WorldWideScience

Sample records for tissue elastic modulus

  1. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone

    NARCIS (Netherlands)

    Kabel, J.; Rietbergen, van B.; Dalstra, M.; Odgaard, A.; Huiskes, H.W.J.

    1999-01-01

    Conceptually, the elastic characteristics of cancellous bone could be predicted directly from the trabecular morphology-or architecture-and by the elastic properties of the tissue itself. Although hardly any experimental evidence exists, it is often implicitly assumed that tissue anisotropy has a

  2. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...

  3. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  4. Thickness dependence of nanofilm elastic modulus

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.

    2009-01-01

    Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1

  5. Determination of elastic modulus in nickel alloy from ultrasonic ...

    Indian Academy of Sciences (India)

    als scientists, and solid-state theorists; they connect to tech- nological, structural economics and safety, to various mate- rials phenomena and to their fundamental interatomic forces. (Ledbetter 1983). In any material which is a multiphase alloy, the elastic modulus is determined by the modulus of the indi- vidual phases and ...

  6. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  7. The effect of elastic modulus on ablation catheter contact area.

    Science.gov (United States)

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  8. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  9. Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions

    NARCIS (Netherlands)

    Nommensen, P.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.

    2000-01-01

    The elastic moduli of polymerically stabilized suspensions consisting of colloidal silica particles coated with endgrafted PDMS (Mn = 80 000) in heptane, were measured as a function of concentration. And the elastic modulus at high frequency G'.. was quantitatively described by model calculations

  10. Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-06-01

    Full Text Available Micro- and nano-hierarchical structures (lamellae, setae, branches, and spatulae on the toe pads of many animals play key roles for generating strong but reversible adhesion for locomotion. The hierarchical structure possesses significantly reduced, effective elastic modulus (Eeff, as compared to the inherent elastic modulus (Einh of the corresponding biological material (and therefore contributes to a better compliance with the counterpart surface. Learning from nature, three types of hierarchical structures (namely self-similar pillar structure, lamella–pillar hybrid structure, and porous structure have been developed and investigated.

  11. Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Alireza Mohammadi Bayazidi

    2014-01-01

    Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.

  12. Low elastic modulus titanium–nickel scaffolds for bone implants

    International Nuclear Information System (INIS)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property

  13. Elastic modulus of tree frog adhesive toe pads.

    Science.gov (United States)

    Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N

    2011-10-01

    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.

  14. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  15. Young's modulus of elasticity of Schlemm's canal endothelial cells.

    Science.gov (United States)

    Zeng, Dehong; Juzkiw, Taras; Read, A Thomas; Chan, Darren W-H; Glucksberg, Matthew R; Ethier, C Ross; Johnson, Mark

    2010-02-01

    Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limits on the flow resistance that this layer can generate in the eye. However, little is known about the biomechanical properties of SC endothelial cells. Our goal in this study was to estimate the effective Young's modulus of elasticity of normal SC cells. To do so, we combined magnetic pulling cytometry of isolated cultured human SC cells with finite element modeling of the mechanical response of the cell to traction forces applied by adherent beads. Preliminary work showed that the immersion angles of beads attached to the SC cells had a major influence on bead response; therefore, we also measured bead immersion angle by confocal microscopy, using an empirical technique to correct for axial distortion of the confocal images. Our results showed that the upper bound for the effective Young's modulus of elasticity of the cultured SC cells examined in this study, in central, non-nuclear regions, ranged between 1,007 and 3,053 Pa, which is similar to, although somewhat larger than values that have been measured for other endothelial cell types. We compared these values to estimates of the modulus of primate SC cells in vivo, based on images of these cells under pressure loading, and found good agreement at low intraocular pressure (8-15 mm Hg). However, increasing intraocular pressure (22-30 mm Hg) appeared to cause a significant increase in the modulus of these cells. These moduli can be used to estimate the extent to which SC cells deform in response to the pressure drop across the inner wall endothelium and thereby estimate the extent to which they can generate outflow resistance.

  16. Resonant frequency and elastic modulus measurements on hardened cement pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1982-12-01

    A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)

  17. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    Directory of Open Access Journals (Sweden)

    Chris L. de Korte

    2013-03-01

    Full Text Available Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.

  18. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    Science.gov (United States)

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  19. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  20. Proposal of Design Formulae for Equivalent Elasticity of Masonry Structures Made with Bricks of Low Modulus

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2017-01-01

    Full Text Available Bricks of low elastic modulus are occasionally used in some developing countries, such as Indonesia and India. Most of the previous research efforts focused on masonry structures built with bricks of considerably high elastic modulus. The objective of this study is to quantify the equivalent elastic modulus of lower-stiffness masonry structures, when the mortar has a higher modulus of elasticity than the bricks, by employing finite element (FE simulations and adopting the homogenization technique. The reported numerical simulations adopted the two-dimensional representative volume elements (RVEs using quadrilateral elements with four nodes. The equivalent elastic moduli of composite elements with various bricks and mortar were quantified. The numerically estimated equivalent elastic moduli from the FE simulations were verified using previously established test data. Hence, a new simplified formula for the calculation of the equivalent modulus of elasticity of such masonry structures is proposed in the present study.

  1. Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

    Directory of Open Access Journals (Sweden)

    Holmes Amey J

    2005-07-01

    Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.

  2. Effective elastic modulus of isolated gecko setal arrays.

    Science.gov (United States)

    Autumn, K; Majidi, C; Groff, R E; Dittmore, A; Fearing, R

    2006-09-01

    Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of beta-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a beta-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (E(eff)) is much lower than E of bulk beta-keratin. In the first test of the E(eff) of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45 degrees and -45 degrees . We tested the hypothesis that E(eff) of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. E(eff) of setal arrays during vertical and +45 degrees compression (along the natural path of drag of the setae) were 83+/-4.0 kPa and 86+/-4.4 kPa (means +/- s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E(eff) during -45 degrees compression was 110+/-4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.

  3. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong; Ngan, Alfonso H W; Tang, Bin; Wang, Anxun

    2012-01-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  4. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  5. The variation in elastic modulus throughout the compression of foam materials

    International Nuclear Information System (INIS)

    Sun, Yongle; Amirrasouli, B.; Razavi, S.B.; Li, Q.M.; Lowe, T.; Withers, P.J.

    2016-01-01

    We present a comprehensive experimental study of the variation in apparent unloading elastic modulus of polymer (largely elastic), aluminium (largely plastic) and fibre-reinforced cement (quasi-brittle) closed-cell foams throughout uniaxial compression. The results show a characteristic “zero-yield-stress” response and thereafter a rapid increase in unloading modulus during the supposedly “elastic” regime of the compressive stress–strain curve. The unloading modulus then falls with strain due to the localised cell-wall yielding or failure in the pre-collapse stage and the progressive cell crushing in the plateau stage, before rising sharply during the densification stage which is associated with global cell crushing and foam compaction. A finite element model based on the actual 3D cell structure of the aluminium foam imaged by X-ray computed tomography (CT) predicts an approximately linear fall of elastic modulus from zero strain until a band of collapsed cells forms. It shows that the subsequent gradual decrease in modulus is caused by the progressive collapse of cells. The elastic modulus rises sharply after the densification initiation strain has been reached. However, the elastic modulus is still well below that of the constituent material even when the “fully” dense state is approached. This work highlights the fact that the unloading elastic modulus varies throughout compression and challenges the idea that a constant elastic modulus can be applied in a homogenised foam model. It is suggested that the most representative value of elastic modulus may be obtained by extrapolating the measured unloading modulus to zero strain.

  6. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.

    Science.gov (United States)

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E; Nikolov, Svetoslav; Torp-Pedersen, Søren T; Delachartre, Philippe; Jensen, Jørgen A

    2013-02-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load cell. Load-compression data and ultrasound B-mode images were simultaneously acquired in 19 compression steps of 0.1mm each. The internal tissue displacement was for each step calculated by a phase-based cross-correlation technique and internal strain maps were derived from these displacement maps. Elastic moduli were found from the resulting stress-strain curves. The elastic moduli made it possible to distinguish eight of nine phantoms from each other according to the manufactured stiffness and showed very little dependence of the thickness. Mean elastic moduli for the three soft, the three medium, and the three hard phantoms were 89kPa, 153kPa, and 168kPa, respectively. The combination of ultrasound images and force measurements provided an effective way of assessing the elastic properties of the heel pad due to the internal strain estimation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  8. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings.

    Directory of Open Access Journals (Sweden)

    Brian Chin Wing Kot

    Full Text Available Standardization on Shear wave ultrasound elastography (SWUE technical settings will not only ensure that the results are accurate, but also detect any differences over time that may be attributed to true physiological changes. The present study evaluated the variations of elastic modulus of muscle and tendon using SWUE when different technical aspects were altered. The results of this study indicated that variations of elastic modulus of muscle and tendon were found when different transducer's pressure and region of interest (ROI's size were applied. No significant differences in elastic modulus of the rectus femoris muscle and patellar tendon were found with different acquisition times of the SWUE sonogram. The SWUE on the muscle and tendon should be performed with the lightest transducer's pressure, a shorter acquisition time for the SWUE sonogram, while measuring the mean elastic modulus regardless the ROI's size.

  9. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying; Lai, Yun; Zhang, Zhao-Qing

    2011-01-01

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse

  10. Hardness and Elastic Modulus of Titanium Nitride Coatings Prepared by Pirac Method

    Science.gov (United States)

    Wu, Siyuan; Wu, Shoujun; Zhang, Guoyun; Zhang, Weiguo

    In the present work, hardness and elastic modulus of a titanium nitride coatings prepared on Ti6Al4V by powder immersion reaction-assisted coating (PIRAC) are tested and comparatively studied with a physical vapor deposition (PVD) TiN coating. Surface hardness of the PIRAC coatings is about 11GPa, much lower than that of PVD coating of 22GPa. The hardness distribution profile from surface to substrate of the PVD coatings is steeply decreased from ˜22GPa to ˜4.5GPa of the Ti6Al4V substrate. The PIRAC coatings show a gradually decreasing hardness distribution profile. Elastic modulus of the PVD coating is about 426GPa. The PIRAC coatings show adjustable elastic modulus. Elastic modulus of the PIRAC coatings prepared at 750∘C for 24h and that at 800∘C for 8h is about 234 and 293GPa, respectively.

  11. The dimensional stability and elastic modulus of cemented simulant Winfrith reactor (SGHWR) sludge

    International Nuclear Information System (INIS)

    Holland, T.R.; Lee, D.J.

    1985-12-01

    Dimensional changes and elastic modulus have been monitored on cemented simulant sludge stored in various environments. Specimens prepared using a blended cement show no serious detrimental effects during sealed storage, underwater storage or freeze/thaw cycling. (author)

  12. Shear elastic modulus of magnetic gels with random distribution of magnetizable particles

    Science.gov (United States)

    Iskakova, L. Yu; Zubarev, A. Yu

    2017-04-01

    Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.

  13. Modular correction method of bending elastic modulus based on sliding behavior of contact point

    International Nuclear Information System (INIS)

    Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi

    2015-01-01

    During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)

  14. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  15. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  16. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  17. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  18. The elastic modulus of alumina-zirconia composite using through transmission ultrasonics

    International Nuclear Information System (INIS)

    Tan, K.S.; Hing, P.

    1996-01-01

    The elastic modulus of unstabilized Al 2 O 3 -ZrO 2 composites is determined from ultrasonic velocities and density measurements. The dynamic elastic modulus and the density of the green unstabilized Al 2 O 3 -ZrO 2 follow the rule of mixture. However, the elastic modulus and density of the sintered Al 2 O 3 -ZrO 2 do not follow the rule of mixture. The elastic modulus and diametrical compressive fracture stress of the Al 2 O 3 can be enhanced by (1) a high green (before sintering) compacting pressure and (2) addition of about 3wt% unstabilized ZrO 2 at a sintering time of two hours at 1550 degC. The ZrO 2 is found to improve the bulk density of the composite by a reduction in the porosity. This improves the elastic modulus and the diametrical compressive fracture stress. The thermal expansion on cooling with > 25wt% ZrO 2 in the Al 2 O 3 matrix has also been established. (author)

  19. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  20. Size dependent elastic modulus and mechanical resilience of dental enamel.

    Science.gov (United States)

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    Science.gov (United States)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2

  2. Consequence of reduced necrotic bone elastic modulus in a Perthes' hip

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Skytte, Tina Lercke; Mikkelsen, Lars Pilgaard

    Introduction Perthes is a destructive hip joint disorder characterized as a malformation of the femoral head which affects young children. Several studies have shown the change of mechanical properties of the femoral head in Perthes’ disease. However, the consequence of the changes in bone...... mechanical properties in a Perthes’ hip is not well established. Due to the material differences, changes in bone mechanical properties might lead to localization of stress and deformation. Thus, the objective of this study was to investigate the effects of reduced elastic modulus of necrotic bone...... weight) was applied on the top of the femoral head. The distal part of the femur was fixed. The same Poisson’s ratio 0.3 was set for the femoral and necrotic bone. The elastic modulus (E) of femoral bone was 500 MPa. To investigate the effects of reduced elastic modulus, the necrotic bone E was reduced...

  3. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...

  4. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials

    International Nuclear Information System (INIS)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-01-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs

  5. Relationship Between Cell Compatibility and Elastic Modulus of Silicone Rubber/Organoclay Nanobiocomposites

    Science.gov (United States)

    Hosseini, Motahare Sadat; Tazzoli-Shadpour, Mohammad; Amjadi, Issa; Haghighipour, Nooshin; Shokrgozar, Mohammad Ali; Ghafourian Boroujerdnia, Mehri

    2012-01-01

    Background Substrates in medical science are hydrophilic polymers undergoing volume expansion when exposed to culture medium that influenced on cell attachment. Although crosslinking by chemical agents could reduce water uptake and promote mechanical properties, these networks would release crosslinking agents. In order to overcome this weakness, silicone rubber is used and reinforced by nanoclay. Objectives Attempts have been made to prepare nanocomposites based on medical grade HTV silicone rubber (SR) and organo-modified montmorillonite (OMMT) nanoclay with varying amounts of clay compositions. Materials and Methods Incorporation of nanocilica platelets into SR matrix was carried out via melt mixing process taking advantage of a Brabender internal mixer. The tensile elastic modulus of nanocomposites was measured by performing tensile tests on the samples. Produced polydimetylsiloxane (PDMS) composites with different flexibilities and crosslink densities were employed as substrates to investigate biocompatibility, cell compaction, and differential behaviors. Results The results presented here revealed successful nanocomposite formation with SR and OMMT, resulting in strong PDMS-based materials. The results showed that viability, proliferation, and spreading of cells are governed by elastic modulus and stiffness of samples. Furthermore, adipose derived stem cells (ADSCs) cultured on PDMS and corresponding nanocomposites could retain differentiation potential of osteocytes in response to soluble factors, indicating that inclusion of OMMT would not prevent osteogenic differentiation. Moreover, better spread out and proliferation of cells was observed in nanocomposite samples. Conclusions Considering cell behavior and mechanical properties of nanobiocomposites it could be concluded that silicone rubber substrate filled by nanoclay are a good choice for further experiments in tissue engineering and medical regeneration due to its cell compatibility and differentiation

  6. Effect of time of sintering of a castable with andalusite aggregates in the rupture modulus and elastic modulus

    International Nuclear Information System (INIS)

    Oliveira, M.R.; Garcia, G.C.R.; Claudinei, S.; Ribeiro, S.

    2011-01-01

    The studied castable contain andalusite aggregates, and when sintered in temperatures above 1280 deg C, transformed into mullite improving the properties of concrete due to its low expansion and thermal conductivity, creep resistance and thermal shock. The refractory was homogenized in a mixer with 5.5% m/m of water and poured into a metal mold resulting in prismatic bars. After curing for 48 hours, were sintered at 1450 ° C for 0 h, 1 h, 2.5 h and 10 h with heating and cooling rates of 2 ° C / min. The results of elastic modules were, respectively, in GPa: 25.75±1.75, 37.79±0.36, 39.03±1.97 and 54.47±4.01, and rupture, MPa: 8.40±0.78, 11.94±0.68, 10.91±0.91 and 11,34±1.16, showing the increase in elastic modulus for longer times and for times exceeding one hour, no significant changes in results of the modulus of rupture , stabilizing the change of this refractory's properties after the first hour of sintering. (author)

  7. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  8. Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming

    Directory of Open Access Journals (Sweden)

    Umit Atici

    2016-01-01

    Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.

  9. A summary of modulus of elasticity and knot size surveys for laminating grades of lumber

    Science.gov (United States)

    R. W. Wolfe; R. C. Moody

    1981-01-01

    A summary of modulus of elasticity (MOE) and knot data is presented for grades of lumber commonly used to manufacture glued-laminated (glulam) timber by the laminating Industry. Tabulated values represent 30 different studies covering a time span of over 16 years. Statistical estimates of average and near-maximum knot sizes as well as mean and coefficient of variation...

  10. Diameter effect on stress-wave evaluation of modulus of elasticity of logs

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Brian K. Brashaw; John Punches; John R. Erickson; John W. Forsman; Roy E. Pellerin

    2004-01-01

    Recent studies on nondestructive evaluation (NDE) of logs have shown that a longitudinal stress-wave method can be used to nondestructively evaluate the modulus of elasticity (MOE) of logs. A strong relationship has been found between stress-wave MOE and static MOE of logs, but a significant deviation was observed between stress-wave and static values. The objective of...

  11. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  12. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    Science.gov (United States)

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  13. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  14. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  15. Evaluating elastic modulus and strength of hard coatings by relative method

    International Nuclear Information System (INIS)

    Bao, Y.W.; Zhou, Y.C.; Bu, X.X.; Qiu, Y.

    2007-01-01

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method

  16. Evaluating elastic modulus and strength of hard coatings by relative method

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y.W. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); China Building Materials Academy, Beijing 100024 (China)], E-mail: ywbao@imr.ac.cn; Zhou, Y.C. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Bu, X.X. [China Building Materials Academy, Beijing 100024 (China); Qiu, Y. [China Building Materials Academy, Beijing 100024 (China)

    2007-06-15

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method.

  17. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    Science.gov (United States)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  18. Determination of elastic modulus for hollow spherical shells via resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200092 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-04-15

    Highlights: • The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method. • The simulated results demonstrate that the natural frequencies of a hollow sphere are more strongly dependent on Young’s modulus than Poisson's ratio. • The Young’s moduli of polymer capsules with an sub-millimeter inner radius are measured accurately with an uncertainty of ∼10%. - Abstract: The elastic property of a capsule is one of the essential parameters both in engineering applications and scientific understanding of material nature in inertial confinement fusion (ICF) experiments. The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method, and a combined resonant ultrasound spectroscopy(RUS), which consists of a piezoelectric-based resonant ultrasound spectroscopy(PZT-RUS) and a laser-based resonant ultrasound spectroscopy(LRUS), is developed for determining the elastic modulus of capsule. To understand the behavior of natural frequencies varying with elastic properties, the dependence of natural frequencies on Young’s modulus and Poisson’s ratio are calculated numerically. Some representative polymer capsules are measured using PZT-RUS and LRUS. Based on the theoretical and experimental results, the Young’s moduli of these capsules are measured accurately with an uncertainty of ∼10%.

  19. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    2016-01-01

    Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  20. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.

    Science.gov (United States)

    Park, Dae Woo

    2015-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  1. Elastic modulus, thermal expansion, and specific heat at a phase transition

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1975-01-01

    The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed phase relative to the untransformed phase is calculated assuming a particular but useful form of the thermodynamic potential. For second-order phase transitions where this potential applies, measurements of modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero. An exemplary application to one type of phase transition is given

  2. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete

    International Nuclear Information System (INIS)

    Alengaram, U. Johnson; Mahmud, Hilmi; Jumaat, Mohd Zamin

    2011-01-01

    Research highlights: → Micro-pores of size 16-24 μm were found on the outer surface of palm kernel shell. → Infilling of pores by mineral admixtures was evident. → Sand content influenced both modulus of elasticity and compressive strength. → Proposed equation predicts modulus of elasticity within ±1.5 kN/mm 2 of test results. -- Abstract: This paper presents results of an investigation conducted to enhance and predict the modulus of elasticity (MOE) of palm kernel shell concrete (PKSC). Scanning electron microscopic (SEM) analysis on palm kernel shell (PKS) was conducted. Further, the effect of varying sand and PKS contents and mineral admixtures (silica fume and fly ash) on compressive strength and MOE was investigated. The variables include water-to-binder (w/b) and sand-to-cement (s/c) ratios. Nine concrete mixes were prepared, and tests on static and dynamic moduli of elasticity and compressive strength were conducted. The SEM result showed presence of large number of micro-pores on PKS. The mineral admixtures uniformly filled the micro-pores on the outer surface of PKS. Further, the increase in sand content coupled with reduction in PKS content enhanced the compressive strength and static MOE: The highest MOE recorded in this investigation, 11 kN/mm 2 , was twice that previously published. Moreover, the proposed equation based on CEB/FIP code formula appears to predict the MOE close to the experimental values.

  3. Flexural strength and modulus of elasticity of different types of resin-based composites.

    Science.gov (United States)

    Rodrigues Junior, Sinval Adalberto; Zanchi, Cesar Henrique; Carvalho, Rodrigo Varella de; Demarco, Flávio Fernando

    2007-01-01

    The aim of the study was to test whether the filler composition of resin composites influences their flexural strength and modulus of elasticity. Flexural strength and modulus of elasticity were obtained through a three-point bending test. Twelve bar shaped specimens of 5 commercially available composites--Supreme (3M/ESPE), a universal nanofilled composite; Esthet-X (Dentsply), Z-250 (3M/ESPE), Charisma (Heraeus Kulzer), universal hybrid composites; and Helio Fill (Vigodent), a microfine composite--were confectioned according to the ISO 4049/2000 specifications. The test was performed after a 7-days storage time using a universal test machine with a crosshead speed of 1 mm/min. The filler weight content was determined by the ashing technique. The data obtained on the mechanical properties were submitted to ANOVA and Tukey test (p elasticity results were observed among the universal hybrid composites. The nanofilled composite presented intermediary results. Within the limitations of this in vitro study, it could be concluded that the filler content significantly interfered in the flexural strength and modulus of elasticity of the composites tested.

  4. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    International Nuclear Information System (INIS)

    You, J.H.; Hoeschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated

  5. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Science.gov (United States)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  6. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States

    Science.gov (United States)

    Antony Finto; Lewis Jordan; Laurence R. Schimleck; Alexander Clark; Ray A. Souter; Richard F. Daniels

    2011-01-01

    Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm × 25.4 mm × 406.4...

  7. Compressive Strength and Modulus of Elasticity of Concrete with Cubed Waste Tire Rubbers as Coarse Aggregates

    Science.gov (United States)

    Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.

    2017-11-01

    One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.

  8. Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites

    Directory of Open Access Journals (Sweden)

    Gabriela Queiroz de Melo Monteiro

    2010-03-01

    Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of 7 dental composites (Filtek Z350™, Filtek Z250™/3M ESPE; Grandio™, Polofil Supra™/VOCO; TPH Spectrum™, TPH3™, Esthet-X™/Denstply were measured. For the measurement of LPS, composites were applied to a cylindrical metallic mold and polymerized (n = 8. The gap formed at the resin/mold interface was observed using scanning electron microscopy (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. TPH Spectrum presented significantly higher LPS values (29.45 µm. Grandio had significantly higher mean values for FS (141.07 MPa and ME (13.91 GPa. The relationship between modulus of elasticity and polymerization shrinkage is the main challenge for maintenance of the adhesive interface, thus composites presenting high shrinkage values, associated with a high modulus of elasticity tend to disrupt the adhesive interface under polymerization.

  9. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  10. Design of the Elastic Modulus of Nanoparticles-Containing PVA/PVAc Films by the Response Surface Method

    Science.gov (United States)

    Jelinska, N.; Kalnins, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    By the surface response method, a regression equation is constructed, and the tensile elastic modulus of films made from polyvinyl alcohol/polyvinyl acetate (PVA/PVAc) blends filled with montmorillonite clay and microcrystalline cellulose nanoparticles is investigated. It is established that the introduction of the nanoparticles improves the mechanical properties of the blends in tension considerably: their strength and elastic modulus increase with content of the particles. Using the regression equation, the optimum composition of nanoparticlefilled PVA/PVAc blends with the highest value of elastic modulus is found.

  11. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  12. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study

    DEFF Research Database (Denmark)

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E.

    2013-01-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity...... is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine...... heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load...

  13. The Relationship between Trabecular Bone Structure Modeling Methods and the Elastic Modulus as Calculated by FEM

    Directory of Open Access Journals (Sweden)

    Tomasz Topoliński

    2012-01-01

    Full Text Available Trabecular bone cores were collected from the femoral head at the time of surgery (hip arthroplasty. Investigated were 42 specimens, from patients with osteoporosis and coxarthrosis. The cores were scanned used computer microtomography (microCT system at an isotropic spatial resolution of 36 microns. Image stacks were converted to finite element models via a bone voxel-to-element algorithm. The apparent modulus was calculated based on the assumptions that for the elastic properties, E=10 MPa and ν=0.3. The compressive deformation as calculated by finite elements (FE analysis was 0.8%. The models were coarsened to effectively change the resolution or voxel size (from 72 microns to 288 microns or from 72 microns to 1080 microns. The aim of our study is to determine how an increase in the distance between scans changes the elastic properties as calculated by FE models. We tried to find a border value voxel size at which the module values were possible to calculate. As the voxel size increased, the mean voxel volume increased and the FEA-derived apparent modulus decreased. The slope of voxel size versus modulus relationship correlated with several architectural indices of trabecular bone.

  14. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    Science.gov (United States)

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Printing Three-Dimensional Heterogeneities in the Elastic Modulus of an Elastomeric Matrix.

    Science.gov (United States)

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K

    2016-05-04

    We present a rapid and controllable method to create microscale heterogeneities in the 3D stiffness of a soft material by printing patterns with a ferrofluid ink. An ink droplet moved through a liquid polydimethylsiloxane (PDMS) volume using an externally applied magnetic field sheds clusters of magnetic nanoparticles (MNPs) in its wake. By varying the field spatiotemporally, a well-defined three-dimensional curvilinear feature is printed that contains MNP clusters. Subsequent cross-linking of the PDMS preserves the feature in place after the magnetic field is removed. Since the ferrofluid ink interferes with the cross-linking of PDMS, a 3D print containing ink density variations leads to corresponding spatial deviations in the elastic modulus of the matrix. The modulus is mapped in the experiments with atomic force microscopy. This rapid method to print 3D heterogeneities in soft matter promises the ability to mimic mechanical variations that occur in natural biomaterials.

  16. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying

    2011-09-02

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.

  17. Assessment of longitudinal modulus of elasticity in structural elements of Pinus Caribaea timber beams

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2012-05-01

    Full Text Available The current standard NBR 7190/1997 (Project of Timber Structures makes no reference to tests for determining the stiffness and strength in parts of structural lumber; restricting the analysis to bodies-of-tests with small dimensions and without defects. This paper presents an alternative method to determine the longitudinal modulus of elasticity in timber beams, based on the Finite Element Method, as well as the Inverse Analysis Method with an optimization technique. Results show that the methodology proposed by the Brazilian standard can also be applied to pieces of structural dimensions.

  18. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  19. Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles

    Science.gov (United States)

    Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.

    2013-01-01

    The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302

  20. Bending Elasticity Modulus of Giant Vesicles Composed of Aeropyrum Pernix K1 Archaeal Lipid

    Directory of Open Access Journals (Sweden)

    Julia Genova

    2015-03-01

    Full Text Available Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon flash lamp was implemented to remove the blur effect due to the finite integration time of the camera and to obtain an instant picture of the fluctuating vesicle shape. The mean weighted value of the bending elasticity modulus kc of the archaeal membrane determined from the measurements meeting the entire set of qualification criteria was (1.89 ± 0.18 × 10−19 J, which is similar to the values obtained for a membrane composed of the eukaryotic phospholipids SOPC (1.88 ± 0.17 × 10−19 J and POPC (2.00 ± 0.21 ´ 10−19 J. We conclude that membranes composed of archaeal lipids isolated from Aeropyrum pernix K1 cells have similar elastic properties as membranes composed of eukaryotic lipids. This fact, together with the importance of the elastic properties for the normal circulation through blood system, provides further evidence in favor of expectations that archaeal lipids could be appropriate for the design of drug delivery systems.

  1. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus

    International Nuclear Information System (INIS)

    Lacourpaille, Lilian; Hug, François; Bouillard, Killian; Nordez, Antoine; Hogrel, Jean-Yves

    2012-01-01

    The aim of the present study was to assess the reliability of shear elastic modulus measurements performed using supersonic shear imaging (SSI) in nine resting muscles (i.e. gastrocnemius medialis, tibialis anterior, vastus lateralis, rectus femoris, triceps brachii, biceps brachii, brachioradialis, adductor pollicis obliquus and abductor digiti minimi) of different architectures and typologies. Thirty healthy subjects were randomly assigned to the intra-session reliability (n = 20), inter-day reliability (n = 21) and the inter-observer reliability (n = 16) experiments. Muscle shear elastic modulus ranged from 2.99 (gastrocnemius medialis) to 4.50 kPa (adductor digiti minimi and tibialis anterior). On the whole, very good reliability was observed, with a coefficient of variation (CV) ranging from 4.6% to 8%, except for the inter-operator reliability of adductor pollicis obliquus (CV = 11.5%). The intraclass correlation coefficients were good (0.871 ± 0.045 for the intra-session reliability, 0.815 ± 0.065 for the inter-day reliability and 0.709 ± 0.141 for the inter-observer reliability). Both the reliability and the ease of use of SSI make it a potentially interesting technique that would be of benefit to fundamental, applied and clinical research projects that need an accurate assessment of muscle mechanical properties. (note)

  2. Influence of wood moisture content on the modulus of elasticity in compression parallel to the grain

    Directory of Open Access Journals (Sweden)

    Diogo Aparecido Lopes Silva

    2012-04-01

    Full Text Available Brazilian Standard ABNT NBR7190:1997 for timber structures design, adopts a first degree equation to describe the influence of wood moisture content. Periodically, when necessary, the referred standard is revised in order to analyze inconsistencies and to adopt considerations according new realities verified. So, the present paper aims to examine the adequacy of its equation which corrects to 12% of moisture the values of rigidity properties obtained on experimental tests. To quantify the moisture influence on modulus of elasticity, it was applied tests of compression parallel to the grain for six specimens of different strength classes, considering nominal moisture of 12; 20; 25; 30%. As results, modulus of elasticity in the moisture range 25-30% showed statistically equivalents, and was obtained a first degree equation to correlate the studied variables which leads to statically equivalent estimations when compared with results by ABNT NBR7190:1997 equation. However, it was indicated to maintain the current expression for the next text of the referred document review, without prejudice to statistical significance of the estimates.

