not different between patient and controls. Our findings suggest the involvement of bilateral MDNs projections to ACC in the genesis of confabulations and help provide clarity to the longstanding debate on the origin of confabulations.

  16. Magnetic resonance imaging of peripheral soft tissue hemangiomas

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M C; Stull, M A; Patt, R H; Freedman, M T [Georgetown Univ., Washington, DC (USA). Dept. of Radiology; Teitelbaum, G P [Georgetown Univ., Washington, DC (USA). Dept. of Radiology University of Southern California, Los Angeles (USA). Dept. of Radiology; Lack, E E [Georgetown Univ., Washington, DC (USA). Dept. of Pathology; Bogumill, G P [Georgetown Univ., Washington, DC (USA). Dept. of Orthopedic Surgery

    1990-10-01

    Ten patients with soft tissue hemangiomas outside the central nervous system were studied with MR imaging. Eight patients were studied at 1.5 Tesla (T) with T{sub 1}-weighted and triple echo T{sub 2}-weighted sequences. Two additional patients were imaged on a 0.5-T system. The MR images were correlated with images from other modalities. It was found that prolonged T{sub 2}-weighted imaging together with standard spin echo T{sub 1} and T{sub 2} pulse sequences is a good substitute for contrast-enhanced CT and arteriographic evaluation of soft tissue hemangiomas. (orig./DG).

  17. Interactive classification and content-based retrieval of tissue images

    Science.gov (United States)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  18. Risk Factors for Pressure Ulcers Including Suspected Deep Tissue Injury in Nursing Home Facility Residents: Analysis of National Minimum Data Set 3.0.

    Science.gov (United States)

    Ahn, Hyochol; Cowan, Linda; Garvan, Cynthia; Lyon, Debra; Stechmiller, Joyce

    2016-04-01

    To provide information on risk factors associated with pressure ulcers (PrUs), including suspected deep tissue injury (sDTI), in nursing home residents in the United States. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Examine the literature related to risk factors for the development of PrUs.2. Compare risk factors associated with the prevalence of PrUs and sDTI from the revised Minimum Data Set 3.0 2012 using a modified Defloor's conceptual model of PrUs as a theoretical framework. This study aims to characterize and compare risk factors associated with pressure ulcers (PrUs), including suspected deep tissue injury (sDTI), in nursing home (NH) residents in the United States. Secondary analysis of the 2012 Minimum Data Set (MDS 3.0). Medicare- or Medicaid-certified NHs in the United States. Nursing home residents (n = 2,936,146) 18 years or older with complete PrU data, who received comprehensive assessments from January to December 2012. Pressure ulcer by stage was the outcome variable. Explanatory variables (age, gender, race and ethnicity, body mass index, skin integrity, system failure, disease, infection, mobility, and cognition) from the MDS 3.0 were aligned with the 4 elements of Defloor's conceptual model: compressive forces, shearing forces, tissue tolerance for pressure, and tissue tolerance for oxygen. Of 2,936,146 NH residents who had complete data for PrU, 89.9% had no PrU; 8.4% had a Stage 2, 3, or 4 or unstagable PrU; and 1.7% had an sDTI. The MDS variables corresponding to the 4 elements of Defloor's model were significantly predictive of both PrU and sDTI. Black residents had the highest risk of any-stage PrU, and Hispanic residents had the highest risk of sDTI. Skin integrity, system failure, infection, and disease risk factors had larger effect sizes for sDTI than for other PrU stages

  19. Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.

    Science.gov (United States)

    Yang, Alicia W; Jensen, Jens H; Hu, Caixia C; Tabesh, Ali; Falangola, Maria F; Helpern, Joseph A

    2013-02-01

    To evaluate the cerebral spinal fluid (CSF) partial volume effect on diffusional kurtosis imaging (DKI) metrics in white matter and cortical gray matter. Four healthy volunteers participated in this study. Standard DKI and fluid-attenuated inversion recovery (FLAIR) DKI experiments were performed using a twice-refocused-spin-echo diffusion sequence. The conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, D[symbol in text], D[symbol in text] together with DKI metrics of mean, axial, and radial kurtosis (MK, K[symbol in text], K[symbol in text], were measured and compared. Single image slices located above the lateral ventricles, with similar anatomical features for each subject, were selected to minimize the effect of CSF from the ventricles. In white matter, differences of less than 10% were observed between diffusion metrics measured with standard DKI and FLAIR-DKI sequences, suggesting minimal CSF contamination. For gray matter, conventional DTI metrics differed by 19% to 52%, reflecting significant CSF partial volume effects. Kurtosis metrics, however, changed by 11% or less, indicating greater robustness with respect to CSF contamination. Kurtosis metrics are less sensitive to CSF partial voluming in cortical gray matter than conventional diffusion metrics. The kurtosis metrics may then be more specific indicators of changes in tissue microstructure, provided the effect sizes for the changes are comparable. Copyright © 2012 Wiley Periodicals, Inc.

  20. The role of fat tissues in the diagnosis of musculoskeletal imaging

    International Nuclear Information System (INIS)

    Kim, Sue Yon; Park, Ji Seon; Ryu, Kyung Nam; Jin, Wook

    2007-01-01

    Fat tissue is a unique component of the soft tissue, and this fat tissue lies primarily in the spaces beneath the normal subcutaneous tissue, and within or around the organs. An entire lesion, or just a part of it, can be composed of these fat tissues. Therefore, it plays an important role in the diagnostic workup of suspected musculoskeletal diseases as well as in the differentiation between them. Fat tissue is shown as low density on plain radiographs, decreased attenuation on CT images, high signal intensity on T1-weighted images and it is hypoechoic on sonography. Because of its distinctive features, fat tissue is easy to verify on various modalities. In addition, recent image studies like fat-suppressed imaging and STIR imaging provide more precise information of the lesion that involve fat tissue. In this article, we have reviewed the differentiation of musculoskeletal diseases, including the various tumorous lesion and tumor-like lesions involving the fat tissue

  1. Characterization of human breast cancer tissues by infrared imaging.

    Science.gov (United States)

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  2. In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury.

    Science.gov (United States)

    Sundberg, Laura M; Herrera, Juan J; Narayana, Ponnada A

    2010-10-01

    Comprehensive in vivo longitudinal studies that include multi-modal magnetic resonance imaging (MRI) and a battery of behavioral assays to assess functional outcome were performed at multiple time points up to 56 days post-traumatic spinal cord injury (SCI) in rodents. The MRI studies included high-resolution structural imaging for lesion volumetry, and diffusion tensor imaging (DTI) for probing the white matter integrity. The behavioral assays included open-field locomotion, grid walking, inclined plane, computerized activity box performance, and von Frey filament tests. Additionally, end-point histology was assessed for correlation with both the MRI and behavioral data. The temporal patterns of the lesions were documented on structural MRI. DTI studies showed significant changes in white matter that is proximal to the injury epicenter and persisted to day 56. White matter in regions up to 1 cm away from the injury epicenter that appeared normal on conventional MRI also exhibited changes that were indicative of tissue damage, suggesting that DTI is a more sensitive measure of the evolving injury. Correlations between DTI and histology after SCI could not be firmly established, suggesting that injury causes complex pathological changes in multiple tissue components that affect the DTI measures. Histological evidence confirmed a significant decrease in myelin and oligodendrocyte presence 56 days post-SCI. Multiple assays to evaluate aspects of functional recovery correlated with histology and DTI measures, suggesting that damage to specific white matter tracts can be assessed and tracked longitudinally after SCI.

  3. Artificial neural net system for interactive tissue classification with MR imaging and image segmentation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Silbiger, M.; Naylor, C.; Brown, K.

    1990-01-01

    This paper reports on the development of interactive methods for MR tissue classification that permit mathematically rigorous methods for three-dimensional image segmentation and automatic organ/tumor contouring, as required for surgical and RTP planning. The authors investigate a number of image-intensity based tissue- classification methods that make no implicit assumptions on the MR parameters and hence are not limited by image data set. Similarly, we have trained artificial neural net (ANN) systems for both supervised and unsupervised tissue classification

  4. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    CERN Document Server

    Aamir, R; Bateman, C.J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.K.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; Ruiter, N.de; Gieseg, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P.J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S.J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.J.; Hodge, K.

    2014-01-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we ...

  5. DTI fiber tractography of cerebro-cerebellar pathways and clinical evaluation of ataxia in childhood posterior fossa tumor survivors.

    Science.gov (United States)

    Oh, Myung Eun; Driever, Pablo Hernáiz; Khajuria, Rajiv K; Rueckriegel, Stefan Mark; Koustenis, Elisabeth; Bruhn, Harald; Thomale, Ulrich-Wilhelm

    2017-01-01

    Pediatric posterior fossa (PF) tumor survivors experience long-term motor deficits. Specific cerebrocerebellar connections may be involved in incidence and severity of motor dysfunction. We examined the relationship between long-term ataxia as well as fine motor function and alteration of differential cerebellar efferent and afferent pathways using diffusion tensor imaging (DTI) and tractography. DTI-based tractography was performed in 19 patients (10 pilocytic astrocytoma (PA) and 9 medulloblastoma patients (MB)) and 20 healthy peers. Efferent Cerebello-Thalamo-Cerebral (CTC) and afferent Cerebro-Ponto-Cerebellar (CPC) tracts were reconstructed and analyzed concerning fractional anisotropy (FA) and volumetric measurements. Clinical outcome was assessed with the International Cooperative Ataxia Rating Scale (ICARS). Kinematic parameters of fine motor function (speed, automation, variability, and pressure) were obtained by employing a digitizing graphic tablet. ICARS scores were significantly higher in MB patients than in PA patients. Poorer ICARS scores and impaired fine motor function correlated significantly with volume loss of CTC pathway in MB patients, but not in PA patients. Patients with pediatric post-operative cerebellar mutism syndrome showed higher loss of CTC pathway volume and were more atactic. CPC pathway volume was significantly reduced in PA patients, but not in MB patients. Neither relationship was observed between the CPC pathway and ICARS or fine motor function. There was no group difference of FA values between the patients and healthy peers. Reduced CTC pathway volumes in our cohorts were associated with severity of long-term ataxia and impaired fine motor function in survivors of MBs. We suggest that the CTC pathway seems to play a role in extent of ataxia and fine motor dysfunction after childhood cerebellar tumor treatment. DTI may be a useful tool to identify relevant structures of the CTC pathway and possibly avoid surgically induced long

  6. Diffusion Tensor Imaging-Based Research on Human White Matter Anatomy

    Directory of Open Access Journals (Sweden)

    Ming-guo Qiu

    2012-01-01

    Full Text Available The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers were acquired; the DTI data were processed using DtiStudio and FSL software. The FA and color FA maps were compared with the sectional images of the Chinese visible human dataset. The probability maps of the corticospinal tract were generated as a quantitative measure of reproducibility for each voxel of the stereotaxic space. The fibers displayed by the diffusion tensor imaging were well consistent with the sectional images of the Chinese visible human dataset and the existing anatomical knowledge. The three-dimensional architecture of the white matter fibers could be clearly visualized on the diffusion tensor tractography. The diffusion tensor tractography can establish the 3D probability maps of the corticospinal tract, in which the degree of intersubject reproducibility of the corticospinal tract is consistent with the previous architectonic report. DTI is a reliable method of studying the fiber connectivity in human brain, but it is difficult to identify the tiny fibers. The probability maps are useful for evaluating and identifying the corticospinal tract in the DTI, providing anatomical information for the preoperative planning and improving the accuracy of surgical risk assessments preoperatively.

  7. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    International Nuclear Information System (INIS)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-01-01

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica

  8. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang, E-mail: njmu_wangdehang@126.com

    2015-04-15

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica.

  9. Automatic tissue image segmentation based on image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  10. Imaging of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Vanel, D.; Le Treut, A.

    1988-01-01

    Modern imaging of soft tissue sarcomas now includes ultrasounds, CT and MRI. These new techniques allow a better evaluation of initial local extension, of the response to treatment and are able to detect local recurrences early [fr

  11. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  12. Diffusion tensor imaging in patients with obstetric antiphospholipid syndrome without neuropsychiatric symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabricio R. [University Hospital Center of Nimes and Research Team EA 2415, Department of Radiology (France); Macri, Francesco; Beregi, Jean-Paul [University Hospital Center of Nimes and Research Team EA 2415, Department of Radiology (France); Montpellier University, Faculty of Medicine, Montpellier (France); Jackowski, Marcel P. [University of Sao Paulo, Department of Computer Science, Institute of Mathematics and Statistics, Sao Paulo (Brazil); Kostis, William J. [Harvard Medical School, Massachusetts General Hospital, Boston, MA (United States); Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Gris, Jean-Christophe [Montpellier University, Faculty of Medicine, Montpellier (France); University Hospital Center of Nimes, Department and Laboratory of Hematology (France); Mekkaoui, Choukri [University Hospital Center of Nimes and Research Team EA 2415, Department of Radiology (France); Montpellier University, Faculty of Medicine, Montpellier (France); Harvard Medical School, Massachusetts General Hospital, Boston, MA (United States); Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States)

    2016-04-15

    To evaluate white matter (WM) integrity in neurologically asymptomatic antiphospholipid syndrome (APS) using diffusion tensor imaging (DTI) in women with no thrombotic history but with pregnancy loss. Imaging was performed with a 3 T scanner using structural MRI (T1-weighted, fluid attenuation inversion recovery [FLAIR]) and DTI sequences in 66 women with APS and a control group of 17 women. Women with APS were further categorized as positive for lupus anticoagulant (LA) and/or aβ2GPI-G antibodies (LA/aβ2GPI-G-positive, N = 29) or negative (LA/aβ2GPI-G-negative, N = 37) for both. Tract-based spatial statistics of standard DTI-based indices were compared among groups. Women with APS had significantly lower fractional anisotropy (p < 0.05) associated with higher mean diffusivity and radial diffusivity compared to the control group. There was a stronger association of abnormal DTI features among women positive for LA and/or aβ2GPI-IgG antibodies than those who were negative. DTI appears sensitive to subtle WM changes in women with APS with no thrombotic history but with pregnancy loss, compatible with alterations in axonal structure and in the myelin sheath. The preferential association of abnormal DTI features with the two most pathogenic aPLAbs reinforces the pathophysiological relevance of our findings. (orig.)

  13. Diffusion tensor imaging in patients with obstetric antiphospholipid syndrome without neuropsychiatric symptoms

    International Nuclear Information System (INIS)

    Pereira, Fabricio R.; Macri, Francesco; Beregi, Jean-Paul; Jackowski, Marcel P.; Kostis, William J.; Gris, Jean-Christophe; Mekkaoui, Choukri

    2016-01-01

    To evaluate white matter (WM) integrity in neurologically asymptomatic antiphospholipid syndrome (APS) using diffusion tensor imaging (DTI) in women with no thrombotic history but with pregnancy loss. Imaging was performed with a 3 T scanner using structural MRI (T1-weighted, fluid attenuation inversion recovery [FLAIR]) and DTI sequences in 66 women with APS and a control group of 17 women. Women with APS were further categorized as positive for lupus anticoagulant (LA) and/or aβ2GPI-G antibodies (LA/aβ2GPI-G-positive, N = 29) or negative (LA/aβ2GPI-G-negative, N = 37) for both. Tract-based spatial statistics of standard DTI-based indices were compared among groups. Women with APS had significantly lower fractional anisotropy (p < 0.05) associated with higher mean diffusivity and radial diffusivity compared to the control group. There was a stronger association of abnormal DTI features among women positive for LA and/or aβ2GPI-IgG antibodies than those who were negative. DTI appears sensitive to subtle WM changes in women with APS with no thrombotic history but with pregnancy loss, compatible with alterations in axonal structure and in the myelin sheath. The preferential association of abnormal DTI features with the two most pathogenic aPLAbs reinforces the pathophysiological relevance of our findings. (orig.)

  14. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  15. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    Science.gov (United States)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  16. Structural connectivity via the tensor-based morphometry

    OpenAIRE

    Kim, S.; Chung, M.; Hanson, J.; Avants, B.; Gee, J.; Davidson, R.; Pollak, S.

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε-neighbor ...

  17. Cerebral metabolic and structural alterations in hereditary spastic paraplegia with thin corpus callosum assessed by MRS and DTI

    International Nuclear Information System (INIS)

    Dreha-Kulaczewski, Steffi; Dechent, Peter; Helms, Gunther; Frahm, Jens; Gaertner, Jutta; Brockmann, Knut

    2006-01-01

    Hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) is a complicated form of autosomal-recessive hereditary spastic paraplegia. Characteristic clinical features comprise progressive spastic gait, cognitive impairment, and ataxia. Diagnostic MRI findings include thinning of the corpus callosum and non-progressive white matter (WM) alterations. To study the extent of axonal involvement, we performed localized proton magnetic resonance spectroscopy (MRS) of the cerebral WM and cortical grey matter (GM) in a patient with HSP-TCC at 20 and 25 years of age. The second investigation included diffusion tensor imaging (DTI). While MRS of the GM was normal, affected WM was characterized by major metabolic alterations such as reduced concentrations of N-acetylaspartate and N-acetylaspartyl-glutamate, creatine and phosphocreatine, and choline-containing compounds as well as elevated levels of myo-inositol. These abnormalities showed progression over a period of 5 years. DTI revealed increased mean diffusivity as well as reduced fractional anisotropy in periventricular WM. The metabolic and structural findings are consistent with progressive neuroaxonal loss in the WM accompanied by astrocytic proliferation - histopathological changes known to occur in HSP-TCC. Our results are in agreement with the hypothesis that the primary pathological process in HSP-TCC affects the axon, possibly due to impaired axonal trafficking. (orig.)

  18. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue.

    Science.gov (United States)

    Azaripour, Adriano; Lagerweij, Tonny; Scharfbillig, Christina; Jadczak, Anna Elisabeth; Willershausen, Brita; Van Noorden, Cornelis J F

    2016-08-01

    For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Use of Diffusion Spectrum imaging in preliminary longitudinal evaluation of Amyotrophic Lateral Sclerosis: development of an imaging biomarker

    Directory of Open Access Journals (Sweden)

    Kumar eAbhinav

    2014-04-01

    Full Text Available Previous diffusion tensor imaging (DTI studies have shown white matter pathology in ALS, predominantly in the motor pathways. Further these studies have shown that DTI can be used longitudinally to track pathology over time, making white matter pathology a candidate as an outcome measure in future trials. DTI has demonstrated application in group studies, however its derived indices, for example fractional anisotropy, are susceptible to partial volume effects, making its role questionable in examining individual progression. We hypothesize that changes in the white matter are present in ALS beyond the motor tracts, and that the affected pathways and associated pattern of disease progression can be tracked longitudinally using automated diffusion connectometry analysis. Connectometry analysis is based on diffusion spectrum imaging (DSI and overcomes the limitations of a conventional tractography approach and DTI. The identified affected white matter tracts can then be assessed in a targeted fashion using High definition fiber tractography (a novel white matter MR imaging technique. Changes in quantitative and qualitative markers over time could then be correlated with clinical progression.We illustrate these principles towards developing an imaging biomarker for demonstrating individual progression, by presenting results for five ALS patients, including with longitudinal data in two. Preliminary analysis demonstrated a number of changes bilaterally and asymmetrically in motoric and extramotoric white matter pathways. Further the limbic system was also affected possibly explaining the cognitive symptoms in ALS. In the two longitudinal subjects, the white matter changes were less extensive at baseline, although there was evidence of disease progression in a frontal pattern with a relatively spared postcentral gyrus, consistent with the known pathology in ALS.

  20. In-utero three dimension high resolution fetal brain diffusion tensor imaging.

    Science.gov (United States)

    Jiang, Shuzhou; Xue, Hui; Counsell, Serena; Anjari, Mustafa; Allsop, Joanna; Rutherford, Mary; Rueckert, Daniel; Hajnal, Joseph V

    2007-01-01

    We present a methodology to achieve 3D high resolution in-utero fetal brain DTI that shows excellent ADC as well as promising FA maps. After continuous DTI scanning to acquire a repeated series of parallel slices with 15 diffusion directions, image registration is used to realign the images to correct for fetal motion. Once aligned, the diffusion images are treated as irregularly sampled data where each voxel is associated with an appropriately rotated diffusion direction, and used to estimate the diffusion tensor on a regular grid. The method has been tested successful on eight fetuses and has been validated on adults imaged at 1.5T.

  1. Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study.

    Science.gov (United States)

    Pohl, Kilian M; Sullivan, Edith V; Rohlfing, Torsten; Chu, Weiwei; Kwon, Dongjin; Nichols, B Nolan; Zhang, Yong; Brown, Sandra A; Tapert, Susan F; Cummins, Kevin; Thompson, Wesley K; Brumback, Ty; Colrain, Ian M; Baker, Fiona C; Prouty, Devin; De Bellis, Michael D; Voyvodic, James T; Clark, Duncan B; Schirda, Claudiu; Nagel, Bonnie J; Pfefferbaum, Adolf

    2016-04-15

    Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development

  2. Pitfalls in soft tissue sarcoma imaging: chronic expanding hematomas.

    Science.gov (United States)

    Jahed, Kiarash; Khazai, Behnaz; Umpierrez, Monica; Subhawong, Ty K; Singer, Adam D

    2018-01-01

    Solid or nodular enhancement is typical of soft tissue sarcomas although high grade soft tissue sarcomas and those with internal hemorrhage often appear heterogeneous with areas of nonenhancement and solid or nodular enhancement. These MRI findings often prompt an orthopedic oncology referral, a biopsy or surgery. However, not all masses with these imaging findings are malignant. We report the multimodality imaging findings of two surgically proven chronic expanding hematomas (CEH) with imaging features that mimicked sarcomas. A third case of nonenhancing CEH of the lower extremity is also presented as a comparison. It is important that in the correct clinical scenario with typical imaging findings, the differential diagnosis of a chronic expanding hematoma be included in the workup of these patients. An image-guided biopsy of nodular tissue within such masses that proves to be negative for malignancy should not necessarily be considered discordant. A correct diagnosis may prevent a morbid unnecessary surgery and may indicate the need for a conservative noninvasive follow-up with imaging.

  3. Imaging of single cells and tissue using MeV ions

    International Nuclear Information System (INIS)

    Watt, F.; Bettiol, A.A.; Kan, J.A. van; Ynsa, M.D.; Ren Minqin; Rajendran, R.; Cui Huifang; Sheu, F.-S.; Jenner, A.M.

    2009-01-01

    With the attainment of sub-100 nm high energy (MeV) ion beams, comes the opportunity to image cells and tissue at nano-dimensions. The advantage of MeV ion imaging is that the ions will penetrate whole cells, or relatively thick tissue sections, without any significant loss of resolution. In this paper, we demonstrate that whole cells (cultured N2A neuroblastoma cells ATCC) and tissue sections (rabbit pancreas tissue) can be imaged at sub-100 nm resolutions using scanning transmission ion microscopy (STIM), and that sub-cellular structural details can be identified. In addition to STIM imaging we have also demonstrated for the first time, that sub-cellular proton induced fluorescence imaging (on cultured N2A neuroblastoma cells ATCC) can also be carried out at resolutions of 200 nm, compared with 300-400 nm resolutions achieved by conventional optical fluorescence imaging. The combination of both techniques offers a potentially powerful tool in the quest for elucidating cell function, particularly when it should be possible in the near future to image down to sub-50 nm.

  4. Three-dimensional CT imaging of soft-tissue anatomy

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.; Kuhlman, J.E.

    1988-01-01

    Three-dimensional display of computed tomographic data has been limited to skeletal structures. This was in part related to the reconstruction algorithm used, which relied on a binary classification scheme. A new algorithm, volumetric rendering with percentage classification, provides the ability to display three-dimensional images of muscle and soft tissue. A review was conducted of images in 35 cases in which muscle and/or soft tissue were part of the clinical problem. In all cases, individual muscle groups could be clearly identified and discriminated. Branching vessels in the range of 2.3 mm could be identified. Similarly, lymph nodes could be clearly defined. High-resolution three-dimensional images were found to be useful both in providing an increased understanding of complex muscle and soft tissue anatomy and in surgical planning

  5. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging.

    Science.gov (United States)

    Hamaide, Julie; De Groof, Geert; Van Steenkiste, Gwendolyn; Jeurissen, Ben; Van Audekerke, Johan; Naeyaert, Maarten; Van Ruijssevelt, Lisbeth; Cornil, Charlotte; Sijbers, Jan; Verhoye, Marleen; Van der Linden, Annemie

    2017-02-01

    Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas

  6. Clinical evaluation of Synthetic Aperture Sequential Beamforming and Tissue Harmonic Imaging

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Hemmsen, Martin Christian; Hansen, Peter Møller

    2014-01-01

    This study determines if the data reduction achieved by the combination Synthetic Aperture Sequential Beamforming (SASB) and Tissue Harmonic Imaging (THI) affects image quality. SASB-THI was evaluated against the combination of Dynamic Received Focusing and Tissue Harmonic Imaging (DRF-THI). A BK...... equally good image quality although a data reduction of 64 times is achieved with SASB-THI.......This study determines if the data reduction achieved by the combination Synthetic Aperture Sequential Beamforming (SASB) and Tissue Harmonic Imaging (THI) affects image quality. SASB-THI was evaluated against the combination of Dynamic Received Focusing and Tissue Harmonic Imaging (DRF-THI). A BK...... liver pathology were scanned to set a clinical condition, where ultrasonography is often performed. A total of 114 sequences were recorded and evaluated by five radiologists. The evaluators were blinded to the imaging technique, and each sequence was shown twice with different left-right positioning...

  7. Preoperative Visualization of Cranial Nerves in Skull Base Tumor Surgery Using Diffusion Tensor Imaging Technology.

    Science.gov (United States)

    Ma, Jun; Su, Shaobo; Yue, Shuyuan; Zhao, Yan; Li, Yonggang; Chen, Xiaochen; Ma, Hui

    2016-01-01

    To visualize cranial nerves (CNs) using diffusion tensor imaging (DTI) with special parameters. This study also involved the evaluation of preoperative estimates and intraoperative confirmation of the relationship between nerves and tumor by verifying the accuracy of visualization. 3T magnetic resonance imaging scans including 3D-FSPGR, FIESTA, and DTI were used to collect information from 18 patients with skull base tumor. DTI data were integrated into the 3D slicer for fiber tracking and overlapped anatomic images to determine course of nerves. 3D reconstruction of tumors was achieved to perform neighboring, encasing, and invading relationship between lesion and nerves. Optic pathway including the optic chiasm could be traced in cases of tuberculum sellae meningioma and hypophysoma (pituitary tumor). The oculomotor nerve, from the interpeduncular fossa out of the brain stem to supraorbital fissure, was clearly visible in parasellar meningioma cases. Meanwhile, cisternal parts of trigeminal nerve and abducens nerve, facial nerve were also imaged well in vestibular schwannomas and petroclival meningioma cases. The 3D-spatial relationship between CNs and skull base tumor estimated preoperatively by tumor modeling and tractography corresponded to the results determined during surgery. Supported by DTI and 3D slicer, preoperative 3D reconstruction of most CNs related to skull base tumor is feasible in pathological circumstances. We consider DTI Technology to be a useful tool for predicting the course and location of most CNs, and syntopy between them and skull base tumor.

  8. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer's disease in patients with only mild white matter alterations on T2-weighted images

    International Nuclear Information System (INIS)

    Fu, Jian-Liang; Zhang, Ting; Chang, Cheng; Zhang, Yu-Zhen; Li, Wen-Bin

    2012-01-01

    Background: Diffusion tensor imaging (DTI) is a form of functional magnetic resonance imaging (MRI) that allows examination of the microstructural integrity of white matter in the brain. Dementia is a neurodegenerative disease, and DTI can provide indirect insights of the microstructural characteristics of brains in individuals with different forms of dementia. Purpose: To evaluate the value of DTI in the diagnosis and differential diagnosis of patients with subcortical ischemic vascular dementia (SIVD) and Alzheimer's disease (AD). Material and Methods: The study included 40 patients (20 AD patients and 20 SIVD patients) and 20 normal controls (NC). After routine MRI and DTI, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured and compared in regions of interest (ROI). Results: Compared to NC and AD patients, SIVD patients had lower FA values and higher ADC values in the inferior-fronto-occipital fascicles (IFOF), genu of the corpus callosum (GCC), splenium of the corpus callosum (SCC), and superior longitudinal fasciculus (SLF). Compared to controls and SIVD patients, AD patients had lower FA values in the anterior frontal lobe, temporal lobe, hippocampus, IFOF, GCC, and CF; and higher ADC values in the temporal lobe and hippocampus. Conclusion: DTI can be used to estimate the white matter impairment in dementia patients. There were significant regional reductions of FA values and heightened ADC values in multiple regions in SIVD patients compared to AD patients. When compared with conventional MRI, DTI may provide a more objective method for the differential diagnosis of SIVD and AD disease patients who have only mild white matter alterations on T2-weighted imaging

  9. Blind source separation of ex-vivo aorta tissue multispectral images.

    Science.gov (United States)

    Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson

    2015-05-01

    Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method's performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue.

  10. Whole slide imaging of unstained tissue using lensfree microscopy

    Science.gov (United States)

    Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2016-04-01

    Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.

  11. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  12. Oscillating intensity display of soft tissue lesions in MR imaging

    International Nuclear Information System (INIS)

    Herrmann, A.; Levin, D.N.; Beck, R.N.

