WorldWideScience

Sample records for tissue growth factor

  1. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor beta induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  2. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  3. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  4. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  5. Gene therapy with growth factors for periodontal tissue engineering–A review

    Science.gov (United States)

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  6. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  7. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  8. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis.

    Science.gov (United States)

    Mize, T W; Sundararaj, K P; Leite, R S; Huang, Y

    2015-06-01

    Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF-β1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF-β1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Angiogenesis is not impaired in connective tissue growth factor (CTGF) knock-out mice

    NARCIS (Netherlands)

    Kuiper, Esther J.; Roestenberg, Peggy; Ehlken, Christoph; Lambert, Vincent; van Treslong-de Groot, Henny Bloys; Lyons, Karen M.; Agostini, Hans-Jürgen T.; Rakic, Jean-Marie; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Goldschmeding, Roel; Schlingemann, Reinier O.

    2007-01-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of growth factors. CTGF is important in scarring, wound healing, and fibrosis. It has also been implicated to play a role in angiogenesis, in addition to vascular endothelial growth factor (VEGF). In the eye, angiogenesis and

  10. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure.

    Science.gov (United States)

    Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin

    2017-01-01

    The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.

  11. Some growth factors in neoplastic tissues of brain tumors of different histological structure

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Pathologic angiogenesis is typical for angiogenic diseases including tumor growth. Vascular endothelial growth factor (VEGF, fibroblast growth factor (FGF, transforming growth factor alpha and beta (which are also known as “triggers” of angiogenesis, and other factors (Gacche, Meshram, 2013; Nijaguna et al., 2015 play a special role in its development. Evaluation of the important mechanisms of angiogenesis in physiological and pathological conditions remains to be a subject of heightened interest for the past 30 years. It is known that VEGF A is the main trigger of growing blood vessels into the tumor tissue. This is specific mitogen signal for endothelial cells that triggers the mechanisms of cell division and migration. VEGF-induced tumor vasculature has a number of structural and functional features that provide growth and progression of tumors, including increased permeability of blood vessels and their chaotic arrangement.Objective: to study in comparative aspect the level of certain growth factors in the following tissues: glioblastomas, brain metastasis of the breast cancer, meningiomas as well as corresponding peritumoral areas.Materials and methods. Tissue samples were obtained from 56 patients admitted to the surgical treatment in Rostov Research Institute of Oncology: 24 patients had glioblastomas, 19 patients had brain metastasis of the breast cancer, 13 patients with meningiomas without peritumoral edema. Histological control was carried out in all cases. Age of patients ranged from 35 to 72 years. The level of growth factor was detected in the samples of tumor tissue and regions immediately adjacent to the tumor foci (peritumoral area by the method of immunoassay and using standard test systems. The following growth factor were detected: VEGF-A and its receptors VEGF-R1 (BenderMedSystem, Austria, VEGF-C and its receptor VEGF-R3 (BenderMedSystem, Austria, EGF (Biosource, USA, IFR-1 and IFR-2 (Mediagnost, USA, TGF

  12. The influence of tethered epidermal growth factor on connective tissue progenitor colony formation

    OpenAIRE

    Marcantonio, Nicholas A.; Boehm, Cynthia A.; Rozic, Richard J.; Au, Ada; Wells, Alan; Muschler, George F.; Griffith, Linda G.

    2009-01-01

    Strategies to combine aspirated marrow cells with scaffolds to treat connective tissue defects are gaining increasing clinical attention and use. In situations such as large defects where initial survival and proliferation of transplanted connective tissue progenitors (CTPs) are limiting, therapeutic outcomes might be improved by using the scaffold to deliver growth factors that promote the early stages of cell function in the graft. Signaling by the epidermal growth factor receptor (EGFR) pl...

  13. Connective tissue growth factor immunohistochemical expression is associated with gallbladder cancer progression.

    Science.gov (United States)

    Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C

    2013-02-01

    Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.

  14. The serum levels of connective tissue growth factor in patients with systemic lupus erythematosus and lupus nephritis.

    Science.gov (United States)

    Wang, F-M; Yu, F; Tan, Y; Liu, G; Zhao, M-H

    2014-06-01

    The expression of connective tissue growth factor mRNA in human kidneys may serve as an early marker for lupus nephritis progression. Therefore, we speculated that connective tissue growth factor may be involved in the pathogenesis of systemic lupus erythematosus and lupus nephritis. In this study, we set out to investigate the associations between serum connective tissue growth factor levels and clinicopathological features of patients with systemic lupus erythematosus and lupus nephritis. Serum samples from patients with non-renal systemic lupus erythematosus, renal biopsy-proven lupus nephritis and healthy control subjects were detected by enzyme-linked immunosorbent assay for serum connective tissue growth factor levels. The associations between connective tissue growth factor levels and clinicopathological features of the patients were further analysed. The levels of serum connective tissue growth factor in patients with non-renal systemic lupus erythematosus and lupus nephritis were both significantly higher than those in the normal control group (34.14 ± 12.17 ng/ml vs. 22.8 ± 3.0 ng/ml, plupus erythematosus and lupus nephritis group (34.14 ± 12.17 ng/ml vs. 44.1 ± 46.8 ng/ml, p = 0.183). Serum connective tissue growth factor levels were significantly higher in lupus nephritis patients with the following clinical manifestations, including anaemia (51.3 ± 51.4 ng/ml vs. 23.4 ± 9.7 ng/ml, plupus nephritis (63.3 ± 63.4 ng/ml vs. 38.3 ± 37.9 ng/ml, p = 0.035, respectively). Serum connective tissue growth factor levels were negatively associated with estimated glomerular filtration rate (r = -0.46, plupus nephritis (plupus and correlated with chronic renal interstitial injury and doubling of serum creatinine in patients with lupus nephritis. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Transforming growth factor-β1/Smad/connective tissue growth factor axis: The main pathway in radiation-induced fibrosis of osteoradionecrosis?

    Directory of Open Access Journals (Sweden)

    Qian Wei Zhuang

    2013-01-01

    Full Text Available Introduction: Osteoradionecrosis (ORN of the mandible is a serious complication following radiation therapy for malignancies of the head and neck. Radiation-induced fibrosis (RIF is a new theory that accounts for the damage to normal tissues after radiotherapy, and the radiation-induced fibroatrophic mechanism includes the free-radical formation, endothelial dysfunction, inflammation, microvascular thrombosis, fibrosis and remodeling, and finally bone and tissue necrosis. The Hypothesis: Previous studies revealed that transforming growth factor-β1 (TGF-β1 is the master switch cytokine responsible for the regulation of fibroblast proliferation and differentiation that result in RIF. Among the targets of TGF-β1, connective tissue growth factor (CTGF is a downstream mediator through the Smad3/4 pathway and plays an important role in connective tissue homeostasis and fibroblast proliferation. Studies have proved that the TGF-β1/Smad/CTGF signaling pathway is involved in the RIF of soft tissues, so the authors put forward a hypothesis that the TGF-β1/Smad/CTGF axis is also the main pathway in RIF of ORN. Evaluation of the Hypothesis: The validation of our hypothesis may provide new insights for better understanding the pathogenesis of ORN and open new perspectives for anti-fibrotic therapies, and pioneer novel approaches to treat ORN.

  16. Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation.

    Directory of Open Access Journals (Sweden)

    Benjamin D Elder

    2008-06-01

    Full Text Available Hydrostatic pressure (HP is a significant factor in the function of many tissues, including cartilage, knee meniscus, temporomandibular joint disc, intervertebral disc, bone, bladder, and vasculature. Though studies have been performed in assessing the role of HP in tissue biochemistry, to the best of our knowledge, no studies have demonstrated enhanced mechanical properties from HP application in any tissue.The objective of this study was to determine the effects of hydrostatic pressure (HP, with and without growth factors, on the biomechanical and biochemical properties of engineered articular cartilage constructs, using a two-phased approach. In phase I, a 3x3 full-factorial design of HP magnitude (1, 5, 10 MPa and frequency (0, 0.1, 1 Hz was used, and the best two treatments were selected for use in phase II. Static HP at 5 MPa and 10 MPa resulted in significant 95% and 96% increases, respectively, in aggregate modulus (H(A, with corresponding increases in GAG content. These regimens also resulted in significant 101% and 92% increases in Young's modulus (E(Y, with corresponding increases in collagen content. Phase II employed a 3x3 full-factorial design of HP (no HP, 5 MPa static, 10 MPa static and growth factor application (no GF, BMP-2+IGF-I, TGF-beta1. The combination of 10 MPa static HP and TGF-beta1 treatment had an additive effect on both H(A and E(Y, as well as a synergistic effect on collagen content. This group demonstrated a 164% increase in H(A, a 231% increase in E(Y, an 85% increase in GAG/wet weight (WW, and a 173% increase in collagen/WW, relative to control.To our knowledge, this is the first study to demonstrate increases in the biomechanical properties of tissue from pure HP application, using a cartilage model. Furthermore, it is the only study to demonstrate additive or synergistic effects between HP and growth factors on tissue functional properties. These findings are exciting as coupling HP stimulation with growth

  17. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  18. A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy

    NARCIS (Netherlands)

    van Geest, Rob J.; Lesnik-Oberstein, Sarit Y.; Tan, H. Stevie; Mura, Marco; Goldschmeding, Roel; van Noorden, Cornelis J. F.; Klaassen, Ingeborg; Schlingemann, Reinier O.

    2012-01-01

    Introduction In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) may cause blindness by neovascularisation followed by fibrosis of the retina. It has previously been shown that a shift in the balance between levels of CTGF

  19. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    Science.gov (United States)

    Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  20. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    Science.gov (United States)

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  1. Application of chitosan scaffolds on vascular endothelial growth factor and fibroblast growth factor 2 expressions in tissue engineering principles

    Directory of Open Access Journals (Sweden)

    Ariyati Retno Pratiwi

    2015-12-01

    Full Text Available Background: Tissue engineering has given satisfactory results as biological tissue substitutes to restore, replace, or regenerate tissues that have a defect. Chitosan is an organic biomaterial often used in the biomedical field. Chitosan has biocompatible, antifungal, and antibacterial properties. Chitosan is osteoconductive, suitable for bone regeneration applications. Bone defect healing begins with inflammatory phase as a response to the presence of vascular injury, so new vascularization is required. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor-2 (FGF2 are indicators of the beginning of bone regeneration process, playing an important role in angiogenesis. Purpose: This research was aimed to determine the effects of chitosan scaffold application on the expressions of VEGF and FGF2 in tissue engineering principles. Method: Chitosan was dissolved in CH3COOH and NaOH to form a gel. Chitosan gel was then printed in mould to freeze dry for 24 hours. Those rats with defected bones were divided into two groups. Group 1 was the control group which defected bones were not administrated with chitosan scaffolds. Group 2 was the treatment group which defected bones were administrated with chitosan scaffolds. Those rats were sacrificed on day 14. Tissue preparations were made, and then immunohistochemical staining was conducted. Finally, a statistical analysis was conducted using Kruskal Wallis test. Result: There was no significant difference in the expressions of VEGF and FGF2 between the control group and the treatment group (p>0.05. Conclusion: Chitosan scaffolds do not affect the expressions of VEGF and FGF2 during bone regeneration process on day 14 in tissue engineering principles

  2. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    Science.gov (United States)

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  3. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  5. Involvement of Connective Tissue Growth Factor in Human and Experimental Hypertensive Nephrosclerosis

    NARCIS (Netherlands)

    Ito, Yasuhiko; Aten, Jan; Nguyen, Tri Q.; Joles, Jaap A.; Matsuo, Seiichi; Weening, Jan J.; Goldschmeding, Roel

    2011-01-01

    Background/Aims: Connective tissue growth factor (CTGF; CCN2) has been implicated as a marker and mediator of fibrosis in human and experimental renal disease. Methods: We performed a comparative analysis of CTGF expression in hypertensive patients with and without nephrosclerosis, and in

  6. Cartilage tissue engineering: Role of mesenchymal stem cells along with growth factors & scaffolds

    Directory of Open Access Journals (Sweden)

    M B Gugjoo

    2016-01-01

    Full Text Available Articular cartilage injury poses a major challenge for both the patient and orthopaedician. Articular cartilage defects once formed do not regenerate spontaneously, rather replaced by fibrocartilage which is weaker in mechanical competence than the normal hyaline cartilage. Mesenchymal stem cells (MSCs along with different growth factors and scaffolds are currently incorporated in tissue engineering to overcome the deficiencies associated with currently available surgical methods and to facilitate cartilage healing. MSCs, being readily available with a potential to differentiate into chondrocytes which are enhanced by the application of different growth factors, are considered for effective repair of articular cartilage after injury. However, therapeutic application of MSCs and growth factors for cartilage repair remains in its infancy, with no comparative clinical study to that of the other surgical techniques. The present review covers the role of MSCs, growth factors and scaffolds for the repair of articular cartilage injury.

  7. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair.

    Science.gov (United States)

    Agren, M S; Rasmussen, K; Pakkenberg, B; Jørgensen, B

    2014-07-01

    Autologous platelet-rich fibrin (PRF(®)) is prepared by the automatic Vivostat(®) system. Conflicting results with Vivostat PRF in acute wound healing prompted us to examine its cellular and biomolecular composition. Specifically, platelets, selected growth factors and matrix metalloproteinase (MMP)-9 were quantified using novel analytical methods. Ten healthy non-thrombocytopenic volunteers donated blood for generation of intermediate fibrin-I and final PRF. Anticoagulated whole blood and serum procured in parallel served as baseline controls. Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme-linked immunosorbent assays. The number of leucocytes and erythrocytes was reduced (P platelets increased (P fibrin-I versus whole blood. PRF contained 982 ± 206 × 10(9) platelets/l representing 3·9-fold (P platelet-derived growth factor (PDGF)-AB [2·5-fold, P PDGF-BB [1·6-fold, P vascular endothelial growth factor > basic fibroblast growth factor [75-fold, P platelet enrichment and biomolecular constituents may guide clinicians in their optimal use of Vivostat PRF for tissue regenerative applications. © 2013 International Society of Blood Transfusion.

  8. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration

    Directory of Open Access Journals (Sweden)

    Dyondi D

    2012-12-01

    Full Text Available Deepti Dyondi,1 Thomas J Webster,2 Rinti Banerjee11Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; 2Nanomedicine Laboratories, Division of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF, and bone morphogenetic protein 7 (BMP7 were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.Keywords: bone tissue engineering, bone morphogenetic protein 7 (BMP7, basic fibroblast growth factor (bFGF, hydrogel, nanoparticles, osteoblasts

  9. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration

    Science.gov (United States)

    Hafeman, Andrea E.; Li, Bing; Yoshii, Toshitaka; Zienkiewicz, Katarzyna; Davidson, Jeffrey M.; Guelcher, Scott A.

    2013-01-01

    Purpose The purpose of this work was to investigate the effects of triisocyanate composition on the biological and mechanical properties of biodegradable, injectable polyurethane scaffolds for bone and soft tissue engineering. Methods Scaffolds were synthesized using reactive liquid molding techniques, and were characterized in vivo in a rat subcutaneous model. Porosity, dynamic mechanical properties, degradation rate, and release of growth factors were also measured. Results Polyurethane scaffolds were elastomers with tunable damping properties and degradation rates, and they supported cellular infiltration and generation of new tissue. The scaffolds showed a two-stage release profile of platelet-derived growth factor, characterized by a 75% burst release within the first 24 h and slower release thereafter. Conclusions Biodegradable polyurethanes synthesized from triisocyanates exhibited tunable and superior mechanical properties compared to materials synthesized from lysine diisocyanates. Due to their injectability, biocompatibility, tunable degradation, and potential for release of growth factors, these materials are potentially promising therapies for tissue engineering. PMID:18516665

  10. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    International Nuclear Information System (INIS)

    Lund, P.K.; Moats-Staats, B.M.; Hynes, M.A.; Simmons, J.G.; Jansen, M.; D'ercole, A.J.; Van Wyk, J.J.

    1986-01-01

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32 P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A + ) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A + ) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded

  11. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  12. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Science.gov (United States)

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  13. Immunohistochemical expression of Insulin-like growth factor-1, Transforming growth factor-beta1, and Vascular endothelial growth factor in parathyroid adenoma and hyperplasia

    Directory of Open Access Journals (Sweden)

    Hamide Sayar

    2014-01-01

    Full Text Available Background: Insulin-like growth factor (IGF, transforming growth factor-beta1 (TGF-β1, and vascular endothelial growth factor (VEGF are commonly studied growth factors, but little data are available on the immunohistochemical expression of these factors in parathyroid lesions. Materials and Methods: Tissue specimens from 36 patients with primary hyperparathyroidism (P-HPT (26 adenomas and 10 primary hyperplasias were examined. Normal parathyroid tissue adjacent to the adenoma or area of hyperplasia was used as control tissue. Preoperative laboratory testing [serum Ca and P, creatinine and parathormone levels (PTH] which led to the diagnosis of P-HPT had been performed, the size and weight of the parathyroid glands measured, and postoperative serum PTH levels determined. Paraffin-embedded parathyroid tissue specimens were stained with antibodies to IGF-1, VEGF, and TGF-β1 using standard immunohistochemical procedures. Results: IGF-1 immunoreactivity was seen in 50% of hyperplasia and in 46% of adenoma samples, but in 87% of normal parathyroid tissue in the vicinity of the adenomas (P = 0.005. TGF-β1 immunoreactivity was observed in 90% of hyperplasia, in 92% of adenoma samples, and in 95% of normal tissues around adenomas. VEGF immunoreactivity was observed in 70% of hyperplastic and 65% of adenomatous tissues, as well as in 54% of normal tissues in the vicinity of the adenoma. No significant differences in the expression of IGF-1, TGF-β1, and VEGF were observed between primary adenomas compared to hyperplasia samples (P > 0.05. Conclusions: Parathyroid tissue is clearly a site for production of IGF-1, TGF-β1, and VEGF. IGF-1 receptor activity was higher in normal parathyroid tissue compared to hyperplastic and adenomatous tissue.

  14. Connective tissue growth factor is a substrate of ADAM28

    International Nuclear Information System (INIS)

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-01-01

    Research highlights: → The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. → ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF 165 complex. → CTGF digestion by ADAM28 releases biologically active VEGF 165 from the complex. → ADAM28, CTGF and VEGF 165 are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. → These suggest that ADAM28 promotes VEGF 165 -induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF 165 complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala 181 -Tyr 182 and Asp 191 -Pro 192 bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor 165 (VEGF 165 ), releasing biologically active VEGF 165 from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF 165 -induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF 165 complex.

  15. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Directory of Open Access Journals (Sweden)

    Halima Rakhila

    Full Text Available Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2, cell adhesion (αv and β3 integrins, survival (B-cell lymphoma-2 and angiogenic (vascular endothelial cell growth factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  16. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Science.gov (United States)

    Rakhila, Halima; Girard, Karine; Leboeuf, Mathieu; Lemyre, Madeleine; Akoum, Ali

    2014-01-01

    Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF) appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO) mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT) mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2), cell adhesion (αv and β3 integrins), survival (B-cell lymphoma-2) and angiogenic (vascular endothelial cell growth) factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  17. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair

    DEFF Research Database (Denmark)

    Ågren, Sven Per Magnus; Rasmussen, Karina; Pakkenberg, Bente

    2014-01-01

    . Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme......·001]. MMP-9 was reduced 139-fold (P tissue regenerative applications....

  18. Insulin-like growth factor I (IGF-1 Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Directory of Open Access Journals (Sweden)

    Werner Schlegel

    Full Text Available Human insulin-like growth factor 1 Ec (IGF-1Ec, also called mechano growth factor (MGF, is a splice variant of insulin-like growth factor 1 (IGF-1, which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  19. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2).

    Science.gov (United States)

    Whitson, Ramon J; Lucia, Marshall Scott; Lambert, James R

    2013-06-01

    Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states. Copyright © 2012 Wiley Periodicals, Inc.

  20. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination.

    Science.gov (United States)

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Liu, Fu-Nan; Li, Yan-Shu; Wang, Chun-Yu; Zhang, Hong-Yan; Sun, Zhe; Xu, Hui-Mian

    2011-09-28

    Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  1. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yan

    2011-09-01

    Full Text Available Abstract Background Connective tissue growth factor (CTGF has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P 1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  2. Modulation of radiation effects in tissues by keratinocyte growth factor (KGF)

    International Nuclear Information System (INIS)

    Doerr, W.; Lacmann, A.; Noack, R.; Spekl, K.

    2000-01-01

    Keratinocyte Growth Factor (KGF) is a member of the fibroblast growth factor family. KGF is produced by mesenchymal cells, predominantly fibroblasts; target cells are epithelial cells in a variety of tissues. Hence, KGF is a mediator of the mesenchymal-epithelial communication and a regulator of tissue homeostasis in epithelia. Systemic administration of KGF in animal models induces stimulation of proliferation and modulation of migration and differentiation processes in squamous epithelia. This results in a transient increase in cell numbers and epithelial thickness. Radiation exposure of epithelia causes an imbalance between cell production and cell loss, which in consequence causes progressive cell depletion and eventually complete denudation. Systemic application of KGF reduces the radiation-induced cell loss. This effect is most pronounced when KGF is given after the radiation exposure. With regard to epithelial radiation tolerance, KGF-application in animal models results in a significant increase, by a factor of 1.7-2.3, in the doses required to induce epithelial ulceration as a clinically most relevant endpoint. After exposure with a given dose, this translates into a significant reduction of the clinical manifestation of the acute radiation sequelae. This effect is accompanied by a modification of the time course of the response. In conclusion, although the mechanisms underlying the protective efficacy remain unclear, KGF may represent an effective approach for amelioration of radiation effects in oral, gastrointestinal and cutaneous epithelia. Results from a clinical pilot study indicate that KGF is well tolerated and effective in humans. (orig.) [de

  3. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    such as ischemic heart disease, arthritis and tumor growth. Angiogenesis is a complex process with several growth factors involved. Because PlGF modulates VEGF-A responses, we investigated their mutual relationship and impact on breast cancer prognosis. Quantitative PlGF and VEGF-A levels were measured in 229...... tumor tissue specimen from primarily operated patients with unilateral breast cancer. Non-malignant breast tissue was also dissected near the tumor and quantitative measurements were available for 211 patients. PlGF and VEGF-A protein levels in homogenized tissue lysates were analyzed using the Luminex......Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions...

  4. Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer

    OpenAIRE

    Liu, Lu-Ying; Han, Yan-Chun; Wu, Shu-Hua; Lv, Zeng-Hua

    2008-01-01

    AIM: To examine the expression of connective tissue growth factor (CTGF), also known as CCN2, in gastric carcinoma (GC), and the correlation between the expression of CTGF, clinicopathologic features and clinical outcomes of patients with GC.

  5. Mathematical Model of Growth Factor Driven Haptotaxis and Proliferation in a Tissue Engineering Scaffold

    KAUST Repository

    Pohlmeyer, J. V.

    2013-01-29

    Motivated by experimental work (Miller et al. in Biomaterials 27(10):2213-2221, 2006, 32(11):2775-2785, 2011) we investigate the effect of growth factor driven haptotaxis and proliferation in a perfusion tissue engineering bioreactor, in which nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative representation of these phenomena requires more experimental data than is yet available, qualitative agreement with preliminary experimental studies (Miller et al. in Biomaterials 27(10):2213-2221, 2006) is obtained, and appears promising. The ultimate goal of such modeling is to ascertain initial conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a final desired outcome. © 2013 Society for Mathematical Biology.

  6. Expression and clinical significance of connective tissue growth factor in thyroid carcinomas.

    Science.gov (United States)

    Wang, Guimin; Zhang, Wei; Meng, Wei; Liu, Jia; Wang, Peisong; Lin, Shan; Xu, Liyan; Li, Enmin; Chen, Guang

    2013-08-01

    To examine expression of the connective tissue growth factor (CTGF) gene in human thyroid cancer and establish whether a correlation exists between the presence of CTGF protein and clinicopathological parameters of the disease. CTGF protein expression was investigated retrospectively by immunohistochemical analysis of CTGF protein levels in thyroid tumour tissue. Associations between immunohistochemical score and several clinicopathological parameters were examined. In total, 131 thyroid tissue specimens were included. High levels of CTGF protein were observed in papillary thyroid carcinoma tissue; benign thyroid tumour tissue scored negatively for CTGF protein. In papillary thyroid carcinoma, there was a significant relationship between high CTGF protein levels and Union for International Cancer Control disease stage III-IV, and presence of lymph node metastasis. In papillary thyroid carcinomas, CTGF protein levels were not significantly associated with sex or age. These findings suggest that the CTGF protein level is increased in papillary thyroid carcinoma cells compared with benign thyroid tumours. CTGF expression might play a role in the development of malignant tumours in the thyroid.

  7. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection.

    Science.gov (United States)

    Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas

    2007-01-01

    Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.

  8. Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors.

    Science.gov (United States)

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Matsuzaka, Satoshi; Yamagishi, Chie; Kobayashi, Kohei

    2010-05-01

    Tissue-engineered cartilage may be expected to serve as an alternative to autologous chondrocyte transplantation treatment. Several methods for producing cartilaginous tissue have been reported. In this study, we describe the production of scaffold-free stiff cartilaginous tissue of pig and human, using allogeneic serum and growth factors. The tissue was formed in a mold using chondrocytes recovered from alginate bead culture and maintained in a medium with transforming growth factor-beta and several other additives. In the case of porcine tissue, the tear strength of the tissue and the contents of proteoglycan (PG) and collagen per unit of DNA increased dose-dependently with transforming growth factor-beta. The length of culture was significantly and positively correlated with thickness, tear strength, and PG and collagen contents. Tear strength showed positive high correlations with both PG and collagen contents. A positive correlation was also seen between PG content and collagen content. Similar results were obtained with human cartilaginous tissue formed from chondrocytes expanded in monolayer culture. Further, an in vivo pilot study using pig articular cartilage defect model demonstrated that the cartilaginous tissue was well integrated with surrounding tissue at 13 weeks after the implantation. In conclusion, we successfully produced implantable scaffold-free stiff cartilaginous tissue, which characterized high PG and collagen contents.

  9. Expression of von Willebrand factor and caldesmon in the placental tissues of pregnancies complicated with intrauterine growth restriction.

    Science.gov (United States)

    Göksever Çelik, Hale; Uhri, Mehmet; Yildirim, Gökhan

    2017-11-02

    The decreased placental perfusion is the underlying reason for intrauterine growth restriction that in turn leads to reduced placental perfusion and ischemia. However, there are several issues to be understood in the pathophysiology of intrauterine growth restriction. We aimed to study whether any compensatory response in placental vascular bed occur in pregnancies complicated with intrauterine growth restriction by the immunohistochemical staining of von Willebrand factor and caldesmon in placental tissues. A total of 103 pregnant women was enrolled in the study including 50 patients who were complicated with IUGR and 50 uncomplicated control patients. The study was designed in a prospective manner. All placentas were also stained with von Willebrand factor and caldesmon monoclonal kits. The immunohistochemical staining of von Willebrand factor and caldesmon expressions in placental tissues were different between normal and intrauterine growth restriction group. The percentages of 2+ and 3+ von Willebrand factor expression were higher in the intrauterine growth restriction group comparing with the normal group, although the difference was not statistically significant. The intensity of caldesmon expression was significantly lower in the intrauterine growth restriction group in comparison with the normal group (p intrauterine growth restriction which is a hypoxic condition. But newly formed vessels are immature and not strong enough. Our study is important to clarify the pathophysiology and placental compensatory responses in intrauterine growth restriction.

  10. Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice

    NARCIS (Netherlands)

    Kuiper, Esther J.; van Zijderveld, Rogier; Roestenberg, Peggy; Lyons, Karen M.; Goldschmeding, Roel; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.

    2008-01-01

    Experimental prevention of basal lamina (BL) thickening of retinal capillaries ameliorates early vascular changes caused by diabetes. Connective tissue growth factor (CTGF) is upregulated early in diabetes in the human retina and is a potent inducer of expression of BL components. We hypothesize

  11. The roles of connective tissue growth factor in the development of anastomotic esophageal strictures.

    Science.gov (United States)

    Zhao, Haibin; Zhao, Lingna; Zhou, Zhihua; Wu, Yaoyi

    2015-08-12

    The aim of this study was to investigate the roles of connective tissue growth factor (CTGF) in the development of anastomotic strictures after surgical repair of the esophagus. Tissues collected from the patients were divided into three groups based on the results of endoscopy and clinical grading. Patients without dysphagia after esophagectomy were used as the control population. The protein levels of CTGF, TGF-β1, Smad2, and Smad4 were determined by immunohistochemistry (IHC) and western blot analyses, while the mRNA levels of the two growth factors were evaluated by real-time polymerase chain reaction. Compared with the control group, significantly increased (p tissues collected from the patients with stenosis were significantly up-regulated (p < 0.05) as compared with those from the control group. In addition, the levels of Smad2 and Smad4 protein were also significantly increased (p < 0.05) with the increasing severity of stenosis, and the protein levels were positively correlated with the levels of CTGF (r = 0.59, p < 0.05) and TGF-β1 (r = 0.63, p < 0.05). Inhibition of CTGF protein or mRNA expression may be a distinctive and effective therapy for the treatment of postoperative anastomotic strictures.

  12. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; van den Beucken, J.J.; Tabata, Y.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.; Kasper, F.K.

    2014-01-01

    The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the

  13. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  14. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.

    Science.gov (United States)

    Rohrs, Jennifer A; Sulistio, Christopher D; Finley, Stacey D

    2016-01-01

    Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, while less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Due to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form due to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1's interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic dramatically decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.

  15. [Expression of connective tissue growth factor in colorectal cancer and its association with prognosis].

    Science.gov (United States)

    Sun, Zheng; Yang, Ping; Liang, Li-yuan; Zhang, Tong; Zhang, Wei-jian; Cao, Jie

    2012-11-01

    To investigate the expression of connective tissue growth factor (CTGF) in colorectal cancer(CRC) and its association with clinicopathologic parameters and overall survival rate. Fresh tumor tissues and matched distal normal colon tissues were collected from 92 patients diagnosed as CRC by surgical operation. The expression level of CTGF mRNA was quantified by quantitative reverse transcription PCR. Thirty out of 92 pairs of tissue specimens were selected randomly to detect CTGF protein by immunohistochemistry. All the cases were followed up to identify prognostic factors for survival. CTGF mRNA expression was up-regulated in CRC. The positive rate of CTGF protein expression tissues (73.3%) was significantly higher than that in the corresponding normal tissues (23.3%, Ptissues was classified into high and low expression groups. The 5-year cumulative survival rate was lower in patients with low CTGF expression (29.3%) as compared to those with high CTGF expressions (68.3%) (P<0.01). Cox regression analysis revealed that the relative expression level of CTGF was independent factor of overall survival (RR=2.960, 95%CI:1.491-1.587, P<0.01). ROC curve analysis showed that sensitivity and specificity of CTGF mRNA expression for prediction of 5-year survival were 64.9% and 74.5%, respectively. The aberrant expression of CTGF is associated with the malignant biological behaviors of CRC. Low expression of CTGF is associated with worse prognosis of CRC.

  16. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  17. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  18. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    Van Geest, Rob J; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A; Vogels, Ilse M C; Van der Giezen, Dionne M; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J F; Schlingemann, Reinier O

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  19. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M. C.; van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.

    2014-01-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  20. Expression of Connective Tissue Growth Factor in Male Breast Cancer : Clinicopathologic Correlations and Prognostic Value

    NARCIS (Netherlands)

    Lacle, Miangela M.; van Diest, Paul J.; Goldschmeding, Roel; van der Wall, Elsken; Nguyen, Tri Q.

    2015-01-01

    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of secreted proteins that are believed to play an important role in the development of neoplasia. In particular, CTGF has been reported to play an important role in mammary tumorigenesis and to have prognostic value in female

  1. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  2. Extremity Regeneration of Soft Tissue Injury Using Growth Factor-Impregnated Gels

    Science.gov (United States)

    2017-10-01

    vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Repeated injections of growth factor-alginate material are... Vascularized endothelial growth factor (VEGF) Insulin-like growth factor-1 (IGF-1) Alginate gel Ischemia-reperfusion Large animal model...operative complications including skin necrosis and seroma development. The IACUC protocol was reevaluated and modified thought multiple discussions

  3. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  4. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  5. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    Science.gov (United States)

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  6. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    Science.gov (United States)

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  7. Microcapsule Technology for Controlled Growth Factor Release in Musculoskeletal Tissue Engineering.

    Science.gov (United States)

    Della Porta, Giovanna; Ciardulli, Maria C; Maffulli, Nicola

    2018-06-01

    Tissue engineering strategies have relied on engineered 3-dimensional (3D) scaffolds to provide architectural templates that can mimic the native cell environment. Among the several technologies proposed for the fabrication of 3D scaffold, that can be attractive for stem cell cultivation and differentiation, moulding or bioplotting of hydrogels allow the stratification of layers loaded with cells and with specific additives to obtain a predefined microstructural organization. Particularly with bioplotting technology, living cells, named bio-ink, and additives, such as biopolymer microdevices/nanodevices for the controlled delivery of growth factors or biosignals, can be organized spatially into a predesigned 3D pattern by automated fabrication with computer-aided digital files. The technologies for biopolymer microcarrier/nanocarrier fabrication can be strategic to provide a controlled spatiotemporal delivery of specific biosignals within a microenvironment that can better or faster address the stem cells loaded within it. In this review, some examples of growth factor-controlled delivery by biopolymer microdevices/nanodevices embedded within 3D hydrogel scaffolds will be described, to achieve a bioengineered 3D interactive microenvironment for stem cell differentiation. Conventional and recently proposed technologies for biopolymer microcapsule fabrication for controlled delivery over several days will also be illustrated and critically discussed.

  8. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue.

    Science.gov (United States)

    Taurone, Samanta; Bianchi, Enrica; Attanasio, Giuseppe; Di Gioia, Cira; Ierinó, Rocco; Carubbi, Cecilia; Galli, Daniela; Pastore, Francesco Saverio; Giangaspero, Felice; Filipo, Roberto; Zanza, Christian; Artico, Marco

    2015-07-01

    Vestibular schwannomas, also known as acoustic neuromas, are benign tumors, which originate from myelin-forming Schwann cells. They develop in the vestibular branch of the eighth cranial nerve in the internal auditory canal or cerebellopontine angle. The clinical progression of the condition involves slow and progressive growth, eventually resulting in brainstem compression. The objective of the present study was to investigate the expression level and the localization of the pro-inflammatory cytokines, transforming growth factor-β1 (TGF-β1) interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), as well as the adhesion molecules, intracellular adhesion molecule-1 and vascular endothelial growth factor (VEGF), in order to determine whether these factors are involved in the transformation and development of human vestibular schwannoma. The present study investigated whether changes in inflammation are involved in tumor growth and if so, the mechanisms underlying this process. The results of the current study demonstrated that pro-inflammatory cytokines, including TGF-β1, IL-1β and IL-6 exhibited increased expression in human vestibular schwannoma tissue compared with normal vestibular nerve samples. TNF-α was weakly expressed in Schwann cells, confirming that a lower level of this cytokine is involved in the proliferation of Schwann cells. Neoplastic Schwann cells produce pro-inflammatory cytokines that may act in an autocrine manner, stimulating cellular proliferation. In addition, the increased expression of VEGF in vestibular schwannoma compared with that in normal vestibular nerve tissue, suggests that this factor may induce neoplastic growth via the promotion of angiogenesis. The present findings suggest that inflammation may promote angiogenesis and consequently contribute to tumor progression. In conclusion, the results of the present study indicated that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in vestibular

  9. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    Science.gov (United States)

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

  10. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors.

    Science.gov (United States)

    Butler, Jason M; Kobayashi, Hideki; Rafii, Shahin

    2010-02-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.

  11. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    Science.gov (United States)

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Connective Tissue Disorders and Cardiovascular Complications: The indomitable role of Transforming Growth Factor-beta signaling

    Science.gov (United States)

    Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.

    2015-01-01

    Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024

  13. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-β responsiveness

    International Nuclear Information System (INIS)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.; Varga, John

    2008-01-01

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-β (TGF-β) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-β, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-β. To explore this notion, we characterized TGF-β-induced activation of fibroblasts from CCN2-null (CCN2 -/- ) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-β signal transduction and regulation of collagen gene expression were examined in CCN2 -/- MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2 -/- MEFs was markedly reduced compared to wild type MEFs, TGF-β-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2 -/- MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-β-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts

  14. Fibroblast growth factors as tissue repair and regeneration therapeutics

    Directory of Open Access Journals (Sweden)

    Quentin M. Nunes

    2016-01-01

    Full Text Available Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine or systemically (endocrine. The fibroblast growth factor (FGF family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West.

  15. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  16. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  17. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  18. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, van J.; Cats, A.; Depla, A.; Timmer, R.; Witteman, B.J.M.; Wesseling, J.; Kampman, E.; van't Veer, L.J.

    2009-01-01

    Context: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  19. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels.

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, J. van; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.; Wesseling, J.; Kampman, E.; Veer, L.J. van 't

    2009-01-01

    CONTEXT: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  20. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  1. Expression of connective tissue growth factor and interleukin-11 in intratumoral tissue is associated with poor survival after curative resection of hepatocellular carcinoma.

    Science.gov (United States)

    Xiang, Zuo-Lin; Zeng, Zhao-Chong; Fan, Jia; Tang, Zhao-You; Zeng, Hai-Ying

    2012-05-01

    In the present study, we evaluated the prognostic value of intratumoral and peritumoral expression of connective tissue growth factor (CTGF), transforming growth factor-beta 1 (TGF-β1), and interleukin-11 (IL-11) in patients with hepatocellular carcinoma (HCC) after curative resection. Expression of CTGF, TGF-β1, and IL-11 was assessed by immunohistochemical staining of tissue microarrays containing paired tumor and peritumoral liver tissue from 290 patients who had undergone hepatectomy for histologically proven HCC. The prognostic value of these and other clinicopathologic factors were evaluated. The median follow-up time was 54.3 months (range, 4.3-118.3 months). High intratumoral CTGF expression was associated with vascular invasion (P = 0.015), intratumoral IL-11 expression correlated with higher tumor node metastasis (TNM) stage (P = 0.009), and peritumoral CTGF overexpression correlated with lack of tumor encapsulation (P = 0.031). Correlation analysis of these proteins revealed that intratumoral CTGF and IL-11 correlated with high intratumoral TGF-β1 expression (r = 0.325, P < 0.001; and r = 0.273, P < 0.001, respectively). TNM stage (P < 0.001), high intratumoral CTGF levels (P = 0.010), and intratumoral IL-11 expression (P = 0.015) were independent prognostic factors for progression-free survival (PFS). Vascular invasion (P = 0.032), TNM stage (P < 0.001), high intratumoral CTGF levels (P = 0.036), and intratumoral IL-11 expression (P = 0.013) were independent prognostic factors for overall survival (OS). High intratumoral CTGF and intratumoral IL-11 expression were associated with PFS and OS after hepatectomy, and the combination of intratumoral CTGF with IL-11 may be predictive of survival.