  3. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch.

    Science.gov (United States)

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Klocke, Arndt; Schneider, Gerold A

    2010-05-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mechanism. Explanations range from the DEJ having a larger toughness than both enamel and dentin up to the assumption that not the DEJ itself causes crack arrest but the so-called mantle dentin, a thin material layer close to the DEJ that is somewhat softer than the bulk dentin. In this study we conducted 3-point bending experiments with bending bars consisting of the DEJ and surrounding enamel and dentin to investigate crack propagation and arrest within the DEJ region. Calculated stress intensities around crack tips were found to be highly influenced by the elastic modulus mismatch between enamel and dentin and hence, the phenomenon of crack arrest at the DEJ could be explained accordingly via this elastic modulus mismatch. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network

    Science.gov (United States)

    Ocak, Ibrahim; Seker, Sadi Evren

    2012-11-01

    The modulus of elasticity of intact rock ( E i) is an important rock property that is used as an input parameter in the design stage of engineering projects such as dams, slopes, foundations, tunnel constructions and mining excavations. However, it is sometimes difficult to determine the modulus of elasticity in laboratory tests because high-quality cores are required. For this reason, various methods for predicting E i have been popular research topics in recently published literature. In this study, the relationships between the uniaxial compressive strength, unit weight ( γ) and E i for different types of rocks were analyzed, employing an artificial neural network and 195 data obtained from laboratory tests carried out on cores obtained from drilling holes within the area of three metro lines in Istanbul, Turkey. Software was developed in Java language using Weka class libraries for the study. To determine the prediction capacity of the proposed technique, the root-mean-square error and the root relative squared error indices were calculated as 0.191 and 92.587, respectively. Both coefficients indicate that the prediction capacity of the study is high for practical use.

  5. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  6. Non-mineralized fibrocartilage shows the lowest elastic modulus in the rabbit supraspinatus tendon insertion: measurement with scanning acoustic microscopy.

    Science.gov (United States)

    Sano, Hirotaka; Saijo, Yoshifumi; Kokubun, Shoichi

    2006-01-01

    The acoustic properties of rabbit supraspinatus tendon insertions were measured by scanning acoustic microscopy. After cutting parallel to the supraspinatus tendon fibers, specimens were fixed with 10% neutralized formalin, embedded in paraffin, and sectioned. Both the sound speed and the attenuation constant were measured at the insertion site. The 2-dimensional distribution of the sound speed and that of the attenuation constant were displayed with color-coded scales. The acoustic properties reflected both the histologic architecture and the collagen type. In the tendon proper and the non-mineralized fibrocartilage, the sound speed and attenuation constant gradually decreased as the predominant collagen type changed from I to II. In the mineralized fibrocartilage, they increased markedly with the mineralization of the fibrocartilaginous tissue. These results indicate that the non-mineralized fibrocartilage shows the lowest elastic modulus among 4 zones at the insertion site, which could be interpreted as an adaptation to various types of biomechanical stress.

  7. Calculating tissue shear modulus and pressure by 2D log-elastographic methods

    International Nuclear Information System (INIS)

    McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando

    2010-01-01

    Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ . u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms

  8. Temperature dependence of bulk modulus and second-order elastic constants

    International Nuclear Information System (INIS)

    Singh, P.P.; Kumar, Munish

    2004-01-01

    A simple theoretical model is developed to investigate the temperature dependence of the bulk modulus and second order elastic constants. The method is based on the two different approaches viz. (i) the theory of thermal expansivity formulated by Suzuki, based on the Mie-Gruneisen equation of state, (ii) the theory of high-pressure-high-temperature equation of state formulated by Kumar, based on thermodynamic analysis. The results obtained for a number of crystals viz. NaCl, KCl, MgO and (Mg, Fe) 2 SiO 4 are discussed and compared with the experimental data. It is concluded that the Kumar formulation is far better that the Suzuki theory of thermal expansivity

  9. A new approach to measure the elasticity modulus for ceramics using the deformation energy method

    International Nuclear Information System (INIS)

    Foschini, Cesar R.; Souza, Edson A.; Borges, Ana F. S.; Pintao, Carlos A.

    2016-01-01

    This paper presents an alternative method to measure the modulus of elasticity to traction, E, for relatively limited sample sizes. We constructed a measurement system with a Force sensor (FS) and a Rotation movement sensor (RMS) to obtain a relationship between force (F) and bending (ΔL). It was possible by calculating the strain energy and the work of a constant force to establish a relationship between these quantities; the constant of proportionality in this relationship depends on E, I and L. I and L are the moment of inertia of the uniform cross-section in relation to an oriented axis and length, respectively, of the sample for bending. An expression that could achieve the value of E was deduced to study samples of Y-TZP ceramics. The advantages of this system compared to traditional systems are its low cost and practicality in determining E

  10. A new approach to measure the elasticity modulus for ceramics using the deformation energy method

    Energy Technology Data Exchange (ETDEWEB)

    Foschini, Cesar R.; Souza, Edson A. [Dept. of EngineeringFeb-UNESPBauru (Brazil); Borges, Ana F. S. [Dept. of MaterialFOB-USP, Bauru (Brazil); Pintao, Carlos A. [Dept. of PhysicsFC-UNESP, Bauru (Brazil)

    2016-08-15

    This paper presents an alternative method to measure the modulus of elasticity to traction, E, for relatively limited sample sizes. We constructed a measurement system with a Force sensor (FS) and a Rotation movement sensor (RMS) to obtain a relationship between force (F) and bending (ΔL). It was possible by calculating the strain energy and the work of a constant force to establish a relationship between these quantities; the constant of proportionality in this relationship depends on E, I and L. I and L are the moment of inertia of the uniform cross-section in relation to an oriented axis and length, respectively, of the sample for bending. An expression that could achieve the value of E was deduced to study samples of Y-TZP ceramics. The advantages of this system compared to traditional systems are its low cost and practicality in determining E.

  11. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  12. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    Science.gov (United States)

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  13. Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures

    International Nuclear Information System (INIS)

    Davidson, M.; Bastian, S.; Markley, F.

    1992-04-01

    Understanding the short term elastic properties, (i.e. the instantaneous modulus) of Kapton is essential in determining the loss of prestress during storage and operation of SSC dipole magnets. The magnet prestress contributes directly to the coil response to the Lorentz forces during ramping. The instantaneous modulus is important in extrapolating short term stress relaxation data to longer times. Most theoretical fits assume a time independent component and a time dependent component. The former may be represented by the Kapton modulus near zero K where all relaxation processes have been ''frozen'' out. Modulus measurements at 77K and 4.2K may point to a correct value for the near zero K modulus. Three companion papers presented at this conference will be: ''Stress Relaxation in SSC 50 mm Dipole Coils'' ''Temperature Dependence of the Viscoelastic Properties of SSC Coil Insulation (Kapton)'' ''Theoretical Methods for Creep and Stress Relaxation Studies of SSC Coil.''

  14. Stress wave velocity and dynamic modulus of elasticity of yellow-poplar ranging from 100 to 10 percent moisture content

    Science.gov (United States)

    Jody D. Gray; Shawn T. Grushecky; James P. Armstrong

    2008-01-01

    Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...

  15. Static modulus of elasticity of concrete measured by the ultrasonic method

    Directory of Open Access Journals (Sweden)

    Sena Rodrigues, S.

    2003-12-01

    Full Text Available Lately, a huge number of accidents caused by problems found in the durability of concrete structures due to inappropriate project design, lack of control of quality during the project s execution, inadequate maintenance practices and an aggressive environment has been reported. This finding has required from the professionals constant inspections and evaluations of the real conditions of all concrete structures. In order to perform those inspections, one should know not only the elastic modulus to analyze the concrete structural behaviour but also to investigate its performance, since the strains may yield cracks able to compromise the durability- of structures. Non-destructive testing techniques, particularly the ultrasonic testing, are performed to evaluate and determine the quality of a concrete structure or element. Currently, such essays have been widely researched and analyzed all over the world because they enable the examination of structures without damaging them. The purpose of the present study was to correlate the ultrasonic pulse velocity and the elastic modulus of several concrete specimens molded with a range of water-cement ratios, different kinds of aggregates and curing methods. All the concrete specimens were tested in different ages to determine the pulse velocity and the static modulus of elasticity standardized according to KBR 8522, through mechanical extensometers, electrical strain gauge and LVTD inductive transducer.

    Recientemente se ha registrado un gran número de accidentes causados por problemas relacionados con la durabilidad de las estructuras de hormigón y debidos a un inadecuado proyecto de diseño, ausencia de control de calidad durante la ejecución del proyecto, prácticas inadecuadas de construcción y un ambiente agresivo. Este hallazgo ha dado lugar a que los ingenieros realicen constantes inspecciones y evaluaciones de la condición real de todas las estructuras de hormigón. Para llevar a cabo

  16. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  17. Impact Of Elastic Modulus Degradation On Springback In Sheet Metal Forming

    International Nuclear Information System (INIS)

    Halilovic, Miroslav; Stok, Boris; Vrh, Marko

    2007-01-01

    Strain recovery after removal of forming loads, commonly defined as springback, is of great concern in sheet metal forming, in particular with regard to proper prediction of the final shape of the part. To control the problem a lot of work has been done, either by minimizing the springback on the material side or by increasing the estimation precision in corresponding process simulations. Unfortunately, by currently available software springback still cannot be adequately predicted, because most analyses of springback are using linear, isotropic and constant Young's modulus and Poisson's ratio. But, as it was measured and reported, none of it is true. The aim of this work is to propose an upgraded mechanical model which takes evolution of damage and related orthotropic stiffness degradation into account. Damage is considered by inclusion of ellipsoidal cavities, and their influence on the stiffness degradation is taken in accordance with the Mori-Tanaka theory, adopting the GTN model for plastic flow. In order to improve the numerical springback prediction, two major things are important: first, the correct evaluation of the stress-strain state at the end of the forming process, and second, correctness of the elastic properties used in the elastic relaxation analysis. Since in modelling of the forming process we adopt a damage constitutive model with orthotropic stiffness degradation considered, a corresponding damage parameters identification upon specific experimental tests data must be performed first, independently of the metal forming modelling. An improved identification of material parameters, which simultaneously considers tensile test results with different type of specimens and using neural network, is proposed. With regard to the case in which damage in material is neglected it is shown in the article how the springback of a formed part differs, when we take orthotropic damage evolution into consideration

  18. Effects of tanalith-e impregnation substance on bending strengths and modulus of elasticity in bending of some wood types

    Directory of Open Access Journals (Sweden)

    Hakan Keskin

    2016-04-01

    Full Text Available The aim of this study was to investigate the effects of impregnation with Tanalith-E on the bending strengths and modulus of elasticity in bending of some wood types. The test samples prepared from beech, oak, walnut, poplar, ash and pine wood materials - that are of common use in the forest products industry of TURKEY - according to TS 345, were treated with according to ASTM D 1413-76 substantially. Un-impregnated samples according to impregnated wood materials, the bending strengths in beech to 6.83%, 5.12% in ash, 5.93% in pine, the elasticity module values to 7.15% in oak and ash, at a rate of 6.58% in the higher were found. The highest values of bending strengths and modulus of elasticity in bending were obtained in beech and ash woods impregnated with Tanalith-E, whereas the lowest values were obtained in the poplar wood.

  19. Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus

    Science.gov (United States)

    Miyoshi, Tetsu; Ohga, Juro

    2013-09-01

    To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.

  20. Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought.

    Science.gov (United States)

    De Diego, N; Sampedro, M C; Barrio, R J; Saiz-Fernández, I; Moncaleán, P; Lacuesta, M

    2013-01-01

    Drought is one of the main abiotic factors that determine forest species growth, survival and productivity. For this reason, knowledge of plant drought response and the identification of physiological traits involved in stress tolerance will be of interest to breeding programs. In this work, several Pinus radiata D. Don breeds from different geographical origins were evaluated along a water stress period (4 weeks) and subsequent rewatering (1 week), showing different responses among them. Leaf water potential (Ψ(leaf)) and osmotic potential decreases were accompanied by a variation in the total relative water content (RWC, %). The most tolerant breeds presented the lowest leaf water potential and RWC at turgor loss point, and showed the lowest elastic modulus (ε) values. A high ε value was a characteristic of a less-drought-tolerant plant and was related to membrane alterations (high electrolyte leakage percentages) that could favor cell water loss. Of the group of solutes that contributed to osmotic adjustment, soluble carbohydrates were the most abundant, although stressed plants also increased their content of free amino acids [mainly proline (Pro) and glutamic acid (Glu), and γ-aminobutyric acid (GABA)] and free polyamines. In addition, the most sensitive breeds had a higher GABA/Glu ratio. After rewatering, Pro and GABA were higher in rehydrated plants than in controls.

  1. Nondestructive determination of the modulus of elasticity of Fraxinus mandschurica using near-infrared spectroscopy

    Science.gov (United States)

    Yu, Huiling; Liang, Hao; Lin, Xue; Zhang, Yizhuo

    2018-04-01

    A nondestructive methodology is proposed to determine the modulus of elasticity (MOE) of Fraxinus mandschurica samples by using near-infrared (NIR) spectroscopy. The test data consisted of 150 NIR absorption spectra of the wood samples obtained using an NIR spectrometer, with the wavelength range of 900 to 1900 nm. To eliminate the high-frequency noise and the systematic variations on the baseline, Savitzky-Golay convolution combined with standard normal variate and detrending transformation was applied as data pretreated methods. The uninformative variable elimination (UVE), improved by the evolutionary Monte Carlo (EMC) algorithm and successive projections algorithm (SPA) selected three characteristic variables from full 117 variables. The predictive ability of the models was evaluated concerning the root-mean-square error of prediction (RMSEP) and coefficient of determination (Rp2) in the prediction set. In comparison with the predicted results of all the models established in the experiments, UVE-EMC-SPA-LS-SVM presented the best results with the smallest RMSEP of 0.652 and the highest Rp2 of 0.887. Thus, it is feasible to determine the MOE of F. mandschurica using NIR spectroscopy accurately.

  2. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    DEFF Research Database (Denmark)

    Gaihede, Michael Lyhne; Donghua, Liao; Gregersen, H.

    2007-01-01

    The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are r...... finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus....

  4. Measurement of elastic modulus and Vickers hardness of surround bone implant using dynamic microindentation--parameters definition.

    Science.gov (United States)

    Soares, Priscilla Barbosa Ferreira; Nunes, Sarah Arantes; Franco, Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa, Darceny; Soares, Carlos José

    2014-01-01

    The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.

  5. FOAMED CEMENT COMPOSITES: DETECTION OF THE MODULUS OF ELASTICITY USING DIC ANALYSIS AND COMPARISON WITH OTHER METHODS

    Directory of Open Access Journals (Sweden)

    Jakub Ďureje

    2017-11-01

    Full Text Available A modulus of elasticity was determined for eight differently foamed cement paste samples. Samples were loaded in the laboratory by a hydraulic press. The force acting on the sample was read directly from the laboratory press. Digital Image Correlation (DIC analysis were used to draw deformations. Before loading pressure test was applied a random contrast pattern to the samples. Samples were captured by the camera in a one-second interval during the loading pressure test. The images were edited in the Adobe Photoshop Lightroom and then evaluated using Ncorr software. The result is a vertical and horizontal shift field. On the basis of the results obtained, it was possible to calculate the modulus of elasticity of each sample.

  6. Determination of the longitudinal modulus of elasticity in structural sawn wooden beams by the least squares method

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2012-12-01

    Full Text Available This paper proposes an alternative method of calculation based on the Least Squares Method to determine the longitudinal modulus of elasticity in structural-sized wooden beams. The developed equations require knowledge of three points of displacements, allowing greater reliability on the dependent variable when using the static four-point bending test. Using the Jatobá (Hymenaea sp wood in the study, the methodology proposed here was used in combination with a simplified one, requiring knowledge of displacement only at the midpoint of the beam in order to compare the results among them. Results show statistical equivalence between the models, indicating a good approximation of the simplified model for calculating the modulus of elasticity in wooden structural bending here evaluated.

  7. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang

    2015-01-01

    A vibration testing method based on free vibration theory in a ‘‘free–free” support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...

  8. Effect of curing light emission spectrum on the nanohardness and elastic modulus of two bulk-fill resin composites.

    Science.gov (United States)

    Issa, Yaser; Watts, David C; Boyd, Daniel; Price, Richard B

    2016-04-01

    To determine the nanohardness and elastic moduli of two bulk-fill resin based composites (RBCs) at increasing depths from the surface and increasing distances laterally from the center after light curing. Two bulk-fill dental RBCs: Tetric EvoCeram Bulk Fill (TECBF) and Filtek Bulk Fill Flowable (FBFF) were light cured in a metal mold with a 6mm diameter and a 10mm long semi-circular notch. The RBCs were photo-polymerized for 10s using a light emitting diode (LED) Bluephase Style curing light, with the original light probe that lacked the homogenizer. This light has two blue light and one violet light LED emitters. By changing the probe orientation over the mold, the light output from only two LEDs reached the RBC. Measurements were made using: (i) the light from one violet and one blue LED, and (ii) the light from the two blue LEDs. Five specimens of each RBC were made using each LED orientation (total 20 specimens). Specimens were then stored in the dark at 37°C for 24h. Fifty indents were made using an Agilent G200 nanoindentor down to 4mm from the surface and 2.5mm right and left of the centerline. The results were analyzed (alpha=0.05) using multiple paired-sample t-tests, ANOVA, Bonferroni post-hoc tests, and Pearson correlations. The elastic modulus and nanohardness varied according to the depth and the distance from the centerline. For TECBF, no significant difference was found between the spatial variations in the elastic modulus or hardness values when violet-blue or blue-blue LEDs were used. For FBFF, the elastic modulus and nanohardness on the side exposed to the violet emitter were significantly less than the side exposed to the blue emitter. A strong correlation between nanohardness and elastic modulus was found in all groups (r(2)=0.9512-0.9712). Resin polymerization was not uniform throughout the RBC. The nanohardness and elastic modulus across two RBC materials were found to decline differently according to the orientation of the violet and blue

  9. Comparative study of flexural strength and elasticity modulus in two types of direct fiber-reinforced systems.

    Science.gov (United States)

    Gaspar Junior, Alfredo de Aquino; Lopes, Manuela Wanderley Ferreira; Gaspar, Gabriela da Silveira; Braz, Rodivan

    2009-01-01

    The objective of this study was to compare the flexural strength and elasticity modulus of two types of staple reinforcement fibers, Interlig - Angelus/glass (Londrina, PR, Brazil) and Connect - KerrLab(R)/polyethylene (MFG Co., West Collins Orange, CA, USA), which are widely used in Dentistry for chairside use, after varying the number of layers employed and submitting or not to thermocycling. This study was performed on 72 specimens, divided into 8 groups: G1 - single layer of Interlig fibers without thermocycling; G2 - double layer of Interlig fibers without thermocycling; G3 - single layer of Interlig fibers with thermocycling; and G4 - double layer of Interlig fibers with thermocycling; G5 - single layer of Connect fibers without termocycling; G6 - double layer of Connect fibers without termocycling; G7 - single layer of Connect fibers with termocycling; G8 - double layer of Connect fibers with termocycling. For each group, values for flexural strength and elasticity modulus were obtained. The polyethylene fiber employed in a double layer presented the highest flexural strength (p elasticity modulus, when compared to the other groups (p < 0.05). Within the limits of this study, it was concluded that the polyethylene fiber in a double layer appears to be more resistant, regardless of whether it was submitted to thermocycling or not.

  10. Examining platelet-fibrin interactions during traumatic shock in a swine model using platelet contractile force and clot elastic modulus.

    Science.gov (United States)

    White, Nathan J; Martin, Erika J; Brophy, Donald F; Ward, Kevin R

    2011-07-01

    A significant proportion of severely injured patients develop early coagulopathy, characterized by abnormal clot formation, which impairs resuscitation and increases mortality. We have previously demonstrated an isolated decrease in clot strength by thrombelastography in a swine model of nonresuscitated traumatic shock. In order to more closely examine platelet-fibrin interactions in this setting, we define the observed decrease in clot strength in terms of platelet-induced clot contraction and clot elastic modulus using the Hemostasis Analysis System (HAS) (Hemodyne Inc., Richmond, Virginia, USA). Whole blood was sampled for HAS measurements, metabolic measurements, cell counts, and fibrinogen concentration at baseline prior to injury and again at a predetermined level of traumatic shock defined by oxygen debt. Male swine (N=17) received femur fracture and controlled arterial hemorrhage to achieve an oxygen debt of 80 ml/kg. Platelet counts were unchanged, but fibrinogen concentration was reduced significantly during shock (167.6 vs. 66.7 mg/dl, P=0.0007). Platelet contractile force generated during clot formation did not change during shock (11.7 vs. 10.4 kdynes, P=0.41), but clot elastic modulus was dynamically altered, resulting in a lower final value (22.9 vs. 17.3 kdynes/cm, Pshock, platelet function was preserved, whereas terminal clot elastic modulus was reduced during shock in a manner most consistent with early changes in the mechanical properties of the developing fibrin fiber network.

  11. A novel simultaneous photoelastic and two-beam interferometric system: I. Dynamic full-field evaluation of the elasticity modulus profile of polymeric fibres.

    Science.gov (United States)

    Hamza, A A; Sokkar, T Z N; El-Farahaty, K A; Raslan, M I

    2014-06-01

    A novel optical setup for simultaneous capturing of photoelastic and two-beam interference patterns was designed. The designed optical setup was used to simultaneously record two types of patterns. The first pattern is two-beam interference pattern, and the second one is photoelastic interference pattern produced by objects under stress. This simultaneous capturing of the two patterns allowed us to calculate the full-field distribution of the elasticity modulus profile of fibres. A mathematical expression of the profile of the elasticity modulus was derived. This was applied to evaluate the elasticity modulus of anisotropic isotactic polypropylene fibres during stretching processes. The profile of the elasticity modulus was determined for both static and dynamic in situ cases where the propagation of different structural deformations was observed and studied using the designed optical setup. Patterns were given for illustration. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  12. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    International Nuclear Information System (INIS)

    Gaihede, Michael; Liao Donghua; Gregersen, Hans

    2007-01-01

    The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between membrane tension and change of the surface area relative to the undeformed surface area. A middle ear model determined the tension-strain relationship in vivo based on data from experimental pressure-volume deformations of the human tympanic membrane system. The areal modulus was determined in both a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m -1 , respectively) compared to the younger group (mean = 1.066 and 1.206 kN m -1 , respectively), though not significantly (2p = 0.10 and 0.11, respectively). Based on the model the areal modulus was established describing the summated elastic properties of the tympanic membrane system. Future model improvements include exact determination of the tympanic membrane area accounting for its shape via 3D finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus

  13. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    Energy Technology Data Exchange (ETDEWEB)

    Gaihede, Michael [Department of Otolaryngology, Head and Neck Surgery, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Liao Donghua [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Gregersen, Hans [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark)

    2007-02-07

    The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between membrane tension and change of the surface area relative to the undeformed surface area. A middle ear model determined the tension-strain relationship in vivo based on data from experimental pressure-volume deformations of the human tympanic membrane system. The areal modulus was determined in both a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m{sup -1}, respectively) compared to the younger group (mean = 1.066 and 1.206 kN m{sup -1}, respectively), though not significantly (2p = 0.10 and 0.11, respectively). Based on the model the areal modulus was established describing the summated elastic properties of the tympanic membrane system. Future model improvements include exact determination of the tympanic membrane area accounting for its shape via 3D finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus.

  14. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  15. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  16. Comparison of elastic--plastic and variable modulus-cracking constitutive models for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Anderson, C.A.; Smith, P.D.

    1978-01-01

    The variable modulus-cracking model is capable of predicting the behavior of reinforced concrete structures (such as the reinforced plate under transverse pressure described previously) well into the range of nonlinear behavior including the prediction of the ultimate load. For unreinforced thick-walled concrete vessels under internal pressure the use of elastic--plastic concrete models in finite element codes enhances the apparent ductility of the vessels in contrast to variable modulus-cracking models that predict nearly instantaneous rupture whenever the tensile strength at the inner wall is exceeded. For unreinforced thick-walled end slabs representative of PCRV heads, the behavior predicted by finite element codes using variable modulus-cracking models is much stiffer in the nonlinear range than that observed experimentally. Although the shear type failures and crack patterns that are observed experimentally are predicted by such concrete models, the ultimate load carrying capacity and vessel-ductility are significantly underestimated. It appears that such models do not adequately model such features as aggregate interlock that could lead to an enhanced vessel reserve strength and ductility

  17. A comparison of elastic-plastic and variable modulus-cracking constitutive models for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Anderson, C.A.; Smith, P.D.

    1979-01-01

    Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)

  18. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Directory of Open Access Journals (Sweden)

    Kwang Liang Koh

    2017-07-01

    Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  19. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  20. Elastic modulus, microplastic properties and durability of titanium alloys for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Betekhtin, V. I.; Kolobov, Yu. R.; Golosova, O. A.; Dvořák, Jiří; Sklenička, Václav; Kardashev, B. K.; Kadomtsev, A. G.; Narykova, M. V.; Ivanov, M. B.

    2016-01-01

    Roč. 45, 1-2 (2016), s. 42-51 ISSN 1606-5131 Institutional support: RVO:68081723 Keywords : Creep * Elastic moduli * Plastic flow * Beta-type titanium alloys * Biomedical applications Subject RIV: JG - Metallurgy Impact factor: 2.500, year: 2016

  1. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    International Nuclear Information System (INIS)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-01-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed

  2. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Energy Technology Data Exchange (ETDEWEB)

    Samani, Abbas [Department of Medical Biophysics/Electrical and Computer Engineering, University of Western Ontario, Medical Sciences Building, London, Ontario, N6A 5C1 (Canada); Zubovits, Judit [Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Plewes, Donald [Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)

    2007-03-21

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  3. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Science.gov (United States)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-03-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  4. Variations in local elastic modulus along the length of the aorta as observed by use of a scanning haptic microscope (SHM).

    Science.gov (United States)

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide

    2011-12-01

    Variations in microscopic elastic structures along the entire length of canine aorta were evaluated by use of a scanning haptic microscope (SHM). The total aorta from the aortic arch to the abdominal aorta was divided into 6 approximately equal segments. After embedding the aorta in agar, it was cut into horizontal circumferential segments to obtain disk-like agar portions containing ring-like samples of aorta with flat surfaces (thickness, approximately 1 mm). The elastic modulus and topography of the samples under no-load conditions were simultaneously measured along the entire thickness of the wall by SHM by using a probe with a diameter of 5 μm and a spatial resolution of 2 μm at a rate of 0.3 s/point. The elastic modulus of the wall was the highest on the side of the luminal surface and decreased gradually toward the adventitial side. This tendency was similar to that of the change in the elastin fiber content. During the evaluation of the mid-portion of each tunica media segment, the highest elastic modulus (40.8 ± 3.5 kPa) was identified at the thoracic section of the aorta that had the highest density of elastic fibers. Under no-load conditions, portions of the aorta with high elastin density have a high elastic modulus.

  5. Objectification of Modulus Elasticity of Foam Concrete Poroflow 17-5 on the Subbase Layer

    Directory of Open Access Journals (Sweden)

    Hájek Matej

    2016-05-01

    Full Text Available Principles of sustainable development create the need to develop new building materials. Foam concrete is a type of lightweight concrete that has many advantages compared to conventional building materials, for example low density and thermal insulation characteristics. With current development level, any negatively influencing material features are constantly eliminated as well. This paper is dealing with substitution of hydraulically bound mixtures by cement foam concrete Poroflow 17-5. The executed assessment is according to the methodology of assessing the existing asphalt pavements in Slovak Republic. The ex post calculation was used to estimate modulus range for Poroflow 17-5 based on the results of static load tests conducted using the Testing Experiment Equipment.

  6. Experimental Investigation of Sandstone under Cyclic Loading: Damage Assessment Using Ultrasonic Wave Velocities and Changes in Elastic Modulus

    Directory of Open Access Journals (Sweden)

    Sen Yang

    2018-01-01

    Full Text Available This laboratory study investigated the damage evolution of sandstone specimens under two types of cyclic loading by monitoring and analyzing changes in the elastic moduli and the ultrasonic velocities during loading. During low-level cyclic loading, the stiffness degradation method was unable to describe the damage accumulations but the ultrasonic velocity measurements clearly reflected the damage development. A crack density parameter is introduced in order to interpret the changes in the tangential modulus and the ultrasonic velocities. The results show the following. (1 Low-level cyclic loading enhanced the anisotropy of the cracks. This results from the compression of intergranular clay minerals and fatigue failure. (2 Irreversible damage accumulations during cyclic loading with an increasing upper stress limit are the consequence of brittle failure in the sandstone’s microstructure.

  7. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    International Nuclear Information System (INIS)

    Wiedlocher, D.E.; Kinser, D.L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic

  8. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy.