    1986-01-01

    A computer-aided tissue characterization scheme is used to separate abnormal from normal tissues on the basis of their intensities on T1- and T2-weighted images. The intensity of an abnormal tissue on a T1-weighted image is then made to oscillate so that the amplitude (or frequency) of oscillation is directly proportional to the difference between the lesion's intensity and the intensities of normal tissues. The result is a ''movie'' in which the abnormal tissue churns or oscillates on the screen, drawing the attention because of the eye's sensitivity to motion

  13. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  14. Image-based characterization of foamed polymeric tissue scaffolds

    International Nuclear Information System (INIS)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A; White, Lisa J; Shakesheff, Kevin M; Tai, Hongyun; Howdle, Steven M; Kockenberger, Walter

    2008-01-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results

  15. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    OpenAIRE

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this...

  16. A method to obtain reference images for evaluation of ultrasonic tissue characterization techniques

    DEFF Research Database (Denmark)

    Jensen, M.S.; Wilhjelm, Jens E.; Sahl, B.

    2002-01-01

    of the macroscopic photograph, due to the histological preparation process. The histological information was "mapped back" into the format of the ultrasound images the following way: On the macroscopic images, outlines were drawn manually which defined the border of the tissue. These outlines were superimposed...... of the various tissue types. Specifically, the macroscopic image revealed the borders between the different tissues, while the histological image identified the four tissue types. A set of 12 reference images based on modified macroscopic outlines was created. The overlap between the ultrasound images...... and the macroscopic images-which are the geometrical basis for the final reference images-was between 77% and 93%. A set of 12 reference images spaced 2.5 mm, identifying spatial location of four different tissue types in porcine muscle has been created. With the reference images, it is possible to quantitatively...

  17. Fluorescent imaging of cancerous tissues for targeted surgery

    Science.gov (United States)

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  18. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer's disease in patients with only mild white matter alterations on T2-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jian-Liang; Zhang, Ting (Dept. of Neurology, Shanghai Jiaotong Univ. Affiliated Sixth People' s Hospital, Shanghai (China)); Chang, Cheng; Zhang, Yu-Zhen; Li, Wen-Bin (Inst. of Diagnostic and Interventional Radiology, Shanghai Jiaotong Univ. Affiliated Sixth People' s Hospital, Shanghai (China)), Email: liwenbin@sh163.net

    2012-04-15

    Background: Diffusion tensor imaging (DTI) is a form of functional magnetic resonance imaging (MRI) that allows examination of the microstructural integrity of white matter in the brain. Dementia is a neurodegenerative disease, and DTI can provide indirect insights of the microstructural characteristics of brains in individuals with different forms of dementia. Purpose: To evaluate the value of DTI in the diagnosis and differential diagnosis of patients with subcortical ischemic vascular dementia (SIVD) and Alzheimer's disease (AD). Material and Methods: The study included 40 patients (20 AD patients and 20 SIVD patients) and 20 normal controls (NC). After routine MRI and DTI, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured and compared in regions of interest (ROI). Results: Compared to NC and AD patients, SIVD patients had lower FA values and higher ADC values in the inferior-fronto-occipital fascicles (IFOF), genu of the corpus callosum (GCC), splenium of the corpus callosum (SCC), and superior longitudinal fasciculus (SLF). Compared to controls and SIVD patients, AD patients had lower FA values in the anterior frontal lobe, temporal lobe, hippocampus, IFOF, GCC, and CF; and higher ADC values in the temporal lobe and hippocampus. Conclusion: DTI can be used to estimate the white matter impairment in dementia patients. There were significant regional reductions of FA values and heightened ADC values in multiple regions in SIVD patients compared to AD patients. When compared with conventional MRI, DTI may provide a more objective method for the differential diagnosis of SIVD and AD disease patients who have only mild white matter alterations on T2-weighted imaging

  19. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  20. ZOOM or Non-ZOOM? Assessing Spinal Cord Diffusion Tensor Imaging Protocols for Multi-Centre Studies.

    Directory of Open Access Journals (Sweden)

    Rebecca S Samson

    Full Text Available The purpose of this study was to develop and evaluate two spinal cord (SC diffusion tensor imaging (DTI protocols, implemented at multiple sites (using scanners from two different manufacturers, one available on any clinical scanner, and one using more advanced options currently available in the research setting, and to use an automated processing method for unbiased quantification. DTI parameters are sensitive to changes in the diseased SC. However, imaging the cord can be technically challenging due to various factors including its small size, patient-related and physiological motion, and field inhomogeneities. Rapid acquisition sequences such as Echo Planar Imaging (EPI are desirable but may suffer from image distortions. We present a multi-centre comparison of two acquisition protocols implemented on scanners from two different vendors (Siemens and Philips, one using a reduced field-of-view (rFOV EPI sequence, and one only using options available on standard clinical scanners such as outer volume suppression (OVS. Automatic analysis was performed with the Spinal Cord Toolbox for unbiased and reproducible quantification of DTI metrics in the white matter. Images acquired using the rFOV sequence appear less distorted than those acquired using OVS alone. SC DTI parameter values obtained using both sequences at all sites were consistent with previous measurements made at 3T. For the same scanner manufacturer, DTI parameter inter-site SDs were smaller for the rFOV sequence compared to the OVS sequence. The higher inter-site reproducibility (for the same manufacturer and acquisition details, i.e. ZOOM data acquired at the two Philips sites of rFOV compared to the OVS sequence supports the idea that making research options such as rFOV more widely available would improve accuracy of measurements obtained in multi-centre clinical trials. Future multi-centre studies should also aim to match the rFOV technique and signal-to-noise ratios in all

  1. Stereoscopic Visualization of Diffusion Tensor Imaging Data: A Comparative Survey of Visualization Techniques

    International Nuclear Information System (INIS)

    Raslan, O.; Debnam, J.M.; Ketonen, L.; Kumar, A.J.; Schellingerhout, D.; Wang, J.

    2013-01-01

    Diffusion tensor imaging (DTI) data has traditionally been displayed as a gray scale functional anisotropy map (GSFM) or color coded orientation map (CCOM). These methods use black and white or color with intensity values to map the complex multidimensional DTI data to a two-dimensional image. Alternative visualization techniques, such as V m ax maps utilize enhanced graphical representation of the principal eigenvector by means of a headless arrow on regular non stereoscopic (VM) or stereoscopic display (VMS). A survey of clinical utility of patients with intracranial neoplasms was carried out by 8 neuro radiologists using traditional and nontraditional methods of DTI display. Pairwise comparison studies of 5 intracranial neoplasms were performed with a structured questionnaire comparing GSFM, CCOM, VM, and VMS. Six of 8 neuro radiologists favored V m ax maps over traditional methods of display (GSFM and CCOM). When comparing the stereoscopic (VMS) and the non-stereoscopic (VM) modes, 4 favored VMS, 2 favored VM, and 2 had no preference. In conclusion, processing and visualizing DTI data stereoscopically is technically feasible. An initial survey of users indicated that V m ax based display methodology with or without stereoscopic visualization seems to be preferred over traditional methods to display DTI data.

  2. Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment

    International Nuclear Information System (INIS)

    Semenov, Serguei; Kellam, James; Althausen, Peter; Williams, Thomas; Abubakar, Aria; Bulyshev, Alexander; Sizov, Yuri

    2007-01-01

    It is important to assess the viability of extremity soft tissues, as this component is often the determinant of the final outcome of fracture treatment. Microwave tomography (MWT) and sensing might be able to provide a fast and mobile assessment of such properties. MWT imaging of extremities possesses a complicated, nonlinear, high dielectric contrast inverse problem of diffraction tomography. There is a high dielectric contrast between bone and soft tissue in the extremities. A contrast between soft tissue abnormalities is less pronounced when compared with the high bone-soft tissue contrast. The goal of this study was to assess the feasibility of MWT for functional imaging of extremity soft tissues, i.e. to detect a relatively small contrast within soft tissues in closer proximity to high contrast boney areas. Both experimental studies and computer simulation were performed. Experiments were conducted using live pigs with compromised blood flow and compartment syndrome within an extremity. A whole 2D tomographic imaging cycle at 1 GHz was computer simulated and images were reconstructed using the Newton, MR-CSI and modified Born methods. Results of experimental studies demonstrate that microwave technology is sensitive to changes in the soft tissue blood content and elevated compartment pressure. It was demonstrated that MWT is feasible for functional imaging of extremity soft tissues, circulatory-related changes, blood flow and elevated compartment pressure

  3. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    DEFF Research Database (Denmark)

    Rasmussen, Joachim Hee; Hemmsen, Martin Christian; Sloth Madsen, Signe

    2013-01-01

    . Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.......A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequential beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B......-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imaging (DRF-THI) in clinical scans. The scan sequence...

  4. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  5. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  6. Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)

    Science.gov (United States)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2014-03-01

    Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.

  7. Longitudinal Diffusion Tensor Imaging-Based Assessment of Tract Alterations: An Application to Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Dobri Baldaranov

    2017-12-01

    Full Text Available Objective: The potential of magnetic resonance imaging (MRI as a technical biomarker for cerebral microstructural alterations in neurodegenerative diseases is under investigation. In this study, a framework for the longitudinal analysis of diffusion tensor imaging (DTI-based mapping was applied to the assessment of predefined white matter tracts in amyotrophic lateral sclerosis (ALS, as an example for a rapid progressive neurodegenerative disease.Methods: DTI was performed every 3 months in six patients with ALS (mean (M = 7.7; range 3 to 15 scans and in six controls (M = 3; range 2–5 scans with the identical scanning protocol, resulting in a total of 65 longitudinal DTI datasets. Fractional anisotropy (FA, mean diffusivity (MD, axonal diffusivity (AD, radial diffusivity (RD, and the ratio AD/RD were studied to analyze alterations within the corticospinal tract (CST which is a prominently affected tract structure in ALS and the tract correlating with Braak’s neuropathological stage 1. A correlation analysis was performed between progression rates based on DTI metrics and the revised ALS functional rating scale (ALS-FRS-R.Results: Patients with ALS showed an FA and AD/RD decline along the CST, while DTI metrics of controls did not change in longitudinal DTI scans. The FA and AD/RD decrease progression correlated significantly with ALS-FRS-R decrease progression.Conclusion: On the basis of the longitudinal assessment, DTI-based metrics can be considered as a possible noninvasive follow-up marker for disease progression in neurodegeneration. This finding was demonstrated here for ALS as a fast progressing neurodegenerative disease.

  8. Longitudinal Diffusion Tensor Imaging-Based Assessment of Tract Alterations: An Application to Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Baldaranov, Dobri; Khomenko, Andrei; Kobor, Ines; Bogdahn, Ulrich; Gorges, Martin; Kassubek, Jan; Müller, Hans-Peter

    2017-01-01

    Objective : The potential of magnetic resonance imaging (MRI) as a technical biomarker for cerebral microstructural alterations in neurodegenerative diseases is under investigation. In this study, a framework for the longitudinal analysis of diffusion tensor imaging (DTI)-based mapping was applied to the assessment of predefined white matter tracts in amyotrophic lateral sclerosis (ALS), as an example for a rapid progressive neurodegenerative disease. Methods : DTI was performed every 3 months in six patients with ALS (mean (M) = 7.7; range 3 to 15 scans) and in six controls ( M = 3; range 2-5 scans) with the identical scanning protocol, resulting in a total of 65 longitudinal DTI datasets. Fractional anisotropy (FA), mean diffusivity (MD), axonal diffusivity (AD), radial diffusivity (RD), and the ratio AD/RD were studied to analyze alterations within the corticospinal tract (CST) which is a prominently affected tract structure in ALS and the tract correlating with Braak's neuropathological stage 1. A correlation analysis was performed between progression rates based on DTI metrics and the revised ALS functional rating scale (ALS-FRS-R). Results : Patients with ALS showed an FA and AD/RD decline along the CST, while DTI metrics of controls did not change in longitudinal DTI scans. The FA and AD/RD decrease progression correlated significantly with ALS-FRS-R decrease progression. Conclusion : On the basis of the longitudinal assessment, DTI-based metrics can be considered as a possible noninvasive follow-up marker for disease progression in neurodegeneration. This finding was demonstrated here for ALS as a fast progressing neurodegenerative disease.

  9. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase-corrected diffusion-prepared 3D turbo spin echo.

    Science.gov (United States)

    Cervantes, Barbara; Van, Anh T; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J; Gersing, Alexandra; Kirschke, Jan S; Karampinos, Dimitrios C

    2018-08-01

    To perform in vivo isotropic-resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase-navigated diffusion-prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase-error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Phase-navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy-current effects on the signal magnitude. Phase navigation of motion-induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single-shot echo planar imaging (ss-EPI) in 13 subjects. Diffusion data were phase-corrected per k z plane with respect to T 2 -weighted data. The effects of motion-induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss-EPI. Non-phase-corrected 3D TSE resulted in artifacts in diffusion-weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss-EPI DTI parameters (MD = 1.62 ± 0.21). DP 3D TSE with phase correction allows distortion-free isotropic diffusion imaging of lower back nerves with robustness to motion-induced artifacts and DTI quantification errors. Magn Reson Med 80:609-618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2018 The Authors Magnetic Resonance

  10. Histogram analysis of diffusion measures in clinically isolated syndromes and relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Yu Chunshui; Lin Fuchun; Liu Yaou; Duan Yunyun; Lei Hao; Li Kuncheng

    2008-01-01

    Objective: The purposes of our study were to employ diffusion tensor imaging (DTI)-based histogram analysis to determine the presence of occult damage in clinically isolated syndrome (CIS), to compare its severity with relapsing-remitting multiple sclerosis (RRMS), and to determine correlations between DTI histogram measures and clinical and MRI indices in these two diseases. Materials and methods: DTI scans were performed in 19 CIS and 19 RRMS patients and 19 matched healthy volunteers. Histogram analyses of mean diffusivity and fractional anisotropy were performed in normal-appearing brain tissue (NABT), normal-appearing white matter (NAWM) and gray matter (NAGM). Correlations were analyzed between these measures and expanded disability status scale (EDSS) scores, T 2 WI lesion volumes (LV) and normalized brain tissue volumes (NBTV) in CIS and RRMS patients. Results: Significant differences were found among CIS, RRMS and control groups in the NBTV and most of the DTI histogram measures of the NABT, NAWM and NAGM. In CIS patients, some DTI histogram measures showed significant correlations with LV and NBTV, but none of them with EDSS. In RRMS patients, however, some DTI histogram measures were significantly correlated with LV, NBTV and EDSS. Conclusion: Occult damage occurs in both NAGM and NAWM in CIS, but the severity is milder than that in RRMS. In CIS and RRMS, the occult damage might be related to both T2 lesion load and brain tissue atrophy. Some DTI histogram measures might be useful for assessing the disease progression in RRMS patients

  11. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions

    International Nuclear Information System (INIS)

    Cakir, Ozgur; Arslan, Arzu; Inan, Nagihan; Anık, Yonca; Sarısoy, Tahsin; Gumustas, Sevtap; Akansel, Gur

    2013-01-01

    Purpose: To evaluate the diagnostic efficiency of the diffusion parameters measured by conventional diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for discrimination of malignant breast lesions from benign lesions and the normal breast. Materials and methods: The study included 52 women with 55 breast lesions (30 malignant, 25 benign). DTI and DWI were performed complementary to dynamic contrast MRI at 3T. Apparent diffusion coefficient (ADC) of DWI, mean diffusivity (MD) and fractional anisotropy (FA) values of DTI were measured for lesions and contralateral breast parenchyma in each patient. We used b factors of 0, 50, 850, 1000 and 1500 s/mm 2 for DWI and b 0 and 1000 s/mm 2 for DTI. ADC, MD and FA values were compared between malignant and benign lesions, and the normal parenchyma by univariate and multivariate analyses. Results: Diffusion parameters showed no difference according to menopausal status in the normal breast. ADC and MD values of the malignant lesions were significantly lower than benign lesions and normal parenchyma (p = 0.001). The FA showed no statistical significance. With the cut-off values of ≤1.23 × 10 −3 mm 2 /s (b 0–1000 s/mm 2 ) and ≤1.12 × 10 −3 mm 2 /s (b 0–1500 s/mm 2 ), ADC showed 92.85% and 96.15% sensitivity; 72.22% and 73.52% PPV, respectively. With a cut-off value of ≤1.27 × 10 −3 mm 2 /s (b 1000 s/mm 2 ), MD was 100% sensitive with a PPV of 65.90%. Comparing the diagnostic performance of the parameters in DTI with DWI, we obtained similar efficiency of ADC with b values of 0,1000 and 0,1500 s/mm 2 and MD with a b value of 0, 1000 s/mm 2 (AUC = 0.82 ± 0.07). Conclusion: ADC of DWI and MD of DTI values provide significant discriminative factors for benign and malignant breast lesions. FA measurement was not discriminative. Supported with clinical and dynamic contrast MRI findings, DWI and DTI findings provide significant contribution to the final radiologic decision

  12. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Ozgur, E-mail: cakirozgur@hotmail.com; Arslan, Arzu, E-mail: arzu.s.arslan@gmail.com; Inan, Nagihan, E-mail: nagihaninan@yahoo.com.tr; Anık, Yonca, E-mail: yoncaanik@yahoo.com; Sarısoy, Tahsin, E-mail: htsarisoy@yahoo.com; Gumustas, Sevtap, E-mail: svtgumustas@yahoo.com; Akansel, Gur, E-mail: gakansel@gmail.com

    2013-12-01

    Purpose: To evaluate the diagnostic efficiency of the diffusion parameters measured by conventional diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for discrimination of malignant breast lesions from benign lesions and the normal breast. Materials and methods: The study included 52 women with 55 breast lesions (30 malignant, 25 benign). DTI and DWI were performed complementary to dynamic contrast MRI at 3T. Apparent diffusion coefficient (ADC) of DWI, mean diffusivity (MD) and fractional anisotropy (FA) values of DTI were measured for lesions and contralateral breast parenchyma in each patient. We used b factors of 0, 50, 850, 1000 and 1500 s/mm{sup 2} for DWI and b 0 and 1000 s/mm{sup 2} for DTI. ADC, MD and FA values were compared between malignant and benign lesions, and the normal parenchyma by univariate and multivariate analyses. Results: Diffusion parameters showed no difference according to menopausal status in the normal breast. ADC and MD values of the malignant lesions were significantly lower than benign lesions and normal parenchyma (p = 0.001). The FA showed no statistical significance. With the cut-off values of ≤1.23 × 10{sup −3} mm{sup 2}/s (b 0–1000 s/mm{sup 2}) and ≤1.12 × 10{sup −3} mm{sup 2}/s (b 0–1500 s/mm{sup 2}), ADC showed 92.85% and 96.15% sensitivity; 72.22% and 73.52% PPV, respectively. With a cut-off value of ≤1.27 × 10{sup −3} mm{sup 2}/s (b 1000 s/mm{sup 2}), MD was 100% sensitive with a PPV of 65.90%. Comparing the diagnostic performance of the parameters in DTI with DWI, we obtained similar efficiency of ADC with b values of 0,1000 and 0,1500 s/mm{sup 2} and MD with a b value of 0, 1000 s/mm{sup 2} (AUC = 0.82 ± 0.07). Conclusion: ADC of DWI and MD of DTI values provide significant discriminative factors for benign and malignant breast lesions. FA measurement was not discriminative. Supported with clinical and dynamic contrast MRI findings, DWI and DTI findings provide significant

  13. Diffusion tensor imaging of the spinal cord at 1.5 and 3.0 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, C. [Radiologische Universitaetsklinik, Tuebingen (Germany). Sektion fuer Experimentelle Radiologie; CNR-INFM CRS-Soft, La Sapienza-Univ. Roma (Italy); Enrico Fern Center, Roma (Italy); Boss, A.; Martirosian, P.; Steidle, G.; Schick, F. [Radiologische Universitaetsklinik, Tuebingen (Germany). Sektion fuer Experimentelle Radiologie; Lindig, T.M. [Enrico Fern Center, Roma (Italy); Radiologische Universitaetsklinik, Tuebingen (Germany). Sektion fuer Experimentelle Kernspinresonanz des ZNS; Universitaetsklinikum Tuebingen (Germany). Zentrum fuer Neurologie und Hertie-Inst. fuer klinische Hirnforschung; Maetzler, W. [Universitaetsklinikum Tuebingen (Germany). Zentrum fuer Neurologie und Hertie-Inst. fuer klinische Hirnforschung; Claussen, C.D. [Radiologische Universitaetsklinik, Tuebingen (Germany). Abt. fuer Radiologische Diagnostik; Klose, U. [Radiologische Universitaetsklinik, Tuebingen (Germany). Sektion fuer Experimentelle Kernspinresonanz des ZNS

    2007-03-15

    Purpose: The feasibility of highly resolved diffusion tensor imaging (DTI) of the human cervical spinal cord was tested on a clinical MR unit operating at 3.0 Tesla. DTI parametrical maps and signal-to-noise ratios (SNRs) were compared to results recorded at 1.5 Tesla. Materials and Methods: Eight healthy volunteers and one patient participated in the study. A transverse oriented single-shot ECG-triggered echo-planar imaging (EPI) sequence with double spin-echo diffusion preparation was applied for highly resolved DTI of the spinal cord. The signal yield, fractional anisotropy (FA), and mean diffusivity (MD) were compared for both field strengths. The clinical applicability of the protocol was also tested in one patient with amyotrophic lateral sclerosis (ALS) at 3.0 T. Results: A mean increase in SNR of 95.7 {+-} 4.6% was found at 3.0 Tesla compared to 1.5 Tesla. Improved quality of the DTI parametrical maps was observed at higher field strength (p < 0.02). Comparable FA and MD (reported in units of 10 - 3 mm2/s) values were computed in the dorsal white matter at both field strengths (1.5 T: FA = 0.75 {+-} 0.08, MD = 0.84 {+-} 0.12, 3.0 T: FA = 0.74 {+-} 0.04, MD = 0.93 {+-} 0.14). The DTI images exhibited diagnostic image quality in the patient. At the site of the diseased corticospinal tract, a decrease of 46.0 {+-} 3.8% in FA (0.40 {+-} 0.03) and an increase of 50.3 {+-} 5.6% in MD (1.40 {+-} 0.05) were found in the ALS patient. (orig.)

  14. Diffusion tensor imaging of the spinal cord at 1.5 and 3.0 Tesla

    International Nuclear Information System (INIS)

    Rossi, C.; Boss, A.; Martirosian, P.; Steidle, G.; Schick, F.; Lindig, T.M.; Radiologische Universitaetsklinik, Tuebingen; Universitaetsklinikum Tuebingen; Maetzler, W.; Claussen, C.D.; Klose, U.

    2007-01-01

    Purpose: The feasibility of highly resolved diffusion tensor imaging (DTI) of the human cervical spinal cord was tested on a clinical MR unit operating at 3.0 Tesla. DTI parametrical maps and signal-to-noise ratios (SNRs) were compared to results recorded at 1.5 Tesla. Materials and Methods: Eight healthy volunteers and one patient participated in the study. A transverse oriented single-shot ECG-triggered echo-planar imaging (EPI) sequence with double spin-echo diffusion preparation was applied for highly resolved DTI of the spinal cord. The signal yield, fractional anisotropy (FA), and mean diffusivity (MD) were compared for both field strengths. The clinical applicability of the protocol was also tested in one patient with amyotrophic lateral sclerosis (ALS) at 3.0 T. Results: A mean increase in SNR of 95.7 ± 4.6% was found at 3.0 Tesla compared to 1.5 Tesla. Improved quality of the DTI parametrical maps was observed at higher field strength (p < 0.02). Comparable FA and MD (reported in units of 10 - 3 mm2/s) values were computed in the dorsal white matter at both field strengths (1.5 T: FA = 0.75 ± 0.08, MD = 0.84 ± 0.12, 3.0 T: FA 0.74 ± 0.04, MD = 0.93 ± 0.14). The DTI images exhibited diagnostic image quality in the patient. At the site of the diseased corticospinal tract, a decrease of 46.0 ± 3.8% in FA (0.40 ± 0.03) and an increase of 50.3 ± 5.6% in MD (1.40 ± 0.05) were found in the ALS patient. (orig.)

  15. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  16. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  17. Optical redox imaging indices discriminate human breast cancer from normal tissues

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2016-01-01

    Abstract. Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (predox ratio Fp/(NADH + Fp) was ∼27% higher in the cancerous tissues (predox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients. PMID:27896360

  18. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue

    Science.gov (United States)

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2013-01-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue. PMID:23667789

  19. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    Directory of Open Access Journals (Sweden)

    Zhong-jun Hou

    2015-01-01

    Full Text Available Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI and T2-weighted imaging (T2WI scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L 3 to S 1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49% and abruption in 17 lumbosacral spinal nerve roots (23%. Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  20. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis.

    Science.gov (United States)

    Hou, Zhong-Jun; Huang, Yong; Fan, Zi-Wen; Li, Xin-Chun; Cao, Bing-Yi

    2015-11-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3 to S1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  1. Imaging of connective tissue diseases of the head and neck

    Science.gov (United States)

    2016-01-01

    We review the imaging appearance of connective tissue diseases of the head and neck. Bilateral sialadenitis and dacryoadenitis are seen in Sjögren’s syndrome; ankylosis of the temporo-mandibular joint with sclerosis of the crico-arytenoid joint are reported in rheumatoid arthritis and lupus panniculitis with atypical infection are reported in patients with systemic lupus erythematosus. Relapsing polychondritis shows subglottic stenosis, prominent ear and saddle nose; progressive systemic sclerosis shows osteolysis of the mandible, fibrosis of the masseter muscle with calcinosis of the subcutaneous tissue and dermatomyositis/polymyositis shows condylar erosions and autoimmune thyroiditis. Vascular thrombosis is reported in antiphospholipid antibodies syndrome; cervical lymphadenopathy is seen in adult-onset Still’s disease, and neuropathy with thyroiditis reported in mixed connective tissue disorder. Imaging is important to detect associated malignancy with connective tissue disorders. Correlation of the imaging findings with demographic data and clinical findings are important for the diagnosis of connective tissue disorders. PMID:26988082

  2. Role of tissue harmonic imaging in characterization of cystic renallesions

    International Nuclear Information System (INIS)

    Mohammed, A.; Sandhu, Manavjit S.; Lal, A.; Sodhi, Kushaljit S.; Sud, K.; Kohli, Harbir S.

    2008-01-01

    Objective was to determine the utility of tissue harmonic imaging inevaluating cystic renal lesions and to compare these findings withconventional ultrasound guidance (USG) and CT. Thirty patients, detected withcystic renal lesions on routine USG (over a period of 18 months from July2004 to December 2005) at the Postgraduate Institute of Medical Education andResearch Chandigarh, Chandigarh, India) were included in this study. Allpatients underwent a conventional gray scale ultrasound study (GSI), followedby tissue harmonic imaging (THI) sonography on the same machine (advancetechnology limited high definition imaging 5000). Computed tomography ofabdomen was carried out within one week of the ultrasound examinations. Allimages were evaluated for size, number and location of lesions. The findingsof THI sonography, conventional USG and CT of abdomen were recorded in theirrespective proformas. The images obtained by GSI, THI and contrast enhancedCT were also evaluated for image, quality, lesion conspicuity and fluid-soliddifferentiation. Tissue harmonic imaging showed better image quality in 27 of34 lesions, improvement in lesion conspicuity was found in 27 of 34 cysticlesions and an improved solid-fluid differentiation in 30 of 34 lesions whencompared to GSI. The THI provided additional information as compared to GSIin 8 patients. The grading of CT scan was significantly higher in overallimage quality (p=0.007) and lesion conspicuity (p=0.004), but wasnon-significant for fluid-solid differentiation (p=0.23). Tissue harmonicimaging provides better image quality, lesion delineation and superiorcharacterization than conventional gray scale sonography. (author)

  3. Perilesional and contralateral white matter evolution and integrity in patients with periventricular nodular heterotopia and epilepsy: a longitudinal diffusion tensor imaging study.

    Science.gov (United States)

    Liu, W; Yan, B; An, D; Niu, R; Tang, Y; Tong, X; Gong, Q; Zhou, D

    2017-12-01

    This study aimed to assess the evolution of perinodular and contralateral white matter abnormalities in patients with periventricular nodular heterotopia (PNH) and epilepsy. Diffusion tensor imaging (DTI) (64 directions) and 3 T structural magnetic resonance imaging were performed in 29 PNH patients (mean age 27.3 years), and 16 patients underwent a second scan (average time between the two scans 1.1 years). Fractional anisotropy and mean diffusivity were measured within the perilesional and contralateral white matter. Longitudinal analysis showed that white matter located 10 mm from the focal nodule displayed characteristics intermediate to tissue 5 mm away, and normal-appearing white matter (NAWM) also established evolution profiles of perinodular white matter in different cortical lobes. Compared to 29 age- and sex-matched healthy controls, significant decreased fractional anisotropy and elevated mean diffusivity values were observed in regions 5 and 10 mm from nodules (P < 0.01), whilst DTI metrics of the remaining NAWM did not differ significantly from controls. Additionally, normal DTI metrics were shown in the contralateral region in patients with unilateral PNH. Periventricular nodular heterotopia is associated with microstructural abnormalities within the perilesional white matter and the extent decreases with increasing distance from the nodule. In the homologous contralateral region, white matter diffusion metrics were unchanged in unilateral PNH. These findings have clinical implications with respect to the medical and surgical interventions of PNH-related epilepsy. © 2017 EAN.