  2. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  3. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    the hyperplastic growth phase of the prostate in newborn rats.MATERIAL AND METHODS: Newborn rats were treated for 8 weeks with EGF (150 microg/kg body weight per day), administered as daily subcutaneous injections. Sections of the prostate tissue were examined by a stereological technique to determine tissue......OBJECTIVE: The epidermal growth factor (EGF) system is expressed in the rat prostate, and growth factors from this system induce proliferation in prostate epithelial and stromal cell cultures. The aim of the study was to investigate the possible growth-promoting effects of the system during...... of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p

  4. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  5. Modulation of radiosensitivity by growth factors

    International Nuclear Information System (INIS)

    Paris, F.

    2013-01-01

    The full text of the publication follows. For the past 70 years, radiotherapy protocols were defined to target and kill cancer cells. New research developments showed that the tissue or tumor radiosensitivities might be directly modulated by its own microenvironment. Between all the micro-environmental cells, endothelial cells are playing a unique role due to the need of angio-genesis for tumor genesis and to the microvascular endothelial cell apoptosis involved in acute normal tissue and tumor radiosensitivities. Both endothelial behaviours may be controlled by specific growth factors secreted by tumor cells. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are two cytokines involved in angio genesis and endothelial cell survival. Because radiation exposure develops opposite molecular and cellular responses by inhibiting proliferation and by enhancing apoptosis, inhibiting these cytokines has been proposed as a relevant strategy to improve radiotherapy efficiency. Drugs or antibody against VEGF, or other growth factors have been used with success to limit endothelial cell resistance, but also to transiently normalize of blood vessels to improve oxygen distribution into the tumor. However, better characterisation of the role of the cytokines will help to better improve the strategy of the use of their antagonists. We demonstrate that bFGF or sphingosin 1 phosphate (S1P), a lipid endothelial growth factor, protects endothelial cells from radiation stress by inhibiting the pre-mitotic apoptosis through enhancement of pro-survival molecular cascade, such as the Pi3K/AKT pathway, but not post-mitotic death. This discrepancy allowed a specific use of S1P as pharmacological drug protecting quiescent endothelial cells, present in normal tissue blood vessels, but not in proliferating angiogenic blood vessels, majority present in tumor blood vessel. In vivo studies are underway. (author)

  6. Deregulated expression of connective tissue growth factor (CTGF/CCN2) is linked to poor outcome in human cancer.

    Science.gov (United States)

    Wells, Julia E; Howlett, Meegan; Cole, Catherine H; Kees, Ursula R

    2015-08-01

    Connective tissue growth factor (CTGF/CCN2) has long been associated with human cancers. The role it plays in these neoplasms is diverse and tumour specific. Recurring patterns in clinical outcome, histological desmoplasia and mechanisms of action have been found. When CTGF is overexpressed compared to low-expressing normal tissue or is underexpressed compared to high-expressing normal tissue, the functional outcome favours tumour survival and disease progression. CTGF acts by altering proliferation, drug resistance, angiogenesis, adhesion and migration contributing to metastasis. The pattern of CTGF expression and tumour response helps to clarify the role of this matricellular protein across a multitude of human cancers. © 2014 UICC.

  7. A First Step in De Novo Synthesis of a Living Pulp Tissue Replacement Using Dental Pulp MSCs and Tissue Growth Factors, Encapsulated within a Bioinspired Alginate Hydrogel.

    Science.gov (United States)

    Bhoj, Manasi; Zhang, Chengfei; Green, David W

    2015-07-01

    A living, self-supporting pulp tissue replacement in vitro and for transplantation is an attractive yet unmet bioengineering challenge. Our aim is to create 3-dimensional alginate-based microenvironments that replicate the shape of gutta-percha and comprise key elements for the proliferation of progenitor cells and the release of growth factors. An RGD-bearing alginate framework was used to encapsulate dental pulp stem cells and human umbilical vein endothelial cells in a ratio of 1:1. The alginate hydrogel also retained and delivered 2 key growth factors, vascular endothelial growth factor-121 and fibroblast growth factor, in a sufficient amount to induce proliferation. A method was then devised to replicate the shape of gutta-percha using RGD alginate within a custom-made mold of thermoresponsive N-isopropylacrylamide. Plugs of alginate containing different permutations of growth factor-based encapsulates were tested and evaluated for viability, proliferation, and release kinetics between 1 and 14 days. According to scanning electron microscopic and confocal microscopic observations, the encapsulated human endothelial cells and dental pulp stem cell distribution were frequent and extensive throughout the length of the construct. There were also high levels of viability in all test environments. Furthermore, cell proliferation was higher in the growth factor-based groups. Growth factor release kinetics also showed significant differences between them. Interestingly, the combination of vascular endothelial growth factor and fibroblast growth factor synergize to significantly up-regulate cell proliferation. RGD-alginate scaffolds can be fabricated into shapes to fill the pulp space by simple templating. The addition of dual growth factors to cocultures of stem cells within RGD-alginate scaffolds led to the creation of microenvironments that significantly enhance the proliferation of dental pulp stem cell/human umbilical vein endothelial cell combinations. Copyright

  8. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    Science.gov (United States)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  9. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  10. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.

    Science.gov (United States)

    Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S

    2012-12-13

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.

  11. Fell-Muir lecture: connective tissue growth factor (CCN2) – a pernicious and pleiotropic player in the development of kidney fibrosis

    Science.gov (United States)

    Mason, Roger M

    2013-01-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. PMID:23110747

  12. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro.

    Science.gov (United States)

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-06-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P cancer may confer a growth advantage for neoplastic cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  13. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering.

    Science.gov (United States)

    Wenk, Esther; Meinel, Anne J; Wildy, Sarah; Merkle, Hans P; Meinel, Lorenz

    2009-05-01

    The development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR. Pore interconnectivity was demonstrated by SEM. Porosities were in the range of 70-90%, depending on the treatment applied, and were better preserved when methanol or water vapor treatments were prior to porogen leaching. IGF-I was encapsulated into two different types of poly(lactide-co-glycolide) microparticles (PLGA MP) using uncapped PLGA (50:50) with molecular weights of either 14 or 35 kDa to control IGF-I release kinetics from the SF scaffold. Embedded PLGA MP were located in the walls or intersections of the SF scaffold. Embedment of the PLGA MP into the scaffolds led to more sustained release rates as compared to the free PLGA MP, whereas the hydrolytic degradation of the two PLGA MP types was not affected. The PLGA types used had distinct effects on IGF-I release kinetics. Particularly the supernatants of the lower molecular weight PLGA formulations turned out to release bioactive IGF-I. Our studies justify future investigations of the developed constructs for tissue engineering applications.

  14. Fibroblast Growth Factor 21 Deficiency Attenuates Experimental Colitis-Induced Adipose Tissue Lipolysis

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2017-01-01

    Full Text Available Aims. Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD. Adipose tissue plays a critical role in regulating energy balance. Fibroblast growth factor 21 (FGF21 is an important endocrine metabolic regulator with emerging beneficial roles in lipid homeostasis. We investigated the impact of FGF21 in experimental colitis-induced epididymal white adipose tissue (eWAT lipolysis. Methods. Mice were given 2.5% dextran sulfate sodium (DSS ad libitum for 7 days to induce colitis. The role of FGF21 was investigated using antibody neutralization or knockout (KO mice. Lipolysis index and adipose lipolytic enzymes were determined. In addition, 3T3-L1 cells were pretreated with IL-6, followed by recombinant human FGF21 (rhFGF21 treatment; lipolysis was assessed. Results. DSS markedly decreased eWAT/body weight ratio and increased serum concentrations of free fatty acid (FFA and glycerol, indicating increased adipose tissue lipolysis. eWAT intracellular lipolytic enzyme expression/activation was significantly increased. These alterations were significantly attenuated in FGF21 KO mice and by circulating FGF21 neutralization. Moreover, DSS treatment markedly increased serum IL-6 and FGF21 levels. IL-6 pretreatment was necessary for the stimulatory effect of FGF21 on adipose lipolysis in 3T3-L1 cells. Conclusions. Our results demonstrate that experimental colitis induces eWAT lipolysis via an IL-6/FGF21-mediated signaling pathway.

  15. Ontogeny of basic fibroblast growth factor binding sites in mouse ocular tissues

    International Nuclear Information System (INIS)

    Fayein, N.A.; Courtois, Y.; Jeanny, J.C.

    1990-01-01

    Basic fibroblast growth factor (bFGF) binding to ocular tissues has been studied by autoradiographical and biochemical approaches directly performed on sections during mouse embryonic and postnatal development. Frozen sections of embryos (9 to 18 days), newborns, and adults (1 day to 6 months) were incubated with iodinated bFGF. One specific FGF binding site (KD = 2.5 nM) is colocalized with heparan sulfate proteoglycans of the basement membranes and is heparitinase sensitive. It first appears at Day 9 around the neural tube, the optic vesicles, and below the head ectoderm and by Day 14 of embryonic development is found in all basement membranes of the eye. At Day 16, very intensely labeled patches appear, corresponding to mast cells which have been characterized by metachromatic staining of their heparin-rich granulations with toluidine blue. In addition to the latter binding, we have also observed a general diffuse distribution of silver grains on all tissues and preferentially in the ecto- and neuroectodermic tissues. From Days 17-18, there is heterogeneous labeling inside the retina, localized in the pigmented epithelium and in three different layers colocalized with the inner and outer plexiform layers and with the inner segments of the photoreceptors. This binding is heparitinase resistant but N-glycanase sensitive and may represent a second specific binding site corresponding to cellular FGF receptors (KD = 280 pM). Both types of binding patterns observed suggest a significant role for bFGF in eye development and physiology

  16. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  17. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate

    NARCIS (Netherlands)

    Mizutani, Makoto; Ito, Yasuhiko; Mizuno, Masashi; Nishimura, Hayato; Suzuki, Yasuhiro; Hattori, Ryohei; Matsukawa, Yoshihisa; Imai, Masaki; Oliver, Noelynn; Goldschmeding, Roel; Aten, Jan; Krediet, Raymond T.; Yuzawa, Yukio; Matsuo, Seiichi

    2010-01-01

    Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, Matsukawa Y, Imai M, Oliver N, Goldschmeding R, Aten J, Krediet RT, Yuzawa Y, Matsuo S. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol

  18. * Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering.

    Science.gov (United States)

    Pauly, Hannah M; Sathy, Binulal N; Olvera, Dinorath; McCarthy, Helen O; Kelly, Daniel J; Popat, Ketul C; Dunne, Nicholas J; Haut Donahue, Tammy Lynn

    2017-08-01

    The anterior cruciate ligament (ACL) of the knee is vital for proper joint function and is commonly ruptured during sports injuries or car accidents. Due to a lack of intrinsic healing capacity and drawbacks with allografts and autografts, there is a need for a tissue-engineered ACL replacement. Our group has previously used aligned sheets of electrospun polycaprolactone nanofibers to develop solid cylindrical bundles of longitudinally aligned nanofibers. We have shown that these nanofiber bundles support cell proliferation and elongation and the hierarchical structure and material properties are similar to the native human ACL. It is possible to combine multiple nanofiber bundles to create a scaffold that attempts to mimic the macroscale structure of the ACL. The goal of this work was to develop a hierarchical bioactive scaffold for ligament tissue engineering using connective tissue growth factor (CTGF)-conjugated nanofiber bundles and evaluate the behavior of mesenchymal stem cells (MSCs) on these scaffolds in vitro and in vivo. CTGF was immobilized onto the surface of individual nanofiber bundles or scaffolds consisting of multiple nanofiber bundles. The conjugation efficiency and the release of conjugated CTGF were assessed using X-ray photoelectron spectroscopy, assays, and immunofluorescence staining. Scaffolds were seeded with MSCs and maintained in vitro for 7 days (individual nanofiber bundles), in vitro for 21 days (scaled-up scaffolds of 20 nanofiber bundles), or in vivo for 6 weeks (small scaffolds of 4 nanofiber bundles), and ligament-specific tissue formation was assessed in comparison to non-CTGF-conjugated control scaffolds. Results showed that CTGF conjugation encouraged cell proliferation and ligament-specific tissue formation in vitro and in vivo. The results suggest that hierarchical electrospun nanofiber bundles conjugated with CTGF are a scalable and bioactive scaffold for ACL tissue engineering.

  19. Molecular characterization of transforming growth factor-beta3

    NARCIS (Netherlands)

    Dijke, ten P.

    1991-01-01

    Normal tissue homeostasis is controlled by a critical balance of positive and negative modulators. Chapter 2 gives an overview of the molecular aspects of growth control, in particular the role of growth factors and oncogene and anti-oncogene products. Uncontrolled growth of cancer cells

  20. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  1. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  2. Connective tissue growth factor is activated by gastrin and involved in gastrin-induced migration and invasion.

    Science.gov (United States)

    Bhandari, Sabin; Bakke, Ingunn; Kumar, J; Beisvag, Vidar; Sandvik, Arne K; Thommesen, Liv; Varro, Andrea; Nørsett, Kristin G

    2016-06-17

    Connective tissue growth factor (CTGF) has been reported in gastric adenocarcinoma and in carcinoid tumors. The aim of this study was to explore a possible link between CTGF and gastrin in gastric epithelial cells and to study the role of CTGF in gastrin induced migration and invasion of AGS-GR cells. The effects of gastrin were studied using RT-qPCR, Western blot and assays for migration and invasion. We report an association between serum gastrin concentrations and CTGF abundancy in the gastric corpus mucosa of hypergastrinemic subjects and mice. We found a higher expression of CTGF in gastric mucosa tissue adjacent to tumor compared to normal control tissue. We showed that gastrin induced expression of CTGF in gastric epithelial AGS-GR cells via MEK, PKC and PKB/AKT pathways. CTGF inhibited gastrin induced migration and invasion of AGS-GR cells. We conclude that CTGF expression is stimulated by gastrin and involved in remodeling of the gastric epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor.

    Science.gov (United States)

    Liu, Haizhou; Wang, Shaoyang; Ma, Weimin; Lu, Youguang

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.

  4. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    International Nuclear Information System (INIS)

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A.

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by 125 I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes

  5. Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering

    International Nuclear Information System (INIS)

    Zhang Yufeng; Cheng Xiangrong; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-01-01

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-β1 (TGF-β1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-β1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-β1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-β1 as a good substrate candidate in periodontal tissue engineering

  6. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  7. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy

    DEFF Research Database (Denmark)

    Nguyen, T.Q.; Tarnow, L.; Jorsal, A.

    2008-01-01

    OBJECTIVE: We evaluated the predictive value of baseline plasma connective tissue growth factor (CTGF) in a prospective study of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Subjects were 198 type 1 diabetic patients with established diabetic nephropathy and 188 type 1 diabetic...

  8. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy

    DEFF Research Database (Denmark)

    Nguyen, Tri Q; Tarnow, Lise; Jorsal, Anders

    2008-01-01

    OBJECTIVE: We evaluated the predictive value of baseline plasma connective tissue growth factor (CTGF) in a prospective study of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Subjects were 198 type 1 diabetic patients with established diabetic nephropathy and 188 type 1 diabetic pat...

  9. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    International Nuclear Information System (INIS)

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  10. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  11. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells.

    Science.gov (United States)

    Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro

    2017-12-12

    Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.

  12. Activation of the connective tissue growth factor (CTGF-transforming growth factor β 1 (TGF-β 1 axis in hepatitis C virus-expressing hepatocytes.

    Directory of Open Access Journals (Sweden)

    Tirumuru Nagaraja

    Full Text Available BACKGROUND: The pro-fibrogenic cytokine connective tissue growth factor (CTGF plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV-induced liver fibrosis remains unclear. METHODS: In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2 by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1 as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques. RESULTS: We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells. CONCLUSION: Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.

  13. Correlated responses in tissue weights measured in vivo by computer tomography in Dorset Down sheep selected for lean tissue growth

    International Nuclear Information System (INIS)

    Nsoso, S.J.; Young, M.J.; Beatson, P.R.

    2003-01-01

    The aim of this study was to estimate correlated responses in lean, fat and bone weights in vivo in Dorset Down sheep selected for lean tissue growth. Over the period 1986-1992 inclusive, the lean tissue growth line had been selected using two economic indices for an increased aggregate breeding value incorporating predicted lean and fat weights with positive and negative economic weightings, respectively. The control line was selected for no change in lean tissue growth each year. Animals were born and run on pasture all year round. X-ray computer tomography was used to estimate the weights of lean, fat and bone in vivo in the 1994-born sheep, aged 265-274 days and selected randomly into 12 rams and 12 ewes from the selected line and 10 rams and 9 ewes from the control line. The lean tissue growth line had significantly greater responses in lean weight (+0.65 + 0.10 kg) and lean percentage (+1.19 + 0.17%) and significantly lesser fat weight (-0.36 + 0.08 kg) and fat percentage (-1.88 + 0.20%) compared to the control line. There was a significant increase in bone weight (+0.27 + 0.03 kg) and bone percentage (+0.69 + 0.09%) in the lean tissue growth line compared to the control line. Responses differed significantly between sexes of the lean tissue growth line, rams having a greater response in weight of lean (+1.22 + 0.20 vs. +0.08 + 0.22 kg) and bone (+0.45 + 0.06 vs. +0.09 + 0.07 kg), and a lesser response in weight of fat (-0.03 + 0.15 vs. -0.70 + 0.16 kg) than the ewes. Selection led to significant changes in lean (increase) and fat weights (decrease), and bone weight increased. Although responses in the lean tissue growth line differed significantly between sexes, there were confounding factors due to differences in management and lack of comparison at equal stage of development. Therefore, to assess real genetic differences further studies should be conducted taking these factors into consideration

  14. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis.

    Science.gov (United States)

    Chien, Wenwen; O'Kelly, James; Lu, Daning; Leiter, Amanda; Sohn, Julia; Yin, Dong; Karlan, Beth; Vadgama, Jay; Lyons, Karen M; Koeffler, H Phillip

    2011-06-01

    Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis.

  15. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    Science.gov (United States)

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  16. Growth Factor Supplementation Improves Native and Engineered Meniscus Repair in Vitro

    Science.gov (United States)

    Ionescu, Lara C.; Lee, Gregory C.; Huang, Kevin L.; Mauck, Robert L.

    2012-01-01

    Few therapeutic options exist for meniscus repair after injury. Local delivery of growth factors may stimulate repair and create a favorable environment for engineered replacement materials. In this study, we assessed the effect of basic fibroblast growth factor (bFGF) (a pro-mitotic agent) and transforming growth factor beta 3 (TGF-β3) (a pro-matrix formation agent) on meniscus repair and the integration/maturation of electrospun poly(ε-caprolactone) (PCL) scaffolds for meniscus tissue engineering. Circular meniscus repair constructs were formed and refilled with either native tissue or scaffolds. Repair constructs were cultured in serum-containing media for 4 and 8 weeks with various growth factor formulations, and assessed for mechanical strength, biochemical content, and histological appearance. Results showed that either short-term delivery of bFGF or sustained delivery of TGF-β3 increased integration strength for both juvenile and adult bovine tissue, with similar findings for engineered materials. While TGF-β3 increased proteoglycan content in the explants, bFGF did not increase DNA content after 8 weeks. This work suggests that in vivo delivery of bFGF or TGF-β3 may stimulate meniscus repair, but that the time course of delivery will strongly influence success. Further, this study demonstrates that electrospun scaffolds are a promising material for meniscus tissue engineering, achieving comparable or superior integration compared to native tissue. PMID:22698946

  17. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  19. Coronally advanced flap and connective tissue graft with or without plasma rich in growth factors (PRGF) in treatment of gingival recession.

    Science.gov (United States)

    Jenabian, Niloofar; Motallebnejad, Mina; Zahedi, Ehsan; Sarmast, Nima D; Angelov, Nikola

    2018-05-01

    Several researchers have tried to improve the results of gingival recession treatment techniques. One of the methods is to use growth factors The present study was undertaken to evaluate the effect of CAF (coronally advanced flap) + CTG (connective tissue graft) + PRGF (plasma rich in growth factors) in the treatment of Miller Class I buccal gingival recession. Twenty-two teeth with Miller Class I gingival recession in 6 patients 26 ‒ 47 years of age were included in a split-mouth designed randomized controlled trial (RCT). In each patient, one side was treated with CAF + CTG + PRGF (test) and the other side was treated with CAF + CTG (control). The following parameters were measured before surgery and up to 6 months after surgery on the mid-buccal surface of the tooth: keratinized tissue width (KTW), clinical attachment level (CAL), probing depth (PD), vertical recession depth (VRD), recession depth (RD), gingival thickness (GT), root coverage in percentage (RC%) and the distance between the CEJ and mucogingival junction (MGJL). Data were analyzed with paired t-test and repeated measures ANOVA. After 6 months noticeable improvements were observed in both groups in all the variables measured except for PD; however, the differences between the two groups were not significant. RC% was 80 ± 25% and 67 ± 28% in the test and control groups, respectively, after 6 months. Both CAF + CTG + PRGF and CAF + CTG treatment modalities resulted in favorable root coverage; however, the addition of PRGF added no measurable significant effect. Key words: Connective tissue graft, dental root coverage, gingival recession, growth factors, mucogingival surgery, periodontal plastic surgery.

  20. Tumoural Expression of Connective Tissue Growth Factor (CTGF) Impacts on Survival in Patients Diagnosed with Hepatocellular Carcinoma (HCC).

    Science.gov (United States)

    Lamarca, Angela; Mendiola, Marta; Bernal, Elsa; Heredia, Victoria; Díaz, Esther; Miguel, María; Pastrian, Laura G; Burgos, Emilio; Feliu, Jaime; Barriuso, Jorge

    2015-01-01

    Hepatocellular carcinoma (HCC) tends to develop in the liver when there is a high level of background inflammation (cirrhosis). Treatment options are limited and mainly based on systemic therapies such as anti-angiogenic drugs (e.g. sorafenib). Connective tissue growth factor (CTGF) is a matricellular protein involved in inflammation, tumour growth and angiogenesis. The aim of this study is to determine the expression of CTGF and hypoxia inducible factors (HIF) in HCC and to clarify its impact on relapse and survival. Eligibility criteria for the study consisted of patients with a diagnosis of HCC, formalin-fixed and paraffin-embedded (FFPE) biopsy tissue, as well as relapse and available survival data. A tissue microarray was constructed from ≥ 70% tumoural sections. The expressions of CTGF, HIF1α and HIF2α were analysed by immunohistochemistry. The relationship between expression of CTGF/HIF1α and CTGF/HIF2α were analysed. Univariate and multivariate analyses were performed. Fifty-three patients were screened; 39 patients were eligible for this study. Patients were treated with radical intent. At the end of follow up, 59% patients relapsed (28.2% locally, 10.3% multicentric liver relapse and 7.7% distant metastases). Estimated median disease-free survival (DFS) and overall survival (OS) were 23.4 (95%CI 7.18-39.66) and 38.6 months (95%CI 30.7-46.6), respectively. Expression of CTGF was: negative 23.1%, focal 48.7% and diffuse 23.1%. A non-statistically significant relationship between expression of CTGF and HIF was shown supporting an alternative pathway for CTGF expression in HCC. In multivariate analysis CTGF expression was an independent factor related to OS, with shorter survival in those patients with focal/diffuse CTGF expression (HR 2.46; 95%CI 1.18-5.15). Our results support that expression of CTGF is an independent factor associated with shorter OS in HCC. Further analysis of CTGF expression in a larger series of HCC patients is required to confirm

  1. A stress driven growth model for soft tissue considering biological availability

    International Nuclear Information System (INIS)

    Oller, S; Bellomo, F J; Nallim, L G; Armero, F

    2010-01-01

    Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of bioavailability together with the stresses and strains in the processes of normal or pathological growth. In this sense, the model presented in this work is oriented to describe the growth of soft biological tissue under 'stress driven growth' and depending on the biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition of deformation gradient, splitting it in a growth part and visco-elastic part. The strains due to growth are incompatible and are controlled by an unbalanced stresses related to a homeostatic state. Growth implies a volume change with an increase of mass maintaining constant the density. One of the most interesting features of the proposed model is the generation of new tissue taking into account the contribution of mass to the system controlled through biological availability. Because soft biological tissues in general have a hierarchical structure with several components (usually a soft matrix reinforced with collagen fibers), the developed growth model is suitable for the characterization of the growth of each component. This allows considering a different behavior for each of them in the context of a generalized theory of mixtures. Finally, we illustrate the response of the model in case of growth and atrophy with an application example.

  2. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  3. Double emulsion electrospun nanofibers as a growth factor delivery vehicle for salivary gland regeneration

    Science.gov (United States)

    Foraida, Zahraa I.; Sharikova, Anna; Peerzada, Lubna N.; Khmaladze, Alexander; Larsen, Melinda; Castracane, James

    2017-08-01

    Sustained delivery of growth factors, proteins, drugs and other biologically active molecules is necessary for tissue engineering applications. Electrospun fibers are attractive tissue engineering scaffolds as they partially mimic the topography of the extracellular matrix (ECM). However, they do not provide continuous nourishment to the tissue. In search of a biomimetic scaffold for salivary gland tissue regeneration, we previously developed a blend nanofiber scaffold composed of the protein elastin and the synthetic polymer polylactic-co-glycolic acid (PLGA). The nanofiber scaffold promoted in vivo-like salivary epithelial cell tissue organization and apicobasal polarization. However, in order to enhance the salivary cell proliferation and biomimetic character of the scaffold, sustained growth factor delivery is needed. The composite nanofiber scaffold was optimized to act as a growth factor delivery system using epidermal growth factor (EGF) as a model protein. The nanofiber/EGF hybrid nanofibers were synthesized by double emulsion electrospinning where EGF is emulsified within a water/oil/water (w/o/w) double emulsion system. Successful incorporation of EGF was confirmed using Raman spectroscopy. EGF release profile was characterized using enzyme-linked immunosorbent assay (ELIZA) of the EGF content. Double emulsion electrospinning resulted in slower release of EGF. We demonstrated the potential of the proposed double emulsion electrospun nanofiber scaffold for the delivery of growth factors and/or drugs for tissue engineering and pharmaceutical applications.

  4. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Tanu Talwar

    2014-01-01

    Full Text Available Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.

  5. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  6. Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.

    Science.gov (United States)

    Salerno, Marco; Giacomelli, Luca; Larosa, Claudio

    2011-01-06

    Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.

  7. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissues of patients with idiopathic carpal tunnel syndrome.

    Science.gov (United States)

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Passe, Sandra M; Ozasa, Yasuhiro; Larson, Dirk; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor-β (TGF-β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF-β and connective tissue growth factor (CTGF), a downstream mediator of TGF-β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF-β1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF-β1 (p tissue. In addition, a strong positive correlation was found between TGF-β1 and CTGF, (R(2) = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF-β1 (R(2) = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF-β and CTGF, a TGF-β regulated protein, and that this TGF-β activation may be responsible for SSCT fibrosis in CTS patients. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    Science.gov (United States)

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  9. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    Science.gov (United States)

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  10. Induction of antiproliferative connective tissue growth factor expression in Wilms' tumor cells by sphingosine-1-phosphate receptor 2.

    Science.gov (United States)

    Li, Mei-Hong; Sanchez, Teresa; Pappalardo, Anna; Lynch, Kevin R; Hla, Timothy; Ferrer, Fernando

    2008-10-01

    Connective tissue growth factor (CTGF), a member of the CCN family of secreted matricellular proteins, regulates fibrosis, angiogenesis, cell proliferation, apoptosis, tumor growth, and metastasis. However, the role of CTGF and its regulation mechanism in Wilms' tumor remains largely unknown. We found that the bioactive lipid sphingosine-1-phosphate (S1P) induced CTGF expression in a concentration- and time-dependent manner in a Wilms' tumor cell line (WiT49), whereas FTY720-phosphate, an S1P analogue that binds all S1P receptors except S1P2, did not. Further, the specific S1P2 antagonist JTE-013 completely inhibited S1P-induced CTGF expression, whereas the S1P1 antagonist VPC44116 did not, indicating that this effect was mediated by S1P2. This was confirmed by adenoviral transduction of S1P2 in WiT49 cells, which showed that overexpression of S1P2 increased the expression of CTGF. Induction of CTGF by S1P was sensitive to ROCK inhibitor Y-27632 and c-Jun NH2-terminal kinase inhibitor SP600125, suggesting the requirement of RhoA/ROCK and c-Jun NH2-terminal kinase pathways for S1P-induced CTGF expression. Interestingly, the expression levels of CTGF were decreased in 8 of 10 Wilms' tumor tissues compared with matched normal tissues by quantitative real-time PCR and Western blot analysis. In vitro, human recombinant CTGF significantly inhibited the proliferation of WiT49 cells. In addition, overexpression of CTGF resulted in significant inhibition of WiT49 cell growth. Taken together, these data suggest that CTGF protein induced by S1P2 might act as a growth inhibitor in Wilms' tumor.

  11. Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer.

    Science.gov (United States)

    Kikuchi, Ryoko; Tsuda, Hitoshi; Kanai, Yae; Kasamatsu, Takahiro; Sengoku, Kazuo; Hirohashi, Setsuo; Inazawa, Johji; Imoto, Issei

    2007-08-01

    Connective tissue growth factor (CTGF) is a secreted protein belonging to the CCN family, members of which are implicated in various biological processes. We identified a homozygous loss of CTGF (6q23.2) in the course of screening a panel of ovarian cancer cell lines for genomic copy number aberrations using in-house array-based comparative genomic hybridization. CTGF mRNA expression was observed in normal ovarian tissue and immortalized ovarian epithelial cells but was reduced in many ovarian cancer cell lines without its homozygous deletion (12 of 23 lines) and restored after treatment with 5-aza 2'-deoxycytidine. The methylation status around the CTGF CpG island correlated inversely with the expression, and a putative target region for methylation showed promoter activity. CTGF methylation was frequently observed in primary ovarian cancer tissues (39 of 66, 59%) and inversely correlated with CTGF mRNA expression. In an immunohistochemical analysis of primary ovarian cancers, CTGF protein expression was frequently reduced (84 of 103 cases, 82%). Ovarian cancer tended to lack CTGF expression more frequently in the earlier stages (stages I and II) than the advanced stages (stages III and IV). CTGF protein was also differentially expressed among histologic subtypes. Exogenous restoration of CTGF expression or treatment with recombinant CTGF inhibited the growth of ovarian cancer cells lacking its expression, whereas knockdown of endogenous CTGF accelerated growth of ovarian cancer cells with expression of this gene. These results suggest that epigenetic silencing by hypermethylation of the CTGF promoter leads to a loss of CTGF function, which may be a factor in the carcinogenesis of ovarian cancer in a stage-dependent and/or histologic subtype-dependent manner.

  12. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  13. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  14. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    Science.gov (United States)

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  15. Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth.

    Science.gov (United States)

    Lu, Hongbo; Kojima, Kensuke; Battula, Venkata Lokesh; Korchin, Borys; Shi, Yuexi; Chen, Ye; Spong, Suzanne; Thomas, Deborah A; Kantarjian, Hagop; Lock, Richard B; Andreeff, Michael; Konopleva, Marina

    2014-03-01

    Connective tissue growth factor (CTGF/CCN2) is involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in precursor B-acute lymphoblastic leukemia (ALL) and that increased expression of CTGF is associated with inferior outcome in B-ALL. In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells. First, we utilized lentiviral shRNA to knockdown CTGF in RS4;11 and REH ALL cells expressing high levels of CTGF mRNA. Silencing of CTGF resulted in significant suppression of leukemia cell growth compared to control vector, which was associated with AKT/mTOR inactivation and increased levels of cyclin-dependent kinase inhibitor p27. CTGF knockdown sensitized ALL cells to vincristine and methotrexate. Treatment with an anti-CTGF monoclonal antibody, FG-3019, significantly prolonged survival of mice injected with primary xenograft B-ALL cells when co-treated with conventional chemotherapy (vincristine, L-asparaginase and dexamethasone). Data suggest that CTGF represents a targetable molecular aberration in B-ALL, and blocking CTGF signaling in conjunction with administration of chemotherapy may represent a novel therapeutic approach for ALL patients.

  16. Fabrication and characterization of a novel microparticle with gyrus-patterned surface and growth factor delivery for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Liang Tang [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Jin Yan, E-mail: yanjin@fmmu.edu.cn [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)

    2009-05-05

    Microparticles can serve as substrates for cell amplification and deliver the expanded cells to the site of the defect. It was hypothesized that a novel microparticle combined of sustained and localized delivery of proliferative growth factors and gyrus-patterned surface would influence the cell behaviours of adherence and expansion on the microparticle in the present study. To test the hypothesis, gelatin particles with diameter ranging from 280 to 350 {mu}m were fabricated and were modified by cryogenic freeze-drying treatment and basic fibroblast growth factor (bFGF) incorporation. The results of in vitro chondrocyte culture illustrated that cells could proliferate more obviously on the microparticles with bFGF addition, but no correlation between attachment rate and bFGF was observed. On the other hand, microparticles with gyrus-patterned surface demonstrated the highest cell attachment rate and higher rate of cell growth, in particular on bFGF combined ones. It seems to be a promising candidate as a chondrocyte microparticle and could be the potential application in cartilage tissue engineering.

  17. Fabrication and characterization of a novel microparticle with gyrus-patterned surface and growth factor delivery for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Liang Tang; Jin Fang; Liu Shouxin; Jin Yan

    2009-01-01

    Microparticles can serve as substrates for cell amplification and deliver the expanded cells to the site of the defect. It was hypothesized that a novel microparticle combined of sustained and localized delivery of proliferative growth factors and gyrus-patterned surface would influence the cell behaviours of adherence and expansion on the microparticle in the present study. To test the hypothesis, gelatin particles with diameter ranging from 280 to 350 μm were fabricated and were modified by cryogenic freeze-drying treatment and basic fibroblast growth factor (bFGF) incorporation. The results of in vitro chondrocyte culture illustrated that cells could proliferate more obviously on the microparticles with bFGF addition, but no correlation between attachment rate and bFGF was observed. On the other hand, microparticles with gyrus-patterned surface demonstrated the highest cell attachment rate and higher rate of cell growth, in particular on bFGF combined ones. It seems to be a promising candidate as a chondrocyte microparticle and could be the potential application in cartilage tissue engineering.

  18. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  19. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    Science.gov (United States)

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  20. [Role of connective tissue growth factor (CTGF) in proliferation and migration of pancreatic cancer cells].

    Science.gov (United States)

    Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong

    2011-10-01

    To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.

  1. The growth of tissue engineering.

    Science.gov (United States)

    Lysaght, M J; Reyes, J

    2001-10-01

    This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.

  2. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  3. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors.

    Science.gov (United States)

    Furrer, Daniela; Lemieux, Julie; Côté, Marc-André; Provencher, Louise; Laflamme, Christian; Barabé, Frédéric; Jacob, Simon; Michaud, Annick; Diorio, Caroline

    2016-12-01

    Amplification of the human epidermal growth factor receptor 2 (HER2) gene is associated with worse prognosis and decreased overall survival in breast cancer patients. The HER2 gene contains several polymorphisms; two of the best-characterized HER2 polymorphisms are Ile655Val and Ala1170Pro. The aim of this study was to evaluate the association between these two HER2 polymorphisms in normal breast and breast cancer tissues and known breast cancer prognostic factors in a retrospective cohort study of 73 women with non-metastatic HER2-positive breast cancer. HER2 polymorphisms were assessed in breast cancer tissue and normal breast tissue using TaqMan assay. Ala1170Pro polymorphism in normal breast tissue was associated with age at diagnosis (p = 0.007), tumor size (p = 0.004) and lymphovascular invasion (p = 0.06). Similar significant associations in cancer tissues were observed. No association between the Ile655Val polymorphism and prognostic factors were observed. However, we found significant differences in the distribution of Ile655Val (p = 0.03) and Ala1170Pro (p = 0.01) genotypes between normal breast and breast tumor tissues. This study demonstrates that only the Ala1170Pro polymorphism is associated with prognostic factors in HER2-positive breast cancer patients. Moreover, our results suggest that both HER2 polymorphisms could play a significant role in carcinogenesis in non-metastatic HER2-positive breast cancer women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Radiation damage of hemopoietic tissue: circulating stem cells and growth factor responses

    International Nuclear Information System (INIS)

    Wagemaker, G.

    1997-01-01

    Briefly, evidence in rodents and nonhuman primates demonstrated two types of immature cells to be involved in regeneration following total body irradiation (X-rays). These cell populations can be separated and there is good responses differ. Related to these observations, experimental growth factor therapy has been ineffective at doses larger than 6-7 Gy X-rays and was shown to be optimally effective at the mid-lethal dose of 5 Gy. Consequently, at relatively high doses of radiation, treatment should initially be directed at reconstitution of growth factor responding stem cell subsets rather than at accelerated production of mature blood cells. Following cytotoxic insult to bone marrow, hemopoietic reconstitution is characterized by an increased fraction of stem cells that enters circulation. This might reflect a physiological mechanism to regulate the activities of the scattered bone marrow sites. In experimental studies with nonhuman primates, we showed that the number of circulating immature cells are proportional to those in the bone marrow and can be used for quantitative evaluation of residual stem cells numbers and to monitor the effectiveness of growth factor therapy at the immature cell level. The latter observations enables the design of growth factor treatment schedules for radiation induced myelosuppression in which thrombopenia is reduced and the recovery of immature bone marrow cells is promoted. (N.C.)

  5. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    Science.gov (United States)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  6. Epidermal growth factor in alkali-burned corneal epithelial wound healing.

    Science.gov (United States)

    Singh, G; Foster, C S

    1987-06-15

    We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.

  7. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  8. Activation of factor VII bound to tissue factor: A key early step in the tissue factor pathway of blood coagulation

    International Nuclear Information System (INIS)

    Rao, L.V.M.; Rapaport, S.I.