    Science.gov (United States)

    Didier, P; Piotrowski, B; Fischer, M; Laheurte, P

    2017-05-01

    The advent of new manufacturing technologies such as additive manufacturing deeply impacts the approach for the design of medical devices. It is now possible to design custom-made implants based on medical imaging, with complex anatomic shape, and to manufacture them. In this study, two geometrical configurations of implant devices are studied, standard and anatomical. The comparison highlights the drawbacks of the standard configuration, which requires specific forming by plastic strain in order to be adapted to the patient's morphology and induces stress field in bones without mechanical load in the implant. The influence of low elastic modulus of the materials on stress distribution is investigated. Two biocompatible alloys having the ability to be used with SLM additive manufacturing are considered, commercial Ti-6Al-4V and Ti-26Nb. It is shown that beyond the geometrical aspect, mechanical compatibility between implants and bones can be significantly improved with the modulus of Ti-26Nb implants compared with the Ti-6Al-4V. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  10. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion

    International Nuclear Information System (INIS)

    Ylivaara, Oili M.E.; Liu, Xuwen; Kilpi, Lauri; Lyytinen, Jussi; Schneider, Dieter; Laitinen, Mikko; Julin, Jaakko; Ali, Saima; Sintonen, Sakari; Berdova, Maria; Haimi, Eero; Sajavaara, Timo; Ronkainen, Helena; Lipsanen, Harri

    2014-01-01

    Use of atomic layer deposition (ALD) in microelectromechanical systems (MEMS) has increased as ALD enables conformal growth on 3-dimensional structures at relatively low temperatures. For MEMS device design and fabrication, the understanding of stress and mechanical properties such as elastic modulus, hardness and adhesion of thin film is crucial. In this work a comprehensive characterization of the stress, elastic modulus, hardness and adhesion of ALD aluminum oxide (Al 2 O 3 ) films grown at 110–300 °C from trimethylaluminum and water is presented. Film stress was analyzed by wafer curvature measurements, elastic modulus by nanoindentation and surface-acoustic wave measurements, hardness by nanoindentation and adhesion by microscratch test and scanning nanowear. The films were also analyzed by ellipsometry, optical reflectometry, X-ray reflectivity and time-of-flight elastic recoil detection for refractive index, thickness, density and impurities. The ALD Al 2 O 3 films were under tensile stress in the scale of hundreds of MPa. The magnitude of the stress decreased strongly with increasing ALD temperature. The stress was stable during storage in air. Elastic modulus and hardness of ALD Al 2 O 3 saturated to a fairly constant value for growth at 150 to 300 °C, while ALD at 110 °C gave softer films with lower modulus. ALD Al 2 O 3 films adhered strongly on cleaned silicon with SiO x termination. - Highlights: • The residual stress of Al 2 O 3 was tensile and stable during the storage in air. • Elastic modulus of Al 2 O 3 saturated to at 170 GPa for films grown at 150 to 300 °C. • At 110 °C Al 2 O 3 films were softer with high residual hydrogen and lower density. • The Al 2 O 3 adhered strongly on the SiO x -terminated silicon

  11. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young's modulus

    International Nuclear Information System (INIS)

    Bai, Yanjie; Deng, Yi; Zheng, Yunfei; Li, Yongliang; Zhang, Ranran; Lv, Yalin; Zhao, Qiang; Wei, Shicheng

    2016-01-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to enhance bone remodeling and to mitigate the concern over the risks of osteanabrosis and bone resorption caused by stress shielding, when used to substitute irreversibly impaired hard tissue. Hence, in this study, a Ti–45Nb alloy with low Young's modulus and high strength was developed, and microstructure, mechanical properties, corrosion behaviors, cytocompatibility and in vivo osteo-compatibility of the alloy were systematically investigated for the first time. The results of mechanical tests showed that Young's modulus of the Ti–Nb alloy was reduced to about 64.3 GPa (close to human cortical bone) accompanied with higher tensile strength and hardness compared with those of pure Ti. Importantly, the Ti–Nb alloy exhibited superior corrosion resistance to Ti in different solutions including SBF, MAS and FAAS (MAS containing NaF) media. In addition, the Ti–Nb alloy produced no deleterious effect to L929 and MG-63 cells, and cells performed excellent cell attachment onto Ti–Nb surface, indicating a good in vitro cytocompatibility. In vivo evaluations indicated that Ti–Nb had comparable bone tissue compatibility to Ti determined from micro-CT and histological evaluations. The Ti–Nb alloy with an elasticity close to human bone, thus, could be suitable for orthopedic/dental applications. - Highlights: • A β-type Ti–45Nb alloy was developed with low Young's modulus close to human bone. • Ti–Nb alloy had superior corrosion resistance to pure Ti in different solutions. • Ti–Nb alloy displayed good cytocompatibility and in vivo bone tissue compatibility. • Ti–Nb alloy could be suitable for orthopedic/dental application based on the study.

  12. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young's modulus

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanjie [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing 100012 (China); Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Yunfei; Li, Yongliang [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Zhang, Ranran; Lv, Yalin [Department of Stomatology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029 (China); Zhao, Qiang, E-mail: 15911025865@139.com [Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing 100012 (China); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2016-02-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to enhance bone remodeling and to mitigate the concern over the risks of osteanabrosis and bone resorption caused by stress shielding, when used to substitute irreversibly impaired hard tissue. Hence, in this study, a Ti–45Nb alloy with low Young's modulus and high strength was developed, and microstructure, mechanical properties, corrosion behaviors, cytocompatibility and in vivo osteo-compatibility of the alloy were systematically investigated for the first time. The results of mechanical tests showed that Young's modulus of the Ti–Nb alloy was reduced to about 64.3 GPa (close to human cortical bone) accompanied with higher tensile strength and hardness compared with those of pure Ti. Importantly, the Ti–Nb alloy exhibited superior corrosion resistance to Ti in different solutions including SBF, MAS and FAAS (MAS containing NaF) media. In addition, the Ti–Nb alloy produced no deleterious effect to L929 and MG-63 cells, and cells performed excellent cell attachment onto Ti–Nb surface, indicating a good in vitro cytocompatibility. In vivo evaluations indicated that Ti–Nb had comparable bone tissue compatibility to Ti determined from micro-CT and histological evaluations. The Ti–Nb alloy with an elasticity close to human bone, thus, could be suitable for orthopedic/dental applications. - Highlights: • A β-type Ti–45Nb alloy was developed with low Young's modulus close to human bone. • Ti–Nb alloy had superior corrosion resistance to pure Ti in different solutions. • Ti–Nb alloy displayed good cytocompatibility and in vivo bone tissue compatibility. • Ti–Nb alloy could be suitable for orthopedic/dental application based on the study.

  13. Perbaikan Sifat Reologi Visco-Elastic Aspal dengan Penambahan Asbuton Murni Menggunakan Parameter Complex Shear Modulus

    Directory of Open Access Journals (Sweden)

    Eva Wahyu Indriyati

    2013-06-01

    Full Text Available The increasing demand of crude oil will increase the price of petroleum asphalt. Indonesia has imported asphalt to meet the need for the annually road construction and maintenance. One solution to improving the rheological properties of bitumen is by adding the harder bitumen or other chemical compound to reduce dependence to petroleum asphalt. In Indonesia there is a source of natural asphalt in Buton Island, Sulawesi with huge amount of deposit that potentially could improve the rheological properties of Pen 60/70 Petroleum Asphalt. In order to obtain a better understanding on the contribution of Asbuton to the improvement of performance on rheological properties, this research used 19 variations of Asbuton and pen 60/70 petroleum bitumen. This variation is then subjected to the basic rheology test and the mechanistic test using Dynamic Shear Rheometer. The conclusion of basic rheological performance is obtained that mixture (Asbuton and 60/70 petroleum bitumen will increase hardness of bitumen. Conclusion on mechanistic rheological performance is that mixture (Asbuton and 60/70 petrol bitumen will increase Performance Grade (PG and Complex Shear Modulus (G*. The results from the analysis of Master Curve and Black Diagram, it is shown that the increasing proportion of bitumen Asbuton will decrease the phase angle (δ but its temperature susceptibility is worse.

  14. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    International Nuclear Information System (INIS)

    Won, Yoonjin; Gao, Yuan; Kenny, Thomas W; Goodson, Kenneth E; Guzman de Villoria, Roberto; Wardle, Brian L; Xiang, Rong; Maruyama, Shigeo

    2015-01-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications. (paper)

  15. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  16. Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels

    International Nuclear Information System (INIS)

    Zaragoza, J; Chang, A; Asuri, P

    2017-01-01

    Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials. (paper)

  17. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow

    Science.gov (United States)

    Hajek, Matej; Decky, Martin; Drusa, Marian; Orininová, Lucia; Scherfel, Walter

    2016-10-01

    Nowadays, it is necessary to develop new building materials, which are in accordance to the principles of the following provisions of the Roads Act: The design of road is a subject that follows national technical standards, technical regulations and objectively established results of research and development for road infrastructure. Foam concrete, as a type of lightweight concrete, offers advantages such as low bulk density, thermal insulation and disadvantages that will be reduced by future development. The contribution focuses on identifying the major material characteristics of foam concrete named Poroflow 17-5, in order to replace cement-bound granular mixtures. The experimental measurements performed on test specimens were the subject of diploma thesis in 2015 and continuously of the dissertation thesis and grant research project. At the beginning of the contribution, an overview of the current use of foam concrete abroad is elaborated. Moreover, it aims to determine the flexural strength of test specimens Poroflow 17-5 in combination with various basis weights of the underlying geotextile. Another part of the article is devoted to back-calculation of indicative design modulus of Poroflow based layers based on the results of static plate load tests provided at in situ experimental stand of Faculty of Civil Engineering, University of Žilina (FCE Uniza). Testing stand has been created in order to solve problems related to research of road and railway structures. Concern to building construction presents a physical homomorphic model that is identical with the corresponding theory in all structural features. Based on the achieved material characteristics, the tensile strength in bending of previously used road construction materials was compared with innovative alternative of foam concrete and the suitability for the base layers of pavement roads was determined.

  18. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    International Nuclear Information System (INIS)

    Wang, Shang; Larin, K V; Li, Jiasong; Vantipalli, S; Twa, M D; Manapuram, R K; Aglyamov, S; Emelianov, S

    2013-01-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo. (letter)

  19. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading

    DEFF Research Database (Denmark)

    Asmussen, Erik; Peutzfeldt, Anne

    2008-01-01

    the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. RESULTS: In the bonded scenario, the maximum stresses...

  20. Estimation of elastic modulus of reinforcement corrosion products using inverse analysis of digital image correlation measurements for input in corrosion-induced cracking model

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Thybo, Anna Emilie A.

    2012-01-01

    A combined experimental and numerical approach for estimating the elastic modulus of reinforcement corrosion products is presented. Deformations between steel and mortar were measured using digital image correlation during accelerated corrosion testing at 100 μA/cm2 (~1.16 mm/year). Measured defo...

  1. Elastic modulus of the alkali-silica reaction rim in a simplified calcium-alkali-silicate system determined by nano-indentation

    NARCIS (Netherlands)

    Zheng, Kunpeng; Lukovic, M.; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a

  2. Reliability analysis for cementless hip prosthesis using a new optimized formulation of yield stress against elasticity modulus relationship

    International Nuclear Information System (INIS)

    Kharmanda, G.

    2015-01-01

    Highlights: • We develop a new formulation between the yield stress and Young’s modulus of bone. • We validate the optimized formulation for cortical and trabecular bone. • We integrate the reliability analysis into artificially hip replacement design. - Abstract: Using classical design optimization methods for implant-bone studies does not completely guarantee a safety and satisfactory performance, due in part to the randomness of bone properties and loading. Here, the material properties of the different bone layers are considered as uncertain parameters. So their corresponding yield stress values will not be deterministic, that leads to integrate variable limitations into the optimization process. Here there is a strong need to find a reliable mathematical relationship between yield stress and material properties of the different bone layers. In this work, a new optimized formulation for yield stress against elasticity modulus relationship is first developed. This model is based on some experimental results. A validation of the proposed formulation is next carried out to show its accuracy for both bone layers (cortical and cancellous). A probabilistic sensitivity analysis is then carried out to show the role of each input parameter with respect to the limit state function. The new optimized formulation is next integrated into a reliability analysis problem in order to assess the reliability level of the stem–bone study where we deal with variable boundary limitations. An illustrative application is considered as a bi-dimensional example (contains only two variables) in order to present the results in an illustrative 2D space. Finally, a multi-variable problem considering several daily loading cases on a hip prosthesis shows the applicability of the proposed strategy

  3. Hyperplasia of elastic tissue in hepatic schistosomal fibrosis

    Directory of Open Access Journals (Sweden)

    Zilton A. Andrade

    1991-12-01

    Full Text Available Elastic tissue hyperplasia, revealed by means of histological, immunocytochemical and ultrastructural methods, appeared as a prominent change in surgical liver biopsies taken from 61 patients with schistosomal periportal and septal fibrosis. Such hyperplasia was absent in ecperimental murine schistosomiasis, including mice with "pipe-stem" fibrosis. Displaced connective tissue cells in periportal areas, such as smooth muscle cells, more frequently observed in human material, could be the site of excessive elastin synthesis, and could explain the differences observed in human and experimental materials. Elastic tissue, sometimes represented by its microfibrillar components, also appeared to be more condensed in areas of matrix (collagen degradation, suggesting a participation of this tissue in the remodelling of the extracellular matrix. By its rectratile properties elastic tissue hyperplasia in hepatic schistosomiasis can cause vascular narrowing and thus play a role in the pathogenesis of portal hypeertension.

  4. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Sapin-de Brosses, E; Gennisson, J-L; Pernot, M; Fink, M; Tanter, M [Langevin Institute (CNRS UMR 7587), INSERM ERL U979, ESPCI ParisTech, 10 rue Vauquelin, 75 005 Paris (France)], E-mail: emilie.sapin@espci.fr

    2010-03-21

    Soft tissue stiffness was shown to significantly change after thermal ablation. To better understand this phenomenon, the study aims (1) to quantify and explain the temperature dependence of soft tissue stiffness for different organs, (2) to investigate the potential relationship between stiffness changes and thermal dose and (3) to study the reversibility or irreversibility of stiffness changes. Ex vivo bovine liver and muscle samples (N = 3 and N = 20, respectively) were slowly heated and cooled down into a thermally controlled saline bath. Temperatures were assessed by thermocouples. Sample stiffness (shear modulus) was provided by the quantitative supersonic shear imaging technique. Changes in liver stiffness are observed only after 45 deg. C. In contrast, between 25 deg. C and 65 deg. C, muscle stiffness varies in four successive steps that are consistent with the thermally induced proteins denaturation reported in the literature. After a 6 h long heating and cooling process, the final muscle stiffness can be either smaller or bigger than the initial one, depending on the stiffness at the end of the heating. Another important result is that stiffness changes are linked to thermal dose. Given the high sensitivity of ultrasound to protein denaturation, this study gives promising prospects for the development of ultrasound-guided HIFU systems.

  5. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound

    International Nuclear Information System (INIS)

    Sapin-de Brosses, E; Gennisson, J-L; Pernot, M; Fink, M; Tanter, M

    2010-01-01

    Soft tissue stiffness was shown to significantly change after thermal ablation. To better understand this phenomenon, the study aims (1) to quantify and explain the temperature dependence of soft tissue stiffness for different organs, (2) to investigate the potential relationship between stiffness changes and thermal dose and (3) to study the reversibility or irreversibility of stiffness changes. Ex vivo bovine liver and muscle samples (N = 3 and N = 20, respectively) were slowly heated and cooled down into a thermally controlled saline bath. Temperatures were assessed by thermocouples. Sample stiffness (shear modulus) was provided by the quantitative supersonic shear imaging technique. Changes in liver stiffness are observed only after 45 deg. C. In contrast, between 25 deg. C and 65 deg. C, muscle stiffness varies in four successive steps that are consistent with the thermally induced proteins denaturation reported in the literature. After a 6 h long heating and cooling process, the final muscle stiffness can be either smaller or bigger than the initial one, depending on the stiffness at the end of the heating. Another important result is that stiffness changes are linked to thermal dose. Given the high sensitivity of ultrasound to protein denaturation, this study gives promising prospects for the development of ultrasound-guided HIFU systems.

  6. An examination of the elastic properties of tissue-mimicking phantoms using vibro-acoustography and a muscle motor system

    Science.gov (United States)

    Maccabi, A.; Taylor, Z.; Bajwa, N.; Mallen-St. Clair, J.; St. John, M.; Sung, S.; Grundfest, W.; Saddik, G.

    2016-02-01

    Tissue hardness, often quantified in terms of elasticity, is an important differentiating criterion for pathological identity and is extensively used by surgeons for tumor localization. Delineation of malignant regions from benign regions is typically performed by visual inspection and palpation. Although practical, this method is highly subjective and does not provide quantitative metrics. We have previously reported on Vibro-Acoustography (VA) for tumor delineation. VA is unique in that it uses the specific, non-linear properties of tumor tissue in response to an amplitude modulated ultrasound beam to generate spatially resolved, high contrast maps of tissue. Although the lateral and axial resolutions (sub-millimeter and sub-centimeter, respectively) of VA have been extensively characterized, the relationship between static stiffness assessment (palpation) and dynamic stiffness characterization (VA) has not been explicitly established. Here we perform a correlative exploration of the static and dynamic properties of tissue-mimicking phantoms, specifically elasticity, using VA and a muscle motor system. Muscle motor systems, commonly used to probe the mechanical properties of materials, provide absolute, quantitative point measurements of the elastic modulus, analogous to Young's modulus, of a target. For phantoms of varying percent-by-weight concentrations, parallel VA and muscle motor studies conducted on 18 phantoms reveal a negative correlation (p < - 0.85) between mean signal amplitude levels observed with VA and calculated elastic modulus values from force vs. indentation depth curves. Comparison of these elasticity measurements may provide additional information to improve tissue modeling, system characterization, as well as offer valuable insights for in vivo applications, specifically surgical extirpation of tumors.

  7. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Science.gov (United States)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were

  8. Automatic estimation of elasticity parameters in breast tissue

    Science.gov (United States)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  9. A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement.

    Science.gov (United States)

    Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A

    2001-07-01

    Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.

  10. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  11. Direct measurement of elastic modulus of Nb 3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    Science.gov (United States)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-10-01

    Young's modulus of Nb3Sn filaments in Nb3Sn/Cu superconducting composite wire was investigated in detail. Nb3Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb3Sn/Nb barrier and bronze. Then, Nb3Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb3Sn filament modulus. The ratio of Nb3Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb3Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values.

  12. Direct measurement of elastic modulus of Nb3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-01-01

    Young's modulus of Nb 3 Sn filaments in Nb 3 Sn/Cu superconducting composite wire was investigated in detail. Nb 3 Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb 3 Sn/Nb barrier and bronze. Then, Nb 3 Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb 3 Sn filament modulus. The ratio of Nb 3 Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb 3 Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values

  13. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  14. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.

    Science.gov (United States)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-05-21

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear

  15. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    Science.gov (United States)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.

    2017-05-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear

  16. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    Science.gov (United States)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  17. Granular model, percolation-resistivity, ESR and elastic modulus of carbonaceous materials application to the babassu endocarp heat treated up to 22000C

    International Nuclear Information System (INIS)

    Emmerich, F.G.

    1987-01-01

    A microscopic model (granular model) is presented to study heat treated carbons. A granular structure is defined in the carbon matrix, composed of turbostratic graphite-like microcrystallites, cross-linkings and micropores. A general expression is developed to calculate the volume fraction X of the conducting phase of the granular structure as a function of structural parameters obtained from X-ray diffraction small angle X-ray scattering. The granular model and the percolation theory are used to explain the electrical resistivity behaviour with the heat treatment temperature (HTT), where X is the fundamental parameter. An electron spin resonance (ESR) study of the low and high HTT ranges is presented, including the transition range (700-1300 0 C). The elucitation of the spin center nature in this range and the liking with the two adjacent ranges has been pursued. An expression to calculate the elastic modulus (Young's modulus), based on the microscopic granular model with the fundamental participation of the cross-linkings, is derived to account for the behavior of the modulus with the HTT. The granular model with the expression of X, the percolation-resistivity theory, the ESR study, and the expression of the elastic modulus are applied to the babassu endocarp carbon heat treated up to 2200 0 C. This material can be classified as a tipical non-graphitic carbon, being useful to search the validity of the model and the proposed expressions. It is observed that the theoretical expressions describe with reasonable accuracy the respective experimental behaviours. The measurements of physical and chemical parameters of the babassu endocarp treated up to 2200 0 C area also included. (author) [pt

  18. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.

    Science.gov (United States)

    Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J

    2012-07-01

    Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Study of swelling behavior in ArF resist during development by the QCM method (3): observations of swelling layer elastic modulus

    Science.gov (United States)

    Sekiguchi, Atsushi

    2013-03-01

    The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.

  20. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams

    International Nuclear Information System (INIS)

    Stachiv, Ivo; Kuo, Chih-Yun; Fang, Te-Hua; Mortet, Vincent

    2016-01-01

    Measurement of ultrathin film thickness and its basic properties can be highly challenging and time consuming due to necessity of using several very sophisticated devices. Here, we report an easy accessible resonant based method capable to simultaneously determinate the residual stress, elastic modulus, density and thickness of ultrathin film coated on doubly clamped micro-/nanobeam. We show that a general dependency of the resonant frequencies on the axial load is also valid for in-plane vibrations, and the one depends only on the considered vibrational mode. As a result, we found that the film elastic modulus, density and thickness can be evaluated from two measured in-plane and out-plane fundamental resonant frequencies of micro-/nanobeam with and without film under different prestress forces. Whereas, the residual stress can be determined from two out-plane (in-plane) measured consecutive resonant frequencies of beam with film under different prestress forces without necessity of knowing film and substrate properties and dimensions. Moreover, we also reveal that the common uncertainties in force (and thickness) determination have a negligible (and minor) impact on the determined film properties. The application potential of the present method is illustrated on the beam made of silicon and SiO_2 with deposited 20 nm thick AlN and 40 nm thick Au thin films, respectively.

  1. Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)

    2009-09-07

    Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.

  2. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adham El-Newihy

    2018-02-01

    Full Text Available This study aims to evaluate self-healing properties and recovered dynamic moduli of engineered polypropylene fiber reinforced concrete using non-destructive resonant frequency testing. Two types of polypropylene fibers (0.3% micro and 0.6% macro and two curing conditions have been investigated: Water curing (at ~25 Celsius and air curing. The Impact Resonance Method (IRM has been conducted in both transverse and longitudinal modes on concrete cylinders prior/post crack induction and post healing of cracks. Specimens were pre-cracked at 14 days, obtaining values of crack width in the range of 0.10–0.50 mm. Addition of polypropylene fibers improved the dynamic response of concrete post-cracking by maintaining a fraction of the original resonant frequency and elastic properties. Macro fibers showed better improvement in crack bridging while micro fiber showed a significant recovery of the elastic properties. The results also indicated that air-cured Polypropylene Fiber Reinforced Concrete (PFRC cylinders produced ~300 Hz lower resonant frequencies when compared to water-cured cylinders. The analyses showed that those specimens with micro fibers exhibited a higher recovery of dynamic elastic moduli.

  3. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    Science.gov (United States)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  4. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  5. Thermal expansion, modulus of elasticity, shrinkage, creep and residual strength of concrete for PCRVs at uniaxial stress state and elevated temperatures

    International Nuclear Information System (INIS)

    Aschl, H.; Stoeckl, S.

    1981-01-01

    At the Institut fuer Massivbau of the Technical University of Munich testing machines were built, which allow to test sealed and unsealed cylinders with uniaxial stress state at elevated temperatures till 523 K (250 0 C). With this equipment tests were carried out at predried, unsealed and sealed specimens to study - thermal expansion coefficient - modulus of elasticity - shrinkage and - creep of concrete at elevated temperatures of 353 K (80 0 C) and 393 K (120 0 C) and at a normal temperature of 293 K (20 0 C). In addition the residual strength of all specimens was measured. In the worst case (unsealed, i.e. drying specimens) some showed a maximum decrease in strength up to 60%. (orig.) [de

  6. Estimation of an Effective Young’s Modulus of Elasticity in the Locality of the Gabčíkovo Hydrology Power Plant by Geometric Leveling

    Directory of Open Access Journals (Sweden)

    Mojzeš Marcel

    2015-03-01

    Full Text Available The Gabčíkovo hydroelectric power plant is located in a complicated geological environment (gravel sub-soil and a high groundwater level. Excavation work started after the withdrawal of water in the autumn of 1984 and lasted until the autumn of 1986. A basic geodetic control network with a special monument was founded before the excavation work began. This network served for the setting-out of the hydroelectric power plant as well as for the control of the excavation work. The repeated geodetic control measurements have been evaluated and presented at many seminars and conferences. Monitoring the horizontal and vertical stability of the geodetic control network during the general site excavation showed significant horizontal and vertical deformations. The paper is focused on an estimation of an effective Young's modulus of elasticity in the area studied.

  7. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials; Medicion del modulo de elasticidad en materiales de ingenieria utilizando la tecnica de indentacion instrumentada y de ultrasonido

    Energy Technology Data Exchange (ETDEWEB)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-07-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.

  8. Modelling modulus of elasticity of Pinus pinaster Ait. in northwestern Spain with standing tree acoustic measurements, tree, stand and site variables

    Directory of Open Access Journals (Sweden)

    Esther Merlo

    2014-04-01

    Full Text Available Aim of study: Modelling the structural quality of Pinus pinaster Ait. wood on the basis of measurements made on standing trees is essential because of the importance of the species in the Galician forestry and timber industries and the good mechanical properties of its wood. In this study, we investigated how timber stiffness is affected by tree and stand properties, climatic and edaphic characteristics and competition. Area of study: The study was performed in Galicia, north-western Spain.Material and methods: Ten pure and even-aged P. pinaster stands were selected and tree and stand variables and the stress wave velocity of 410 standing trees were measured. A sub-sample of 73 trees, representing the variability in acoustic velocity, were felled and sawed into structural timber pieces (224 which were subjected to a bending test to determine the modulus of elasticity (MOE. Main results: Linear models including wood properties explained more than 97%, 73% and 60% of the observed MOE variability at site, tree and board level, respectively, with acoustic velocity and wood density as the main regressors. Other linear models, which did not include wood density, explained more than 88%, 69% and 55% of the observed MOE variability at site, tree and board level, respectively, with acoustic velocity as the main regressor. Moreover, a classification tree for estimating the visual grade according to standard UNE 56544:2011 was developed. Research highlights: The results have demonstrated the usefulness of acoustic velocity for predicting MOE in standing trees. The use of the fitted equations together with existing dynamic growth models will enable preliminary assessment of timber stiffness in relation to different silvicultural alternatives used with this species.Keywords: stress wave velocity, modulus of elasticity, site index, competition index, stepwise regression, CART.

  9. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  10. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system.

    Science.gov (United States)

    Wang, Shang; Li, Jiasong; Manapuram, Ravi Kiran; Menodiado, Floredes M; Ingram, Davis R; Twa, Michael D; Lazar, Alexander J; Lev, Dina C; Pollock, Raphael E; Larin, Kirill V

    2012-12-15

    We report on an optical noncontact method for the detection of soft-tissue tumors based on the measurement of their elasticity. A focused air-puff system is used to excite surface waves (SWs) on soft tissues with transient static pressure. A high-speed phase-sensitive optical coherence tomography system is used to measure the SWs as they propagate from the point of excitation. To evaluate the stiffness of soft tissues, the Young's modulus is quantified based on the group velocity of SWs. Pilot experiments were performed on ex vivo human myxoma and normal fat. Results demonstrate the feasibility of the proposed method to measure elasticity and differentiate soft-tissue tumors from normal tissues.

  11. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Lavery, N.P., E-mail: N.P.Lavery@swansea.ac.uk [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Cherry, J.; Mehmood, S. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Davies, H. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Girling, B.; Sackett, E. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Brown, S.G.R. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Sienz, J. [Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom)

    2017-05-02

    The microstructure and mechanical properties of 316L steel have been examined for parts built by a powder bed laser fusion process, which uses a laser to melt and build parts additively on a layer by layer basis. Relative density and porosity determined using various experimental techniques were correlated against laser energy density. Based on porosity sizes, morphology and distributions, the porosity was seen to transition between an irregular, highly directional porosity at the low laser energy density and a smaller, more rounded and randomly distributed porosity at higher laser energy density, thought to be caused by keyhole melting. In both cases, the porosity was reduced by hot isostatic pressing (HIP). High throughput ultrasound based measurements were used to calculate elasticity properties and show that the lower porosities from builds with higher energy densities have higher elasticity moduli in accordance with empirical relationships, and hot isostatic pressing improves the elasticity properties to levels associated with wrought/rolled 316L. However, even with hot isostatic pressing the best properties were obtained from samples with the lowest porosity in the as-built condition. A finite element stress analysis based on the porosity microstructures was undertaken, to understand the effect of pore size distributions and morphology on the Young's modulus. Over 1–5% porosity range angular porosity was found to reduce the Young's modulus by 5% more than rounded porosity. Experimentally measured Young's moduli for samples treated by HIP were closer to the rounded trends than the as-built samples, which were closer to angular trends. Tensile tests on specimens produced at optimised machine parameters displayed a high degree of anisotropy in the build direction and test variability for as-built parts, especially between vertical and horizontal build directions. The as-built properties were generally found to have a higher yield stress, but

  12. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion

    International Nuclear Information System (INIS)

    Lavery, N.P.; Cherry, J.; Mehmood, S.; Davies, H.; Girling, B.; Sackett, E.; Brown, S.G.R.; Sienz, J.

    2017-01-01

    The microstructure and mechanical properties of 316L steel have been examined for parts built by a powder bed laser fusion process, which uses a laser to melt and build parts additively on a layer by layer basis. Relative density and porosity determined using various experimental techniques were correlated against laser energy density. Based on porosity sizes, morphology and distributions, the porosity was seen to transition between an irregular, highly directional porosity at the low laser energy density and a smaller, more rounded and randomly distributed porosity at higher laser energy density, thought to be caused by keyhole melting. In both cases, the porosity was reduced by hot isostatic pressing (HIP). High throughput ultrasound based measurements were used to calculate elasticity properties and show that the lower porosities from builds with higher energy densities have higher elasticity moduli in accordance with empirical relationships, and hot isostatic pressing improves the elasticity properties to levels associated with wrought/rolled 316L. However, even with hot isostatic pressing the best properties were obtained from samples with the lowest porosity in the as-built condition. A finite element stress analysis based on the porosity microstructures was undertaken, to understand the effect of pore size distributions and morphology on the Young's modulus. Over 1–5% porosity range angular porosity was found to reduce the Young's modulus by 5% more than rounded porosity. Experimentally measured Young's moduli for samples treated by HIP were closer to the rounded trends than the as-built samples, which were closer to angular trends. Tensile tests on specimens produced at optimised machine parameters displayed a high degree of anisotropy in the build direction and test variability for as-built parts, especially between vertical and horizontal build directions. The as-built properties were generally found to have a higher yield stress, but lower upper

  13. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  14. Instrument for determining the complex shear modulus of soft-tissue-like materials from 10 to 300 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, E L; Frank, G R; Hobson, M A; Hall, T J; Jiang, J; Stiles, T A [Medical Physics Department, 1005 Wisconsin, Institute for Medical Research, Madison, WI 53705 (United States); Lin-Gibson, S [Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: elmadsen@wisc.edu

    2008-10-07

    Accurate determination of the complex shear modulus of soft tissues and soft-tissue-like materials in the 10-300 Hz frequency range is very important to researchers in MR elastography and acoustic radiation force impulse (ARFI) imaging. A variety of instruments for making such measurements has been reported, but none of them is easily reproduced, and none have been tested to conform to causality via the Kramers-Kronig (K-K) relations. A promising linear oscillation instrument described in a previous brief report operates between 20 and 160 Hz, but results were not tested for conformity to the K-K relations. We have produced a similar instrument with our own version of the electronic components and have also accounted for instrumental effects on the data reduction, which is not addressed in the previous report. The improved instrument has been shown to conform to an accurate approximation of the K-K relations over the 10-300 Hz range. The K-K approximation is based on the Weichert mechanical circuit model. We also found that the sample thickness must be small enough to obtain agreement with a calibrated commercial rheometer. A complete description of the improved instrument is given, facilitating replication in other labs.