  4. First cosmic-ray images of bone and soft tissue

    Science.gov (United States)

    Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső

    2016-11-01

    More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.

  5. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Science.gov (United States)

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  6. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  7. Preliminary diffusion tensor imaging studies in limb-girdle muscular dystrophies

    Science.gov (United States)

    Hidalgo-Tobon, S.; Hernandez-Salazar, G.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodriguez, A. O.; Delgado-Hernandez, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. This type of dystrophy involves the shoulder and pelvic girdles, distinct phenotypic or clinical characteristics are recognized. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee. USA), using a combination of two eight-channel coil array. Diffusion Tensor Imaging (DTI) data were acquired using a SE-EPI sequence, diffusion weighted gradients were applied along 30 non-collinear directions with a b-value=550 s/mm2. The connective tissue content does not appear to have a significant effect on the directionality of the diffusion, as assessed by fractional anisotropy. The fibers of the Sartorius muscle and gracilis showed decreased number of tracts, secondary to fatty infiltration and replacement of connective tissue and muscle mass loss characteristic of the underlying pathology. Our results demonstrated the utility of non-invasive MRI techniques to characterize the muscle pathology, through quantitative and qualitative methods such as the FA values and tractrography.

  8. Excitation-scanning hyperspectral imaging as a means to discriminate various tissues types

    Science.gov (United States)

    Deal, Joshua; Favreau, Peter F.; Lopez, Carmen; Lall, Malvika; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Little is currently known about the fluorescence excitation spectra of disparate tissues and how these spectra change with pathological state. Current imaging diagnostic techniques have limited capacity to investigate fluorescence excitation spectral characteristics. This study utilized excitation-scanning hyperspectral imaging to perform a comprehensive assessment of fluorescence spectral signatures of various tissues. Immediately following tissue harvest, a custom inverted microscope (TE-2000, Nikon Instruments) with Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) were used to acquire hyperspectral image data from each sample. Scans utilized excitation wavelengths from 340 nm to 550 nm in 5 nm increments. Hyperspectral images were analyzed with custom Matlab scripts including linear spectral unmixing (LSU), principal component analysis (PCA), and Gaussian mixture modeling (GMM). Spectra were examined for potential characteristic features such as consistent intensity peaks at specific wavelengths or intensity ratios among significant wavelengths. The resultant spectral features were conserved among tissues of similar molecular composition. Additionally, excitation spectra appear to be a mixture of pure endmembers with commonalities across tissues of varied molecular composition, potentially identifiable through GMM. These results suggest the presence of common autofluorescent molecules in most tissues and that excitationscanning hyperspectral imaging may serve as an approach for characterizing tissue composition as well as pathologic state. Future work will test the feasibility of excitation-scanning hyperspectral imaging as a contrast mode for discriminating normal and pathological tissues.

  9. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  10. A T1 and DTI fused 3D corpus callosum analysis in pre- vs. post-season contact sports players

    Science.gov (United States)

    Lao, Yi; Law, Meng; Shi, Jie; Gajawelli, Niharika; Haas, Lauren; Wang, Yalin; Leporé, Natasha

    2015-01-01

    Sports related traumatic brain injury (TBI) is a worldwide public health issue, and damage to the corpus callosum (CC) has been considered as an important indicator of TBI. However, contact sports players suffer repeated hits to the head during the course of a season even in the absence of diagnosed concussion, and less is known about their effect on callosal anatomy. In addition, T1-weighted and diffusion tensor brain magnetic resonance images (DTI) have been analyzed separately, but a joint analysis of both types of data may increase statistical power and give a more complete understanding of anatomical correlates of subclinical concussions in these athletes. Here, for the first time, we fuse T1 surface-based morphometry and a new DTI analysis on 3D surface representations of the CCs into a single statistical analysis on these subjects. Our new combined method successfully increases detection power in detecting differences between pre- vs. post-season contact sports players. Alterations are found in the ventral genu, isthmus, and splenium of CC. Our findings may inform future health assessments in contact sports players. The new method here is also the first truly multimodal diffusion and T1-weighted analysis of the CC, and may be useful to detect anatomical changes in the corpus callosum in other multimodal datasets.

  11. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    Science.gov (United States)

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  12. Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference?

    Science.gov (United States)

    Toth, Arnold; Kovacs, Noemi; Perlaki, Gabor; Orsi, Gergely; Aradi, Mihaly; Komaromy, Hedvig; Ezer, Erzsebet; Bukovics, Peter; Farkas, Orsolya; Janszky, Jozsef; Doczi, Tamas; Buki, Andras; Schwarcz, Attila

    2013-01-01

    Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected ptime points when performing MRI studies on patients with mTBI.

  13. Relationships between the integrity and function of lumbar nerve roots as assessed by diffusion tensor imaging and neurophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, S.Y.; Strutton, P.H. [Imperial College London, The Nick Davey Laboratory, Division of Surgery, Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Hellyer, P.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Sharp, D.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Newbould, R.D. [Imanova, Ltd, London (United Kingdom); Patel, M.C. [Charing Cross Hospital, Imaging Department, Imperial College Healthcare NHS Trust, London (United Kingdom)

    2017-09-15

    Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function. (orig.)

  14. A photoacoustic tomography system for imaging of biological tissues

    International Nuclear Information System (INIS)

    Su Yixiong; Zhang Fan; Xu Kexin; Yao Jianquan; Wang, Ruikang K

    2005-01-01

    Non-invasive laser-induced photoacoustic tomography (PAT) is a promising imaging modality in the biomedical optical imaging field. This technology, based on the intrinsic optical properties of tissue and ultrasonic detection, overcomes the resolution disadvantage of pure-optical imaging caused by strong light scattering and the contrast and speckle disadvantages of pure ultrasonic imaging. Here, we report a PAT experimental system constructed in our laboratory. In our system, a Q-switched Nd : YAG pulse laser operated at 532 nm with a 8 ns pulse width is used to generate a photoacoustic signal. By using this system, the two-dimensional distribution of optical absorption in the tissue-mimicking phantom is reconstructed and has an excellent agreement with the original ones. The spatial resolution of the imaging system approaches 100 μm through about 4 cm of highly scattering medium

  15. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  16. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  17. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  18. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    International Nuclear Information System (INIS)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Johansson, Reijo; Jaeaeskelaeinen, Satu K.; Kujari, Harry; Haataja, Leena

    2009-01-01

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  19. Imaging of oral pathological tissue using optical coherence tomography

    Science.gov (United States)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  20. Enough positive rate of paraspinal mapping and diffusion tensor imaging with levels which should be decompressed in lumbar spinal stenosis.

    Science.gov (United States)

    Chen, Hua-Biao; Zhong, Zhi-Wei; Li, Chun-Sheng; Bai, Bo

    2016-07-01

    In lumbar spinal stenosis, correlating symptoms and physical examination findings with decompression levels based on common imaging is not reliable. Paraspinal mapping (PM) and diffusion tensor imaging (DTI) may be possible to prevent the false positive occurrences with MRI and show clear benefits to reduce the decompression levels of lumbar spinal stenosis than conventional magnetic resonance imaging (MRI) + neurogenic examination (NE). However, they must have enough positive rate with levels which should be decompressed at first. The study aimed to confirm that the positive of DTI and PM is enough in levels which should be decompressed in lumbar spinal stenosis. The study analyzed the positive of DTI and PM as well as compared the preoperation scores to the postoperation scores, which were assessed preoperatively and at 2 weeks, 3 months 6 months, and 12 months postoperatively. 96 patients underwent the single level decompression surgery. The positive rate among PM, DTI, and (PM or DTI) was 76%, 98%, 100%, respectively. All post-operative Oswestry Disability Index (ODI), visual analog scale for back pain (VAS-BP) and visual analog scale for leg pain (VAS-LP) scores at 2 weeks postoperatively were measured improvement than the preoperative ODI, VAS-BP and VAS-LP scores with statistically significance (p-value = 0.000, p-value = 0.000, p-value = 0.000, respectively). In degenetive lumbar spinal stenosis, the positive rate of (DTI or PM) is enough in levels which should be decompressed, thence using the PM and DTI to determine decompression levels will not miss the level which should be operated. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  1. Neuropsychological Correlates of Diffusion Tensor Imaging in Schizophrenia

    Science.gov (United States)

    Nestor, Paul G.; Kubicki, Marek; Gurrera, Ronald J.; Niznikiewicz, Margaret; Frumin, Melissa; McCarley, Robert W.; Shenton, Martha E.

    2009-01-01

    Patients with schizophrenia (n = 41) and healthy comparison participants (n = 46) completed neuropsychological measures of intelligence, memory, and executive function. A subset of each group also completed magnetic resonance diffusion tensor imaging (DTI) studies (fractional anisotropy and cross-sectional area) of the uncinate fasciculus (UF) and cingulate bundle (CB). Patients with schizophrenia showed reduced levels of functioning across all neuropsychological measures. In addition, selective neuropsychological–DTI relationships emerged. Among patients but not controls, lower levels of declarative–episodic verbal memory correlated with reduced left UF, whereas executive function errors related to performance monitoring correlated with reduced left CB. The data suggested abnormal DTI patterns linking declarative–episodic verbal memory deficits to the left UF and executive function deficits to the left CB among patients with schizophrenia. PMID:15506830

  2. MR imaging of skeletal soft tissue infection: utility of diffusion-weighted imaging in detecting abscess formation

    International Nuclear Information System (INIS)

    Harish, Srinivasan; Rebello, Ryan; Chiavaras, Mary M.; Kotnis, Nikhil

    2011-01-01

    Our objectives were to assess if diffusion-weighted imaging (DWI) can help identify abscess formation in the setting of soft tissue infection and to assess whether abscess formation can be diagnosed confidently with a combination of DWI and other unenhanced sequences. Eight cases of soft tissue infection imaged with MRI including DWI were retrospectively reviewed. Two male and six female patients were studied (age range 23-50 years). Unenhanced MRI including DWI was performed in all patients. Post-contrast images were obtained in seven patients. All patients had clinically or surgically confirmed abscesses. Abscesses demonstrated restricted diffusion. DWI in conjunction with other unenhanced imaging showed similar confidence levels as post-contrast images in diagnosing abscess formation in four cases. In two cases, although the combined use of DWI and other unenhanced imaging yielded the same confidence levels as post-contrast imaging, DWI was more definitive for demonstrating abscess formation. In one case, post-contrast images had a better confidence for suggesting abscess. In one case, DWI helped detected the abscess, where gadolinium could not be administered because of a contraindication. This preliminary study suggests that DWI is a useful adjunct in the diagnosis of skeletal soft tissue abscesses. (orig.)

  3. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  4. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    International Nuclear Information System (INIS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation

  5. Experimental and numerical investigation of tissue harmonic imaging (THI)

    Science.gov (United States)

    Jing, Yuan; Yang, Xinmai; Cleveland, Robin O.

    2003-04-01

    In THI the probing ultrasonic pulse has enough amplitude that it undergoes nonlinear distortion and energy shifts from the fundamental frequency of the pulse into its higher harmonics. Images generated from the second harmonic (SH) have superior quality to the images formed from the fundamental frequency. Experiments with a single element focused ultrasound transducer were used to compare a line target embedded in a tissue phantom using either fundamental or SH imaging. SH imaging showed an improvement in both the axial resolution (0.70 mm vs 0.92 mm) and the lateral resolution (1.02 mm vs 2.70 mm) of the target. In addition, the contrast-to-tissue ratio of the target was 2 dB higher with SH imaging. A three-dimensional model of the forward propagation has been developed to simulate the experimental system. The model is based on a time-domain code for solving the KZK equation and accounts for arbitrary spatial variations in all tissue properties. The code was used to determine the impact of a nearfield layer of fat on the fundamental and second harmonic signals. For a 15 mm thick layer the SH side-lobes remained the same but the fundamental side-lobes increased by 2 dB. [Work supported by the NSF through the Center for Subsurface Sensing and Imaging Systems.

  6. A preliminary DTI study showing no brain structural change associated with adolescent cannabis use

    Directory of Open Access Journals (Sweden)

    Brown Kyle

    2006-05-01

    Full Text Available Abstract Analyses were performed on brain MRI scans from individuals who were frequent cannabis users (N = 10; 9 males, 1 female, mean age 21.1 ± 2.9, range: 18–27 in adolescence and similar age and sex matched young adults who never used cannabis (N = 10; 9 males, 1 female, mean age of 23.0 ± 4.4, range: 17–30. Cerebral atrophy and white matter integrity were determined using diffusion tensor imaging (DTI to quantify the apparent diffusion coefficient (ADC and the fractional anisotropy (FA. Whole brain volumes, lateral ventricular volumes, and gray matter volumes of the amygdala-hippocampal complex, superior temporal gyrus, and entire temporal lobes (excluding the amygdala-hippocampal complex were also measured. While differences existed between groups, no pattern consistent with evidence of cerebral atrophy or loss of white matter integrity was detected. It is concluded that frequent cannabis use is unlikely to be neurotoxic to the normal developing adolescent brain.

  7. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  8. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  9. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    Science.gov (United States)

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  10. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.

    Science.gov (United States)

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.

  11. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    Science.gov (United States)

    Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.

    2013-03-01

    A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.

  12. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  13. Interhemispheric Functional and Structural Disconnection in Alzheimer's Disease: A Combined Resting-State fMRI and DTI Study.

    Directory of Open Access Journals (Sweden)

    Zhiqun Wang

    Full Text Available Neuroimaging studies have demonstrated that patients with Alzheimer's disease presented disconnection syndrome. However, little is known about the alterations of interhemispheric functional interactions and underlying structural connectivity in the AD patients. In this study, we combined resting-state functional MRI and diffusion tensor imaging (DTI to investigate interhemispheric functional and structural connectivity in 16 AD, 16 mild cognitive impairment (MCI, as well as 16 cognitive normal healthy subjects (CN. The pattern of the resting state interhemispheric functional connectivity was measured with a voxel-mirrored homotopic connectivity (VMHC method. Decreased VMHC was observed in AD and MCI subjects in anterior brain regions including the prefrontal cortices and subcortical regions with a pattern of ADDTI analysis showed the most significant difference among the three cohorts was the fractional anisotropy in the genu of corpus callosum, which was positively associated with the VMHC of prefrontal and subcortical regions. Across all the three cohorts, the diffusion parameters in the genu of corpus callosum and VMHC in the above brain regions had significant correlation with the cognitive performance. These results demonstrate that there are specific patterns of interhemispheric functional connectivity changes in the AD and MCI, which can be significantly correlated with the integrity changes in the midline white matter structures. These results suggest that VMHC can be used as a biomarker for the degeneration of the interhemispheric connectivity in AD.

  14. Alterations of brain network hubs in reflex syncope: Evidence from a graph theoretical analysis based on DTI.

    Science.gov (United States)

    Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min

    2018-06-01

    We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  15. Segmentation of the tissues from MR images using basic anatomical information

    International Nuclear Information System (INIS)

    Yamazaki, Nobutoshi; Notoya, Yoshiaki; Nakamura, Toshiyasu; Mochimaru, Masaaki.

    1994-01-01

    Automatic segmentation methods of MR images have been developed for the cardiac surgery and the brain surgery. In these fields, Region Growing method has been used mainly. In this method, the core was inserted manually, and the pixel adjoining the core was judged whether it was homogeneous or not from its features based on image information. The core grew adding the homogeneous pixels, and the region of interest was obtained as the grown core. It is available for orthopedic surgery and biomechanics to obtain the location and the orientation of bones and soft tissues in vivo. However, MR images including them could not be segmented by the former region growing method based on only image information. This is because those tissues had fuzzy boundaries on the image. Thus, we used not only intensity and spatial gradient as image information but also location, size and complexity of the tissue to segment the MR images. The pixel adjoining the core was judged from three local features of the pixel ; its intensity, gradient and location, and two global features of the core region ; its size and complexity. Judgment was performed by Fuzzy Reasoning to allow their fuzzy boundaries. The homogeneous pixel was added into the core region. It grew into normal size and smooth shape under constraint of global anatomical features. Using the present method, as an example, radius, ulna and interosseous membrane were segmented from the multi-sliced MR images of forearm. Segmented tissues agreed with the shape inserted manually by a medical doctor. As s result, three tissues containing different features on the MR image could be segmented by a single algorithm. It takes about 10 sec per slice by using an engineering workstation. (author)

  16. Segmentation of the tissues from MR images using basic anatomical information

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Nobutoshi; Notoya, Yoshiaki [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Nakamura, Toshiyasu; Mochimaru, Masaaki

    1994-11-01

    Automatic segmentation methods of MR images have been developed for the cardiac surgery and the brain surgery. In these fields, Region Growing method has been used mainly. In this method, the core was inserted manually, and the pixel adjoining the core was judged whether it was homogeneous or not from its features based on image information. The core grew adding the homogeneous pixels, and the region of interest was obtained as the grown core. It is available for orthopedic surgery and biomechanics to obtain the location and the orientation of bones and soft tissues in vivo. However, MR images including them could not be segmented by the former region growing method based on only image information. This is because those tissues had fuzzy boundaries on the image. Thus, we used not only intensity and spatial gradient as image information but also location, size and complexity of the tissue to segment the MR images. The pixel adjoining the core was judged from three local features of the pixel ; its intensity, gradient and location, and two global features of the core region ; its size and complexity. Judgment was performed by Fuzzy Reasoning to allow their fuzzy boundaries. The homogeneous pixel was added into the core region. It grew into normal size and smooth shape under constraint of global anatomical features. Using the present method, as an example, radius, ulna and interosseous membrane were segmented from the multi-sliced MR images of forearm. Segmented tissues agreed with the shape inserted manually by a medical doctor. As s result, three tissues containing different features on the MR image could be segmented by a single algorithm. It takes about 10 sec per slice by using an engineering workstation. (author).

  17. MR imaging of soft tissue tumors and tumor-like lesions

    Energy Technology Data Exchange (ETDEWEB)

    Laor, Tal [Department of Radiology, Cincinnati Children' s Hospital Medical Center, 3333 Burnet Avenue, 45229, Cincinnati, OH (United States)

    2004-01-01

    The evaluation of a soft tissue mass in a child should proceed with a differential diagnosis in mind, based on the clinical history, age of the child, and location of the abnormality. Small, superficial masses can be initially evaluated with sonography. More extensive or deep lesions usually require cross-sectional imaging. With the exception of myositis ossificans, magnetic resonance (MR) imaging has largely replaced the use of computed tomography. MR imaging is used to delineate the extent of a lesion, to evaluate response to therapy, and to monitor postoperative complications. There is great overlap in the MR imaging characteristics of benign and malignant lesions, making tissue sampling imperative for diagnosis. (orig.)

  18. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    OpenAIRE

    Elson, DS; Jo, JA; Marcu, L

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues.

  19. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  20. TH-AB-209-12: Tissue Equivalent Phantom with Excised Human Tissue for Assessing Clinical Capabilities of Coherent Scatter Imaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, K; Morris, R; Spencer, J [Medical Physics Graduate Program, Duke University, Durham, NC (United States); Greenberg, J [Dept. of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2016-06-15

    Purpose: Previously we reported the development of anthropomorphic tissue-equivalent scatter phantoms of the human breast. Here we present the first results from the scatter imaging of the tissue equivalent breast phantoms for breast cancer diagnosis. Methods: A breast phantom was designed to assess the capability of coded aperture coherent x-ray scatter imaging to classify different types of breast tissue (adipose, fibroglandular, tumor). The phantom geometry was obtained from a prone breast geometry scanned on a dedicated breast CT system. The phantom was 3D printed using the segmented DICOM breast CT data. The 3D breast phantom was filled with lard (as a surrogate for adipose tissue) and scanned in different geometries alongside excised human breast tissues (obtained from lumpectomy and mastectomy procedures). The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor (i.e., momentum transfer (q) spectrum) of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: Our scatter imaging system was able to define the location and composition of the various materials and tissues within the phantom. Cancerous breast tissue was detected and classified through automated spectral matching and an 86% correlation threshold. The total scan time for the sample was approximately 10 minutes and approaches workflow times for clinical use in intra-operative or other diagnostic tasks. Conclusion: This work demonstrates the first results from an anthropomorphic tissue equivalent scatter phantom to characterize a coherent scatter imaging system. The functionality of the system shows promise in applications such as intra-operative margin detection or virtual biopsy in the diagnosis of breast cancer. Future work includes using additional patient-derived tissues (e.g., human fat), and modeling additional organs

  1. Image processing can cause some malignant soft-tissue lesions to be missed in digital mammography images.

    Science.gov (United States)

    Warren, L M; Halling-Brown, M D; Looney, P T; Dance, D R; Wallis, M G; Given-Wilson, R M; Wilkinson, L; McAvinchey, R; Young, K C

    2017-09-01

    To investigate the effect of image processing on cancer detection in mammography. An observer study was performed using 349 digital mammography images of women with normal breasts, calcification clusters, or soft-tissue lesions including 191 subtle cancers. Images underwent two types of processing: FlavourA (standard) and FlavourB (added enhancement). Six observers located features in the breast they suspected to be cancerous (4,188 observations). Data were analysed using jackknife alternative free-response receiver operating characteristic (JAFROC) analysis. Characteristics of the cancers detected with each image processing type were investigated. For calcifications, the JAFROC figure of merit (FOM) was equal to 0.86 for both types of image processing. For soft-tissue lesions, the JAFROC FOM were better for FlavourA (0.81) than FlavourB (0.78); this difference was significant (p=0.001). Using FlavourA a greater number of cancers of all grades and sizes were detected than with FlavourB. FlavourA improved soft-tissue lesion detection in denser breasts (p=0.04 when volumetric density was over 7.5%) CONCLUSIONS: The detection of malignant soft-tissue lesions (which were primarily invasive) was significantly better with FlavourA than FlavourB image processing. This is despite FlavourB having a higher contrast appearance often preferred by radiologists. It is important that clinical choice of image processing is based on objective measures. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Diffusion tensor imaging in children with unilateral hearing loss: a pilot study

    Directory of Open Access Journals (Sweden)

    Tara eRachakonda

    2014-05-01

    Full Text Available Objective: Language acquisition was assumed to proceed normally in children with unilateral hearing loss (UHL since they have one functioning ear. However, children with UHL score poorly on speech-language tests and have higher rates of educational problems compared to normal hearing (NH peers. Diffusion tensor imaging (DTI is an imaging modality used to measure microstructural integrity of brain white matter. The purpose of this pilot study was to investigate differences in fractional anisotropy (FA and mean diffusivity (MD in hearing- and non-hearing-related structures in the brain between children with UHL and their NH siblings. Study Design: Prospective observational cohortSetting: Academic medical center.Subjects and Methods: 61 children were recruited, tested and imaged. 29 children with severe-to-profound UHL were compared to 20 siblings with NH using IQ and oral language testing, and MRI with DTI. 12 children had inadequate MRI data. Parents provided demographic data and indicated whether children had a need for an individualized educational program (IEP or speech therapy (ST. DTI parameters were measured in auditory and non-auditory regions of interest (ROIs. Between-group comparisons were evaluated with non-parametric tests. Results: Lower FA of left lateral lemniscus was observed for children with UHL compared to their NH siblings, as well as trends towards differences in other auditory and nonauditory regions. Correlation analyses showed associations between several DTI parameters and outcomes in children with UHL. Regression analyses revealed relationships between educational outcome variables and several DTI parameters, which may provide clinically useful information for guidance of speech therapy. Discussion/Conclusion: White matter microstructural patterns in several brain regions are preserved despite unilateral rather than bilateral auditory input which contrasts with findings in patients with bilateral hearing loss.

  3. Clinical impacts of 3.0 Tesla magnetic resonance imaging in stroke patients

    International Nuclear Information System (INIS)

    Inoue, Takashi; Ogasawara, Kuniaki; Ogawa, Akira

    2004-01-01

    The progress of the magnetic resonance (MR) imaging in the cerebral stroke patients was remarkable, and it became possible to evaluate a brain perfusion or function. Here, we describe about the clinical application of the neuronal tracts and brain perfusion evaluation using 3.0 Tesla MR imaging. The subjects were patients with internal cerebral hemorrhage and major cerebral occlusive diseases. Three dimensional anisotropy contrast (3DAC) imaging and diffusion tensor imaging (DTI) were accepted to estimate the damages of neurnal tracts. Perfusion weighted images with the contrast medium were performed for a quantitative evaluation. The pyramidal tracts were depicted well with 3DAC imaging. Fractional anisotropy (FA) value generated from DTI can predict the outcome of the motor dysfunction in each patient at early stage. Cerebral blood volume calculated from perfusion weighted imaging (PWI) was correlated with and cerebral vascular reserve capacity. 3.0 Tesla MR imaging may develop in cerebral stroke patients in near future. (author)

  4. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  5. 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy

    International Nuclear Information System (INIS)

    Xiangshui, M.; Xiangjun, C.; Xiaoming, Z.; Qingshi, Z.; Yi, C.; Chuanqiang, Q.; Xiangxing, M.; Chuanfu, L.; Jinwen, H.

    2010-01-01

    Aim: To analyse the characterization of diffusion tensor imaging (DTI) with 3 T magnetic resonance imaging (MRI) in cervical myelopathy. Methods: A total of 21 healthy controls and 84 patients with cervical myelopathy underwent T2-weighted imaging and DTI. The patients were divided into four groups based on the degree of cord compression and MRI signal intensity of the compressed cord as seen on T2-weighted images. The values of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues (λ i ) were analysed, and fibre tracking (FT) was performed. Results: For healthy controls, the mean values from the DTI of the cervical spinal cord were ADC = 0.784 ± 0.083 x 10 -3 mm 2 /s, FA = 0.721 ± 0.027, λ 1 , λ 2 , and λ 3 = 1.509 ± 0.145 x 10 -3 , 0.416 ± 0.094 x 10 -3 , and 0.411 ± 0.102 x 10 -3 mm 2 /s, respectively. Only values for λ 2 and λ 3 differed significantly between the control and A groups (p 2 and λ 3 of group A were 0.516 ± 0.105 x 10 -3 and 0.525 ± 0.129 x 10 -3 mm 2 /s, respectively. ADC, FA, λ 1 , λ 2 and λ 3 differed significantly between the control and B, C, D groups (p i obtained with DTI could assess subtle structural damage and changes of anisotropy in the cord of cervical myelopathy. Fibre tracking was useful in verifying changes in the compressed cord.

  6. White matter alterations in the brains of patients with active, remitted, and cured cushing syndrome: a DTI study.

    Science.gov (United States)

    Pires, P; Santos, A; Vives-Gilabert, Y; Webb, S M; Sainz-Ruiz, A; Resmini, E; Crespo, I; de Juan-Delago, M; Gómez-Anson, B

    2015-06-01

    Cushing syndrome appears after chronic exposure to elevated glucocorticoid levels. Cortisol excess may alter white matter microstructure. Our purpose was to study WM changes in patients with Cushing syndrome compared with controls by using DTI and the influence of hypercortisolism. Thirty-five patients with Cushing syndrome and 35 healthy controls, matched for age, education, and sex, were analyzed through DTI (tract-based spatial statistics) for fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity (general linear model, family-wise error, and threshold-free cluster enhancement corrections, P Cushing syndrome with active hypercortisolism, 7 with Cushing syndrome with medication-remitted cortisol, 20 surgically cured, and 35 controls. Cardiovascular risk factors were used as covariates. In addition, correlations were analyzed among DTI values, concomitant 24-hour urinary free cortisol levels, and disease duration. There were widespread alterations (reduced fractional anisotropy, and increased mean diffusivity, axial diffusivity, and radial diffusivity values; P Cushing syndrome compared with controls, independent of the cardiovascular risk factors present. Both active and cured Cushing syndrome subgroups showed similar changes compared with controls. Patients with medically remitted Cushing syndrome also had reduced fractional anisotropy and increased mean diffusivity and radial diffusivity values, compared with controls. No correlations were found between DTI maps and 24-hour urinary free cortisol levels or with disease duration. Diffuse WM alterations in patients with Cushing syndrome suggest underlying loss of WM integrity and demyelination. Once present, they seem to be independent of concomitant hypercortisolism, persisting after remission/cure. © 2015 by American Journal of Neuroradiology.