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. The earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were made with purified factor VII, X, and tissue factor; in some experiments antithrombin III and heparin were added to prevent back-activation of factor VII. Factor X was activated at similar rates in reaction mixtures containing either VII or factor VIIa after an initial 30-sec lag with factor VII. In reaction mixtures with factor VII a linear activation of factor X was established several minutes before cleavage of 125 I-labeled factor VII to the two-chain activated molecule was demonstrable on gel profiles. These data suggest that factor VII/tissue factor cannot activate measurable amounts of factor X over several minutes. Overall, the results support the hypothesis that a rapid preferential activation of factor VII bound to tissue factor by trace amounts of factor Xa is a key early step in tissue factor-dependent blood coagulation

  9. Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2009-01-01

    Tendon tissue and the extracellular matrix of skeletal muscle respond to mechanical loading by increased collagen expression and synthesis. This response is likely a secondary effect of a mechanically induced expression of growth factors, including transforming growth factor-beta1 (TGF-beta1......) and insulin-like growth factor-I (IGF-I). It is not known whether unloading of tendon tissue can reduce the expression of collagen and collagen-inducing growth factors. Furthermore, the coordinated response of tendon and muscle tissue to disuse, followed by reloading, is unclear. Female Sprague-Dawley rats...... tissue growth factor (CTGF), myostatin, and IGF-I isoforms were measured by real-time RT-PCR in Achilles tendon and soleus muscle. The tendon mass was unchanged, while the muscle mass was reduced by 50% after HS (P

  10. Diagnostic utility of leptin and insulin-like growth factor binding ...

    African Journals Online (AJOL)

    Serum levels of leptin, insulin growth factor binding protein-2 (IGFBP-2) and alpha fetoprotein (AFP) were measured. ... renewal in response to nutrients. IGF pathway is not only involved in cell growth in tissue culture, but it is also involved in ...

  11. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  12. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  13. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation.

    OpenAIRE

    Rao, L V; Rapaport, S I

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and factor IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. Our earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were ma...

  14. Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor

    Directory of Open Access Journals (Sweden)

    Ying-Na Wang

    2015-10-01

    Full Text Available AIM:To investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs undergoing epithelial-mesenchymal transition (EMT induced by connective tissue growth factor (CTGF.METHODS: HLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL or without CTGF (control for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA were further determined by Western blot analysis. RESULTS: HLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, PCONCLUSION: Transcription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.

  15. Investigating the association between polymorphisms in connective tissue growth factor and susceptibility to colon carcinoma.

    Science.gov (United States)

    Ahmad, Abrar; Askari, Shlear; Befekadu, Rahel; Hahn-Strömberg, Victoria

    2015-04-01

    There have been numerous studies on the gene expression of connective tissue growth factor (CTGF) in colorectal cancer, however very few have investigated polymorphisms in this gene. The present study aimed to determine whether single nucleotide polymorphisms (SNPs) in the CTGF gene are associated with a higher susceptibility to colon cancer and/or an invasive tumor growth pattern. The CTGF gene was genotyped for seven SNPs (rs6918698, rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) by pyrosequencing. Formalin‑fixed paraffin‑embedded tissue samples (n=112) from patients diagnosed with colon carcinoma, and an equal number of blood samples from healthy controls, were selected for genomic DNA extraction. The complexity index was measured using images of tumor samples (n=64) stained for cytokeratin‑8. The images were analyzed and correlated with the identified CTGF SNPs and clinicopathological parameters of the patients, including age, gender, tumor penetration, lymph node metastasis, systemic metastasis, differentiation and localization of tumor. It was demonstrated that the frequency of the SNP rs6918698 GG genotype was significantly associated (P=0.05) with an increased risk of colon cancer, as compared with the GC and CC genotypes. The other six SNPs (rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) exhibited no significant difference in the genotype and allele frequencies between patients diagnosed with colon carcinoma and the normal healthy population. A trend was observed between genotype variation at rs6918698 and the complexity index (P=0.052). The complexity index and genotypes for any of the studied SNPs were not significantly correlated with clinical or pathological parameters of the patients. These results indicate that the rs6918698 GG genotype is associated with an increased risk of developing colon carcinoma, and genetic variations at the rs6918698 are associated with the growth pattern of the tumor

  16. Human aqueous humor levels of transforming growth factor-β2: Association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases

    OpenAIRE

    Jia, Yan; Yue, Yu; Hu, Dan-Ning; Chen, Ji-Li; Zhou, Ji-Bo

    2017-01-01

    The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyz...

  17. Critical Point in Self-Organized Tissue Growth

    Science.gov (United States)

    Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank

    2018-05-01

    We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.

  18. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    Science.gov (United States)

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  19. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.

    Science.gov (United States)

    Eguchi, Daiki; Ikenaga, Naoki; Ohuchida, Kenoki; Kozono, Shingo; Cui, Lin; Fujiwara, Kenji; Fujino, Minoru; Ohtsuka, Takao; Mizumoto, Kazuhiro; Tanaka, Masao

    2013-05-01

    Pancreatic cancer (PC), a hypovascular tumor, thrives under hypoxic conditions. Pancreatic stellate cells (PSCs) promote PC progression by secreting soluble factors, but their functions in hypoxia are poorly understood. This study aimed to clarify the effects of hypoxic conditions on the interaction between PC cells and PSCs. We isolated human PSCs from fresh pancreatic ductal adenocarcinomas and analyzed functional differences in PSCs between normoxia (21% O2) and hypoxia (1% O2), including expression of various factors related to tumor-stromal interactions. We particularly analyzed effects on PC invasiveness of an overexpressed molecule-connective tissue growth factor (CTGF)-in PSCs under hypoxic conditions, using RNA interference techniques. Conditioned media from hypoxic PSCs enhanced PC cell invasiveness more intensely than that from normoxic PSCs (P cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. II. Helianthus annuus

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available The dynamics of growth and changes in nucleic acid and protein contents in sunflower calluses and tumours cultured in hydroxyurea (HU containing media were examined. HU-induced changes in healthy tissues ran in parallel always in the same direction, in tumourous ones however an uncoupling between DNA synthesis and tissue growth on one hand and RNA and protein synthesis on the other took place. A detailed analysis of the results allows to suppose that the specific activity of HU on tumourous tissue could be an index of: 1 quantitative disturbances in its genes function (2 degree of the lass of sensitivity to the factors of regulation.

  1. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  2. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack.

    Science.gov (United States)

    Enomoto, Yukinori; Orihara, Kanami; Takamasu, Tetsuya; Matsuda, Akio; Gon, Yasuhiro; Saito, Hirohisa; Ra, Chisei; Okayama, Yoshimichi

    2009-11-01

    Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.

  3. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    Science.gov (United States)

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elias G., E-mail: george.elias@medstar.net; Hasskamp, Joanne H.; Sharma, Bhuvnesh K. [Maryland Melanoma Center, Weinberg Cancer Institute, Franklin Square Hospital Center, Baltimore, MD (United States)

    2010-05-07

    Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  5. Effects of epidermal growth factor in artificial tear on vitamin C levels of corneal wounded eye tissues.

    Science.gov (United States)

    Gönül, B; Kaplan, B; Bilgihan, K; Budak, M T

    2001-04-01

    To investigate the effect of artificial tear (AT) solution and epidermal growth factor (EGF) treatment on the cornea and aqueous humour ascorbic acid (AA) levels of full-thickness corneal wounded eyes. The effect of EGF on the AA levels of aqueous humour and corneal wound tissue was determined in full-thickness corneal wounded rabbit eyes on the seventh post-operative day. There were three groups: untreated controls, AT-treated controls and an EGF+AT-treated experimental group (n = 6 in each group). Corneal wounded eyes were topically treated with 5 microl AT or 5 microl EGF in AT (1 mg/l EGF in AT prepaaration which contained 3.0% carbopol 940) twice daily for 6 days after operation. The wound strengths were also measured on the seventh post-operative day as a measure of wound healing. Statistical analysis was carried out using the Mann-Whitney U-test by Statview program. The wound strengths of corneas, and AA levels of wound tissues and aqueous humour, increased significantly following AT and EGF treatment (p < 0.05). In the corneal wounded eye, aqueous humour serves as a source of vitamin C and there may be a relation between EGF treatment in AT and AA levels of corneal wounded eye tissues.

  6. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    Directory of Open Access Journals (Sweden)

    Mikaël M Martino

    2015-04-01

    Full Text Available Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix is crucial to ensure the proper assembly and maturation of new vascular structures. Here we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of extracellular matrix to optimize the signaling microenvironment of vascular growth factors.

  7. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  8. Serial analysis of gene expression identifies connective tissue growth factor expression as a prognostic biomarker in gallbladder cancer.

    Science.gov (United States)

    Alvarez, Hector; Corvalan, Alejandro; Roa, Juan C; Argani, Pedram; Murillo, Francisco; Edwards, Jennifer; Beaty, Robert; Feldmann, Georg; Hong, Seung-Mo; Mullendore, Michael; Roa, Ivan; Ibañez, Luis; Pimentel, Fernando; Diaz, Alfonso; Riggins, Gregory J; Maitra, Anirban

    2008-05-01

    Gallbladder cancer (GBC) is an uncommon neoplasm in the United States, but one with high mortality rates. This malignancy remains largely understudied at the molecular level such that few targeted therapies or predictive biomarkers exist. We built the first series of serial analysis of gene expression (SAGE) libraries from GBC and nonneoplastic gallbladder mucosa, composed of 21-bp long-SAGE tags. SAGE libraries were generated from three stage-matched GBC patients (representing Hispanic/Latino, Native American, and Caucasian ethnicities, respectively) and one histologically alithiasic gallbladder. Real-time quantitative PCR was done on microdissected epithelium from five matched GBC and corresponding nonneoplastic gallbladder mucosa. Immunohistochemical analysis was done on a panel of 182 archival GBC in high-throughput tissue microarray format. SAGE tags corresponding to connective tissue growth factor (CTGF) transcripts were identified as differentially overexpressed in all pairwise comparisons of GBC (P Cancer Genome Anatomy Project web site and should facilitate much needed research into this lethal neoplasm.

  9. Validation of the IDS Octeia ELISA for the determination of insulin-like growth factor 1 in equine serum and tendon tissue extracts

    DEFF Research Database (Denmark)

    Lygren, Tone; Schjerling, Peter; Jacobsen, Stine

    2013-01-01

    BACKGROUND: Insulin-like growth factor (IGF-1) is an important mediator of tissue repair in horses. OBJECTIVES: The aim of the study was to evaluate whether IGF-1 could be measured reliably in equine serum and tendon tissue extracts, using an IGF-1 ELISA kit developed for human serum and plasma...... diluted equine serum samples and tendon tissue extracts. The recovery of IGF-1 was evaluated in serum and tendon tissue extracts spiked with known amounts of IGF-1. RESULTS: The range of IGF-1 released using the manufacturer's pretreatment was between 23% and 56% of the amount released using the gly...... with serum, and 72 ± 15% when diluted with PBS. The recovery after dilution was 108 ± 17% in tendon tissue extracts. Recovery from serum spiked with a fixed amount of IGF-1 was 101 ± 5% and 99 ± 7% from tendon tissue samples. CONCLUSIONS: The IDS Octeia IGF-1 ELISA kit can be used for measuring IGF-1...

  10. A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing

    KAUST Repository

    Murphy, Kelly E.

    2011-03-01

    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGF β) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF β and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF β in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF β significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. © 2010 Elsevier Ltd.

  11. A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing

    KAUST Repository

    Murphy, Kelly E.; Hall, Cameron L.; McCue, Scott W.; Sean McElwain, D.L.

    2011-01-01

    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGF β) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF β and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF β in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF β significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. © 2010 Elsevier Ltd.

  12. Comparison of telomere length and insulin-like growth factor-binding protein 7 promoter methylation between breast cancer tissues and adjacent normal tissues in Turkish women.

    Science.gov (United States)

    Kaya, Zehra; Akkiprik, Mustafa; Karabulut, Sevgi; Peker, Irem; Gullu Amuran, Gokce; Ozmen, Tolga; Gulluoglu, Bahadır M; Kaya, Handan; Ozer, Ayse

    2017-09-01

    Both insulin-like growth factor-binding protein 7 (IGFBP7) and telomere length (TL) are associated with proliferation and senescence of human breast cancer. This study assessed the clinical significance of both TL and IGFBP7 methylation status in breast cancer tissues compared with adjacent normal tissues. We also investigated whether IGFBP7 methylation status could be affecting TL. Telomere length was measured by quantitative PCR to compare tumors with their adjacent normal tissues. The IGFBP7 promoter methylation status was evaluated by methylation-specific PCR and its expression levels were determined by western blotting. Telomeres were shorter in tumor tissues compared to controls (Pbreast cancer with invasive ductal carcinoma (IDC; n=72; P=.014) compared with other histological type (n=29), and TL in IDC with HER2 negative (n=53; P=.017) was higher than TL in IDC with HER2 positive (n=19). However, telomeres were shortened in advanced stages and growing tumors. IGFBP7 methylation was observed in 90% of tumor tissues and 59% of controls (P=.0002). Its frequency was significantly higher in IDC compared with invasive mixed carcinoma (IMC; P=.002) and it was not correlated either with protein expression or the other clinicopathological parameters. These results suggest that IGFBP7 promoter methylation and shorter TL in tumor compared with adjacent tissues may be predictive biomarkers for breast cancer. Telomere maintenance may be indicative of IDC and IDC with HER2 (-) of breast cancer. Further studies with larger number of cases are necessary to verify this association. © 2016 Wiley Periodicals, Inc.

  13. Downregulation of connective tissue growth factor reduces migration and invasiveness of osteosarcoma cells.

    Science.gov (United States)

    Huang, Yinjun; Zhao, Shichang; Zhang, Changqing; Li, Xiaolin

    2016-02-01

    As one of the most serious types of primary bone tumor, osteosarcoma (OSA) features metastatic lesions, and resistance to chemotherapy is common. The underlying mechanisms of these characteristics may account for the failure of treatments and the poor prognosis of patients with OSA. It has been reported that inhibition of Cyr61 suppresses OSA cell proliferation as it represents a target of statins. In addition to cystein‑rich protein 61 (Cyr61) and nephroblastoma overexpression, connective tissue growth factor (CTGF) is a member of the CCN family and may therefore exhibit effects on human OSA cells similar to those of Cyr61. In the current study, acridine orange/ethidium bromide staining were used to determine the rate of apoptosis. The present study demonstrated that small interfering RNA‑mediated silencing of CTGF promoted cell death and suppressed OSA cell migration and invasion, as indicated by wound healing and Transwell assays, while lentivirus‑mediated overexpression of CTGF reversed these effects. Furthermore, a colorimetric caspase assay demonstrated that CTGF knockdown enhanced the efficacy of chemotherapeutic drugs. The results of the present study provided a novel molecular target which may be utilized for the treatment of metastatic OSA.

  14. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  15. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis.

    Science.gov (United States)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.

  16. Connective tissue growth factor enhances the migration of gastric cancer through downregulation of E-cadherin via the NF-κB pathway.

    Science.gov (United States)

    Mao, Zhengfa; Ma, Xiaoyan; Rong, Yefei; Cui, Lei; Wang, Xuqing; Wu, Wenchuan; Zhang, Jianxin; Jin, Dayong

    2011-01-01

    Local invasion and distant metastasis are difficult problems for surgical intervention and treatment in gastric cancer. Connective tissue growth factor (CTGF/CCN2) was considered to have an important role in this process. In this study, we demonstrated that expression of CTGF was significantly upregulated in clinical tissue samples of gastric carcinoma (GC) samples. Forced expression of CTGF in AGS GC cells promoted their migration in culture and significantly increased tumor metastasis in nude mice, whereas RNA interference-mediated knockdown of CTGF in GC cells significantly inhibited cell migration in vitro. We disclose that CTGF downregulated the expression of E-cadherin through activation of the nuclear factor-κappa B (NF-κB) pathway. The effects of CTGF in GC cells were abolished by dominant negative IκappaB. Collectively, these data reported here demonstrate CTGF could modulate the NF-κappaB pathway and perhaps be a promising therapeutic target for gastric cancer invasion and metastasis. © 2010 Japanese Cancer Association.

  17. Influence of Expression Plasmid of Connective Tissue Growth Factor and Tissue Inhibitor of Metalloproteinase-1 shRNA on Hepatic Precancerous Fibrosis in Rats.

    Science.gov (United States)

    Zhang, Qun; Shu, Fu-Li; Jiang, Yu-Feng; Huang, Xin-En

    2015-01-01

    In this study, influence caused by expression plasmids of connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinase-1 (TIMP-1) short hairpin RNA (shRNA) on mRNA expression of CTGF,TIMP-1,procol-α1 and PCIII in hepatic tissue with hepatic fibrosis, a precancerous condition, in rats is analyzed. To screen and construct shRNA expression plasimid which effectively interferes RNA targets of CTGF and TIMP-1 in rats. 50 cleaning Wistar male rats are allocated randomly at 5 different groups after precancerous fibrosis models and then injection of shRNA expression plasimids. Plasmid psiRNA-GFP-Com (CTGF and TIMP-1 included), psiRNA-GFP-CTGF, psiRNA-GFP-TIMP-1 and psiRNA- DUO-GFPzeo of blank plasmid are injected at group A, B, C and D, respectively, and as model control group that none plasimid is injected at group E. In 2 weeks after last injection, to hepatic tissue at different groups, protein expression of CTGF, TIMP-1, procol-α1and PC III is tested by immunohistochemical method and,mRNA expression of CTGF,TIMP-1,procol-α1 and PCIII is measured by real-time PCR. One-way ANOVA is used to comparison between-groups. Compared with model group, there is no obvious difference of mRNA expression among CTGF,TIMP-1,procol-α1,PC III and of protein expression among CTGF, TIMP-1, procol-α1, PC III in hepatic tissue at group injected with blank plasmid. Expression quantity of mRNA of CTGF, TIMP-1, procol-α1 and PCIII at group A, B and C decreases, protein expression of CTGF, TIMP-1, procol-α1, PC III in hepatic tissue is lower, where the inhibition of combination RNA interference group (group A) on procol-α1 mRNA transcription and procol-α1 protein expression is superior to that of single interference group (group B and C) (P<0.01 or P<0.05). RNA interference on CTGF and/or TIMP-1 is obviously a inhibiting factor for mRNA and protein expression of CTGF, TIMP-1, procol-α1 and PCIII. Combination RNA interference on genes of CTGF and TIMP-1 is superior

  18. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Elias G. Elias

    2010-05-01

    Full Text Available Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  19. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Mukherjee, Jayanta [Institute of Animal Health and Veterinary Biologicals, Kolkata (India); Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-04-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations.

  20. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    International Nuclear Information System (INIS)

    Nandi, Samit K.; Kundu, Biswanath; Mukherjee, Jayanta; Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna

    2015-01-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations

  1. [Characteristics of sublingual vein and expressions of vascular endothelial growth factor and hypoxia-inducible factor 1alpha proteins in sublingual tissues of Beagle dogs with portal hypertension].

    Science.gov (United States)

    Li, Bai-yu; Wang, Li-na; Yue, Xiao-qiang; Li, Bai

    2009-05-01

    To observe sublingual vein characteristics and the expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1alpha (HIF-1alpha) proteins in sublingual tissues of Beagle dogs with cirrhotic portal hypertension. Twelve Beagle dogs were randomly divided into normal control group and cirrhotic portal hypertension group. There were 6 dogs in each group. A canine model of cirrhosis portal hypertension was established by injecting dimethylnitrosamine (DMN) into portal vein once a week for 7 weeks. The characteristics of sublingual vein were observed. Portal venous pressure was measured by using bioelectric recording techniques. The expressions of VEGF and HIF-1alpha proteins in sublingual vein were detected by immunohistochemical method. The shape and color of sublingual vein in beagle dogs in the cirrhotic portal hypertension group changed obviously as compared with the normal control group. Immunohistochemical results showed that there were almost no expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the normal control group; however, the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the cirrhotic portal hypertension group significantly increased. Changes of portal pressure may lead to the formation of the abnormal sublingual vein by increasing the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in Beagle dogs with portal hypertension.

  2. Ocular Safety of Intravitreal Connective Tissue Growth Factor Neutralizing Antibody.

    Science.gov (United States)

    Motevasseli, Tahmineh; Daftarian, Narsis; Kanavi, Mozhgan Rezaei; Ahmadieh, Hamid; Bagheri, Abouzar; Hosseini, Seyed Bagher; Ansari, Shabnam; Soheili, Zahra-Soheila

    2017-08-01

    To detect the safety of intravitreal injection of anti-connective tissue growth factor (CTGF) (IVAC) in rat eyes in order to apply this neutralizing antibody for experimental animal studies. Forty-five Lister Hooded male pigmented rats were divided into five groups that received IVAC (2 μl) corresponding to the doses of 10 (B), 20 (C), 50 (D), and 100 μg/ml (E), equal to 1.25, 2.5, 6.25, and 12.5 µg/ml of antibody concentration in rat vitreous, respectively. The sham group (A) received 2 μl of normal saline. Full field electroretinography (ERG) was performed at baseline and on days 7 and 28 after IVAC. The animals were euthanized and the corresponding eyes were subjected to routine histopathology, immunohistochemistry for glial fibrillary acidic protein (GFAP), and terminal transferase dUTP nick end-labeling (TUNEL) assay. Scotopic rod b-wave amplitude and maximal combined b-wave amplitude were 111.89 ± 71.2 and 178.57 ± 55.58 μV, respectively, at baseline which significantly reduced to 79.31 ± 52.59 and 128.73 ± 41.61 μV, respectively, after 28 days in group E (p < 0.05). There was no significant reduction of amplitudes in other groups with lower doses of anti-CTGF antibody. Retinal ganglion cells were significantly decreased in group E as compared to other groups. GFAP immune reactivity was not significant in any of the groups. TUNEL test showed inner retinal neural cell apoptosis only in group E. ERG, histopathologic, and apoptotic assays revealed no toxic effects of 10-50 μg/ml of IVAC in rat eyes. Using 100 μg/ml IVAC led to a significant toxic effect in terms of functional, histopathologic, and TUNEL findings.

  3. Systemic treatment with epidermal growth factor in pigs induces ductal proliferations in the pancreas

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Teglbjaerg, P S

    1997-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and the EGF receptor are often overexpressed in chronic pancreatitis and in malignant pancreatic growth. Transgenic mice overexpressing TGF-alpha develop tissue changes in the pancrease resembling changes found in chronic...... pancreatitis. The effects of systemic treatment with EGF on the porcine pancrease were investigated in this study....

  4. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    Science.gov (United States)

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  5. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues

    International Nuclear Information System (INIS)

    Takahashi, J.A.; Mori, Hirotaka; Fukumoto, Manabu; Oda, Yoshifumi; Kikuchi, Haruhiko; Hatanaka, Masakazu; Igarashi, Koichi; Jaye, M.

    1990-01-01

    The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type β were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meningiomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type β1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis

  6. Factors affecting the tissues composition of pork belly.

    Science.gov (United States)

    Duziński, K; Knecht, D; Lisiak, D; Janiszewski, P

    2015-11-01

    Bellies derived from the commercial population of pig carcasses are diverse in terms of tissue composition. Knowledge of the factors influencing it and the expected results, permits quick and easy evaluation of raw material. The study was designed to determine the factors affecting the tissues composition of pork bellies and to estimate their lean meat content. The research population (n=140 pig carcasses) was divided into groups according to sex (gilts, barrows), half-carcass mass (meat content class: S (⩾60%), E (55% to 60%), U (50% to 55%), R (meat content affected the growth of the fat and skin mass in a linear way. No differences were observed between class S and E in terms of belly muscle mass. A 0.37% higher share of belly in the half-carcass was found for barrows (Pmeat content in bellies, suggesting they may be used directly in the production line.

  7. Local Delivery of Growth Factors Using Coated Suture Material

    Directory of Open Access Journals (Sweden)

    T. F. Fuchs

    2012-01-01

    Full Text Available The optimization of healing processes in a wide range of tissues represents a central point for surgical research. One approach is to stimulate healing processes with growth factors. These substances have a short half-life and therefore it seems useful to administer these substances locally rather than systemically. One possible method of local delivery is to incorporate growth factors into a bioabsorbable poly (D, L-lactide suspension (PDLLA and coat suture material. The aim of the present study was to establish a procedure for the local delivery of growth factors using coated suture material. Sutures coated with growth factors were tested in an animal model. Anastomoses of the colon were created in a rat model using monofilament sutures. These were either untreated or coated with PDLLA coating alone or coated with PDLLA incorporating insulin—like growth factor-I (IGF-I. The anastomoses were subjected to biomechanical, histological, and immunohistochemical examination. After 3 days the treated groups showed a significantly greater capacity to withstand biomechanical stress than the control groups. This finding was supported by the results of the histomorphometric. The results of the study indicate that it is possible to deliver bioactive growth factors locally using PDLLA coated suture material. Healing processes can thus be stimulated locally without subjecting the whole organism to potentially damaging high systemic doses.

  8. Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues

    DEFF Research Database (Denmark)

    Milićević, Novica M; Nohroudi, Klaus; Schmidt, Friederike

    2016-01-01

    LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size...

  9. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease.

    Science.gov (United States)

    Jalkanen, Juho; Hautero, Olli; Maksimow, Mikael; Jalkanen, Sirpa; Hakovirta, Harri

    2018-04-21

    The aim of the present study was to assess the circulating levels of vascular endothelial growth factor (VEGF) and other suggested therapeutic growth factors with the degree of ischemia in patients with different clinical manifestations of peripheral arterial disease (PAD) according to the Rutherford grades. The study cohort consists of 226 consecutive patients admitted to a Department of Vascular Surgery for elective invasive procedures. PAD patients were grouped according to the Rutherford grades after a clinical assessment. Ankle-brachial pressure indices (ABI) and absolute toe pressure (TP) values were measured. Serum levels of circulating VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) were measured from serum and analysed against Rutherford grades and peripheral hemodynamic measurements. The levels of VEGF (P = 0.009) and HGF (P correlations between Rutherford grades was detected as follows; VEGF (Pearson's correlation = 0.183, P = 0.004), HGF (Pearson's correlation = 0.253, P Pearson's correlation = 0.169, P = 0.008) and PDGF (Pearson's correlation = 0.296, P correlation with ABI (Pearson's correlation -0.19, P = 0.009) and TP (Pearson's correlation -0.20, P = 0.005) measurements. Our present observations show that the circulating levels of VEGF and other suggested therapeutic growth factors are significantly increased along with increasing ischemia. These findings present a new perspective to anticipated positive effects of gene therapies utilizing VEGF, HGF, and bFGF, because the levels of these growth factors are endogenously high in end-stage PAD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Overexpressed connective tissue growth factor in cardiomyocytes attenuates left ventricular remodeling induced by angiotensin II perfusion.

    Science.gov (United States)

    Zhang, Ying; Yan, Hua; Guang, Gong-Chang; Deng, Zheng-Rong

    2017-01-01

    To evaluate the improving effects of specifically overexpressed connective tissue growth factor (CTGF) in cardiomyocytes on mice with hypertension induced by angiotensin II (AngII) perfusion, 24 transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were divided into two equal groups that were perfused with acetic acid and AngII, respectively, for 7 days. Another 24 cage-control wild-type C57BL/6 mice (NLC) were divided and treated identically. Blood pressure was detected by caudal artery cannulation. Cardiac structural and functional changes were observed by echocardiography. Cardiac fibrosis was detected by Masson staining. After AngII perfusion, blood pressures of NLC and Tg-CTGF mice, especially those of the formers, significantly increased. Compared with NLC + AngII group, Tg-CTGF + AngII group had significantly lower left ventricular posterior wall thickness at end-diastole and left ventricular posterior wall thickness at end-systole as well as significantly higher left ventricular end-systolic diameter and left ventricular end-diastolic diameter (P tissues (P < 0.05). Tg-CTGF can protect AngII-induced cardiac remodeling of mice with hypertension by mitigating inflammatory response. CTGF may be a therapy target for hypertension-induced myocardial fibrosis, but the detailed mechanism still needs in-depth studies.

  11. Effect of connective tissue growth factor (CTGF) expression on radiation pulmonary fibrosis in rats

    International Nuclear Information System (INIS)

    Huang Shanying; Song Liangwen; Zhang Yong; Sun Li; Li Yang

    2005-01-01

    Objective: To explore the effect of connective tissue growth factor (CTGF) on initiation of radiation pulmonary fibrosis (RPF) and the relation to α-smooth muscle actin (α-SMA). Methods: The promotive effect of CTGF on proliferation of human lung fibroblasts (HLF) by 5 Gy of 60 Co γ-rays was determined by MTT colorimetry. The expressions of CTGF and α-SMA in HLF were observed by Western blot. Changes of collagen I and III in rat lungs were determined by Sirius red staining and polarization microscopy. Expressions of CTGF and α-SMA in RPF were observed with immunohisto-chemistry and analysis. Results: Expressions of CTGF and α-SMA were increased. CTGF reached its peak at 24 h after irradiation, whereas α-SMA still kept at a high level 72 h after irradiation. A small amount of collagen was produced in rat lung one month after irradiation, in which type III collagen was the primary component. However, a large amount of collagen was produced in rat lung 3-6 months after irradiation, in which type I was dominant. CTGF began to expression 1 week after irradiation in proliferative fibroblasts of rat lung, and it was most evident 3 months after irradiation. α-SMA began to express in proliferative myofibroblasts 1 week after irradiation, and the high peek was reached at 3 months after irradiation. Conclusion: Irradiation can induce expression of CTGF in pulmonary tissue and the later can promote the transformation of fibroblasts to myofibroblasts, strengthen the ability of synthesis and secretion of type I and III collagen. (authors)

  12. Mechanism of cancer-induced bone destruction: An association of connective tissue growth factor (CTGF/CCN2 in the bone metastasis

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Shimo

    2011-02-01

    Full Text Available Connective tissue growth factor (CTGF/CCN2 is a member of the CCN family, a novel class of extracellular signal modulators. CCN2 is composed of four conserved modules connected in tandem, each of which is rich in cysteines and highly interactive with other molecules. CCN2 has various biological functions, being active in developmental processes including angiogenesis, chondrogenesis, and osteogenesis. Recently CCN2 has gained more clinical interest due to its role in cancer-induced bone destruction. In this article, the role of CCN2 in bone-destroying events as an organizer of the microenvironmental cell society is comprehensively described, and a brief summary of the recent findings on regulatory factors involved in tumor-induced bone disease is given.

  13. Mechanical tension as a driver of connective tissue growth in vitro.

    Science.gov (United States)

    Wilson, Cameron J; Pearcy, Mark J; Epari, Devakara R

    2014-07-01

    We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous "scaffold" that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in

  14. [Expression of connective tissue growth factor in cardiomyocyte of young rats with heart failure and benazepril intervention].

    Science.gov (United States)

    Zhang, Qin; Yi, Qi-jian; Qian, Yong-ru; Li, Rong; Deng, Bing; Wang, Qiao

    2006-10-01

    Ventricular remodeling is an important pathologic progress in almost all end stage heart failure (HF), and it is characterized by ventricular thickening and cardiac fibrosis with poor prognosis. The connective tissue growth factor (CTGF), a new growth factor with multi-function, has an important role in fibrosis of tissue and organs. It has been demonstrated that angiotensin-converting enzyme inhibitor (ACEI) can prevent the development of cardiomyocyte from remodeling and improve cardiac function. Researchers try to test the hypothesis that cardiac function improvement attributable to ACEI is associated with inhibiting expression of CTGF in patients with HF. The aim of this study was to observe changes in CTGF expression in cardiomyocyte of young rats with HF and effect of benazepril on CTGF. The animal model of HF was established by constriction of abdominal aorta. Five weeks old rats were randomly divided into 3 groups after 6 weeks of operation: (1) HF group without treatment (n = 15); (2) HF group where rats were treated with benazepril (n = 15); (3) sham-operated group (n = 15) where rats were administered benazepril through direct gastric gavage. After 4 weeks of treatment, the high frequency ultrasound was performed. The expression of CTGF was detected by immunohistochemistry and semi-quantative reverse transcription-polymerase chain reaction. Compared with the sham-operated group, left ventricular diastolic dimension (LVEDD), left ventricular systolic dimension (LVESD), interventricular septal thickness at end-diastole (IVSTd), interventricular septal thickness at end-systole (IVSTs), left ventricular posterior wall thickness at end-diastole (LVPWTd), left ventricular posterior wall thickness at end-systole (LVPWTs), left ventricular relative weight (LVRW), and right ventricular relative weight (RVRW) were all increased (P benazepril when compared with HF group without treatment. LVESD, IVSTd, IVSTs, LVPWTd, LVPWTs, LVRW and RVRW were higher (P benazepril

  15. A two-compartment mechanochemical model of the roles of transforming growth factor β and tissue tension in dermal wound healing.

    Science.gov (United States)

    Murphy, Kelly E; Hall, Cameron L; McCue, Scott W; Sean McElwain, D L

    2011-03-07

    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGFβ) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGFβ and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGFβ in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGFβ significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    Science.gov (United States)

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  17. Systemic treatment with epidermal growth factor but not insulin-like growth factor I decreases the involution of the prostate in castrated rats

    DEFF Research Database (Denmark)

    Tørring, N; Vinter-Jensen, L; Sørensen, Flemming Brandt

    2000-01-01

    Wistar rats were treated with growth factors (EGF 35 microg/rat per day; IGF-I 350 microg/rat per day) or testosterone (2 mg/rat per day) for 3 days either immediately after or 10 days after castration. Prostate tissue was examined by stereological and immunohistochemical techniques and by enzyme...

  18. Potensi Terapeutik Fibroblast Growth Factor 21 terhadap Resistensi Insulin

    Directory of Open Access Journals (Sweden)

    Kurniasari Kurniasari

    2015-12-01

    Full Text Available Fibroblast growth factor 21 (FGF21 merupakan salah satu dari anggota FGF yang berperansebagai faktor endokrin. Hepar dan jaringan adiposa merupakan tempat kerja utama FGF21.Ekspresi FGF21 di hepar diatur oleh peroxisome proliferator activated receptor alpha (PPARαsedangkan di jaringan adiposa diatur oleh peroxisome proliferator activated receptor gamma(PPARγ. Kedua faktor transkripsi tersebut terlibat dalam metabolisme karbohidrat dan lipid. Padaresistensi insulin terdapat hiperglikemia, hiperinsulinemia, dan dislipidemia. Pemberian FGF21pada berbagai studi in vivo dan in vitro telah menunjukan potensi FGF21 dalam mengatasi kelainanakibat resistensi insulin sekaligus meningkatkan sensitivitas jaringan terhadap insulin. Kata kunci: FGF21, PPARγ, PPARα, resistensi insulin Fibroblast Growth Factor 21 (FGF21 Potension in InsulinResistance Treatment Abstract Fibroblast growth factor 21 (FGF21 is a member of FGF family that plays a role as endocrinefactor. Liver and adipose tissue are major target of FGF21. The expression of FGF21 in liveris regulated by peroxisome proliferator activated receptor alpha (PPARα, while peroxisomeproliferator activated receptor gamma (PPARγ regulate FGF21 expression in adipose tissue.Both transcription factors are involved in carbohydrate and lipid metabolism. Hyperglycemia,hyperinsulinemia, and dyslipidemia are observed in insulin resistance. Treatment with FGF21 inin vitro and in vivo study showed that FGF21 have the potential to overcome insulin resistance aswell as increasing tissue’s sensitivity towards insulin. Keywords: FGF21, PPARγ, PPARα, insulin resistance Normal 0 false false false IN X-NONE X-NONE

  19. Elevation of transforming growth factor beta (TGFbeta) and its downstream mediators in subcutaneous foreign body capsule tissue.

    Science.gov (United States)

    Li, Allen G; Quinn, Matthew J; Siddiqui, Yasmin; Wood, Michael D; Federiuk, Isaac F; Duman, Heather M; Ward, W Kenneth

    2007-08-01

    Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta) may play an important role during the formation of foreign body capsule (FBC). In the present study, we implanted mock sensors in rats subcutaneously and excised FBC samples at day 7, 21, and 48-55 postimplantation. The most abundant TGFbeta isoform in all tissues was TGFbeta1, which was expressed minimally in control tissue. The expression of both TGFbeta1 RNA and protein was significantly increased in FBC tissues at all time points, with the highest level in day 7 FBC. The number of cells stained for phosphorylated Smad2, an indication of activated TGFbeta signaling, paralleled the expression of TGFbeta. A similar dynamic change was also observed in the numbers of FBC myofibroblasts, which in response to TGFbeta, differentiate from quiescent fibroblasts and synthesize collagen. Type I collagen, the most prominent downstream target of TGFbeta in fibrosis, was found in abundance in the FBC, especially during the latter time periods. We suggest that TGFbeta plays an important role in the FBC formation. Inhibition of TGFbeta signaling could be a promising strategy in the prevention of FBC formation, thereby extending the useful life of subcutaneous implants.

  20. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  1. In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors

    Science.gov (United States)

    Gothard, David; Smith, Emma L.; Kanczler, Janos M.; Black, Cameron R.; Wells, Julia A.; Roberts, Carol A.; White, Lisa J.; Qutachi, Omar; Peto, Heather; Rashidi, Hassan; Rojo, Luis; Stevens, Molly M.; El Haj, Alicia J.; Rose, Felicity R. A. J.; Shakesheff, Kevin M.; Oreffo, Richard O. C.

    2015-01-01

    The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors. PMID:26675008

  2. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    Science.gov (United States)

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  3. Detection of polymorphism of the insulin-like growth factor-I (IGF-I ...

    African Journals Online (AJOL)

    Molecular genetic selection on individual genes is a promising method to genetically improve economically important traits in chickens. The insulin-like growth factor-I (IGF-I) gene may play important roles in growth of multiple tissues, including muscle cells, cartilage and bone. In the present study, polymorphism of the ...