  15. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  16. Effect of intra-membrane C60 fullerenes on the modulus of elasticity and the mechanical resistance of gel and fluid lipid bilayers

    Science.gov (United States)

    Zhou, Jihan; Liang, Dehai; Contera, Sonia

    2015-10-01

    Penetration and partition of C60 to the lipid bilayer core are both relevant to C60 toxicity, and useful to realise C60 biomedical potential. A key aspect is the effect of C60 on bilayer mechanical properties. Here, we present an experimental study on the mechanical effect of the incorporation of C60 into the hydrophobic core of fluid and gel phase zwitterionic phosphatidylcholine (PC) lipid bilayers. We demonstrate its incorporation inside the hydrophobic lipid core and the effect on the packing of the lipids and the vesicle size using a combination of infrared (IR) spectroscopy, atomic force microscopy (AFM) and laser light scattering. Using AFM we measured the Young's modulus of elasticity (E) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the absence (presence) of intra-membranous C60 at 24.5 °C. E of fluid phase supported bilayers is not altered by C60, but E increases with incorporation of C60 in gel phase bilayers. The increase is higher for longer hydrocarbon chains: 1.6 times for DPPC and 2 times for DSPC. However the mechanical resistance of gel phase bilayers of curved bilayered structures decreases with the incorporation of C60. Our combined results indicate that C60 causes a decrease in gel phase lipid mobility, i.e. an increase in membrane viscosity.

  17. Metodologia para o cálculo dos módulos de elasticidade longitudinal e transversal em vigas de madeira de dimensões estruturais Methodology used to determine the shear and longitudinal modulus of elasticity in timber beams

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2013-04-01

    Full Text Available Este trabalhou objetiva apresentar uma metodologia analítica para o cálculo dos módulos de elasticidade longitudinal (E e transversal (G em vigas de madeira de dimensões estruturais, segundo o emprego das teorias de vigas de Euler Bernoulli e Timoshenko, sendo utilizado o ensaio de flexão estática a três pontos. As madeiras testadas foram o Pinus elliottii e a Corymbia citriodora. Os resultados encontrados relevaram ser o módulo de elasticidade longitudinal 18,70 vezes superior ao módulo transversal do Pinus elliottii e 21,2 superior ao módulo transversal do Corymbia citriodora, sendo estes compatíveis quando comparada a relação entre E e G estabelecida pela norma Brasileira ABNT NBR 7190:1997 (Projeto de Estruturas de Madeira, que define ser o módulo de elasticidade longitudinal vinte vezes superior ao transversal.This paper proposed a test method to obtain the shear (G and longitudinal (E modulus of elasticity in timber beams with structural dimensions, based on the static three-points bending tests and the Euler Bernoulli and Timoshenko beams theories. The woods tested were the Corymbia citriodora and Pinus elliottii. The results revealed that the longitudinal modulus of elasticity of Pinus elliottii is 18.70 greater than the shear modulus, and 21.16 greater than the shear modulus of Corymbia citriodora, being consistent this results when compared to the proposed by the Brazilian standard ABNT NBR 7190:1997 (Design of Wood Structures, being the longitudinal modulus of elasticity twenty times greater than the shear modulus.

  18. Numerical computing of elastic homogenized coefficients for periodic fibrous tissue

    Directory of Open Access Journals (Sweden)

    Roman S.

    2009-06-01

    Full Text Available The homogenization theory in linear elasticity is applied to a periodic array of cylindrical inclusions in rectangular pattern extending to infinity in the inclusions axial direction, such that the deformation of tissue along this last direction is negligible. In the plane of deformation, the homogenization scheme is based on the average strain energy whereas in the third direction it is based on the average normal stress along this direction. Namely, these average quantities have to be the same on a Repeating Unit Cell (RUC of heterogeneous and homogenized media when using a special form of boundary conditions forming by a periodic part and an affine part of displacement. It exists an infinity of RUCs generating the considered array. The computing procedure is tested with different choices of RUC to control that the results of the homogenization process are independent of the kind of RUC we employ. Then, the dependence of the homogenized coefficients on the microstructure can be studied. For instance, a special anisotropy and the role of the inclusion volume are investigated. In the second part of this work, mechanical traction tests are simulated. We consider two kinds of loading, applying a density of force or imposing a displacement. We test five samples of periodic array containing one, four, sixteen, sixty-four and one hundred of RUCs. The evolution of mean stresses, strains and energy with the numbers of inclusions is studied. Evolutions depend on the kind of loading, but not their limits, which could be predicted by simulating traction test of the homogenized medium.

  19. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.

    2012-06-01

    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  20. Elastic modulus, hardness and fracture behavior of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal

    International Nuclear Information System (INIS)

    Zeng Kaiyang; Pang Yongsong; Shen Lu; Rajan, K.K.; Lim, Leong-Chew

    2008-01-01

    The deformation, crack initiation, fracture behavior and mechanical properties of (0 0 1)-oriented single crystal of Pb(Zn 1/3 Nb 2/3 )O 3 -7% PbTiO 3 (PZN-7% PT) in both unpoled and poled states have been investigated by using nanoindentation, micro-indentation and three-point bending experiments. Nanoindentation experiments revealed that, unlike typical brittle materials, material pile-ups around the indentation impressions were commonly observed at ultra-low loads. The elastic modulus and hardness were also determined by using nanoindentation experiments. The critical indentation load for crack initiation, determined by using micro-indentation experiments, is 0.135 N for unpoled samples, increasing to 0.465 N for the positive surface (crack propagation direction against the poling direction) of poled samples but decreasing slightly to 0.132 N for the negative surface (crack propagation direction along the poling direction) of the poled samples. Indentation/strength (three-point bend) test showed a similar trend for the 'apparent' fracture toughness, giving 0.36 MPa√m for unpoled samples, increasing to 0.44 MPa√m for the positive surface of poled samples but decreasing to 0.30 MPa√m for the negative surface of poled samples. Polarized light microscopy and scanning electron microscopy were used to study the material adjacent to the indentations and the fracture surfaces produced by the three-point bend tests. The results were correlated with the various fracture properties observed

  1. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.

    Science.gov (United States)

    Kesteven, Jazmin; Kannan, M Bobby; Walter, Rhys; Khakbaz, Hadis; Choe, Han-Choel

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium-tantalum (Ti-Ta) alloys (10-30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium-aluminium-vanadium (Ti6Al4V) alloy. Among the three Ti-Ta alloys studied, the Ti20Ta (6.3×10(-4) mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2×10(-3) mm/y) and Ti10Ta (1.4×10(-3) mm/y). All the Ti-Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8×10(-3) mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1×10(-4) mm/y), the degradation rate of Ti20Ta alloy was lower by ~22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ~48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8×10(-3) mm/y) showed ~53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Periodontal tissue destruction caused by an elastic orthodontic ...

    African Journals Online (AJOL)

    Once this cooperation is lost, possible negative effects may be the consequence. ... that arises when elastic orthodontic spacers are being used in the mouth. Key words: Open-flap curettage, Orthodontic spacer, Periodontal destruction ...

  3. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.

    2010-07-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation. Copyright © EPLA, 2010.

  4. Low elastic modulus Ti–Ta alloys for load-bearing permanent implants: Enhancing the biodegradation resistance by electrochemical surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kesteven, Jazmin [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Walter, Rhys; Khakbaz, Hadis [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Choe, Han-Choel [Department of Dental Materials, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium–tantalum (Ti–Ta) alloys (10–30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium–aluminium–vanadium (Ti6Al4V) alloy. Among the three Ti–Ta alloys studied, the Ti20Ta (6.3 × 10{sup −4} mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2 × 10{sup −3} mm/y) and Ti10Ta (1.4 × 10{sup −3} mm/y). All the Ti–Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8 × 10{sup −3} mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1 × 10{sup −4} mm/y), the degradation rate of Ti20Ta alloy was lower by ∼ 22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ∼ 48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8 × 10{sup −3} mm/y) showed ∼ 53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. - Highlights: • In vitro degradation of titanium–tantalum (Ti–Ta) alloys was studied. • Ta addition to Ti is beneficial for better degradation resistance. • Ti–Ta alloys perform better than commercially pure Ti. • Calcium phosphate coated Ti–Ta alloy is superior to Ti6Al4V alloy.

  5. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement.

    Science.gov (United States)

    Roberts, Thomas J

    2016-01-01

    Muscle force production occurs within an environment of tissues that exhibit spring-like behavior, and this elasticity is a critical determinant of muscle performance during locomotion. Muscle force and power output both depend on the speed of contraction, as described by the isotonic force-velocity curve. By influencing the speed of contractile elements, elastic structures can have a profound effect on muscle force, power and work. In very rapid movements, elastic mechanisms can amplify muscle power by storing the work of muscle contraction slowly and releasing it rapidly. When energy must be dissipated rapidly, such as in landing from a jump, energy stored rapidly in elastic elements can be released more slowly to stretch muscle contractile elements, reducing the power input to muscle and possibly protecting it from damage. Elastic mechanisms identified so far rely primarily on in-series tendons, but many structures within muscles exhibit spring-like properties. Actomyosin cross-bridges, actin and myosin filaments, titin, and the connective tissue scaffolding of the extracellular matrix all have the potential to store and recover elastic energy during muscle contraction. The potential contribution of these elements can be assessed from their stiffness and estimates of the strain they undergo during muscle function. Such calculations provide boundaries for the possible roles these springs might play in locomotion, and may help to direct future studies of the uses of elastic elements in muscle. © 2016. Published by The Company of Biologists Ltd.

  6. Measurement of the temperature dependence of Young's modulus of cartilage by phase-sensitive optical coherence elastography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C H; Li, J; Singh, M; Larin, K V [Department of Biomedical Engineering, University of Houston, Houston, Texas (United States); Skryabina, M N [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Sobol, E N [Institute of Laser and Information Technologies, Russian Academy of Sciences, Troitsk, Moscow Region (Russian Federation)

    2014-08-31

    The development of an effective system to monitor the changes in the elastic properties of cartilage tissue with increasing temperature in laser reconstruction is an urgent practical task. In this paper, the use of phase-sensitive optical coherence elastography for detection of elastic waves in the sample has allowed Young's modulus of cartilage tissue to be measured directly during heating. Young's modulus was calculated from the group velocity of propagation of elastic waves excited by means of a system supplying focused air pulses. The measurement results are in agreement with the results of measurements of the modulus of elasticity under mechanical compression. The technique developed allows for noninvasive measurements; its development is promising for the use in vivo. (laser biophotonics)

  7. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  8. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering

    NARCIS (Netherlands)

    Song, Y.; Kamphuis, Marloes; Zhang Zheng, Z.Z.; Zhang, Z.; Sterk, L.M.Th.; Vermes, I.; Poot, Andreas A.; Feijen, Jan; Grijpma, Dirk W.

    Biocompatible and elastic porous tubular structures based on poly(1,3-trimethylene carbonate), PTMC, were developed as scaffolds for tissue engineering of small-diameter blood vessels. High-molecular-weight PTMC (Mn = 4.37 × 105) was cross-linked by gamma-irradiation in an inert nitrogen atmosphere.

  9. The link between tissue elasticity and thermal dose in vivo

    International Nuclear Information System (INIS)

    Sapin-de Brosses, Emilie; Pernot, Mathieu; Tanter, Mickaël

    2011-01-01

    The objective of this study was to investigate in vivo the relationship between stiffness and thermal dose. For this purpose, shear wave elastography (SWE)—a novel ultrasound-based technique for real-time mapping of the stiffness of biological soft tissues—is performed in temperature-controlled experiments. Experiments were conducted on nine anesthetized rats. Their right leg was put in a thermo-regulated waterbath. The right leg of each animal was heated at one particular temperature between 38 °C and 48.5 °C for 15 min to 3 h. Shear waves were generated in the muscle using the acoustic radiation force induced by a linear ultrasonic probe. The shear wave propagation was imaged in real time by the probe using an ultrafast scanner prototype (10 000 frames s −1 ). The local tissue stiffness was derived from the shear wave speed. Two optical fiber sensors were inserted into the muscle to measure in situ the temperature. Stiffness was found to increase strongly during the experiments. When expressed as a function of the thermal dose, the stiffness curves were found to be the same for all experiments. A thermal dose threshold was found at 202 min for an eightfold stiffness increase. Finally, the time–temperature relationship was established for different stiffness ratios. The slope of the time–temperature relationship based on stiffness measurements was found identical to the one obtained for cell death in the seminal paper on the thermal dose by Sapareto and Dewey in 1984 (Int. J. Radiat. Oncol. Biol. Phys. 10 787–800). The present results highlight the stiffness increase as a good indicator of thermal necrosis. SWE imaging can be used in vivo for necrosis threshold determination in thermal therapy.

  10. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo; Kuo, Ch.-Y.; Fang, T.-H.; Mortet, Vincent

    2016-01-01

    Roč. 6, č. 4 (2016), 1-8, č. článku 045005. ISSN 2158-3226 R&D Projects: GA ČR GC15-13174J Institutional support: RVO:68378271 Keywords : elastic moduli * thin film structure * vibration resonance * error analysis * materials properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.568, year: 2016

  11. Módulo de elasticidade de grãos de milho submetidos a impactos mecânicos Modulus of elasticity of shelled corn submitted to mechanical impacts

    Directory of Open Access Journals (Sweden)

    Solenir Ruffato

    2001-04-01

    Full Text Available Neste trabalho investigou-se a viabilidade de se obter o módulo de compressão de grãos de milho, utilizando-se dados experimentais de força versus tempo, provenientes de testes de impacto, juntamente com uma análise estrutural elástica do processo. Os módulos de elasticidade foram determinados para grãos, a diferentes teores de umidade, submetidos a impactos de diferentes velocidades, e obtidos por um processo de otimização por meio da técnica de elementos finitos. Dois tipos de módulo foram avaliados: (a um módulo efetivo para todo o grão e (b um módulo para cada uma das três regiões, com diferentes características, segundo as quais o grão foi dividido. O teor de umidade e a velocidade de impacto influenciaram nos valores dos módulos. Módulos para grãos a 13,4% base úmida (b.u. foram maiores do que para aqueles a 20,0% b.u. A análise realizada (elástica mostrou-se ser mais adequada na obtenção de módulos de elasticidade de grãos a 13,4% b.u.; neste teor, os grãos apresentam características elásticas mais pronunciadas que quando a 20,0% b.u. e, nos grãos com altos teores de umidade, as características viscoelásticas tornam-se predominantes.In this study the viability of obtaining the corn compression modulus through an elastic structural analysis was investigated using force versus time data from grain impact tests. The moduli of elasticity of shelled corn at different moisture contents submitted to various impact velocities were determined. The moduli were obtained through an optimization process using the finite element technique. Two kinds of modulus were obtained: (a an effective modulus for the grain and (b a modulus for each one of the three regions, with different characteristics, in which the grain was divided. The moisture content and the impact velocity affected the modulus values. The moduli values for grains at 13.4% wet basis (w.b. were higher than those for grains at 20.0% w.b. The analysis used

  12. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  13. Molecular structural differences between low methoxy pectins induced by pectin methyl esterase II: effects on texture, release and perception of aroma in gels of similar modulus of elasticity.

    Science.gov (United States)

    Kim, Yang; Kim, Young-Suk; Yoo, Sang-Ho; Kim, Kwang-Ok

    2014-02-15

    Six low-methoxy pectins with different degrees of methylesterification and amidation, and molecular weights were used to prepare gels with similar moduli of elasticity by varying the concentrations of pectin and calcium phosphate. Five aroma compounds were added to the gels and their sensory textural properties, release and perception of aromas were investigated. Sensory firmness, springiness, adhesiveness, chewiness and cohesiveness differed according to the gel type, even though the moduli of elasticity were not significantly different (ppectin exhibited the lowest release and perception for all the aroma compounds, while pectin-methylesterase-treated pectin gels exhibited relatively higher aroma release and perception. These results showed that the structural properties of pectins and gelling factors that increase the non-polar character of the gel matrices could decrease the release and perception of aromas in pectin gel systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mechanical Properties of the Regenerate from Femoral Fracture Zone with the Use of Implants with Different Modulus of Elasticity

    Directory of Open Access Journals (Sweden)

    О.A. Yukhymchuk

    2015-08-01

    It is established that the biomechanical indicators of bone extension are inferior to the similar performance in compression, bones in the presence of fixation devices have the higher strength in the area of healed fracture than the bones of the control group animals. When studying the function of bone regenerate for extension and compression, the best strength results were determined in bone samples with the presence of fixation device from β-Zr-Ti alloy. This study proves the feasibility of the development and introduction into clinical practice of orthopedic trauma surgeons of implants on the basis of low-modulus β-Zr-Ti alloy that will improve the results of treatment for long bone fractures and reduce the postoperative complications rate.

  15. Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling.

    Science.gov (United States)

    Zajac, Allison L; Discher, Dennis E

    2008-12-01

    Cells may lack eyes to see and ears to hear, but cells do seem to have a sense of 'touch' that allows them to feel their microenvironment. This is achieved in part through contractility coupled adhesion to physically flexible 'soft' tissue. Here we summarize some of the known variations in elasticity of solid tissue and review some of the long-term effects of cells 'feeling' this elasticity, focusing on differentiation processes of both committed cell types and stem cells. We then highlight what is known of molecular remodeling in cells under stress on short time scales. Key roles for forces generated by ubiquitous and essential myosin-II motors in feedback remodeling are emphasized throughout.

  16. Collagen and elastic fibers of skin connective tissue in patients with and without primary inguinal hernia

    OpenAIRE

    Bórquez M, Pablo; Garrido O, Luis; Manterola D, Carlos; Peña S, Patricio; Schlageter T, Carol; Orellana C, Juan José; Ulloa U, Hugo; Peña R, Juan Luis

    2003-01-01

    There are few studies looking for collagen matrix defects in patients with inguinal hernia. Aim: To study the skin connective tissue in patients with and without inguinal hernia. Patients and methods: Skin from the surgical wound was obtained from 23 patients with and 23 patients without inguinal hernia. The samples were processed for conventional light microscopy. Collagen fibers were stained with Van Giesson and elastic fibers with Weigert stain. Results: Patients without hernia had compact...

  17. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-Based alloys with low body-centered cubic phase stability

    International Nuclear Information System (INIS)

    Tane, M.; Hagihara, K.; Ueda, M.; Nakano, T.; Okuda, Y.

    2016-01-01

    Changes in the elastic properties during room-temperature aging (RT aging) of metastable Ti–Nb-based alloy single crystals with low body-centered cubic (bcc)-phase stability were investigated. The elastic stiffness components of Ti–Nb–Ta–Zr alloys with different Nb concentrations were measured by resonant ultrasound spectroscopy during RT aging; the results revealed that shear moduli c ′ and c 44 were increased by RT aging. In the alloy with the lowest Nb concentration, i.e., with the lowest bcc phase stability, shear moduli c ′ and c 44 were enhanced by the largest amount. The increase rates were ∼5% for 1.1 × 10 7  s (127 days), whereas the bulk modulus was hardly changed by aging. In Ti–Nb–Ta–Zr–O alloys with different oxygen concentrations, shear moduli c ′ and c 44 of the alloy with the lowest oxygen concentration increased most significantly. Moreover, the electrical resistivity of Ti–Nb–Ta–Zr and Ti–Nb–Ta–Zr–O alloys was increased by RT aging. Importantly, the enhancements of shear moduli and electrical resistivity were suppressed by increases in the bcc-phase stability (i.e., increase in the Nb concentration) and oxygen concentration; these factors are known to suppress ω (hexagonal) phase formation. However, transmission electron microscopy (TEM) observations revealed that only a diffuse ω structure—an ω-like lattice distortion—was formed after RT aging. On the basis of alloying element effects, TEM observations, and analysis of the changes in elastic properties by using a micromechanics model, it was deduced that the enhancements of shear moduli and electrical resistivity were possibly caused by the formation of a diffuse ω structure.

  19. Low modulus Ti–Nb–Hf alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.

  20. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.; Moulton, D. E.; Vandiver, R.

    2010-01-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence

  1. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.

    Science.gov (United States)

    Bawolin, N K; Li, M G; Chen, X B; Zhang, W J

    2010-11-01

    The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.

  2. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    Science.gov (United States)

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  3. Tissue quality assessment using a novel direct elasticity assessment device (the E-finger: a cadaveric study of prostatectomy dissection.

    Directory of Open Access Journals (Sweden)

    Daniel W Good

    Full Text Available Minimally invasive radical prostatectomy (RP (robotic and laparoscopic, have brought improvements in the outcomes of RP due to improved views and increased degrees of freedom of surgical devices. Robotic and laparoscopic surgeries do not incorporate haptic feedback, which may result in complications secondary to inadequate tissue dissection (causing positive surgical margins, rhabdosphincter damage, etc. We developed a micro-engineered device (6 mm2 sized [E-finger] capable of quantitative elasticity assessment, with amplitude ratio, mean ratio and phase lag representing this. The aim was to assess the utility of the device in differentiating peri-prostatic tissue types in order to guide prostate dissection.Two embalmed and 2 fresh frozen cadavers were used in the study. Baseline elasticity values were assessed in bladder, prostate and rhabdosphincter of pre-dissected embalmed cadavers using the micro-engineered device. A measurement grid was created to span from the bladder, across the prostate and onto the rhabdosphincter of fresh frozen cadavers to enable a systematic quantitative elasticity assessment of the entire area by 2 independent assessors. Tissue was sectioned along each row of elasticity measurement points, and stained with haematoxylin and eosin (H&E. Image analysis was performed with Image Pro Premier to determine the histology at each measurement point.Statistically significant differences in elasticity were identified between bladder, prostate and sphincter in both embalmed and fresh frozen cadavers (p = < 0.001. Intra-class correlation (ICC reliability tests showed good reliability (average ICC = 0.851. Sensitivity and specificity for tissue identification was 77% and 70% respectively to a resolution of 6 mm2.This cadaveric study has evaluated the ability of our elasticity assessment device to differentiate bladder, prostate and rhabdosphincter to a resolution of 6 mm2. The results provide useful data for which to continue to

  4. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Science.gov (United States)

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  5. Structure and Young modulus of age hardening elinvar 45NKhT

    International Nuclear Information System (INIS)

    Baraz, V.R.; Strizhak, V.A.; Tsykin, D.N.

    1996-01-01

    The influence of quenching and ageing on structural features and Young modulus of precipitation hardening elinvar alloy 45 NKhT is under study. It is shown that the quenched alloy possesses a decreased elastic modulus which value drops with a quenching temperature increase. The ally ageing results in restoration of elastic modulus. The temperature range of Young modulus stability is shown to be independent of heat treatment conditions. The anomalies of elastic modulus in quenched alloy are conditioned by structural and magnetoelastic factors. The mechanisms of continuous and discontinuous precipitation mechanism has no effect on efficiency of Young modulus restoration. 13 refs., 6 figs

  6. Tissue quality assessment using a novel direct elasticity assessment device (the E-finger): a cadaveric study of prostatectomy dissection.

    Science.gov (United States)

    Good, Daniel W; Khan, Ashfaq; Hammer, Steven; Scanlan, Paul; Shu, Wenmiao; Phipps, Simon; Parson, Simon H; Stewart, Grant D; Reuben, Robert; McNeill, S Alan

    2014-01-01

    Minimally invasive radical prostatectomy (RP) (robotic and laparoscopic), have brought improvements in the outcomes of RP due to improved views and increased degrees of freedom of surgical devices. Robotic and laparoscopic surgeries do not incorporate haptic feedback, which may result in complications secondary to inadequate tissue dissection (causing positive surgical margins, rhabdosphincter damage, etc). We developed a micro-engineered device (6 mm2 sized) [E-finger]) capable of quantitative elasticity assessment, with amplitude ratio, mean ratio and phase lag representing this. The aim was to assess the utility of the device in differentiating peri-prostatic tissue types in order to guide prostate dissection. Two embalmed and 2 fresh frozen cadavers were used in the study. Baseline elasticity values were assessed in bladder, prostate and rhabdosphincter of pre-dissected embalmed cadavers using the micro-engineered device. A measurement grid was created to span from the bladder, across the prostate and onto the rhabdosphincter of fresh frozen cadavers to enable a systematic quantitative elasticity assessment of the entire area by 2 independent assessors. Tissue was sectioned along each row of elasticity measurement points, and stained with haematoxylin and eosin (H&E). Image analysis was performed with Image Pro Premier to determine the histology at each measurement point. Statistically significant differences in elasticity were identified between bladder, prostate and sphincter in both embalmed and fresh frozen cadavers (p = elasticity assessment device to differentiate bladder, prostate and rhabdosphincter to a resolution of 6 mm2. The results provide useful data for which to continue to examine the use of elasticity assessment devices for tissue quality assessment with the aim of giving haptic feedback to surgeons performing complex surgery.

  7. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  8. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  9. Determination of the Elasticity of Breast Tissue during the Menstrual Cycle Using Real-Time Shear Wave Elastography.

    Science.gov (United States)

    Li, Xiang; Wang, Jian-Nan; Fan, Zhi-Ying; Kang, Shu; Liu, Yan-Jun; Zhang, Yi-Xia; Wang, Xue-Mei

    2015-12-01

    We examined breast tissue elasticity during the menstrual cycle using real-time shear wave elastography (RT-SWE), a recent technique developed for soft tissue imaging. Written informed consent for RT-SWE was obtained from all eligible patients, who were healthy women aged between 19 and 52 y. Young's moduli of the breast tissue in the early follicular, late phase and luteal phase were compared. There were no significant differences in the mean, maximum and minimum elasticity values (Emean, Emax and Emin) and standard deviation (ESD). RT-SWE of glandular tissue revealed that ESD was increased in the early follicular phase compared with the luteal phase. Means ± SD of Emin, Emax and Emean in glandular tissue were 5.174 ± 2.138, 8.308 ± 3.166 and 6.593 ± 2.510, respectively, and in adipose tissue, 3.589 ± 2.083, 6.733 ± 3.522 and 4.857 ± 2.564, respectively. There were no significant differences in stiffness between glandular and adipose tissues throughout the menstrual cycle, but glandular tissue stiffness was lower in the luteal phase than in the early follicular phase. On the basis of these observations in normal healthy women, we believe we have obtained sufficient information to establish the baseline changes in human breast elasticity during the menstrual cycle. In the future, we intend to compare the elasticity values of healthy breast tissue with those of breast tissue affected by various pathologies. Our results reveal the significant potential of RT-SWE in the rapid and non-invasive clinical diagnosis of breast diseases, such as breast cancers. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance : research summary.

    Science.gov (United States)

    2017-09-01

    The mechanistic-empirical pavement design method requires the elastic resilient modulus as the key input for characterization of geomaterials. Current density-based QA procedures do not measure resilient modulus. Additionally, the density-based metho...

  11. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    Science.gov (United States)

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  12. Chemo-mechanical modeling of tumor growth in elastic epithelial tissue

    Energy Technology Data Exchange (ETDEWEB)

    Bratsun, Dmitry A., E-mail: bratsun@pspu.ru [Department of Applied Physics, Perm National Research Polytechnical University, Perm, 614990 (Russian Federation); Zakharov, Andrey P. [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Theoretical Physics Department, Perm State Humanitarian Pedagogical University, Perm, 614990 (Russian Federation); Pismen, Len [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel)

    2016-08-02

    We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The model allows the simulation of the evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm includes the division and intercalation of cells as well as the transformation of normal cells into a cancerous state triggered by a local failure of the spatial synchronization of the cellular rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for chemical signaling. The transformation of cells means the modification of their respective parameters responsible for chemo-mechanical interactions. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is designed in such a way that it can be readily modified to take account of any newly understood gene regulation processes and feedback mechanisms affecting chemo-mechanical properties of cells.

  13. Chemo-mechanical modeling of tumor growth in elastic epithelial tissue

    Science.gov (United States)

    Bratsun, Dmitry A.; Zakharov, Andrey P.; Pismen, Len

    2016-08-01

    We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The model allows the simulation of the evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm includes the division and intercalation of cells as well as the transformation of normal cells into a cancerous state triggered by a local failure of the spatial synchronization of the cellular rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for chemical signaling. The transformation of cells means the modification of their respective parameters responsible for chemo-mechanical interactions. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is designed in such a way that it can be readily modified to take account of any newly understood gene regulation processes and feedback mechanisms affecting chemo-mechanical properties of cells.

  14. Temperature dependence of Young's modulus of silica refractories

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Černý, Martin; Pabst, W.; Esposito, L.; Zanelli, C.; Hamáček, J.; Kutzendorfer, J.

    2015-01-01

    Roč. 41, č. 1 (2015), s. 1129-1138 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : mechanical properties * elastic modulus (Young's modulus ) * SiO2 * Silica brick materials (cristobalite, tridymite) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015

  15. Zirconium elasticity modules

    International Nuclear Information System (INIS)

    Vavra, G.

    1978-01-01

    Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr

  16. [Study of collagen and elastic fibers of connective tissue in patients with and without primary inguinal hernia].