  7. Limbic-Auditory Interactions of Tinnitus: An Evaluation Using Diffusion Tensor Imaging.

    Science.gov (United States)

    Gunbey, H P; Gunbey, E; Aslan, K; Bulut, T; Unal, A; Incesu, L

    2017-06-01

    Tinnitus is defined as an imaginary subjective perception in the absence of an external sound. Convergent evidence proposes that tinnitus perception includes auditory, attentional and emotional components. The aim of this study was to investigate the thalamic, auditory and limbic interactions associated with tinnitus-related distress by Diffusion Tensor Imaging (DTI). A total of 36 tinnitus patients, 20 healthy controls underwent an audiological examination, as well as a magnetic resonance imaging protocol including structural and DTI sequences. All participants completed the Tinnitus Handicap Inventory (THI) and Visual Analog Scales (VAS) related with tinnitus. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained for the auditory cortex (AC), inferior colliculus (IC), lateral lemniscus (LL), medial geniculate body (MGB), thalamic reticular nucleus (TRN), amygdala (AMG), hippocampus (HIP), parahippocampus (PHIP) and prefrontal cortex (PFC). In tinnitus patients the FA values of IC, MGB, TRN, AMG, HIP decreased and the ADC values of IC, MGB, TRN, AMG, PHIP increased significantly. The contralateral IC-LL and bilateral MGB FA values correlated negatively with hearing loss. A negative relation was found between the AMG-HIP FA values and THI and VAS scores. Bilateral ADC values of PHIP and PFC significantly correlated with the attention deficiency-VAS scores. In conclusion, this is the first DTI study to investigate the grey matter structures related to tinnitus perception and the significant correlation of FA and ADC with clinical parameters suggests that DTI can provide helpful information for tinnitus. Magnifying the microstructures in DTI can help evaluate the three faces of tinnitus nature: hearing, emotion and attention.

  8. Quantifying anisotropy and fiber orientation in human brain histological sections

    Directory of Open Access Journals (Sweden)

    Matthew D Budde

    2013-02-01

    Full Text Available Diffusion weighted imaging (DWI has provided unparalleled insight into the microscopic structure and organization of the central nervous system. Diffusion tensor imaging (DTI and other models of the diffusion MRI signal extract microstructural properties of tissues with relevance to the normal and injured brain. Despite the prevalence of such techniques and applications, accurate and large-scale validation has proven difficult, particularly in the human brain. In this report, human brain sections obtained from a digital public brain bank were employed to quantify anisotropy and fiber orientation using structure tensor analysis. The derived maps depict the intricate complexity of white matter fibers at a resolution not attainable with current DWI experiments. Moreover, the effects of multiple fiber bundles (i.e. crossing fibers and intravoxel fiber dispersion were demonstrated. Examination of the cortex and hippocampal regions validated specific features of previous in vivo and ex vivo DTI studies of the human brain. Despite the limitation to two dimensions, the resulting images provide a unique depiction of white matter organization at resolutions currently unattainable with DWI. The method of analysis may be used to validate tissue properties derived from DTI and alternative models of the diffusion signal.

  9. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    Science.gov (United States)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  10. Assessment of axonal degeneration in Alzheimer's disease with diffusion tensor MRI; Diffusion tensor imaging zur Erfassung axonaler Degeneration bei Morbus Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, R. [Institut fuer Klinische Radiologie - Grosshadern, Klinikum der Universitaet Muenchen (Germany); Institut fuer Klinische Radiologie - Grosshadern, Klinikum der Universitaet Muenchen, Marchioninistr. 15, 81377, Muenchen (Germany); Dietrich, O.; Reiser, M.F.; Schoenberg, S.O. [Institut fuer Klinische Radiologie - Grosshadern, Klinikum der Universitaet Muenchen (Germany); Teipel, S.; Hampel, H. [Klinik fuer Psychiatrie und Psychotherapie, Klinikum der Universitaet Muenchen (Germany)

    2003-07-01

    Alzheimer disease (AD) causes cortical degeneration with subsequent degenerative changes of the white matter. The aim of this study was to investigate the extent of white matter tissue damage of patients with Alzheimer's disease in comparison with healthy subjects using diffusion tensor MRI (DTI). The value of integrated parallel imaging techniques (iPAT) for reduction of image distortion was assessed. We studied 9 patients with mild AD and 10 age and gender matched healthy controls. DTI brain scans were obtained on a 1.5 tesla system (Siemens Magnetom Sonata) using parallel imaging (iPAT) and an EPI diffusion sequence with TE/TR 71 ms/6000 ms. We used an 8-element head coil and a GRAPPA reconstruction algorithm with an acceleration factor of 2. From the tensor, the mean diffusivity (D), the fractional anisotropy (FA), and the relative anisotropy (RA) of several white matter regions were determined. FA was significantly lower (p <0,05) in the white matter of the genu of corpus callosum from patients with AD than in the corresponding regions from healthy controls. There was a trend observed for slightly higher ADC values in the AD group (p=0,06). No significant changes were observed in the regions of the splenium, internal capsule, pericallosal areas, frontal, temporal, parietal, and occipital lobe. The images obtained with iPAT contained substantially less susceptibility artefacts and were less distorted than images acquired with non-parallel imaging technique. DTI is a method with potential to assess early stages of white matter damage in vivo. The altered FA and ADC values in the genu of corpus callosum of patients with AD presumably reflect the microscopic white matter degeneration. Acquisition time can be reduced by iPAT methods with less image distortion from susceptibility artefacts resulting in a more accurate calculation of the diffusion tensor. (orig.) [German] Bei der Alzheimer-Erkrankung (AD) kommt es zur kortikalen Degeneration und sekundaer zu

  11. Automated detection of regions of interest for tissue microarray experiments: an image texture analysis

    International Nuclear Information System (INIS)

    Karaçali, Bilge; Tözeren, Aydin

    2007-01-01

    Recent research with tissue microarrays led to a rapid progress toward quantifying the expressions of large sets of biomarkers in normal and diseased tissue. However, standard procedures for sampling tissue for molecular profiling have not yet been established. This study presents a high throughput analysis of texture heterogeneity on breast tissue images for the purpose of identifying regions of interest in the tissue for molecular profiling via tissue microarray technology. Image texture of breast histology slides was described in terms of three parameters: the percentage of area occupied in an image block by chromatin (B), percentage occupied by stroma-like regions (P), and a statistical heterogeneity index H commonly used in image analysis. Texture parameters were defined and computed for each of the thousands of image blocks in our dataset using both the gray scale and color segmentation. The image blocks were then classified into three categories using the texture feature parameters in a novel statistical learning algorithm. These categories are as follows: image blocks specific to normal breast tissue, blocks specific to cancerous tissue, and those image blocks that are non-specific to normal and disease states. Gray scale and color segmentation techniques led to identification of same regions in histology slides as cancer-specific. Moreover the image blocks identified as cancer-specific belonged to those cell crowded regions in whole section image slides that were marked by two pathologists as regions of interest for further histological studies. These results indicate the high efficiency of our automated method for identifying pathologic regions of interest on histology slides. Automation of critical region identification will help minimize the inter-rater variability among different raters (pathologists) as hundreds of tumors that are used to develop an array have typically been evaluated (graded) by different pathologists. The region of interest

  12. Voxel-based morphometry and diffusion-tensor MR imaging of the brain in long-term survivors of childhood leukemia.

    Science.gov (United States)

    Porto, L; Preibisch, C; Hattingen, E; Bartels, M; Lehrnbecher, T; Dewitz, R; Zanella, F; Good, C; Lanfermann, H; DuMesnil, R; Kieslich, M

    2008-11-01

    The aims of this study were to detect morphological changes in neuroanatomical components in adult survivors of acute lymphoblastic leukemia (ALL). Voxel-based morphometry (VBM) can be used to detect subtle structural changes in brain morphology and via analysis of fractional anisotropy (FA), diffusion-tensor imaging (DTI) can non-invasively probe white matter (WM) integrity. We used VBM and DTI to examine 20 long-term survivors of ALL and 21 healthy matched controls. Ten ALL survivors received chemotherapy and irradiation; ten survivors received chemotherapy alone during childhood. Imaging was performed on a 3.0-T MRI. For VBM, group comparisons of segmented T1-weighted grey matter (GM) and WM images from controls and ALL survivors were performed separately for patients who received chemotherapy alone and who received chemotherapy and irradiation. For DTI, FA in WM was compared for the same groups. Survivors of childhood ALL who underwent cranial irradiation during childhood had smaller WM volumes and reduced GM concentration within the caudate nucleus and thalamus. The FA in WM was reduced in adult survivors of ALL but the effect was more severe after combined treatment with irradiation and chemotherapy. Our results indicate that DTI and VBM can reveal persistent long-term WM and caudate changes in children after ALL treatment, even without T2 changes in conventional imaging.

  13. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2010-01-01

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  14. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Donepudi V., E-mail: donepudi_venkateswararao@rediffmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Swapna, Medasani, E-mail: medasanisw@gmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Cesareo, Roberto; Brunetti, Antonio [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Zhong, Zhong [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Akatsuka, Takao; Yuasa, Tetsuya [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata-992-8510 (Japan); Takeda, Tohoru [Allied Health Science, Kitasato University 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Gigante, Giovanni E. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)

    2010-09-15

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  15. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    Science.gov (United States)

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  16. Normalized STEAM-based diffusion tensor imaging provides a robust assessment of muscle tears in football players: preliminary results of a new approach to evaluate muscle injuries.

    Science.gov (United States)

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Karner, Manuela; Resinger, Christoph; Feiweier, Thorsten; Trattnig, Siegfried; Bogner, Wolfgang

    2018-02-08

    To assess acute muscle tears in professional football players by diffusion tensor imaging (DTI) and evaluate the impact of normalization of data. Eight football players with acute lower limb muscle tears were examined. DTI metrics of the injured muscle and corresponding healthy contralateral muscle and of ROIs drawn in muscle tears (ROI tear ) in the corresponding healthy contralateral muscle (ROI hc_t ) in a healthy area ipsilateral to the injury (ROI hi ) and in a corresponding contralateral area (ROI hc_i ) were compared. The same comparison was performed for ratios of the injured (ROI tear /ROI hi ) and contralateral sides (ROI hc_t /ROI hc_i ). ANOVA, Bonferroni-corrected post-hoc and Student's t-tests were used. Analyses of the entire muscle did not show any differences (p>0.05 each) except for axial diffusivity (AD; p=0.048). ROI tear showed higher mean diffusivity (MD) and AD than ROI hc_t (ptear than in ROI hi and ROI hc_t (ptear than in any other ROI (pmuscle tears in athletes especially after normalization to healthy muscle tissue. • STEAM-based DTI allows the investigation of muscle tears affecting professional football players. • Fractional anisotropy and mean diffusivity differ between injured and healthy muscle areas. • Only normalized data show differences of fibre tracking metrics in muscle tears. • The normalization of DTI-metrics enables a more robust characterization of muscle tears.

  17. New MRI Markers for Alzheimer's Disease: A Meta-Analysis of Diffusion Tensor Imaging and a Comparison with Medial Temporal Lobe Measurements

    NARCIS (Netherlands)

    Clerx, L.; Visser, P.J.; Verhey, F.; Aalten, P.

    2012-01-01

    The aim of the present study is to evaluate the diagnostic value of diffusion tensor imaging (DTI) for early Alzheimer's disease (AD) in comparison to widely accepted medial temporal lobe (MTL) atrophy measurements. A systematic literature research was performed into DTI and MTL atrophy in AD and

  18. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  19. Dobutamine Stress Echocardiography and Tissue Synchronization Imaging

    Science.gov (United States)

    Tas, Hakan; Gundogdu, Fuat; Gurlertop, Yekta; Karakelleoglu, Sule

    2008-01-01

    Dobutamine stress echocardiography has emerged as a reliable method for the diagnosis of coronary artery disease and the management of its treatment. Several studies have shown that that this technique works with 80–85% accuracy in comparison with other imaging methods. There are few studies aimed at developing the clinical utility of dobutamine stress echocardiography for the evaluation of normal and abnormal segments that result from dobutamine stress with Tissue Synchronization Imaging. PMID:25610034

  20. Detection of light images by simple tissues as visualized by photosensitized magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Catherine Tempel-Brami

    Full Text Available In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI. We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD-MRI protocol, termed photosensitized (psMRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1. This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.

  1. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  2. Diffusion Tensor Imaging of Central Auditory Pathways in Patients with Sensorineural Hearing Loss: A Systematic Review.

    Science.gov (United States)

    Tarabichi, Osama; Kozin, Elliott D; Kanumuri, Vivek V; Barber, Samuel; Ghosh, Satra; Sitek, Kevin R; Reinshagen, Katherine; Herrmann, Barbara; Remenschneider, Aaron K; Lee, Daniel J

    2018-03-01

    Objective The radiologic evaluation of patients with hearing loss includes computed tomography and magnetic resonance imaging (MRI) to highlight temporal bone and cochlear nerve anatomy. The central auditory pathways are often not studied for routine clinical evaluation. Diffusion tensor imaging (DTI) is an emerging MRI-based modality that can reveal microstructural changes in white matter. In this systematic review, we summarize the value of DTI in the detection of structural changes of the central auditory pathways in patients with sensorineural hearing loss. Data Sources PubMed, Embase, and Cochrane. Review Methods We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement checklist for study design. All studies that included at least 1 sensorineural hearing loss patient with DTI outcome data were included. Results After inclusion and exclusion criteria were met, 20 articles were analyzed. Patients with bilateral hearing loss comprised 60.8% of all subjects. Patients with unilateral or progressive hearing loss and tinnitus made up the remaining studies. The auditory cortex and inferior colliculus (IC) were the most commonly studied regions using DTI, and most cases were found to have changes in diffusion metrics, such as fractional anisotropy, compared to normal hearing controls. Detectable changes in other auditory regions were reported, but there was a higher degree of variability. Conclusion White matter changes based on DTI metrics can be seen in patients with sensorineural hearing loss, but studies are few in number with modest sample sizes. Further standardization of DTI using a prospective study design with larger sample sizes is needed.

  3. Imaging the pathoanatomy of amyotrophic lateral sclerosis in vivo: targeting a propagation-based biological marker.

    Science.gov (United States)

    Kassubek, Jan; Müller, Hans-Peter; Del Tredici, Kelly; Lulé, Dorothée; Gorges, Martin; Braak, Heiko; Ludolph, Albert C

    2018-04-01

    Neuropathological studies in amyotrophic lateral sclerosis (ALS) have shown a dissemination in a regional sequence in four anatomically defined patterns. The aim of this retrospective study was to see whether longitudinal diffusion tensor imaging (DTI) data support the pathological findings. The application of DTI analysis to fibre structures that are prone to be involved at each neuropathological pattern of ALS was performed in a monocentre sample of 67 patients with ALS and 31 controls that obtained at least one follow-up scan after a median of 6 months. At the group level, longitudinal ALS data showed significant differences for the stage-related tract systems. At the individual level, 27% of the longitudinally scanned patients with ALS showed an increase in ALS stage, while the remaining were stable or were at the highest ALS stage. Longitudinal fractional anisotropy changes in the respective tract systems correlated significantly with the slope of the revised ALS functional rating scale. The DTI-based protocol was able to image the disease patterns of ALS in vivo cross-sectionally and longitudinally, in support of DTI as a technical marker to image ALS stages. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Confocal multispot microscope for fast and deep imaging in semicleared tissues

    Science.gov (United States)

    Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    2018-02-01

    Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.

  5. White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study.

    Science.gov (United States)

    Scherfler, Christoph; Frauscher, Birgit; Schocke, Michael; Iranzo, Alex; Gschliesser, Viola; Seppi, Klaus; Santamaria, Joan; Tolosa, Eduardo; Högl, Birgit; Poewe, Werner

    2011-02-01

    We applied diffusion-tensor imaging (DTI) including measurements of mean diffusivity (MD), a parameter of brain tissue integrity, fractional anisotropy (FA), a parameter of neuronal fiber integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to detect brain tissue changes in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). Magnetic resonance imaging (MRI) was performed in 26 patients with iRBD (mean disease duration, 9.2 ± 6.4 years) and 14 age-matched healthy control subjects. Statistical parametric mapping (SPM) was applied to objectively identify focal changes of MRI parameters throughout the entire brain volume. SPM localized significant decreases of FA in the tegmentum of the midbrain and rostral pons and increases of MD within the pontine reticular formation overlapping with a cluster of decreased FA in the midbrain (p < 0.001). VBM revealed increases of gray matter densities in both hippocampi of iRBD patients (p < 0.001). The observed changes in the pontomesencephalic brainstem localized 2 areas harboring key neuronal circuits believed to be involved in the regulation of REM sleep and overlap with areas of structural brainstem damage causing symptomatic RBD in humans. Bilateral increases in gray matter density of the hippocampus suggest functional neuronal reorganization in this brain area in iRBD. This study indicates that DTI detects distinct structural brainstem tissue abnormalities in iRBD in the regions where REM is modulated. Further studies should explore the relationship between MRI pathology and the risk of patients with iRBD of developing alpha-synuclein-related neurodegenerative diseases like Parkinson disease. Copyright © 2010 American Neurological Association.

  6. Histology and imaging of soft tissue sarcomas.

    Science.gov (United States)

    Kind, Michèle; Stock, Nathalie; Coindre, Jean Michel

    2009-10-01

    Imaging and histology are two complementary morphological techniques which play a fundamental role in the diagnosis and management of soft tissue sarcomas. Imaging allows to identify some pseudosarcomatous benign lesions such as myositis ossificans, intramuscular hemangioma, angiomyolipoma, intramuscular lipoma, giant cell tumour of tendon sheath, desmoid tumour and elastofibroma. There is no formal criterion for diagnosing a sarcoma on magnetic resonance imaging (MRI) but malignancy is strongly suspected with the presence of necrosis and vascular, bone or joint invasion. Imaging may also suggest some histological types of sarcoma such as well-differentiated liposarcoma, dedifferentiated liposarcoma, synovial sarcoma or extraskeletal osteosarcoma. Imaging is also extremely helpful in determining the appropriate kind of sampling to carry out and in guiding the performance of a microbiopsy. The appearance observed on imaging should always be taken into consideration for the interpretation of the microbiopsy by the pathologist.

  7. Histology and imaging of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Kind, Michele; Stock, Nathalie; Coindre, Jean Michel

    2009-01-01

    Imaging and histology are two complementary morphological techniques which play a fundamental role in the diagnosis and management of soft tissue sarcomas. Imaging allows to identify some pseudosarcomatous benign lesions such as myositis ossificans, intramuscular hemangioma, angiomyolipoma, intramuscular lipoma, giant cell tumour of tendon sheath, desmoid tumour and elastofibroma. There is no formal criterion for diagnosing a sarcoma on magnetic resonance imaging (MRI) but malignancy is strongly suspected with the presence of necrosis and vascular, bone or joint invasion. Imaging may also suggest some histological types of sarcoma such as well-differentiated liposarcoma, dedifferentiated liposarcoma, synovial sarcoma or extraskeletal osteosarcoma. Imaging is also extremely helpful in determining the appropriate kind of sampling to carry out and in guiding the performance of a microbiopsy. The appearance observed on imaging should always be taken into consideration for the interpretation of the microbiopsy by the pathologist.

  8. Histology and imaging of soft tissue sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Kind, Michele [Departement d' Imagerie Medicale, Institut Bergonie, 229 cours de l' Argonne, 33076 Bordeaux Cedex (France)], E-mail: kind@bergonie.org; Stock, Nathalie; Coindre, Jean Michel [Departement de Pathologie, Institut Bergonie, 229 cours de l' Argonne, 33076 Bordeaux Cedex (France); Universite Victor Segalen Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux Cedex (France)

    2009-10-15

    Imaging and histology are two complementary morphological techniques which play a fundamental role in the diagnosis and management of soft tissue sarcomas. Imaging allows to identify some pseudosarcomatous benign lesions such as myositis ossificans, intramuscular hemangioma, angiomyolipoma, intramuscular lipoma, giant cell tumour of tendon sheath, desmoid tumour and elastofibroma. There is no formal criterion for diagnosing a sarcoma on magnetic resonance imaging (MRI) but malignancy is strongly suspected with the presence of necrosis and vascular, bone or joint invasion. Imaging may also suggest some histological types of sarcoma such as well-differentiated liposarcoma, dedifferentiated liposarcoma, synovial sarcoma or extraskeletal osteosarcoma. Imaging is also extremely helpful in determining the appropriate kind of sampling to carry out and in guiding the performance of a microbiopsy. The appearance observed on imaging should always be taken into consideration for the interpretation of the microbiopsy by the pathologist.

  9. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Keil Carsten

    2012-11-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder, caused by progressive loss of motor neurons. Changes are widespread in the subcortical white matter in ALS. Diffusion tensor imaging (DTI detects pathological changes in white matter fibres in vivo, based on alterations in the degree (diffusivity, ADC and directedness (fractional anisotropy, FA of proton movement. Methods 24 patients with ALS and 24 age-matched controls received 1.5T DTI. FA and ADC were analyzed using statistical parametric mapping. In 15 of the 24 ALS patients, a second DTI was obtained after 6 months. Results Decreased FA in the corticospinal tract (CST and frontal areas confirm existing results. With a direct comparison of baseline and follow-up dataset, the progression of upper motor neuron degeneration, reflected in FA decrease, could be captured along the CST and in frontal areas. The involvement of cerebellum in the pathology of ALS, as suspected from functional MRI studies, could be confirmed by a reduced FA (culmen, declive. These structural changes correlated well with disease duration, ALSFRS-R, and physical and executive functions. Conclusion DTI detects changes that are regarded as prominent features of ALS and thus, shows promise in its function as a biomarker. Using the technique herein, we could demonstrate DTI changes at follow-up which correlated well with clinical progression.

  10. Multispectral imaging of acute wound tissue oxygenation

    Directory of Open Access Journals (Sweden)

    Audrey Huong

    2017-05-01

    Full Text Available This paper investigates the appropriate range of values for the transcutaneous blood oxygen saturation (StO2 of granulating tissues and the surrounding tissue that can ensure timely wound recovery. This work has used a multispectral imaging system to collect wound images at wavelengths ranging between 520nm and 600nm with a resolution of 10nm. As part of this research, a pilot study was conducted on three injured individuals with superficial wounds of different wound ages at different skin locations. The StO2 value predicted for the examined wounds using the Extended Modified Lambert–Beer model revealed a mean StO2 of 61±10.3% compared to 41.6±6.2% at the surrounding tissues, and 50.1±1.53% for control sites. These preliminary results contribute to the existing knowledge on the possible range and variation of wound bed StO2 that are to be used as indicators of the functioning of the vasomotion system and wound health. This study has concluded that a high StO2 of approximately 60% and a large fluctuation in this value should precede a good progression in wound healing.

  11. Biochemical imaging of tissues by SIMS for biomedical applications

    International Nuclear Information System (INIS)

    Lee, Tae Geol; Park, Ji-Won; Shon, Hyun Kyong; Moon, Dae Won; Choi, Won Woo; Li, Kapsok; Chung, Jin Ho

    2008-01-01

    With the development of optimal surface cleaning techniques by cluster ion beam sputtering, certain applications of SIMS for analyzing cells and tissues have been actively investigated. For this report, we collaborated with bio-medical scientists to study bio-SIMS analyses of skin and cancer tissues for biomedical diagnostics. We pay close attention to the setting up of a routine procedure for preparing tissue specimens and treating the surface before obtaining the bio-SIMS data. Bio-SIMS was used to study two biosystems, skin tissues for understanding the effects of photoaging and colon cancer tissues for insight into the development of new cancer diagnostics for cancer. Time-of-flight SIMS imaging measurements were taken after surface cleaning with cluster ion bombardment by Bi n or C 60 under varying conditions. The imaging capability of bio-SIMS with a spatial resolution of a few microns combined with principal component analysis reveal biologically meaningful information, but the lack of high molecular weight peaks even with cluster ion bombardment was a problem. This, among other problems, shows that discourse with biologists and medical doctors are critical to glean any meaningful information from SIMS mass spectrometric and imaging data. For SIMS to be accepted as a routine, daily analysis tool in biomedical laboratories, various practical sample handling methodology such as surface matrix treatment, including nano-metal particles and metal coating, in addition to cluster sputtering, should be studied

  12. Imaging manifestations of progressive multifocal leukoencephalopathy

    International Nuclear Information System (INIS)

    Shah, R.; Bag, A.K.; Chapman, P.R.; Cure, J.K.

    2010-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by reactivation of JC virus in immunosuppressed patients. The diagnosis is usually suggested on imaging and confirmed by cerebrospinal fluid polymerase chain reaction (PCR) for JC virus DNA. In this article, we review the imaging manifestations of PML on computed tomography (CT), magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), MR spectroscopy, single photon-emission computed tomography (SPECT) and positron-emission tomography (PET), and outline the role of imaging in follow-up and prognostication.

  13. Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse

    Directory of Open Access Journals (Sweden)

    Guido eGerig

    2011-10-01

    Full Text Available The use of structural magnetic resonance imaging (sMRI and diffusion tensor imaging (DTI in animals models of neuropathology is of increasing interest to the neuroscience community. In this work, we present our approach to create optimal translational studies that include both animal and human neuroimaging data within the frameworks of a study of postnatal neuro-development in intra-uterine cocaine exposure. We propose the use of non-invasive neuroimaging to study developmental brain structural and white matter pathway abnormalities via sMRI and DTI, as advanced MR imaging technology is readily available and automated image analysis methodology have recently been transferred from the human to animal imaging setting. For this purpose, we developed a synergistic, parallel approach to imaging and image analysis for the human and the rodent branch of our study. We propose an equivalent design in both the selection of the developmental assessment stage and the neuroimaging setup. This approach brings significant advantages to study neurobiological features of early brain development that are common to animals and humans but also preserve analysis capabilities only possible in animal research. This paper presents the main framework and individual methods for the proposed cross-species study design, as well as preliminary DTI cross-species comparative results in the intra-uterine cocaine exposure study.

  14. Progress in reflectance confocal microscopy for imaging oral tissues in vivo

    Science.gov (United States)

    Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal

    2016-02-01

    We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.

  15. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  16. The clinical utility of MR diffusion tensor imaging and spatially normalized PET to evaluate traumatic brain injury patients with memory and cognitive impairments

    International Nuclear Information System (INIS)

    Okumura, Ayumi; Yasokawa, Yuuto; Nakayama, Noriyuki; Miwa, Kazuhiro; Shinoda, Jun; Iwama, Toru

    2005-01-01

    We detected and compared abnormal brain areas using both MR diffusion tensor imaging (DTI) and easy Z score imaging system (eZIS) of fluorodeoxyglucose (FDG)-PET for traumatic brain injury patients with memory and cognitive impairments. Twenty normal subjects and eighteen diffuse axonal injury patients with memory and cognitive impairments were studied with DTI and eZIS of 18 F-FDG-PET. DTI contained fractional anisotorophy (FA) analysis and the tractography for the corpus callosum. After PET imaging was performed, statistical analysis using eZIS was undergone with followed processing steps, including smoothing, normalization and z transformation with respect to normal database. Z score map was superimposed on 3D MRI brain. Group analysis was performed using statistical parametric mapping (SPM). In diffuse axonal injury patients, the decline of FA was observed around the corpus callosum in comparison with normal subjects and the reduction of glucose metabolism was shown in the cingulated association. These results suggest that the reduction of metabolism within the cingulated cortex indicated deprived neuronal activation caused by the impaired neuronal connectivity that was revealed with DTI. Furthermore, the metabolic abnormalities within the cingulated cortex may be responsible for memory and cognitive impairments. DTI and spatially normalized PET have a role in neuroimaging interpretation for patients with memory and cognition impairments be cause its 3D better visualization allows objective and systematic investigation. (author)

  17. Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Hueper, Katja; Gutberlet, M.; Rodt, T.; Wacker, F.; Galanski, M.; Hartung, D. [Institute for Diagnostic and Interventional Radiology, Hannover Medical School - Germany, Hannover (Germany); Gwinner, W. [Clinic for Nephrology, Hannover Medical School - Germany, Hannover (Germany); Lehner, F. [Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School - Germany, Hannover (Germany)

    2011-11-15

    To evaluate MR diffusion tensor imaging (DTI) as non-invasive diagnostic tool for detection of acute and chronic allograft dysfunction and changes of organ microstructure. 15 kidney transplanted patients with allograft dysfunction and 14 healthy volunteers were examined using a fat-saturated echo-planar DTI-sequence at 1.5 T (6 diffusion directions, b = 0, 600 s/mm{sup 2}). Mean apparent diffusion coefficient (ADC) and mean fractional anisotropy (FA) were calculated separately for the cortex and for the medulla and compared between healthy and transplanted kidneys. Furthermore, the correlation between diffusion parameters and estimated GFR was determined. The ADC in the cortex and in the medulla were lower in transplanted than in healthy kidneys (p < 0.01). Differences were more distinct for FA, especially in the renal medulla, with a significant reduction in allografts (p < 0.001). Furthermore, in transplanted patients a correlation between mean FA in the medulla and estimated GFR was observed (r = 0.72, p < 0.01). Tractography visualized changes in renal microstructure in patients with impaired allograft function. Changes in allograft function and microstructure can be detected and quantified using DTI. However, to prove the value of DTI for standard clinical application especially correlation of imaging findings and biopsy results is necessary. (orig.)

  18. Prevalence of Soft Tissue Calcifications in CBCT Images of Mandibular Region.

    Science.gov (United States)

    Khojastepour, Leila; Haghnegahdar, Abdolaziz; Sayar, Hamed

    2017-06-01

    Most of the soft tissue calcifications within the head and neck region might not be accompanied by clinical symptoms but may indicate some pathological conditions. The aim of this research was to determine the prevalence of soft tissue calcifications in cone beam computed tomography (CBCT) images of mandibular region. In this cross sectional study the CBCT images of 602 patients including 294 men and 308 women with mean age 41.38±15.18 years were evaluated regarding the presence, anatomical location; type (single or multiple) and size of soft tissue calcification in mandibular region. All CBCT images were acquired by NewTom VGi scanner. Odds ratio and chi-square tests were used for data analysis and p < 0.05 was considered to be statistically significant. 156 out of 602 patients had at least one soft tissue calcification in their mandibular region (25.9%. of studied population with mean age 51.7±18.03 years). Men showed significantly higher rate of soft tissue calcification than women (30.3% vs. 21.8%). Soft tissue calcification was predominantly seen at posterior region of the mandible (88%) and most of them were single (60.7%). The prevalence of soft tissue calcification increased with age. Most of the detected soft tissue calcifications were smaller than 3mm (90%). Soft tissue calcifications in mandibular area were a relatively common finding especially in posterior region and more likely to happen in men and in older age group.