  4. Feedback amplification loop drives malignant growth in epithelial tissues.

    Science.gov (United States)

    Muzzopappa, Mariana; Murcia, Lada; Milán, Marco

    2017-08-29

    Interactions between cells bearing oncogenic mutations and the surrounding microenvironment, and cooperation between clonally distinct cell populations, can contribute to the growth and malignancy of epithelial tumors. The genetic techniques available in Drosophila have contributed to identify important roles of the TNF-α ligand Eiger and mitogenic molecules in mediating these interactions during the early steps of tumor formation. Here we unravel the existence of a tumor-intrinsic-and microenvironment-independent-self-reinforcement mechanism that drives tumor initiation and growth in an Eiger-independent manner. This mechanism relies on cell interactions between two functionally distinct cell populations, and we present evidence that these cell populations are not necessarily genetically different. Tumor-specific and cell-autonomous activation of the tumorigenic JNK stress-activated pathway drives the expression of secreted signaling molecules and growth factors to delaminating cells, which nonautonomously promote proliferative growth of the partially transformed epithelial tissue. We present evidence that cross-feeding interactions between delaminating and nondelaminating cells increase each other's sizes and that these interactions can explain the unlimited growth potential of these tumors. Our results will open avenues toward our molecular understanding of those social cell interactions with a relevant function in tumor initiation in humans.

  5. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  6. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  7. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    International Nuclear Information System (INIS)

    Cucinotta, Francis A

    2016-01-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  8. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  9. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    Science.gov (United States)

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  10. Insulin-Like Growth Factor-1 and Neuroinflammation

    OpenAIRE

    Labandeira-Garcia, Jose L.; Costa-Besada, Maria A.; Labandeira, Carmen M.; Villar-Cheda, Begoña; Rodríguez-Perez, Ana I.

    2017-01-01

    Insulin-like growth factor-1 (IGF-1) effects on aging and neurodegeneration is still controversial. However, it is widely admitted that IGF-1 is involved in the neuroinflammatory response. In peripheral tissues, several studies showed that IGF-1 inhibited the expression of inflammatory markers, although other studies concluded that IGF-1 has proinflammatory functions. Furthermore, proinflammatory cytokines such as TNF-α impaired IGF-1 signaling. In the brain, there are controversial results o...

  11. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    Science.gov (United States)

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  12. Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer.

    Science.gov (United States)

    Liu, Lu-Ying; Han, Yan-Chun; Wu, Shu-Hua; Lv, Zeng-Hua

    2008-04-07

    To examine the expression of connective tissue growth factor (CTGF), also known as CCN2, in gastric carcinoma (GC), and the correlation between the expression of CTGF, clinicopathologic features and clinical outcomes of patients with GC. One hundred and twenty-two GC patients were included in the present study. All patients were followed up for at least 5 years. Proteins of CTGF were detected using the Powervision two-step immunostaining method. Of the specimens from 122 GC patients analyzed for CTGF expression, 58 (58/122, 47.5%) had a high CTGF expression in cytoplasm of gastric carcinoma cells and 64 (64/122, 52.5%) had a low CTGF expression. Patients with a high CTGF expression showed a higher incidence of lymph node metastasis than those with a low CTGF expression (P = 0.032). Patients with a high CTGF expression had significantly lower 5-year survival rate than those with a low CTGF expression (27.6% vs 46.9%, P = 0.0178), especially those staging I + II + III (35.7% vs 65.2%, P = 0.0027). GC patients with an elevated CTGF expression have more lymph node metastases and a shorter survival time. CTGF seems to be an independent prognostic factor for the successful differentiation of high-risk GC patients staging I + II + III. Over-expression of CTGF in human GC cells results in an increased aggressive ability.

  13. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  14. Plasma rich in growth factors in dentistry

    Directory of Open Access Journals (Sweden)

    Ana Glavina

    2017-06-01

    Full Text Available Background Plasma rich in growth factors (PRGF has wider use in many fields of dentistry due to its endogenous biocompatible regenerative potential i.e., their potential to stimulate and accelerate tissue healing and bone regeneration. Aims This review shows the increasing use of PRGF technology in various fields of dentistry. Methods In the last nine years PubMed has been searched in order to find out published articles upon PRGF in dentistry and 36 papers have been included. Results PRGF technology has many advantages with positive clinical and biological outcomes in tissue healing and bone regeneration. Conclusion In order to determine the most effective therapeutic value for patients, further research is required.

  15. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’Dea, R. D.

    2012-09-18

    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of

  16. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  17. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  18. Reversibly tethering growth factors to surfaces : guiding cell function at the cell-material interface

    NARCIS (Netherlands)

    Cabanas Danés, Jordi

    2013-01-01

    Development of novel methodologies for tethering growth factors (GFs) to materials is highly desired for the generation of biomaterials with improved tissue repair properties. Progress in the development of biomaterials that incorporate GFs and the in vivo performance of such biomaterials in tissue

  19. Immunohistochemical localization of epidermal growth factor in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands is...... antisera against human urinary EGF worked in rat as well as man. EGF was found only in cells with an exocrine function.......Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands...... is well documented. The localization of EGF in other tissues is still unclarified. In the present study, the immunohistochemical localization of EGF in tissues from rat, man and a 20 week human fetus were investigated. In man and rat, immunoreaction was found in the submandibular glands, the serous glands...

  20. On the genetic control of planar growth during tissue morphogenesis in plants.

    Science.gov (United States)

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  1. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    International Nuclear Information System (INIS)

    Antoniades, H.N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P.; Lynch, S.E.

    1991-01-01

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth

  2. Expression and clinical significance of connective tissue growth factor in advanced head and neck squamous cell cancer.

    Science.gov (United States)

    Kikuchi, Ryoko; Kikuchi, Yoshihiro; Tsuda, Hitoshi; Maekawa, Hitoshi; Kozaki, Ken-Ichi; Imoto, Issei; Tamai, Seiichi; Shiotani, Akihiro; Iwaya, Keiichi; Sakamoto, Masaru; Sekiya, Takao; Matsubara, Osamu

    2014-07-01

    Connective tissue growth factor (CTGF) has been reported to play critical roles in the tumorigenesis of several human malignancies. This study was performed to evaluate CTGF protein expression in head and neck squamous cell carcinoma (HNSCC). Surgical specimens from 76 primary HNSCC were obtained with written informed consents and the expression level of CTGF was immunohistochemically evaluated. The cytoplasmic immunoreactivity of CTGF in cancer cells was semiquantitatively classified into low and high expression. Among all 76 cases with or without neoadjuvant therapy, low CTGF showed significantly longer (P = 0.0282) overall survival (OS), but not disease-free survival (DFS) than high CTGF. Although low CTGF in patients with stage I, II and III did not result in any significant difference of the OS and DFS, stage IV HNSCC patients with low CTGF showed significantly longer OS (P = 0.032) and DFS (P = 0.0107) than those with high CTGF. These differences in stage IV cases were also confirmed using multivariate analyses. These results suggest that low CTGF in stage IV HNSCC is an independent prognostic factor, despite with or without neoadjuvant therapy.

  3. Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants.

    Science.gov (United States)

    Ward, W Kenneth; Li, Allen G; Siddiqui, Yasmin; Federiuk, Isaac F; Wang, Xiao-Jing

    2008-01-01

    The purpose of this study was to better understand whether interleukin-13 (IL-13) and connective tissue growth factor (CTGF) are highly expressed during foreign body encapsulation of subcutaneous devices. Mock biosensors were implanted into rats for three lengths of time (7-, 21- and 48-55 days) to address different stages of the foreign body response. Using quantitative real-time PCR and immunofluorescence, the expression of IL13, CTGF, collagen 1, decorin and fibronectin were measured in this tissue. IL-13, a product of Th2 cells, was highly expressed at all time points, with greatest expression at day 21. The IL-13 expression was paralleled by increased presence of T-cells at all time points. CTGF was also found to be more highly expressed in foreign body tissue than in controls. Collagen and decorin were highly expressed at the middle and later stages. Given the increased expression of IL-13 and CTGF in foreign body tissue, and their roles in other fibrotic disorders, these cytokines may well contribute to the formation of the foreign body capsule. Since the peak gene expression of IL-13 occurred later than the previously-reported TGFbeta expression peak, IL-13 is probably not the major stimulus to TGFbeta expression during foreign body encapsulation and may contribute to fibrosis independently.

  4. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  5. Effects of several physiochemical factors on cell growth and gallic ...

    African Journals Online (AJOL)

    The production of gallic acid in cell suspension culture of Acer ginnala Maxim was studied. Some physiochemical factors and chemical substances effect on the cell growth and the production of gallic acid were investigated. Cells harvested from plant tissue culture were extracted and applied to high performance liquid ...

  6. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  7. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    Science.gov (United States)

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  8. Pulp tissue inflammation and angiogenesis after pulp capping with transforming growth factor β1

    Directory of Open Access Journals (Sweden)

    Sri Kunarti

    2008-06-01

    Full Text Available In Restorative dentistry the opportunity to develop biomemitic approaches has been signalled by the possible use of various biological macromolecules in direct pulp capping reparation. The presence of growth factors in dentin matrix and the putative role indicating odontoblast differentiation during embryogenesis has led to the examination on the effect of endogenous TGF-β1. TGF-β1 is one of the Growth Factors that plays an important role in pulp healing. The application of exogenous TGF-β1 in direct pulp capping treatment should be experimented in fibroblast tissue in-vivo to see the responses of inflammatory cells and development of new blood vessels. The increase in food supplies always occurs in the process of inflammation therefore the development of angiogenesis is required to fulfil the requirement. This in-vivo study done on orthodontic patients indicated for premolar extraction between 10–15 years of age. A class V cavity preparation was created in the buccal aspect 1 mm above gingival margin to pulp exposure. The cavity was slowly irrigated with saline solution and dried using a sterile small cotton pellet. The sterile absorbable collagen membrane was applied and soaked in 5 ml TGF-β1. It was covered by a Teflon pledge to separate from Glass Ionomer Cement restoration. Evaluation was performed on day 7; 14; and 21. All samples were histopathologycally examined and data was statistically analysed using one way ANOVA and Dunnet T3.There were no inflammatory symptoms in clinical examination on both Ca(OH2 and TGF-β1, but they increased the infiltration of inflammatory cells on histopathological examination. There were no significant differences (p > 0.05 between Ca(OH2 and TGF-β1 in inflammation cell and significant differences (p < 0.05 in angiogenesis on day 7 and 14. There were no significant differences (p > 0.05 in inflammation cell with in TGF-β1 groups and significant differences (p < 0.05 with in Ca(OH2 groups on day 7

  9. Vascular endothelial growth factor and its relationship with the dental pulp.

    Science.gov (United States)

    Grando Mattuella, Leticia; Westphalen Bento, Leticia; de Figueiredo, José Antonio Poli; Nör, Jacques Eduardo; de Araujo, Fernando Borba; Fossati, Anna Christina Medeiros

    2007-05-01

    The dental pulp is a loose connective tissue located within rigid dentinal walls. Therefore, when subjected to a stimulus, the pulpal tissue has little expansion capacity. The defense mechanisms of this tissue include the formation of tertiary dentin as well as the production of signaling molecules that help in the repair. The dentin matrix is rich in growth factors (GFs) that, when diluted and diffused into the pulp tissue, aid the healing process of the dentinopulpar complex. The angiogenic GFs participate in this event. Vascular endothelial growth factor (VEGF), a potent mitogen for endothelial cells, promotes endothelial cell survival and angiogenesis. Among its receptors, VEGFR-2 seems to be the most intimately associated with mitogenic activities, cell migration, vascular permeability, and survival of endothelial cells. This literature review addresses the cell-signaling process that occurs in response to a pulp stimulus up to its transduction in the target cell, describing the VEGF, as well as its characteristics and receptors. The reported studies have correlated the expression of VEGF and its potential functions that may have an impact on several dental specialties, thus indicating that further clinical investigations should be conducted in order to translate the results obtained until this moment primarily in laboratory experiments.

  10. Bone turnover markers during pubertal development: relationships with growth factors and adipocytokines.

    Science.gov (United States)

    Jürimäe, Jaak; Mäestu, Jarek; Jürimäe, Toivo

    2010-01-01

    The rapid increase in skeletal mass that occurs during puberty is caused by increases in longitudinal growth as well as cortical thickness. The measurement of growth changes during puberty using two-dimensional (dual-energy X-ray absorptiometry) and/or three-dimensional (computed tomography, magnetic resonance imaging) measurement devices provides only a static representation of bone tissue parameters. The measurement of bone turnover markers provides a more dynamic picture of the nature of bone tissue that can be repeated at much shorter intervals during puberty. The bone turnover markers are products of osteoblasts and osteoclasts which can be measured in urine or blood. The increase in different markers of bone turnover coincides with the pubertal growth spurt and thereafter markers decline until they converge into adult values. The initiation of puberty is accompanied by increases in androgens and estrogens. The effects of sex hormones on bone mineral accrual are mediated mainly by growth hormone and insulin-like growth factor-1, but they also exert a direct effect on bone metabolism. Important determinants of bone mineral accrual during puberty include optimal nutritional status, body composition parameters and physical activity pattern. All of these determinants are related to the state of energy balance, while peripheral indicators of energy balance, such as different growth factors and adipocytokines, may also have a positive influence of the growing skeleton. Taken together, bone mineral accrual during puberty is a complex interaction between physical activity pattern, various body composition parameters, specific growth factors and adipocytokines, and also sex hormones. Copyright © 2010 S. Karger AG, Basel.

  11. Hepatocyte growth factor profile with breast cancer

    Directory of Open Access Journals (Sweden)

    Hoda A EL-Attar

    2011-01-01

    Full Text Available Background: The multifunctional hepatocyte growth factor (HGF is the ligand of c-Met receptor; it plays important role in mammary differentiation. HGF-Met signaling is a critical downstream function of c-Src-Stat3 pathway in mammalian tumorigenesis. Aim: Evaluation of tissue c-Met receptor hepatocyte growth factor receptor (HGFR and serum level of HGF in female breast ductal carcinoma. Materials and Methods: Sixty-eight premenopausal females were divided as 30 control females subdivided into: [Group 1] 15 healthy volunteer females and [Group 2] five with fibrocystic disease and 10 having fibroadenoma of the breast and patients group [Group 3] consisted of 38 female patients with breast ductal carcinoma. Thorough clinical examination, preoperative fine needle aspiration cytology, estimation of fasting serum glucose, urea, creatinine, and uric acid levels, alanine aminotransferase activities, C-reactive protein, HGF level, before surgery and histopathological examination of the breast masses, and immunohistochemical detection of HGFR were done. Results and Conclusions: Significant increase in serum HGF levels were found in patients with breast cancer as compared with controls. Significant increase was also seen in patients with breast cancer with and without lymph node metastasis when each subgroup was compared with controls. Serum level of HGF is an independent prognostic indicator of breast cancer. Fibrocystic disease of the breast showed weak HGFR expression, while in normal tissue, HGFR was scanty; meanwhile, breast invasive ductal carcinoma showed homogenous strong reaction to HGFR. HGF is only one of a number of key factors involved in breast cancer and preoperative high serum HGF levels and malignancy occur usually together.

  12. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  13. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L.; Eliasson, Pernilla

    2015-01-01

    OBJECTIVE: Isolated human tendon cells form 3D tendon constructs that demonstrate collagen fibrillogenesis and feature structural similarities to tendon when cultured under tensile load. The exact role of circulating growth factors for collagen formation in tendon is sparsely examined. We...... investigated the influence of insulin-like growth factor I (IGF-I) on tendon construct formation in 3D cell culture. DESIGN: Tendon constructs were grown in 0.5 or 10% FBS with or without IGF-I (250 mg/ml) supplementation. Collagen content (fluorometric), mRNA levels (PCR) and fibril diameter (transmission...... electron microscopy) were determined at 7, 10, 14, 21 and 28 days. RESULTS: IGF-I revealed a stimulating effect on fibril diameter (up to day 21), mRNA for collagen (to day 28), tenomodulin (to day 28) and scleraxis (at days 10 and 14), and on overall collagen content. 10% FBS diminished the development...

  14. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  15. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  16. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?

    Science.gov (United States)

    Brouwers, J E M; van Donkelaar, C C; Sengers, B G; Huiskes, R

    2006-01-01

    Endochondral ossification is the process of differentiation of cartilaginous into osseous tissue. Parathyroid hormone related protein (PTHrP), Indian hedgehog (Ihh) and vascular endothelial growth factor (VEGF), which are synthesized in different zones of the growth plate, were found to have crucial roles in regulating endochondral ossification. The aim of this study was to evaluate whether the three growth factors PTHrP, Ihh and VEGF, together, could regulate longitudinal growth in a normal human, fetal femur. For this purpose, a one-dimensional finite element (FE) model, incorporating growth factor signaling, was developed of the human, distal, femoral growth plate. It included growth factor synthesis in the relevant zones, their transport and degradation and their effects. Simulations ran from initial hypertrophy in the center of the bone until secondary ossification starts at approximately 3.5 months postnatal. For clarity, we emphasize that no mechanical stresses were considered. The FE model showed a stable growth plate in which the bone growth rate was constant and the number of cells per zone oscillated around an equilibrium. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates resulted, respectively, in more and less cells per zone and in increased and decreased bone growth rates. The FE model correctly reflected the development of a growth plate and the rate of bone growth in the femur. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates reflected growth plate pathologies and growth plates in PTHrP-/- and Ihh-/- mice. The three growth factors, PTHrP, Ihh and VEGF, could potentially together regulate tissue differentiation.

  17. Epidermal growth factor receptor and B7-H3 expression in esophageal squamous tissues correlate to patient prognosis

    Directory of Open Access Journals (Sweden)

    Song J

    2016-10-01

    Full Text Available Jianxiang Song,1,2,* Woda Shi,1,2,* Yajun Zhang,2 Mingzhong Sun,3 Xiaodong Liang,3,4 Shiying Zheng1 1Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China; 2Department of Cardiothoracic Surgery, 3Department of Clinical Laboratory, 4Department of Pathology, The Third People’s Hospital of Yancheng City, Yancheng, Jiangsu Province, People’s Republic of China *These authors contributed equally to this work Abstract: Biomarkers that can serve as diagnostic and prognostic indicators of esophageal squamous cell carcinoma (ESCC are urgently needed to help improve patient outcomes. Here, the expression of epidermal growth factor receptor (EGFR and costimulatory molecule B7-H3, both of which have been implicated in tumor onset and progression in certain tumors, was investigated in relation to the clinical characteristics and survival outcomes of patients with ESCC. ESCC tissue samples were analyzed for 100 patients. Tumor and patient characteristics were recorded. Tissues were investigated for EGFR and B7-H3 staining by immunohistochemistry. Patients were followed for up to 96 months to determine overall survival (OS and progression-free survival (PFS. High expression for EGFR (68.0% and B7-H3 (66.0% was observed in the majority of cases. High expression of either EGFR or B7-H3 was correlated with tumor invasion depth and clinical stage (P<0.05. Further, high expression of either EGFR or B7-H3 was correlated with worse survival outcomes. The estimated OS (38.1 months and PFS (13.4 months of patients with high expression of EGFR were lower than those of patients with low expression (69.3 and 68.1 months, P<0.05. The estimated OS (31.1 months and PFS (13.1 months of patients with high expression of B7-H3 were also lower than those of patients with low expression (69.3 and 66.6 months, P<0.05. Indeed, Cox multiple regression showed that OS and PFS were

  18. Autologous blood preparations rich in platelets, fibrin and growth factors.

    Science.gov (United States)

    Fioravanti, C; Frustaci, I; Armellin, E; Condò, R; Arcuri, C; Cerroni, L

    2015-01-01

    Bone regeneration is often needed prior to dental implant treatment due to the lack of adequate quantity and quality after infectious diseases. The greatest regenerative power was obtained with autologous tissue, primarily the bone alive, taken from the same site or adjacent sites, up to the use centrifugation of blood with the selection of the parts with the greatest potential regenerative. In fact, various techniques and technologies were chronologically successive to cope with an ever better preparation of these concentrates of blood. Our aim is to review these advances and discuss the ways in which platelet concentrates may provide such unexpected beneficial therapeutic effects. The research has been carried out in the MEDLINE and Cochrane Central Register of Controlled Trials database by choosing keywords as "platelet rich plasma", "platelet rich fibrin", "platelet growth factors", and "bone regeneration" and "dentistry". Autologous platelet rich plasma is a safe and low cost procedure to deliver growth factors for bone and soft tissue healing. The great heterogeneity of clinical outcomes can be explained by the different PRP products with qualitative and quantitative difference among substance.

  19. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    Science.gov (United States)

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI  30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  20. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  1. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    Science.gov (United States)

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  2. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  3. Retention of insulin-like growth factor I bioactivity during the fabrication of sintered polymeric scaffolds

    International Nuclear Information System (INIS)

    Clark, Amanda; Puleo, David A; Milbrandt, Todd A; Hilt, J Zach

    2014-01-01

    The use of growth factors in tissue engineering offers an added benefit to cartilage regeneration. Growth factors, such as insulin-like growth factor I (IGF-I), increase cell proliferation and can therefore decrease the time it takes for cartilage tissue to regrow. In this study, IGF-I was released from poly(lactic-co-glycolic acid) (PLGA) scaffolds that were designed to have a decreased burst release often associated with tissue engineering scaffolds. The scaffolds were fabricated from IGF-I-loaded PLGA microspheres prepared by a double emulsion (W 1 /O/W 2 ) technique. The microspheres were then compressed, sintered at 49 °C and salt leached. The bioactivity of soluble IGF-I was verified after being heat treated at 37, 43, 45, 49 and 60 °C. Additionally, the bioactivity of IGF-I was confirmed after being released from the sintered scaffolds. The triphasic release lasted 120 days resulting in 20%, 55% and 25% of the IGF-I being released during days 1–3, 4–58 and 59–120, respectively. Seeding bone marrow cells directly onto the IGF-I-loaded scaffolds showed an increase in cell proliferation, based on DNA content, leading to increased glycosaminoglycan production. The present results demonstrated that IGF-I remains active after being incorporated into heat-treated scaffolds, further enhancing tissue regeneration possibilities. (paper)

  4. Improved vascularization of planar membrane diffusion devices following continuous infusion of vascular endothelial growth factor.

    Science.gov (United States)

    Trivedi, N; Steil, G M; Colton, C K; Bonner-Weir, S; Weir, G C

    2000-01-01

    Improving blood vessel formation around an immunobarrier device should improve the survival of the encapsulated tissue. In the present study we investigated the formation of new blood vessels around a planar membrane diffusion device (the Baxter Theracyte System) undergoing a continuous infusion of vascular endothelial growth factor through the membranes and into the surrounding tissue. Each device (20 microl) had both an inner immunoisolation membrane and an outer vascularizing membrane. Human recombinant vascular endothelial growth factor-165 was infused at 100 ng/day (low dose: n = 6) and 500 ng/day (high dose: n = 7) for 10 days into devices implanted s.c. in Sprague-Dawley rats; noninfused devices transplanted for an identical period were used as controls (n = 5). Two days following the termination of VEGF infusion, devices were loaded with 20 microl of Lispro insulin (1 U/kg) and the kinetics of insulin release from the lumen of the device was assessed. Devices were then explanted and the number of blood vessels (capillary and noncapillary) was quantified using morphometry. High-dose vascular endothelial growth factor infusion resulted in two- to threefold more blood vessels around the device than that obtained with the noninfused devices and devices infused with low-dose vascular endothelial growth factor. This increase in the number of blood vessels was accompanied by a modest increase in insulin diffusion from the device in the high-dose vascular endothelial growth factor infusion group. We conclude that vascular endothelial growth factor can be used to improve blood vessel formation adjacent to planar membrane diffusion devices.

  5. Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases.

    Science.gov (United States)

    Anitua, Eduardo; Muruzabal, Francisco; de la Fuente, María; Merayo, Jesús; Durán, Juan; Orive, Gorka

    2016-07-01

    The purpose of this work is to describe and review the technology of plasma rich in growth factors (PRGF), a novel blood derivative product, in the treatment of ocular surface disorders. To demonstrate the importance of this technology in the treatment of ocular pathologies, a thorough review of the preclinical and clinical literature results obtained following use of the different therapeutic formulations of PRGF was carried out. A literature search for applications of PGRF plasma in the ophthalmology field was carried out using the PubMed database. PRGF involves the use of patient's own biologically active proteins, growth factors, and biomaterial scaffolds for therapeutic purposes. This procedural technology is gaining interest in regenerative medicine due to its potential to stimulate and accelerate the tissue healing processes. The versatility and biocompatibility of this technology opens the door to a personalized medicine on ocular tissue regeneration. This review discusses the state of the art of the new treatments and technologies developed to promote ocular surface tissue regeneration. The standardized protocol that has been developed to source eye drops from PRGF technology is also described. The preclinical research, together with the most relevant clinical applications are summarized and discussed. The preliminary results suggest that the use of PRGF to enhance ocular tissue regeneration is safe and efficient.

  6. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis.

    Science.gov (United States)

    Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki

    2017-02-13

    Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis.

  7. Connective tissue growth factor acts as a therapeutic agent and predictor for peritoneal carcinomatosis of colorectal cancer.

    Science.gov (United States)

    Lin, Been-Ren; Chang, Cheng-Chi; Chen, Robert Jeen-Chen; Jeng, Yung-Ming; Liang, Jin-Tung; Lee, Po-Huang; Chang, King-Jen; Kuo, Min-Liang

    2011-05-15

    Here, we aimed to investigate the role of connective tissue growth factor (CTGF) in peritoneal carcinomatosis (PC) associated with colorectal cancer (CRC) and to characterize the underlying mechanism of CTGF mediating adhesion. A cohort of 136 CRC patient specimens was analyzed in this study. CRC cell lines were used for in vitro adhesion assay and in vivo peritoneal dissemination experiment. Recombinant CTGF protein treatment, transfection of CTGF expression plasmids, and knockdown of CTGF expression in CRC cells were utilized to evaluate the integrin α5, which served as a target of CTGF in inhibiting peritoneal seeding. The analysis of CRC tissues revealed an inverse correlation between CTGF expression and prevalence of PC. Lower CTGF level in CRC patients was associated with higher peritoneal recurrence rate after surgery. Inducing CTGF expression in cancer cells resulted in decreased incidence of PC and increased rate of mice survival. The mice received intraperitoneal injection of recombinant CTGF protein simultaneously with cancer cells or following tumor formation; in both cases, peritoneal tumor dissemination was found to be effectively inhibited in the mouse model. Functional assay revealed that CTGF significantly decreased the CRC cell adhesion ability, and integrin α5 was confirmed by reverse transcriptase PCR and functional blocking assay as a downstream effector in the CTGF-mediated inhibition of CRC cell adhesion. CTGF acts as a molecular predictor of PC and could be a potential therapeutic target for the chemoprevention and treatment of PC in CRC patients. ©2011 AACR.

  8. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice.

    Science.gov (United States)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E; List, Edward O; Kopchick, John J; Berryman, Darlene E

    Although growth hormone (GH) and fibroblast growth factor 21 (FGF21) have a reported relationship, FGF21 and its receptor, fibroblast growth factor receptor 1 (FGFR1) and cofactor β-Klotho (KLB), have not been analyzed in chronic states of altered GH action. The objective of this study was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. Seven-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. As expected, bGH mice had increased body weight (p=3.70E -8 ) but decreased percent fat mass (p=4.87E -4 ). Likewise, GHR-/- mice had decreased body weight (p=1.78E -10 ) but increased percent fat mass (p=1.52E -9 ), due to increased size of the subcutaneous AT depot when normalized to body weight (p=1.60E -10 ). Serum FGF21 levels were significantly elevated in bGH mice (p=0.041) and unchanged in GHR-/- mice (p=0.88). Expression of Fgf21, Fgfr1, and Klb mRNA in white AT and liver were downregulated or unchanged in both bGH and GHR-/- mice. The only exception was Fgf21 expression in brown AT of GHR-/-, which trended toward increased expression (p=0.075). In accordance with our hypothesis, we provide evidence that circulating FGF21 is increased in bGH animals, but remains unchanged in GHR-/- mice. Downregulation or no change in Fgf21, Fgfr1, and Klb expression are seen in white AT, brown AT, and liver of bGH and GHR-/- mice when compared to their

  9. Growth hormone and adipose tissue: beyond the adipocyte.

    Science.gov (United States)

    Berryman, Darlene E; List, Edward O; Sackmann-Sala, Lucila; Lubbers, Ellen; Munn, Rachel; Kopchick, John J

    2011-06-01

    The last two decades have seen resurgence in research focused on adipose tissue. In part, the enhanced interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters fat mass, newer findings revealing the complexity of adipose tissue requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and to summarize our current knowledge of how GH may influence and contribute to these newer complexities of this tissue with special focus on the available data from mice with altered GH action. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors.

    Science.gov (United States)

    Amable, Paola Romina; Carias, Rosana Bizon Vieira; Teixeira, Marcus Vinicius Telles; da Cruz Pacheco, Italo; Corrêa do Amaral, Ronaldo José Farias; Granjeiro, José Mauro; Borojevic, Radovan

    2013-06-07

    Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 10(6) to 1.9 × 10(6) platelets/μl). Platelets were highly purified, because only platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool

  11. The Big Bang of tissue growth: Apical cell constriction turns into tissue expansion.

    Science.gov (United States)

    Janody, Florence

    2018-03-05

    How tissue growth is regulated during development and cancer is a fundamental question in biology. In this issue, Tsoumpekos et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705104) and Forest et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705107) identify Big bang (Bbg) as an important growth regulator of the Drosophila melanogaster wing imaginal disc. © 2018 Janody.

  12. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels

    Directory of Open Access Journals (Sweden)

    Tinahones Francisco

    2012-04-01

    Full Text Available Abstract Background The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR. Results Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC and omentum (OM adipose tissues from morbidly obese patients (n = 26 with low (OB/L-IR (healthy obese and high (OB/H-IR degrees of IR, and lean controls (n = 17. Another objective was to examine angiogenic factor correlations with obesity and IR. Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM. Conclusion We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.

  13. Mathematical Model of Growth Factor Driven Haptotaxis and Proliferation in a Tissue Engineering Scaffold

    KAUST Repository

    Pohlmeyer, J. V.; Waters, S. L.; Cummings, L. J.

    2013-01-01

    nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative

  14. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure

    NARCIS (Netherlands)

    Oedayrajsingh-Varma, M. J.; van Ham, S. M.; Knippenberg, M.; Helder, M. N.; Klein-Nulend, J.; Schouten, T. E.; Ritt, M. J. P. F.; van Milligen, F. J.

    2006-01-01

    Adipose tissue contains a stromal vascular fraction that can be easily isolated and provides a rich source of adipose tissue-derived mesenchymal stem cells (ASC). These ASC are a potential source of cells for tissue engineering. We studied whether the yield and growth characteristics of ASC were

  15. Distribution of basic fibroblast growth factor binding sites in various tissue membrane preparations from adult guinea pig

    International Nuclear Information System (INIS)

    Ledoux, D.; Mereau, A.; Dauchel, M.C.; Barritault, D.; Courty, J.

    1989-01-01

    In order to localize a rich source of basic FGF receptor, we examined the distribution of basic FGF binding sites in brain, stomach, lung, spleen, kidney, liver and intestine membrane preparations from adult guinea pig. Comparative binding studies using iodinated basic FGF showed that a specific binding was detected in all the membrane preparations tested. Scatchard plots from iodinated basic FGF competition experiment with native basic FGF in various membrane preparations, suggested the presence of one class of binding sites in some tissues such as liver, kidney, spleen, lung, stomach, and intestine with an apparent dissociation constant (appKD) value ranging from 4 to 7.5 nM and the existence of a second class of higher affinity sites in brain membranes with appKD value of 15 pM. Characterization of these basic FGF high affinity interaction sites was performed using a cross-linking reagent. These results show for the first time that specific interaction sites for basic FGF are widely distributed, suggesting that this growth factor might play a role in the physiological functions of a number of adult organs

  16. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    Science.gov (United States)

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of

  17. Synthesis and Characterization of Nanodiamond-Growth Factor Complexes Towards Applications in Oral Implantation and Regenerative Medicine.

    Science.gov (United States)

    Bang, Julie; Ting, Caleb; Wang, Peter; Kim, Ted; Wang, Kenneth; Kee, Theodore; Miya, Darron; Ho, Dean; Lee, Dong-Keun

    2018-02-19

    Current challenges in the field of regenerative medicine include the need to deliver sustained concentrations of growth factors and genes that are required to induce the repair of deficient tissues. Enhancement of drug delivery and uptake may result in improved growth factor efficacy. Nanodiamonds (NDs) were explored as potential growth factor delivery agents due to the many favorable properties that they possess. For example, ND's biocompatibility has been extensively validated pre-clinically. In addition, they can be scalably produced through impact events such as detonation. They possess notably faceted surfaces with diverse electrostatic properties that allow the rapid formation of growth factor complexes. In this study, a complex based on NDs conjugated to epidermal growth factor (EGF) functionalized with Alexa Fluor 488 (ND-EGF) was developed. ND-EGF was comprehensively evaluated using dynamic light scattering and zeta potential analysis. Furthermore, the NDs were capable of eluting EGF in a sustained fashion. Therefore, ND-EGF may serve as a promising nano-biomaterial for sustained growth factor elution.

  18. Immunohistochemical localisation and developmental aspects of epidermal growth factor in the rat

    DEFF Research Database (Denmark)

    Raaberg, L; Nexø, E; Damsgaard Mikkelsen, J

    1988-01-01

    The tissue localisation and time of first appearance of Epidermal Growth Factor (EGF) in the developing rat were investigated by means of immunohistochemistry, radioimmunoassay and radioreceptor assay. In this study we were able to show, that EGF appears prenatally in the lung and the kidney from...

  19. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release.

    Science.gov (United States)

    Suárez-González, Darilis; Barnhart, Kara; Migneco, Francesco; Flanagan, Colleen; Hollister, Scott J; Murphy, William L

    2012-01-01

    In this study, we have developed mineral coatings on polycaprolactone scaffolds to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO(3)) concentration in mSBF of 4.2 mm, 25 mm, and 100 mm. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue in coatings formed in all HCO(3) concentrations. Mineral coatings with increased HCO(3) substitution showed more rapid dissolution kinetics in an environment deficient in calcium and phosphate but showed re-precipitation in an environment with the aforementioned ions. The mineral coating provided an effective mechanism for growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral mineral-coated PCL scaffolds. We also demonstrated sustained release of all growth factors with release kinetics that were strongly dependent in the solubility of the mineral coating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Atelocollagen sponge and recombinant basic fibroblast growth factor combination therapy for resistant wounds with deep cavities.

    Science.gov (United States)

    Nakanishi, Asako; Hakamada, Arata; Isoda, Ken-ichi; Mizutani, Hitoshi

    2005-05-01

    Recent advances in bioengineering have introduced materials that enhance wound healing. Even with such new tools, some deep ulcers surrounded by avascular tissues, including bone, tendon, and fascia, are resistant to various therapies and easily form deep cavities with loss of subcutaneous tissue. Atelocollagen sponges have been used as an artificial dermis to cover full-thickness skin defects. Topical recombinant human basic fibroblast growth factor has been introduced as a growth factor to induce fibroblast proliferation in skin ulcers. We applied these materials in combination in two patients with deep resistant wounds: one with a cavity reaching the mediastinum through a divided sternum and one with deep necrotic wounds caused by electric burns. These wounds did not respond to the topical basic fibroblast growth factor alone. In contrast, the combination therapy closed the wounds rapidly without further surgical treatment. This combination therapy is a potent treatment for resistant wounds with deep cavities.

  1. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  2. Fibroblast growth factors as regulators of stem cell self-renewal and aging

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; de Haan, Gerald

    Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells

  3. 胰岛素样生长因子-1在乳腺癌组织中的表达%Expression of insulin-like growth factor-1 in breast cancer tissues

    Institute of Scientific and Technical Information of China (English)

    Mingxun Chen; Mengquan Li; Jingruo Li

    2009-01-01

    Objective: We investigated the expression of insulin-like growth factor-1 (IGF-1) so as to explore its relationship with carcinogenesis and development of breast cancer. Methods: IGF-1 mRNA levels in tissues of breast cancer, adjacent breast cancer in 70 cases breast cancer patients were analyzed by RT-PCR with the normal breast tissues of paired breast as the control. Results: The level of IGF-1 mRNA expression in breast cancer tissues was significantly higher than that in the paired adjacent to breast cancer tissues, normal mammary gland tissues. The ration of IGF-1/β-actin were 0.679±0.075, 0.463±0.085, 0.305±0.031, respectively. There was significant difference between different groups (P 0.005). Conclusion: The high-level expression of IGF-1 in breast cancer tissues is correlated with carcinogenesis, development and metastasis of breast cancer.

  4. Growth factors and new periodontology

    Directory of Open Access Journals (Sweden)

    Paknejad M

    1999-06-01

    Full Text Available Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and"ndifferentiation by acting on specific receptors on the surface of cells and regulating events in wound"nhealing.They can be considered hormones that are not released in to the blood stream but have one a"nlocal action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion"ncycle and even may stimulate synthesis of DNA in suitable cells, Growth substances, primarily secreted"nby fibroblasts, endothelia! cells, macrophages and platelet, include platelet derived growth factor"n(PDGF, insulin like growth factor (IGF transforming growth factor (TGFa and (3 and bone"nmorphogenetic proteins BMPs that approximately are the most important of them. (BMPs could be"nused to control events during periodontal, craniofacial and implant wound healing through favoring bone"nformation"nAccording toLynch, combination of PGDF and IGF1 would be effective in promoting growth of all the"ncomponents of the periodontium."nThe aim of this study was to characterize growth factor and review the literature to determine the"nmechanism of their function, classification and application in implant and periodontal treatment.

  5. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice.