    Science.gov (United States)

    Bórquez, Pablo; Garrido, Luis; Manterola, Carlos; Peña, Patricio; Schlageter, Carol; Orellana, Juan José; Ulloa, Hugo; Peña, Juan Luis

    2003-11-01

    There are few studies looking for collagen matrix defects in patients with inguinal bernia. To study the skin connective tissue in patients with and without inguinal bernia. Skin from the surgical wound was obtained from 23 patients with and 23 patients without inguinal bernia. The samples were processed for conventional light microscopy. Collagen fibers were stained with Van Giesson and elastic fibers with Weigert stain. Patients without hernia had compact collagen tracts homogeneously distributed towards the deep dermis. In contrast, patients with hernia had zones in the dermis with thinner and disaggregated collagen tracts. Connective tissue had a lax aspect in these patients. Collagen fiber density was 52% lower in patients with hernia, compared to subjects without hernia. No differences in elastic fiber density or distribution was observed between groups. Patients with inguinal bernia have alterations in skin collagen fiber quality and density.

  17. Experimental Young's modulus calculations

    International Nuclear Information System (INIS)

    Chen, Y.; Jayakumar, R.; Yu, K.

    1994-01-01

    Coil is a very important magnet component. The turn location and the coil size impact both mechanical and magnetic behavior of the magnet. The Young's modulus plays a significant role in determining the coil location and size. Therefore, Young's modulus study is essential in predicting both the analytical and practical magnet behavior. To determine the coil Young's modulus, an experiment has been conducted to measure azimuthal sizes of a half quadrant QSE101 inner coil under different loading. All measurements are made at four different positions along an 8-inch long inner coil. Each measurement is repeated three times to determine the reproducibility of the experiment. To ensure the reliability of this experiment, the same measurement is performed twice with a open-quotes dummy coil,close quotes which is made of G10 and has the same dimension and similar azimuthal Young's modulus as the inner coil. The difference between the G10 azimuthal Young's modulus calculated from the experiments and its known value from the manufacturer will be compared. Much effort has been extended in analyzing the experimental data to obtain a more reliable Young's modulus. Analysis methods include the error analysis method and the least square method

  18. Internal friction and elastic modulus of NdxY1-xBa2Cu3Oy (x 0.0-1.0) at 200 kHz near the orthorhombic-to-tetragonal phase transition

    International Nuclear Information System (INIS)

    Inagaki, M.

    2000-01-01

    The internal friction and Young's modulus of a series of superconductors Nd x Y 1-x Ba 2 Cu 3 O y (x = 0.0-1.0) were measured over the temperature range from 300 to 1050 K using a 200 kHz LiNbO3 piezoelectric composite oscillator. Anelastic relaxation peaks due to oxygen migration were observed at about 850 K. The minimum Young's modulus, which is related to the orthorhombic-to-tetragonal phase transition, was also observed near this temperature. The temperature at the minimum Young's modulus decreased with an increase in the neodymium composition. In contrast, the internal friction peak temperature showed an unsystematic shift with an increase in x, while changes of the average cell structure exhibited a linear relationship when plotted versus the average ionic radius for trivalent rare-earth ions with the coordination number eight. (author)

  19. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    Science.gov (United States)

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (Pplanes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (Pplane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Preliminary Study on the Kidney Elasticity Quantification in Patients With Chronic Kidney Disease Using Virtual Touch Tissue Quantification

    International Nuclear Information System (INIS)

    Zheng, Xiao Zhi; Yang, Bin; Fu, Ning Hua

    2015-01-01

    Virtual touch tissue quantification (VTTQ) provides numerical measurements (shear wave velocity (SWV) values) of tissue stiffness. The purpose of this study was to describe the SWV values of the kidney by VTTQ and to examine the clinical usefulness of this procedure in the evaluation of elasticity changes in the kidneys of patients with chronic kidney disease (CKD). Sixty-five patients with CKD and seventy healthy participants were included in this study. A total of 270 kidneys were examined by VTTQ. The kidney elasticity was expressed as shear wave velocity. The SWV values, blood serum creatinine (Scr)/BUN and pathological findings were analyzed and compared between patients with CKD and healthy participants. In patients with CKD and healthy participants, the SWV values both gradually decreased from the renal cortex to the medulla and renal sinus The SWV value of the renal cortex in patients with CKD was less than that of healthy participants (P < 0.05), and the SWV value of the renal cortex in patients with renal insufficiency was significantly less than in those with normal renal function (2.46 ± 0.15 vs. 3.45 ± 0.26 m/s, P < 0.05). The best cutoff value for predicting renal insufficiency (Scr > 1.24 mg/dL or/and BUN > 21 mg/DL) was a SWV value of the renal cortex of less than 1.92 m/s with a sensitivity of 84.4% (95% CI: 67.2-94.7%) and a specificity of 96.8% (95% CI: 83.3-99.9%) (P < 0.001). VTTQ can sensitively detect the elasticity changes in patients with CKD, and it can effectively predict renal insufficiency. This technology provides a valuable tool for the assessment of CKD

  1. Characterization of elasticity and hydration of composite hydrogel based on collagen-iota carrageenan as a corneal tissue engineering

    Science.gov (United States)

    Rinawati, M.; Triastuti, J.; Pursetyo, K. T.

    2018-04-01

    The cornea is a refractive element of the eye that serves to continue the stimulation of light into the eye it has a clear, transparent, elastic and relatively thick tissue. Factors caused corneal blindness, are dystrophy, keratoconus, corneal scaring. Hydrogels can be made from polysaccharide derivatives that have gelation properties such as iota carrageenan. Therefore, it is a need to develop composite hydrogel based collagen-iota carragenan as an engineeried corneal tissue with high elasticity and hydration properties. Collagen hydrogel has a maximum water content an has equlibrium up to 40 %, less than the human cornea, 81 % and under normal hydration conditions, the human cornea can transmit 87 % of visible light. In addition, the refractive index on the surface of the cornea with air is 1.375-1.380. Based on this study, it is necessary to conduct research on the development and composition of hydrogel composite collagen-iota carrageen hydrogen based on. The best result was K5 (5:5) treatment, which has the equilibrium water content of 87.07 % and viscosity of 10.7346 Pa.s.

  2. Influence of various factors on the Young modulus of metals

    International Nuclear Information System (INIS)

    Drapkin, B.M.

    1980-01-01

    The equivalence of temperature and pressure effects in the elastic area on the Young modulus of different metals (Ni, Mo, W, Na, Fe and ets.) is established on the basis of the analysis of literature and calculated data. It is shown that the value of the change in the Young modulus of the alloy is connected with mutual arrangement of alloy components in the periodic system of elements

  3. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  4. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E.

    2011-01-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 o (x=0.99 A -1 ). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z eff ) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z eff of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  5. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Science.gov (United States)

    Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  6. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules.

    Directory of Open Access Journals (Sweden)

    Yi-Feng Zhang

    Full Text Available OBJECTIVE: Virtual touch tissue quantification (VTQ of acoustic radiation force impulse (ARFI is a new quantitative technique to measure tissue stiffness. The study was aimed to assess the usefulness of VTQ in the diagnosis of thyroid nodules. METHODS: 173 pathologically proven thyroid nodules in 142 patients were included and all were examined by conventional ultrasound (US, conventional elasticity imaging (EI and VTQ of ARFI. The tissue stiffness for VTQ was expressed as shear wave velocity (SWV (m/s. Receiver-operating characteristic curve (ROC analyses were performed to assess the diagnostic performance. Intra- and inter-observer reproducibility of VTQ measurement was assessed. RESULTS: The SWVs of benign and malignant thyroid nodules were 2.34±1.17 m/s (range: 0.61-9.00 m/s and 4.82±2.53 m/s (range: 2.32-9.00 m/s respectively (P20 mm and lowest for those ≤10 mm. The correlation coefficients were 0.904 for intraobserver measurement and 0.864 for interobserver measurement. CONCLUSIONS: VTQ of ARFI provides quantitative and reproducible information about the tissue stiffness, which is useful for the differentiation between benign and malignant thyroid nodules. The diagnostic performance of VTQ is higher than that of conventional EI.

  7. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  8. Modelling the elastic properties of cellulose nanopaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  9. Analysis of sports related mTBI injuries caused by elastic wave propagation through brain tissue

    Directory of Open Access Journals (Sweden)

    D Case

    2016-10-01

    Full Text Available Repetitive concussions and sub-concussions suffered by athletes have been linked to a series of sequelae ranging from traumatic encephalopathy to dementia pugilistica. A detailed finite element model of the human head was developed based on standard libraries of medical imaging. The model includes realistic material properties for the brain tissue, bone, soft tissue, and CSF, as well as the structure and properties of a protective helmet. Various impact scenarios were studied, with a focus on the strains/stresses and pressure gradients and concentrations created in the brain tissue due to propagation of waves produced by the impact through the complex internal structure of the human head. This approach has the potential to expand our understanding of the mechanism of brain injury, and to better assess the risk of delayed neurological disorders for tens of thousands of young athletes throughout the world.

  10. Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells.

    Science.gov (United States)

    Thayer, Patrick S; Verbridge, Scott S; Dahlgren, Linda A; Kakar, Sanjeev; Guelcher, Scott A; Goldstein, Aaron S

    2016-08-01

    Electrospun microfibers are attractive for the engineering of oriented tissues because they present instructive topographic and mechanical cues to cells. However, high-density microfiber networks are too cell-impermeable for most tissue applications. Alternatively, the distribution of sparse microfibers within a three-dimensional hydrogel could present instructive cues to guide cell organization while not inhibiting cell behavior. In this study, thin (∼5 fibers thick) layers of aligned microfibers (0.7 μm) were embedded within collagen hydrogels containing mesenchymal stem cells (MSCs), cultured for up to 14 days, and assayed for expression of ligament markers and imaged for cell organization. These microfibers were generated through the electrospinning of polycaprolactone (PCL), poly(ester-urethane) (PEUR), or a 75/25 PEUR/PCL blend to produce microfiber networks with elastic moduli of 31, 15, and 5.6 MPa, respectively. MSCs in composites containing 5.6 MPa fibers exhibited increased expression of the ligament marker scleraxis and the contractile phenotype marker α-smooth muscle actin versus the stiffer fiber composites. Additionally, cells within the 5.6 MPa microfiber composites were more oriented compared to cells within the 15 and 31 MPa microfiber composites. Together, these data indicate that the mechanical properties of microfiber/collagen composites can be tuned for the engineering of ligament and other target tissues. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1894-1901, 2016. © 2016 Wiley Periodicals, Inc.

  11. [Effect of elastic strain rate ratio method and virtual touch tissue quantification on the diagnosis of breast masses].

    Science.gov (United States)

    Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan

    2016-07-01

    To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses.
 Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors.
 The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (Pbreast mass than that used alone.

  12. Simultaneous estimation of Poisson's ratio and Young's modulus using a single indentation: a finite element study

    International Nuclear Information System (INIS)

    Zheng, Y P; Choi, A P C; Ling, H Y; Huang, Y P

    2009-01-01

    Indentation is commonly used to determine the mechanical properties of different kinds of biological tissues and engineering materials. With the force–deformation data obtained from an indentation test, Young's modulus of the tissue can be calculated using a linear elastic indentation model with a known Poisson's ratio. A novel method for simultaneous estimation of Young's modulus and Poisson's ratio of the tissue using a single indentation was proposed in this study. Finite element (FE) analysis using 3D models was first used to establish the relationship between Poisson's ratio and the deformation-dependent indentation stiffness for different aspect ratios (indentor radius/tissue original thickness) in the indentation test. From the FE results, it was found that the deformation-dependent indentation stiffness linearly increased with the deformation. Poisson's ratio could be extracted based on the deformation-dependent indentation stiffness obtained from the force–deformation data. Young's modulus was then further calculated with the estimated Poisson's ratio. The feasibility of this method was demonstrated in virtue of using the indentation models with different material properties in the FE analysis. The numerical results showed that the percentage errors of the estimated Poisson's ratios and the corresponding Young's moduli ranged from −1.7% to −3.2% and 3.0% to 7.2%, respectively, with the aspect ratio (indentor radius/tissue thickness) larger than 1. It is expected that this novel method can be potentially used for quantitative assessment of various kinds of engineering materials and biological tissues, such as articular cartilage

  13. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  14. Real-time simulation of the nonlinear visco-elastic deformations of soft tissues.

    Science.gov (United States)

    Basafa, Ehsan; Farahmand, Farzam

    2011-05-01

    Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. The model was able to replicate complex biological soft tissue mechanical properties under large deformations, i.e., the nonlinear and viscoelastic behaviors. The simulated response of the model after tuning of its parameters to the experimental data of a deer liver sample, closely tracked the reference data with high correlation and maximum relative differences of less than 5 and 10%, for the tuning and testing data sets respectively. Finally, implementation of the proposed model and algorithms in a graphical environment resulted in a real-time simulation with update rates of 150 Hz for interactive deformation and haptic manipulation, and 30 Hz for visual rendering. The proposed real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was efficient, realistic, and accurate in ex vivo testing. This model is a suitable candidate for testing in vivo during laparoscopic surgery.

  15. Emprego de ferramentas numéricas na avaliação do módulo de elasticidade em vigas roliças de madeira Use of numerical tools in the evaluation of the longitudinal modulus of elasticity in round timber beams

    Directory of Open Access Journals (Sweden)

    André L. Christoforo

    2012-10-01

    . The use of round timber as a beam is very attractive, since it does not need to be processed, such as lumber. The design of structural timber elements requires the determination of its physical and mechanical properties in which are obtained based on the recommendations of engineering standards. In case of round timber, the national standards dealing with the determination of strength and stiffness properties are in term for more than twenty years with no technical review. Overall, both national and international standards consider truncated-cone geometry for cylindrical logs of wood, resulting in simplified equations unable to predict the effect of shape irregularities on the longitudinal modulus of elasticity. This paper aims to evaluate the effect of shape irregularity of round timber of Corymbia citriodora and Pinus caribaea to determine the longitudinal modulus of elasticity. The three-point bending test is used to determine the modulus, considering a simplified analytical model, with constant circular section for the element. The irregularities of the wood are considered in the numerical models based on a beam and three-dimensional finite elements. The results showed statistical equivalence between the modulus of elasticity for both methods of calculation, indicating that the constant circular section is a reasonable assumption for the wooden here evaluated.

  16. Frequency-dependent complex modulus of the uterus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Miklos Z [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Hobson, Maritza A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Varghese, Tomy [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Harter, Josephine [Department of Surgical Pathology, University of Wisconsin, Madison, WI 53706 (United States); Kliewer, Mark A [Department of Radiology, University of Wisconsin, Madison, WI 53706 (United States); Hartenbach, Ellen M [Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53706 (United States); Zagzebski, James A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-08-07

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa.

  17. Frequency-dependent complex modulus of the uterus: preliminary results

    International Nuclear Information System (INIS)

    Kiss, Miklos Z; Hobson, Maritza A; Varghese, Tomy; Harter, Josephine; Kliewer, Mark A; Hartenbach, Ellen M; Zagzebski, James A

    2006-01-01

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa

  18. Fluorescence microscopy for the evaluation of elastic tissue patterns within fibrous proliferations of the skin on hematoxylin-eosin-stained slides.

    Science.gov (United States)

    Borucki, Robert; Perry, David M; Lopez-Garcia, Dan R; Kazlouskaya, Viktoryia; Elston, Dirk M

    2018-01-05

    Diagnosis of fibrous tumors can be challenging and expensive due to the use of special stains. Determine the usefulness of fluorescence microscopy in the evaluation of elastic pattern on H&E stained slides. A total of 228 slides were evaluated by fluorescence microscopy for elastic tissue patterns and sensitivity and specificity determined for relevant comparisons. Fluorescence microscopy was found to be useful especially in the case of distinguishing dermatofibroma (DF) vs dermatofibrosarcoma protuberans (DFSP) and also dermatomyofibroma (DMF) vs other fibrous tumors. In some cases, excessive background staining made it difficult to interpret. Evaluation of elastic tissue patterns by fluorescence microscopy in fibrous tumors is a cheap and efficient means to further delineate these often challenging tumors. Copyright © 2018. Published by Elsevier Inc.

  19. Atomistic Calculation of Elastic Moduli in Strained Silicon

    National Research Council Canada - National Science Library

    Zhu, Richard; Pan, Ernian; Chung, Peter W; Cai, Xinli; Liew, Kim M; Buldum, Alper

    2007-01-01

    .... Using our approach, the bulk modulus, effective elastic stiffnesses C11, C12, and C44 of the strained silicon, including also the effective Young's modulus and Poisson's ratio, are all calculated...

  20. WE-E-9A-01: Ultrasound Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Emelianov, S [University of Texas at Austin, Austin, TX (United States); Hall, T [University of WI-Madison, Madison, WI (United States); Bouchard, R [UT MD Anderson Cancer Center and UTHSC at Houston Graduate School of Biomed, Houston, TX (United States)

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  1. WE-E-9A-01: Ultrasound Elasticity

    International Nuclear Information System (INIS)

    Emelianov, S; Hall, T; Bouchard, R

    2014-01-01

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  2. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    Science.gov (United States)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  3. Estimation of the Young’s modulus of cellulose Iß by MM3 and quantum mechanics

    Science.gov (United States)

    Young’s modulus provides a measure of the resistance to deformation of an elastic material. In this study, modulus estimations for models of cellulose Iß relied on calculations performed with molecular mechanics (MM) and quantum mechanics (QM) programs. MM computations used the second generation emp...

  4. Determination of young's modulus of PZT-influence of cantilever orientation

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    Calculation of the resonance frequency of cantilevers fabricated from an elastically anisotropic material requires the use of an effective Young’s modulus. In this paper a technique to determine the appropriate effective Young’s modulus for arbitrary cantilever geometries is introduced. This

  5. Dentoskeletal and Soft Tissue Effects in the Treatment of Class II Malocclusion with Klammt's Elastic Open Activator.

    Science.gov (United States)

    Inamassu-Lemes, Sheila Marques; Fuziy, Acácio; Costa, André Luiz Ferreira; Carvalho, Paulo Eduardo Guedes; Nahás-Scocate, Ana Carla Raphaelli

    2016-01-01

    The purpose of this study was to evaluate the dentoskeletal and soft tissue effects resulting from treatment with Klammt's elastic open activator (EOA) functional orthopedic appliance in patients with Class II malocclusion characterized by mandibular deficiency. Teleradiographs were evaluated in the lateral aspect of the initial (T1) and final (T2) orthopedic phases for 16 patients with Class II, Division 1 malocclusion. The age range was from 9 to 11.2 years, with a mean age of 9.9 years. The cephalometric points were demarcated, and cephalometric measurements were obtained by the same investigator to avoid interobserver variability. The EOA promoted increased lower anterior facial height (LAFH), increased effective mandibular length, clockwise rotation of the mandible, retrusion and verticalization of the upper incisors, proclination and protrusion of the lower incisors, extrusion of the upper molars, mesial movement of the lower molars and anterior projection of the lower lip. Skeletal changes characterized by an increase in mandibular length and dentoalveolar changes with an emphasis on the verticalization and retrusion of the upper incisors, proclination of the lower incisors and mesial positioning of the lower molars were key to improving the occlusal relationship and esthetic facial factors. The EOA is well indicated in patients with Class II malocclusion due to mandibular deficiency with increased overbite, proclined upper incisors and verticalized lower incisors.

  6. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  7. Enhancing the performance of model-based elastography by incorporating additional a priori information in the modulus image reconstruction process

    International Nuclear Information System (INIS)

    Doyley, Marvin M; Srinivasan, Seshadri; Dimidenko, Eugene; Soni, Nirmal; Ophir, Jonathan

    2006-01-01

    Model-based elastography is fraught with problems owing to the ill-posed nature of the inverse elasticity problem. To overcome this limitation, we have recently developed a novel inversion scheme that incorporates a priori information concerning the mechanical properties of the underlying tissue structures, and the variance incurred during displacement estimation in the modulus image reconstruction process. The information was procured by employing standard strain imaging methodology, and introduced in the reconstruction process through the generalized Tikhonov approach. In this paper, we report the results of experiments conducted on gelatin phantoms to evaluate the performance of modulus elastograms computed with the generalized Tikhonov (GTK) estimation criterion relative to those computed by employing the un-weighted least-squares estimation criterion, the weighted least-squares estimation criterion and the standard Tikhonov method (i.e., the generalized Tikhonov method with no modulus prior). The results indicate that modulus elastograms computed with the generalized Tikhonov approach had superior elastographic contrast discrimination and contrast recovery. In addition, image reconstruction was more resilient to structural decorrelation noise when additional constraints were imposed on the reconstruction process through the GTK method

  8. Numerical evaluation of the modulus of longitudinal elasticity in structural round timber elements of the Eucalyptus genus Avaliação numérica do módulo de elasticidade longitudinal em peças roliças estruturais de madeira do gênero Eucalyptus

    Directory of Open Access Journals (Sweden)

    André L. Christoforo

    2011-10-01

    Full Text Available Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.Atualmente, os documentos normativos que tratam da determinação das propriedades de rigidez e resistência para elementos estruturais roliços de madeira, não levam em consideração em seus cálculos e modelos matemáticos a influência das irregularidades existentes na geometria dessas peças. Este trabalho tem como objetivo determinar o efetivo valor do módulo de elasticidade longitudinal para peças estruturais roliças de madeira do gênero Eucalyptus citriodora, por intermédio de uma técnica de otimização aliada ao Método da Análise Inversa, ao Método dos Elementos Finitos e ao Método dos Mínimos Quadrados.

  9. Aplicação do método de ensaio das frequências naturais de vibração para obtenção do módulo de elasticidade de peças estruturais de madeira Analysis of the natural vibration frequency test method to obtain the modulus of elasticity of wood structural components

    Directory of Open Access Journals (Sweden)

    Pedro Gutemberg de Alcântara Segundinho

    2012-12-01

    Full Text Available Existem diversas técnicas para caracterização do módulo de elasticidade de madeiras e, dentre as atualmente empregadas, destacam-se aquelas que utilizam as frequências naturais de vibração, por serem técnicas não destrutivas e, portanto, apresentarem resultados que podem ser repetidos e comparados ao longo do tempo. Este trabalho teve como objetivo avaliar a eficácia, dos métodos de ensaios baseados nas frequências naturais de vibração comparando-os aos resultados obtidos na flexão estática na obtenção das propriedades elásticas em peças estruturais de madeira de reflorestamento que são usualmente empregadas na construção civil. Foram avaliadas 24 vigas de Eucalyptus sp. com dimensões nominais (40 x 60 x 2.000 mm e 14 vigas de Pinus oocarpa com dimensões nominais (45 x 90 x 2.300 mm, ambas sem tratamento; 30 pranchas com dimensões nominais (40 x 240 x 2.010 mm e 30 pranchas com dimensões nominais (40 x 240 x 3.050 mm, ambas de Pinnus oocarpa e com tratamento preservativo à base de Arseniato de Cobre Cromatado - CCA. Os resultados obtidos apresentaram boa correlação quando comparados aos resultados obtidos pelo método mecânico de flexão estática, especialmente quando empregada a frequência natural de vibração longitudinal. O emprego da frequência longitudinal mostrou-se confiável e prático, portanto recomendada para a determinação do módulo de elasticidade de peças estruturais de madeira. Verificou-se ainda que, empregando a frequência longitudinal, não há necessidade de um suporte específico para os corpos de prova ou calibrações prévias, reduzindo assim o tempo de execução e favorecendo o ensaio de grande quantidade de amostras.There are several techniques to characterize the elastic modulus of wood and those currently using the natural frequencies of vibration stand out as they are non-destructive techniques, producing results that can be repeated and compared over time. This study reports

  10. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.

    Science.gov (United States)

    Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui

    2017-01-01

    Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.

  11. Relationship between radial compressive modulus of elasticity and shear modulus of wood

    Science.gov (United States)

    Jen Y. Liu; Robert J. Ross

    2005-01-01

    Wood properties in transverse compression are difficult to determine because of such factors as anatomical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, considered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the reference coordinate system changes its orientation. In this...

  12. ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD

    Directory of Open Access Journals (Sweden)

    Adriano Wagner Ballarin

    2003-01-01

    Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.

  13. Young's Modulus of a Marshmallow

    Science.gov (United States)

    Pestka, Kenneth A., II

    2008-01-01

    When teaching the subject of elasticity, it is often difficult to find a straightforward quantitative laboratory that can give a "hands-on" feel for the subject. This paper presents an experiment that demonstrates the essentials of elasticity by observing the behavior of marshmallows under a compressive load. Like other marshmallow-based…

  14. Modulus D-term inflation

    Science.gov (United States)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  15. Chromium effect on the Young modulus and thermoelastic coefficient of elinvars

    International Nuclear Information System (INIS)

    Sazykina, A.V.; Khomenko, O.A.

    1976-01-01

    The effect was studied of thermal and thermal-mechanical treatment upon the elastic modules and its temperature coefficient in iron-nickel Elinvars with different chromium contents (from 0 to 6.7%). It has been shown that doping with chromium results in an increase in the modulus of elasticity of Elinvars after hardening. The elastic modulus of alloys containing no chromium increases after a cold plastic deformation (drawing), whereas that of chromous Elinvars decreases upon such a treatment. It has been established that the elastic modulus of hardened and cold drawn after hardening Elinvars increases upon ageing. An increase in chromium content in iron-nickel Elinvars reduces the effect of the temperature of ageing upon the thermoelastic coefficient during the usual heat treatment and the thermalmechanical treatment and lowers its sensitivity to the influence of an external magnetic field [ru

  16. Yield and ultrasonic modulus of elasticity of red maple veneer

    Science.gov (United States)

    Robert J. Ross; Steven Verhey; John R. Erickson; John W. Forsman; Brian K. Brashaw; Crystal L. Pilon; Xiping Wang

    2004-01-01

    The purpose of the study was to assess the potential for using red maple sawlogs to manufacture laminated veneer lumber (LVL). The primary objective was to determine the yield of ultrasonically graded veneer from red maple logs. A sample of 48 logs was obtained from six Eastern and Lake States in the United States. The logs were visually graded and shipped to a plywood...

  17. Determining modulus of elasticity of ancient structural timber

    Science.gov (United States)

    Houjiang Zhang; Lei Zhu; Yanliang Sun; Xiping Wang; Haicheng Yan

    2011-01-01

    During maintenance of ancient timber architectures, it is important to determine mechanical properties of the wood component materials non-destructively and effectively, so that degraded members may be replaced or repaired to avoid structural failure. Experimental materials are four larch (Larix principis-rupprechtii Mayr.) components, which were taken down from the...

  18. Elastic modulus of Extreme Ultraviolet exposed single-layer graphene

    NARCIS (Netherlands)

    Mund, Baibhav Kumar; Gao, An; Sturm, Jacobus Marinus; Lee, Christopher James; Bijkerk, Frederik

    2015-01-01

    Highly transparent membranes are required for a number of applications, such as protective coatings for components in Extreme Ultraviolet (EUV) lithography, beam splitters (EUV pump-probe experiments), transmission gratings, and reticles. Graphene is an excellent candidate due to its high tensile

  19. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    OpenAIRE

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  20. Optimizing signal output: effects of viscoelasticity and difference frequency on vibroacoustic radiation of tissue-mimicking phantoms

    Science.gov (United States)

    Namiri, Nikan K.; Maccabi, Ashkan; Bajwa, Neha; Badran, Karam W.; Taylor, Zachary D.; St. John, Maie A.; Grundfest, Warren S.; Saddik, George N.

    2018-02-01

    Vibroacoustography (VA) is an imaging technology that utilizes the acoustic response of tissues to a localized, low frequency radiation force to generate a spatially resolved, high contrast image. Previous studies have demonstrated the utility of VA for tissue identification and margin delineation in cancer tissues. However, the relationship between specimen viscoelasticity and vibroacoustic emission remains to be fully quantified. This work utilizes the effects of variable acoustic wave profiles on unique tissue-mimicking phantoms (TMPs) to maximize VA signal power according to tissue mechanical properties, particularly elasticity. A micro-indentation method was utilized to provide measurements of the elastic modulus for each biological replica. An inverse relationship was found between elastic modulus (E) and VA signal amplitude among homogeneous TMPs. Additionally, the difference frequency (Δf ) required to reach maximum VA signal correlated with specimen elastic modulus. Peak signal diminished with increasing Δf among the polyvinyl alcohol specimen, suggesting an inefficient vibroacoustic response by the specimen beyond a threshold of resonant Δf. Comparison of these measurements may provide additional information to improve tissue modeling, system characterization, as well as insights into the unique tissue composition of tumors in head and neck cancer patients.

  1. A new nonlinear parameter in the developed strain-to-applied strain of the soft tissues and its application in ultrasound elasticity imaging.

    Science.gov (United States)

    Xu, Jingping; Tripathy, Sakya; Rubin, Jonathan M; Stidham, Ryan W; Johnson, Laura A; Higgins, Peter D R; Kim, Kang

    2012-03-01

    Strain developed under quasi-static deformation has been mostly used in ultrasound elasticity imaging (UEI) to determine the stiffness change of tissues. However, the strain measure in UEI is often less sensitive to a subtle change of stiffness. This is particularly true for Crohn's disease where we have applied strain imaging to the differentiation of acutely inflamed bowel from chronically fibrotic bowel. In this study, a new nonlinear elastic parameter of the soft tissues is proposed to overcome this limit. The purpose of this study is to evaluate the newly proposed method and demonstrate its feasibility in the UEI. A nonlinear characteristic of soft tissues over a relatively large dynamic range of strain was investigated. A simplified tissue model based on a finite element (FE) analysis was integrated with a laboratory developed ultrasound radio-frequency (RF) signal synthesis program. Two-dimensional speckle tracking was applied to this model to simulate the nonlinear behavior of the strain developed in a target inclusion over the applied average strain to the surrounding tissues. A nonlinear empirical equation was formulated and optimized to best match the developed strain-to-applied strain relation obtained from the FE simulation. The proposed nonlinear equation was applied to in vivo measurements and nonlinear parameters were further empirically optimized. For an animal model, acute and chronic inflammatory bowel disease was induced in Lewis rats with trinitrobenzene sulfonic acid (TNBS)-ethanol treatments. After UEI, histopathology and direct mechanical measurements were performed on the excised tissues. The extracted nonlinear parameter from the developed strain-to-applied strain relation differentiated the three different tissue types with 1.96 ± 0.12 for normal, 1.50 ± 0.09 for the acutely inflamed and 1.03 ± 0.08 for the chronically fibrotic tissue. T-tests determined that the nonlinear parameters between normal, acutely inflamed and fibrotic tissue

  2. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    Science.gov (United States)

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  3. Examining Young's modulus for wood

    International Nuclear Information System (INIS)

    Perkalskis, Benjamin S; Freeman, J Reuben; Suhov, Alexander

    2004-01-01

    Symmetry considerations, dimensional analysis and simple approximations are used to derive a formula for Young's modulus of a simple anisotropic system, a straight-layer wood bar whose fibre axis makes an angle with respect to the bar's longitudinal axis. Agreement between the derived formula and experiment (carried out in far from ideal conditions) is within 10%. Improvements and extensions are suggested for this undergraduate physics experiment

  4. Cardiomyocytes from late embryos and neonates do optimal work and striate best on substrates with tissue-level elasticity: metrics and mathematics.