  19. Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue

    International Nuclear Information System (INIS)

    Flueraru, C; Mao, Y; Chang, S; Popescu, D P; Sowa, M G

    2010-01-01

    Optical coherence tomography (OCT) images of left-descending coronary tissues harvested from three porcine specimens were acquired with a home-build swept-source OCT setup. Despite the fact that OCT is capable of acquiring high resolution circumferential images of vessels, many distinct histological features of a vessel have comparable optical properties leading to poor contrast in OCT images. Two classification methods were tested in this report for the purpose of enhancing contrast between soft-tissue components of porcine coronary vessels. One method involved analyzing the attenuation of the OCT signal as a function of light penetration into the tissue. We demonstrated that by analyzing the signal attenuation in this manner we were able to differentiate two media sub-layers with different orientations of the smooth muscle cells. The other classification method used in our study was fractal analysis. Fractal analysis was implemented in a box-counting (fractal dimension) image-processing code and was used as a tool to differentiate and quantify variations in tissue texture at various locations in the OCT images. The calculated average fractal dimensions had different values in distinct regions of interest (ROI) within the imaged coronary samples. When compared to the results obtained by using the attenuation of the OCT signal, the method of fractal analysis demonstrated better classification potential for distinguishing amongst the tissue ROI.

  20. Texture analysis of speckle in optical coherence tomography images of tissue phantoms

    International Nuclear Information System (INIS)

    Gossage, Kirk W; Smith, Cynthia M; Kanter, Elizabeth M; Hariri, Lida P; Stone, Alice L; Rodriguez, Jeffrey J; Williams, Stuart K; Barton, Jennifer K

    2006-01-01

    Optical coherence tomography (OCT) is an imaging modality capable of acquiring cross-sectional images of tissue using back-reflected light. Conventional OCT images have a resolution of 10-15 μm, and are thus best suited for visualizing tissue layers and structures. OCT images of collagen (with and without endothelial cells) have no resolvable features and may appear to simply show an exponential decrease in intensity with depth. However, examination of these images reveals that they display a characteristic repetitive structure due to speckle.The purpose of this study is to evaluate the application of statistical and spectral texture analysis techniques for differentiating living and non-living tissue phantoms containing various sizes and distributions of scatterers based on speckle content in OCT images. Statistically significant differences between texture parameters and excellent classification rates were obtained when comparing various endothelial cell concentrations ranging from 0 cells/ml to 25 million cells/ml. Statistically significant results and excellent classification rates were also obtained using various sizes of microspheres with concentrations ranging from 0 microspheres/ml to 500 million microspheres/ml. This study has shown that texture analysis of OCT images may be capable of differentiating tissue phantoms containing various sizes and distributions of scatterers

  1. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey

    Science.gov (United States)

    Ismail, Marwa M. T.; Keynton, Robert S.; Mostapha, Mahmoud M. M. O.; ElTanboly, Ahmed H.; Casanova, Manuel F.; Gimel'farb, Georgy L.; El-Baz, Ayman

    2016-01-01

    Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics. PMID:27242476

  2. Comparison of tissue viability imaging and colorimetry: skin blanching.

    Science.gov (United States)

    Zhai, Hongbo; Chan, Heidi P; Farahmand, Sara; Nilsson, Gert E; Maibach, Howard I

    2009-02-01

    Operator-independent assessment of skin blanching is important in the development and evaluation of topically applied steroids. Spectroscopic instruments based on hand-held probes, however, include elements of operator dependence such as difference in applied pressure and probe misalignment, while laser Doppler-based methods are better suited for demonstration of skin vasodilatation than for vasoconstriction. To demonstrate the potential of the emerging technology of Tissue Viability Imaging (TiVi) in the objective and operator-independent assessment of skin blanching. The WheelsBridge TiVi600 Tissue Viability Imager was used for quantification of human skin blanching with the Minolta chromameter CR 200 as an independent colorimeter reference method. Desoximetasone gel 0.05% was applied topically on the volar side of the forearm under occlusion for 6 h in four healthy adults. In a separate study, the induction of blanching in the occlusion phase was mapped using a transparent occlusion cover. The relative uncertainty in the blanching estimate produced by the Tissue Viability Imager was about 5% and similar to that of the chromameter operated by a single user and taking the a(*) parameter as a measure of blanching. Estimation of skin blanching could also be performed in the presence of a transient paradoxical erythema, using the integrated TiVi software. The successive induction of skin blanching during the occlusion phase could readily be mapped by the Tissue Viability Imager. TiVi seems to be suitable for operator-independent and remote mapping of human skin blanching, eliminating the main disadvantages of methods based on hand-held probes.

  3. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of); Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2010-06-15

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  4. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    International Nuclear Information System (INIS)

    Choi, Eun Seo; Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha; Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il

    2010-01-01

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  5. Simultaneous multislice echo planar imaging with blipped controlled aliasing in parallel imaging results in higher acceleration: a promising technique for accelerated diffusion tensor imaging of skeletal muscle

    OpenAIRE

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-01-01

    PURPOSE The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. MATERIALS AND METHODS After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic ...

  6. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations.

    Science.gov (United States)

    Flores, Bruno C; Whittemore, Anthony R; Samson, Duke S; Barnett, Samuel L

    2015-03-01

    Resection of brainstem cavernous malformations (BSCMs) may reduce the risk of stepwise neurological deterioration secondary to hemorrhage, but the morbidity of surgery remains high. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are neuroimaging techniques that may assist in the complex surgical planning necessary for these lesions. The authors evaluate the utility of preoperative DTI and DTT in the surgical management of BSCMs and their correlation with functional outcome. A retrospective review was conducted to identify patients who underwent resection of a BSCM between 2007 and 2012. All patients had preoperative DTI/DTT studies and a minimum of 6 months of clinical and radiographic follow-up. Five major fiber tracts were evaluated preoperatively using the DTI/DTT protocol: 1) corticospinal tract, 2) medial lemniscus and medial longitudinal fasciculus, 3) inferior cerebellar peduncle, 4) middle cerebellar peduncle, and 5) superior cerebellar peduncle. Scores were applied according to the degree of distortion seen, and the sum of scores was used for analysis. Functional outcomes were measured at hospital admission, discharge, and last clinic visit using modified Rankin Scale (mRS) scores. Eleven patients who underwent resection of a BSCM and preoperative DTI were identified. The mean age at presentation was 49 years, with a male-to-female ratio of 1.75:1. Cranial nerve deficit was the most common presenting symptom (81.8%), followed by cerebellar signs or gait/balance difficulties (54.5%) and hemibody anesthesia (27.2%). The majority of the lesions were located within the pons (54.5%). The mean diameter and estimated volume of lesions were 1.21 cm and 1.93 cm(3), respectively. Using DTI and DTT, 9 patients (82%) were found to have involvement of 2 or more major fiber tracts; the corticospinal tract and medial lemniscus/medial longitudinal fasciculus were the most commonly affected. In 2 patients with BSCMs without pial presentation, DTI

  7. Imaging the spectral reflectance properties of bipolar radiofrequency-fused bowel tissue

    Science.gov (United States)

    Clancy, Neil T.; Arya, Shobhit; Stoyanov, Danail; Du, Xiaofei; Hanna, George B.; Elson, Daniel S.

    2015-07-01

    Delivery of radiofrequency (RF) electrical energy is used during surgery to heat and seal tissue, such as vessels, allowing resection without blood loss. Recent work has suggested that this approach may be extended to allow surgical attachment of larger tissue segments for applications such as bowel anastomosis. In a large series of porcine surgical procedures bipolar RF energy was used to resect and re-seal the small bowel in vivo with a commercial tissue fusion device (Ligasure; Covidien PLC, USA). The tissue was then imaged with a multispectral imaging laparoscope to obtain a spectral datacube comprising both fused and healthy tissue. Maps of blood volume, oxygen saturation and scattering power were derived from the measured reflectance spectra using an optimised light-tissue interaction model. A 60% increase in reflectance of visible light (460-700 nm) was observed after fusion, with the tissue taking on a white appearance. Despite this the distinctive shape of the haemoglobin absorption spectrum was still noticeable in the 460-600 nm wavelength range. Scattering power increased in the fused region in comparison to normal serosa, while blood volume and oxygen saturation decreased. Observed fusion-induced changes in the reflectance spectrum are consistent with the biophysical changes induced through tissue denaturation and increased collagen cross-linking. The multispectral imager allows mapping of the spatial extent of these changes and classification of the zone of damaged tissue. Further analysis of the spectral data in parallel with histopathological examination of excised specimens will allow correlation of the optical property changes with microscopic alterations in tissue structure.

  8. Differentiating cancerous from normal breast tissue by redox imaging

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (pcancerous tissues than in the normal ones (pcancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  9. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  10. Imaging of the most frequent superficial soft-tissue sarcomas

    International Nuclear Information System (INIS)

    Morel, Melanie; Taieb, Sophie; Ceugnart, Luc; Penel, Nicolas; Mortier, Laurent; Vanseymortier, Luc; Robin, Y.M.; Gosset, Pierre; Cotten, Anne

    2011-01-01

    Superficial soft-tissue sarcomas are malignant mesenchymal tumors located within the cutaneous and/or subcutaneous layers. Most superficial soft-tissue sarcomas are low-grade tumors; yet, the risk of local recurrence is high, and initial wide surgery is the main prognostic factor. Some of these superficial sarcomas may grow, following an infiltrative pattern, and their real extent may be underestimated clinically. Imaging techniques are useful to determine precisely the real margins of the tumor, especially in cases of clinically doubtful or recurrent or large superficial lesions. Imaging tools enable one to determine the relationship with the superficial fascia separating the subcutaneous layer from the underlying muscle. In our institution ultrasonographic examination is followed by magnetic resonance (MR) imaging when the size of the lesion exceeds 3-5 cm. Imaging assessment is performed prior to biopsy, enabling optimal surgical management. Imaging features of the main superficial sarcomas are detailed in the following article, according to their major locations: those arising in the epidermis and/or dermis, which are most often diagnosed by dermatologists, and the subcutaneous sarcomas. (orig.)

  11. Imaging of the most frequent superficial soft-tissue sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Melanie; Taieb, Sophie; Ceugnart, Luc [Centre Oscar Lambret, Department of Radiology, Lille (France); Penel, Nicolas [Centre Oscar Lambret, Department of Oncology, Lille (France); Mortier, Laurent [Centre Hospitalier Universitaire de Lille, Department of Dermatology, Hopital Claude Huriez, Lille (France); Vanseymortier, Luc [Centre Oscar Lambret, Department of Surgery, Lille (France); Robin, Y.M. [Centre Oscar Lambret, Departement of Pathology, Lille (France); Gosset, Pierre [Groupement Hospitalier de l' Institut Catholique-Faculte Libre de Medecine de Lille, Department of Pathology, Hopital Saint-Philibert, Lomme (France); Cotten, Anne [Centre Hospitalier Universitaire de Lille, Department of Musculoskeletal Radiology, Centre Hopital Roger Salengro, Lille (France)

    2011-03-15

    Superficial soft-tissue sarcomas are malignant mesenchymal tumors located within the cutaneous and/or subcutaneous layers. Most superficial soft-tissue sarcomas are low-grade tumors; yet, the risk of local recurrence is high, and initial wide surgery is the main prognostic factor. Some of these superficial sarcomas may grow, following an infiltrative pattern, and their real extent may be underestimated clinically. Imaging techniques are useful to determine precisely the real margins of the tumor, especially in cases of clinically doubtful or recurrent or large superficial lesions. Imaging tools enable one to determine the relationship with the superficial fascia separating the subcutaneous layer from the underlying muscle. In our institution ultrasonographic examination is followed by magnetic resonance (MR) imaging when the size of the lesion exceeds 3-5 cm. Imaging assessment is performed prior to biopsy, enabling optimal surgical management. Imaging features of the main superficial sarcomas are detailed in the following article, according to their major locations: those arising in the epidermis and/or dermis, which are most often diagnosed by dermatologists, and the subcutaneous sarcomas. (orig.)

  12. STRUCTURAL CONNECTIVITY VIA THE TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Kim, Seung-Goo; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε -neighbor method that does not need any predetermined parcellation. The proposed pipeline is applied in detecting the topological alteration of the white matter connectivity in maltreated children.

  13. The Assessment of Left Ventricular Time-Varying Radius Using Tissue Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Fardin Mirbolouk

    2012-03-01

    Full Text Available Background: Left ventricular twist/torsion is believed to be a sensitive indicator of systolic and diastolic performance. To obtain circumferential rotation using tissue Doppler imaging, we need to estimate the time-varying radius of the left ventricle throughout the cardiac cycle to convert the tangential velocity into angular velocity. Objectives: The aim of this study was to investigate accuracy of measured LV radius using tissue Doppler imaging throughout the cardiac cycle compared to two-dimensional (2D imaging. Methods: A total of 35 subjects (47±12 years old underwent transthoracic echocardiographic standard examinations. Left ventricular radius during complete cardiac cycle measured using tissue Doppler and 2D-imaging at basal and apical short axis levels. For this reason, the 2D-images and velocity-time data derived and transferred to a personal computer for off-line analysis. 2D image frames analyzed via a program written in the MATLAB software. Velocity-time data from anteroseptal at basal level (or anterior wall at apical level and posterior walls transferred to a spreadsheet Excel program for the radius calculations. Linear correlation and Bland-Altman analysis were calculated to assess the relationships and agreements between the tissue Doppler and 2D-measured radii throughout the cardiac cycle. Results: There was significant correlation between tissue Doppler and 2D-measured radii and the Pearson correlation coefficients were 0.84 to 0.97 (P<0.05. Bland-Altman analysis by constructing the 95% limits of agreement showed that the good agreements existed between the two methods. Conclusion: It can be concluded from our experience that the tissue Doppler imaging can reasonably estimate radius of the left ventricle throughout the cardiac cycle.

  14. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  15. Multispectral fluorescence imaging of human ovarian and Fallopian tube tissue for early stage cancer detection

    Science.gov (United States)

    Tate, Tyler; Baggett, Brenda; Rice, Photini; Watson, Jennifer; Orsinger, Gabe; Nymeyer, Ariel C.; Welge, Weston A.; Keenan, Molly; Saboda, Kathylynn; Roe, Denise J.; Hatch, Kenneth; Chambers, Setsuko; Black, John; Utzinger, Urs; Barton, Jennifer

    2015-03-01

    With early detection, five year survival rates for ovarian cancer are over 90%, yet no effective early screening method exists. Emerging consensus suggests that perhaps over 50% of the most lethal form of the disease, high grade serous ovarian cancer, originates in the Fallopian tube. Cancer changes molecular concentrations of various endogenous fluorophores. Using specific excitation wavelengths and emissions bands on a Multispectral Fluorescence Imaging (MFI) system, spatial and spectral data over a wide field of view can be collected from endogenous fluorophores. Wavelength specific reflectance images provide additional information to normalize for tissue geometry and blood absorption. Ratiometric combination of the images may create high contrast between neighboring normal and abnormal tissue. Twenty-six women undergoing oophorectomy or debulking surgery consented the use of surgical discard tissue samples for MFI imaging. Forty-nine pieces of ovarian tissue and thirty-two pieces of Fallopian tube tissue were collected and imaged with excitation wavelengths between 280 nm and 550 nm. After imaging, each tissue sample was fixed, sectioned and HE stained for pathological evaluation. Comparison of mean intensity values between normal, benign, and cancerous tissue demonstrate a general trend of increased fluorescence of benign tissue and decreased fluorescence of cancerous tissue when compared to normal tissue. The predictive capabilities of the mean intensity measurements are tested using multinomial logistic regression and quadratic discriminant analysis. Adaption of the system for in vivo Fallopian tube and ovary endoscopic imaging is possible and is briefly described.

  16. Retrospective correction of bias in diffusion tensor imaging arising from coil combination mode.

    Science.gov (United States)

    Sakaie, Ken; Lowe, Mark

    2017-04-01

    To quantify and retrospectively correct for systematic differences in diffusion tensor imaging (DTI) measurements due to differences in coil combination mode. Multi-channel coils are now standard among MRI systems. There are several options for combining signal from multiple coils during image reconstruction, including sum-of-squares (SOS) and adaptive combine (AC). This contribution examines the bias between SOS- and AC-derived measures of tissue microstructure and a strategy for limiting that bias. Five healthy subjects were scanned under an institutional review board-approved protocol. Each set of raw image data was reconstructed twice-once with SOS and once with AC. The diffusion tensor was calculated from SOS- and AC-derived data by two algorithms-standard log-linear least squares and an approach that accounts for the impact of coil combination on signal statistics. Systematic differences between SOS and AC in terms of tissue microstructure (axial diffusivity, radial diffusivity, mean diffusivity and fractional anisotropy) were evaluated on a voxel-by-voxel basis. SOS-based tissue microstructure values are systematically lower than AC-based measures throughout the brain in each subject when using the standard tensor calculation method. The difference between SOS and AC can be virtually eliminated by taking into account the signal statistics associated with coil combination. The impact of coil combination mode on diffusion tensor-based measures of tissue microstructure is statistically significant but can be corrected retrospectively. The ability to do so is expected to facilitate pooling of data among imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING

    OpenAIRE

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K.; Hanson, Jamie L.; Avants, Brian B.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white ...

  18. An imaging colorimeter for noncontact tissue color mapping.

    Science.gov (United States)

    Balas, C

    1997-06-01

    There has been a considerable effort in several medical fields, for objective color analysis and characterization of biological tissues. Conventional colorimeters have proved inadequate for this purpose, since they do not provide spatial color information and because the measuring procedure randomly affects the color of the tissue. In this paper an imaging colorimeter is presented, where the nonimaging optical photodetector of colorimeters is replaced with the charge-coupled device (CCD) sensor of a color video camera, enabling the independent capturing of the color information for any spatial point within its field-of-view. Combining imaging and colorimetry methods, the acquired image is calibrated and corrected, under several ambient light conditions, providing noncontact reproducible color measurements and mapping, free of the errors and the limitations present in conventional colorimeters. This system was used for monitoring of blood supply changes of psoriatic plaques, that have undergone Psoralens and ultraviolet-A radiation (PUVA) therapy, where reproducible and reliable measurements were demonstrated. These features highlight the potential of the imaging colorimeters as clinical and research tools for the standardization of clinical diagnosis and for the objective evaluation of treatment effectiveness.

  19. Measurement of facial soft tissues thickness using 3D computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo [Yonsei Univ. Hospital, Seoul (Korea, Republic of); Han, Seung Ho [Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2006-03-15

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology.

  20. Measurement of facial soft tissues thickness using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo; Han, Seung Ho

    2006-01-01

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology

  1. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT (Conference Presentation)

    Science.gov (United States)

    Yao, Xinwen; Gan, Yu; Chang, Ernest W.; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine P.

    2017-02-01

    We employed a home-built ultrahigh resolution (UHR) OCT system at 800nm to image human breast cancer sample ex vivo. The system has an axial resolution of 2.72µm and a lateral resolution of 5.52µm with an extended imaging range of 1.78mm. Over 900 UHR OCT volumes were generated on specimens from 23 breast cancer cases. With better spatial resolution, detailed structures in the breast tissue were better defined. Different types of breast cancer as well as healthy breast tissue can be well delineated from the UHR OCT images. To quantitatively evaluate the advantages of UHR OCT imaging of breast cancer, features derived from OCT intensity images were used as inputs to a machine learning model, the relevance vector machine. A trained machine learning model was employed to evaluate the performance of tissue classification based on UHR OCT images for differentiating tissue types in the breast samples, including adipose tissue, healthy stroma and cancerous region. For adipose tissue, grid-based local features were extracted from OCT intensity data, including standard deviation, entropy, and homogeneity. We showed that it was possible to enhance the classification performance on distinguishing fat tissue from non-fat tissue by using the UHR images when compared with the results based on OCT images from a commercial 1300 nm OCT system. For invasive ductal carcinoma (IDC) and normal stroma differentiation, the classification was based on frame-based features that portray signal penetration depth and tissue reflectivity. The confusing matrix indicated a sensitivity of 97.5% and a sensitivity of 77.8%.

  2. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  3. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  4. Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner

    International Nuclear Information System (INIS)

    Assis, Zarina Abdul; Saini, Jitender; Ranjan, Manish; Gupta, Arun Kumar; Sabharwal, Paramveer; Naidu, Purushotham R

    2015-01-01

    Primary intracranial tumors in children are commonly located in the posterior fossa. Conventional MRI offers limited information regarding the histopathological type of tumor which is essential for better patient management. The purpose of the study was to evaluate the usefulness of advanced MR imaging techniques like diffusion tensor imaging (DTI) in distinguishing the various histopathological types of posterior fossa tumors in children. DTI was performed on a 3T MRI scanner in 34 untreated children found to have posterior fossa lesions. Using third party software, various DTI parameters [apparent diffusion coefficient (ADC), fractional anisotropy (FA), radial diffusivity, planar index, spherical index, and linear index] were calculated for the lesion. Data were subjected to statistical analysis [analysis of variance (ANOVA)] using SPSS 15.0 software. We observed significant correlation (P < 0.01) between ADC mean and maximum, followed by radial diffusivity (RD) with the histopathological types of the lesions. Rest of the DTI parameters did not show any significant correlation in our study. The results of our study support the hypothesis that most cellular tumors and those with greater nuclear area like medulloblastoma would have the lowest ADC values, as compared to less cellular tumors like pilocytic astrocytoma

  5. A new study on diffusion tensor imaging of the whole visual pathway fiber bundle and clinical application

    Institute of Scientific and Technical Information of China (English)

    TAO Xiao-feng; WANG Zhong-qiu; GONG Wan-qing; JIANG Qing-jun; SHI Zeng-ru

    2009-01-01

    Background With conventional imaging methods only the morphous of the visual nerve fiber bundles can be demonstrated, while the earlier period functional changes can not be demonstrated. We hypothesized that diffusion tensor imaging (DTI) would demonstrated the whole optic never fiber bundle and visual pathway and the earlier period functional changes. The purpose of the present study was to evaluate the application of DTI technique in the demonstration of the whole optic never fiber bundle and visual pathway, and the influence of orbital tumors on them. Methods GE 1.5T signa HD MR System, and the software package DTV2 were adopted. The total 45 subjects were enrolled, including 15 volunteers and 30 patients. All patients had ocular proptosis from minor to major. Seven patients had visual acuity decrescence. Results The nerve fiber bundles, e.g. optic chiasma, optic tract and optic radiation in posterior visual pathway were well demonstrated in all cases. Wherein, the intact whole visual pathway fiber bundles were clearly revealed in 10 volunteers and 17 patients, and optic nerve was not wholly revealed in the rest of the subjects. Shift of optic nerve caused by compression and partial deformation were seen in 7 patients with orbital tumor. In 6 of 7 patients, DTI displayed significant abscise and deformation of visual nerve. Chi-square test indicated significant correlation between visual acuity decrescence and DTI visual nerve non-display. Conclusions Visual nerve fiber bundles and the whole visual pathway were visualized in most of patients with DTI. It might be an effective method of providing imaging evidence for visual nerve fiber earlier period functional changes, and laid a foundation for the study in other cranial nerves.

  6. Imaging of tissue sections with very slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Nebesářová, J.; Vancová, M. [Biology Centre AS CR, v.v.i., Branišovská 31, 37005 České Budějovice (Czech Republic); Paták, A.; Müllerová, I. [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic)

    2015-01-15

    The examination of thin sections of tissues with electron microscopes is an indispensable tool. Being composed of light elements, samples of living matter illuminated with electrons at the usual high energies of tens or even hundreds of kiloelectronvolts provide very low image contrasts in transmission or scanning transmission electron microscopes. Therefore, heavy metal salts are added to the specimen during preparation procedures (post-fixation with osmium tetroxide or staining). However, these procedures can modify or obscure the ultrastructural details of cells. Here we show that the energy of electrons used for the scanned transmission imaging of tissue sections can be reduced to mere hundreds or even tens of electronvolts and can produce extremely high contrast even for samples free of any metal salts. We found that when biasing a sufficiently thin tissue section sample to a high negative potential in a scanning transmission electron microscope, thereby reducing the energy of the electrons landing on the sample, and collecting the transmitted electrons with a grounded detector, we obtain a high contrast revealing structure details not enhanced by heavy atoms. Moreover, bombardment with slow electrons sensitively depolymerises the resin in which the tissue is embedded, thereby enhancing the transmitted signal with no observable loss of structure details. The use of low-energy electrons requires ultrathin sections of a thickness of less than 10 nm, but their preparation is now possible. Ultralow energy STEM provides a tool enabling the observation of very thin biological samples without any staining. This method should also be advantageous for examination of 2D crystals, thin films of polymers, polymer blends, etc. - Highlights: • Sections of a thickness below 10 nm were imaged in STEM at hundreds and tens of eV. • Image contrast grows steeply with decreasing electron energy in the STEM. • Very slow electrons provide high contrast for samples free of

  7. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Science.gov (United States)

    Genova, Helen M; Rajagopalan, Venkateswaran; Deluca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn

    2013-01-01

    The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  8. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Helen M Genova

    Full Text Available The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS, looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  9. Opto-ultrasound imaging in vivo in deep tissue

    International Nuclear Information System (INIS)

    Si, Ke; YanXu; Zheng, Yao; Zhu, Xinpei; Gong, Wei

    2016-01-01

    It is of keen importance of deep tissue imaging with high resolution in vivo. Here we present an opto-ultrasound imaging method which utilizes an ultrasound to confine the laser pulse in a very tiny spot as a guide star. The results show that the imaging depth is 2mm with a resolution of 10um. Meanwhile, the excitation power we used is less than 2mW, which indicates that our methods can be applied in vivo without optical toxicity and optical bleaching due to the excitation power. (paper)

  10. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fayad, Laura M.

    2018-01-01

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  11. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopaedic Surgery, Baltimore, MD (United States)

    2018-03-15

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  12. Diffusion tensor imaging of the brain. Effects of distortion correction with correspondence to numbers of encoding directions

    International Nuclear Information System (INIS)

    Yoshikawa, Takeharu; Aoki, Shigeki; Abe, Osamu; Hayashi, Naoto; Masutani, Yoshitaka; Masumoto, Tomohiko; Mori, Harushi; Satake, Yoshiroh; Ohtomo, Kuni

    2008-01-01

    The aim of the study was to estimate the effect of distortion correction with correspondence to numbers of encoding directions to acquire diffusion tensor imaging (DTI) of improved quality. Ten volunteers underwent DTI of the head using echo planar imaging with 6, 13, 27, and 55 encoding directions. Fractional anisotropy (FA) maps and apparent diffusion coefficient (ADC) maps were created before and after distortion correction. Regions of interest were placed in the corpus callosum on each map, and standard deviations of FA and ADC were calculated. FA maps were also evaluated visually by experienced neuroradiologists. Dispersion of standard deviations tended to be reduced after distortion correction, with significant differences found in FA maps with 6 encoding directions, ADC maps with 6 directions, and ADC maps with 13 directions (P<0.001, P<0.005, and P<0.05, respectively). Visual image quality was improved after distortion correction (P<0.01 for all of the visual comparisons). Distortion correction is effective in providing DTI of enhanced quality, notwithstanding the number of encoding directions. (author)

  13. Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features

    Science.gov (United States)

    Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei

    2014-03-01

    Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.

  14. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    Science.gov (United States)

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-05-15

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], pFourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis

  15. Detection of prostate cancer in peripheral zone: comparison of MR diffusion tensor imaging, quantitative dynamic contrast-enhanced MRI, and the two techniques combined at 3.0 T.

    Science.gov (United States)

    Li, Chunmei; Chen, Min; Li, Saying; Zhao, Xuna; Zhang, Chen; Luo, Xiaojie; Zhou, Cheng

    2014-03-01

    Previous studies have shown that the diagnostic accuracy for prostate cancer improved with diffusion tensor imaging (DTI) or quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) only. However, the efficacy of combined DTI and quantitative DCE-MRI in detecting prostate cancer at 3.0 T is still indeterminate. To investigate the utility of diffusion tensor imaging (DTI), quantitative DCE-MRI, and the two techniques combined at 3.0 T in detecting prostate cancer of the peripheral zone (PZ). DTI and DCE-MRI of 33 patients was acquired prior to prostate biopsy. Regions of interest (ROIs) were drawn according to biopsy zones which were apex, mid-gland, and base on each side of the PZ. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), volume transfer constant (K(trans)), and rate constant (kep) values of cancerous sextants and non-cancerous sextants in PZ were calculated. Logistic regression models were generated for DTI, DCE-MRI, and DTI + DCE-MRI. Receiver-operating characteristic (ROC) curves were used to compare the ability of these models to differentiate cancerous sextants from non-cancerous sextants of PZ. There were significant differences in the ADC, FA, K(trans), and kep values between cancerous sextants and non-cancerous sextants in PZ (P < 0.0001, P < 0.0001, P < 0.0001, and P < 0.0001, respectively). The area under curve (AUC) for DTI + DCE-MRI was significantly greater than that for either DTI (0.93 vs. 0.86, P = 0.0017) or DCE-MRI (0.93 vs. 0.84, P = 0.0034) alone. The combination of DTI and quantitative DCE-MRI has better diagnostic performance in detecting prostate cancer of the PZ than either technique alone.