    Science.gov (United States)

    Devalliere, Julie; Dooley, Kevin; Hu, Yong; Kelangi, Sarah S; Uygun, Basak E; Yarmush, Martin L

    2017-10-01

    Growth factor therapy is a promising approach for chronic diabetic wounds, but strategies to efficiently and cost-effectively deliver active molecules to the highly proteolytic wound environment remain as major obstacles. Here, we re-engineered keratinocyte growth factor (KGF) and the cellular protective peptide ARA290 into a protein polymer suspension with the purpose of increasing their proteolytic resistance, thus their activity in vivo. KGF and ARA290 were fused with elastin-like peptide (ELP), a protein polymer derived from tropoelastin, that confers the ability to separate into a colloidal suspension of liquid-like coacervates. ELP fusion did not diminish peptides activities as demonstrated by ability of KGF-ELP to accelerate keratinocyte proliferation and migration, and ARA290-ELP to protect cells from apoptosis. We examined the healing effect of ARA290-ELP and KGF-ELP alone or in combination, in a full-thickness diabetic wound model. In this model, ARA290-ELP was found to accelerate healing, notably by increasing angiogenesis in the wound bed. We further showed that co-delivery of ARA290 and KGF, with the 1:4 KGF-ELP to ARA290-ELP ratio, was the most effective wound treatment with the fastest healing rate, the thicker granulation tissue and regenerated epidermis after 28 days. Overall, this study shows that ARA290-ELP and KGF-ELP constitute promising new therapeutics for treatment of chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Molecular Characterization and Expression Analysis of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-1 Genes in Qinghai-Tibet Plateau and Lowland

    Directory of Open Access Journals (Sweden)

    Ya-bing Chen

    2015-01-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 and insulin-like growth factor binding protein-1 (IGFBP-1 play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak. We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05. The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05 of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

  7. The effect of platelet rich fibrin on growth factor levels in urethral repair.

    Science.gov (United States)

    Soyer, Tutku; Ayva, Şebnem; Boybeyi, Özlem; Aslan, Mustafa Kemal; Çakmak, Murat

    2013-12-01

    Platelet rich fibrin (PRF) is an autologous source of growth factors and promotes wound healing. An experimental study was performed to evaluate the effect of PRF on growth factor levels in urethral repair. Eighteen Wistar albino rats were included in the study. Rats were allocated in three groups (n:6): control (CG), sham (SG), and PRF (PRFG). In SG, a 5 mm vertical incision was performed in the penile urethra and repaired with 10/0 Vicryl® under a microscope. In PRFG, during the urethral repair as described in SG, 1 cc of blood was sampled from each rat and centrifuged for 10 minutes at 2400 rpm. PRF obtained from the centrifugation was placed on the repair site during closure. Penile urethras were sampled 24 hours after PRF application in PRFG and after urethral repair in SG. Transforming growth factor beta receptor (TGF-β-R-CD105), vascular endothelial growth factor (VEGF) and its receptor (VEGF-R), as well as endothelial growth factor receptor (EGFR), were evaluated in subepithelia of the penile skin and urethra. Groups were compared for growth factor levels and growth factor receptor expression with the Kruskal Wallis test. TGF-β-R levels were significantly decreased in SG when compared to CG (p0.05). Use of PRF after urethral repair increases TGF-β-R and VEGF expressions in urethral tissue. PRF can be considered as an alternative measure to improve the success of urethral repair. © 2013.

  8. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    Science.gov (United States)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  9. Changes in hormone profiles, growth factors, and mRNA expression of the related receptors in crop tissue, relative organ weight, and serum biochemical parameters in the domestic pigeon (Columba livia) during incubation and chick-rearing periods under artificial farming conditions.

    Science.gov (United States)

    Xie, P; Wan, X P; Bu, Z; Diao, E J; Gong, D Q; Zou, X T

    2018-06-01

    The present study was conducted to determine the changes in concentrations of hormones and growth factors and their related receptor gene expressions in crop tissue, relative organ weight, and serum biochemical parameters in male and female pigeons during incubation and chick-rearing periods under artificial farming conditions. Seventy-eight pairs of 60-week-old White King pigeons with 2 fertile eggs per pair were randomly divided into 13 groups by different breeding stages. Serum prolactin and insulin-like growth factor-1 (IGF-1) concentrations in crop tissue homogenates were the highest in both male and female pigeons at 1 d of chick-rearing (R1), while epidermal growth factor (EGF) in female pigeons peaked at d 17 of incubation (I17) (P < 0.05). mRNA expression of the prolactin and EGF receptors in the crop tissue increased at the end of incubation and the early chick-rearing stage in both sexes. However, estrogen, progesterone, and growth hormone receptor expression each decreased during the early chick-rearing stage (P < 0.05). In male pigeons, IGF-1 receptor gene expression reached its peak at R7, while in female pigeons, it increased at the end of incubation. The relative weight of breast and abdominal fat in both sexes and thighs in the males was lowest at R7, and then gradually increased to the incubation period level. Serum total protein, albumin, and globulin concentrations increased to the highest levels at I17 (P < 0.05). Total cholesterol, triglyceride, and low-density lipoprotein reached their highest values at I17 in male pigeons and R25 in female pigeons (P < 0.05). In conclusion, hormones, growth factors, and their receptors potentially underlie pigeon crop tissue development. Changes in organs and serum biochemical profiles suggested their different breeding-cycle patterns with sexual effects.

  10. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  11. Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies

    Directory of Open Access Journals (Sweden)

    Alpaslan E

    2014-05-01

    Full Text Available Ece Alpaslan,1 Thomas J Webster1,21Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 2Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties, they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns.Keywords: nanomaterials, tissue engineering, toxicity

  12. Modeling biological tissue growth: discrete to continuum representations.

    Science.gov (United States)

    Hywood, Jack D; Hackett-Jones, Emily J; Landman, Kerry A

    2013-09-01

    There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.

  13. A multiscale description of growth and transport in biological tissues

    Directory of Open Access Journals (Sweden)

    Grillo A.

    2007-01-01

    Full Text Available We study a growing biological tissue as an open biphasic mixture with mass exchange between phases. The solid phase is identified with the matrix of a porous medium, while the fluid phase is comprised of water, together with all the dissolved chemical substances coexisting in the pore space. We assume that chemical substances evolve according to transport mechanisms determined by kinematical and constitutive relations, and we propose to consider growth as a process able to influence transport by continuously varying the thermo-mechanic state of the tissue. By focusing on the case of anisotropic growth, we show that such an influence occurs through a continuous rearrangement of the tissue material symmetries. In order to illustrate this interaction, we restrict ourselves to diffusion-dominated transport, and we assume that the time-scales associated with growth and the transport process of interest are largely separated. This allows for performing an asymptotic analysis of the "field equations" of the system. In this framework, we provide a formal solution of the transport equation in terms of its associated Green's function, and we show how the macroscopic concentration of a given chemical substance is "modulated" by anisotropic growth. .

  14. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    Science.gov (United States)

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  15. Growth Factor Stimulation Improves the Structure and Properties of Scaffold-Free Engineered Auricular Cartilage Constructs

    Science.gov (United States)

    Rosa, Renata G.; Joazeiro, Paulo P.; Bianco, Juares; Kunz, Manuela; Weber, Joanna F.; Waldman, Stephen D.

    2014-01-01

    The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation. PMID:25126941

  16. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  17. Growth factor combination for chondrogenic induction from human mesenchymal stem cell

    International Nuclear Information System (INIS)

    Indrawattana, Nitaya; Chen Guoping; Tadokoro, Mika; Shann, Linzi H.; Ohgushi, Hajime; Tateishi, Tetsuya; Tanaka, Junzo; Bunyaratvej, Ahnond

    2004-01-01

    During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-β3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-β3 and BMP-6 or TGF-β3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction

  18. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  19. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic Kidney Disease through Activation of LDL Receptor-Related Protein 6.

    Science.gov (United States)

    Johnson, Bryce G; Ren, Shuyu; Karaca, Gamze; Gomez, Ivan G; Fligny, Cécile; Smith, Benjamin; Ergun, Ayla; Locke, George; Gao, Benbo; Hayes, Sebastian; MacDonnell, Scott; Duffield, Jeremy S

    2017-06-01

    Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ β -catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis. Copyright © 2017 by the American Society of Nephrology.

  20. Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Haddad, Fadia

    2006-01-01

    Insulin-like growth factor I (IGF-I) is known to exert an anabolic effect on tendon fibroblast production of collagen. IGF-I's regulation is complex and involves six different IGF binding proteins (IGFBPs). Of these, IGFBP-4 and -5 could potentially influence the effect of IGF-I in the tendon...... because they both are produced in fibroblast; however, the response of IGFBP-4 and -5 to mechanical loading and their role in IGF-I regulation in tendinous tissue are unknown. A splice variant of IGF-I, mechano-growth factor (MGF) is upregulated and known to be important for adaptation in loaded muscle....... However, it is not known whether MGF is expressed and upregulated in mechanically loaded tendon. This study examined the effect of mechanical load on tendon collagen mRNA in relation to changes in the IGF-I systems mRNA expression. Data were collected at 2, 4, 8 and 16 days after surgical removal...

  1. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells.

    Science.gov (United States)

    Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E

    2018-05-01

    Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.

  2. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects

    International Nuclear Information System (INIS)

    Yilgor Huri, Pinar; Huri, Gazi; Yasar, Umit; Dikmen, Nurten; Ucar, Yurdanur; Hasirci, Nesrin; Hasirci, Vasif

    2013-01-01

    The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are early and late appearing factors during bone regeneration, respectively, was shown in vitro to enhance osteoblastic differentiation of bone marrow derived mesenchymal stem cells. In the present study, the aim was to study the effectiveness of this delivery strategy in a rabbit iliac crest model. 3D plotted poly(ε-caprolactone) scaffolds were loaded with BMP carrying nanoparticles to achieve: (a) single BMP-2 or BMP-7 delivery, and (b) their combined delivery in a simultaneous or (c) sequential (biomimetic) fashion. After eight weeks of implantation, computed tomography and biomechanical tests showed better mineralized matrix formation and bone-implant union strength at the defect site in the case of sequential delivery compared to single or simultaneous delivery modes. Bone mineral density (BMD) and push-out stress were: 33.65±2.25 g cm −3 and 14.5±2.28 MPa, respectively, and almost 2.5 fold higher in comparison to those without growth factors (BMD: 14.14±1.21 g cm −3 ; PS: 6.59±0.65 MPa). This study, therefore, supports those obtained in vitro and emphasizes the importance of mimicking the natural timing of bioavailability of osteogenic factors in improving the regeneration of critical-sized bone defects. (paper)

  3. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  4. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern

    DEFF Research Database (Denmark)

    Carneiro, Ana; Bendahl, Par-Ola; Engellau, Jacob

    2011-01-01

    type, necrosis, and grade. METHODS:: Whole-tumor sections from 239 soft tissue sarcomas of the extremities were reviewed for the following prognostic factors: size, vascular invasion, necrosis, and growth pattern. A new prognostic model, referred to as SING (Size, Invasion, Necrosis, Growth...

  5. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (Ptissues was than in normal adjacent esophageal tissues (Ptissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  6. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    Science.gov (United States)

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  7. Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5' untranslated regions

    International Nuclear Information System (INIS)

    Irminger, J.C.; Rosen, K.M.; Humble, R.E.; Villa-Komaroff, L.

    1987-01-01

    The authors have used RNA from human hypothalamus as template for the production of cDNAs encoding insulin-like growth factor II (IGF-II). The prohormone coding sequence of brain IGF-II RNA is identical to that found in liver; however, the 5' untranslated sequence of the brain cDNA has no homology to the 5' untranslated sequence of the previously reported liver cDNAs. By using hybridization to specific probes as well as a method based on the properties of RNase H, they found that the human IGF-II gene has at least three exons that encode alternative 5' untranslated regions and that are expressed in a tissue-specific manner. A probe specific to the brain cDNA 5' untranslated region hybridizes to a 6.0-kilobase transcript present in placenta, hypothalamus, adrenal gland, kidney, Wilms tumor, and a pheochromocytoma. The 5' untranslated sequence of the brain cDNA does not hybridize to a 5.3-kilobase transcript found in liver or to a 5.0-kb transcript found in pheochromocytoma. By using RNase H to specifically fragment the IGF-II transcripts into 3' and 5' fragments, they found that the RNAs vary in size due to differences in the 5' end but not the 3' end

  8. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    Science.gov (United States)

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    Science.gov (United States)

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (Pbreast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

  10. [Expression and clinical significance of kisspeptin-1, matrix metalloproteinase-2 and vascular endothelial growth factor in tissue of colon cancer].

    Science.gov (United States)

    Wang, Wenhui; Qi, Yuanling; Xu, Qian; Ren, Haipeng

    2016-03-01

    To detect the expression of kisspeptin-1 (KISS-1), matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in the tissue of colon cancer, and analyze the relativity between KISS-1, MMP-2, VEGF and pathological characteristics of colon cancer. A total of 60 colon cancer patients and 60 patients with benign colorectal disease who received surgical treatment in our hospital from January 2009 to June 2010 were selected as observation group and control group respectively. The cancer tissue samples and excision samples collected from them were used to detect KISS-1, MMP-2 and VEGF with immunohistochemistry. The positive rates of KISS-1, MMP-2 and VEGF were 31.7%, 58.3% and 78.3% in observation group, and 73.3%, 16.7% and 33.3% in control group. The positive rate of KISS-1 in observation group was lower than that in control group (χ(2)=23.489, Pcolon cancer (χ(2)=8.997, P=0.011; χ(2)=6.163, P=0.013; χ(2)=8.519, P=0.014; χ(2)=9.160, P=0.002; χ(2)=16.577, Pclinical stage of colon cancer and provide evidence for clinical diagnosis and prognosis prediction by detecting KISS-1, MMP-2 and VEGF.

  11. Radiation leukemia virus and x-irradiation induce in C57BL/6 mice two distinct T-cell neoplasms: a growth factor-dependent lymphoma and a growth factor-independent lymphoma

    International Nuclear Information System (INIS)

    Haas, Martin; Rothenberg, Ellen; Bogart, M.H.; Jones, O.W.

    1987-01-01

    Two different classes of neoplastic T cells were isolated from radiation leukemia virus (RadLV)-inoculated and from X-ray-treated C57BL/6 mice. One consisted of growth factor-dependent T-cell lymphoma (FD-TCL) lines which were established from the spleens and thymuses of treated mice within a day of lymphoma detection. Non-thymic, factor-dependent TCL cells produced interleukin-2 upon lectin stimulation, and were autostimulatory because they secreted growth factor(s) constitutively. In vivo, FD-TCL cells that were injected intraperitoneally or intravenously homed to the spleen, proliferated in it and killed the injected mice. The isolation and study of FD-TCL cells was facilitated by their cultivation on stromal hematopoietic monolayers in supplemented ''lymphocyte medium'', until an autostimulating, self-sustaining concentration of FD-TCL cells was obtained. FD-TCL cells could not be grown from lymphoid tissue of normal, control mice. In contrast, T-cell lymphoma (TCL) lines, which were established from virus-induced thymomas which had been kept in situ for 4-6 weeks after detection, consisted of factor-independent cells that possessed an aneuploid karyotype. The phenotypic markers of TCL cells differed from those of FD-TCL cells, suggesting heterogeneity in the stages of differentiation at which cells can give rise to growth factor-independent (TCL) and to growth factor-dependent (FD-TCL) lines. (author)

  12. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. I. Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available An influence of hydroxyurea (HU on the growth, DNA and RNA contents and protein synthesis in the tobacco tumour tissue culture was studied in comparison with a homologous callus tissue. In conformity with expectations considerable decrease of DNA level in both tissues is a primary effect of HU activity. This results in the growth inhibition and in the secondary metabolic effects; these effects depend not only on the concentration of inhibitor but also on the age of tissue. In spite of some common features the character of these changes shows a distinct differentiation depending on the tissue type. TMs points to specific modifications of the biochemical regulation of growth in a tumour.

  13. Activation of 125I-Factor IX and 125I-Factor X: Effect of tissue factor and Factor VII, Factor Xsub(a) and thrombin

    International Nuclear Information System (INIS)

    Oesterud, B.; Rapaport, S.I.

    Activation of Factor IX and Factor X was studied by adding 125 I-Factor IX or 125 I-Factor X to reaction mixtures and quantitating cleavage products by reduced sodium dodecylsulfate gel electrophoresis. Thrombin failed to activate Factors IX or X; Factor Xsub(a) produced insignificant amounts of cleavage products of both factors. In contrast, the reaction product of tissue factor and Factor VII cleaved large amounts of both Factor IX and Factor X in purified systems and in plasma. In incubation mixtures of plasma containing added 125 I-Factor IX or 125 I-Factor X, tissue factor and Ca 2+ ions, the percentage of total radioactivity in the heavy chain peak of 125 I-IXsub(a) and the heavy chain of 125 I-Xsub(a) increased at a similar rate. When the tissue factor was diluted, similar curves were obtained for percent cleavage of 125 I-Factor IX and percent cleavage of 125 I-Factor X plotted against tissue factor concentration. These findings support the hypothesis that activation of Factor IX by the tissue factor-Factor VII reaction product represents a physiologically significant step in normal haemostasis. (author)

  14. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness.

    Science.gov (United States)

    Nakagawa, S; Pawelek, P; Grinnell, F

    1989-06-01

    To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.

  15. New microbial growth factor

    Science.gov (United States)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  16. Human epidermal growth factor: molecular forms and application of radioimmunoassay and radioreceptor assay

    International Nuclear Information System (INIS)

    Hirata, Y.; Orth, D.N.

    1981-01-01

    Epidermal growth factor (EGF), a 53 amino acid polypeptide, was first isolated by Cohen. EGF's growth-promoting activity is not limited to epidermal cells, but is expressed on a wide variety of tissues derived from a number of different species. Human EGF (hEGF) was isolated and subsequently purified from human urine. Unexpectedly, a close structural relationship was recognized between mEGF and human β-urogastrone. The authors recently developed both an homologous hEGF radioimmunoassay (RIA) and a radioreceptor assay (RRA) using a human placental membrane fraction. Using these assays, the molecular size of hEGF in human body fluids and tissues was evaluated, and partial characterization of a high molecular weight form of hEGF isolated from human urine was carried out. The concentrations of immunoreactive hEGF were also determined in human tissues and plasma after extraction either with cationic exchange chromatography or with immunoaffinity chromatography. (Auth.)

  17. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs.

    Directory of Open Access Journals (Sweden)

    Renata G Rosa

    Full Text Available The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1 was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm. While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

  18. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    Science.gov (United States)

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cellular and molecular mechanisms of chronic rhinosinusitis and potential therapeutic strategies: review on cytokines, nuclear factor kappa B and transforming growth factor beta.

    Science.gov (United States)

    Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J

    2015-07-01

    Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.

  20. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

    Science.gov (United States)

    Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li

    2015-06-01

    Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (Pcartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (Pcartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair

  1. Ex Vivo Growth of Bioengineered Ligaments and Other Tissues

    Science.gov (United States)

    Altman, Gregory; Kaplan, David L.; Martin, Ivan; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues for use in surgical replacement of damaged anterior cruciate ligaments has been invented. An anterior cruciate ligament is one of two ligaments (the other being the posterior cruciate ligament) that cross in the middle of a knee joint and act to prevent the bones in the knee from sliding forward and backward relative to each other. Anterior cruciate ligaments are frequently torn in sports injuries and traffic accidents, resulting in pain and severe limitations on mobility. By making it possible to grow replacement anterior cruciate ligaments that structurally and functionally resemble natural ones more closely than do totally synthetic replacements, the method could create new opportunities for full or nearly full restoration of functionality in injured knees. The method is also adaptable to the growth of bioengineered replacements for other ligaments (e.g., other knee ligaments as well as those in the hands, wrists, and elbows) and to the production of tissues other than ligaments, including cartilage, bones, muscles, and blood vessels. The method is based on the finding that the histomorphological properties of a bioengineered tissue grown in vitro from pluripotent cells within a matrix are affected by the direct application of mechanical force to the matrix during growth generation. This finding provides important new insights into the relationships among mechanical stress, biochemical and cell-immobilization methods, and cell differentiation, and is applicable to the production of the variety of tissues mentioned above. Moreover, this finding can be generalized to nonmechanical (e.g., chemical and electromagnetic) stimuli that are experienced in vivo by tissues of interest and, hence, the method can be modified to incorporate such stimuli in the ex vivo growth of replacements for the various tissues mentioned above. In this method, a three-dimensional matrix made of a suitable material is seeded with pluripotent stem

  2. Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Bartke, Andrzej; Darzynkiewicz, Zbigniew

    2017-08-01

    The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.

  3. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia.

    Science.gov (United States)

    Anitua, Eduardo; Pelacho, Beatriz; Prado, Roberto; Aguirre, José Javier; Sánchez, Mikel; Padilla, Sabino; Aranguren, Xabier L; Abizanda, Gloria; Collantes, María; Hernandez, Milagros; Perez-Ruiz, Ana; Peñuelas, Ivan; Orive, Gorka; Prosper, Felipe

    2015-03-28

    PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  5. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    Science.gov (United States)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  6. Plasma CCN2/connective tissue growth factor is associated with right ventricular dysfunction in patients with neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    Aakhus Svend

    2010-01-01

    Full Text Available Abstract Background Carcinoid heart disease, a known complication of neuroendocrine tumors, is characterized by right heart fibrotic lesions. Carcinoid heart disease has traditionally been defined by the degree of valvular involvement. Right ventricular (RV dysfunction due to mural involvement may also be a manifestation. Connective tissue growth factor (CCN2 is elevated in many fibrotic disorders. Its role in carcinoid heart disease is unknown. We sought to investigate the relationship between plasma CCN2 and valvular and mural involvement in carcinoid heart disease. Methods Echocardiography was performed in 69 patients with neuroendocrine tumors. RV function was assessed using tissue Doppler analysis of myocardial systolic strain. Plasma CCN2 was analyzed using an enzyme-linked immunosorbent assay. Mann-Whitney U, Kruskal-Wallis, Chi-squared and Fisher's exact tests were used to compare groups where appropriate. Linear regression was used to evaluate correlation. Results Mean strain was -21% ± 5. Thirty-three patients had reduced RV function (strain > -20%, mean -16% ± 3. Of these, 8 had no or minimal tricuspid and/or pulmonary regurgitation (TR/PR. Thirty-six patients had normal or mildly reduced RV function (strain ≤ -20%, mean -25% ± 3. There was a significant inverse correlation between RV function and plasma CCN2 levels (r = 0.47, p Conclusions Elevated plasma CCN2 levels are associated with RV dysfunction and valvular regurgitation in NET patients. CCN2 may play a role in neuroendocrine tumor-related cardiac fibrosis and may serve as a marker of its earliest stages.

  7. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    Science.gov (United States)

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  8. FGF growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  9. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    Science.gov (United States)

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  10. Temporally controlled growth factor delivery from a self-assembling peptide hydrogel and electrospun nanofibre composite scaffold.

    Science.gov (United States)

    Bruggeman, Kiara F; Wang, Yi; Maclean, Francesca L; Parish, Clare L; Williams, Richard J; Nisbet, David R

    2017-09-21

    Tissue-specific self-assembling peptide (SAP) hydrogels designed based on biologically relevant peptide sequences have great potential in regenerative medicine. These materials spontaneously form 3D networks of physically assembled nanofibres utilising non-covalent interactions. The nanofibrous structure of SAPs is often compared to that of electrospun scaffolds. These electrospun nanofibers are produced as sheets that can be engineered from a variety of polymers that can be chemically modified to incorporate many molecules including drugs and growth factors. However, their macroscale morphology limits them to wrapping and bandaging applications. Here, for the first time, we combine the benefits of these systems to describe a two-component composite scaffold from these biomaterials, with the design goal of providing a hydrogel scaffold that presents 3D structures, and also has temporal control over drug delivery. Short fibres, cut from electrospun scaffolds, were mixed with our tissue-specific SAP hydrogel to provide a range of nanofibre sizes found in the extracellular matrix (10-300 nm in diameter). The composite material maintained the shear-thinning and void-filling properties of SAP hydrogels that have previously been shown to be effective for minimally invasive material injection, cell delivery and subsequent in vivo integration. Both scaffold components were separately loaded with growth factors, important signaling molecules in tissue regeneration whose rapid degradation limits their clinical efficacy. The two biomaterials provided sequential growth factor delivery profiles: the SAP hydrogel provided a burst release, with the release rate decreasing over 12 hours, while the electrospun nanofibres provided a more constant, sustained delivery. Importantly, this second release commenced 6 days later. The design rules established here to provide temporally distinct release profiles can enable researchers to target specific stages in regeneration, such as the

  11. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions s...

  12. Insulin-Like Growth Factor (IGF System in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Agnieszka Adamek

    2018-04-01

    Full Text Available Hepatocyte differentiation, proliferation, and apoptosis are affected by growth factors produced in liver. Insulin-like growth factor 1 and 2 (IGF1 and IGF2 act in response to growth hormone (GH. Other IGF family components include at least six binding proteins (IGFBP1 to 6, manifested by both IGFs develop due to interaction through the type 1 receptor (IGF1R. The data based on animal models and/or in vitro studies suggest the role of IGF system components in cellular aspects of hepatocarcinogenesis (cell cycle progression, uncontrolled proliferation, cell survival, migration, inhibition of apoptosis, protein synthesis and cell growth, and show that systemic IGF1 administration can reduce fibrosis and ameliorate general liver function. In epidemiologic and clinicopathological studies on chronic liver disease (CLD, lowered serum levels, decreased tissue expression of IGF1, elevated production of IGF1R and variable IGF2 expression has been noted, from the start of preneoplastic alterations up to the developed hepatocellular carcinoma (HCC stage. These changes result in well-known clinical symptoms of IGF1 deficiency. This review summarized the current data of the complex role of IGF system components in the most common CLD (nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma. Better recognition and understanding of this system can contribute to discovery of new and improved versions of current preventive and therapeutic actions in CLD.

  13. Role of growth factors and the wound healing response in age-related macular degeneration

    NARCIS (Netherlands)

    Schlingemann, Reinier O.

    2004-01-01

    Growth factors (GF) are important in several stages of the pathogenesis of age-related macular disease (AMD). In choroidal neovascularization (CNV) in exudative AMD, the GF involved are similar to those involved in wound healing of the skin. Like granulation tissue of skin, CNV is characterized by

  14. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure

    DEFF Research Database (Denmark)

    Nielsen, R H; Clausen, N M; Schjerling, P

    2014-01-01

    transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and m......The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant......-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon...

  15. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    Science.gov (United States)

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Transforming Growth Factor-? and Nitrates in Epithelial Ovarian Cancer

    OpenAIRE

    Khalifa, Ali; Kassim, Samar K.; Ahmed, Maha I.; Fayed, Salah T.

    2002-01-01

    The role of transforming growth factor-β (TGF-β) and nitric oxide (NO) in ovarian neoplasia is still not clear. We studied the expression of TGF-β by enzyme immunoassay, and nitrates (as a stable end product of NO) in 127 ovarian tissues (36 normal, 37 benign, and 54 malignant). Ploidy status and synthetic phase fraction (SPF) were also assessed by flow cytometry. Mean ranks of TGF-β, nitrate, and SPF were significant among different groups (X2 = 12.01, P = 0.0025, X2 = 67.42, P = 0.000, X2 =...

  17. Connective-Tissue Growth Factor (CTGF/CCN2 Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Fabio A Mendes

    Full Text Available Connective-tissue growth factor (CTGF is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61, CTGF and nephroblastoma overexpressed (NOV. CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling

  18. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3.

    Science.gov (United States)

    Kapacee, Zoher; Yeung, Ching-Yan Chloé; Lu, Yinhui; Crabtree, David; Holmes, David F; Kadler, Karl E

    2010-10-01

    Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days. Copyright © 2010 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  19. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    Science.gov (United States)

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  20. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    Science.gov (United States)

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  1. Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production.

    Science.gov (United States)

    Atiba, Ayman; Nishimura, Mayumi; Kakinuma, Shizuko; Hiraoka, Takeshi; Goryo, Masanobu; Shimada, Yoshiya; Ueno, Hiroshi; Uzuka, Yuji

    2011-06-01

    Delayed wound healing is a significant clinical problem in patients who have had previous irradiation. This study investigated the effectiveness of Aloe vera (Av) on acute radiation-delayed wound healing. The effect of Av was studied in radiation-exposed rats compared with radiation-only and control rats. Skin wounds were excised on the back of rats after 3 days of local radiation. Wound size was measured on days 0, 3, 6, 9, and 12 after wounding. Wound tissues were examined histologically and the expressions of transforming growth factor β-1 (TGF-β-1) and basic fibroblast growth factor (bFGF) were examined by immunohistochemistry and reverse-transcription polymerase chain reaction. Wound contraction was accelerated significantly by Av on days 6 and 12 after wounding. Furthermore, the inflammatory cell infiltration, fibroblast proliferation, collagen deposition, angiogenesis, and the expression levels of TGF-β-1 and bFGF were significantly higher in the radiation plus Av group compared with the radiation-only group. These data showed the potential application of Av to improve the acute radiation-delayed wound healing by increasing TGF-β-1 and bFGF production. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Expression and clinical significance of fibroblast growth factor 1 in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Liu NQ

    2015-03-01

    Full Text Available Naiqing Liu,1,2,* Jingyu Zhang,2,* Shuxiang Sun,2 Liguang Yang,2 Zhongjin Zhou,2 Qinli Sun,2 Jun Niu11Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, People’s Republic of China; 2Department of General Surgery, Yishui Central Hospital, Linyi, People’s Republic of China*These authors contributed equally to this workBackground: The clinical significance of fibroblast growth factor 1 (FGF1 has been revealed in several cancers, including ovarian cancer, breast cancer, and bladder cancer. However, the clinical significance of FGF1 in gastric adenocarcinoma has not been explored.Patients and methods: In our experiments, we systematically evaluated FGF1 expression in 178 cases of gastric adenocarcinoma with immunohistochemistry, and subsequently analyzed the correlation between FGF1 expression and clinicopathologic features. Moreover, FGF1 expression in tumor tissue and corresponding adjacent tissue was detected and compared by real-time polymerase chain reaction. The Kaplan–Meier method and the Cox-regression model were used with univariate and multivariate analysis, respectively, to evaluate the prognostic value of FGF1 in gastric adenocarcinoma.Results: Higher FGF1 expression rate is 56.7% (101/178 in gastric adenocarcinoma. FGF1 expression in gastric adenocarcinoma was significantly higher than adjacent tissue (P<0.0001. Expression of FGF1 is significantly associated with lymph node invasion (P<0.001, distant metastasis (P=0.013, and differentiation (P=0.015. Moreover, FGF1 overexpression was closely related to unfavorable overall survival rate (P=0.021, and can be identified to be an independent unfavorable prognostic factor (P=0.004.Conclusion: FGF1 is an independent prognostic factor, indicating that FGF1 could be a potential molecular drug target in gastric adenocarcinoma.Keywords: fibroblast growth factor 1, gastric adenocarcinoma, prognosis, biomarker, lymph node, gene fusion

  3. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  4. Physiological role of growth factors and bone morphogenetic proteins in osteogenesis and bone fracture healing: а review

    Directory of Open Access Journals (Sweden)

    S. Sagalovsky

    2015-01-01

    Full Text Available The repair of large bone defects remains a major clinical orthopedic challenge. Bone regeneration and fracture healing is a complex physiological mechanisms regulated by a large number of biologically active molecules. Multiple factors regulate this cascade of molecular events, which affects different stages in the osteoblast and chondroblast lineage during such processes as migration, proliferation, chemotaxis, differentiation, inhibition, and extracellular protein synthesis. A recent review has focused on the mechanisms by which growth and differentiation factors regulate the fracture healing process. Rapid progress in skeletal cellular and molecular biology has led to identification of many signaling molecules associated with formation of skeletal tissues, including a large family of growth factors (transforming growth factor-β and bone morphogenetic proteins, fibroblast growth factor, insulin-like growth factor, vascular endothelial growth factor, platelet-derived growth factor, cytokines and interleukins. There is increasing evidence indicating that they are critical regulators of cellular proliferation, differentiation, extracellular matrix biosynthesis and bone mineralization. A clear understanding of cellular and molecular pathways involved in fracture healing is not only critical for improvement of fracture treatments, but it may also enhance further our knowledge of mechanisms involved in skeletal growth and repair, as well as mechanisms of aging. This suggests that, in the future, they may play a major role in the treatment of bone disease and fracture repair.

  5. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas

    International Nuclear Information System (INIS)

    Smith, F.E.; Rosen, K.M.; Villa-Komaroff, L.; Weir, G.C.; Bonner-Weir, S.

    1991-01-01

    Insulin-like growth factor I (IGF-I) mRNA expression was studied after 90% partial pancreatectomy in the rat to determine whether IGF-I was associated with pancreatic regeneration. The level of IGF-I mRNA was maximally increased (4-fold above control value) 3 days after pancreatectomy, but thereafter gradually decreased, returning to control levels by 14 days after surgery. By in situ hybridization, IGF-I mRNA in both pancreatectomized and sham-operated rats was localized to capillary endothelial cells, indicating that this is the site of IGF-I expression in the normal rat pancreas. However, enhanced IGF-I mRNA expression was localized to focal areas of regeneration unique to pancreatectomized rats. In these areas, epithelial cells of proliferating ductules and individual connective tissue cells expressed IGF-I, suggesting that IGF-I may play an important role in the growth or differentiation of pancreatic tissue

  6. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.E.; Rosen, K.M.; Villa-Komaroff, L.; Weir, G.C.; Bonner-Weir, S. (E. P. Joslin Research Laboratory, Joslin Diabetes Center, Harvard Medical School, Boston, MA (USA))

    1991-07-15

    Insulin-like growth factor I (IGF-I) mRNA expression was studied after 90% partial pancreatectomy in the rat to determine whether IGF-I was associated with pancreatic regeneration. The level of IGF-I mRNA was maximally increased (4-fold above control value) 3 days after pancreatectomy, but thereafter gradually decreased, returning to control levels by 14 days after surgery. By in situ hybridization, IGF-I mRNA in both pancreatectomized and sham-operated rats was localized to capillary endothelial cells, indicating that this is the site of IGF-I expression in the normal rat pancreas. However, enhanced IGF-I mRNA expression was localized to focal areas of regeneration unique to pancreatectomized rats. In these areas, epithelial cells of proliferating ductules and individual connective tissue cells expressed IGF-I, suggesting that IGF-I may play an important role in the growth or differentiation of pancreatic tissue.

  7. Quantification of platelets and platelet derived growth factors from platelet-rich-plasma (PRP) prepared at different centrifugal force (g) and time.

    Science.gov (United States)

    Arora, Satyam; Doda, Veena; Kotwal, Urvershi; Dogra, Mitu

    2016-02-01

    Platelet derived biomaterials represent a key source of cytokines and growth factors extensively used for tissue regeneration; wound healing and tissue repair. Our study was to quantify platelets and growth factors released by PRP when prepared at different centrifugal force (g) and time. Our study was approved by the institutional ethical committee. One hundred millilitres of whole blood (WB) was collected in bag with CPDA as the anticoagulant(AC); (14 mL for 100 mL WB ratio). Nine aliquots of 10 mL each were made from the bag and set of three aliquots were made a group. PRP was prepared at varying centrifugal force (group A: -110 g, group B: -208 g & group C: -440 g) & time (1: -5 min, 2: -10 min & 3: -20 min). Contents of each PRP prepared were analysed. Commercial sandwich ELISA kits were used to quantify the concentrations of CD62P (Diaclone SAS; France), Platelet derived growth factors-AB (Qayee-Bio; China), transforming growth factor-β1 (DRG; Germany) and vascular endothelial growth factor (Boster Immuno Leader; USA) released in each PRP prepared. Eight volunteers were enrolled in the study (24-30 years). The baseline blood counts of all the volunteers were comparable (p ≥ 0.05). Mean ± SD of platelet yield of all nine groups ranged from 17.2 ± 4.2% to 78.7 ± 5.7%. Each PRP was activated with calcified thromboplastin to quantify the growth factors released by them. Significantly higher (p < 0.05) transforming growth factor-β1 and vascular endothelial growth factor were released compared to the baseline. Our study highlights the variation in both force (g) and time results in changes at cellular level and growth factor concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    2015-01-01

    Full Text Available Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines and systemic (e.g., calcitonin and estrogens factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  9. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  10. Increased neck soft tissue mass and worsening of obstructive sleep apnea after growth hormone treatment in men with abdominal obesity

    DEFF Research Database (Denmark)

    Karimi, Mahssa; Koranyi, Josef; Franco, Celina

    2010-01-01

    Risk factors for obstructive sleep apnea (OSA) are male gender, obesity and abnormalities in neck soft tissue mass. OSA is associated with both growth hormone (GH) excess and severe GH deficiency in adults. Adults with abdominal obesity have markedly suppressed GH secretion....

  11. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction.

    Science.gov (United States)

    Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei

    2012-07-05

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.

  12. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII.

    Science.gov (United States)

    Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel

    2010-11-01

    Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated

  13. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    Science.gov (United States)

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.

  14. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    Science.gov (United States)

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  15. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  16. ALLOMETRIC GROWTH OF PRIMAL CUTS AND TISSUES IN THE PIG

    Directory of Open Access Journals (Sweden)

    Frank Siewerdt

    1994-12-01

    Full Text Available Data from 82 purebred and crossbred Large White and Duroc barrows and gilts were used to describe the growth of carcass primal cuts, of tissues, and of several organs. Pigs were allowed ad libitum to a conventional diet, which contained com and soybean meal. Pigs were weighted weekly and were slaughtered when attained a liveweight over 90kg. An allometric pattern of growth was assumed. Within the observed range of liveweight, the carcass grew slower than the whole animal. An increase of carcass weight corresponds to a similar increase of lean, but also corresponds to a larger increase of fat tissues. A suggestion to slaughter pigs near to 90kg of liveweight is presented, in order to obtain leaner carcasses.

  17. Epidermal growth factor and lung development in the offspring of the diabetic rat

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Nexø, Ebba

    2000-01-01

    Fetuses of diabetic mothers who were exposed to excessive glucose show delayed maturation. Under these conditions, altered growth factor expression or signaling may have important regulatory influences. We examined the role of epidermal growth factor (EGF) in lung development and maternal diabetes...... in the rat. In order to evaluate the possible role of glucose for the expression of EGF and the growth of lung tissue, we performed in vitro studies with organotypic cultures of fetal alveolar cells obtained from control rats. Compared to pups of normal rats, the newborn rats of untreated diabetic rats had...... and was associated with a reduced intensity of surfactant protein A-IR. The only difference observed between pups of treated diabetic rats and controls was a decrease in the lung weight:body weight ratio. In organotypic cultures, the presence of 13 mmol/L glucose in the cell media increased immunoreactive staining...

  18. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.

    Science.gov (United States)

    Font Tellado, Sonia; Balmayor, Elizabeth R; Van Griensven, Martijn

    2015-11-01

    Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  20. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    Science.gov (United States)

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  1. Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression.