    Science.gov (United States)

    Majkut, Stephanie F; Discher, Dennis E

    2012-11-01

    In this review, we discuss recent studies on the mechanosensitive morphology and function of cardiomyocytes derived from embryos and neonates. For early cardiomyocytes cultured on substrates of various stiffnesses, contractile function as measured by force production, work output and calcium handling is optimized when the culture substrate stiffness mimics that of the tissue from which the cells were obtained. This optimal contractile function corresponds to changes in sarcomeric protein conformation and organization that promote contractile ability. In light of current models for myofibillogenesis, a recent mathematical model of striation and alignment on elastic substrates helps to illuminate how substrate stiffness modulates early myofibril formation and organization. During embryonic heart formation and maturation, cardiac tissue mechanics change dynamically. Experiments and models highlighted here have important implications for understanding cardiomyocyte differentiation and function in development and perhaps in regeneration processes.

  5. Young's modulus of a copper-stabilized niobium-titanium superconductive wire

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Moulder, J.C.; Austin, M.W.

    1980-01-01

    Young's modulus was determined for a 0.6-mm-dia niobium-titanium superconductive wire. Two methods were used: continuous-wave-resonance and laser-pulse-excitation. Young's moduli were also determined for the components - copper and Nb-Ti - in both wire and bulk forms. Some mechanical-deformation effects on Young's modulus were also measured. From the component' elastic moduli, that of the composite was predicted accurately by a simple rule-of-mixtures relationship

  6. Bimodal spectroscopy in elastic scattering and spatially resolved auto-fluorescence: instrumentation, light-tissues interaction modeling and application to ex vivo and in vivo biological tissues characterization for cancers detection

    International Nuclear Information System (INIS)

    Pery, Emilie

    2007-01-01

    This research activity aims at developing and validating a multimodal spectroscopy method in elastic scattering and auto-fluorescence to characterize biological tissues in vitro and in vivo. It is articulated in four axes. At first, instrumentation is considered with the development, the engineering and the experimental characterization of a fibers bimodal, multi-points spectrometry system allowing the acquisition of spectra in vivo (variable distances, fast acquisition). Secondly, the optical properties of tissues are modelled with the development and the experimental validation on phantoms of a photons propagation simulation algorithm in turbid media and multi-fluorescent. Thirdly, an experimental study has been conducted ex vivo on fresh and cryo-preserved arterial rings. It confirms the complementarity of spectroscopic measurements in elastic scattering and auto-fluorescence, and validates the method of multi-modality spectroscopy and the simulation of photons propagation algorithm. Results have well proved a correlation between rheological and optical properties. Finally, one second experimental study in vivo related to a pre-clinical tumoral model of bladder has been carried out. It highlights a significant difference in diffuse reflectance and/or auto-fluorescence and/or intrinsic fluorescence between healthy, inflammatory and tumoral tissues, on the basis of specific wavelength. The results of not supervised classification show that the combination of various spectroscopic approaches increases the reliability of the diagnosis. (author) [fr

  7. Are rapid changes in brain elasticity possible?

    Science.gov (United States)

    Parker, K. J.

    2017-09-01

    Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.

  8. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a “Watch-and-Wait” Approach to Cancer

    Science.gov (United States)

    Li, Shengwen Calvin; Vu, Long T.; Luo, Jane Jianying; Zhong, Jiang F.; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G.; Kabeer, Mustafa H.

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open up new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME-driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cell-specific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a “watch-and-wait” approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology – a balance that needs to be maintained for the “watch-and-wait” approach to cancer. Thus, this review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. PMID:28270089

  9. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxylapatite and hyaluronic acid.

    Science.gov (United States)

    Sundaram, Hema; Voigts, Bob; Beer, Kenneth; Meland, Melissa

    2010-11-01

    Two types of soft tissue filler that are in common use are those formulated primarily with calcium hydroxylapatite (CaHA) and those with cross-linked hyaluronic acid (cross-linked HA). To provide physicians with a scientific rationale for determining which soft tissue fillers are most appropriate for volume replacement. Six cross-linked HA soft tissue fillers (Restylane and Perlane from Medicis, Scottsdale, AZ; Restylane SubQ from Q-Med, Uppsala, Sweden; and Juvéderm Ultra, Juvéderm Ultra Plus, and Juvéderm Voluma from Allergan, Pringy, France) and a soft tissue filler consisting of CaHA microspheres in a carrier gel containing carboxymethyl cellulose (Radiesse, BioForm Medical, Inc., San Mateo, CA). METHODS The viscosity and elasticity of each filler gel were quantified according to deformation oscillation measurements conducted using a Thermo Haake RS600 Rheometer (Newington, NH) using a plate and plate geometry with a 1.2-mm gap. All measurements were performed using a 35-mm titanium sensor at 30°C. Oscillation measurements were taken at 5 pascal tau (τ) over a frequency range of 0.1 to 10 Hz (interpolated at 0.7 Hz). Researchers chose the 0.7-Hz frequency because it elicited the most reproducible results and was considered physiologically relevant for stresses that are common to the skin. RESULTS The rheological measurements in this study support the concept that soft tissue fillers that are currently used can be divided into three groups. CONCLUSION Rheological evaluation enables the clinician to objectively classify soft tissue fillers, to select specific filler products based on scientific principles, and to reliably predict how these products will perform--lifting, supporting, and sculpting--after they are appropriately injected. © 2010 by the American Society for Dermatologic Surgery, Inc.

  10. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  11. Small compression modulus of the flux line lattice and large density fluctuations at high fields may explain peak effect

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1976-01-01

    The elastic properties of the flux line lattice in Type II superconductors as calculated from the Ginsburg-Landau theory are discussed. They are non-local on a length scale much larger than the flux line distance and divergent at Hsub(c2). The compression modulus may become much smaller than its long-wavelength limit, B 2 /4π, and if the deformation is not homogeneous, at Hsub(c2) the modulus vanishes as (Hsub(c2) - B) 2 . At arbitrary induction the compression modulus of strain waves with wavelengths of several flux line distances is of the order of the (small) shear modulus. (author)

  12. The influence of predeformations and annealings on yield stress and modulus of elongation essentially yttrium doped copper

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Sytin, V.I.; Voevodin, V.N.

    2003-01-01

    The researches results of influence of predeformations and annealings on elastic and plastic characteristics of vacuum melting and yttrium doped copper are given. The interrelation between elastic and plastic characteristics has been shown. It is shown that the yield stress and modulus of elongation essentially depend on predeformations and annealings and they are the structurally sensitive characteristics

  13. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging.

    Science.gov (United States)

    Yu, Jiao; Takanari, Keisuke; Hong, Yi; Lee, Kee-Won; Amoroso, Nicholas J; Wang, Yadong; Wagner, William R; Kim, Kang

    2013-04-01

    The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Quantifying the Elastic Property of Nine Thigh Muscles Using Magnetic Resonance Elastography.

    Science.gov (United States)

    Chakouch, Mashhour K; Charleux, Fabrice; Bensamoun, Sabine F

    2015-01-01

    Pathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest. Twenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed. The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested. The different elasticities measured between the tissues may be due to variations in the muscles' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.

  15. Determinação do módulo de elasticidade da madeira juvenil e adulta de Pinus taeda por ultra-som Determination of the modulus of elasticity of juvenile and mature wood of Pinus taeda L.with ultrasonic method

    Directory of Open Access Journals (Sweden)

    Adriano W. Ballarin

    2005-04-01

    Full Text Available A madeira de Pinus sp. tem utilização crescente na indústria madeireira brasileira. O decréscimo constante do suprimento de árvores adultas com grandes diâmetros, provenientes de florestas naturais, tornou comum a produção de madeira em ciclos curtos, com grande proporção de madeira juvenil. Resultados de diversas pesquisas têm reportado que o módulo de elasticidade e a resistência a diferentes solicitações mecânicas são seriamente afetados pela presença de madeira juvenil. Este trabalho teve por objetivo determinar o módulo de elasticidade da madeira juvenil e adulta de Pinus taeda L. a partir da constante dinâmica C LL, obtida em ensaios não-destrutivos de ultra-som. A madeira de P. taeda era originária de plantios da Estação Experimental de Itapeva - SP, sendo amostrados seis indivíduos arbóreos com 34 anos de idade. Os corpos-de-prova (4 cm x 4 cm x 45 cm foram obtidos separadamente das regiões de madeira juvenil e adulta da prancha central, previamente submetida à secagem industrial (umidade final de 12%, para a determinação da constante dinâmica por meio de ensaios de ultra-som. Para avaliar a sensibilidade do método do ultra-som, os corpos-de-prova foram ensaiados destrutivamente à compressão paralela. Os resultados mostraram boa sensibilidade do método do ultra-som (R² » 0,90 na avaliação desse parâmetro mecânico da madeira juvenil e adulta.Pinus sp. wood has an increasing importance on supplying brazilian wood industry. The diminution of adult and large diameter trees supply deriving from natural tropical forests, became usual the production of wood on short rotation plantation, with considerable proportion of juvenil wood. Results from several researches have been demonstrated that MOE and mechanical strength are strongly affected by juvenile wood occurrence. This research was developed with the main objective of correlating dynamic modulus of elasticity (non-destructive ultrasound tests and MOE

  16. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  17. Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus

    DEFF Research Database (Denmark)

    Peng, R.D.; Zhou, H.W.; Wang, H.W.

    2012-01-01

    ” algorithm was developed in the ABAQUS Scripting Interface. In the computational studies, it was observed that the elastic modulus increases with the increasing the aspect ratio of nanoparticles. The thickness and properties of effective interface layers and the shape and degree of particles clustering have...

  18. Effect of stress level on static young's modulus of certain structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Vojtenko, A.F.; Skripnik, Yu.D.; Solov' eva, N.G.; Nadezhdin, G.N. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1982-11-01

    Certain steels, titanium and aluminium alloys have been studied for their dynamic and static Young moduli. It is shown that a stress rise in materials to the level of microplastic strain realization results in a significant reduction of the static modulus of elasticity in the materials studied.

  19. Detail of photo 7903109 stack of superconducting cables in the modulus measuring device

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.

  20. Effect of stress level on static young's modulus of certain structural materials

    International Nuclear Information System (INIS)

    Vojtenko, A.F.; Skripnik, Yu.D.; Solov'eva, N.G.; Nadezhdin, G.N.

    1982-01-01

    Certain steels, titanium and aluminium alloys have been studied for their dynamic and static Young moduli. It is shown that a stress rise in materials to the level of microplastic strain realization results in a significant reduction of the static modulus of elasticity in the materials studied

  1. Tissue elasticity displayed by elastography and its correlation with the characteristics of collagen type I and type III in prostatic stroma

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2014-04-01

    Full Text Available We investigated the prostate elasticity displayed by elastography and its correlation with the content and distribution of collagen type I (Col1 and type III (Col3. A total of 62 patients underwent transrectal real-time tissue elastography (TRTE examinations. Targeted biopsies were performed after 12-core systematic biopsy. The tissues corresponding to the elastograms were stained with picric acid-sirius red. The distribution of Col1 and type Col3 was observed, and the collagen volume fraction (CVF of these two types of collagen fibers was calculated. The CVFs of Col1 in the stiff and soft groups were 0.05 ± 0.02 and 0.02 ± 0.01 (P = 0.002, respectively. The CVFs of Col3 in the stiff and soft groups were 0.05 ± 0.04 and 0.07 ± 0.03 (P = 0.13, respectively. The circular analysis results showed that collagen fibers were disorganized both in the soft and stiff groups. Col1 and Col3 were mainly cross-linked, and some parallelization was observed in the sections. The distributions of Col1 and Col3 were different between the stiff and soft groups (P = 0.03. In conclusion, the texture of the prostate is due to the content of Col1 and its relative correlation with Col3.

  2. Tissue elasticity displayed by elastography and its correlation with the characteristics of collagen type I and type III in prostatic stroma.

    Science.gov (United States)

    Tang, Jie; Zhang, Yan; Zhang, Ming-Bo; Li, Yan-Mi; Fei, Xiang; Song, Zhi-Gang

    2014-01-01

    We investigated the prostate elasticity displayed by elastography and its correlation with the content and distribution of collagen type I (Col1) and type III (Col3). A total of 62 patients underwent transrectal real-time tissue elastography (TRTE) examinations. Targeted biopsies were performed after 12-core systematic biopsy. The tissues corresponding to the elastograms were stained with picric acid-sirius red. The distribution of Col1 and type Col3 was observed, and the collagen volume fraction (CVF) of these two types of collagen fibers was calculated. The CVFs of Col1 in the stiff and soft groups were 0.05 ± 0.02 and 0.02 ± 0.01 (P = 0.002), respectively. The CVFs of Col3 in the stiff and soft groups were 0.05 ± 0.04 and 0.07 ± 0.03 (P = 0.13), respectively. The circular analysis results showed that collagen fibers were disorganized both in the soft and stiff groups. Col1 and Col3 were mainly cross-linked, and some parallelization was observed in the sections. The distributions of Col1 and Col3 were different between the stiff and soft groups (P = 0.03). In conclusion, the texture of the prostate is due to the content of Col1 and its relative correlation with Col3.

  3. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability

    Science.gov (United States)

    Bader, Kenneth B.

    2018-05-01

    Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.

  4. Resilient modulus for unbound granular materials and subgrade soils in Egypt

    Directory of Open Access Journals (Sweden)

    Mousa Rabah

    2017-01-01

    Full Text Available Mechanistic Empirical (ME pavement design methods started to gain attention especially the last couple of years in Egypt and the Middle East. One of the challenges facing the spread of these methods in Egypt is lack of advanced properties of local soil and asphalt, which are needed as input data in ME design. Resilient modulus (Mr for example is an important engineering property that expresses the elastic behavior of soil/unbound granular materials (UGMs under cyclic traffic loading for ME design. In order to overcome the scarcity of the resilient modulus data for soil/UGMs in Egypt, a comprehensive laboratory testing program was conducted to measure resilient modulus of typical UGMs and subgrade soils typically used in pavement construction in Egypt. The factors that affect the resilient modulus of soil/UGMs were reviewed, studied and discussed. Finally, the prediction accuracy of the most well-known Mr Prediction models for the locally investigated materials was investigated.

  5. Variation of the Young's modulus with plastic strain applying to elastoplastic software

    International Nuclear Information System (INIS)

    Morestin, F.; Boivin, M.

    1993-01-01

    Work hardening of steel involves modifications of the elastic properties of the material, for instance, an increase of its yield stress. It may be also the cause of an appreciable decrease of the Young's modulus. This property decreases as plastic strain increases. Experiments with a microcomputer controlled tensile test machine indicated that diminution could reach more than 10% of the initial value, after only 5% of plastic strain. In spite of this fact, lots of elastoplastic softwares don't combine the decrease of the Young's modulus with plastification though it may involve obvious differences among results. As an application we have developed a software which computes the deformation of steel sheet in press forming, after springback. This software takes into account the decrease of the Young's modulus and its results are very close to experimental values. Quite arbitrarily, we noticed a recovery of the Young's modulus of plastified specimens after few days but not for all steels tested. (author)

  6. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

    DEFF Research Database (Denmark)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2012-01-01

    constant is significantly larger than the C11 and C33 parameters, implying that black phosphorus is stiffer against strain along the a axis than along the b and c axes. From the calculated elastic constants, the mechanical properties, such as bulk modulus, shear modulus, Young's modulus, and Poisson...

  7. Analytic approximations for the elastic moduli of two-phase materials

    DEFF Research Database (Denmark)

    Zhang, Z. J.; Zhu, Y. K.; Zhang, P.

    2017-01-01

    Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...

  8. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    Science.gov (United States)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  9. Young’s Modulus and Poisson’s Ratio of Monolayer Graphyne

    Directory of Open Access Journals (Sweden)

    H. Rouhi

    2013-09-01

    Full Text Available Despite its numerous potential applications, two-dimensional monolayer graphyne, a novel form of carbon allotropes with sp and sp2 carbon atoms, has received little attention so far, perhaps as a result of its unknown properties. Especially, determination of the exact values of its elastic properties can pave the way for future studies on this nanostructure. Hence, this article describes a density functional theory (DFT investigation into elastic properties of graphyne including surface Young’s modulus and Poisson’s ratio. The DFT analyses are performed within the framework of generalized gradient approximation (GGA, and the Perdew–Burke–Ernzerhof (PBE exchange correlation is adopted. This study indicates that the elastic modulus of graphyne is approximately half of that of graphene due to its lower number of bonds.

  10. Elastic properties of fly ash-stabilized mixes

    Directory of Open Access Journals (Sweden)

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  11. Elastic field of approaching dislocation loop in isotropic bimaterial

    International Nuclear Information System (INIS)

    Wu, Wenwang; Xu, Shucai; Zhang, Jinhuan; Xia, Re; Qian, Guian

    2015-01-01

    A semi-analytical solution is developed for calculating interface traction stress (ITS) fields due to elastic modulus mismatch across the interface plane of isotropic perfectly bounded bimaterial system. Based on the semi-analytical approaches developed, ITS is used to correct the bulk elastic field of dislocation loop within infinite homogenous medium, and to produce continuous displacement and stress fields across the perfectly-bounded interface. Firstly, calculation examples of dislocation loops in Al–Cu bimaterial system are performed to demonstrate the efficiency of the developed semi-analytical approach; Then, the elastic fields of dislocation loops in twinning Cu and Cu–Nb bimaterial are analyzed; Finally, the effect of modulus mismatch across interface plane on the elastic field of bimaterial system is investigated, it is found that modulus mismatch has a drastic impact on the elastic fields of dislocation loops within bimaterial system. (paper)

  12. Laboratory Tests of Bitumen Samples Elasticity

    Science.gov (United States)

    Ziganshin, E. R.; Usmanov, S. A.; Khasanov, D. I.; Khamidullina, G. S.

    2018-05-01

    This paper is devoted to the study of the elastic and acoustic properties of bitumen core samples. The travel velocities of the ultrasonic P- and S-waves were determined under in-situ simulation conditions. The resulting data were then used to calculate dynamic Young's modulus and Poisson's ratio. The authors studied the correlation between the elasticity and the permeability and porosity. In addition, the tests looked into how the acoustic properties had changed with temperature rise.

  13. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging

    International Nuclear Information System (INIS)

    Stan, G.; Krylyuk, S.; Davydov, A.V.; Vaudin, M.D.; Bendersky, L.A.; Cook, R.F.

    2009-01-01

    Quantitative measurements of the elastic modulus of nanosize systems and nanostructured materials are provided with great accuracy and precision by contact-resonance atomic force microscopy (CR-AFM). As an example of measuring the elastic modulus of nanosize entities, we used the CR-AFM technique to measure the out-of-plane indentation modulus of tellurium nanowires. A size-dependence of the indentation modulus was observed for the investigated tellurium nanowires with diameters in the range 20-150 nm. Over this diameter range, the elastic modulus of the outer layers of the tellurium nanowires experienced significant enhancement due to a pronounced surface stiffening effect. Quantitative estimations for the elastic moduli of the outer and inner parts of tellurium nanowires of reduced diameter are made with a core-shell structure model. Besides localized elastic modulus measurements, we have also developed a unique CR-AFM imaging capability to map the elastic modulus over a micrometer-scale area. We used this CR-AFM capability to construct indentation modulus maps at the junction between two adjacent facets of a tellurium microcrystal. The clear contrast observed in the elastic moduli of the two facets indicates the different surface crystallography of these facets.

  14. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ < 0.15). Moreover, by keeping the strain at a constant level, we monitored the stress relaxation of the Hydra tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  15. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Science.gov (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Achilles and patellar tendinopathy display opposite changes in elastic properties: A shear wave elastography study.

    Science.gov (United States)

    Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F

    2018-03-01

    To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.

    Science.gov (United States)

    Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric

    2017-10-01

    To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.

  18. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  19. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation.

    Directory of Open Access Journals (Sweden)

    Jessamine P Winer

    2009-07-01

    Full Text Available Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning.

  20. A two-crown finite element technique for the determination of tearing modulus

    International Nuclear Information System (INIS)

    Suo, X.Z.; Combescure, A.

    1989-01-01

    The importance of approach to the subject of crack instability for the design of structures containing cracks has increased considerably over the last few years. The tearing modulus theory recently enunciated by Paris and co-workers has emerged as one of the leading criterions for stable crack growth and for instability, and the estimation of T termed Tearing modulus in the theory has since been extensively investigated theoretically as well as experimentally. Analytical methods exist for calculating the tearing modulus of various crack configurations in simple-shaped structures under certain loading conditions. However, for arbitrary structures under general loading, more sophisticated calculation techniques are required. Extending the virtual crack extension method introduced independently by Hellen and Parks, a new numerical approach for calculating the tearing modulus is presented hereafter and put in a form suitable for the instability analysis of structures containing one single crack or several interacting cracks. As it is well-known that the calculation of the energy release rate in elasticity by the virtual crack extension method is related to a stiffness derivative to which only a small region around the crack tip has a contribution, the technique described in the paper shows that it would be reasonable to evaluate the tearing modulus, or rather, the second derivative of potential energy with respect to the crack length, by means of two stiffness derivative calculations in two crowns around the crack tip. In particular, when one crown is strictly included in another one, computation is largely curtailed at this point with some saving of computer time, but a very accurate value of tearing modulus is obtained. As an interesting consequence, an another expression of the tearing modulus is carried out. In Section 4: the classical tearing modulus is proved to be precisely equivalent to a line integral which is independent of integration path. Numerical example

  1. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jennifer E [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Case, Eldon D., E-mail: casee@egr.msu.edu [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Khabir, Kristen N; Stewart, Ryan C [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Wu, Chun-I; Hogan, Timothy P [Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Timm, Edward J [Mechanical Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Girard, Steven N; Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University, Evanston, IL (United States)

    2010-06-15

    Two-phase PbTe-PbS materials, in which PbS is a nanostructured phase, are promising thermoelectric materials for the direct conversion of heat energy into electricity. In this study, a Vickers indentation mean hardness of 1.18 {+-} 0.09 GPa was measured for hot pressed specimens Pb{sub 0.95}Sn{sub 0.05}Te-PbS 8% while the mean hardness of cast specimens was 0.68 {+-} 0.07 GPa. The mean fracture toughness of the not pressed specimens was estimated as 0.35 {+-} 0.04 MPa m{sup 1/2} via Vickers indentation. Resonant Ultrasound Spectroscopy (RUS) measurements on hot pressed specimens gave mean values of Young's modulus, shear modulus and Poisson's ratio of 53.1 GPa, 21.4 GPa and 0.245, respectively while for the cast specimens the Young's and shear moduli were about 10% lower than for the hot pressed, with a mean value of Poisson's ratio of 0.245. The differences between the hardness and elastic moduli values for the cast and hot pressed specimens are discussed.

  2. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  3. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    Science.gov (United States)

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  4. In situ determination of a rock mass modulus using a high resolution tiltmeter

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, B.; Husein Malkawi, A.I. [University of Jordan, Amman (Jordan); Blum, P.A. [Universite Pierre et Marie Curie, 75 - Paris (France)

    1996-04-01

    A very sensitive, compact tiltmeter made of melted silica, developed for the measurement of small deformations of various civil engineering structures, was described. The instrument is capable of giving a continuous record and was used to establish a new approach to directly evaluating the in situ average elastic rock mass modulus. Such information is important in decision making during the design stages of large civil engineering works, such as dams, nuclear plant facilities, and underground structures. Five tiltmeters were installed on the facades of the Louvre in Paris to study the deformation induced by internal structural work and by the impact of the Paris metro traffic movement. The data was used to determine displacement using the Boussinesq equation. Results were consistent with typical elastic rock-mass modulus for the rock found in the museum`s foundations. 13 refs., 1 tab., 10 figs.

  5. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing

    2016-11-15

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  6. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing; Chen, Zhijun; Wang, Hong; Ackermann, Lisa Maria; Klapper, Markus; Butt, Hans Jü rgen; Wu, Si

    2016-01-01

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  7. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  8. Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway.

    Science.gov (United States)

    Wang, Huan; Tibbitt, Mark W; Langer, Stephen J; Leinwand, Leslie A; Anseth, Kristi S

    2013-11-26

    Matrix elasticity regulates proliferation, apoptosis, and differentiation of many cell types across various tissues. In particular, stiffened matrix in fibrotic lesions has been shown to promote pathogenic myofibroblast activation. To better understand the underlying pathways by which fibroblasts mechano-sense matrix elasticity, we cultured primary valvular interstitial cells (VICs) isolated from porcine aortic valves on poly(ethylene glycol)-based hydrogels with physiologically relevant and tunable elasticities. We show that soft hydrogels preserve the quiescent fibroblast phenotype of VICs much better than stiff plastic plates. We demonstrate that the PI3K/AKT pathway is significantly up-regulated when VICs are cultured on stiff gels or tissue culture polystyrene compared with freshly isolated VICs. In contrast, myofibroblasts de-activate and pAKT/AKT decreases as early as 2 h after reducing the substrate modulus. When PI3K or AKT is inhibited on stiff substrates, myofibroblast activation is blocked. When constitutively active PI3K is overexpressed, the myofibroblast phenotype is promoted even on soft substrates. These data suggest that valvular fibroblasts are sensing the changes in matrix elasticity through the PI3K/AKT pathway. This mechanism may be used by other mechano-sensitive cells in response to substrate modulus, and this pathway may be a worthwhile target for treating matrix stiffness-associated diseases. Furthermore, hydrogels can be designed to recapitulate important mechanical cues in native tissues to preserve aspects of the native phenotype of primary cells for understanding basic cellular responses to biophysical and biochemical signals, and for tissue-engineering applications.

  9. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  10. Effect of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Larrard, T. de, E-mail: delarrard@lmt.ens-cachan.f [LMT-ENS Cachan, CNRS/UPMC/PRES UniverSud Paris (France); Colliat, J.B.; Benboudjema, F. [LMT-ENS Cachan, CNRS/UPMC/PRES UniverSud Paris (France); Torrenti, J.M. [Universite Paris-Est, LCPC (France); Nahas, G. [IRSN/DSR/SAMS/BAGS, Fontenay-aux-Roses (France)

    2010-12-15

    This study aims at investigating the influence of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel in case of a loss of cooling agent accident and under the assumption of an elastic behaviour. To achieve this investigation, the Monte-Carlo Method is carried out thanks to a middleware which encapsulates the different components (random field generation, FE simulations) and enables calculations parallelisation. The main goal is to quantify the uncertainty propagation by comparing the maximal values of outputs of interest (orthoradial stress and Mazars equivalent strain) for each realisation of the considered random field with the ones obtained from a reference calculation taking into account uniform field (equal to the expected value of the random field). The Young modulus is supposed to be accurately represented by a weakly homogeneous random field and realisations are provided through its truncated Karhunen-Loeve expansion. This study reveals that the expected value for the maximal equivalent strain in the structure is more important when considering the Young modulus spatial variability than the value obtained from a deterministic approach with a uniform Young modulus field. The influence of the correlation length is investigated too. Finally it is shown that there is no correlation between the maximal values location of equivalent strain and the ones where the Young modulus extreme values are observed for each realisation.

  11. Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks

    International Nuclear Information System (INIS)

    Giannadakis, K; Varna, J

    2012-01-01

    The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.

  12. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai

    2014-05-01

    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  13. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Directory of Open Access Journals (Sweden)

    Ashkan Maccabi

    Full Text Available Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E, long term shear modulus (η, and time constant (τ in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  14. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Science.gov (United States)

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  15. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  16. Elastic representation surfaces of unidirectional graphite/epoxy composites

    International Nuclear Information System (INIS)

    Kriz, R.D.; Ledbetter, H.M.

    1985-01-01

    Unidirectional graphite/epoxy composites exhibit high elastic anisotropy and unusual geometrical features in their elastic-property polar diagrams. From the five-component transverse-isotropic elastic-stiffness tensor we compute and display representation surfaces for Young's modulus, torsional modulus, linear compressibility, and Poisson's ratios. Based on Christoffel-equation solutions, we describe some unusual elastic-wave-surface topological features. Musgrave considered in detail the differences between phase-velocity and group-velocity surfaces arising from high elastic anisotropy. For these composites, we find effects similar to, but more dramatic than, Musgrave's. Some new, unexpected results for graphite/epoxy include: a shear-wave velocity that exceeds a longitudinal velocity in the plane transverse to the fiber; a wave that changes polarization character from longitudinal to transverse as the propagation direction sweeps from the fiber axis to the perpendicular axis

  17. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  18. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  19. Theoretical study of the elastic properties of titanium nitride

    Institute of Scientific and Technical Information of China (English)

    Jingdong CHEN; Yinglu ZHAO; Benhai YU; Chunlei WANG; Deheng SHI

    2009-01-01

    The equilibrium lattice parameter, relative volume V/Vo, elastic constants Cij, and bulk modulus of titanium nitride are successfully obtained using the ab initio plane-wave pseudopotential (PW-PP) method within the framework of density functional theory. The quasi-harmonic Debye model, using a set of total energy vs molar volume obtained with the PW-PP method, is applied to the study of the elastic properties and vibrational effects. We analyze the relationship between the bulk modulus and temperature up to 2000 K and obtain the relationship between bulk modulus B and pressure at different temperatures. It is found that the bulk modulus B increases monotonously with increasing pressure and decreases with increasing temperature. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs func-tions.