  16. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  17. Diffusion tensor MRI: clinical applications

    International Nuclear Information System (INIS)

    Meli, Francisco; Romero, Carlos; Carpintiero, Silvina; Salvatico, Rosana; Lambre, Hector; Vila, Jose

    2005-01-01

    Purpose: To evaluate the usefulness of diffusion-tensor imaging (DTI) on different neurological diseases, and to know if this technique shows additional information than conventional Magnetic Resonance Imaging (MRI). Materials and method: Eight patients, with neurological diseases (five patients with brain tumors, one with multiple sclerosis (MS), one with variant Creutzfeldt-Jakob disease (vCJD) and the other with delayed CO intoxication were evaluated. A MR scanner of 1.5 T was used and conventional sequences and DTI with twenty-five directions were done. Quantitative maps were gotten, where the fractional anisotropy (FA) through regions of interest (ROIs) in specific anatomic area were quantified (i.e.: internal and external capsules, frontal and temporal bundles, corpus fibers). Results: In the patients with brain tumors, there was a decrease of FA on intra and peritumoral fibers. Some of them had a disruption in their pattern. In patients with MS and CO intoxication, partial interruption along white matter bundles was demonstrated. However, a 'mismatch' between the findings of FLAIR, Diffusion-weighted images (DWI) and DTI, in the case of CO intoxication, was seen. Conclusions: DTI gave more information compared to conventional sequences about ultrastructural brain tissue in almost all the diseases above mentioned. Therefore, there is a work in progress about DTI acquisition, to evaluate a new technique, called tractography. (author)

  18. Optoacoustic multispectral imaging of radiolucent foreign bodies in tissue.

    Science.gov (United States)

    Page, Leland; Maswadi, Saher; Glickman, Randolph D

    2013-01-01

    Optoacoustic imaging is an emerging medical technology that uniquely combines the absorption contrast of optical imaging and the penetration depth of ultrasound. While it is not currently employed as a clinical imaging modality, the results of current research strongly support the use of optoacoustic-based methods in medical imaging. One such application is the diagnosis of the presence of soft tissue foreign bodies. Because many radiolucent foreign bodies have sufficient contrast for imaging in the optical domain, laser-induced optoacoustic imaging could be advantageous for the detection of such objects. Common foreign bodies have been scanned over a range of visible and near infrared wavelengths by using an optoacoustic method to obtain the spectroscopic properties of the materials commonly associated with these foreign bodies. The derived optical absorption spectra compared quite closely to the absorption spectra generated when using a conventional spectrophotometer. By using the probe-beam deflection technique, a novel, pressure-wave detection method, we successfully generated optoacoustic spectroscopic plots of a wooden foreign body embedded in a tissue phantom, which closely resembled the spectrum of the same object obtained in isolation. A practical application of such spectra is to assemble a library of spectroscopic data for radiolucent materials, from which specific characteristic wavelengths can be selected for use in optimizing imaging instrumentation and provide a basis for the identification of the material properties of particular foreign bodies.

  19. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  20. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study

    International Nuclear Information System (INIS)

    Breitenseher, Julia B.; Berzaczy, Dominik; Nemec, Stefan F.; Weber, Michael; Prayer, Daniela; Kasprian, Gregor; Kranz, Gottfried; Sycha, Thomas; Hold, Alina

    2015-01-01

    MR neurography, diffusion tensor imaging (DTI) and tractography at 3 Tesla were evaluated for the assessment of patients with ulnar neuropathy at the elbow (UNE). Axial T2-weighted and single-shot DTI sequences (16 gradient encoding directions) were acquired, covering the cubital tunnel of 46 patients with clinically and electrodiagnostically confirmed UNE and 20 healthy controls. Cross-sectional area (CSA) was measured at the retrocondylar sulcus and FA and ADC values on each section along the ulnar nerve. Three-dimensional nerve tractography and T2-weighted neurography results were independently assessed by two raters. Patients showed a significant reduction of ulnar nerve FA values at the retrocondylar sulcus (p = 0.002) and the deep flexor fascia (p = 0.005). At tractography, a complete or partial discontinuity of the ulnar nerve was found in 26/40 (65 %) of patients. Assessment of T2 neurography was most sensitive in detecting UNE (sensitivity, 91 %; specificity, 79 %), followed by tractography (88 %/69 %). CSA and FA measurements were less effective in detecting UNE. T2-weighted neurography remains the most sensitive MR technique in the imaging evaluation of clinically manifest UNE. DTI-based neurography at 3 Tesla supports the MR imaging assessment of UNE patients by adding quantitative and 3D imaging data. (orig.)

  1. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Breitenseher, Julia B.; Berzaczy, Dominik; Nemec, Stefan F.; Weber, Michael; Prayer, Daniela; Kasprian, Gregor [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Kranz, Gottfried; Sycha, Thomas [Medical University of Vienna, Department of Neurology, Vienna (Austria); Hold, Alina [Medical University of Vienna, Department of Plastic and Reconstructive Surgery, Vienna (Austria)

    2015-07-15

    MR neurography, diffusion tensor imaging (DTI) and tractography at 3 Tesla were evaluated for the assessment of patients with ulnar neuropathy at the elbow (UNE). Axial T2-weighted and single-shot DTI sequences (16 gradient encoding directions) were acquired, covering the cubital tunnel of 46 patients with clinically and electrodiagnostically confirmed UNE and 20 healthy controls. Cross-sectional area (CSA) was measured at the retrocondylar sulcus and FA and ADC values on each section along the ulnar nerve. Three-dimensional nerve tractography and T2-weighted neurography results were independently assessed by two raters. Patients showed a significant reduction of ulnar nerve FA values at the retrocondylar sulcus (p = 0.002) and the deep flexor fascia (p = 0.005). At tractography, a complete or partial discontinuity of the ulnar nerve was found in 26/40 (65 %) of patients. Assessment of T2 neurography was most sensitive in detecting UNE (sensitivity, 91 %; specificity, 79 %), followed by tractography (88 %/69 %). CSA and FA measurements were less effective in detecting UNE. T2-weighted neurography remains the most sensitive MR technique in the imaging evaluation of clinically manifest UNE. DTI-based neurography at 3 Tesla supports the MR imaging assessment of UNE patients by adding quantitative and 3D imaging data. (orig.)

  2. Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints.

    Science.gov (United States)

    Zhu, Yanjie; Peng, Xi; Wu, Yin; Wu, Ed X; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2017-02-01

    To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data. The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices. The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors. The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue. © 2016 American Association of Physicists in Medicine.

  3. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    Science.gov (United States)

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  4. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium

    Science.gov (United States)

    Lee, Wei-Ning; Larrat, Benoît; Pernot, Mathieu; Tanter, Mickaël

    2012-08-01

    We have previously proven the feasibility of ultrasound-based shear wave imaging (SWI) to non-invasively characterize myocardial fiber orientation in both in vitro porcine and in vivo ovine hearts. The SWI-estimated results were in good correlation with histology. In this study, we proposed a new and robust fiber angle estimation method through a tensor-based approach for SWI, coined together as elastic tensor imaging (ETI), and compared it with magnetic resonance diffusion tensor imaging (DTI), a current gold standard and extensively reported non-invasive imaging technique for mapping fiber architecture. Fresh porcine (n = 5) and ovine (n = 5) myocardial samples (20 × 20 × 30 mm3) were studied. ETI was firstly performed to generate shear waves and to acquire the wave events at ultrafast frame rate (8000 fps). A 2.8 MHz phased array probe (pitch = 0.28 mm), connected to a prototype ultrasound scanner, was mounted on a customized MRI-compatible rotation device, which allowed both the rotation of the probe from -90° to 90° at 5° increments and co-registration between two imaging modalities. Transmural shear wave speed at all propagation directions realized was firstly estimated. The fiber angles were determined from the shear wave speed map using the least-squares method and eigen decomposition. The test myocardial sample together with the rotation device was then placed inside a 7T MRI scanner. Diffusion was encoded in six directions. A total of 270 diffusion-weighted images (b = 1000 s mm-2, FOV = 30 mm, matrix size = 60 × 64, TR = 6 s, TE = 19 ms, 24 averages) and 45 B0 images were acquired in 14 h 30 min. The fiber structure was analyzed by the fiber-tracking module in software, MedINRIA. The fiber orientation in the overlapped myocardial region which both ETI and DTI accessed was therefore compared, thanks to the co-registered imaging system. Results from all ten samples showed good correlation (r2 = 0.81, p 0.05, unpaired, one-tailed t-test, N = 10). In

  5. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  6. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    Science.gov (United States)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  7. Feasibility of Imaging Tissue Electrical Conductivity by Switching Field Gradients with MRI.

    Science.gov (United States)

    Gibbs, Eric; Liu, Chunlei

    2015-12-01

    Tissue conductivity is a biophysical marker of tissue structure and physiology. Present methods of measuring tissue conductivity are limited. Electrical impedance tomography, and magnetic resonance electrical impedance tomography rely on passing external current through the object being imaged, which prevents its use in most human imaging. Recently, the RF field used for MR excitation has been used to non-invasively measure tissue conductivity. This technique is promising, but conductivity at higher frequencies is less sensitive to tissue structure. Measuring tissue conductivity non-invasively at low frequencies remains elusive. It has been proposed that eddy currents generated during the rise and decay of gradient pulses could act as a current source to map low-frequency conductivity. This work centers on a gradient echo pulse sequence that uses large gradients prior to excitation to create eddy currents. The electric and magnetic fields during a gradient pulse are simulated by a finite-difference time-domain simulation. The sequence is also tested with a phantom and an animal MRI scanner equipped with gradients of high gradient strengths and slew rate. The simulation demonstrates that eddy currents in materials with conductivity similar to biological tissue decay with a half-life on the order of nanoseconds and any eddy currents generated prior to excitation decay completely before influencing the RF signal. Gradient-induced eddy currents can influence phase accumulation after excitation but the effect is too small to image. The animal scanner images show no measurable phase accumulation. Measuring low-frequency conductivity by gradient-induced eddy currents is presently unfeasible.

  8. Diffusion tensor mode in imaging of intracranial epidermoid cysts: one step ahead of fractional anisotropy

    International Nuclear Information System (INIS)

    Jolapara, Milan; Kesavadas, Chandrasekharan; Saini, Jitender; Patro, Satya Narayan; Gupta, Arun Kumar; Kapilamoorthy, Tirur Raman; Bodhey, Narendra; Radhakrishnan, V.V.

    2009-01-01

    The signal characteristics of an epidermoid on T2-weighted imaging have been attributed to the presence of increased water content within the tumor. In this study, we explore the utility of diffusion tensor imaging (DTI) and diffusion tensor metrics (DTM) in knowing the microstructural anatomy of epidermoid cysts. DTI was performed in ten patients with epidermoid cysts. Directionally averaged mean diffusivity (D av ), exponential diffusion, and DTM-like fractional anisotropy (FA), diffusion tensor mode (mode), linear (CL), planar (CP), and spherical (CS) anisotropy were measured from the tumor as well as from the normal-looking white matter. Epidermoid cysts showed high FA. However, D av and exponential diffusion values did not show any restriction of diffusion. Diffusion tensor mode values were near -1, and CP values were high within the tumor. This suggested preferential diffusion of water molecules along a two-dimensional geometry (plane) in epidermoid cysts, which could be attributed to the parallel-layered arrangement of keratin filaments and flakes within these tumors. Thus, advanced imaging modalities like DTI with DTM can provide information regarding the microstructural anatomy of the epidermoid cysts. (orig.)

  9. Tissue clearing for confocal imaging of native and bio-artificial skeletal muscle.

    Science.gov (United States)

    Decroix, L; Van Muylder, V; Desender, L; Sampaolesi, M; Thorrez, L

    2015-01-01

    Novel clearing techniques have revolutionized three-dimensional confocal imaging of the brain without the need for physical tissue sectioning. We evaluated three clearing methods, ScaleA2, Clear(T2), and 3DISCO for visualizing native and tissue engineered muscle by confocal microscopy. We found that Clear(T2) treatment improved the depth of visualization of immunohistochemical staining slightly, but did not improve depth of visualization of endogenous green fluorescent protein (GFP). ScaleA2 preserved endogenous GFP signal better and permitted significantly deeper GFP imaging, but it was incompatible with tropomyosin immunohistochemical staining. 3DISCO treatment preserved both endogenous GFP and immunohistochemical staining, and permitted significantly deeper imaging. Clearing time for the 3DISCO procedure is short compared to ScaleA2 and Clear(T2). We suggest that 3DISCO is the preferable clearing method for native and tissue engineered skeletal muscle tissue.

  10. Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Wech, Tobias; Neubauer, Henning; Veldhoen, Simon; Bley, Thorsten Alexander; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2017-10-01

    Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750 s/mm{sup 2} with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3 Tesla.

  11. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  12. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING.

    Science.gov (United States)

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white matter connectivity in a clinical population is determined.

  13. Diffusion tensor imaging can be used to detect lesions in peripheral nerves in patients with chronic inflammatory demyelinating polyneuropathy treated with subcutaneous immunoglobulin

    Energy Technology Data Exchange (ETDEWEB)

    Markvardsen, Lars H.; Andersen, Henning [Aarhus University Hospital, Department of Neurology, Aarhus C (Denmark); Vaeggemose, Michael [Aarhus University Hospital, Department of Neurology, Aarhus C (Denmark); Aarhus University Hospital, Department of Diagnostic Imaging: MR Research Centre, Aarhus (Denmark); Ringgaard, Steffen [Aarhus University Hospital, Department of Diagnostic Imaging: MR Research Centre, Aarhus (Denmark)

    2016-08-15

    Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) has shown that fractional anisotropy (FA) is lower in peripheral nerves in chronic inflammatory demyelinating polyneuropathy (CIDP). We examined whether DTI correlates to muscle strength or impairment. MRI of sciatic and tibial nerves was performed on 3-T MR scanner by obtaining T2- and DTI-weighted sequences with fat saturation. On each slice of T2-weighted (T2w) and DTI, the tibial and sciatic nerves were segmented and served for calculation of signal intensity. On DTI images, pixel-by-pixel calculation of FA and apparent diffusion coefficient (ADC) was done. Muscle strength at knee and ankle was determined by isokinetic dynamometry and severity of CIDP by neuropathy impairment score (NIS). Fourteen CIDP patients treated with subcutaneous immunoglobulin were compared to gender- and age-matched controls. T2w values expressed as a nerve/muscle ratio (nT2w) were unchanged in CIDP versus controls 0.93 ± 0.21 versus 1.02 ± 0.21 (P = 0.10). FA values were lower in CIDP compared to controls 0.38 ± 0.07 versus 0.45 ± 0.05 (P < 0.0001), and ADC values were higher in CIDP versus controls 1735 ± 232 versus 1593 ± 116 x 10{sup -6} mm{sup 2}/s (P = 0.005). In CIDP, FA values correlated to clinical impairment (NIS) (r = -0.57, P = 0.03), but not to muscle strength. FA value in the sciatic nerve distinguishes CIDP from controls with a sensitivity and a specificity of 92.9 %. CIDP patients have unchanged nT2w values, lower FA values, and higher ADC values of sciatic and tibial nerves compared to controls. FA values correlated to NIS but were unrelated to muscle strength. DTI of sciatic nerves seems promising to differentiate CIDP from controls. (orig.)

  14. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: A longitudinal study

    DEFF Research Database (Denmark)

    Sidaros, A.; Engberg, A.W.; Sidaros, K.

    2008-01-01

    of longitudinal studies on TBI that follow DTI changes over time and correlate findings with long-term clinical outcome. We performed a prospective longitudinal study of 30 adult patients admitted for subacute rehabilitation following severe traumatic brain injury. DTI and conventional MRI were acquired at mean 8......Diffusion tensor imaging (DTI) has been proposed as a sensitive biomarker of traumatic white matter injury, which could potentially serve as a tool for prognostic assessment and for studying microstructural changes during recovery from traumatic brain injury (TBI). However, there is a lack...... weeks (5-11 weeks), and repeated in 23 of the patients at mean 12 months (9-15 months) post-trauma. Using a region-of-interest-based approach, DTI parameters were compared to those of healthy matched controls, scanned during the same time period and rescanned with a similar interval as that of patients...

  15. ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.

    Science.gov (United States)

    Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles

    2018-04-19

    Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We

  16. Breast tissue classification in digital breast tomosynthesis images using texture features: a feasibility study

    Science.gov (United States)

    Kontos, Despina; Berger, Rachelle; Bakic, Predrag R.; Maidment, Andrew D. A.

    2009-02-01

    Mammographic breast density is a known breast cancer risk factor. Studies have shown the potential to automate breast density estimation by using computerized texture-based segmentation of the dense tissue in mammograms. Digital breast tomosynthesis (DBT) is a tomographic x-ray breast imaging modality that could allow volumetric breast density estimation. We evaluated the feasibility of distinguishing between dense and fatty breast regions in DBT using computer-extracted texture features. Our long-term hypothesis is that DBT texture analysis can be used to develop 3D dense tissue segmentation algorithms for estimating volumetric breast density. DBT images from 40 women were analyzed. The dense tissue area was delineated within each central source projection (CSP) image using a thresholding technique (Cumulus, Univ. Toronto). Two (2.5cm)2 ROIs were manually selected: one within the dense tissue region and another within the fatty region. Corresponding (2.5cm)3 ROIs were placed within the reconstructed DBT images. Texture features, previously used for mammographic dense tissue segmentation, were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance. Different texture features appeared to perform best in the 3D reconstructed DBT compared to the 2D CSP images. Fractal dimension was superior in DBT (AUC=0.90), while contrast was best in CSP images (AUC=0.92). We attribute these differences to the effects of tissue superimposition in CSP and the volumetric visualization of the breast tissue in DBT. Our results suggest that novel approaches, different than those conventionally used in projection mammography, need to be investigated in order to develop DBT dense tissue segmentation algorithms for estimating volumetric breast density.

  17. Hyperspectral Imaging and SPA-LDA Quantitative Analysis for Detection of Colon Cancer Tissue

    Science.gov (United States)

    Yuan, X.; Zhang, D.; Wang, Ch.; Dai, B.; Zhao, M.; Li, B.

    2018-05-01

    Hyperspectral imaging (HSI) has been demonstrated to provide a rapid, precise, and noninvasive method for cancer detection. However, because HSI contains many data, quantitative analysis is often necessary to distill information useful for distinguishing cancerous from normal tissue. To demonstrate that HSI with our proposed algorithm can make this distinction, we built a Vis-NIR HSI setup and made many spectral images of colon tissues, and then used a successive projection algorithm (SPA) to analyze the hyperspectral image data of the tissues. This was used to build an identification model based on linear discrimination analysis (LDA) using the relative reflectance values of the effective wavelengths. Other tissues were used as a prediction set to verify the reliability of the identification model. The results suggest that Vis-NIR hyperspectral images, together with the spectroscopic classification method, provide a new approach for reliable and safe diagnosis of colon cancer and could lead to advances in cancer diagnosis generally.

  18. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    Science.gov (United States)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  19. Hyperspectral imaging based on compressive sensing to determine cancer margins in human pancreatic tissue ex vivo

    Science.gov (United States)

    Peller, Joseph; Thompson, Kyle J.; Siddiqui, Imran; Martinie, John; Iannitti, David A.; Trammell, Susan R.

    2017-02-01

    Pancreatic cancer is the fourth leading cause of cancer death in the US. Currently, surgery is the only treatment that offers a chance of cure, however, accurately identifying tumor margins in real-time is difficult. Research has demonstrated that optical spectroscopy can be used to distinguish between healthy and diseased tissue. The design of a single-pixel imaging system for cancer detection is discussed. The system differentiates between healthy and diseased tissue based on differences in the optical reflectance spectra of these regions. In this study, pancreatic tissue samples from 6 patients undergoing Whipple procedures are imaged with the system (total number of tissue sample imaged was N=11). Regions of healthy and unhealthy tissue are determined based on SAM analysis of these spectral images. Hyperspectral imaging results are then compared to white light imaging and histological analysis. Cancerous regions were clearly visible in the hyperspectral images. Margins determined via spectral imaging were in good agreement with margins identified by histology, indicating that hyperspectral imaging system can differentiate between healthy and diseased tissue. After imaging the system was able to detect cancerous regions with a sensitivity of 74.50±5.89% and a specificity of 75.53±10.81%. Possible applications of this imaging system include determination of tumor margins during surgery/biopsy and assistance with cancer diagnosis and staging.

  20. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: a case study at 11.7 T.

    Science.gov (United States)

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-07-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125-255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7 T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong gray-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of gray matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects on MR images compression in tissue classification quality

    International Nuclear Information System (INIS)

    Santalla, H; Meschino, G; Ballarin, V

    2007-01-01

    It is known that image compression is required to optimize the storage in memory. Moreover, transmission speed can be significantly improved. Lossless compression is used without controversy in medicine, though benefits are limited. If we compress images lossy, where image can not be totally recovered; we can only recover an approximation. In this point definition of 'quality' is essential. What we understand for 'quality'? How can we evaluate a compressed image? Quality in images is an attribute whit several definitions and interpretations, which actually depend on the posterior use we want to give them. This work proposes a quantitative analysis of quality for lossy compressed Magnetic Resonance (MR) images, and their influence in automatic tissue classification, accomplished with these images

  2. The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review.

    Science.gov (United States)

    Siasios, Ioannis; Kapsalaki, Eftychia Z; Fountas, Kostas N; Fotiadou, Aggeliki; Dorsch, Alexander; Vakharia, Kunal; Pollina, John; Dimopoulos, Vassilios

    2016-09-01

    OBJECTIVE Diffusion tensor imaging (DTI) for the assessment of fractional anisotropy (FA) and involving measurements of mean diffusivity (MD) and apparent diffusion coefficient (ADC) represents a novel, MRI-based, noninvasive technique that may delineate microstructural changes in cerebral white matter (WM). For example, DTI may be used for the diagnosis and differentiation of idiopathic normal pressure hydrocephalus (iNPH) from other neurodegenerative diseases with similar imaging findings and clinical symptoms and signs. The goal of the current study was to identify and analyze recently published series on the use of DTI as a diagnostic tool. Moreover, the authors also explored the utility of DTI in identifying patients with iNPH who could be managed by surgical intervention. METHODS The authors performed a literature search of the PubMed database by using any possible combinations of the following terms: "Alzheimer's disease," "brain," "cerebrospinal fluid," "CSF," "diffusion tensor imaging," "DTI," "hydrocephalus," "idiopathic," "magnetic resonance imaging," "normal pressure," "Parkinson's disease," and "shunting." Moreover, all reference lists from the retrieved articles were reviewed to identify any additional pertinent articles. RESULTS The literature search retrieved 19 studies in which DTI was used for the identification and differentiation of iNPH from other neurodegenerative diseases. The DTI protocols involved different approaches, such as region of interest (ROI) methods, tract-based spatial statistics, voxel-based analysis, and delta-ADC analysis. The most studied anatomical regions were the periventricular WM areas, such as the internal capsule (IC), the corticospinal tract (CST), and the corpus callosum (CC). Patients with iNPH had significantly higher MD in the periventricular WM areas of the CST and the CC than had healthy controls. In addition, FA and ADCs were significantly higher in the CST of iNPH patients than in any other patients with other

  3. Chondro-osseous differentiation in fat tissue tumors: magnetic resonance imaging with pathological correlation

    International Nuclear Information System (INIS)

    Orui, Hiroshi; Ishikawa, Akira; Tsuchiya, Takashi; Takahara, Masatoshi; Ogino, Toshihiko; Ito, Masafumi

    2000-01-01

    Chondro-osseous differentiation of three benign or malignant fat tissue tumors - two chondrolipomas and a liposarcoma with cartilaginous metaplasia - was studied with magnetic resonance (MR) imaging and compared with their pathological findings. The results suggest that demarcation of cartilage tisssue can be clearly defined on MR imaging when the size of the cartilaginous area is large. Myxoid matrix, degenerative fat tissue and lipodystrophic change may decrease the delineation of the cartilage tissue. (orig.)

  4. Chondro-osseous differentiation in fat tissue tumors: magnetic resonance imaging with pathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Orui, Hiroshi; Ishikawa, Akira; Tsuchiya, Takashi; Takahara, Masatoshi; Ogino, Toshihiko [Dept. of Orthopaedic Surgery, Yamagata University School of Medicine (Japan); Ito, Masafumi [1. Dept. of Pathology, Yamagata University School of Medicine, Yamagata (Japan)

    2000-08-01

    Chondro-osseous differentiation of three benign or malignant fat tissue tumors - two chondrolipomas and a liposarcoma with cartilaginous metaplasia - was studied with magnetic resonance (MR) imaging and compared with their pathological findings. The results suggest that demarcation of cartilage tisssue can be clearly defined on MR imaging when the size of the cartilaginous area is large. Myxoid matrix, degenerative fat tissue and lipodystrophic change may decrease the delineation of the cartilage tissue. (orig.)

  5. Characterization of Soft Tissue Tumors by Diffusion-Weighted Imaging

    International Nuclear Information System (INIS)

    Pekcevik, Yeliz; Kahya, Mehmet Onur; Kaya, Ahmet

    2015-01-01

    Diffusion-weighted imaging (DWI) is a noninvasive method for investigation of tumor histological content. It has been applied for some musculoskeletal tumors and reported to be useful. The aim of the present study was to prospectively evaluate the apparent diffusion coefficient (ADC) values of benign and malignant soft tissue tumors and to determine if ADC can help differentiate these tumors. DWI was performed on 25 histologically proven soft tissue masses. It was obtained with a single-shot echo-planar imaging technique using a 1.5T magnetic resonance (MR) machine. The mean ADC values were calculated. We grouped soft tissue tumors as benign cystic, benign solid or mixed, malignant cystic and malignant solid or mixed tumors and compared mean ADC values between these groups. There was only one patient with a malignant cystic tumor and was not included in the statistical analysis. The median ADC values of benign and malignant tumors were 2.31 ± 1.29 and 0.90 ± 0.70 (median ± interquartile range), respectively. The mean ADC values were different between benign and malignant tumors (P = 0.031). Benign cystic tumors had significantly higher ADC values than benign solid or mixed tumors and malignant solid or mixed tumors (p values were < 0.001 and 0.003, respectively). Malignant solid or mixed tumors had lower ADC values than benign solid or mixed tumors (P = 0.02). Our preliminary results have shown that although there is some overlap between benign and malignant tumors, adding DWI, MR imaging to routine soft tissue tumor protocols may improve diagnostic accuracy

  6. Diffusion tensor imaging of the normal prostate at 3 Tesla

    International Nuclear Information System (INIS)

    Guerses, Bengi; Kabakci, Neslihan; Kovanlikaya, Arzu; Firat, Zeynep; Bayram, Ali; Kovanlikaya, Ilhami; Ulud, Aziz M.

    2008-01-01

    The aim of this study was to assess the feasibility of diffusion tensor imaging (DTI) of the prostate and to determine normative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of healthy prostate with a 3-Tesla magnetic resonance imaging (MRI) system. Thirty volunteers with a mean age of 28 (25-35) years were scanned with a 3-Tesla MRI (Intera Achieva; Philips, The Netherlands) system using a six-channel phased array coil. Initially, T2-weighted turbo spin-echo (TSE) axial images of the prostate were obtained. In two subjects, a millimetric hypointense signal change was detected in the peripheral zones on T2-weighted TSE images. These two subjects were excluded from the study. DTI with single-shot echo-planar imaging (ssEPI) was performed in the remaining 28 subjects. ADC and FA values were measured using the manufacturer supplied software by positioning 9-pixel ROIs on each zone. Differences between parameters of the central and peripheral zones were assessed. Mean ADC value of the central (1.220 ± 0.271 x 10 -3 mm 2 /s) was found to be significantly lower when compared with the peripheral gland (1.610 ± 0.347 x 10 -3 mm 2 /s) (P < 0.01). Mean FA of the central gland was significantly higher (0.26), compared with the peripheral gland (0.16) (P < 0.01). This study shows the feasibility of prostate DTI with a 3-Tesla MR system and the normative FA and ADC values of peripheral and central zones of the normal prostate. The results are compatible with the microstructural organization of the gland. (orig.)

  7. Imaging of human breast tissue using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Verma, Y.; Gautam, M.; Divakar Rao, K.; Swami, M. K.; Gupta, P. K.

    2011-12-01

    We report a study on the use of polarization sensitive optical coherence tomography (PSOCT) for discriminating malignant (invasive ductal carcinoma), benign (fibroadenoma) and normal (adipocytes) breast tissue sites. The results show that while conventional OCT, that utilizes only the intensity of light back-scattered from tissue microstructures, is able to discriminate breast tissues as normal (adipocytes) and abnormal (malignant and benign) tissues, PS-OCT helps in discriminating between malignant and benign tissue sites also. The estimated values of birefringence obtained from the PSOCT imaging show that benign breast tissue samples have significantly higher birefringence as compared to the malignant tissue samples.