    Science.gov (United States)

    Chen, Yan; Huang, Shai; Wu, Bo; Fang, Jiankai; Zhu, Minsheng; Sun, Li; Zhang, Lifeng; Zhang, Yongsheng; Sun, Maomin; Guo, Lingling; Wang, Shouli

    2017-07-25

    Transforming growth factor-β1 is considered a key contributor to the progression of breast cancer. MicroRNAs are important factors in the development and progression of many malignancies. In the present study, upon studies of breast cancer cell lines and tissues, we showed that microRNA -196a-3p is decreased by transforming growth factor-β1 in breast cancer cells and associated with breast cancer progression. We identified neuropilin-2 as a target gene of microRNA -196a-3p and showed that it is regulated by transforming growth factor-β1. Moreover, transforming growth factor-β1-mediated inhibition of microRNA -196a-3p and activation of neuropilin-2were required for transforming growth factor-β1-induced migration and invasion of breast cancer cells. In addition, neuropilin-2 expression was suppressed in breast tumors, particularly in triple-negative breast cancers. Collectively, our findings strongly indicate that microRNA -196a-3p is a predictive biomarker of breast cancer metastasis and patient survival and a potential therapeutic target in metastatic breast cancer.

  2. [Regeneration of autologous tissue-engineered cartilage by using basic-fibroblast growth factor in vitro culture].

    Science.gov (United States)

    Ding, Xiao-bang; Cheng, Ning-xin; Chen, Bing; Xia, Wan-yao; Cui, Lei; Liu, Wei; Cao, Yi-lin

    2004-05-01

    To investigate the effect of the basic fibroblast growth factor (b-FGF) to regenerate an autologous tissue-engineered cartilage in vitro. The Cells were harvested from the elastic auricular cartilage of swine,and were plated at the concentration of 1 x 10(4) cells/cm2 , studied in vitro at two different media enviroments: Group I contained Ham's F-12 with supplements and b-FGF, Group II contained Ham's F-12 only with supplements. The passage 2 cells (after 12.75 +/- 1.26 days) were harvested and mixed with 30% pluronic F-127/Ham's F-12 at the concentration of 50 x 10(6) cells/ml. It was injected subcutaneously at 0.5 ml per implant. The implants were harvested 8 weeks after the vivo culture and examined with the histological stains. The chondrocytes displayed morphologically similar to the fibroblasts in the media containing basic-FGF. The number of cell doublings (after 12.75 +/- 1.26 days) in vitro culture was as the following: Group I, 70; Group II, 5.4. Eight 8 weeks after the vivo autologous implantation, the average weight (g) and volume (cm3) in each group was as the following: Group I, 0.371 g/0.370 cm3 Group II, 0.179 g/0.173 cm3 (P < 0.01). With the b-FGF in vitro culture, the cells were expanded by 70 times after 2 weeks. Histologically, all of the engineered cartilage in the two groups were similar to the native elastic cartilage. These results indicate that the basic-FGF could be used positively to enhance the quality and quantity of the seeding cells for the generation of the well-engineered cartilage.

  3. Modulation of gap junctional intercellular communication between human smooth muscle cells by leukocyte-derived growth factors and cytokines in relation to atherogenesis

    NARCIS (Netherlands)

    Mensink, A.

    1997-01-01


    In this thesis, the effect of leukocyte-derived growth factors and cytokines on GJIC between SMC was investigated. GJIC is regarded as an important mechanism in the control of cell growth, cell differentiation and tissue homeostasis. Disturbance of SMC growth control is regarded to be a

  4. Linear Growth and Fat and Lean Tissue Gain during Childhood: Associations with Cardiometabolic and Cognitive Outcomes in Adolescent Indian Children.

    Science.gov (United States)

    Krishnaveni, Ghattu V; Veena, Sargoor R; Srinivasan, Krishnamachari; Osmond, Clive; Fall, Caroline H D

    2015-01-01

    We aimed to determine how linear growth and fat and lean tissue gain during discrete age periods from birth to adolescence are related to adolescent cardiometabolic risk factors and cognitive ability. Adolescents born to mothers with normal glucose tolerance during pregnancy from an Indian birth cohort (N = 486, age 13.5 years) had detailed anthropometry and measurements of body fat (fat%), fasting plasma glucose, insulin and lipid concentrations, blood pressure and cognitive function. Insulin resistance (HOMA-IR) was calculated. These outcomes were examined in relation to birth measurements and statistically independent measures (conditional SD scores) representing linear growth, and fat and lean tissue gain during birth-1, 1-2, 2-5, 5-9.5 and 9.5-13.5 years in 414 of the children with measurements at all these ages. Birth length and linear growth at all ages were positively associated with current height. Fat gain, particularly during 5-9.5 years was positively associated with fat% at 13.5 years (0.44 SD per SD [99.9% confidence interval: 0.29,0.58]). Greater fat gain during mid-late childhood was associated with higher systolic blood pressure (5-9.5 years: 0.23 SD per SD [0.07,0.40]) and HOMA-IR (5-9.5 years: 0.24 [0.08,0.40], 9.5-13.5 years: 0.22 [0.06,0.38]). Greater infant growth (up to age 2 years) in linear, fat or lean components was unrelated to cardiometabolic risk factors or cognitive function. This study suggests that factors that increase linear, fat and lean growth in infancy have no adverse cardiometabolic effects in this population. Factors that increase fat gain in mid-late childhood may increase cardiometabolic risk, without any benefit to cognitive abilities.

  5. Linear Growth and Fat and Lean Tissue Gain during Childhood: Associations with Cardiometabolic and Cognitive Outcomes in Adolescent Indian Children.

    Directory of Open Access Journals (Sweden)

    Ghattu V Krishnaveni

    Full Text Available We aimed to determine how linear growth and fat and lean tissue gain during discrete age periods from birth to adolescence are related to adolescent cardiometabolic risk factors and cognitive ability.Adolescents born to mothers with normal glucose tolerance during pregnancy from an Indian birth cohort (N = 486, age 13.5 years had detailed anthropometry and measurements of body fat (fat%, fasting plasma glucose, insulin and lipid concentrations, blood pressure and cognitive function. Insulin resistance (HOMA-IR was calculated. These outcomes were examined in relation to birth measurements and statistically independent measures (conditional SD scores representing linear growth, and fat and lean tissue gain during birth-1, 1-2, 2-5, 5-9.5 and 9.5-13.5 years in 414 of the children with measurements at all these ages.Birth length and linear growth at all ages were positively associated with current height. Fat gain, particularly during 5-9.5 years was positively associated with fat% at 13.5 years (0.44 SD per SD [99.9% confidence interval: 0.29,0.58]. Greater fat gain during mid-late childhood was associated with higher systolic blood pressure (5-9.5 years: 0.23 SD per SD [0.07,0.40] and HOMA-IR (5-9.5 years: 0.24 [0.08,0.40], 9.5-13.5 years: 0.22 [0.06,0.38]. Greater infant growth (up to age 2 years in linear, fat or lean components was unrelated to cardiometabolic risk factors or cognitive function.This study suggests that factors that increase linear, fat and lean growth in infancy have no adverse cardiometabolic effects in this population. Factors that increase fat gain in mid-late childhood may increase cardiometabolic risk, without any benefit to cognitive abilities.

  6. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  7. Alteration of placental haemostatic mechanisms in idiopathic intrauterine growth restriction

    Directory of Open Access Journals (Sweden)

    Jaime Eduardo Bernal Villegas

    2012-08-01

    Full Text Available Intrauterine growth restriction is a complication of pregnancy with a high probability of perinatal morbidity and mortality. It appears tobe caused by abnormal development of placental vasculature. Haemostatic processes are important for the development of the placenta,and an imbalance between procoagulant and anticoagulant factors has been associated with risk of intrauterine growth restriction.Objective. To evaluate coagulation abnormalities in placenta of pregnancies complicated with idiopathic intrauterine growth restriction.Materials and methods. Five placentas from pregnancies with idiopathic intrauterine growth restriction were compared to 19 controls.We performed gross and histological examination of the placenta. Analysis was made of both mRNA expression by real-time PCRand protein by ELISA of tissue factor and thrombomodulin in placental tissue. Results. Results based on histological evaluation wereconsistent with an increased prothrombotic state in placentas from pregnancies with idiopathic intrauterine growth restriction, andthrombosis of chorionic vessels was the most important finding. The study showed an increased expression of tissue factor protein(p=0.0411 and an increase in the ratio of tissue factor/thrombomodulin mRNA (p=0.0411 and protein (p=0.0215 in placentas frompregnancies with idiopathic intrauterine growth restriction. There were no statistically significant differences neither between cases andcontrols in the mRNA levels of tissue factor or thrombomodulin nor at the protein level of thrombomodulin. Conclusion. Evidence ofalteration of local haemostatic mechanisms at the level of the placenta, including abnormal expression of tissue factor and tissue factor/thrombomodulin ratio, in pregnancies that occur with idiopathic intrauterine growth restriction is presented.

  8. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Andersen, Kasper; Clement, Christian Alexandro

    2014-01-01

    In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling m...... growth. Moreover, the presence of multiple TGF-β/BMP antagonists imply that certain growth factors are subjected to local regulation on different levels which address another important level of intraovarian regulation of follicle development in humans.......In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling...... molecules and TGF- β/BMP antagonists during early human folliculogenesis.Human preantral follicles were enzymatically isolated from surplus ovarian tissue obtained from women having ovarian cortical tissue frozen for fertility preservation. A total of 348 human preantral follicles, ranging from 40 to 200 µm...

  9. Expression of vascular endothelial factor protein in the tumor tissues of patients with Stages I-II ovarian cancer

    Directory of Open Access Journals (Sweden)

    V. L. Karapetyan

    2010-01-01

    Full Text Available To define tumor markers is presently the most interesting and promising direction for the diagnosis of malignancies. The expression of the major angiogenesis factor vascular endothelial growth factor (VEGF in primary tumor tissue was studied in ovarian cancer (OC patients to define the prognostic value of the marker.The study enrolled 48 patients with OC. The immunohistochemical technique was used to examine VEGF expression in the primary tu- mor tissue. The frequency of VEGF expression, which was associated with lower relapse-free survival rates, was found to be high (85.4% in OC patients (p > 0.05.The tumor expression of the angiogenic factor VEGF was shown to provide prognostic information in early-stage ovarian epithelial cancer.

  10. [Conservative treatment using plasma rich in growth factors (PRGF) for injury to the ligamentous complex of the ankle].

    Science.gov (United States)

    Frei, R; Biosca, F E; Handl, M; Trc, T

    2008-02-01

    The authors describe the therapeutic utilization of separated/isolated autologous growth factors in semiconservative treatment of type III injury to the ankle ligamentous complex. Between October 2004 and March 2005 a group of 11 patients, two women and nine men, aged 18 to 41 (average, 25.09) years with acute injury to the lateral ligamentous complex of the ankle were treated by plasma rich in growth factors (PRGF) infiltration. On functional radiographic examination, the post-traumatic lateral opening of the tibiotalar intraarticular space was 17.45 degrees (range, 12.0-30.0; s = 5.68). The injured patients were clinically examined and standard forced inversion radiographs were made using topical anesthesia. Autologous PRGF activated with calcium chloride was used to infiltrate the injured tissues. The treatment was followed by immobilization of the joint and its subsequent rehabilitation. Clinical examination of injured tissues was carried out at 4 and 6 weeks of follow-up, using stability assessment tests and functional radiography of the ankle. Physical therapy included standard procedures, but faster regeneration of the soft tissues allowed for more exercises. The average time of healing was 5.18 weeks. Five patients showed no signs of instability at 4 weeks after therapy and could return to their previous sports activities. One patient had lateral ankle instability at 5 weeks and therefore the therapy continued with prolonged immobilization and then rehabilitation at a slower pace. The average lateral opening of the tibiotalar intra-articular space at 4 or 6 follow-up weeks was 4.73 degrees (range, 3.0 - 7.0; s = 1.19). At 6 weeks after therapy, 90.9% of the patients resumed their full sports activities. Ankle distortion with swelling, hematoma and pain, but with no radiographic findings of ligament lesions, is usually treated conservatively by ankle immobilization and early rehabilitation. When an injury to the fibular ankle ligaments occurs (i.e., opening

  11. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  12. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Kazim, A.L.

    1990-01-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 μM. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein

  13. Growth hormone-insulin-like growth factor-1 and inflammatory response to a single exercise bout in children and adolescents.

    Science.gov (United States)

    Nemet, Dan; Eliakim, Alon

    2010-01-01

    Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.

  14. Homeostatic pressure, tumor growth and fingering of epithelial tissues: Some generic physics arguments

    Science.gov (United States)

    Risler, Thomas

    2011-03-01

    We propose that one aspect of homeostasis is the regulation of tissues to preferred pressures, which can lead to a competition for space of purely mechanical origin and be an underlying mechanism for tumor growth. Surface and bulk contributions to pressure lead to the existence of a critical size that must be overcome by metastases to reach macroscopic sizes. This property qualitatively explains the observed size distributions of metastases, while size-independent growth rates cannot account for clinical and experimental data. It also potentially explains the observed preferential growth of metastases on tissue surfaces and membranes, suggests a mechanism underlying the seed and soil hypothesis introduced by Stephen Paget in 1889, and yields realistic values for metastatic inefficiency. Treating epithelial tissues as viscous fluids with effective cell division, we find a novel hydrodynamic instability that leads to the formation of fingering protrusions of the epithelium into the connective tissue. Arising from a combination of viscous friction effects and proliferation of the epithelial cells, this instability provides physical insight into a potential mechanism by which interfaces between epithelia and stroma undulate, and potentially by which tissue dysplasia leads to cancerous invasion. In collaboration with M. Basan, J.-F. Joanny, X. Sastre-Garau and J. Prost.

  15. Growth hormone, growth factors, and acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  16. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  17. Pazopanib for the treatment of soft-tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Heudel P

    2012-10-01

    Full Text Available Pierre Heudel,1 Philippe Cassier,1 Olfa Derbel,1 Armelle Dufresne,1 Pierre Meeus,2 Philippe Thiesse,3 Dominique Ranchère-Vince,4 Jean Yves Blay,1 Isabelle Ray-Coquard1,51Department of Medical Oncology, 2Department of Surgical Oncology, 3Department of Radiology, 4Department of Pathology, Leon Berard Center, Lyon, 5EAM 4128 Sante-Individu-Societe, Lyon University, Lyon, FranceAbstract: Pazopanib is a multikinase inhibitor which potently inhibits the activity of major receptor tyrosine kinases, including vascular endothelial growth factor receptor-1, vascular endothelial growth factor receptor-2, vascular endothelial growth factor receptor-3, platelet-derived growth factor receptor-a, platelet-derived growth factor receptor-a, and c-Kit. Approved by the Food and Drug Administration in 2009 in the United States for the treatment of metastatic renal cell carcinoma, pazopanib has been tested in advanced or metastatic soft-tissue sarcoma. Unlike other tyrosine kinase inhibitors, a statistically significant efficacy in phase II but also in randomized phase III studies has been shown. In comparison with sunitinib or sorafenib, pazopanib has a similar toxicity profile and is generally well tolerated. This review details the development of this new therapeutic class in the treatment of metastatic soft-tissue sarcomas.Keywords: soft-tissue sarcoma, pazopanib, tyrosine kinase inhibitor

  18. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  19. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Hansen, Mette; Boesen, Anders; Holm, Lars

    2013-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing, but t...

  20. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I

    International Nuclear Information System (INIS)

    Drago, J.; Murphy, M.; Carroll, S.M.; Harvey, R.P.; Bartlett, P.F.

    1991-01-01

    Fibroblast growth factor stimulates proliferation and subsequent differentiation of precursor cells isolated from the neuroepithelium of embryonic day 10 mice in vitro. Here we show that fibroblast growth factor-induced proliferation is dependent on the presence of insulin-like growth factors (IGFs) and that IGF-I is endogenously produced by the neuroepithelial cells. Blocking of endogenous IGF-I activity with anti-IGF-I antibodies results in complete inhibition of fibroblast growth factor-mediated proliferation and in cell death. IGF-I alone acts as a survival agent. These observations correlate with the detection of transcripts for IGF-I and basic fibroblast growth factor in freshly isolated neuroepithelium and are consistent with an autocrine action of these factors in early brain development in vivo

  1. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  2. THE SIGNIFICANCE OF EPIDERMAL GROWTH FACTOR RECEPTOR AND SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE CYTOLOGY OF PATIENTS WITH TRANSITIONAL CELL CARCINOMA OF THE URINARY BLADDER.

    Science.gov (United States)

    Kehinde, E O; Al-Maghrebi, M; Anim, J T; Kapila, K; George, S S; Al-Juwaiser, A; Memon, A

    2013-01-01

    To assess whether epidermal growth factor receptor (EGFR) and survivin immunostaining of tumour cells in urinary cytology and tissue of patients with bladder cancer has a prognostic significance. Prospective study Department of Surgery (Division of Urology), Mubarak Al-Kabeer Teaching Hospital and Faculty of Medicine, Kuwait University, Kuwait Urine cytology smears obtainedpriorto cystoscopy in patients with transitional cell carcinoma (TCC) of the bladder were immunostained for EGFR and survivin. Bladder cancer tissue resected at surgery was also immunostained for EGFR and survivin expression. Tissue expression of EGFR and survivin in TCC of the bladder was compared to their expression in urine cytology and relationship to tumour grade and stage. 178 patients were studied (43 newly diagnosed bladder cancer, 58 with recurrent TCC and 77 in disease remission). Twenty five patients with normal urothelium served as controls. The mean sensitivity of urine cytology, tissue survivin immunohistochemistry (IHC) and tissue EGFR IHC was 30.5%, 62% and 59% respectively. The corresponding mean specificity was 95%, 79% and 38% respectively. For grades 1, 2 and 3 bladder tumors, tissue expression positivity for EGFR was 47.8%, 92.9%, 100% and for tissue survivin it was 27.8%, 18.2% and 33.3% respectively. For grades 1, 2 and 3 bladder tumors, urine expression positivity for EGFR was 35.7%, 40% and 67.7% and for urine survivin it was 8.3%, 42.9% and 33.3% respectively. Positive EGFR immunostaining of urine cytology specimen or tumour tissue increases with histological grade of TCC of the bladder. Survivin expression is less consistent in both urine cytology specimen and tissue samples. EGFR immunostaining may provide a useful tool in the grading of bladder TCC and aid in the selection of patients that may benefit from administration of EGFR inhibitors.

  3. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  4. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael D; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C; Dandekar, Satya

    2003-07-20

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression.

  5. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    George, Michael D.; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C.; Dandekar, Satya

    2003-01-01

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression

  6. Activity of insulin growth factors and shrimp neurosecretory organ extracts on a lepidopteran cell line.

    Science.gov (United States)

    Hatt, P J; Liebon, C; Morinière, M; Oberlander, H; Porcheron, P

    1997-01-01

    Ecdysteroids, or molting hormones, have been proven to be key differentiation regulators for epidermal cells in the postembryonic development of arthropods. Regulators of cell proliferation, however, remain largely unknown. To date, no diffusible insect peptidic growth factors have been characterized. Molecules structurally related to insulin have been discovered in insects, as in other eucaryotes. We developed in vitro tests for the preliminary characterization of potential growth factors in arthropods by adapting the procedures designed to detect such factors in vertebrates to an insect cell line (IAL-PID2) established from imaginal discs of the Indian meal moth. We verified the ability of these tests to measure the proliferation of IAL-PID2 cells. We tested mammalian insulin and insulin-like growth factors (IGF-I, IGF-II). Following an arrest of cell proliferation by serum deprivation, IGF-I and IGF-II caused partial resumption of the cell cycle, evidenced by DNA synthesis. In contrast, the addition of 20-hydroxyecdysone arrested the proliferation of the IAL-PID2 cells. The cell line was then used in a test for functional characterization of potential growth factors originating from the penaeid shrimp, Penaeus vannamei. Crude extracts of neurosecretory and nervous tissues, eyestalks, and ventral neural chain compensated for serum deprivation and stimulated completion of mitosis. Arch.

  7. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    International Nuclear Information System (INIS)

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  8. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  9. Diversification of the insulin-like growth factor 1 gene in mammals.

    Directory of Open Access Journals (Sweden)

    Peter Rotwein

    Full Text Available Insulin-like growth factor 1 (IGF1, a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  10. Neutron kerma factors, and water equivalence of some tissue substitutes

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Vega C, H. R.

    2014-08-01

    The kerma factors and kerma relative to air and water of 24 compounds used as tissue substitutes were calculated for neutron energy from 2.53 x 10 -8 up to 29 MeV. The kerma ratio of the tissue substitutes relative to air and water were calculated by the ratio of kerma factors of the tissue substitute to air and water respectively. The water equivalence of the selected tissue substitutes was observed above neutron energies 100 eV. Kerma ratio relative to the air for Poly-vinylidene fluoride and Teflon are found to be nearest to unity in very low energy (up to 1 eV) and above 63 eV respectively. It was found that the natural rubber as a water equivalent tissue substitute compound. The results of the kerma factors in our investigation shows a very good agreement with those published in ICRU-44. We found that at higher neutron energies, the kerma factors and kerma ratios of the selected tissue substitute compounds are approximately same, but differences are large for energies below 100 eV. (Author)

  11. Connective tissue growth factor (CTGF/CCN2 is negatively regulated during neuron-glioblastoma interaction.

    Directory of Open Access Journals (Sweden)

    Luciana F Romão

    Full Text Available Connective-tissue growth factor (CTGF/CCN2 is a matricellular-secreted protein involved in complex processes such as wound healing, angiogenesis, fibrosis and metastasis, in the regulation of cell proliferation, migration and extracellular matrix remodeling. Glioblastoma (GBM is the major malignant primary brain tumor and its adaptation to the central nervous system microenvironment requires the production and remodeling of the extracellular matrix. Previously, we published an in vitro approach to test if neurons can influence the expression of the GBM extracellular matrix. We demonstrated that neurons remodeled glioma cell laminin. The present study shows that neurons are also able to modulate CTGF expression in GBM. CTGF immnoreactivity and mRNA levels in GBM cells are dramatically decreased when these cells are co-cultured with neonatal neurons. As proof of particular neuron effects, neonatal neurons co-cultured onto GBM cells also inhibit the reporter luciferase activity under control of the CTGF promoter, suggesting inhibition at the transcription level. This inhibition seems to be contact-mediated, since conditioned media from embryonic or neonatal neurons do not affect CTGF expression in GBM cells. Furthermore, the inhibition of CTGF expression in GBM/neuronal co-cultures seems to affect the two main signaling pathways related to CTGF. We observed inhibition of TGFβ luciferase reporter assay; however phopho-SMAD2 levels did not change in these co-cultures. In addition levels of phospho-p44/42 MAPK were decreased in co-cultured GBM cells. Finally, in transwell migration assay, CTGF siRNA transfected GBM cells or GBM cells co-cultured with neurons showed a decrease in the migration rate compared to controls. Previous data regarding laminin and these results demonstrating that CTGF is down-regulated in GBM cells co-cultured with neonatal neurons points out an interesting view in the understanding of the tumor and cerebral microenvironment

  12. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    Science.gov (United States)

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  13. Expression of connective tissue growth factor in male breast cancer: clinicopathologic correlations and prognostic value.

    Science.gov (United States)

    Lacle, Miangela M; van Diest, Paul J; Goldschmeding, Roel; van der Wall, Elsken; Nguyen, Tri Q

    2015-01-01

    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of secreted proteins that are believed to play an important role in the development of neoplasia. In particular, CTGF has been reported to play an important role in mammary tumorigenesis and to have prognostic value in female breast cancer (FBC). The aim of the present study was to investigate clinicopathologic correlations and prognostic value of CTGF in male breast cancer (MBC) and to compare these findings with FBC. For this, we studied CTGF protein expression by immunohistochemistry in 109 MBC cases and 75 FBC cases. In MBC, stromal CTGF expression was seen in the majority of the cases 78% (85/109) with high expression in 31/109 cases (28.4%), but expression in tumor cells was only seen in 9.2% (10/109) of cases. High stromal CTGF expression correlated with high grade and high proliferation index (>15%) assessed by MIB-1 immunohistochemical staining. CTGF expression in tumor epithelial cells did not correlate with any of the clinicopathologic features. In FBC, stromal CTGF expression positively correlated with mitotic count and tumor CTGF expression was associated with triple negative status of the tumor (p = 0.002). Neither stromal nor tumor epithelial cell CTGF expression had prognostic value in MBC and FBC. In conclusion, stromal CTGF expression was seen in a high percentage of MBC and was correlated with high grade and high proliferation index. In view of the important role of the microenvironment in cancer progression, this might suggest that stromal CTGF could be an interesting target for novel therapies and molecular imaging. However, the lack of association with prognosis warrants caution. The potential role of CTGF as a therapeutic target for triple negative FBC deserves to be further studied.

  14. Partial characterization of a putative new growth factor present in pathological human vitreous.

    Science.gov (United States)

    Pombo, C; Bokser, L; Casabiell, X; Zugaza, J; Capeans, M; Salorio, M; Casanueva, F

    1996-03-01

    Several growth factors have been implicated in the development of proliferative eye diseases, and some of those are present in human vitreous (HV). The effects of HV on cellular responses which modulate proliferative cell processes were studied. This study describes the partial characterization of a vitreous factor activity which does not correspond to any of the previously reported growth factors in pathological HV. Vitreous humour was obtained from medical vitrectomies, from patients with PDR and PVR. The biological activity of the vitreous factor was determined by its ability to increase cytosolic calcium concentration ([Ca2+]i), increase production of inositol phosphates, and induce cell proliferation in the cell line EGFR T17. In some experiments other cell lines, such as NIH 3T3, 3T3-L1, FRTL5, A431, PC12, Y79, and GH3, were also employed. Measurement of [Ca2+]i in cell suspensions was performed using the fluorescent Ca2+ indicator fura-2. The activity of the factor present in HV was compared with other growth factors by means of: (a) [Ca2+]i mobilization pattern, (b) sequential homologous and heterologous desensitization of receptors, (c) effects of phorbol esters on their action, and (d) inactivation after treatment with different proteolytic enzymes. The HV-induced cell proliferation and increases in [Ca2+]i concentration were characterized by a peculiar time pattern. The different approaches used ruled out its identity with PDGF, bFGF, EGF, TGF-beta, IGFs, TNF-alpha, NGF, and other compounds such as ATP, angiotensin I, and bradykinin. Vitreous factor actions are mediated by specific receptors apparently regulated by PKC. This factor is able to induce [Ca2+]i mobilization in most of the cell lines studied, indicating that its effects are not tissue specific. These results suggest the presence of a growth factor activity in pathological HV which may be due to the presence of an undescribed growth factor in the eye.

  15. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells.

    Science.gov (United States)

    Chang, Cheng-Chi; Hsu, Wen-Hao; Wang, Chen-Chien; Chou, Chun-Hung; Kuo, Mark Yen-Ping; Lin, Been-Ren; Chen, Szu-Ta; Tai, Shyh-Kuan; Kuo, Min-Liang; Yang, Muh-Hwa

    2013-07-01

    The epithelial-mesenchymal transition (EMT) is a key mechanism in both embryonic development and cancer metastasis. The EMT introduces stem-like properties to cancer cells. However, during somatic cell reprogramming, mesenchymal-epithelial transition (MET), the reverse process of EMT, is a crucial step toward pluripotency. Connective tissue growth factor (CTGF) is a multifunctional secreted protein that acts as either an oncoprotein or a tumor suppressor among different cancers. Here, we show that in head and neck squamous cell carcinoma (HNSCC), CTGF promotes the MET and reduces invasiveness. Moreover, we found that CTGF enhances the stem-like properties of HNSCC cells and increases the expression of multiple pluripotency genes. Mechanistic studies showed that CTGF induces c-Jun expression through αvβ3 integrin and that c-Jun directly activates the transcription of the pluripotency genes NANOG, SOX2, and POU5F1. Knockdown of CTGF in TW2.6 cells was shown to reduce tumor formation and attenuate E-cadherin expression in xenotransplanted tumors. In HNSCC patient samples, CTGF expression was positively correlated with the levels of CDH1, NANOG, SOX2, and POU5F1. Coexpression of CTGF and the pluripotency genes was found to be associated with a worse prognosis. These findings are valuable in elucidating the interplay between epithelial plasticity and stem-like properties during cancer progression and provide useful information for developing a novel classification system and therapeutic strategies for HNSCC. ©2013 AACR.

  16. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    International Nuclear Information System (INIS)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-01-01

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration

  17. Adrenergic effects on secretion of epidermal growth factor from Brunner's glands

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1985-01-01

    The influence of the sympathetic nervous system and adrenergic agonists on flow rate and secretion of epidermal growth factor (EGF) from Brunner's glands has been investigated in the rat. Chemical sympathectomy by administration of 6-hydroxydopamine increased volume secretion and output of EGF from...... Brunner's glands but depleted the glands of EGF. Infusion of noradrenaline, an alpha-adrenergic agonist, inhibited basal and vasoactive intestinal polypeptide (VIP) stimulated flow rate and output of EGF from Brunner's glands and increased the amount of EGF in the tissue. Vasoactive intestinal polypeptide...... also increased the amount of EGF in Brunner's gland tissue and this was unchanged after simultaneous infusion of VIP and noradrenaline as well as VIP and isoproterenol, a beta-adrenergic agonist. Isoproterenol had no effect on basal and VIP stimulated secretion of EGF from Brunner's glands...

  18. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern

    DEFF Research Database (Denmark)

    Carneiro, Ana; Bendahl, Par-Ola; Engellau, Jacob

    2011-01-01

    type, necrosis, and grade. METHODS:: Whole-tumor sections from 239 soft tissue sarcomas of the extremities were reviewed for the following prognostic factors: size, vascular invasion, necrosis, and growth pattern. A new prognostic model, referred to as SING (Size, Invasion, Necrosis, Growth......), was established and compared with other clinically applied systems. RESULTS:: Size, vascular invasion, necrosis, and peripheral tumor growth pattern provided independent prognostic information with hazard ratios of 2.2-2.6 for development of metastases in multivariate analysis. When these factors were combined...... into the prognostic model SING, high risk of metastasis was predicted with a sensitivity of 74% and a specificity of 85%. Moreover, the prognostic performance of SING compared favorably with other widely used systems. CONCLUSIONS:: SING represents a promising prognostic model, and vascular invasion and tumor growth...

  19. A Comparison Study of Growth Factor Expression following Treatment with Transcutaneous Electrical Nerve Stimulation, Saline Solution, Povidone-Iodine, and Lavender Oil in Wounds Healing

    Directory of Open Access Journals (Sweden)

    Adalet Koca Kutlu

    2013-01-01

    Full Text Available This study compared the effects of transcutaneous electrical nerve stimulation (TENS, saline solution (SS, povidone-iodine (PI, and lavender oil (Lavandula angustifolia through expression of growth factors in a rat model of wound healing. Six experimental groups were established, each containing 8 rats: a healthy group with no incision wounds, an incision-control group, an incision and TENS group, an incision and SS group, an incision and PI group, and an incision and lavender oil group. Experiments continued for 5 days, after which the skin in the excision area was removed. Tissue concentrations of epidermal growth factor (EGF and platelet-derived growth factor (PDGF-A were measured using enzyme-linked immunosorbent assay (ELISA. Tissue expressions of EGF, PDGF-A, and fibroblast growth factor (FGF-2 were determined using immunohistochemistry. Wound closure progressed more rapidly in the TENS and lavender oil groups than in the control and other study groups. In particular, PDGF-A expressions in the dermis and EGF expression in the epidermis were significantly intense in the TENS group (P<0.05. In addition, ELISA levels of growth factors such as PDGF-A and EGF were significantly higher in TENS group compared to the control group (P<0.05. These immunohistochemical and ELISA results suggest that TENS may improve wound healing through increasing growth factors in the dermis and epidermis more than other topical applications.

  20. Role of Insulin-like growth factors in initiation of follicle growth in normal and polycystic human ovaries.

    Science.gov (United States)

    Stubbs, Sharron A; Webber, Lisa J; Stark, Jaroslav; Rice, Suman; Margara, Raul; Lavery, Stuart; Trew, Geoffrey H; Hardy, Kate; Franks, Stephen

    2013-08-01

    Polycystic ovary syndrome (PCOS), the commonest cause of anovulatory infertility, is characterized by disordered follicle development including increased activation and accelerated growth of preantral follicles. Data from experimental animals and preliminary results from studies of human ovarian tissue suggest that IGFs affect preantral follicle development. Our objectives were to investigate the expression of the type-1 IGF receptor (IGFR-1) in the human ovary and to determine whether IGFs are involved in stimulating the transition of follicles from primordial to primary stage in normal and polycystic ovaries. We used archived ovarian tissue for protein expression studies and small cortical biopsies for follicle isolation and for tissue culture. This was a laboratory-based study, using clinical tissue samples. A total of 54 women, 33 with normal ovaries and 21 with polycystic ovaries, were classified by reference to menstrual cycle history and ultrasonography. We evaluated expression of IGFR-1 mRNA in isolated preantral follicles and of IGFR-1 protein in archived ovarian tissue samples from normal and polycystic ovaries and effects of exogenous IGF-1 on preantral follicle development and survival in cultured fragments of normal and polycystic ovaries. IGFR-1 mRNA and protein was expressed in preantral follicles at all stages of development and enhanced expression was noted in PCOS follicles during early preantral development. IGF-1 stimulated initiation of follicle growth in normal tissue but had little effect on preantral follicle growth in polycystic ovaries in which, characteristically, there was a higher proportion of follicles that had entered the growing phase even before culture. IGFs are plausible candidates in regulation of initiation of human follicle growth, and accelerated preantral follicle growth in PCOS may be due to increased activity of endogenous IGFs.

  1. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  2. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2007-01-01

    greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon......Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF......-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7...

  3. Engineering Complex Tissues

    Science.gov (United States)

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  4. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  5. Effects of intraluteal implants of prostaglandin E1 or E2 on angiogenic growth factors in luteal tissue of Angus and Brahman cows.

    Science.gov (United States)

    Weems, Yoshie S; Ma, Yan; Ford, Stephen P; Nett, Terry M; Vann, Rhonda C; Lewis, Andrew W; Neuendorff, Don A; Welsh, Thomas H; Randel, Ronald D; Weems, Charles W

    2014-12-01

    Previously, it was reported that intraluteal implants containing prostaglandin E1 or E2 (PGE1 and PGE2) in Angus or Brahman cows prevented luteolysis by preventing loss of mRNA expression for luteal LH receptors and luteal unoccupied and occupied LH receptors. In addition, intraluteal implants containing PGE1 or PGE2 upregulated mRNA expression for FP prostanoid receptors and downregulated mRNA expression for EP2 and EP4 prostanoid receptors. Luteal weight during the estrous cycle of Brahman cows was reported to be lesser than that of Angus cows but not during pregnancy. The objective of this experiment was to determine whether intraluteal implants containing PGE1 or PGE2 alter vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), angiopoietin-1 (ANG-1), and angiopoietin-2 (ANG-2) protein in Brahman or Angus cows. On Day 13 of the estrous cycle, Angus cows received no intraluteal implant and corpora lutea were retrieved, or Angus and Brahman cows received intraluteal silastic implants containing vehicle, PGE1, or PGE2 on Day 13 and corpora lutea were retrieved on Day 19. Corpora lutea slices were analyzed for VEGF, FGF-2, ANG-1, and ANG-2 angiogenic proteins via Western blot. Day-13 Angus cow luteal tissue served as preluteolytic controls. Data for VEGF were not affected (P > 0.05) by day, breed, or treatment. PGE1 or PGE2 increased (P Angus cows compared with Day-13 and Day-19 Angus controls but decreased (P Angus controls. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-1 in Angus luteal tissue when compared with Day-13 or Day-19 controls, but ANG-1 was decreased (P Angus Vehicle controls when compared with Day-13 Angus controls, which was prevented (P Angus cows. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-2 in Brahman cows. PGE1 or PGE2 may alter cow luteal FGF-2, ANG-1, or ANG-2 but not VEGF to prevent luteolysis; however, species or breed differences may exist. Published by Elsevier Inc.

  6. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  7. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    Science.gov (United States)

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  8. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin.

    Science.gov (United States)

    Tanimoto, Ryuta; Palladino, Chiara; Xu, Shi-Qiong; Buraschi, Simone; Neill, Thomas; Gomella, Leonard G; Peiper, Stephen C; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2017-12-01

    Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis. Copyright © 2017. Published by Elsevier B.V.

  9. Growth factors, muscle function, and doping.

    Science.gov (United States)

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  10. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.

    Science.gov (United States)

    Chung, C A; Lin, Tze-Hung; Chen, Shih-Di; Huang, Hsing-I

    2010-01-21

    Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.

  11. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  12. Subepithelial connective tissue graft with and without the use of plasma rich in growth factors for treating root exposure

    Science.gov (United States)

    Lafzi, Ardeshir; Shirmohammadi, Adileh; Behrozian, Ahmad; Kashefimehr, Atabak; Khashabi, Ehsan

    2012-01-01

    Purpose The aim of this study was to evaluate the clinical efficiency of the subepithelial connective tissue graft (SCTG) with and without plasma rich in growth factor (PRGF) in the treatment of gingival recessions. Methods Twenty bilateral buccal gingival Miller's Class I and II recessions were selected. Ten of the recessions were treated with SCTG and PRGF (test group). The rest ten of the recessions were treated with SCTG (control group). The clinical parameters including recession depth (RD), percentage of root coverage (RC), mucogingival junction (MGJ) position, clinical attachment level (CAL), and probing depth (PD) were measured at the baseline, and 1 and 3 months later. The data were analyzed using the Wilcoxon signed rank and Mann-Whitney U tests. Results After 3 months, both groups showed a significant improvement in all of the mentioned criteria except PD. Although the amount of improvement was better in the SCTG+PRGF group than the SCTG only group, this difference was not statistically significant. The mean RC was 70.85±12.57 in the test group and 75.83±24.68 in the control group. Conclusions Both SCTG+PRGF and SCTG only result in favorable clinical outcomes, but the added benefit of PRGF is not evident. PMID:23346462

  13. Integrins as Modulators of Transforming Growth Factor Beta Signaling in Dermal Fibroblasts During Skin Regeneration After Injury.