  20. TU-F-CAMPUS-J-03: Elasticity Functions Based On 4DCT Images to Predict Tumor and Normal Tissue Response to Radiation for Patients with Lung Cancers

    International Nuclear Information System (INIS)

    Zhong, H; Li, H; Gordon, J; Chetty, I

    2015-01-01

    Purpose: To investigate radiotherapy outcomes by incorporating 4DCT-based physiological and tumor elasticity functions for lung cancer patients. Methods: 4DCT images were acquired from 28 lung SBRT patients before radiation treatment. Deformable image registration (DIR) was performed from the end-inhale to the end-exhale using a B-Spline-based algorithm (Elastix, an open source software package). The resultant displacement vector fields (DVFs) were used to calculate a relative Jacobian function (RV) for each patient. The computed functions in the lung and tumor regions represent lung ventilation and tumor elasticity properties, respectively. The 28 patients were divided into two groups: 16 with two-year tumor local control (LC) and 12 with local failure (LF). The ventilation and elasticity related RV functions were calculated for each of these patients. Results: The LF patients have larger RV values than the LC patients. The mean RV value in the lung region was 1.15 (±0.67) for the LF patients, higher than 1.06 (±0.59) for the LC patients. In the tumor region, the elasticity-related RV values are 1.2 (±0.97) and 0.86 (±0.64) for the LF and LC patients, respectively. Among the 16 LC patients, 3 have the mean RV values greater than 1.0 in the tumors. These tumors were located near the diaphragm, where the displacements are relatively large.. RV functions calculated in the tumor were better correlated with treatment outcomes than those calculated in the lung. Conclusion: The ventilation and elasticity-related RV functions in the lung and tumor regions were calculated from 4DCT image and the resultant values showed differences between the LC and LF patients. Further investigation of the impact of the displacements on the computed RV is warranted. Results suggest that the RV images might be useful for evaluation of treatment outcome for lung cancer patients

  1. TU-F-CAMPUS-J-03: Elasticity Functions Based On 4DCT Images to Predict Tumor and Normal Tissue Response to Radiation for Patients with Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, H; Li, H; Gordon, J; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: To investigate radiotherapy outcomes by incorporating 4DCT-based physiological and tumor elasticity functions for lung cancer patients. Methods: 4DCT images were acquired from 28 lung SBRT patients before radiation treatment. Deformable image registration (DIR) was performed from the end-inhale to the end-exhale using a B-Spline-based algorithm (Elastix, an open source software package). The resultant displacement vector fields (DVFs) were used to calculate a relative Jacobian function (RV) for each patient. The computed functions in the lung and tumor regions represent lung ventilation and tumor elasticity properties, respectively. The 28 patients were divided into two groups: 16 with two-year tumor local control (LC) and 12 with local failure (LF). The ventilation and elasticity related RV functions were calculated for each of these patients. Results: The LF patients have larger RV values than the LC patients. The mean RV value in the lung region was 1.15 (±0.67) for the LF patients, higher than 1.06 (±0.59) for the LC patients. In the tumor region, the elasticity-related RV values are 1.2 (±0.97) and 0.86 (±0.64) for the LF and LC patients, respectively. Among the 16 LC patients, 3 have the mean RV values greater than 1.0 in the tumors. These tumors were located near the diaphragm, where the displacements are relatively large.. RV functions calculated in the tumor were better correlated with treatment outcomes than those calculated in the lung. Conclusion: The ventilation and elasticity-related RV functions in the lung and tumor regions were calculated from 4DCT image and the resultant values showed differences between the LC and LF patients. Further investigation of the impact of the displacements on the computed RV is warranted. Results suggest that the RV images might be useful for evaluation of treatment outcome for lung cancer patients.

  2. Linking microscopic spatial patterns of tissue destruction in emphysema to macroscopic decline in stiffness using a 3D computational model.

    Directory of Open Access Journals (Sweden)

    Harikrishnan Parameswaran

    2011-04-01

    Full Text Available Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process.

  3. Mechanical characterization of the mouse diaphragm with optical coherence elastography reveals fibrosis-related change of direction-dependent muscle tissue stiffness

    Science.gov (United States)

    Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.

    2016-03-01

    The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.

  4. Fibonacci difference sequence spaces for modulus functions

    Directory of Open Access Journals (Sweden)

    Kuldip Raj

    2015-05-01

    Full Text Available In the present paper we introduce Fibonacci difference sequence spaces l(F, Ƒ, p, u and  l_∞(F, Ƒ, p, u by using a sequence of modulus functions and a new band matrix F. We also make an effort to study some inclusion relations, topological and geometric properties of these spaces. Furthermore, the alpha, beta, gamma duals and matrix transformation of the space l(F, Ƒ, p, u are determined.

  5. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  6. Burial stress and elastic strain of carbonate rocks

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2014-01-01

    Burial stress on a sediment or sedimentary rock is relevant for predicting compaction or failure caused by changes in, e.g., pore pressure in the subsurface. For this purpose, the stress is conventionally expressed in terms of its effect: “the effective stress” defined as the consequent elastic...... strain multiplied by the rock frame modulus. We cannot measure the strain directly in the subsurface, but from the data on bulk density and P‐wave velocity, we can estimate the rock frame modulus and Biot's coefficient and then calculate the “effective vertical stress” as the total vertical stress minus...... the product of pore pressure and Biot's coefficient. We can now calculate the elastic strain by dividing “effective stress” with the rock frame modulus. By this procedure, the degree of elastic deformation at a given time and depth can be directly expressed. This facilitates the discussion of the deformation...

  7. Measurement of elastic modules of structural ceramic by acoustic resonance

    International Nuclear Information System (INIS)

    Ahn, Bong Young; Lee Seong Suck; Kim, Young Gil

    1993-01-01

    Elastic moduli of structural ceramic materials, Al 2 O 3 , SiC, Si 3 N 4 , were measured by acoustic resonance method. Young's modulus, shear modulus, and Poisson's ratio were calculated from the torsional and flexural resonant frequencies, densities, and the dimensions of the specimen. The results by acoustic resonance method were compared with the results by ultrasonic method and the differences were less than 4%.

  8. Coupling multiscale X-ray physics and micromechanics for bone tissue composition and elasticity determination from micro-CT data, by example of femora from OVX and sham rats

    Science.gov (United States)

    Hasslinger, Patricia; Vass, Viktoria; Dejaco, Alexander; Blanchard, Romane; Örlygsson, Gissur; Gargiulo, Paolo; Hellmich, Christian

    2016-05-01

    Due to its high resolution, micro-CT (Computed Tomograph) scanning is the key to assess bone quality of sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as the energy- and chemistry-dependence of attenuation coefficients, with results from ashing tests on rat bones, delivers mineral, organic, and water volume fractions within the voxels. Additional use of a microelastic model for bone provides voxel-specific elastic properties. The new method delivers realistic bone mass densities, and reveals that OVX protocols may indeed induce some bone mass loss, while the average composition of the bone tissue remains largely unaltered.

  9. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.

    Science.gov (United States)

    Vetter, A; Liu, Y; Witt, F; Manjubala, I; Sander, O; Epari, D R; Fratzl, P; Duda, G N; Weinkamer, R

    2011-02-03

    During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  11. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  12. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    Science.gov (United States)

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and

  13. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    Science.gov (United States)

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Elastic spheres can walk on water.

    Science.gov (United States)

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  15. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    Science.gov (United States)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  16. Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration

    Czech Academy of Sciences Publication Activity Database

    Čapek, Martin; Brůža, Petr; Janáček, Jiří; Karen, Petr; Kubínová, Lucie; Vagnerová, R.

    2009-01-01

    Roč. 72, č. 2 (2009), s. 110-119 ISSN 1059-910X R&D Projects: GA AV ČR(CZ) IAA100110502; GA AV ČR(CZ) IAA500200510; GA ČR(CZ) GA102/08/0691; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : 3D reconstruction * elastic registration * confocal microscopy Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.850, year: 2009

  17. Tissue and cellular biomechanics during corneal wound injury and repair.

    Science.gov (United States)

    Raghunathan, Vijay Krishna; Thomasy, Sara M; Strøm, Peter; Yañez-Soto, Bernardo; Garland, Shaun P; Sermeno, Jasmyne; Reilly, Christopher M; Murphy, Christopher J

    2017-08-01

    Corneal wound healing is an enormously complex process that requires the simultaneous cellular integration of multiple soluble biochemical cues, as well as cellular responses to the intrinsic chemistry and biophysical attributes associated with the matrix of the wound space. Here, we document how the biomechanics of the corneal stroma are altered through the course of wound repair following keratoablative procedures in rabbits. Further we documented the influence that substrate stiffness has on stromal cell mechanics. Following corneal epithelial debridement, New Zealand white rabbits underwent phototherapeutic keratectomy (PTK) on the right eye (OD). Wound healing was monitored using advanced imaging modalities. Rabbits were euthanized and corneas were harvested at various time points following PTK. Tissues were characterized for biomechanics with atomic force microscopy and with histology to assess inflammation and fibrosis. Factor analysis was performed to determine any discernable patterns in wound healing parameters. The matrix associated with the wound space was stiffest at 7days post PTK. The greatest number of inflammatory cells were observed 3days after wounding. The highest number of myofibroblasts and the greatest degree of fibrosis occurred 21days after wounding. While all clinical parameters returned to normal values 400days after wounding, the elastic modulus remained greater than pre-surgical values. Factor analysis demonstrated dynamic remodeling of stroma occurs between days 10 and 42 during corneal stromal wound repair. Elastic modulus of the anterior corneal stroma is dramatically altered following PTK and its changes coincide initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Factor analysis demonstrates strongest correlation between elastic modulus, myofibroblasts, fibrosis and stromal haze thickness, and between edema and central corneal

  18. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huihui [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Othman, Shadi F [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Hong Liu [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Peptan, Ioana A [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Magin, Richard L [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States)

    2006-02-07

    Magnetic resonance microscopy (MRM) is used to monitor osteogenesis in tissue-engineered constructs. Measurements of the developing tissue's MR relaxation times (T{sub 1} and T{sub 2}), apparent diffusion coefficient (ADC) and elastic shear modulus were conducted over a 4-week growth period using an 11.74 T Bruker spectrometer with an imaging probe adapted for MR elastography (MRE). Both the relaxation times and the ADC show a statistically significant decrease after only one week of tissue development while the tissue stiffness increases progressively during the first two weeks of in vitro growth. The measured MR parameters are correlated with histologically monitored osteogenic tissue development. This study shows that MRM can provide quantitative data with which to characterize the growth and development of tissue-engineered bone.

  19. Visualising elastic anisotropy: theoretical background and computational implementation

    Science.gov (United States)

    Nordmann, J.; Aßmus, M.; Altenbach, H.

    2018-02-01

    In this article, we present the technical realisation for visualisations of characteristic parameters of the fourth-order elasticity tensor, which is classified by three-dimensional symmetry groups. Hereby, expressions for spatial representations of uc(Young)'s modulus and bulk modulus as well as plane representations of shear modulus and uc(Poisson)'s ratio are derived and transferred into a comprehensible form to computer algebra systems. Additionally, we present approaches for spatial representations of both latter parameters. These three- and two-dimensional representations are implemented into the software MATrix LABoratory. Exemplary representations of characteristic materials complete the present treatise.

  20. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Ramírez, C.; Koller, M.; Sedlák, Petr; Landa, Michal; Miranzo, P.; Belmonte, M.; Osendí, M. I.

    2015-01-01

    Roč. 87, December (2015), s. 675-680 ISSN 0264-1275 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : multilayer graphene * graphene oxide (GO) * silicon nitride * elastic constants * elastic modulus * shear modulus Subject RIV: JI - Composite Materials Impact factor: 3.997, year: 2015 http://www.sciencedirect.com/science/article/pii/S0264127515302938/pdfft?md5=571e00fd7f976e9b66ed789ae2a868b2&pid=1-s2.0-S0264127515302938-main.pdf

  1. Elasticity Constants of a Two-Phase Tungsten Thin Film

    Directory of Open Access Journals (Sweden)

    Mohamed Fares Slim

    2018-05-01

    Full Text Available The IET was used to determine the macroscopic elasticity constants of the multiphase coating. In order to determine the macroscopic elasticity constants of the film firstly, a critical assessment of Young’s modulus determination was done by comparing all the models proposed in the literature. The best model was identified and a study was performed to identify and quantify the most influent factors on the global uncertainty. Secondly, an enhanced formulation to determine the shear modulus of coating by IET was developed. The methodology was applied on a tungsten thin film deposited by DC magnetron sputtering.

  2. TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

    International Nuclear Information System (INIS)

    Yang, X; Rossi, P; Ogunleye, T; Jani, A; Curran, W; Liu, T

    2014-01-01

    Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquired under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior

  3. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  4. Probing hysteretic elasticity in weakly nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  5. The elastic response of composite materials

    International Nuclear Information System (INIS)

    Laws, N.

    1980-01-01

    The theory of linear elasticity is used to study the elastic response of composite materials. The main concern is the prediction of overall moduli. Some attention is paid to the problem of deciding upon when the idea of an overall modulus is meaningful. In addition it is shown how to calculate some rigorous bounds on the overall moduli, and some predictions of the self-consistent method are discussed. The paper mainly concentrates on isotropic dispersions of spheres, unidirectional fibre-reinforced materials and laminates. (author)

  6. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  7. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.

    Science.gov (United States)

    García-Rodríguez, J; Martínez-Reina, J

    2017-02-01

    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

  8. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  9. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  10. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study

    International Nuclear Information System (INIS)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Wu, Chen; Liu, Chih-hao; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Sudheendran, Narendran; Larin, Kirill V; Aglyamov, Salavat R; Twa, Michael D

    2015-01-01

    We present a systematic analysis of the accuracy of five different methods for extracting the biomechanical properties of soft samples using optical coherence elastography (OCE). OCE is an emerging noninvasive technique, which allows assessment of biomechanical properties of tissues with micrometer spatial resolution. However, in order to accurately extract biomechanical properties from OCE measurements, application of a proper mechanical model is required. In this study, we utilize tissue-mimicking phantoms with controlled elastic properties and investigate the feasibilities of four available methods for reconstructing elasticity (Young’s modulus) based on OCE measurements of an air-pulse induced elastic wave. The approaches are based on the shear wave equation (SWE), the surface wave equation (SuWE), Rayleigh-Lamb frequency equation (RLFE), and finite element method (FEM), Elasticity values were compared with uniaxial mechanical testing. The results show that the RLFE and the FEM are more robust in quantitatively assessing elasticity than the other simplified models. This study provides a foundation and reference for reconstructing the biomechanical properties of tissues from OCE data, which is important for the further development of noninvasive elastography methods. (paper)

  11. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  12. Low-temperature monocrystal elastic constants of Fe-19Cr-10Ni

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1984-01-01

    By a pulse-echo-overlap ultrasonic method, we determined the monocrystal elastic constants (C 11 , C 12 , C 44 ) of an Fe-19Cr-10Ni alloy between 295 and 4 K. In composition this laboratory alloy approximates a technological austenitic stainless steel: AISI 304. Many previous studies on polycrystalline steels found a low-temperature magnetic phase transition that affects physical properties, including elastic constants. At the transition, anomalies occur in all polycrystal elastic constants: Young's modulus, shear modulus, bulk modulus, and Poisson's ratio. The present study found that the transition, near 50 K, does not affect one monocrystal elastic constant: C 44 , the resistance to shear on a (100) plane in a [100]-type direction. We interpret this new observation from the viewpoint of a Born-type lattice model. Also, we comment about the relationship between the elastic-constant changes and the low-temperature magnetic state

  13. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2011-10-21

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  14. Evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo N.; Santin, Stefany P.; Benetti, Carolina; Pereira, Thiago M.; Mattor, Monica B.; Politano, Rodolfo; Zezell, Denise M.

    2013-01-01

    In many medical practices the bone tissue exposure to ionizing radiation is necessary. However, this radiation can interact with bone tissue in a molecular level, causing chemical and mechanical changes related with the dose used. The aim of this study was verify the changes promoted by different doses of ionizing radiation in bone tissue using spectroscopy technique of Attenuate Total Reflectance - Fourier Transforms Infrared (ATR-FTIR) and dynamic mechanical analysis. Samples of bovine bone were irradiated using irradiator of Cobalt-60 with five different doses between 0.01 kGy, 0.1 kGy,1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on bone chemical structure the sub-bands of amide I and the crystallinity index were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify if the chemical changes and the bone mechanic characteristics were related, it was made one study about the correlation between the crystallinity index and the elastic modulus, between the sub-bands ratio and the damping value and between the sub-bands ratio and the elastic modulus. It was possible to evaluate the effects of different dose of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy analysis, it was possible observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the mechanical properties. A good correlation between the techniques was found, however, it was not possible to establish a linear or exponential dependence between dose and effect. (author)

  15. Dynamic modulus of nanosilica modified porous asphalt

    Science.gov (United States)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  16. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  17. The instantaneous shear modulus in the shoving model

    DEFF Research Database (Denmark)

    Dyre, J. C.; Wang, W. H.

    2012-01-01

    We point out that the instantaneous shear modulus G∞ of the shoving model for the non-Arrhenius temperature dependence of viscous liquids’ relaxation time is the experimentally accessible highfrequency plateau modulus, not the idealized instantaneous affine shear modulus that cannot be measured....... Data for a large selection of metallic glasses are compared to three different versions of the shoving model. The original shear-modulus based version shows a slight correlation to the Poisson ratio, which is eliminated by the energy-landscape formulation of the model in which the bulk modulus plays...

  18. Surface density mapping of natural tissue by a scanning haptic microscope (SHM).

    Science.gov (United States)

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide

    2013-02-01

    To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.

  19. Elastic stiffnesses of an Nb-Ti/Cu-composite superconductive wire

    Science.gov (United States)

    Kim, Sudook; Ledbetter, Hassel; Ogi, Hirotsugu

    2000-09-01

    Elastic-stiffness coefficients were determined on a 1.4-mm-diameter wire consisting of superconducting Nb-Ti fibers in a copper matrix, with a polyvinyl-resin coating. The matrix contained 324 Nb-Ti fibers. An electromagnetic-acoustic-resonance method was used to obtain five independent elastic-stiffness coefficients assuming transverse-isotropic symmetry. From these we calculated Young moduli, bulk modulus, and principal Poisson ratios. As a check, we used a mechanical-impulse-excitation method to directly measure the Young modulus in the fiber direction. The three-phase composite wire showed a 10% anisotropy in the Young modulus.

  20. The first principles study of elastic and thermodynamic properties of ZnSe

    Science.gov (United States)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  1. Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel.

    Science.gov (United States)

    Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook

    2017-12-01

    Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D

  2. Soft tissue strain measurement using an optical method

    Science.gov (United States)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  3. Modulus of Subgrade Reaction and Deflection

    Directory of Open Access Journals (Sweden)

    Austin Potts

    2009-01-01

    Full Text Available Differential equations govern the bending and deflection of roads under a concentrated load. Identifying critical parameters, such as the maximum deflection and maximum bending moments of a street supported by an elastic subgrade, is key to designing safe and reliable roadways. This project solves the underlying differential equation in pavement deflection and tests various parameters to highlight the importance in selecting proper foundation materials.

  4. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  5. Vanadium and heat treatments effect on elastic characteristics of niobium

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Tret'yakov, V.I.; Prokoshkin, D.A.; Pustovalov, V.A.

    1975-01-01

    The effect of vanadium content and of heat treatment conditions on the elastic properties of niobium at temperatures of 20 to 800 deg C was studied. Nb-V alloys were produced by binary vacuum remelting. The Nb-V alloys have been then subjected to thermal treatment. The total degree of deformation amounts to about 95%. The specimens were tested with a view to determine their microhardness, specific electric resistance, elasticity limit and modulus of elasticity. The elastic limit of niobium rises when alloyed with vanadium. With the increase of vanadium content the elastic limit of the alloy becomes greater. Pre-crystallization annealing at 600 - 700 deg C considerably increases the elastic limit, which is explained by development of the thermally activated processes leading to a decrease of dislocation mobility and thereby to a strengthening of the alloy

  6. Thermo-elastic optical coherence tomography

    NARCIS (Netherlands)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, A.F.W.; Huber, Robert; Van Soest, Gijs

    2017-01-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive

  7. Elastic constants of diamond from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A

    2006-01-01

    The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined

  8. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  9. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  10. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  11. Elastic and thermal properties of silicon compounds from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering

    2016-11-01

    The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  12. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic significance. The study reveals that such a medium transmits two types of love waves. The first front depends upon the modulus of rigidity of the elastic ...

  13. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Indian Academy of Sciences (India)

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  14. Study on modal characteristics of perforated shell using effective Young's modulus

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Yu, Seon Oh

    2011-01-01

    Research highlights: → The effective Young's modulus of perforated shell is proposed for modal analysis. → The penetration pattern is almost negligible for effective elastic constants. → The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  15. Study on modal characteristics of perforated shell using effective Young's modulus

    Energy Technology Data Exchange (ETDEWEB)

    Jhung, Myung Jo, E-mail: mjj@kins.re.kr [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Yu, Seon Oh [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)

    2011-06-15

    Research highlights: > The effective Young's modulus of perforated shell is proposed for modal analysis. > The penetration pattern is almost negligible for effective elastic constants. > The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  16. Atomistic simulation of the structural and elastic properties of ...

    Indian Academy of Sciences (India)

    experimental data and previous theoretical results, showing no phase transition ... and theoretical [2,9–11] studies have been dedicated to deter- ..... [33] introduced a simple relationship that empirically links the plastic properties of materials with their elastic moduli. The shear modulus G represents the resistance to plastic.

  17. Elastic moduli of a Brownian colloidal glass former

    Science.gov (United States)

    Fritschi, S.; Fuchs, M.

    2018-01-01

    The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.

  18. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  19. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-01-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects

  20. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli

    2015-01-01

    The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.

  1. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    Science.gov (United States)

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an

  2. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  3. Elasticity and physico-chemical properties during drinking water biofilm formation.

    Science.gov (United States)

    Abe, Yumiko; Polyakov, Pavel; Skali-Lami, Salaheddine; Francius, Grégory

    2011-08-01

    Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000 kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.

  4. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H

    2017-08-01

    We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa

    DEFF Research Database (Denmark)

    Kanchana, V.; Vaitheeswaran, G.; Ma, Yanming

    2009-01-01

    agree well with the experimental values. The elastic constants of Fe2VAl and Fe2VGa are predicted. From the elastic constants the shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperatures are obtained. By analyzing the ratio between the bulk and shear moduli, we conclude...

  6. Investigations of structural, elastic, electronic and thermodynamic properties of lutetium filled skutterudite LuFe4P12 under pressure effect: FP-LMTO method

    Directory of Open Access Journals (Sweden)

    Boudia Keltouma

    2015-12-01

    Full Text Available Structural, elastic, electronic and thermodynamic properties of ternary cubic filled skutterudite compound were calculated. We have computed the elastic modulus and its pressure dependence. From the elastic parameter behavior, it is inferred that this compound is elastically stable and ductile in nature. Through the quasi-harmonic Debye model, in which phononic effects are considered, the effect of pressure P (0 to 50 GPa and temperature T (0 to 3000 °C on the lattice constant, elastic parameters, bulk modulus B, heat capacity, thermal expansion coefficient α, internal energy U, entropy S, Debye temperature θD, Helmholtz free energy A, and Gibbs free energy G are investigated.

  7. Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images

    Science.gov (United States)

    Jong, Rudiyanto P.; Osman, Kahar; Adib, M. Azrul Hisham M.

    2012-06-01

    Mitral valve prolapse without proper monitoring might lead to a severe mitral valve failure which eventually leads to a sudden death. Additional information on the mitral valve leaflet condition against the backflow volume would be an added advantage to the medical practitioner for their decision on the patients' treatment. A study on two dimensional echocardiography images has been conducted and the correlations between the backflow volume of the mitral regurgitation and mitral valve leaflet Young modulus have been obtained. Echocardiogram images were analyzed on the aspect of backflow volume percentage and mitral valve leaflet dimensions on different rates of backflow volume. Young modulus values for the mitral valve leaflet were obtained by using the principle of elastic deflection and deformation on the mitral valve leaflet. The results show that the backflow volume increased with the decrease of the mitral valve leaflet Young modulus which also indicate the condition of the mitral valve leaflet approaching failure at high backflow volumes. Mitral valve leaflet Young modulus values obtained in this study agreed with the healthy mitral valve leaflet Young modulus from the literature. This is an initial overview of the trend on the prediction of the behaviour between the fluid and the structure of the blood and the mitral valve which is extendable to a larger system of prediction on the mitral valve leaflet condition based on the available echocardiogram images.

  8. Elastic constants of a Laves phase compound: C15 NbCr2

    International Nuclear Information System (INIS)

    Ormeci, A.; Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E.

    1997-01-01

    The single-crystal elastic constants of C15 NbCr 2 have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson's ratio and the direction dependence of Young's modulus

  9. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  10. Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers

    DEFF Research Database (Denmark)

    Colombi, Paolo; Bergese, Paolo; Bontempi, Elza

    2013-01-01

    A method for the highly sensitive determination of the Young's modulus of TiO2 thin films exploiting the resonant frequency shift of a SU-8 polymer microcantilever (MC) is presented. Amorphous TiO2 films with different thickness ranging from 10 to 125 nm were grown at low temperature (90 °C......) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films...... (>75 nm) was estimated to be about 110 GPa, this value being consistent with the value of amorphous TiO2. On the other hand we observed a marked decrease of the Young's modulus for TiO2 films with a thickness below 50 nm. This behavior was found not to be related to a decrease of the film mass density...

  11. Influence of grain size distribution on dynamic shear modulus of sands

    Directory of Open Access Journals (Sweden)

    Dyka Ireneusz

    2017-11-01

    Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.

  12. First-principles calculations for elastic properties of OsB{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Chen Xiangrong, E-mail: x.r.chen@tom.co [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Fen [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Ji Guangfu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB{sub 2} are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB{sub 2} under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB{sub 2} tend to increase with increasing pressure. It is predicted that OsB{sub 2} is not a superhard material from our calculations.

  13. First-principles calculations for elastic properties of OsB2 under pressure

    International Nuclear Information System (INIS)

    Yang Junwei; Chen Xiangrong; Luo Fen; Ji Guangfu

    2009-01-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  14. First-principles calculations for elastic properties of OsB 2 under pressure

    Science.gov (United States)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  15. Ultrasound elasticity imaging of human posterior tibial tendon

    Science.gov (United States)

    Gao, Liang

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA

  16. Data Qualification and Data Summary Report: Intact Rock Properties Data on Poisson's Ratio and Young's Modulus

    International Nuclear Information System (INIS)

    Cikanek, E.M.; Safley, L.E.; Grant, T.A.

    2003-01-01

    This report reviews all potentially available Yucca Mountain Project (YMP) data in the Technical Data Management System and compiles all relevant qualified data, including data qualified by this report, on elastic properties, Poisson's ratio and Young's modulus, into a single summary Data Tracking Number (DTN) MO0304DQRIRPPR.002. Since DTN MO0304DQRIRPPR.002 was compiled from both qualified and unqualified sources, this report qualifies the DTN in accordance with AP-SIII.2Q. This report also summarizes the individual test results in MO0304DQRIRPPR.002 and provides summary values using descriptive statistics for Poisson's ratio and Young's modulus in a Reference Information Base Data Item. This report found that test conditions such as temperature, saturation, and sample size could influence test results. The largest influence, however, is the lithologic variation within the tuffs themselves. Even though the summary DTN divided the results by lithostratigrahic units within each formation, there was still substantial variation in elastic properties within individual units. This variation was attributed primarily to the presence or absence of lithophysae, fractures, alteration, pumice fragments, and other lithic clasts within the test specimens as well as changes in porosity within the units. As a secondary cause, substantial variations can also be attributed to test conditions such as the type of test (static or dynamic), size of the test specimen, degree of saturation, temperature, and strain rate conditions. This variation is characteristic of the tuffs and the testing methods, and should be considered when using the data summarized in this report

  17. Quantifying the effects of UV-A/riboflavin crosslinking on the elastic anisotropy and hysteresis of the porcine cornea by noncontact optical coherence elastography

    Science.gov (United States)

    Singh, Manmohan; Li, Jiasong; Raghunathan, Raksha; Han, Zhaolong; Nair, Achuth; Liu, Chih-Hao; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2017-02-01

    The collagen fibril orientation of the cornea can provide critical information about cornea tissue health because diseases such as keratoconus and therapeutic interventions such as UV-A/riboflavin corneal collagen crosslinking (CXL) can alter the ultrastructural arrangement of collagen fibrils. Here, we quantify the elastic anisotropy and hysteresis of in situ porcine corneas as a function of intraocular pressure (IOP) with noncontact optical coherence elastography. Moreover, the effects of UV-A riboflavin corneal collagen crosslinking on the elastic anisotropy and hysteresis were evaluated. The propagation of an air-pulse induced elastic wave was imaged at stepped meridional angles by a home built phasestabilized swept source OCE system. The stiffness of the cornea was translated from the velocity of the wave, and the elastic anisotropy was quantified by modifying the planar anisotropy coefficient. As the IOP increased, the stiffness of the corneas increased from 18 kPa at 15 mmHg IOP to 120 kPa at 30 mmHg IOP. While there was a measureable hysteresis, it was not significant. After CXL, the Young's modulus of the corneas significantly increased from 18 kPa to 44 kPa at 15 mmHg IOP. The mechanical anisotropy also increased significantly from 10 a.u. in the untreated corneas to 23 a.u. in the CXL treated corneas, 15 mmHg IOP. However, CXL did not change the elastic anisotropic orientation, and the mechanical anisotropic hysteresis was not significant after CXL.

  18. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Chen, Jing; Dong, Ruonan; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-12-30

    It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.

  19. Improved measurements of elastic properties at acoustic resonant frequencies

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1976-01-01

    The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)

  20. Effect of bulk modulus on deformation of the brain under rotational accelerations

    Science.gov (United States)

    Ganpule, S.; Daphalapurkar, N. P.; Cetingul, M. P.; Ramesh, K. T.

    2018-01-01

    Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2-mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber bundles for modeling white matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformations in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.

  1. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2

    International Nuclear Information System (INIS)

    Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O.