  8. The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI.

    Science.gov (United States)

    David, Gergely; Freund, Patrick; Mohammadi, Siawoosh

    2017-09-01

    Diffusion tensor imaging (DTI) is a promising approach for investigating the white matter microstructure of the spinal cord. However, it suffers from severe susceptibility, physiological, and instrumental artifacts present in the cord. Retrospective correction techniques are popular approaches to reduce these artifacts, because they are widely applicable and do not increase scan time. In this paper, we present a novel outlier rejection approach (reliability masking) which is designed to supplement existing correction approaches by excluding irreversibly corrupted and thus unreliable data points from the DTI index maps. Then, we investigate how chains of retrospective correction techniques including (i) registration, (ii) registration and robust fitting, and (iii) registration, robust fitting, and reliability masking affect the statistical power of a previously reported finding of lower fractional anisotropy values in the posterior column and lateral corticospinal tracts in cervical spondylotic myelopathy (CSM) patients. While established post-processing steps had small effect on the statistical power of the clinical finding (slice-wise registration: -0.5%, robust fitting: +0.6%), adding reliability masking to the post-processing chain increased it by 4.7%. Interestingly, reliability masking and registration affected the t-score metric differently: while the gain in statistical power due to reliability masking was mainly driven by decreased variability in both groups, registration slightly increased variability. In conclusion, reliability masking is particularly attractive for neuroscience and clinical research studies, as it increases statistical power by reducing group variability and thus provides a cost-efficient alternative to increasing the group size. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture.

    Science.gov (United States)

    Winklhofer, Sebastian; Stoeck, Christian T; Berger, Nicole; Thali, Michael; Manka, Robert; Kozerke, Sebastian; Alkadhi, Hatem; Stolzmann, Paul

    2014-11-01

    To investigate the accuracy of post-mortem diffusion tensor imaging (DTI) for the detection of myocardial infarction (MI) and to demonstrate the feasibility of helix angle (HA) calculation to study remodelling of myofibre architecture. Cardiac DTI was performed in 26 deceased subjects prior to autopsy for medicolegal reasons. Fractional anisotropy (FA) and mean diffusivity (MD) were determined. Accuracy was calculated on per-segment (AHA classification), per-territory, and per-patient basis, with pathology as reference standard. HAs were calculated and compared between healthy segments and those with MI. Autopsy demonstrated MI in 61/440 segments (13.9 %) in 12/26 deceased subjects. Healthy myocardial segments had significantly higher FA (p Analysis of HA distribution demonstrated remodelling of myofibre architecture, with significant differences between healthy segments and segments with chronic (p  0.05). Post-mortem cardiac DTI enables differentiation between healthy and infarcted myocardial segments by means of FA and MD. HA assessment allows for the demonstration of remodelling of myofibre architecture following chronic MI. • DTI enables post-mortem detection of myocardial infarction with good accuracy. • A decrease in right-handed helical fibre indicates myofibre remodelling following chronic myocardial infarction. • DTI allows for ruling out myocardial infarction by means of FA. • Post-mortem DTI may represent a valuable screening tool in forensic investigations.

  10. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures

    Science.gov (United States)

    Shin, Kwangsoo; Choi, Jin Woo; Ko, Giho; Baik, Seungmin; Kim, Dokyoon; Park, Ok Kyu; Lee, Kyoungbun; Cho, Hye Rim; Han, Sang Ihn; Lee, Soo Hong; Lee, Dong Jun; Lee, Nohyun; Kim, Hyo-Cheol; Hyeon, Taeghwan

    2017-07-01

    Tissue adhesives have emerged as an alternative to sutures and staples for wound closure and reconnection of injured tissues after surgery or trauma. Owing to their convenience and effectiveness, these adhesives have received growing attention particularly in minimally invasive procedures. For safe and accurate applications, tissue adhesives should be detectable via clinical imaging modalities and be highly biocompatible for intracorporeal procedures. However, few adhesives meet all these requirements. Herein, we show that biocompatible tantalum oxide/silica core/shell nanoparticles (TSNs) exhibit not only high contrast effects for real-time imaging but also strong adhesive properties. Furthermore, the biocompatible TSNs cause much less cellular toxicity and less inflammation than a clinically used, imageable tissue adhesive (that is, a mixture of cyanoacrylate and Lipiodol). Because of their multifunctional imaging and adhesive property, the TSNs are successfully applied as a hemostatic adhesive for minimally invasive procedures and as an immobilized marker for image-guided procedures.

  11. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy

    KAUST Repository

    Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan

    2017-01-01

    High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings.

  12. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy

    KAUST Repository

    Zhang, Yibo

    2017-08-12

    High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings.

  13. Imaging of alkaline phosphatase activity in bone tissue.

    Directory of Open Access Journals (Sweden)

    Terence P Gade

    Full Text Available The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP using a small imaging molecule in combination with (19Flourine magnetic resonance spectroscopic imaging ((19FMRSI. 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP, a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19Fluorine magnetic resonance spectroscopy ((19FMRS and (19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19FMRS and (19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications.

  14. Magnetic resonance imaging appearance of soft-tissue metastases: our experience at an orthopedic oncology center

    International Nuclear Information System (INIS)

    Sammon, Jennifer; Jain, Abhishek; Bleakney, Robert; Mohankumar, Rakesh

    2017-01-01

    To assess the prevalence and magnetic resonance imaging appearance of metastasis presenting as a soft-tissue mass. A retrospective chart review was performed on 51 patients who presented to an orthopedic oncology center with soft-tissue masses, with a histology-proven diagnosis of soft-tissue metastasis, over a 14-year period. Their magnetic resonance imaging, primary origin, and follow-up have been assessed. Soft-tissue metastasis was identified in patients ranging from 18 to 85 years old. Most (80%) of the masses were located deep to the deep fascia. In our cohort of patients, melanoma was the most common primary malignancy contributing to soft-tissue metastasis (21.8%). Among soft-tissue metastasis from solid organs, breast and lung were the most frequent (9.1% each). Five patients had soft-tissue metastases from an unknown primary. Imaging diagnosis of soft-tissue metastases is challenging as it can demonstrate imaging appearances similar to primary soft-tissue sarcoma. The presence of a known malignancy may not be evident in everyone, and even if available, histopathology will be necessary for diagnosis if this is the only site of recurrence/metastasis to differentiate from a primary soft-tissue sarcoma. Moreover, soft-tissue metastasis may be the initial presentation of a malignancy. Primary malignancies with soft-tissue metastasis carry a poor prognosis; hence, prompt diagnosis and management in essential. (orig.)

  15. Magnetic resonance imaging appearance of soft-tissue metastases: our experience at an orthopedic oncology center

    Energy Technology Data Exchange (ETDEWEB)

    Sammon, Jennifer; Jain, Abhishek; Bleakney, Robert; Mohankumar, Rakesh [Mount Sinai Hospital and University of Toronto, Division of Musculoskeletal Imaging, Joint Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To assess the prevalence and magnetic resonance imaging appearance of metastasis presenting as a soft-tissue mass. A retrospective chart review was performed on 51 patients who presented to an orthopedic oncology center with soft-tissue masses, with a histology-proven diagnosis of soft-tissue metastasis, over a 14-year period. Their magnetic resonance imaging, primary origin, and follow-up have been assessed. Soft-tissue metastasis was identified in patients ranging from 18 to 85 years old. Most (80%) of the masses were located deep to the deep fascia. In our cohort of patients, melanoma was the most common primary malignancy contributing to soft-tissue metastasis (21.8%). Among soft-tissue metastasis from solid organs, breast and lung were the most frequent (9.1% each). Five patients had soft-tissue metastases from an unknown primary. Imaging diagnosis of soft-tissue metastases is challenging as it can demonstrate imaging appearances similar to primary soft-tissue sarcoma. The presence of a known malignancy may not be evident in everyone, and even if available, histopathology will be necessary for diagnosis if this is the only site of recurrence/metastasis to differentiate from a primary soft-tissue sarcoma. Moreover, soft-tissue metastasis may be the initial presentation of a malignancy. Primary malignancies with soft-tissue metastasis carry a poor prognosis; hence, prompt diagnosis and management in essential. (orig.)

  16. Usefulness of diffusion tensor imaging in amyotrophic lateral sclerosis: potential biomarker and association with the cognitive profile

    Directory of Open Access Journals (Sweden)

    Marcelo Chaves

    Full Text Available ABSTRACT The objective of this preliminary study was to correlate diffusion tensor imaging (DTI alterations with the cognitive profile of patients with amyotrophic lateral sclerosis (ALS. Methods This was a case-control study conducted from December 1, 2012 to December 1, 2014. Clinical and demographic data were recorded. A neuropsychological test battery adapted to ALS patients was used. An MRI with DTI was performed in all patients and fractional anisotropy (FA was analyzed in the white matter using the tract based spatial statistics program. Results Twenty-four patients with ALS (15 females, mean age 66.9 + -2.3 and 13 healthy controls (four females, average age 66.9 + - 2 were included. The DTI showed white matter damage in ALS patients vs. healthy controls (p < 0.001. Discussion In our preliminary study the alterations of white matter in DTI were significantly associated with cognitive impairment in patients with ALS.

  17. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    International Nuclear Information System (INIS)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck

    2000-01-01

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  18. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  19. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI

    Directory of Open Access Journals (Sweden)

    Allan R. Martin

    2016-01-01

    Conclusions: State-of-the-art spinal cord MRI techniques are emerging with great potential to improve the diagnosis and management of various spinal pathologies, but the current body of evidence has only showed limited clinical utility to date. Among these imaging tools DTI is the most mature, but further work is necessary to standardize and validate its use before it will be adopted in the clinical realm. Large, well-designed studies with a priori hypotheses, standardized acquisition methods, detailed clinical data collection, and robust automated analysis techniques are needed to fully demonstrate the potential of these rapidly evolving techniques.

  20. Susceptibility Tensor Imaging (STI) of the Brain

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu

    2016-01-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169

  1. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    Directory of Open Access Journals (Sweden)

    François Vassal

    Full Text Available Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI fiber tracking (FT and language functional magnetic resonance imaging (fMRI in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF, superior longitudinal fascicle (SLF, uncinate fascicle (UF, temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF, middle longitudinal fascicle (MdLF, frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be

  2. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    Science.gov (United States)

    Vassal, François; Schneider, Fabien; Boutet, Claire; Jean, Betty; Sontheimer, Anna; Lemaire, Jean-Jacques

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to

  3. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Science.gov (United States)

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  4. Monitoring In-Vivo the Mammary Gland Microstructure during Morphogenesis from Lactation to Post-Weaning Using Diffusion Tensor MRI.

    Science.gov (United States)

    Nissan, Noam; Furman-Haran, Edna; Shapiro-Feinberg, Myra; Grobgeld, Dov; Degani, Hadassa

    2017-09-01

    Lactation and the return to the pre-conception state during post-weaning are regulated by hormonal induced processes that modify the microstructure of the mammary gland, leading to changes in the features of the ductal / glandular tissue, the stroma and the fat tissue. These changes create a challenge in the radiological workup of breast disorder during lactation and early post-weaning. Here we present non-invasive MRI protocols designed to record in vivo high spatial resolution, T 2 -weighted images and diffusion tensor images of the entire mammary gland. Advanced imaging processing tools enabled tracking the changes in the anatomical and microstructural features of the mammary gland from the time of lactation to post-weaning. Specifically, by using diffusion tensor imaging (DTI) it was possible to quantitatively distinguish between the ductal / glandular tissue distention during lactation and the post-weaning involution. The application of the T 2 -weighted imaging and DTI is completely safe, non-invasive and uses intrinsic contrast based on differences in transverse relaxation rates and water diffusion rates in various directions, respectively. This study provides a basis for further in-vivo monitoring of changes during the mammary developmental stages, as well as identifying changes due to malignant transformation in patients with pregnancy associated breast cancer (PABC).

  5. Limbic-thalamo-cortical projections and reward-related circuitry integrity affects eating behavior: A longitudinal DTI study in adolescents with restrictive eating disorders.

    Directory of Open Access Journals (Sweden)

    Gaia Olivo

    Full Text Available Few studies have used diffusion tensor imaging (DTI to investigate the micro-structural alterations of WM in patients with restrictive eating disorders (rED, and longitudinal data are lacking. Twelve patients with rED were scanned at diagnosis and after one year of family-based treatment, and compared to twenty-four healthy controls (HCs through DTI analysis. A tract-based spatial statistics procedure was used to investigate diffusivity parameters: fractional anisotropy (FA and mean, radial and axial diffusivities (MD, RD and AD, respectively. Reduced FA and increased RD were found in patients at baseline in the corpus callosum, corona radiata and posterior thalamic radiation compared with controls. However, no differences were found between follow-up patients and controls, suggesting a partial normalization of the diffusivity parameters. In patients, trends for a negative correlation were found between the baseline FA of the right anterior corona radiata and the Eating Disorder Examination Questionnaire total score, while a positive trend was found between the baseline FA in the splenium of corpus callosum and the weight loss occurred between maximal documented weight and time of admission. A positive trend for correlation was also found between baseline FA in the right anterior corona radiata and the decrease in the Obsessive-Compulsive Inventory Revised total score over time. Our results suggest that the integrity of the limbic-thalamo-cortical projections and the reward-related circuitry are important for cognitive control processes and reward responsiveness in regulating eating behavior.

  6. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients—Current state of image quality

    International Nuclear Information System (INIS)

    Schwenzer, N.F.; Stegger, L.; Bisdas, S.; Schraml, C.; Kolb, A.; Boss, A.; Müller, M.

    2012-01-01

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [ 18 F]-FDG, [ 11 C]-methionine or [ 68 Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [ 11 C]-methionine and [ 68 Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 ± 0.54; FLAIR: 1.38 ± 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 ± 0.69; ASL: 1.10 ± 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [ 11 C]-methionine; additional lesions were found in 2/8 [ 68 Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 ± 2.2% vs. 0.9 ± 3.6%; mean ratio (frontal/parieto-occipital) 0.93 ± 0.08 vs. 0.96 ± 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance of PET results between PET/MR and PET

  7. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F., E-mail: nina.schwenzer@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Stegger, L., E-mail: stegger@gmx.net [Department of Nuclear Medicine and European Institute for Molecular Imaging, University of Muenster, Muenster (Germany); Bisdas, S., E-mail: sbisdas@gmail.com [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Schraml, C., E-mail: christina.schraml@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de [Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Boss, A., E-mail: Andreas.Boss@usz.ch [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Institute of Diagnostic and Interventional Radiology, University Hospital Zuerich, Zuerich (Switzerland); Mueller, M., E-mail: mark.mueller@med.uni-tuebingen.de [Department of Nuclear Medicine, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2012-11-15

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [{sup 18}F]-FDG, [{sup 11}C]-methionine or [{sup 68}Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [{sup 11}C]-methionine and [{sup 68}Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 {+-} 0.54; FLAIR: 1.38 {+-} 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 {+-} 0.69; ASL: 1.10 {+-} 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [{sup 11}C]-methionine; additional lesions were found in 2/8 [{sup 68}Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 {+-} 2.2% vs. 0.9 {+-} 3.6%; mean ratio (frontal/parieto-occipital) 0.93 {+-} 0.08 vs. 0.96 {+-} 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance

  8. Scores for standardization of on-tissue digestion of formalin-fixed paraffin-embedded tissue in MALDI-MS imaging.

    Science.gov (United States)

    Erich, Katrin; Sammour, Denis A; Marx, Alexander; Hopf, Carsten

    2017-07-01

    On-slide digestion of formalin-fixed and paraffin-embedded human biopsy tissue followed by mass spectrometry imaging of resulting peptides may have the potential to become an additional analytical modality in future ePathology. Multiple workflows have been described for dewaxing, antigen retrieval, digestion and imaging in the past decade. However, little is known about suitable statistical scores for method comparison and systematic workflow standardization required for development of processes that would be robust enough to be compatible with clinical routine. To define scores for homogeneity of tissue processing and imaging as well as inter-day repeatability for five different processing methods, we used human liver and gastrointestinal stromal tumor tissue, both judged by an expert pathologist to be >98% histologically homogeneous. For mean spectra-based as well as pixel-wise data analysis, we propose the coefficient of determination R 2 , the natural fold-change (natFC) value and the digest efficiency DE% as readily accessible scores. Moreover, we introduce two scores derived from principal component analysis, the variance of the mean absolute deviation, MAD, and the interclass overlap, J overlap , as computational scores that may help to avoid user bias during future workflow development. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  10. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-30

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  11. The direct tensor solution and higher-order acquisition schemes for generalized diffusion tensor imaging

    NARCIS (Netherlands)

    Akkerman, Erik M.

    2010-01-01

    Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional

  12. Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues

    Science.gov (United States)

    Demos,; Stavros, G [Livermore, CA

    2011-05-17

    An optical hyperspectral/multimodal imaging method and apparatus is utilized to provide high signal sensitivity for implementation of various optical imaging approaches. Such a system utilizes long working distance microscope objectives so as to enable off-axis illumination of predetermined tissue thereby allowing for excitation at any optical wavelength, simplifies design, reduces required optical elements, significantly reduces spectral noise from the optical elements and allows for fast image acquisition enabling high quality imaging in-vivo. Such a technology provides a means of detecting disease at the single cell level such as cancer, precancer, ischemic, traumatic or other type of injury, infection, or other diseases or conditions causing alterations in cells and tissue micro structures.

  13. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    Science.gov (United States)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  14. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    Science.gov (United States)

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  15. Fast diffusion tensor magnetic resonance imaging of the mouse brain at ultrahigh-field: aiming at cohort studies.

    Directory of Open Access Journals (Sweden)

    Hans-Peter Müller

    Full Text Available INTRODUCTION: In-vivo high resolution diffusion tensor imaging (DTI of the mouse brain is often limited by the low signal to noise ratio (SNR resulting from the required small voxel sizes. Recently, cryogenically cooled resonators (CCR have demonstrated significant increase of the effective SNR. It is the objective of this study to enable fast DTI of the mouse brain. In this context, CCRs appear attractive for SNR improvement. METHODS: Three mice underwent a DTI examination at 156²×250 µm³ spatial resolution with a CCR at ultrahigh field (11.7T. Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding, resulting in a total acquisition time of 35 minutes. For comparison, mice additionally underwent a standardized 110 minutes acquisition protocol published earlier. Fractional anisotropy (FA and fiber tracking (FT results including quantitative tractwise fractional anisotropy statistics (TFAS were qualitatively and quantitatively compared. RESULTS: Qualitative and quantitative assessment of the calculated fractional anisotropy maps and fibre tracking results showed coinciding outcome comparing 35 minute scans to the standardized 110 minute scan. Coefficients of variation for ROI-based FA-comparison as well as for TFAS revealed comparable results for the different scanning protocols. CONCLUSION: Mouse DTI at 11.7 T was performed with an acquisition time of approximately 30 minutes, which is considered feasible for cohort studies. The rapid acquisition protocol reveals reliable and reproducible FA-values and FT reconstructions, thus allowing an experimental setup for in-vivo large scale whole brain murine DTI cohort studies.

  16. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Scott C. Kolbe

    2016-01-01

    Full Text Available Previous studies have reported diffusion tensor imaging (DTI changes within the optic radiations of patients after optic neuritis (ON. We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1. We measured DTI parameters [fractional anisotropy (FA, axial diffusivity (AD, radial diffusivity (RD, and mean diffusivity (MD] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p=0.006. Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R=0.450, p=0.006; RD: R=-0.428, p=0.009; MD: R=-0.365, p=0.029. In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R=0.489, p=0.039. In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  17. Magnetic resonance direct thrombus imaging of the evolution of acute deep vein thrombosis of the leg.

    Science.gov (United States)

    Westerbeek, R E; Van Rooden, C J; Tan, M; Van Gils, A P G; Kok, S; De Bats, M J; De Roos, A; Huisman, M V

    2008-07-01

    Accurate diagnosis of acute recurrent deep vein thrombosis (DVT) is relevant to avoid improper diagnosis and unnecessary life-long anticoagulant treatment. Compression ultrasound has high accuracy for a first episode of DVT, but is often unreliable in suspected recurrent disease. Magnetic resonance direct thrombus imaging (MR DTI) has been shown to accurately detect acute DVT. The purpose of this prospective study was to determine the MR signal change during 6 months follow-up in patients with acute DVT. This study was a prospective study of 43 consecutive patients with a first episode of acute DVT demonstrated by compression ultrasound. All patients underwent MR DTI. Follow-up was performed with MR-DTI and compression ultrasound at 3 and 6 months respectively. All data were coded, stored and assessed by two blinded observers. MR direct thrombus imaging identified acute DVT in 41 of 43 patients (sensitivity 95%). There was no abnormal MR-signal in controls, or in the contralateral extremity of patients with DVT (specificity 100%). In none of the 39 patients available at 6 months follow-up was the abnormal MR-signal at the initial acute DVT observed, whereas in 12 of these patients (30.8%) compression ultrasound was still abnormal. Magnetic resonance direct thrombus imaging normalizes over a period of 6 months in all patients with diagnosed DVT, while compression ultrasound remains abnormal in a third of these patients. MR-DTI may potentially allow for accurate detection in patients with acute suspected recurrent DVT, and this should be studied prospectively.

  18. Right is not always wrong: DTI and fMRI evidence for the reliance of reading comprehension on language-comprehension networks in the right hemisphere.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Grainger, Molly; DiFrancesco, Mark; Vannest, Jennifer; Holland, Scott K

    2015-03-01

    The Simple View theory suggests that reading comprehension relies on automatic recognition of words combined with language comprehension. The goal of the current study was to examine the structural and functional connectivity in networks supporting reading comprehension and their relationship with language comprehension within 7-9 year old children using Diffusion Tensor Imaging (DTI) and fMRI during a Sentence Picture Matching task. Fractional Anisotropy (FA) values in the left and right Inferior Longitudinal Fasciculus (ILF) and Superior Longitudinal Fasciculus (SLF), known language-related tracts, were correlated from DTI data with scores from the Woodcock-Johnson III (WJ-III) Passage Comprehension sub-test. Brodmann areas most proximal to white-matter regions with significant correlation to Passage Comprehension scores were chosen as Regions-of-Interest (ROIs) and used as seeds in a functional connectivity analysis using the Sentence Picture Matching task. The correlation between percentile scores for the WJ-III Passage Comprehension subtest and the FA values in the right and left ILF and SLF indicated positive correlation in language-related ROIs, with greater distribution in the right hemisphere, which in turn showed strong connectivity in the fMRI data from the Sentence Picture Matching task. These results support the participation of the right hemisphere in reading comprehension and may provide physiologic support for a distinction between different types of reading comprehension deficits vs difficulties in technical reading.

  19. Magnetic resonance imaging of local soft tissue inflammation using gadolinium-DTPA

    International Nuclear Information System (INIS)

    Paajanen, H.; Brasch, R.C.; Schmiedl, U.; Ogan, M.

    1987-01-01

    Chemical inflammation was induced subcutaneously in 10 rats using carrageenan mucopolysaccharide. Dual spin echo (SE) imaging of inflammatory loci was performed employing a 0.35 tesla resistive magnet. In addition, gadolinium-DTPA was administrated intravenously into 5 rats to evaluate the potential benefits of paramagnetic contrast medium for the detection and characterization of inflammatory loci. T2 weighted SE images demonstrated the edematous lesions as zones of high intensity. This was attributed to the increased relaxation times of lesions when compared to the adjacent soft tissue. The inflammation was also delineated on T1 weighted SE images, but only after injection of paramagnetic Gd-DTPA. Carrageenan mucopolysaccharide-induced lesions provide a useful experimental model for in viva evaluation of soft tissue inflammation using magnetic resonance imaging. No special benefit of paramagnetic contrast enhancement was demonstrated in this model of local edema. (orig.)

  20. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation.

    Science.gov (United States)

    Solis, Leandro R; Liggins, Adrian; Uwiera, Richard R E; Poppe, Niek; Pehowich, Enid; Seres, Peter; Thompson, Richard B; Mushahwar, Vivian K

    2012-08-01

    The overall goal of this project is to develop interventions for the prevention of deep tissue injury (DTI), a form of pressure ulcers that originates in deep tissue around bony prominences. The present study focused on: (1) obtaining detailed measures of the distribution of pressure experienced by tissue around the ischial tuberosities, and (2) investigating the effectiveness of intermittent electrical stimulation (IES), a novel strategy for the prevention of DTI, in alleviating pressure in regions at risk of breakdown due to sustained loading. The experiments were conducted in adult pigs. Five animals had intact spinal cords and healthy muscles and one had a spinal cord injury that led to substantial muscle atrophy at the time of the experiment. A force-controlled servomotor was used to load the region of the buttocks to levels corresponding to 25%, 50% or 75% of each animal's body weight. A pressure transducer embedded in a catheter was advanced into the tissue to measure pressure along a three dimensional grid around the ischial tuberosity of one hind leg. For all levels of external loading in intact animals, average peak internal pressure was 2.01 ± 0.08 times larger than the maximal interfacial pressure measured at the level of the skin. In the animal with spinal cord injury, similar absolute values of internal pressure as that in intact animals were recorded, but the substantial muscle atrophy produced larger maximal interfacial pressures. Average peak internal pressure in this animal was 1.43 ± 0.055 times larger than the maximal interfacial pressure. Peak internal pressure was localized within a ±2 cm region medio-laterally and dorso-ventrally from the bone in intact animals and ±1 cm in the animal with spinal cord injury. IES significantly redistributed internal pressure, shifting the peak values away from the bone in spinally intact and injured animals. These findings provide critical information regarding the relationship between internal and

  1. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study

    International Nuclear Information System (INIS)

    Ponrartana, Skorn; Hu, Houchun Harry; Ramos-Platt, Leigh; Wren, Tishya Anne Leong; Gilsanz, Vicente; Perkins, Thomas Gardner; Chia, Jonathan Mawlin

    2015-01-01

    There is currently a lack of suitable objective endpoints to measure disease progression in Duchenne muscular dystrophy (DMD). Emerging research suggests that diffusion tensor imaging (DTI) has potential as an outcome measure for the evaluation of skeletal muscle injury. The objective of this study was to evaluate the potential of DTI as quantitative magnetic resonance imaging (MRI) markers of disease severity in DMD. Thirteen consecutive boys (8.9 years ± 3.0 years) with DMD were evaluated using DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared with clinical outcome measures of manual muscle testing and MRI determinations of muscle fat fraction (MFF) in the right lower extremity. Both MRI measures of FA and ADC strongly correlated with age and muscle strength. Values for FA positively correlated with age and negatively correlated with muscle strength (r = 0.78 and -0.96; both P ≤ 0.002) while measures of ADC negatively correlated age, but positively correlated with muscle strength (r = -0.87 and 0.83; both P ≤ 0.0004). Additionally, ADC and FA strongly correlated with MFF (r = -0.891 and 0.894, respectively; both P ≤ 0.0001). Mean MMF was negatively correlated with muscle strength (r = -0.89, P = 0.0001). DTI measures of muscle structure strongly correlated with muscle strength and adiposity in boys with DMD in this pilot study, although these markers may be more reflective of fat replacement rather than muscle damage in later stages of the disease. Further studies in presymptomatic younger children are needed to assess the ability of DTI to detect early changes in DMD. (orig.)

  2. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ponrartana, Skorn; Hu, Houchun Harry [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Ramos-Platt, Leigh [Children' s Hospital Los Angeles, Department of Neurology, Los Angeles, CA (United States); Wren, Tishya Anne Leong; Gilsanz, Vicente [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital Los Angeles, Department of Orthopaedic Surgery, Los Angeles, CA (United States); Perkins, Thomas Gardner; Chia, Jonathan Mawlin [Philips Healthcare North America, Cleveland, OH (United States)

    2015-04-01

    There is currently a lack of suitable objective endpoints to measure disease progression in Duchenne muscular dystrophy (DMD). Emerging research suggests that diffusion tensor imaging (DTI) has potential as an outcome measure for the evaluation of skeletal muscle injury. The objective of this study was to evaluate the potential of DTI as quantitative magnetic resonance imaging (MRI) markers of disease severity in DMD. Thirteen consecutive boys (8.9 years ± 3.0 years) with DMD were evaluated using DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared with clinical outcome measures of manual muscle testing and MRI determinations of muscle fat fraction (MFF) in the right lower extremity. Both MRI measures of FA and ADC strongly correlated with age and muscle strength. Values for FA positively correlated with age and negatively correlated with muscle strength (r = 0.78 and -0.96; both P ≤ 0.002) while measures of ADC negatively correlated age, but positively correlated with muscle strength (r = -0.87 and 0.83; both P ≤ 0.0004). Additionally, ADC and FA strongly correlated with MFF (r = -0.891 and 0.894, respectively; both P ≤ 0.0001). Mean MMF was negatively correlated with muscle strength (r = -0.89, P = 0.0001). DTI measures of muscle structure strongly correlated with muscle strength and adiposity in boys with DMD in this pilot study, although these markers may be more reflective of fat replacement rather than muscle damage in later stages of the disease. Further studies in presymptomatic younger children are needed to assess the ability of DTI to detect early changes in DMD. (orig.)