    Science.gov (United States)

    Boo, Stellar; Dagnino, Lina

    2013-06-01

    Abnormal wound repair results from disorders in granulation tissue remodeling, and can lead to hypertrophic scarring and fibrosis. Excessive scarring can compromise tissue function and decrease tissue resistance to additional injuries. The development of potential therapies to minimize scarring is, thus, necessary to address an important clinical problem. It has been clearly established that multiple cytokines and growth factors participate in the regulation of cutaneous wound healing. More recently, it has become apparent that these factors do not necessarily activate isolated signaling pathways. Rather, in some cases, there is cross-modulation of several cellular pathways involved in this process. Two of the key pathways that modulate each other during wound healing are activated by transforming growth factor-β and by extracellular matrix proteins acting through integrins. The pathogenesis of excessive scarring upon wound healing is not fully understood, as a result of the complexity of this process. However, the fact that many pathways combine to produce fibrosis provides multiple potential therapeutic targets. Some of them have been identified, such as focal adhesion kinase and integrin-linked kinase. Currently, a major challenge is to develop pharmacological inhibitors of these proteins with therapeutic value to promote efficient wound repair. The ability to better understand how different pathways crosstalk during wound repair and to identify and pharmacologically modulate key factors that contribute to the regulation of multiple wound-healing pathways could potentially provide effective therapeutic targets to decrease or prevent excessive scar formation and/or development of fibrosis.

  14. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  15. Estradiol suppresses tissue androgens and prostate cancer growth in castration resistant prostate cancer

    International Nuclear Information System (INIS)

    Montgomery, Bruce; Nelson, Peter S; Vessella, Robert; Kalhorn, Tom; Hess, David; Corey, Eva

    2010-01-01

    Estrogens suppress tumor growth in prostate cancer which progresses despite anorchid serum androgen levels, termed castration resistant prostate cancers (CRPC), although the mechanisms are unclear. We hypothesize that estrogen inhibits CRPC in anorchid animals by suppressing tumoral androgens, an effect independent of the estrogen receptor. The human CRPC xenograft LuCaP 35V was implanted into orchiectomized male SCID mice and established tumors were treated with placebo, 17β-estradiol or 17β-estradiol and estrogen receptor antagonist ICI 182,780. Effects of 17β-estradiol on tumor growth were evaluated and tissue testosterone (T) and dihydrotestosterone (DHT) evaluated by mass spectrometry. Treatment of LuCaP 35V with 17β-estradiol slowed tumor growth compared to controls (tumor volume at day 21: 785 ± 81 mm 3 vs. 1195 ± 84 mm 3 , p = 0.002). Survival was also significantly improved in animals treated with 17β-estradiol (p = 0.03). The addition of the estrogen receptor antagonist ICI 182,780 did not significantly change survival or growth. 17β-estradiol in the presence and absence of ICI 182,780 suppressed tumor testosterone (T) and dihydrotestosterone (DHT) as assayed by mass spectrometry. Tissue androgens in placebo treated LuCaP 35V xenografts were; T = 0.71 ± 0.28 pg/mg and DHT = 1.73 ± 0.36 pg/mg. In 17β-estradiol treated LuCaP35V xenografts the tissue androgens were, T = 0.20 ± 0.10 pg/mg and DHT = 0.15 ± 0.15 pg/mg, (p < 0.001 vs. controls). Levels of T and DHT in control liver tissue were < 0.2 pg/mg. CRPC in anorchid animals maintains tumoral androgen levels despite castration. 17β-estradiol significantly suppressed tumor T and DHT and inhibits growth of CRPC in an estrogen receptor independent manner. The ability to manipulate tumoral androgens will be critical in the development and testing of agents targeting CRPC through tissue steroidogenesis

  16. Functions and Mechanisms of Fibroblast Growth Factor (FGF Signalling in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Hans-Arno J. Müller

    2013-03-01

    Full Text Available Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step morphogenetic processes to achieve and maintain a transitional state of the cells required for the control of cell fate. In the genetic model Drosophila melanogaster, FGF signalling via the receptor tyrosine kinases Heartless (Htl and Breathless (Btl is particularly well studied. These FGF receptors affect gene expression, cell shape and cell–cell interactions during mesoderm layer formation, caudal visceral muscle (CVM formation, tracheal morphogenesis and glia differentiation. Here, we will address the current knowledge of the biological functions of FGF signalling in the fly on the tissue, at a cellular and molecular level.

  17. Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate.

    Science.gov (United States)

    Wagner, Eric R; Bravo, Dalibel; Dadsetan, Mahrokh; Riester, Scott M; Chase, Steven; Westendorf, Jennifer J; Dietz, Allan B; van Wijnen, Andre J; Yaszemski, Michael J; Kakar, Sanjeev

    2015-11-01

    Surgical reconstruction of intra-articular ligament injuries is hampered by the poor regenerative potential of the tissue. We hypothesized that a novel composite polymer "neoligament" seeded with progenitor cells and growth factors would be effective in regenerating native ligamentous tissue. We synthesized a fumarate-derivative of polycaprolactone fumarate (PCLF) to create macro-porous scaffolds to allow cell-cell communication and nutrient flow. Clinical grade human adipose tissue-derived human mesenchymal stem cells (AMSCs) were cultured in 5% human platelet lysate (PL) and seeded on scaffolds using a dynamic bioreactor. Cell growth, viability, and differentiation were examined using metabolic assays and immunostaining for ligament-related markers (e.g., glycosaminoglycans [GAGs], alkaline phosphatase [ALP], collagens, and tenascin-C). AMSCs seeded on three-dimensional (3D) PCLF scaffolds remain viable for at least 2 weeks with proliferating cells filling the pores. AMSC proliferation rates increased in PL compared to fetal bovine serum (FBS) (p ligament and tenogenic growth factor fibroblast growth factor 2 (FGF-2), especially when cultured in the presence of PL (p engineering and ligament regeneration.

  18. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    Science.gov (United States)

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  19. Relative Expression of Apoptotic and Vascular Epithelial Growth Factor Receptor Genes in Gamma-Irradiated Rat Kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyang; Chun, Ki Jung; Kim, Jin Kyu [Korea Atomic research Institute, Deajeon (Korea, Republic of); Yoon, Yong Dal [Hanyang Univ., Seoul (Korea, Republic of)

    2005-07-01

    Biological process of wound healing, which occurs in three phases of revascularization (inflammatory, proliferative, and maturation) is an important essential step in regulating this process. Blood vessels serve as carriers for various cells, cytokines, and growth factors that are needed for tissue repair. The formation of new blood vessels is a necessary event during embryogenesis, but it occurs rarely in the adult with few exceptions, such as in the female reproductive system and wound healing. Angiogenesis is controlled by a variety of mitogenic, chemotactic, and inhibitory peptide and lipid factors that act on invading endothelial and smooth muscle cells. One of the most important angiogenic factors is the vascular endothelial growth factor (VEGF), a glycosylated protein of 46-48 kD composed of two disulphide linked subunits. The VEGF family consists of six members, five splicing forms of VEGF and the placenta-derived growth factor (PDGF). In normal, VEGF is expressed during embryogenesis and in a limited number of sites in adults. In disease states, VEGF can be detected in various tumor cells, the synovial pannus in rheumatoid arthritis, and in keratinocytes during wound healing. Five different VEGF isoforms, with 121, 145, 165, 189, and 106 amino acids, can be generated as a result of an alternative splicing from the single VEGF gene. The VEGF molecules bind to receptors known as VEFGR- 1 (FLT-1, fms-like tyrosine kinase 1), VEGFR-2 (KDR, kinase domain region/FLK-1, fetal liver kinase 1), VEGFR-2 (FLT-4), neurophilin-1, neurophilin-2, and heparan sulfate proteoglycans. Ionizing radiation can affect the angiogenesis and neovascularization on normal tissues in radiotherapy or by background radiation surrounding living beings. Kidney belongs to the urinary system and classified to the radio-resistant organ according to the previous studies. Therefore, the present study tested the effect of gamma irradiation and mercury chloride (MgCl{sub 2}) to the renal region

  20. Anemia and elevated systemic levels of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Dunst, J.; Becker, A.; Lautenschlaeger, C.; Markau, S.; Becker, H.; Fischer, K.; Haensgen, G.

    2002-01-01

    Background: Tissue hypoxia is a major stimulus for the up-regulation of vascular endothelial growth factor (VEGF). Anemia might theoretically impact on angiogenesis via impairment of tissue oxygenation. We have investigated this hypothesis in patients with solid cancers and benign diseases. Patients and methods: 49 patients with untreated locoregionally confined solid cancers of the head and neck, cervix, rectum and lung and 59 additional patients with non-malignant diseases (36 normemic patients without serious diseases and 23 patients with renal anemia) were enrolled and the impact of anemia on plasma VEGF levels were determined. VEGF was measured with a commercially available sandwich enzyme immunoassay technique. Results: Plasma levels of VEGF were 16.2±12.7 pg/ml in 36 normemic patients without malignant disease, 49,2±34.5 pg/ml in 49 patients with cancers (p [de

  1. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    Science.gov (United States)

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we

  2. Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function

    International Nuclear Information System (INIS)

    Marshman, Emma; Streuli, Charles H

    2002-01-01

    Insulin-like growth factor (IGF)-mediated proliferation and survival are essential for normal development in the mammary gland during puberty and pregnancy. IGFs interact with IGF-binding proteins and regulate their function. The present review focuses on the role of IGFs and IGF-binding proteins in the mammary gland and describes how modulation of their actions occurs by association with hormones, other growth factors and the extracellular matrix. The review will also highlight the involvement of the IGF axis in breast cancer

  3. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  4. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid.

    Science.gov (United States)

    Anitua, E; Sanchez, M; De la Fuente, M; Zalduendo, M M; Orive, G

    2012-09-01

    Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.

  5. Over expression of vascular endothelial growth factor in correlation to Ki-67, grade and stage of breast cancer

    International Nuclear Information System (INIS)

    Al-Harris, Esraah S.; Al-Janabi, Asad A.; Al-Toriahi, Kaswer M.; Yasseen, Akeel A.

    2008-01-01

    Objective was to assess the significance of vascular endothelial growth factor (VEGF) protein over expression in human breast cancer, and its possible correlation with cell proliferation marker (Ki-67), grade and stage of breast cancer. We carried out this study at the Department of Pathology, Kufa University, between November 2006 and September 2007. A retrospective study was employed on paraffin-embedded blocks from 52 female patients with breast cancer. A group of 21 patients with benign breast lesions was included for comparison and 14 cases of normal breast tissue as control group. The investigation designed to employ immunohistochemistry using Avidin-Biotin Complex (ABC) method for detection of both VEGF and Ki-67. A total of 87 samples were included. Vascular endothelial growth factor immunoexpression was considered as positive in 61.5% of malignant and in 19% of benign breast lesions. No over expression sign has been noticed in normal breast tissue (p<0.005). No significant difference in VEGF over expression among different histological types of breast cancer (p<0.05). Vascular endothelial growth factor immunostaining was positively correlated with Ki-67, grade, stage, lymph node metastasis, and recurrence of breast cancer (p<0.05).No such correlation has been seen when the age of the patients has been considered. Vascular endothelial growth factor plays an important role in the pathogenesis of breast cancer evolution and supports the evidence of its role in angiogenesis and cell survival. This study recommended that the blocking of VEGF may be target for blocking angiogenesis and hence improving the efficacy of anti-cancer therapy. (author)

  6. Effect of Nonviral Plasmid Delivered Basic Fibroblast Growth Factor and Low Intensity Pulsed Ultrasound on Mandibular Condylar Growth: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Harmanpreet Kaur

    2014-01-01

    Full Text Available Objective. Basic fibroblast growth factor (bFGF is an important regulator of tissue growth. Previous studies have shown that low intensity pulsed ultrasound (LIPUS stimulates bone growth. The objective of this study was to evaluate the possible synergetic effect of LIPUS and local injection of nonviral bFGF plasmid DNA (pDNA on mandibular growth in rats. Design. Groups were control, blank pDNA, bFGF pDNA, LIPUS, and bFGF pDNA + LIPUS. Treatments were performed for 28 days. Significant increase was observed in mandibular height and condylar length in LIPUS groups. MicroCT analysis showed significant increase in bone volume fraction in bFGF pDNA + LIPUS group. Histomorphometric analysis showed increased cell count and condylar proliferative and hypertrophic layers widths in bFGF pDNA group. Results. Current study showed increased mandibular condylar growth in either bFGF pDNA or LIPUS groups compared to the combined group that showed only increased bone volume fraction. Conclusion. It appears that there is an additive effect of bFGF + LIPUS on the mandibular growth.

  7. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo (Russian Federation)

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  8. Factor-structure of economic growth in E-commerce

    Institute of Scientific and Technical Information of China (English)

    吴隽; 刘洪久; 栾天行

    2003-01-01

    In order to analyze the factors having effect on economic growth of E-commerce, the economic growthprocess of E-commerce is divided into three stages; growth stage, stabilization stage and re-growth stage. Thesethree different stages are analysed using several economic growth theories, a set of factor-structure is proposedfor each stage of the economic growth process of E-commerce.

  9. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells

    OpenAIRE

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-01-01

    Background: Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian ca...

  10. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  11. [Effect of vascular endothelial growth factor and tumor necrosis factor receptor for treatment of avascular necrosis of the femoral head in rabbits].

    Science.gov (United States)

    Hu, Zhi-ming; Zhou, Ming-qian; Gao, Ji-min

    2008-12-01

    To evaluate the therapeutic effect of vascular endothelial growth factor (VEGF) and tumor necrosis factor receptor (TNFR) on avascular necrosis of the femoral head in rabbits. Avascular necrosis of the femoral head was induced in 26 New Zealand white rabbits by injections of horse serum and prednisolone. The rabbits were then divided into VEGF/TNFR treatment group, VEGF treatment group, and untreated model group, with another 4 normal rabbits as the normal control group. In the two treatment groups, the therapeutic agents were injected percutaneously into the femoral head. Enzyme-linked immunosorbent assay was performed to determine the concentration of TNF-alpha in rabbit serum followed by pathological examination of the changes in the bone tissues, bone marrow hematopoietic tissue and the blood vessels in the femoral head. Compared with the model group, the rabbits with both VEGF and TNFR treatment showed decreased serum concentration of TNF-alpha with obvious new vessel formation, decreased empty bone lacunae in the femoral head and hematopoietic tissue proliferation in the bone marrow cavity. Percutaneous injection of VEGF and TNFR into the femoral head can significantly enhance bone tissue angiogenesis and ameliorate osteonecrosis in rabbits with experimental femoral head necrosis.

  12. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α) 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  13. Economic growth factors system: theoretical and methodological aspect

    OpenAIRE

    H.Ya. Hlukha

    2014-01-01

    The aim of the article. The main objective of the article is to create theoretical grounds to build the system of economic growth factors, to modernize their classification, to define exogenous and endogenous factors, to analyze them within the state economic policy structure. The results of the analysis. The article focuses on economic growth factors theoretical studies: - economic growth factors classification characteristics have been highlighted; - various approaches to determine...

  14. Insulin-like growth factor-I in growth and metabolism

    DEFF Research Database (Denmark)

    Backeljauw, P; Bang, P; Dunger, D B

    2010-01-01

    Deficiency of insulin-like growth factor-I (IGF-I) results in growth failure. A variety of molecular defects have been found to underlie severe primary IGF-I deficiency (IGFD), in which serum IGF-I concentrations are substantially decreased and fail to respond to GH therapy. Identification of more...

  15. Examination of the Pattern of Growth of Cerebral Tissue Volumes From Hospital Discharge to Early Childhood in Very Preterm Infants.

    Science.gov (United States)

    Monson, Brian B; Anderson, Peter J; Matthews, Lillian G; Neil, Jeffrey J; Kapur, Kush; Cheong, Jeanie L Y; Doyle, Lex W; Thompson, Deanne K; Inder, Terrie E

    2016-08-01

    Smaller cerebral volumes at hospital discharge in very preterm (VPT) infants are associated with poor neurobehavioral outcomes. Brain growth from the newborn period to middle childhood has not been explored because longitudinal data have been lacking. To examine the pattern of growth of cerebral tissue volumes from hospital discharge to childhood in VPT infants and to determine perinatal risk factors for impaired brain growth and associations with neurobehavioral outcomes at 7 years. Prospective cohort study of VPT infants (childhood and outcomes in VPT infants. Low brain volumes observed in VPT infants are exaggerated at 7 years. Low brain volume in infancy is associated with long-term functional outcomes, emphasizing the persisting influence of early brain development on subsequent growth and outcomes.

  16. A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21).

    Science.gov (United States)

    Pérez-Martí, Albert; Garcia-Guasch, Maite; Tresserra-Rimbau, Anna; Carrilho-Do-Rosário, Alexandra; Estruch, Ramon; Salas-Salvadó, Jordi; Martínez-González, Miguel Ángel; Lamuela-Raventós, Rosa; Marrero, Pedro F; Haro, Diego; Relat, Joana

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic candidate for the treatment of obesity. Since FGF21 production is regulated by various nutritional factors, we analyze the impact of low protein intake on circulating levels of this growth hormone in mice and in a sub cohort of the PREDIMED (Prevención con Dieta Mediterránea) trial. We also describe the role of hepatic FGF21 in metabolic adaptation to a low-protein diet (LPD). We fed control and liver-specific Fgf21 knockout (LFgf21KO) mice a LPD. This diet increased FGF21 production by inducing its overexpression in liver, and this correlated with a body weight decrease without changes in food intake. The LPD also caused FGF21-dependent browning in subcutaneous white adipose tissue (scWAT), as indicated by an increase in the expression of uncoupling protein 1 (UCP1). In a subgroup of 78 individuals from the PREDIMED trial, we observed an inverse correlation between protein intake and circulating FGF21 levels. Our results reinforce the involvement of FGF21 in coordinating energy homeostasis under a range of nutritional conditions. Moreover, here we describe an approach to increase the endogenous production of FGF21, which if demonstrated functional in humans, could generate a treatment for obesity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    OpenAIRE

    Yun Qian; Yun Qian; Qixin Han; Wei Chen; Wei Chen; Jialin Song; Jialin Song; Xiaotian Zhao; Yuanming Ouyang; Yuanming Ouyang; Weien Yuan; Cunyi Fan

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of differen...

  18. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    Science.gov (United States)

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.

  19. Histology-specific therapy for advanced soft tissue sarcoma and benign connective tissue tumors.

    Science.gov (United States)

    Silk, Ann W; Schuetze, Scott M

    2012-09-01

    Molecularly targeted agents have shown activity in soft tissue sarcoma (STS) and benign connective tissue tumors over the past ten years, but response rates differ by histologic subtype. The field of molecularly targeted agents in sarcoma is increasingly complex. Often, clinicians must rely on phase II data or even case series due to the rarity of these diseases. In subtypes with a clear role of specific factors in the pathophysiology of disease, such as giant cell tumor of the bone and diffuse-type tenosynovial giant cell tumor, it is reasonable to treat with newer targeted therapies, when available, in place of chemotherapy when systemic treatment is needed to control disease. In diseases without documented implication of a pathway in disease pathogenesis (e.g. soft tissue sarcoma and vascular endothelial growth factor), clear benefit from drug treatment should be established in randomized phase III trials before implementation into routine clinical practice. Histologic subtype will continue to emerge as a critical factor in treatment selection as we learn more about the molecular drivers of tumor growth and survival in different subtypes. Many of the drugs that have been recently developed affect tumor growth more than survival, therefore progression-free survival may be a more clinically relevant intermediate endpoint than objective response rate using Response Evaluation Criteria In Solid Tumors (RECIST) in early phase sarcoma trials. Because of the rarity of disease and increasing need for multidisciplinary management, patients with connective tissue tumors should be evaluated at a center with expertise in these diseases. Participation in clinical trials, when available, is highly encouraged.

  20. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering.

    Science.gov (United States)

    Kalpakci, Kerem N; Kim, Eric J; Athanasiou, Kyriacos A

    2011-04-01

    Treatments for patients suffering from severe temporomandibular joint (TMJ) dysfunction are limited, motivating the development of strategies for tissue regeneration. In this study, co-cultures of fibrochondrocytes (FCs) and articular chondrocytes (ACs) were seeded in agarose wells, and supplemented with growth factors, to engineer tissue with biomechanical properties and extracellular matrix composition similar to native TMJ fibrocartilage. In the first phase, growth factors were applied alone and in combination, in the presence or absence of serum, while in the second phase, the best overall treatment was applied at intermittent dosing. Continuous treatment of AC/FC co-cultures with TGF-β1 in serum-free medium resulted in constructs with glycosaminoglycan/wet weight ratios (12.2%), instantaneous compressive moduli (790 kPa), relaxed compressive moduli (120 kPa) and Young's moduli (1.87 MPa) that overlap with native TMJ disc values. Among co-culture groups, TGF-β1 treatment increased collagen deposition ∼20%, compressive stiffness ∼130% and Young's modulus ∼170% relative to controls without growth factor. Serum supplementation, though generally detrimental to functional properties, was identified as a powerful mediator of FC construct morphology. Finally, both intermittent and continuous TGF-β1 treatment showed positive effects, though continuous treatment resulted in greater enhancement of construct functional properties. This work proposes a strategy for regeneration of TMJ fibrocartilage and its future application will be realized through translation of these findings to clinically viable cell sources. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation.

    Science.gov (United States)

    Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Chen, Wen-Yih; Ruaan, Ruoh-Chyu; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng

    2014-06-01

    Urothelial carcinoma (UC) is the most common histologic subtype of bladder cancer. The administration of mitomycin C (MMC) into the bladder after transurethral resection of the bladder tumor (TURBT) is a common treatment strategy for preventing recurrence after surgery. We previously applied hydrostatic pressure combined with MMC in UC cells and found that hydrostatic pressure synergistically enhanced MMC-induced UC cell apoptosis through the Fas/FasL pathways. To understand the alteration of gene expressions in UC cells caused by hydrostatic pressure and MMC, oligonucleotide microarray was used to explore all the differentially expressed genes. After bioinformatics analysis and gene annotation, Toll-like receptor 6 (TLR6) and connective tissue growth factor (CTGF) showed significant upregulation among altered genes, and their gene and protein expressions with each treatment of UC cells were validated by quantitative real-time PCR and immunoblotting. Under treatment with MMC and hydrostatic pressure, UC cells showed increasing apoptosis using extrinsic pathways through upregulation of TLR6 and CTGF.

  2. Decreased expression of connective tissue growth factor in non-small cell lung cancer is associated with clinicopathological variables and can be restored by epigenetic modifiers.

    Science.gov (United States)

    Drzewiecka, Hanna; Gałęcki, Bartłomiej; Jarmołowska-Jurczyszyn, Donata; Kluk, Andrzej; Dyszkiewicz, Wojciech; Jagodziński, Paweł P

    2016-09-01

    Recent studies indicated undisputed contribution of connective tissue growth factor (CTGF) in the development of many cancers, including non-small cell lung cancer (NSCLC). However, the functional role and regulation of CTGF expression during tumorigenesis remain elusive. Our goal was to determine CTGF transcript and protein levels in tumoral and matched control tissues from 98 NSCLC patients, to correlate the results with clinicopathological features and to investigate whether the CTGF expression can be epigenetically regulated in NSCLC. We used quantitative PCR, Western blotting and immunohistochemistry to evaluate CTGF expression in lung cancerous and histopathologically unchanged tissues. We tested the impact of 5-Aza-2'-deoxycytidine (5-dAzaC) and trichostatin A (TSA) on CTGF transcript and protein levels in NSCLC cells (A549, Calu-1). DNA methylation status of the CTGF regulatory region was evaluated by bisulfite sequencing. The influence of 5-dAzaC and TSA on NSCLC cells viability and proliferation was monitored by the trypan blue assay. We found significantly decreased levels of CTGF mRNA and protein (both p cancerous tissues of NSCLC patients. Down-regulation of CTGF occurred regardless of gender in all histological subtypes of NSCLC. Moreover, we showed that 5-dAzaC and TSA were able to restore CTGF mRNA and protein contents in NSCLC cells. However, no methylation within CTGF regulatory region was detected. Both compounds significantly reduced NSCLC cells proliferation. Decreased expression of CTGF is a common feature in NSCLC; however, it can be restored by the chromatin-modifying agents such as 5-dAzaC or TSA and consequently restrain cancer development.

  3. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    Science.gov (United States)

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  4. MicroRNA-375 Inhibits Growth and Enhances Radiosensitivity in Oral Squamous Cell Carcinoma by Targeting Insulin Like Growth Factor 1 Receptor

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-08-01

    Full Text Available Background: MicroRNAs (miRNAs have emerged as key players in various human biological processes, including tumorigenesis. Here, we investigated the roles of miR-375 in the pathogenesis of oral squamous cell carcinoma (OSCC. Methods: We performed quantitative real-time PCR (qRT-PCR to detect miR-375 expression in OSCC tissues and corresponding normal oral epithelial tissues and analyze the correlation of miR-375 expression with OSCC metastasis and patient’s survival. Then, the effects of miR-375 expression on proliferation, cell cycle, apoptosis and radiosensitivity in OSCC cells were determined by using MTT, flow cytometry and clonogenic survival assays. A dual-luciferase reporter assay was performed to test whether miR-375 binds to the 3’-untranslated region (3’-UTR of target mRNA. Results: The expression level of miR-375 in OSCC tissues was significantly lower than that in normal oral epithelial tissues, and low miR-375 expression was correlated with higher incidence of lymph node metastasis and poor survival of OSCC patients. Upregulation of miR-375 significantly inhibits growth, induces cell cycle arrest in G0/G1 phase, increases apoptosis and enhances radiosensitivity in OSCC cells. Analysis of luciferase activity demonstrated that miR-375 binds to the 3’-UTR of insulin like growth factor 1 receptor (IGF-1R. Small interfering RNA (shRNA-mediated IGF-1R knockdown mimics the effects of miR-375 upregulation, while overexpression of IGF-1R partially reverses those effects in OSCC cells. Conclusion: It was obviously demonstrated that miRNA-375 inhibits growth and enhances radiosensitivity in OSCC cells by targeting IGF-1R, suggesting that miR-375 may be a potential therapeutic target for OSCC patients.

  5. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    Science.gov (United States)

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  6. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  7. Heritability of circulating growth factors involved in the angiogenesis in healthy human population.

    Science.gov (United States)

    Pantsulaia, I; Trofimov, S; Kobyliansky, E; Livshits, G

    2004-09-21

    The present study examined the extent of genetic and environmental influences on the populational variation of circulating growth factors (VEGF, EGF) involved in angiogenesis in healthy and ethnically homogeneous Caucasian families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 478 healthy individuals aged 18-75 years. Quantitative genetic analysis showed that the VEGF and EGF variation was appreciably attributable to genetic effects, with heritability estimates of 79.9% and 48.4%, respectively. Yet, common environmental factors, shared by members of the same household, also played a significant role (P growth factor-beta 1 (TGF-beta 1) or tissue inhibitors of matrix metalloproteinases 1 (TIMP-1), likewise relevant for angiogenesis. Bivariate analysis revealed significant phenotypic correlations (P < 0.002) between all pairs of variables, thus indicating the possible existence of common genetic and environmental factors. The analysis suggested that the pleiotropic genetic effects were consistently the primary (or even the sole) source of correlation between all pairs of studied molecules. The results of our study affirm the existence of specific and common genetic pathways that commonly determine the greater part of the circulating variation of these molecules.

  8. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor.

    Science.gov (United States)

    Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro

    2013-07-01

    Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.

  9. Clinicopathological correlation of keratinocyte growth factor and matrix metalloproteinase-9 expression in human gastric cancer.

    Science.gov (United States)

    Zhang, Qing; Wang, Ping; Shao, Ming; Chen, Shi-Wen; Xu, Zhi-Feng; Xu, Feng; Yang, Zhong-Yin; Liu, Bing-Ya; Gu, Qin-Long; Zhang, Wen-Jian; Li, Yong

    2015-01-01

    Keratinocyte growth factor (KGF) is reported to be implicated in the growth of some cancer cells. Matrix metalloproteinase 9 (MMP-9) is thought to enhance the tumor invasion and metastasis ability. This study was aimed at analyzing the relationship between KGF and MMP-9 expression and patients' clinicopathological characteristics to clarify the clinical significance of the expression of KGF and MMP-9 in gastric cancer. Tissue samples from 161 patients with primary gastric cancer were investigated using immunohistochemistry. The relationship between KGF and/or MMP-9 expression and clinicopathological characteristics was analyzed. KGF expression and MMP-9 expression in gastric cancer tissue were observed in 62 cases (38.5%) and 97 cases (60.2%), respectively. MMP-9 was significantly associated with depth of invasion, lymph node metastasis and TNM stage. The prognosis of MMP-9-positive patients was significantly poorer than that of MMP-9-negative patients (p = 0.009). KGF expression was positively correlated with MMP-9 expression in gastric cancer, and the prognosis of patients with both KGF- and MMP-9-positive tumors was significantly worse than that of patients with negative tumors for either factor (p = 0.045). Expression of MMP-9 was revealed to be an independent prognostic factor (p = 0.026). Coexpression of KGF and MMP-9 in gastric cancer could be a useful prognostic factor, and MMP-9 might also serve as a novel target for both prognostic prediction and therapeutics.

  10. Effects of growth-promoting factors on proliferation of mouse ...

    African Journals Online (AJOL)

    SSCs) in vitro are critical to our understanding of male infertility, genetic resources and endangered species conservation. To investigate the effects of growth-promoting factors, epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and ...

  11. Crosslinkable Hydrogels Derived from Cartilage, Meniscus, and Tendon Tissue

    NARCIS (Netherlands)

    Visser, Jetze; Levett, Peter A.; te Moller, Nikae C. R.; Besems, Jeremy; Boere, Kristel W. M.; van Rijen, Mattie H. P.; de Grauw, Janny C.; Dhert, Wouter J. A.; van Weeren, P. Rene; Malda, J

    2015-01-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found

  12. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  13. Association of epidermal growth factor and epidermal growth factor receptor polymorphisms with the risk of hepatitis B virus-related hepatocellular carcinoma in the population of North China.

    Science.gov (United States)

    Wu, Jia; Zhang, Wei; Xu, Aiqiang; Zhang, Li; Yan, Tao; Li, Zhuo; Wu, Xiaopan; Zhu, Xilin; Ma, Juan; Li, Ke; Li, Hui; Liu, Ying

    2013-08-01

    Hepatocellular carcinoma (HCC) is a common solid malignant tumor occurring worldwide that leads to the third largest cause of death compared to other cancers. Genetic and environmental factors are involved in the pathogenesis of HCC. Epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) can stimulate the proliferation of epidermal and epithelial cells. The EGF signal pathway has a relationship with the growth of the embryo, tissue repairing, and tumorigenesis. In this study, 416 patients with hepatitis B virus infection (HBV)-related HCC and 645 individuals who had never been infected with HBV of the Chinese Han population were enrolled. Eight single-nucleotide polymorphisms (SNPs), whose minor allele frequency >20% in the EGF and EGFR genes, were genotyped to examine their associations with hepatocarcinogenesis. Genotyping experiments were carried out using TaqMan. There were significant differences in genotype distributions (p=0.005) and allele frequencies (p=0.001, odds ratio [OR]=1.43, 95% confidence interval [CI]=1.15-1.79) of rs11569017 in the EGF gene between the HCC and control groups. After binary logistic regression to determine independent factors for susceptibility to HCC under an additive model, rs11569017 was still independently associated with the susceptibility to HCC (p=0.021, OR=1.48, 95% CI=1.06-2.07), but no significant differences in other SNPs were found. Additionally, the haplotype T-G constructed by rs11569017 and rs4444903 of the EGF gene might increase the risk of HBV-related HCC (p=0.002, OR=1.44, 95% CI=1.15-1.82). The rs11569017 T allele was associated with susceptibility to HBV-related HCC.

  14. Extracorporeal Shockwave Therapy Increases Growth Factor Release from Equine Platelet-Rich Plasma In Vitro

    Directory of Open Access Journals (Sweden)

    Kathryn A. Seabaugh

    2017-12-01

    Full Text Available IntroductionExtracorporeal shockwave therapy (ESWT and platelet-rich plasma (PRP are common treatments for soft tissue injuries in horses. Shockwave triggers cell specific responses to promote healing. Growth factors released from PRP also promote healing. It has been hypothesized that greater growth factor release would amplify the healing process. The combination of ESWT and PRP could promote healing in injured tendons and ligaments in the horse. The objective of this study was to determine if application of shockwaves to PRP samples increases the concentration of transforming growth factor-β1 (TGF-β1 and platelet-derived growth factor ββ (PDGF-ββ released from the platelets in vitro.Materials and methodsPRP was produced from blood drawn from six horses. The PRP from each horse was exposed to the following treatments: (1 positive control (freeze-thaw cycle, (2 untreated negative control, or shockwaves with either (3 a “standard probe” (ESWT-S with a 2 cm focal width and medium energy density or (4 a “power probe” (ESWT-P with a 1 cm focal width and high energy density. After each treatment, the samples were centrifuged, and the supernatant was harvested. The supernatant was then used for growth factor quantification via commercially available ELISA kits for TGF-β1 and PDGF-ββ.ResultsConcentrations of TGF-β1 and PDGF-ββ in PRP that underwent a freeze-thaw cycle were significantly increased compared with all other treatments. Both ESWT-S and ESWT-P resulted in significantly increased TGF-β1 concentrations, 46 and 33%, respectively, when compared with the negative control. Both ESWT-S and ESWT-P resulted in significantly increased PDGF-ββ concentrations, 219 and 190%, respectively, when compared with the negative control.DiscussionThese data indicate that the application of ESWT to PRP increases the expression of growth factors in vitro. This suggests that the combination therapy of local PRP injection followed by ESWT

  15. Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy?

    Science.gov (United States)

    Bianchi, Enrica; Taurone, Samanta; Bardella, Lia; Signore, Alberto; Pompili, Elena; Sessa, Vincenzo; Chiappetta, Caterina; Fumagalli, Lorenzo; Di Gioia, Cira; Pastore, Francesco S; Scarpa, Susanna; Artico, Marco

    2015-10-01

    Dupuytren's contracture (DC) is a benign fibro-proliferative disease of the hand causing fibrotic nodules and fascial cords which determine debilitating contracture and deformities of fingers and hands. The present study was designed to characterize pro-inflammatory cytokines and growth factors involved in the pathogenesis, progression and recurrence of this disease, in order to find novel targets for alternative therapies and strategies in controlling DC. The expression of pro-inflammatory cytokines and of growth factors was detected by immunohistochemistry in fibrotic nodules and normal palmar fascia resected respectively from patients affected by DC and carpal tunnel syndrome (CTS; as negative controls). Reverse transcription (RT)-PCR analysis and immunofluorescence were performed to quantify the expression of transforming growth factor (TGF)-β1, interleukin (IL)-1β and vascular endothelial growth factor (VEGF) by primary cultures of myofibroblasts and fibroblasts isolated from Dupuytren's nodules. Histological analysis showed high cellularity and high proliferation rate in Dupuytren's tissue, together with the presence of myofibroblastic isotypes; immunohistochemical staining for macrophages was completely negative. In addition, a strong expression of TGF-β1, IL-1β and VEGF was evident in the extracellular matrix and in the cytoplasm of fibroblasts and myofibroblasts in Dupuytren's nodular tissues, as compared with control tissues. These results were confirmed by RT-PCR and by immunofluorescence in pathological and normal primary cell cultures. These preliminary observations suggest that TGF-β1, IL-1β and VEGF may be considered potential therapeutic targets in the treatment of Dupuytren's disease (DD). © 2015 Authors; published by Portland Press Limited.

  16. Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism.

    Science.gov (United States)

    Cheng, W-F; Chang, M-C; Sun, W-Z; Lee, C-N; Lin, H-W; Su, Y-N; Hsieh, C-Y; Chen, C-A

    2008-07-01

    A novel method for generating an antigen-specific cancer vaccine and immunotherapy has emerged using a DNA vaccine. However, antigen-presenting cells (APCs) have a limited life span, which hinders their long-term ability to prime antigen-specific T cells. Connective tissue growth factor (CTGF) has a role in cell survival. This study explored the intradermal administration of DNA encoding CTGF with a model tumor antigen, human papilloma virus type 16 E7. Mice vaccinated with CTGF/E7 DNA exhibited a dramatic increase in E7-specific CD4(+) and CD8(+) T-cell precursors. They also showed an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with the wild-type E7 DNA. The delivery of DNA encoding CTGF and E7 or CTGF alone could prolong the survival of transduced dendritic cells (DCs) in vivo. In addition, CTGF/E7-transduced DCs could enhance a higher number of E7-specific CD8(+) T cells than E7-transduced DCs. By prolonging the survival of APCs, DNA vaccine encoding CTGF linked to a tumor antigen represents an innovative approach to enhance DNA vaccine potency and holds promise for cancer prophylaxis and immunotherapy.

  17. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia

    Science.gov (United States)

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine

    2011-01-01

    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  18. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  19. A hypothesis: factor VII governs clot formation, tissue repair and apoptosis.

    Science.gov (United States)

    Coleman, Lewis S

    2007-01-01

    A hypothesis: thrombin is a "Universal Enzyme of Energy Transduction" that employs ATP energy in flowing blood to activate biochemical reactions and cell effects in both hemostasis and tissue repair. All cells possess PAR-1 (thrombin) receptors and are affected by thrombin elevations, and thrombin effects on individual cell types are determined by their unique complement of PAR-1 receptors. Disruption of the vascular endothelium (VE) activates a tissue repair mechanism (TRM) consisting of the VE, tissue factor (TF), and circulating Factors VII, IX and X that governs localized thrombin elevations to activate clot formation and cellular effects that repair tissue damage. The culmination of the repair process occurs with the restoration of the VE followed by declines in thrombin production that causes Apoptosis ("programmed cell death") in wound-healing fibroblasts, which functions as a mechanism to draw wound edges together. The location and magnitude of TRM activity governs the location and magnitude of Factor VIII activity and clot formation, but the large size of Factor VIII prevents it from penetrating the clot formed by its activity, so that its effects are self-limiting. Factors VII, IX and X function primarily as tissue repair enzymes, while Factor VIII and Factor XIII are the only serine protease enzymes in the "Coagulation Cascade" that are exclusively associated with hemostasis.

  20. Theoretical study of the fibrous capsule tissue growth around a disk-shaped implant

    KAUST Repository

    Djellouli, Rabia; Mahserejian, Shant; Mokrane, A.; Moussaoui, Mohand; Laleg-Kirati, Taous-Meriem

    2012-01-01

    We analyze the mathematical properties of the fibrous capsule tissue concentration around a disk-shaped implant. We establish stability estimates as well as monotonicity results that illustrate the sensitivity of this growth to the biocompatibility index parameters of the implant. In addition, we prove that the growth of the tissue increases exponentially in time toward an asymptotic regime. We also study the mathematical properties of the solution of the inverse problem consisting in the determination of the values of the biocompatibility index parameters from the knowledge of some fibrous capsule tissue measurements. We prove that this model calibration problem admits a unique solution, and establish a characterization of the index parameters. Furthermore, we demonstrate analytically that such a solution is not continuous with respect to the data, and therefore the considered inverse problem is ill-posed due to the lack of the stability requirement. © 2012 Springer-Verlag.

  1. Theoretical study of the fibrous capsule tissue growth around a disk-shaped implant

    KAUST Repository

    Djellouli, Rabia

    2012-08-19

    We analyze the mathematical properties of the fibrous capsule tissue concentration around a disk-shaped implant. We establish stability estimates as well as monotonicity results that illustrate the sensitivity of this growth to the biocompatibility index parameters of the implant. In addition, we prove that the growth of the tissue increases exponentially in time toward an asymptotic regime. We also study the mathematical properties of the solution of the inverse problem consisting in the determination of the values of the biocompatibility index parameters from the knowledge of some fibrous capsule tissue measurements. We prove that this model calibration problem admits a unique solution, and establish a characterization of the index parameters. Furthermore, we demonstrate analytically that such a solution is not continuous with respect to the data, and therefore the considered inverse problem is ill-posed due to the lack of the stability requirement. © 2012 Springer-Verlag.

  2. Tenascin-Y, a component of distinctive connective tissues, supports muscle cell growth.

    Science.gov (United States)

    Hagios, C; Brown-Luedi, M; Chiquet-Ehrismann, R

    1999-12-15

    Chicken tenascin-Y is an extracellular matrix protein most closely related to the mammalian tenascin-X. It is highly expressed in the connective tissue of skeletal muscle (C. Hagios, M. Koch, J. Spring, M. Chiquet, and R. Chiquet-Ehrismann, 1996, J. Cell Biol. 134, 1499-1512). Here we demonstrate the presence of tenascin-Y in specific areas of the connective tissues in developing lung, kidney, and skin. In skin tenascin-Y shows a complementary expression pattern to tenascin-C, whereas in the lung and kidney the sites of expression are partly overlapping. Tenascin-Y is also present in embryonic skeletal muscle where it is expressed in the developing connective tissue in between the muscle fibers. This connective tissue is also the major site of alpha5 integrin expression. We purified recombinantly expressed tenascin-Y and tested its effect on cell adhesion and its influence on muscle cell growth and differentiation. C2C12 myoblasts were able to adhere to tenascin-Y and showed extensive formation of actin-rich processes without generation of stress fibers. Furthermore, we found that tenascin-Y influenced cell morphology of chick embryo fibroblasts over prolonged times in culture and that it supports primary muscle cell growth and restricts muscle cell differentiation. Copyright 1999 Academic Press.

  3. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.; Nelson, M. R.; El Haj, A. J.; Waters, S. L.; Byrne, H. M.

    2014-01-01

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence

  4. Neer Award 2018: Platelet-derived growth factor receptor α co-expression typifies a subset of platelet-derived growth factor receptor β-positive progenitor cells that contribute to fatty degeneration and fibrosis of the murine rotator cuff.

    Science.gov (United States)

    Jensen, Andrew R; Kelley, Benjamin V; Mosich, Gina M; Ariniello, Allison; Eliasberg, Claire D; Vu, Brandon; Shah, Paras; Devana, Sai K; Murray, Iain R; Péault, Bruno; Dar, Ayelet; Petrigliano, Frank A

    2018-04-10

    After massive tears, rotator cuff muscle often undergoes atrophy, fibrosis, and fatty degeneration. These changes can lead to high surgical failure rates and poor patient outcomes. The identity of the progenitor cells involved in these processes has not been fully elucidated. Platelet-derived growth factor receptor β (PDGFRβ) and platelet-derived growth factor receptor α (PDGFRα) have previously been recognized as markers of cells involved in muscle fibroadipogenesis. We hypothesized that PDGFRα expression identifies a fibroadipogenic subset of PDGFRβ + progenitor cells that contribute to fibroadipogenesis of the rotator cuff. We created massive rotator cuff tears in a transgenic strain of mice that allows PDGFRβ + cells to be tracked via green fluorescent protein (GFP) fluorescence. We then harvested rotator cuff muscle tissues at multiple time points postoperatively and analyzed them for the presence and localization of GFP + PDGFRβ + PDGFRα + cells. We cultured, induced, and treated these cells with the molecular inhibitor CWHM-12 to assess fibrosis inhibition. GFP + PDGFRβ + PDGFRα + cells were present in rotator cuff muscle tissue and, after massive tears, localized to fibrotic and adipogenic tissues. The frequency of PDGFRβ + PDGFRα + cells increased at 5 days after massive cuff tears and decreased to basal levels within 2 weeks. PDGFRβ + PDGFRα + cells were highly adipogenic and significantly more fibrogenic than PDGFRβ + PDGFRα - cells in vitro and localized to adipogenic and fibrotic tissues in vivo. Treatment with CWHM-12 significantly decreased fibrogenesis from PDGFRβ + PDGFRα + cells. PDGFRβ + PDGFRα + cells directly contribute to fibrosis and fatty degeneration after massive rotator cuff tears in the mouse model. In addition, CWHM-12 treatment inhibits fibrogenesis from PDGFRβ + PDGFRα + cells in vitro. Clinically, perioperative PDGFRβ + PDGFRα + cell inhibition may limit rotator cuff tissue degeneration and, ultimately

  5. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  6. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Science.gov (United States)

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  7. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  8. Transforming growth factor beta-1 expression in macrophages of human chronic periapical diseases.

    Science.gov (United States)

    Liang, Z-Z; Li, J; Huang, S-G

    2017-03-30

    The objective of this study was to observe the distribution of macrophages (MPs) expressing transforming growth factor beta-1 (TGF-β1) in tissue samples from patients with different human chronic periapical diseases. In this study, samples were collected from 75 volunteers, who were divided into three groups according to classified standards, namely, healthy control (N = 25), periapical granuloma (N = 25), and periapical cyst (N = 25). The samples were fixed in 10% buffered formalin for more than 48 h, dehydrated, embedded, and stained with hematoxylin and eosin for histopathology. Double immunofluorescence was conducted to analyze the expression of TGF-β-CD14 double-positive MPs in periapical tissues. The number of double-positive cells (cells/mm 2 ) were significantly higher in the chronic periapical disease tissues (P periapical cyst group than in the periapical granuloma group (P periapical diseases. The TGF-β1-CD14 double-positive cells might play an important role in the pathology of human chronic periapical diseases.

  9. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    Science.gov (United States)

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients. Copyright © 2015

  10. A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth

    NARCIS (Netherlands)

    Machyshyn, I.; Bovendeerd, P.H.M.; Ven, van de A.A.F.; Rongen, P.M.J.; Vosse, van de F.N.

    2010-01-01

    Long-term adaptation of soft tissues is realized through growth and remodeling (G&R). Mathematical models are powerful tools in testing hypotheses on G&R and supporting the design and interpretation of experiments. Most theoretical G&R studies concentrate on description of either growth or

  11. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  12. The bereavement process of tissue donors' family members: responses of grief, posttraumatic stress, personal growth, and ongoing attachment.

    Science.gov (United States)

    Hogan, Nancy; Schmidt, Lee; Coolican, Maggie

    2014-09-01

    Donated tissues can save lives of critically burned patients and those needing a heart valve replacement. Tissues enhance the lives of a million recipients annually through transplants of corneas, bones, tendons, and vein grafts. Unfortunately, the need for some tissues exceeds their availability. The goal of the quantitative component of this mixed methods study was to identify the grief, posttraumatic stress, personal growth, and ongoing attachment response of tissue donors' family members during a 2-year period. Simultaneous mixed methods design. The sample for this study consisted of 52 tissue donors' family members, mostly widows (83%). Data were collected for 2 years to test changes in grief, posttraumatic stress, panic behavior, personal growth, and ongoing attachment. The bereaved participants experienced significantly fewer grief reactions, less posttraumatic stress, and greater personal growth. There was no significant difference in the ongoing attachment to their deceased loved ones. The results of this study may reinforce the positive meaning that tissue donors' family members can find in tissue donation. Findings also demonstrate that the bereavement process corroborates contemporary bereavement and attachment theories. Health professionals are encouraged to seek donations with less worry that tissue donors' family members will experience adverse outcomes during bereavement.

  13. Tissue regenerating functions of coagulation factor XIII

    DEFF Research Database (Denmark)

    Soendergaard, C; Kvist, P H; Seidelin, J B

    2013-01-01

    The protransglutaminase factor XIII (FXIII) has recently gained interest within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports haemostasis by enhancing platelet adhesion to damaged......-receptor 2 and the αVβ3 integrin is important for angiogenesis supporting formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review...

  14. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  15. Risk Factors to Growth Retardation in Major Thalassemia

    Directory of Open Access Journals (Sweden)

    Riva Uda

    2011-03-01

    Full Text Available The increasing in the life span of patients with major thalassemia should be followed by increased quality of life. There are factors which can affect growth retardation in these patients. The aim of this study was to find out the risk factors for growth retardation in patients with major thalassemia. An analytical study with cross-sectional design was conducted at Pediatric Thalassemia Clinics of Dr.Hasan Sadikin Hospital, Bandung, in June to July 2006. The subjects of this study were patients with major thalassemia. Inclusion criteria’s were age under 14 years old, had no chronic diseases like tuberculosis, cerebral palsy with complete medical records. Risk factors were the timing of diagnosis, initial and dose of deferoxamine, volume of transfused blood, mean pretransfusion hemoglobin level, family income, and age. Antropometric measurement indices were used to assess the growth which expressed in Z score. Growth evaluated based on height/age (H/A and growth retardation if H/A <-2 SD. Risk factors for growth retardation were analyzed separately using chi-square test and odds ratio (OR with 95% confidence interval (CI. Then they were analyzed simultaneously with logistic regression method. Subjects consisted of 152 patients with major thalassemia. Seventy three thalassemia patients were stunted. Analysis showed that age (OR: 5.42, 95% CI:2.32–12.65, p <0.001, dosage of deferoxamine (OR: 4.0, 95% CI: 1.29–12.41, p: 0.016, and family income (OR: 2.32, 95% CI: 1.06–5.06, p: 0.036 were risks factors for growth retardation. Conclusion, risk factors for growth retardation in major thalassemia are age, dosage of deferoxamine, and family income.

  16. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

    Directory of Open Access Journals (Sweden)

    Erh-Hsuin Lim

    2013-11-01

    Full Text Available BackgroundTo overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF into an electrospun poly(L-lactide scaffold.MethodsThe electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats.ResultsChemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen.ConclusionsWe have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

  17. Tissue localization of human trefoil factors 1, 2, and 3

    DEFF Research Database (Denmark)

    Madsen, Jens; Nielsen, Ole; Tornøe, Ida

    2007-01-01

    Trefoil factors (TTFs) are small, compact proteins coexpressed with mucins in the gastrointestinal tract. Three trefoil factors are known in mammals: TFF1, TFF2, and TFF3. They are implicated to play diverse roles in maintenance and repair of the gastrointestinal channel. We compared the expression...... pattern of the three trefoil factors analyzing mRNA from a panel of 20 human tissues by conventional reverse transcriptase (RT) PCR and, in addition, by real-time PCR. These findings were supported by immunohistochemical analysis of paraffin-embedded human tissues using rabbit polyclonal antibodies raised...... against these factors. TFF1 showed highest expression in the stomach and colon, whereas TFF2 and TFF3 showed highest expression in stomach and colon, respectively. All three TFFs were found in the ducts of pancreas. Whereas TFF2 was found to be restricted to these two tissues, the structurally more...

  18. TAZ promotes epithelial to mesenchymal transition via the upregulation of connective tissue growth factor expression in neuroblastoma cells.

    Science.gov (United States)

    Wang, Qiang; Xu, Zhilin; An, Qun; Jiang, Dapeng; Wang, Long; Liang, Bingxue; Li, Zhaozhu

    2015-02-01

    Neuroblastoma (NB) is a neuroendocrine cancer that occurs most commonly in infants and young children. The Hippo signaling pathway regulates cell proliferation and apoptosis, and its primary downstream effectors are TAZ and yes‑associated protein 1 (YAP). The effect of TAZ on the metastatic progression of neuroblastoma and the underlying mechanisms involved remain elusive. In the current study, it was determined by western blot analysis that the migratory and invasive properties of SK‑N‑BE(2) human neuroblastoma cells are associated with high expression levels of TAZ. Repressed expression of TAZ in SK‑N‑BE(2) cells was shown to result in a reduction in aggressiveness of the cell line, by Transwell migration and invasion assay. In contrast, overexpression of TAZ in SK‑N‑SH human neuroblastoma cells was shown by Transwell migration and invasion assays, and western blot analysis, to result in epithelial‑mesenchymal transition (EMT) and increased invasiveness. Mechanistically, the overexpression of TAZ was demonstrated to upregulate the expression levels of connective tissue growth factor (CTGF), by western blot analysis and chromatin immunoprecipitation assay, while the knockdown of TAZ downregulated it. Furthermore, TAZ was shown by luciferase assay to induce CTGF expression by modulating the activation of the TGF‑β/Smad3 signaling pathway. In conclusion, the present study is, to the best of our knowledge, the first to demonstrate that the overexpression of TAZ induces EMT, increasing the invasive abilities of neuroblastoma cells. This suggests that TAZ may serve as a potential target in the development of novel therapies for the treatment of neuroblastoma.

  19. Stem Cells in Tissue Repair and Regeneration

    OpenAIRE

    Falanga, Vincent

    2012-01-01

    The field of tissue repair and wound healing has blossomed in the last 30 years. We have gone from recombinant growth factors, to living tissue engineering constructs, to stem cells. The task now is to pursue true regeneration, thus achieving full restoration of structures and their function.

  20. cDNA cloning, structural analysis, SNP detection and tissue ...

    Indian Academy of Sciences (India)

    THOMAS NAICY

    detection and tissue expression profile of the IGF1 gene in Malabari and Attappady Black goats of India. J. Genet. ... Keywords. gene cloning; gene expression; goat; insulin-like growth factor 1; mRNA; single-nucleotide ..... cle tenderness (Koohmaraie et al. .... growth factor (IGF) system in the bovine oviduct at oestrus and.

  1. Tissue engineering in the treatment of cartilage lesions

    Directory of Open Access Journals (Sweden)

    Jakob Naranđa

    2013-11-01

    Full Text Available Background: Articular cartilage lesions with the inherent limited healing potential are difficult to treat and thus remain a challenging problem for orthopaedic surgeons. Regenerative treatment techniques, such as autologous chondrocyte implantation (ACI, are promising as a treatment option to restore hyaline-like cartilage tissue in damaged articular surfaces, as opposed to the traditional reparative procedures (e.g. bone marrow stimulation – microfracture, which promote a fibrocartilage formation with lower tissue biomechanical properties and poorer clinical results. ACI technique has undergone several advances and is constantly improving. The new concept of cartilage tissue preservation uses tissue-engineering technologies, combining new biomaterials as a scaffold, application of growth factors, use of stem cells, and mechanical stimulation. The recent development of new generations of ACI uses a cartilage-like tissue in a 3-dimensional culture system that is based on the use of biodegradable material which serves as a temporary scaffold for the in vitro growth and subsequent implantation into the cartilage defect. For clinical practice, single stage procedures appear attractive to reduce cost and patient morbidity. Finally, modern concept of tissue engineering facilitates hyaline-like cartilage formation and a permanent treatment of cartilage lesions.Conclusion: The review focuses on innovations in the treatment of cartilage lesions and covers modern concepts of tissue engineering with the use of biomaterials, growth factors, stem cells and bioreactors, and presents options for clinical use.

  2. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    Science.gov (United States)

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica

    2010-01-01

    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...

  4. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  5. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  6. Growth Factors and Breast Tumors, Comparison of Selected Growth Factors with Traditional Tumor Markers

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Černá, M.; Ňaršanská, A.; Svobodová, Š.; Straková, M.; Vrzalová, J.; Fuchsová, R.; Třešková, I.; Kydlíček, T.; Třeška, V.; Pecen, Ladislav; Topolčan, O.; Padziora, P.

    2011-01-01

    Roč. 31, č. 12 (2011), s. 4653-4656 ISSN 0250-7005 Grant - others:GA MZd(CZ) NS9727; GA MZd(CZ) NS10238; GA MZd(CZ) NS10253 Institutional research plan: CEZ:AV0Z10300504 Keywords : growth factor * breast cancer * tumor markers * CA 15-3 * CEA * IGF1 * EGF * HGF Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  7. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of 125 I-IGF-I was specific for IGF-I with anIC 50 of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, 125 I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy

  8. In vivo measurement of tumor estradiol and Vascular Endothelial Growth Factor in breast cancer patients

    International Nuclear Information System (INIS)

    Garvin, Stina; Dabrosin, Charlotta

    2008-01-01

    Angiogenesis, crucial for tumor progression, is a process regulated in the tissue micro-environment. Vascular endothelial growth factor (VEGF) is a potent stimulatory factor of angiogenesis and a negative prognostic indicator of breast cancer. VEGF is biologically active in the extracellular space and hitherto, there has been a lack of techniques enabling sampling of angiogenic molecules such as VEGF in situ. The majority of breast cancers are estrogen-dependent, and estrogen has been shown to regulate VEGF in normal breast tissue and experimental breast cancer. We investigated if microdialysis may be applicable in human breast cancer for sampling of extracellular VEGF in situ and to explore if there is an association with local estradiol and VEGF levels in normal and cancerous breast tissue. Microdialysis was used to sample VEGF and estradiol in tumors and adjacent normal breast tissue in postmenopausal breast cancer patients. VEGF and estradiol were also measured in plasma, and immunohistochemical staining for VEGF was performed on tumor sections. We show that in vivo levels of extracellular VEGF were significantly higher in breast cancer tumors than in normal adjacent breast tissue. There was a significant positive correlation between estradiol and extracellular VEGF in normal breast tissue. However, no correlation was detected between estradiol and VEGF in tumors or between tumor VEGF and plasma VEGF. We conclude that VEGF and estradiol correlates significantly in normal breast tissue. Microdialysis may be used to provide novel insight in breast tumor biology and the regulation of molecules in the extracellular space of human breast tumors in vivo

  9. Tissue Factor and Tissue Factor Pathway Inhibitor in the Wound-Healing Process After Neurosurgery.

    Science.gov (United States)

    Ślusarz, Robert; Głowacka, Mariola; Biercewicz, Monika; Barczykowska, Ewa; Haor, Beata; Rość, Danuta; Gadomska, Grażyna

    2016-03-01

    The aim of the study was to assess the concentrations of tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in the blood of patients with a postoperative wound after neurosurgery. Participants included 20 adult patients who underwent neurosurgery because of degenerative spine changes. The concentration of TF and TFPI in the patients' blood serum was measured 3 times: before surgery, during the first 24 hr after surgery, and between the 5th and 7th days after surgery. The control group comprised 20 healthy volunteers similar to the patient group with respect to gender and age. A statistically significant difference was observed between TF concentration at all three measurement time points in the research group and TF concentration in the control group (p = .018, p = .010, p = .001). A statistically significant difference was found between TFPI concentration at the second time point in the research group and TFPI concentration in the control group (p = .041). No statistically significant within-subject difference was found between TF concentrations before and after surgery. A statistically significant within-subject difference was found between TFPI concentrations within 24 hr after surgery and 5-7 days after surgery (p = .004). High perioperative concentrations of TF indicate not only the presence of thrombophilia but also the importance of TF in the wound-healing process. Perioperative changes in TFPI concentrations are related to its compensatory influence on hemostasis in thrombophilic conditions. © The Author(s) 2015.

  10. Effect of maturation on gastrointestinal absorption of epidermal growth factor in rats

    International Nuclear Information System (INIS)

    Thornburg, W.; Rao, R.K.; Matrisian, L.M.; Magun, B.E.; Koldovsky, O.

    1987-01-01

    Epidermal growth factor (EGF) was iodinated and administered orally to 13- to 15-day-old suckling rats and 29- to 31-day-old weanling rats. After 30 min, stomach, small intestine, plasma, liver, lung, and skin were removed. The tissues were homogenized and 125 I radioactivity was extracted. Compared with suckling rats, the delivery of total radioactivity into peripheral tissues was enhanced in skin of weanling rats and tended to be higher in plasma and liver. In contrast, there was a 3.3-fold reduction in radioactivity remaining in the intestinal wall. Sephadex G-25 chromatography of most samples, especially liver and intestinal wall, revealed a decrease in the proportion of intact 125 I-EGF eluting in the void volume. As a result, because the amount of total radioactivity also differed, the overall recovery of radioactivity of void volume 125 I-EGF was similar in both age groups except for an increase in skin and a decrease in the intestinal of weanling rats. Extracts of all tissues of weanling rats examined contained immunoreactive 125 I-EGF. Samples obtained from tissues and content of the gastrointestinal tract of both age groups bound specifically to A431 cell surface receptors. These results thus indicate that EGF is absorbed and delivered to various tissues of weanling rats. Nevertheless, quantitative and qualitative changes in these processes occur during the postnatal period

  11. Herbal formula menoprogen alters insulin-like growth factor-1 and insulin-like growth factor binding protein-1 levels in the serum and ovaries of an aged female rat model of menopause.

    Science.gov (United States)

    Wei, Min; Zheng, Sheng Z; Lu, Ye; Liu, Daniel; Ma, Hong; Mahady, Gail B

    2015-10-01

    Menoprogen (MPG), a traditional Chinese medicine formula for menopause, improves menopausal symptoms; however, its mechanism remains unknown. Previous studies have shown that MPG is not directly estrogenic; thus, the goal of this study was to investigate the effects of MPG on insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) levels in an aged female rat model of menopause. In a six-arm study, 14-month-old female Sprague-Dawley rats (n = 8 per arm) were randomly divided into the following groups: untreated aged, 17β-estradiol-treated aged (estradiol [E2]), and three arms with increasing doses of MPG (162, 324, or 648 mg/kg/d). The sixth arm contained 4-month-old female Sprague-Dawley rats as a normal comparison group. Four weeks after MPG or E2 administration, animals were killed after blood draws, and ovarian tissues were excised. Levels of E2 and progesterone (P4) were determined by radioimmunoassay. Serum and ovarian tissue levels of IGF-1, IGFBP-1, and IGF-1 receptor were determined by enzyme-linked immunosorbent assay. Compared with the normal group, aged rats had significantly reduced serum levels of E2, P4, and IGF-1, and increased serum and ovarian tissue levels of IGFBP-1. MPG restored serum IGF-1 and IGFBP-1 levels and down-regulated ovarian levels of IGFBP-1, which were closely related to increases in E2 and P4 levels in aged rats. No significant differences in either IGF-1 or IGFBP-1 were observed between the three doses of MPG. MPG exerts a direct in vivo effect on aged female rats by positively regulating serum and ovarian IGF-1 and IGFBP-1 levels.

  12. Reduced Transforming Growth Factor-β Activity in the Endometrium of Women With Heavy Menstrual Bleeding

    OpenAIRE

    Maybin, Jacqueline A.; Boswell, Lyndsey; Young, Vicky J.; Duncan, William C.; Critchley, Hilary O. D.

    2017-01-01

    Context: Heavy menstrual bleeding (HMB) is common and incapacitating. Aberrant menstrual endometrial repair may result in HMB. The transforming growth factor (TGF)-β superfamily contributes to tissue repair, but its role in HMB is unknown. Objective: We hypothesized that TGF-β1 is important for endometrial repair, and women with HMB have aberrant TGF-β1 activity at menses. Participants/Setting: Endometrial biopsies were collected from women, and menstrual blood loss objectively measured [HMB ...

  13. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    LENUS (Irish Health Repository)

    Sands, Michelle

    2011-01-25

    Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or potentiate the

  14. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  15. Additive Effect of Plasma Rich in Growth Factors With Guided Tissue Regeneration in Treatment of Intrabony Defects in Patients With Chronic Periodontitis: A Split-Mouth Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Ravi, Sheethalan; Malaiappan, Sankari; Varghese, Sheeja; Jayakumar, Nadathur D; Prakasam, Gopinath

    2017-09-01

    Periodontal regeneration can be defined as complete restoration of lost periodontal tissues to their original architecture and function. A variety of treatment modalities have been proposed to achieve it. Plasma rich in growth factors (PRGF) is a concentrated suspension of growth factors that promotes restoration of lost periodontal tissues. The objective of the present study is to assess the effect of PRGF associated with guided tissue regeneration (GTR) versus GTR only in the treatment of intrabony defects (IBDs) in patients with chronic periodontitis (CP). Patients with CP (n = 14) with 42 contralateral 2- and 3-walled defects were randomly assigned to test (PRGF+GTR) and control (GTR alone) treatment groups. Clinical and radiographic assessments performed at baseline and after 6 months were: 1) gingival index (GI), 2) probing depth (PD), 3) clinical attachment level (CAL), 4) radiologic defect depth, and 5) bone fill. Comparison of parameters measured at baseline and after 6 months showed mean PD reduction of 3.37 ± 1.62 mm in the control group (P <0.001) and 4.13 ± 1.59 mm in the test group (P <0.001). There was a significant difference in mean change in CAL (P <0.001) in the control group (5.42 ± 1.99) and the test group (5.99 ± 1.77). Mean change in GI was 1.89 ± 0.32 and 1.68 ± 0.58 in the control group and test group, respectively, and the difference was statistically significant (P <0.001). When compared between groups, clinical parameters did not show any statistically significant variations. Mean radiographic bone fill was 1.06 ± 0.81 and 1.0 ± 0.97 in the control group and test group, respectively. However, the difference was not statistically significant. PRGF with GTR, as well as GTR alone, was effective in improving clinical and radiographic parameters of patients with CP at the 6-month follow-up. There was no additive effect of PRGF when used along with GTR in the treatment of IBDs in patients with CP in terms of both clinical and

  16. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  17. What is the value of ultrasound soft tissue measurements in the prediction of abnormal fetal growth?

    LENUS (Irish Health Repository)

    Farah, N

    2012-02-01

    Abnormal fetal growth increases the complications of pregnancy not only for the baby but also for the mother. Growth abnormalities also have lifelong consequences. These babies are at increased risk of insulin resistance, diabetes and hypertension later in life. It is important to identify these babies antenatally to optimise their clinical care. Although used extensively antenatally to monitor fetal growth, ultrasound has its limitations. Despite the use of more than 50 different formulae to estimate fetal weight, their performance has been poor at the extremes of fetal weight. Over the past 20 years there has been emerging interest in studying fetal soft tissue measurements to improve detection of growth abnormalities. This review paper outlines the value of soft tissue measurements in identifying fetal growth abnormalities, in estimating fetal weight and in managing diabetes mellitus in pregnancy.

  18. Hemophilia as a defect of the tissue factor pathway of blood coagulation: Effect of factors VIII and IX on factor X activation in a continuous-flow reactor

    International Nuclear Information System (INIS)

    Repke, D.; Gemmell, C.H.; Guha, A.; Turitto, V.T.; Nemerson, Y.; Broze, G.J. Jr.

    1990-01-01

    The effect of factors VIII and IX on the ability of the tissue factor-factor VIIa complex to activate factor X was studied in a continuous-flow tubular enzyme reactor. Tissue factor immobilized in a phospholipid bilayer on the inner surface of the tube was exposed to a perfusate containing factors VIIa, VIII, IX, and X flowing at a wall shear rate of 57, 300, or 1130 sec -1 . The addition of factors VIII and IX at their respective plasma concentrations resulted in a further 2 endash-to 3 endash fold increase. The direct activation of factor X by tissue factor-factor VIIa could be virtually eliminated by the lipoprotein-associated coagulation inhibitor. These results suggest that the tissue factor pathway, mediated through factors VIII and IX, produces significant levels of factor Xa even in the presence of an inhibitor of the tissue factor-factor VIIa complex; moreover, the activation is dependent on local shear conditions. These findings are consistent both with a model of blood coagulation in which initiation of the system results from tissue factor and with the bleeding observed in hemophilia

  19. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice.

    Science.gov (United States)

    Douris, Nicholas; Stevanovic, Darko M; Fisher, Ffolliott M; Cisu, Theodore I; Chee, Melissa J; Nguyen, Ngoc L; Zarebidaki, Eleen; Adams, Andrew C; Kharitonenkov, Alexei; Flier, Jeffrey S; Bartness, Timothy J; Maratos-Flier, Eleftheria

    2015-07-01

    Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis.

  20. Promoting tissue regeneration by modulating the immune system.

    Science.gov (United States)

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support

  1. Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic-co-glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells

    DEFF Research Database (Denmark)

    Mohan, Saktiswaren; Raghavendran, Hanumantharao Balaji; Karunanithi, Puvanan

    2017-01-01

    Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release...... was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications....

  2. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    Science.gov (United States)

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  3. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  4. Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity.

    Science.gov (United States)

    Berryman, Darlene E; List, Edward O

    2017-07-26

    Obesity is an excessive accumulation or expansion of adipose tissue (AT) due to an increase in either the size and/or number of its characteristic cell type, the adipocyte. As one of the most significant public health problems of our time, obesity and its associated metabolic complications have demanded that attention be given to finding effective therapeutic options aimed at reducing adiposity or the metabolic dysfunction associated with its accumulation. Growth hormone (GH) has therapeutic potential due to its potent lipolytic effect and resultant ability to reduce AT mass while preserving lean body mass. However, AT and its resident adipocytes are significantly more dynamic and elaborate than once thought and require one not to use the reduction in absolute mass as a readout of efficacy alone. Paradoxically, therapies that reduce GH action may ultimately prove to be healthier, in part because GH also possesses potent anti-insulin activities along with concerns that GH may promote the growth of certain cancers. This review will briefly summarize some of the newer complexities of AT relevant to GH action and describe the current understanding of how GH influences this tissue using data from both humans and mice. We will conclude by considering the therapeutic use of GH or GH antagonists in obesity, as well as important gaps in knowledge regarding GH and AT.

  5. Regulation of insulin-like growth factor (IGF) I receptor expression during muscle cell differentiation. Potential autocrine role of IGF-II.

    OpenAIRE

    Rosenthal, S M; Brunetti, A; Brown, E J; Mamula, P W; Goldfine, I D

    1991-01-01

    Muscle is an important target tissue for insulin-like growth factor (IGF) action. The presence of specific, high affinity IGF receptors, as well as the expression of IGF peptides and binding proteins by muscle suggest that a significant component of IGF action in this tissue is mediated through autocrine and/or paracrine mechanisms. To explore autocrine/paracrine action of IGFs in muscle, we studied the regulation of the IGF-I receptor and the expression of IGF peptides during differentiation...

  6. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes

    NARCIS (Netherlands)

    Mazagova, Magdalena; Buikema, Hendrik; van Buiten, Azuwerus; Duin, Marry; Goris, Maaike; Sandovici, Maria; Henning, Robert H.; Deelman, Leo E.

    2013-01-01

    Growth differentiation factor 15 (GDF15) is emerging as valuable biomarker in cardiovascular disease and diabetic kidney disease. Also, GDF15 represents an early response gene induced after tissue injury and studies performed in GDF15 knockout (KO) mice suggest that GDF15 plays a protective role

  7. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes

    NARCIS (Netherlands)

    Mazagova, Magdalena; Buikema, Hendrik; van Buiten, Azuwerus; Duin, Marry; Goris, Maaike; Sandovici, Maria; Henning, Robert H.; Deelman, Leo E.

    Growth differentiation factor 15 (GDF15) is emerging as valuable biomarker in cardiovascular disease and diabetic kidney disease. Also, GDF15 represents an early response gene induced after tissue injury and studies performed in GDF15 knockout (KO) mice suggest that GDF15 plays a protective role

  8. Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates.

    Science.gov (United States)

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A; Messaoudi, Ilhem

    2014-04-01

    Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. Using a nonhuman primate model of ethanol (EtOH) self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine, and growth factor production in peripheral blood, lung, and intestinal mucosa following 12 months of chronic EtOH exposure. EtOH exposure inhibited activation-induced production of growth factors hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and vascular-endothelial growth factor (VEGF) by peripheral blood mononuclear cells (PBMC). Moreover, EtOH significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of EtOH-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed EtOH-dependent up-regulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF, and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR-181 and miR-221, and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected. Chronic EtOH consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be

  9. Fibroblast growth factor 23

    African Journals Online (AJOL)

    Dr Olaleye

    Systemic phosphate homeostasis is maintained through several hormonal mechanisms which involve fibroblast growth factor 23 (FGF-23), α-klotho, vitamin D and parathyroid hormone. FGF-23 is known to be the major regulator of phosphate balance (Mirams et al., 2004). FGF-23 is a phosphaturic hormone, which is.

  10. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    Science.gov (United States)

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (Psolar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  11. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    Science.gov (United States)

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  12. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  13. Treatment of Ebola Virus Infection With a Recombinant Inhibitor of Factor Vlla/Tissue Factor: A Study in Rhesus Monkeys

    National Research Council Canada - National Science Library

    Geisbert, Thomas W; Hensley, Lisa E; Jahrling, Peter B; Larsen, Tom; Geisbert, Joan B

    2003-01-01

    Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate...

  14. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    Science.gov (United States)

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  15. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  16. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  17. Growth factors II: insuline-like growth binging proteins (GFBPs Factores de crecimiento II: factores insulinoides de crecimiento

    Directory of Open Access Journals (Sweden)

    Hilda Norha Jaramillo Londoño

    1996-03-01

    Full Text Available This review summarizes recent knowledge concerning Insulin.like growth factors I and II, with emphasis on their biochemical structure, concentrations, binding proteins, receptors, mechanisms of action, biological effects, and alterations of their concentrations in biological fluids. Se revisan los Factores Insulinoides de Crecimiento, también denominados ";Factores de Crecimiento Similares a la Insulina";, sobre los cuales se dispone de abundante información. Se sintetizan conocimientos recientes sobre dichos factores con énfasis en los siguientes aspectos: estructura bioquímica, concentraciones y sus cambios en los líquidos biológicos, proteínas fijadoras, receptores, mecanismos de acción y efectos biológicos.

  18. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Fioravanti, D; Bonanno, G; Totta, P; Zizzari, I G; Pierelli, L

    2016-08-25

    Mesenchymal stromal cells (MSCs) have been largely investigated, in the past decade, as potential therapeutic strategies for various acute and chronic pathological conditions. MSCs isolated from different sources, such as bone marrow (BM), umbilical cord tissue (UCT) and adipose tissue (AT), share many biological features, although they may show some differences on cumulative yield, proliferative ability and differentiation potential. The standardization of MSCs growth and their functional amplification is a mandatory objective of cell therapies. The aim of this study was to evaluate the cumulative yield and the ex vivo amplification potential of MSCs obtained from various sources and different subjects, using defined culture conditions with a standardized platelet lysate (PL) as growth stimulus. MSCs isolated from BM, UCT and AT and expanded in human PL were compared in terms of cumulative yield and growth potential per gram of starting tissue. MSCs morphology, phenotype, differentiation potential, and immunomodulatory properties were also investigated to evaluate their biological characteristics. The use of standardized PL-based culture conditions resulted in a very low variability of MSC growth. Our data showed that AT has the greater capacity to generate MSC per gram of initial tissue, compared to BM and UCT. However, UCT-MSCs replicated faster than AT-MSCs and BM-MSCs, revealing a greater proliferation capacity of this source irrespective of its lower MSC yield. All MSCs exhibited the typical MSC phenotype and the ability to differentiate into all mesodermal lineages, while BM-MSCs showed the most prominent immunosuppressive effect in vitro. The adoption of standardized culture conditions may help researchers and clinicians to reveal particular characteristics and inter-individual variability of MSCs sourced from different tissues. These data will be beneficial to set the standards for tissue collection and MSCs clinical-scale expansion both for cell banking

  19. Gender Factors and Inclusive Economic Growth: The Silent Revolution

    Directory of Open Access Journals (Sweden)

    Laura Cabeza-García

    2018-01-01

    Full Text Available The gender factors that trigger economic growth in both high- and low-income countries were investigated in this study. To address these gender factors, four characteristic dimensions of gender inclusion were considered: education, access to the labor market, fertility, and democracy. The relationship between economic growth and gender factors was analyzed in a sample of 127 countries. Value and robustness were added to the results using dynamic models applied to panel data while accounting for endogeneity. We conclude that high fertility in women has negative effects on economic growth. However, when women have greater access to secondary education and the labor market in conditions of equality, the effects are positive. Similarly, the access of women to active political participation has significant effects on economic growth. Overall, this study helps identify which gender factors may promote inclusive economic growth, which is economic growth achieved when both men and women are incorporated in equal conditions.

  20. Potential of pomegranate fruit extract (Punica granatum Linn.) to increase vascular endothelial growth factor and platelet-derived growth factor expressions on the post-tooth extraction wound of Cavia cobaya.

    Science.gov (United States)

    Nirwana, Intan; Rachmadi, Priyawan; Rianti, Devi

    2017-08-01

    Pomegranates fruit extracts have several activities, among others, anti-inflammatory, antibacterial, and antioxidants that have the main content punicalagin and ellagic acid. Pomegranate has the ability of various therapies through different mechanisms. Vascular endothelial growth factor (VEGF) function was to form new blood vessels produced by various cells one of them was macrophages. Platelet-derived growth factor (PDGF) was a growth factor proven chemotactic, increased fibroblast proliferation and collagen matrix production. In addition, VEGF and PDGF synergize in their ability to vascularize tissues. The PDGF function was to stabilize and regulate maturation of new blood vessels. Activities of pomegranate fruit extract were observed by measuring the increased of VEGF and PDGF expression as a marker of wound healing process. To investigate the potential of pomegranate extracts on the tooth extraction wound to increase the expression of VEGF and PDGF on the 4 th day of wound healing process. This study used 12 Cavia cobaya , which were divided into two groups, namely, the provision of 3% sodium carboxymethyl cellulose and pomegranate extract. The 12 C. cobaya would be executed on the 4 th day, the lower jaw of experimental animals was taken, decalcified about 30 days. The expression of VEGF and PDGF was examined using immunohistochemical techniques. The differences of VEGF and PDGF expression were evaluated statistically using t-test. Statistically analysis showed that there were significant differences between control and treatment groups (p<0.05). Pomegranate fruit extract administration increased VEGF and PDGF expression on post-tooth extraction wound.