  3. Diffusion tensor imaging--arcuate fasciculus and the importance for the neurosurgeon.

    Science.gov (United States)

    Hana, Ardian; Dooms, Georges; Boecher-Schwarz, Hans; Hertel, Frank

    2015-05-01

    Tumors in eloquent areas of the brain like Broca or Wernicke might have disastrous consequences for patients. We intended to visualize the arcuate fasciculus (AF) and to demonstrate his relation with the corticospinal tract and the visual pathway using diffusion tensor imaging (DTI). We depicted between 2012 and 2014 the AF in 71 patients. Men and women of all ages were included. Eleven patients had postoperative controls also. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI-sequences were performed. The FOV was 200 × 200 mm(2), slice thickness 2mm, and an acquisition matrix of 96 × 96 yielding nearly isotropic voxels of 2 × 2 × 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-Value was 800 s/mm(2). Additional scanning time was less than 9 min. AF was portrayed in 63 patients bilaterally. In one glioblastoma patient it was impossible to visualize the left AF and in seven other patients we could not portray the right one. The lesions affected AF by disrupting or displacing the fibers. DTI might be a useful tool to portray AF. It is time-saving and can be used to preserve morbidity in patients with lesions in eloquent brain areas. It might give deeper insights of the white matter and the reorganization of AF-fibers postoperatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery

    NARCIS (Netherlands)

    Hoefnagels, Friso W. A.; de Witt Hamer, Philip C.; Pouwels, Petra J. W.; Barkhof, Frederik; Vandertop, W. Peter

    2017-01-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with

  5. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates

    DEFF Research Database (Denmark)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-01-01

    for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline...... for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types...... are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess...

  6. Diffusion Tensor Imaging Correlates of Reading Ability in Dysfluent and Non-Impaired Readers

    Science.gov (United States)

    Lebel, Catherine; Shaywitz, Bennett; Holahan, John; Shaywitz, Sally; Marchione, Karen; Beaulieu, Christian

    2013-01-01

    Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and…

  7. Reducing surgical levels by paraspinal mapping and diffusion tensor imaging techniques in lumbar spinal stenosis.

    Science.gov (United States)

    Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo

    2016-04-25

    Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal

  8. Cell and Tissue Imaging with Molecularly Imprinted Polymers.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-01-01

    Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.

  9. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates.

    Science.gov (United States)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-12-06

    Internal standards have been introduced in quantitative mass spectrometry imaging in order to compensate for differences in intensities throughout an image caused by, for example, difference in ion suppression or analyte extraction efficiency. To test how well the internal standards compensate for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline as internal standard. The results showed, even after correction with internal standard, significantly lower intensities from brain and to some extent also lung tissue, differences which may be ascribed to binding of the drug to proteins or lipids as known from traditional bioanalysis. The differences, which for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess the accuracy of calibration by droplet deposition. For experiments on liver tissue, calibration by spiked tissue homogenates and droplet deposition was found to provide highly similar results and in both cases linearity with R 2 values of 0.99. In the process, a new method was developed for preparation of standard curves of spiked tissue homogenates, based on the drilling of holes in a block of frozen liver homogenate, providing easy cryo-slicing and good quantitative

  10. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates. A DTI study

    International Nuclear Information System (INIS)

    Tortora, Domenico; Martinetti, Carola; Severino, Mariasavina; Morana, Giovanni; Rossi, Andrea; Uccella, Sara; Brera, Fabia; Malova, Mariya; Parodi, Alessandro; Ramenghi, Luca Antonio

    2018-01-01

    To evaluate white matter (WM) microstructural changes in preterm neonates (PN) with mild germinal matrix-intraventricular haemorrhage (mGMH-IVH) (grades I and II) and no other associated MRI abnormalities, and correlate them with gestational age (GA) and neurodevelopmental outcome. Tract-based spatial-statistics (TBSS) was performed on DTI of 103 patients studied at term-equivalent age, to compare diffusional parameters (fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)) between mGMH-IVH neonates (24/103) and controls matched by GA at birth and sex. The relationship between DTI abnormalities, GA and neurodevelopmental outcome assessed with Griffiths' Developmental Scale-Revised:0-2 was explored using TBSS and Spearman-correlation analysis (p <.05). Affected neonates had lower FA, higher RD and MD of the corpus callosum, limbic pathways and cerebellar tracts. Extremely preterm neonates (GA < 29 weeks) presented more severe microstructural impairment (higher RD and MD) in periventricular regions. Neonates of GA ≥ 29 weeks had milder WM alterations (lower FA), also in subcortical WM. DTI abnormalities were associated with poorer locomotor, eye-hand coordination and performance outcomes at 24 months. WM microstructural changes occur in PN with mGMH-IVH with a GA-dependent selective vulnerability of WM regions, and correlate with adverse neurodevelopmental outcome at 24 months. (orig.)

  11. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates. A DTI study

    Energy Technology Data Exchange (ETDEWEB)

    Tortora, Domenico; Martinetti, Carola; Severino, Mariasavina; Morana, Giovanni; Rossi, Andrea [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Uccella, Sara; Brera, Fabia [Istituto Giannina Gaslini, Neuropsychiatry Unit, Genoa (Italy); Malova, Mariya; Parodi, Alessandro; Ramenghi, Luca Antonio [Istituto Giannina Gaslini, Neonatal Intensive Care Unit, Genoa (Italy)

    2018-03-15

    To evaluate white matter (WM) microstructural changes in preterm neonates (PN) with mild germinal matrix-intraventricular haemorrhage (mGMH-IVH) (grades I and II) and no other associated MRI abnormalities, and correlate them with gestational age (GA) and neurodevelopmental outcome. Tract-based spatial-statistics (TBSS) was performed on DTI of 103 patients studied at term-equivalent age, to compare diffusional parameters (fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)) between mGMH-IVH neonates (24/103) and controls matched by GA at birth and sex. The relationship between DTI abnormalities, GA and neurodevelopmental outcome assessed with Griffiths' Developmental Scale-Revised:0-2 was explored using TBSS and Spearman-correlation analysis (p <.05). Affected neonates had lower FA, higher RD and MD of the corpus callosum, limbic pathways and cerebellar tracts. Extremely preterm neonates (GA < 29 weeks) presented more severe microstructural impairment (higher RD and MD) in periventricular regions. Neonates of GA ≥ 29 weeks had milder WM alterations (lower FA), also in subcortical WM. DTI abnormalities were associated with poorer locomotor, eye-hand coordination and performance outcomes at 24 months. WM microstructural changes occur in PN with mGMH-IVH with a GA-dependent selective vulnerability of WM regions, and correlate with adverse neurodevelopmental outcome at 24 months. (orig.)

  12. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  13. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results

    International Nuclear Information System (INIS)

    Lee, Joon Woo; Kim, Jae Hyoung; Park, Jong Bin; Lee, Guen Young; Kang, Heung Sik; Park, Kun Woo; Yeom, Jin S.

    2011-01-01

    To assess diffusion tensor imaging (DTI) parameters in cervical compressive myelopathy (CCM) patients compared to normal volunteers, to relate them with myelopathy severity, and to relate tractography patterns with postoperative neurologic improvement. Twenty patients suffering from CCM were prospectively enrolled (M:F = 13:7, mean age, 49.6 years; range 22-67 years) from September 2009 to March 2010. Sensitivity encoding (SENSE) single-shot echo-planar imaging (EPI) was used for the sagittal DTI. Twenty sex- and age-matched normal volunteers underwent the same scanning procedure. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the spinal cord were compared between the patients and normal volunteers and were related to myelopathy severity based on Japanese Orthopedic Association (JOA) scores. Tractography patterns were related to myelopathy severity and postoperative improvement. There were significant differences between patients and normal volunteers in terms of FA (0.498 ± 0.114 vs. 0.604 ± 0.057; p = 0.001) and ADC (1.442 ± 0.389 vs. 1.169 ± 0.098; p = 0.001). DTI parameters and tractography patterns were not related to myelopathy severity. In ten patients in the neurologically worse group, postoperative neurologic improvement was seen in four of five patients with intact fiber tracts, but only one of five patients with interrupted fiber tracts exhibited neurologic improvement. DTI parameters in CCM patients were significantly different from those in normal volunteers but were not significantly related to myelopathy severity. The patterns of tractography appear to correlate with postoperative neurologic improvement. (orig.)

  14. Examining the gateway to the limbic system with diffusion tensor imaging: the perforant pathway in dementia.

    Science.gov (United States)

    Kalus, Peter; Slotboom, Johannes; Gallinat, Jürgen; Mahlberg, Richard; Cattapan-Ludewig, Katja; Wiest, Roland; Nyffeler, Thomas; Buri, Caroline; Federspiel, Andrea; Kunz, Dieter; Schroth, Gerhard; Kiefer, Claus

    2006-04-15

    Current treatments for Alzheimer's disease (AD) are only able to slow the progression of mental deterioration, making early and reliable diagnosis an essential part of any promising therapeutic strategy. In the initial stages of AD, the first neuropathological alterations occur in the perforant pathway (PP), a large neuronal fiber tract located at the entrance to the limbic system. However, to date, there is no sensitive diagnostic tool for performing in vivo assessments of this structure. In the present bimodal magnetic resonance imaging (MRI) study, we examined 10 elderly controls, 10 subjects suffering from mild cognitive impairment (MCI), and 10 AD patients in order to evaluate the sensitivity of diffusion tensor imaging (DTI), a new MRI technique, for detecting changes in the PP. Furthermore, the diagnostic explanatory power of DTI data of the PP should be compared to high-resolution MRI volumetry and intervoxel coherences (COH) of the hippocampus and the entorhinal cortex, two limbic regions also involved in the pathophysiology of early AD. DTI revealed a marked decrease in COH values in the PP region of MCI (right side: 26%, left side: 29%, as compared to controls) and AD patients (right side: 37%, left side: 43%, as compared to controls). Reductions in COH values of the PP region were significantly correlated with cognitive impairment. DTI data of the PP zone were the only parameter differing significantly between control subjects and MCI patients, while the volumetric measures and the COH values of the hippocampus and the entorhinal cortex did not. DTI of medial temporal brain regions is a promising non-invasive tool for the in vivo diagnosis of the early/preclinical stages of AD.

  15. Chemical Exchange Saturation Transfer MR Imaging Is Superior to Diffusion Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson's Disease: a Study on Substantia Nigra and Striatum

    Directory of Open Access Journals (Sweden)

    Chunmei eLi

    2015-10-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder characterized by nigrostriatal cell loss. To date the diagnosis of PD is still based primarily on the clinical manifestations which may be typical and obvious only in advanced-stage PD. Thus, it is crucial to find a reliable marker for the diagnosis of PD. We conducted this study to assess the diagnostic efficiency of chemical-exchange-saturation-transfer (CEST imaging and diffusion-tensor imaging (DTI in PD at 3 Tesla by evaluating changes on substantia nigra and striatum. Twenty-three PD patients and twenty-three age-matched normal controls were recruited. All patients and controls were imaged on a 3 Tesla MR system, using an 8-channel head coil. CEST imaging was acquired in two transverse slices of the head, including substantia nigra and striatum. The magnetization-transfer-ratio asymmetry at 3.5 ppm, MTRasym(3.5ppm, and the total CEST signal intensity between 0 and 4 ppm were calculated. Multi-slice DTI was acquired for all the patients and normal controls. Quantitative analysis was performed on the substantia nigra, globus pallidus, putamen and caudate. The MTRasym(3.5ppm value, the total CEST signal intensity and fractional anisotropy (FA value of the substantia nigra were all significantly lower in PD patients than in normal controls (P = 0.003, P = 0.004 and P < 0.001, respectively. The MTRasym(3.5ppm values of the putamen and the caudate were significantly higher in PD patients than in normal controls (P = 0.010 and P = 0.009, respectively. There were no significant differences for the mean diffusivity (MD in these four regions between PD patients and normal controls. In conclusion, CEST MR imaging provided multiple CEST image contrasts in the substantia nigra and the striatum in PD and may be superior to DTI in the diagnosis of PD.

  16. In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging.

    Science.gov (United States)

    Morisaki, Shinsuke; Kawai, Yuko; Umeda, Masahiro; Nishi, Mayumi; Oda, Ryo; Fujiwara, Hiroyoshi; Yamada, Kei; Higuchi, Toshihiro; Tanaka, Chuzo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2011-03-01

    To evaluate the sensitivity of diffusion tensor imaging (DTI) in assessing peripheral nerve regeneration in vivo. We assessed the changes in the DTI parameters and histological analyses after nerve injury to examine degeneration and regeneration in the rat sciatic nerves. For magnetic resonance imaging (MRI), 16 rats were randomly divided into two groups: group P (permanently crushed; n = 7) and group T (temporally crushed; n = 9). Serial MRI of the right leg was performed before the operation, and then performed at the timepoints of 1, 2, 3, and 4 weeks after the crush injury. The changes in fractional anisotropy (FA), axial diffusivity (λ(∥)), and radial diffusivity (λ(⟂)) were quantified. For histological analyses, the number of axons and the myelinated axon areas were quantified. Decreased FA and increased λ(⟂) were observed in the degenerative phase, and increased FA and decreased λ(⟂) were observed in the regenerative phase. The changes in FA and λ(⟂) were strongly correlated with histological changes, including axonal and myelin regeneration. DTI parameters, especially λ(⟂) , can be good indicators for peripheral nerve regeneration and can be applied as noninvasive diagnostic tools for a variety of neurological diseases. Copyright © 2011 Wiley-Liss, Inc.

  17. Hippocampal diffusion tensor imaging microstructural changes in vascular dementia

    DEFF Research Database (Denmark)

    Ostojic, Jelena; Kozic, Dusko; Pavlovic, Aleksandra

    2015-01-01

    To explore microstructural integrity of hippocampus in vascular dementia (VD) using DTI. Twenty-five individuals with VD, without magnetic resonance imaging (MRI) evidence of gray matter pathology, and 25 matched healthy control (HC) individuals underwent a 3T MRI protocol including T2, FLAIR, an...

  18. Combination of DTI and fMRI reveals the white matter changes correlating with the decline of default-mode network activity in Alzheimer's disease

    Science.gov (United States)

    Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie

    2009-02-01

    Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.

  19. Magnetoacoustic Imaging of Electrical Conductivity of Biological Tissues at a Spatial Resolution Better than 2 mm

    OpenAIRE

    Hu, Gang; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In t...

  20. The Emerging Role of Tractography in Deep Brain Stimulation: Basic Principles and Current Applications

    Directory of Open Access Journals (Sweden)

    Nelson B. Rodrigues

    2018-01-01

    Full Text Available Diffusion tensor imaging (DTI is an MRI-based technique that delineates white matter tracts in the brain by tracking the diffusion of water in neural tissue. This methodology, known as “tractography”, has been extensively applied in clinical neuroscience to explore nervous system architecture and diseases. More recently, tractography has been used to assist with neurosurgical targeting in functional neurosurgery. This review provides an overview of DTI principles, and discusses current applications of tractography for improving and helping develop novel deep brain stimulation (DBS targets.

  1. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    International Nuclear Information System (INIS)

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Siewerdsen, Jeffrey H; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay

    2014-01-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼40–80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4–2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼1.7 mGy and benefits from 50% sparsity at dose below ∼1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. (paper)

  2. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.

    Science.gov (United States)

    Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis

    2014-10-01

    A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.

  3. The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images.

    Science.gov (United States)

    Karampatos, Sarah; Papaioannou, Alexandra; Beattie, Karen A; Maly, Monica R; Chan, Adrian; Adachi, Jonathan D; Pritchard, Janet M

    2016-04-01

    Determine the reliability of a magnetic resonance (MR) image segmentation protocol for quantifying intramuscular adipose tissue (IntraMAT), subcutaneous adipose tissue, total muscle and intermuscular adipose tissue (InterMAT) of the lower leg. Ten axial lower leg MRI slices were obtained from 21 postmenopausal women using a 1 Tesla peripheral MRI system. Images were analyzed using sliceOmatic™ software. The average cross-sectional areas of the tissues were computed for the ten slices. Intra-rater and inter-rater reliability were determined and expressed as the standard error of measurement (SEM) (absolute reliability) and intraclass coefficient (ICC) (relative reliability). Intra-rater and inter-rater reliability for IntraMAT were 0.991 (95% confidence interval [CI] 0.978-0.996, p soft tissue compartments, the ICCs were all >0.90 (p soft-tissue compartments of the lower leg. A standard operating procedure manual is provided to assist users, and SEM values can be used to estimate sample size and determine confidence in repeated measurements in future research.

  4. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    Science.gov (United States)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  5. Helical 3D-CT images of soft tissue tumors in the hand

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kazuhiro; Kikuchi, Hiraku; Tan, Akihiro; Hamanishi, Chiaki; Tanaka, Seisuke [Kinki Univ., Osaka-Sayama (Japan). School of Medicine

    2000-02-01

    X-ray, ultrasonograph CT, MRI and angiography are used to detect tumoral lesions. Recently, helical CT has been revealed to be a useful method for the diagnosis and preoperative evaluation of soft tissue tumors, by which high quality and accurate three dimensional (3D) images can be obtained quickly. We analyzed the preoperative 3D-CT images of soft tissue tumors in the hands of 11 cases (hemangioma in 6 cases, giant cell tumor, lipoma, angiofibroma, chondrosarcoma and malignant fibro-histiocytoma in one case each). Enhanced 3D-CT clearly visualized hemangiomas and solid tumors from the surrounding tissues. The tumors could easily be observed from any direction and color-coded according to the CT number. Helical 3D-CT was thus confirmed to be useful for the diagnosis and preoperative planning by indicating the details of tumor expansion into surrounding tissues. (author)

  6. Molecular imaging of brown adipose tissue in health and disease

    International Nuclear Information System (INIS)

    Bauwens, Matthias; Wierts, Roel; Brans, Boudewijn; Royen, Bart van; Backes, Walter; Bucerius, Jan; Mottaghy, Felix

    2014-01-01

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18 F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18 F-FDG, other radiopharmaceuticals such as 99m Tc-sestamibi, 123 I-metaiodobenzylguanidine (MIBG), 18 F-fluorodopa and 18 F-14(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  7. Comparison of quality of ultrasonographic image of the pancreas: Tissue harmonic image vs. Fundamental image

    International Nuclear Information System (INIS)

    Seo, Young Lan; Choi, Chul Soon; Kim, Ho Chul; Yoon, Dae Young; Han, Dae Hee; Bae, Sang Hoon

    2002-01-01

    To compare the quality of ultrasonographic (US) images, tissue harmonic image (THI) versus fundamental image (FI), of the pancreas. During a recent 2 month period, forty one patients with the normal pancreas on US were included. All of them were free of abnormal clinical and laboratory findings suggestive of pancreatic disease, US was performed by an abdominal radiologist with a 2.5-5 MHz convex-array transducer (Sequoia 512: Acuson, Mountain View, Calif.U.S.A.). Comparison of THI and FI of the pancreas was done for the following parameters:conspicuity, intermal architecture, and delineation range. Grading was made by the consensus of two abdominal radiologist witha three-point scale. Statistical analysis was done using Wilcox signed rank sum test. For the evaluation of the US image quality of the pancreas THI showed better conspicuity (p=0.0130), clearer internal architecture (p=0.0029) and superior delineation range (p=0.0191) than those of FI. THI appears to show a superior image quality than FI in evaluation of the pancreas.

  8. Tissue harmonic imaging in the evaluation of acute pancreatitis

    International Nuclear Information System (INIS)

    Garg, Mandeep; Sandhu, Manavjit; Sood, Bimal; Lal, Anupam; Suri, Sudha; Bhasin, Deepak

    2004-01-01

    To evaluate the role of tissue harmonic imaging (THI) in acute pancreatitis, and to compare its findings with conventional grey-scale sonography and contrast-enhanced computed tomography (CECT) scan, we evaluated 25 patients diagnosed with acute pancreatitis on clinical examination and laboratory findings. Conventional grey-scale ultrasound followed by tissue harmonic sonography was done on the same machine followed by a CECT within 12 h of the ultrasound examination. The present study showed that sonograms obtained with THI were of much better quality than those obtained conventionally, especially for the pancreatic tail. The benefits of harmonic imaging were more apparent in obese patients and in others whose body habitus was unfavourable for sonography. In the assessment of pancreatic image quality, grey-scale imaging had an accuracy of 60, 80 and 28% in relation to the head, body and tail, respectively. In comparison, THI had a far higher accuracy of 80, 92 and 60% in relation to the head, body and tail, respectively, with the superiority being most obvious in the pancreatic tail region. There were no cases in which tissue harmonic sonography provided less information than conventional sonography. However, CECT scan remained the best modality in all patients for the evaluation of acute pancreatitis. It showed superior demonstration of all the morphological changes, ranging from minimal pancreatic oedema to extensive fluid collections, necrosis and the haemorrhage that developed in fulminant severe pancreatitis. Our experience thus suggests that THI cannot replace CT scan as the gold standard in the assessment of acute pancreatitis, as it is poor in evaluating the pancreatic tail, cannot clearly distinguish phlegmon from necrosis, and is inferior to CT in the assessment of the complications of acute pancreatitis Copyright (2004) Blackwell Publishing Asia Pty Ltd

  9. Intraoperative Image Guidance in Neurosurgery: Development, Current Indications, and Future Trends

    International Nuclear Information System (INIS)

    Schulz, Ch.; Mauer, U.M.; Waldeck, S.

    2012-01-01

    Introduction. As minimally invasive surgery becomes the standard of care in neurosurgery, it is imperative that surgeons become skilled in the use of image-guided techniques. The development of image-guided neurosurgery represents a substantial improvement in the microsurgical treatment of tumors, vascular malformations, and other intracranial lesions. Objective. There have been numerous advances in neurosurgery which have aided the neurosurgeon to achieve accurate removal of pathological tissue with minimal disruption of surrounding healthy neuronal matter including the development of microsurgical, endoscopic, and endovascular techniques. Neuro navigation systems and intraoperative imaging should improve success in cranial neurosurgery. Additional functional imaging modalities such as PET, SPECT, DTI (for fiber tracking), and fMRI can now be used in order to reduce neurological deficits resulting from surgery; however the positive long-term effect remains questionable for many indications. Method. Pub Med database search using the search term “image guided neurosurgery.” More than 1400 articles were published during the last 25 years. The abstracts were scanned for prospective comparative trials. Results and Conclusion. 14 comparative trials are published. To date significant data amount show advantages in intraoperative accuracy influencing the perioperative morbidity and long-term outcome only for cerebral glioma surgery.

  10. Tissue discrimination in magnetic resonance imaging of the rotator cuff

    International Nuclear Information System (INIS)

    Meschino, G J; Comas, D S; González, M A; Ballarin, V L; Capiel, C

    2016-01-01

    Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health. (paper)

  11. Tissue discrimination in magnetic resonance imaging of the rotator cuff

    Science.gov (United States)

    Meschino, G. J.; Comas, D. S.; González, M. A.; Capiel, C.; Ballarin, V. L.

    2016-04-01

    Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health.

  12. Multi-Shell Hybrid Diffusion Imaging (HYDI at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Directory of Open Access Journals (Sweden)

    Madelaine Daianu

    Full Text Available Diffusion weighted imaging (DWI is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI and high-angular resolution imaging (HARDI are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI, composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA, generalized fractional anisotropy (GFA and normalized quantitative anisotropy (NQA. We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI. We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  13. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  14. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.

  15. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Senda, Joe; Kato, Shigenori; Kaga, Tomotsugu; Ito, Mizuki; Atsuta, Naoki; Nakamura, Tomohiko; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-01-01

    We investigated 17 patients with sporadic amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) at baseline and after a six-month follow-up. Compared with 17 healthy controls, ALS patients at baseline showed only minimal white matter volume decreases in the inferior frontal gyrus but marked decreases in the gray matter of several regions, especially in the bilateral paracentral lobule of the premotor cortex. DTI revealed reduced fractional anisotropy in the bilateral corticospinal tracts, insula, ventrolateral premotor cortex, and parietal cortex. Increased mean diffusivity was noted bilaterally in the motor cortex, ventrolateral premotor cortex, insula, hippocampal formation, and temporal gyrus. At the six-month follow-up, ALS patients showed widespread volume decreases in gray matter, and DTI abnormalities extended mainly into the bilateral frontal lobes, while volume changes in the white matter remained minimal but more distinct. Our combined VBM and DTI techniques revealed extra-corticospinal tract neuronal degeneration mainly in the frontotemporal lobe of ALS patients. In particular, follow-up examinations in these patients showed that whole-brain DTI changes occurred predominantly in the regions of brain atrophy. These objective analyses can be used to assess the disease condition of the ALS brain.

  16. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies.

    Science.gov (United States)

    Vitolo, Enrico; Tatu, Mona Karina; Pignolo, Claudia; Cauda, Franco; Costa, Tommaso; Ando', Agata; Zennaro, Alessandro

    2017-12-30

    Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination.

    Science.gov (United States)

    Qi, Ji; He, Honghui; Lin, Jianyu; Dong, Yang; Chen, Dongsheng; Ma, Hui; Elson, Daniel S

    2018-04-01

    Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment: a diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    2015-01-01

    Full Text Available Previous diffusion tensor imaging (DTI studies regarding pediatric patients with motor dysfunction have confirmed the correlation between DTI parameters of the injured corticospinal tract and the severity of motor dysfunction. There is also evidence that DTI parameters can help predict the prognosis of motor function of patients with cerebral palsy. But few studies are reported on the DTI parameters that can reflect the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment. In the present study, 36 pediatric patients with hemiplegic cerebral palsy were included. Before and after rehabilitation treatment, DTI was used to measure the fiber number (FN, fractional anisotropy (FA and apparent diffusion coefficient (ADC of bilateral corticospinal tracts. Functional Level of Hemiplegia scale (FxL was used to assess the therapeutic effect of rehabilitative therapy on clinical hemiplegia. Correlation analysis was performed to assess the statistical interrelationship between the change amount of DTI parameters and FxL. DTI findings obtained at the initial and follow-up evaluations demonstrated that more affected corticospinal tract yielded significantly decreased FN and FA values and significantly increased ADC value compared to the less affected corticospinal tract. Correlation analysis results showed that the change amount of FxL was positively correlated to FN and FA values, and the correlation to FN was stronger than the correlation to FA. The results suggest that FN and FA values can be used to evaluate the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment and FN is of more significance for evaluation.

  19. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery.

    Science.gov (United States)

    Hoefnagels, Friso W A; de Witt Hamer, Philip C; Pouwels, Petra J W; Barkhof, Frederik; Vandertop, W Peter

    2017-09-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with intracerebral lesions who had 2 different DTI scans, 3 DTI series were reconstructed to compare the effects of NGD and SR. Tractographies for 4 clinically relevant tracts (corticospinal tract, superior longitudinal fasciculus, optic radiation, and inferior fronto-occipital fasciculus) were constructed with a probabilistic tracking algorithm and automated region of interest placement and compared for 3 quantitative measurements: tract volume, median fiber density, and mean fractional anisotropy, using linear mixed-effects models. The mean tractography volume and intersubject reliability were visually compared across scanning protocols, to assess the clinical relevance of the quantitative differences. Both NGD and SR significantly influenced tract volume, median fiber density, and mean fractional anisotropy, but not to the same extent. In particular, higher NGD increased tract volume and median fiber density. More importantly, these effects further increased when tracts were affected by disease. The effects were tract specific, but not dependent on threshold. The superior longitudinal fasciculus and inferior fronto-occipital fasciculus showed the most significant differences. Qualitative assessment showed larger tract volumes given a fixed confidence level, and better intersubject reliability for the higher NGD protocol. SR in the range we considered seemed less relevant than NGD. This study indicates that, under time constraints of clinical imaging, a higher number of diffusion gradients is more important than spatial resolution for superior DTI probabilistic tractography in patients undergoing brain tumor surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Histogram Analysis of Diffusion Tensor Imaging Parameters in Pediatric Cerebellar Tumors.

    Science.gov (United States)

    Wagner, Matthias W; Narayan, Anand K; Bosemani, Thangamadhan; Huisman, Thierry A G M; Poretti, Andrea

    2016-05-01

    Apparent diffusion coefficient (ADC) values have been shown to assist in differentiating cerebellar pilocytic astrocytomas and medulloblastomas. Previous studies have applied only ADC measurements and calculated the mean/median values. Here we investigated the value of diffusion tensor imaging (DTI) histogram characteristics of the entire tumor for differentiation of cerebellar pilocytic astrocytomas and medulloblastomas. Presurgical DTI data were analyzed with a region of interest (ROI) approach to include the entire tumor. For each tumor, histogram-derived metrics including the 25th percentile, 75th percentile, and skewness were calculated for fractional anisotropy (FA) and mean (MD), axial (AD), and radial (RD) diffusivity. The histogram metrics were used as primary predictors of interest in a logistic regression model. Statistical significance levels were set at p histogram skewness showed statistically significant differences for MD between low- and high-grade tumors (P = .008). The 25th percentile for MD yields the best results for the presurgical differentiation between pediatric cerebellar pilocytic astrocytomas and medulloblastomas. The analysis of other DTI metrics does not provide additional diagnostic value. Our study confirms the diagnostic value of the quantitative histogram analysis of DTI data in pediatric neuro-oncology. Copyright © 2015 by the American Society of Neuroimaging.