    1998-01-01

    A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi 2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young's modulus, and Poisson's ratio for ideal polycrystalline TiSi 2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young's modulus for single crystal TiSi 2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi 2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential. copyright 1998 American Institute of Physics

  2. EFFECT OF SEDIMENTARY AND METAMORPHIC AGGREGATE ON STATIC MODULUS OF ELASTICITY OF HIGH-STRENGTH CONCRETE

    Directory of Open Access Journals (Sweden)

    JUAN LIZARAZO-MARRIAGA

    2011-01-01

    Full Text Available Considerando la creciente utilización de hormigón de alta resistencia como material estructural, este artículo presenta los resultados de un trabajo experimental llevado a cabo con el fin de investigar el efecto de diferentes tipos de agregados gruesos sobre el módulo estático elástico, la resistencia a la compresión, la densidad del hormigón y la velocidad del pulso. Para lograr esto, se usaron diferentes relaciones agua cementante (a/c (0.36, 0.32, y 0.28 y cuatro tipos de agregados diferentes, todos del área de influencia de Bogotá, Colombia. Como materiales cementantes se usaron cemento Portland y microsílice (SF. Los resultados experimentales fueron analizados estadísticamente, de donde se encontró que todos los ensayos se comportan siguiendo una distribución de frecuencia normal. De los datos experimentales obtenidos se concluyó que las ecuaciones propuestas en los códigos obreestiman el módulo de elasticidad del hormigón de alta resistencia, por lo que se proponen ecuaciones empíricas como alternativa.

  3. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation

    Science.gov (United States)

    Yan Wu; Siqun Wang; Dingguo Zhou; Cheng Xing; Yang Zhang; Zhiyong Cai

    2010-01-01

    Agricultural biomaterials such as crop stalks are natural sources of cellulosic fiber and have great potential as reinforced materials in bio-composites. In order to evaluate their potential as materials for reinforcement, the nano-mechanical properties of crop-stalk cell walls, i.e. those of cotton (Gossypium herbaceu) stalk, soybean (Glycine max) stalk, cassava (...

  4. Computational experiences with variable modulus, elastic-plastic, and viscoelastic concrete models

    International Nuclear Information System (INIS)

    Anderson, C.A.

    1981-01-01

    Six years ago the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC) approached the Los Alamos National Laboratory to develop a comprehensive concrete structural analysis code to predict the static and dynamic behavior of Prestressed Concrete Reactor Vessels (PCRVs) that serve as the containment structure of a High-Temperature Gas-Cooled Reactor. The PCRV is a complex concrete structure that must be modeled in three dimensions and posseses other complicating features such as a steel liner for the reactor cavity and woven cables embedded vertically in the PCRV and wound circumferentially on the outside of the PCRV. The cables, or tendons, are used for prestressing the reactor vessel. In addition to developing the computational capability to predict inelastic three dimensional concrete structural behavior, the code response was verified against documented experiments on concrete structural behavior. This code development/verification effort is described

  5. Growth and dynamic modulus of elasticity of Pinus patula × Pinus ...

    African Journals Online (AJOL)

    Field establishment of South Africa's most important commercial pine species, Pinus patula, is severely hampered by the pitch canker fungus, Fusarium circinatum. Importantly, hybrids between P. patula and other pine species tolerant to the pitch canker fungus, such as P. tecunumanii and P. oocarpa, have been identified ...

  6. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins

    Directory of Open Access Journals (Sweden)

    Nour M. Ajaj-ALKordy

    2014-01-01

    Conclusion: Within the limitations of this study, it can be concluded that the high-impact acrylic resin is a suitable denture base material for patients with clinical fracture of the acrylic denture.

  7. Elastic Modulus of Foamcrete in Compression and Bending at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper will presents the experimental results that have been performed to examine and characterize the mechanical properties of foamcrete at elevated temperatures. Foamcrete of 650 and 1000 kg/m 3 density were cast and tested under compression and bending. The tests were done at room temperature, 100, 200, 300, 400, 500, and 600°C. The results of this study consistently demonstrated that the loss in stiffness for cement based material like foamcrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffnesstemperature relationships are very similar.

  8. The Measurement of Hardness and Elastic Modulus of non-Metallic Inclusions in Steely Welding Joints

    Directory of Open Access Journals (Sweden)

    Ignatova Anna

    2015-08-01

    Full Text Available Trunk pipelines work under a cyclic dynamical mechanical load because when oil or gas is pumped, the pressure constantly changes - pulsates. Therefore, the fatigue phenomenon is a common reason of accidents. The fatigue phenomenon more often happens in the zone of non-metallic inclusions concentration. To know how the characteristics of nonmetallic inclusions influence the probability of an accident the most modern research methods should be used. It is determined with the help of the modern research methods that the accident rate of welded joints of pipelines is mostly influenced by their morphological type, composition and size of nonmetallic inclusions, this effect is more important than the common level of pollution by non-metallic inclusions. The article presents the results of the investigations of welded joints, obtained after the use of different common welding materials. We used the methods, described in the state standards: scanning electronic microscopy, spectral microprobe analysis and nano-indentation. We found out that non-metallic inclusions act like stress concentrators because they shrink, forming a blank space between metal and nonmetallic inclusions; it strengthens the differential properties on this boundary. Nonmetallic inclusion is not fixed, it can move. The data that we have received mean that during welded joints’ contamination (with non-metallic inclusions monitoring process, more attention should be paid to the content of definite inclusions, but not to total contamination.

  9. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch

    OpenAIRE

    Bechtle, Sabine

    2010-01-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mecha...

  10. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Čapek, Jaroslav; Machová, M.; Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Jablonská, E.; Lipov, J.; Ruml, T.

    2016-01-01

    Roč. 69, Dec (2016), 631–639 ISSN 0928-4931 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : selective laser melting * 316L stainless steel * porous implants * scaffolds Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. A methodology to obtain an analytical formula for the elastic modulus of lightweight aggregate concrete

    Directory of Open Access Journals (Sweden)

    Flávio de Souza-Barbosa

    2015-01-01

    Full Text Available Este trabajo propone una metodolo gía para evaluar el módulo elá stico de los hormigones de agre gados livianos. Para ello una fó rmula analítica se logra mediante el ajuste de la c urva de los resultados experime ntales de 135 muestras de hormigón hechas de 45 mezclas diferen tes. La validación de la metodología propuesta se lle va a cabo mediante la aplicac ión de la fórmula analítica obtenida a otro conjunto de 90 mues tras de hormigón hecha de 30 mezclas diferentes. Las c omparaciones con otros métodos u tilizados para predecir el módul o de elasticidad de hormigones de agregados livianos muestran que los resultados sean justos y sugieren que la metodología propuesta podría aplicarse en situaciones prácticas.

  12. Modulus of elasticity, creep and shrinkage of concrete, phase II : part 1, creep study, final report.

    Science.gov (United States)

    2009-10-01

    A laboratory testing program was performed to evaluate the physical and mechanical properties of typical Class II, IV, V, and VI concrete mixtures made with a Miami Oolite limestone, a Georgia granite, and a lightweight aggregate Stalite, including c...

  13. How Pore Filling Shale Affects Elastic Wave Velocities in Fully and Partially Saturated Sandstone: Characterization, Measurement, and Modelling

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2017-01-01

    The elastic bulk modulus of a sandstone is affected by the fluid saturation as compression induces a pressure in the fluid thus increasing the bulk modulus of the sandstone as a whole. Assuming a uniform induced pressure and no interaction between the saturating fluid and the solid rock the fluid...... contribution to the elastic bulk modulus is quantified by Gassmann's equations. Experimental measurements of the fluid contribution to the elastic moduli are, however often much larger than predicted within the assumptions of Gassmann. Clay-rich low-mobility sandstones are especially prone to having elastic...... moduli highly sensitive to the fluid saturation. The presence of clay in a sandstone can affect two of the underlying assumptions to Gassmann's equations: decreased fluid mobility can cause pressure gradients and fluid-clay interactions are common. The elastic and petrophysical properties of clay...

  14. Effect of ionizing radiation on visco-elastic properties of polymethyl-methacrylate and poly-4-methylpentene-1

    International Nuclear Information System (INIS)

    Perepechko, I.I.; Mar'yasin, B.Ya.

    1978-01-01

    The effect of γ radiation on visco-elastic properties of polymethylmethacrylate (PMMA) and poly-4-methylpentene-1 (P4MPI) has been investigated by the method of the forced resonance oscillations of a cantilevered specimen. It has been shown, that the variation of the dynamic elasticity modulus of amorphous polymer when the irradiation dose increases, considerable depends on the polymer physical state during the measurement. The irradiated polymer is a binary mixture of radiolysis low-molecular products and polymer itself. The value of elasticity modulus in such a mixture is defined by the modules of different components. More complex than in PMMA in the effect of γ-radiation upon the P4MPI visco-elastic behaviour. During the P4MPI irradiation, the rebuilding of polymer supermolecular structure takes place, which results in the variation of the dynamic elasticity modulus values and in the intensity of peaks of mechanical losses

  15. Elastic anisotropy and low-temperature thermal expansion in the shape memory alloy Cu-Al-Zn.

    Science.gov (United States)

    Kuruvilla, Santhosh Potharay; Menon, C S

    2008-04-01

    Cu-based shape memory alloys are known for their technologically important pseudo-elastic and shapememory properties, which are intimately associated with the martensitic transformation. A combination of deformation theory and finite-strain elasticity theory has been employed to arrive at the expressions for higher order elastic constants of Cu-Al-Zn based on Keating's approach. The second- and third-order elastic constants are in good agreement with the measurements. The aggregate elastic properties like bulk modulus, pressure derivatives, mode Grüneisen parameters of the elastic waves, low temperature limit of thermal expansion, and the Anderson-Grüneisen parameter are also presented.

  16. Tissue characterization using magnetic resonance elastography: preliminary results

    International Nuclear Information System (INIS)

    Kruse, S.A.; Smith, J.A.; Lawrence, A.J.; Dresner, M.A.; Manduca, A.; Greenleaf, J.F.; Ehman, R.L.

    2000-01-01

    The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for non-invasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves. (author)

  17. On Young's modulus of multi-walled carbon nanotubes

    Indian Academy of Sciences (India)

    WINTEC

    load transfer in nanocomposites. In the present work, CNT/Al ... calculations. The theoretical modulus of the graphene sheet is supposed to be 1060 GPa (Harris 2004). The reason why multi-walled nanotubes have a modulus > 1060 GPa (that of graphene sheet) is currently not understood. However, in the present paper, ...

  18. Determining a membrane's shear modulus, independent of its area-dilatation modulus, via capsule flow in a converging micro-capillary.

    Science.gov (United States)

    Dimitrakopoulos, P; Kuriakose, S

    2015-04-14

    Determination of the elastic properties of the membrane of artificial capsules is essential for the better design of the various devices that are utilized in their engineering and biomedical applications. However this task is complicated owing to the combined effects of the shear and area-dilatation moduli on the capsule deformation. Based on computational investigation, we propose a new methodology to determine a membrane's shear modulus, independent of its area-dilatation modulus, by flowing strain-hardening capsules in a converging micro-capillary of comparable size under Stokes flow conditions, and comparing the experimental measurements of the capsule elongation overshooting with computational data. The capsule prestress, if any, can also be determined with the same methodology. The elongation overshooting is practically independent of the viscosity ratio for low and moderate viscosity ratios, and thus a wide range of capsule fluids can be employed. Our proposed experimental device can be readily produced via glass fabrication while owing to the continuous flow in the micro-capillary, the characterization of a large number of artificial capsules is possible.

  19. Impedance and modulus spectroscopic study of nano hydroxyapatite

    Science.gov (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  20. Young’s modulus of multi-layer microcantilevers

    Directory of Open Access Journals (Sweden)

    Zhikang Deng

    2017-12-01

    Full Text Available A theoretical model for calculating the Young’s modulus of multi-layer microcantilevers with a coating is proposed, and validated by a three-dimensional (3D finite element (FE model using ANSYS parametric design language (APDL and atomic force microscopy (AFM characterization. Compared with typical theoretical models (Rayleigh-Ritz model, Euler-Bernoulli (E-B beam model and spring mass model, the proposed theoretical model can obtain Young’s modulus of multi-layer microcantilevers more precisely. Also, the influences of coating’s geometric dimensions on Young’s modulus and resonant frequency of microcantilevers are discussed. The thickness of coating has a great influence on Young’s modulus and resonant frequency of multi-layer microcantilevers, and the coating should be considered to calculate Young’s modulus more precisely, especially when fairly thicker coating is employed.

  1. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  2. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  3. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF3 crystals

    International Nuclear Information System (INIS)

    Pietroni, P.; Paone, N.; Lebeau, M.; Majni, G.; Rinaldi, D.

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser-generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix

  4. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3

    International Nuclear Information System (INIS)

    Mei Zhigang; Shang Shunli; Wang Yi; Liu Zikui

    2010-01-01

    The structural and elastic properties of BiMnO 3 with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO 3 phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO 3 . The single-crystal elastic stiffness constants c ij s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c 46 of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO 3 , and provide helpful guidance for the future elastic constant measurements.

  5. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo Noronha

    2013-01-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/ v1,v3 , PO 4 3- and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  6. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    International Nuclear Information System (INIS)

    Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.

    2011-01-01

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  7. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-08-15

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  8. FP-LAPW study of the elastic properties of Al2X (X=Sc,Y,La,Lu)

    International Nuclear Information System (INIS)

    Rajagopalan, M.; Praveen Kumar, S.; Anuthama, R.

    2010-01-01

    From the first principles total energy calculations based on full-potential linear augmented plane wave method (FP-LAPW), the elastic properties of Al 2 X (X=Sc,Y,La,Lu) are reported here. Theoretical values of Young's modulus, shear modulus, Poisson's ratio and Debye temperature are estimated from the computed elastic constants. From the analysis of the ratio of shear to bulk modulus, it is found that these intermetallic compounds are brittle in nature. The calculated results are compared with other reported values.

  9. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  10. Inverse problemfor an inhomogeneous elastic beam at a combined strength

    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich

    2014-01-01

    Full Text Available In the article the authors describe a method of optimizing the stress state of an elastic beam, subject to the simultaneous action of the central concentrated force and bending moment. The optimization method is based on solving the inverse problem of the strength of materials, consisting in defining the law of changing in elasticity modulus with beam cross-section altitude. With this changing the stress state will be preset. Most problems of the elasticity theory of inhomogeneous bodies are solved in direct formulation, the essence of which is to determine the stress-strain state of a body at the known dependences of the material elastic characteristics from the coordinates. There are also some solutions of the inverse problems of the elasticity theory, in which the dependences of the mechanical characteristics from the coordinates, at which the stress state of a body is preset, are determined. In the paper the authors solve the problem of finding a dependence modulus of elasticity, where the stresses will be constant over the beam’s cross section. We will solve the problem of combined strength (in the case of the central stretching and bending. We will use an iterative method. As the initial solution, we take the solution for a homogeneous material. As the first approximation, we consider the stress state of a beam, when the modulus of elasticity varies linearly. According to the results, it can be stated that three approximations are sufficient in the considered problem. The obtained results allow us to use them in assessing the strength of a beam and its optimization.

  11. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu, Yang, E-mail: yuyang@scu.edu.cn [Department of Logistics Management, Sichuan University, Chengdu 610065 (China); Ji, Junyi [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Long, Jianping [College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Chen, Jianjun; Liu, Daijun [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-25

    Highlights: • Transition pressure from B3 to B8 of BeS is 58.86 GPa. • Elastic properties of BeS under pressure are predicted for the first time. • Elastic moduli of BeS increase monotonically with increasing pressure. • Elastic anisotropy of BeS has been investigated. - Abstract: First-principles calculations were performed to investigate the structural, electronic and elastic properties of BeS in both B3 and B8 structures. The structural phase transition from B3 to B8 occurs at 58.86 GPa with a volume decrease of 10.74%. The results of the electronic band structure show that the energy gap is indirect for B3 and B8 phases. The pressure dependence of the direct and indirect band gaps for BeS has been investigated. Especially, the elastic constants of B8 BeS under high pressure have been studied for the first time. The mechanical stability of the two phases has been discussed based on the pressure dependence of the elastic constants. In addition, the pressure dependence of bulk modulus, shear modulus, Young’s modulus, elastic wave velocities and brittle–ductile behavior of BeS are all successfully obtained. Finally, the elastic anisotropy has been investigated by using two different methods.

  12. Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics

    Directory of Open Access Journals (Sweden)

    W. X. Niu

    2013-01-01

    Full Text Available Finite element analysis (FEA is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes in the computational simulation. A precise 3-dimensional finite element model was constructed based on an in-vitro specimen of human foot and ankle. Young’s moduli were assigned as four levels of 7.3, 14.6, 21.9 and 29.2 GPa respectively. The proximal tibia and fibula were completely limited to six degrees of freedom, and the ankle was loaded to inversion 10° and 20° through the calcaneus. Six cadaveric foot-ankle specimens were loaded as same as the finite element model, and strain was measured at two positions of the distal fibula. The bone stress was less affected by assignment of Young’s modulus. With increasing of Young’s modulus, the bone strain decreased linearly. Young’s modulus of 29.2 GPa was advisable to get the satisfactory surface strain results. In the future study, more ideal model should be constructed to represent the nonlinearity, anisotropy and inhomogeneity, as the same time to provide reasonable outputs of the interested parameters.

  13. Three-dimensional finite element model for flexible pavement analyses based field modulus measurements

    International Nuclear Information System (INIS)

    Lacey, G.; Thenoux, G.; Rodriguez-Roa, F.

    2008-01-01

    In accordance with the present development of empirical-mechanistic tools, this paper presents an alternative to traditional analysis methods for flexible pavements using a three-dimensional finite element formulation based on a liner-elastic perfectly-plastic Drucker-Pager model for granular soil layers and a linear-elastic stress-strain law for the asphalt layer. From the sensitivity analysis performed, it was found that variations of +-4 degree in the internal friction angle of granular soil layers did not significantly affect the analyzed pavement response. On the other hand, a null dilation angle is conservatively proposed for design purposes. The use of a Light Falling Weight Deflectometer is also proposed as an effective and practical tool for on-site elastic modulus determination of granular soil layers. However, the stiffness value obtained from the tested layer should be corrected when the measured peak deflection and the peak force do not occur at the same time. In addition, some practical observations are given to achieve successful field measurements. The importance of using a 3D FE analysis to predict the maximum tensile strain at the bottom of the asphalt layer (related to pavement fatigue) and the maximum vertical comprehensive strain transmitted to the top of the granular soil layers (related to rutting) is also shown. (author)

  14. Determination of the shear modulus of gelatine hydrogels by magnetization measurements using dispersed nickel nanorods as mechanical probes

    International Nuclear Information System (INIS)

    Bender, P.; Tschöpe, A.; Birringer, R.

    2013-01-01

    Ni nanorods are dispersed into gelatine gels and used as nanoprobes to estimate the shear modulus of the surrounding gel matrix by magnetization measurements. The nanorods are synthesized via pulsed electrodeposition of Ni into porous alumina, released from the templates by dissolution of the oxide layer and after several processing steps dispersed into gelatine gels with an isotropic orientation-distribution. Magnetization measurements of the resulting gels show a significant influence of the gelatine concentration on their magnetic behavior. In particular, with decreasing gelatine concentration the measured coercivity is reduced indicating a mechanical rotation of the nanorods in the field direction. A theoretical model which relates the measured coercivity to the shear modulus of the surrounding gel matrix is introduced and applied to investigate the ageing process of gelatine gels with different gelatine concentrations at room temperature. - Highlights: • AAO-template synthesis of uniaxial ferromagnetic single domain Ni nanorods. • Embedding nanorods as magnetic probes in soft elastic gelatine hydrogels. • Coercivity of isotropic samples increases with gelation time and gelatine concentration. • Quantitative relationship between coercivity and matrix shear modulus is obtained from an extended Stoner–Wohlfarth-model. • Semi-quantitative method for magnetic rheometry of soft elastic materials

  15. Determination of the shear modulus of gelatine hydrogels by magnetization measurements using dispersed nickel nanorods as mechanical probes

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P., E-mail: nano@p-bender.de; Tschöpe, A., E-mail: antsch@mx.uni-saarland.de; Birringer, R., E-mail: r.birringer@nano.uni-saarland.de

    2013-11-15

    Ni nanorods are dispersed into gelatine gels and used as nanoprobes to estimate the shear modulus of the surrounding gel matrix by magnetization measurements. The nanorods are synthesized via pulsed electrodeposition of Ni into porous alumina, released from the templates by dissolution of the oxide layer and after several processing steps dispersed into gelatine gels with an isotropic orientation-distribution. Magnetization measurements of the resulting gels show a significant influence of the gelatine concentration on their magnetic behavior. In particular, with decreasing gelatine concentration the measured coercivity is reduced indicating a mechanical rotation of the nanorods in the field direction. A theoretical model which relates the measured coercivity to the shear modulus of the surrounding gel matrix is introduced and applied to investigate the ageing process of gelatine gels with different gelatine concentrations at room temperature. - Highlights: • AAO-template synthesis of uniaxial ferromagnetic single domain Ni nanorods. • Embedding nanorods as magnetic probes in soft elastic gelatine hydrogels. • Coercivity of isotropic samples increases with gelation time and gelatine concentration. • Quantitative relationship between coercivity and matrix shear modulus is obtained from an extended Stoner–Wohlfarth-model. • Semi-quantitative method for magnetic rheometry of soft elastic materials.

  16. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...

  17. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    Science.gov (United States)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  18. The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure

    KAUST Repository

    Feng, Huifang

    2013-11-23

    The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt-Reuss-Hill (VRH) approximation are used to calculate the bulk modulus B, shear modulus G, averaged Young\\'s modulus E and Poisson\\'s ratio ν for polycrystals and these effective modulus are consistent with the experiments. The SOECs under different pressure of MgCNi3 and CdCNi3 are also obtained based on the TOECs. Furthermore, the Zener anisotropy factor, Chung-Buessem anisotropy index, and the universal anisotropy index are used to describe the anisotropy of MgCNi3 and CdCNi3. The anisotropy of Young\\'s modulus of single-crystal under different pressure is also presented. © 2013 Springer Science+Business Media New York.

  19. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples

    International Nuclear Information System (INIS)

    O'Hagan, Joseph J; Samani, Abbas

    2009-01-01

    The elastic and hyperelastic properties of biological soft tissues have been of interest to the medical community. There are several biomedical applications where parameters characterizing such properties are critical for a reliable clinical outcome. These applications include surgery planning, needle biopsy and brachtherapy where tissue biomechanical modeling is involved. Another important application is interpreting nonlinear elastography images. While there has been considerable research on the measurement of the linear elastic modulus of small tissue samples, little research has been conducted for measuring parameters that characterize the nonlinear elasticity of tissues included in tissue slice specimens. This work presents hyperelastic measurement results of 44 pathological ex vivo breast tissue samples. For each sample, five hyperelastic models have been used, including the Yeoh, N = 2 polynomial, N = 1 Ogden, Arruda-Boyce, and Veronda-Westmann models. Results show that the Yeoh, polynomial and Ogden models are the most accurate in terms of fitting experimental data. The results indicate that almost all of the parameters corresponding to the pathological tissues are between two times to over two orders of magnitude larger than those of normal tissues, with C 11 showing the most significant difference. Furthermore, statistical analysis indicates that C 02 of the Yeoh model, and C 11 and C 20 of the polynomial model have very good potential for cancer classification as they show statistically significant differences for various cancer types, especially for invasive lobular carcinoma. In addition to the potential for use in cancer classification, the presented data are very important for applications such as surgery planning and virtual reality based clinician training systems where accurate nonlinear tissue response modeling is required.

  20. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    O' Hagan, Joseph J; Samani, Abbas [Department of Electrical and Computer Engineering, University of Western Ontario, London, ON (Canada)], E-mail: asamani@uwo.ca

    2009-04-21

    The elastic and hyperelastic properties of biological soft tissues have been of interest to the medical community. There are several biomedical applications where parameters characterizing such properties are critical for a reliable clinical outcome. These applications include surgery planning, needle biopsy and brachtherapy where tissue biomechanical modeling is involved. Another important application is interpreting nonlinear elastography images. While there has been considerable research on the measurement of the linear elastic modulus of small tissue samples, little research has been conducted for measuring parameters that characterize the nonlinear elasticity of tissues included in tissue slice specimens. This work presents hyperelastic measurement results of 44 pathological ex vivo breast tissue samples. For each sample, five hyperelastic models have been used, including the Yeoh, N = 2 polynomial, N = 1 Ogden, Arruda-Boyce, and Veronda-Westmann models. Results show that the Yeoh, polynomial and Ogden models are the most accurate in terms of fitting experimental data. The results indicate that almost all of the parameters corresponding to the pathological tissues are between two times to over two orders of magnitude larger than those of normal tissues, with C{sub 11} showing the most significant difference. Furthermore, statistical analysis indicates that C{sub 02} of the Yeoh model, and C{sub 11} and C{sub 20} of the polynomial model have very good potential for cancer classification as they show statistically significant differences for various cancer types, especially for invasive lobular carcinoma. In addition to the potential for use in cancer classification, the presented data are very important for applications such as surgery planning and virtual reality based clinician training systems where accurate nonlinear tissue response modeling is required.

  1. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples

    Science.gov (United States)

    O'Hagan, Joseph J.; Samani, Abbas

    2009-04-01

    The elastic and hyperelastic properties of biological soft tissues have been of interest to the medical community. There are several biomedical applications where parameters characterizing such properties are critical for a reliable clinical outcome. These applications include surgery planning, needle biopsy and brachtherapy where tissue biomechanical modeling is involved. Another important application is interpreting nonlinear elastography images. While there has been considerable research on the measurement of the linear elastic modulus of small tissue samples, little research has been conducted for measuring parameters that characterize the nonlinear elasticity of tissues included in tissue slice specimens. This work presents hyperelastic measurement results of 44 pathological ex vivo breast tissue samples. For each sample, five hyperelastic models have been used, including the Yeoh, N = 2 polynomial, N = 1 Ogden, Arruda-Boyce, and Veronda-Westmann models. Results show that the Yeoh, polynomial and Ogden models are the most accurate in terms of fitting experimental data. The results indicate that almost all of the parameters corresponding to the pathological tissues are between two times to over two orders of magnitude larger than those of normal tissues, with C11 showing the most significant difference. Furthermore, statistical analysis indicates that C02 of the Yeoh model, and C11 and C20 of the polynomial model have very good potential for cancer classification as they show statistically significant differences for various cancer types, especially for invasive lobular carcinoma. In addition to the potential for use in cancer classification, the presented data are very important for applications such as surgery planning and virtual reality based clinician training systems where accurate nonlinear tissue response modeling is required.

  2. Thermo-elastic optical coherence tomography.

    Science.gov (United States)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  3. Advances in biomimetic regeneration of elastic matrix structures

    Science.gov (United States)

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  4. Elastic softness of hybrid lead halide perovskites

    KAUST Repository

    Ferreira, A. C.

    2018-01-26

    Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3 (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C44. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr3. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft α-FAPbI3.

  5. Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues

    Directory of Open Access Journals (Sweden)

    Vladimir Y. Zaitsev

    2017-11-01

    Full Text Available In this paper, we point out some practical obstacles arising in realization of compressional optical coherence elastography (OCE that have not attracted sufficient attention previously. Specifically, we discuss (i complications in quantification of the Young modulus of tissues related to partial adhesion between the OCE probe and soft intervening reference layer sensor, (ii distorting influence of tissue surface curvature/corrugation on the subsurface strain distribution mapping, (iii ways of signal-to-noise ratio (SNR enhancement in OCE strain mapping when periodic averaging is not realized, and (iv potentially significant influence of tissue elastic nonlinearity on quantification of its stiffness. Potential practical approaches to mitigate the effects of these complications are also described.

  6. Frequency dependence of complex moduli of brain tissue using a fractional Zener model

    International Nuclear Information System (INIS)

    Kohandel, M; Sivaloganathan, S; Tenti, G; Darvish, K

    2005-01-01

    Brain tissue exhibits viscoelastic behaviour. If loading times are substantially short, static tests are not sufficient to determine the complete viscoelastic behaviour of the material, and dynamic test methods are more appropriate. The concept of complex modulus of elasticity is a powerful tool for characterizing the frequency domain behaviour of viscoelastic materials. On the other hand, it is well known that classical viscoelastic models can be generalized by means of fractional calculus to describe more complex viscoelastic behaviour of materials. In this paper, the fractional Zener model is investigated in order to describe the dynamic behaviour of brain tissue. The model is fitted to experimental data of oscillatory shear tests of bovine brain tissue to verify its behaviour and to obtain the material parameters

  7. Influence of the Testing Gage Length on the Strength, Young's Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Pardini

    2002-10-01

    Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.

  8. Acoustic examinations of elastic and inelastic properties of high-pressure polyethylene with different radiation prehistory

    International Nuclear Information System (INIS)

    Kardashev, B.K.; Nikanorov, S.P.; Kravchenko, V.S.; Malinov, V.I.; Punin, V.T.

    2007-01-01

    The influence of vibrational deformation amplitude on the dynamic elasticity modulus and internal friction of high-pressure polyethylene samples with different histories is studied. Acoustic measurements are made by a resonance method using the longitudinal vibrations of a composite piezoelectric vibrator at a frequency of ∼ 100 kHz. It is found that the microplasticity remains almost unaffected upon irradiation and aging, while the elasticity modulus and breaking elongation per unit length considerably depend on the history and are clearly correlated with each other. The observed effects are explained by the fact that atom-atom interaction and defects inside polymer macromolecules substantially influence the elastic modulus and breaking strength, while the inelastic microplastic strain is most likely associated with molecule-molecule interaction, which is insignificantly affected by irradiation [ru

  9. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.

    Science.gov (United States)

    Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael

    2016-10-15

    Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate

  10. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance

    Science.gov (United States)

    2017-09-01

    To evaluate the compaction of unbound geomaterials under unsaturated conditions and replace the conventional methods with a practical modulus-based specification using LWD, this study examined three different LWDs, the Zorn ZFG 3000 LWD, Dynatest 303...

  11. Estimate of K-functionals and modulus of smoothness constructed ...

    Indian Academy of Sciences (India)

    2016-08-26

    functional and a modulus of smoothness for the Dunkl transform on Rd. Author Affiliations. M El Hamma1 R Daher1. Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco. Dates.

  12. Arithmetic convergent sequence space defined by modulus function

    Directory of Open Access Journals (Sweden)

    Taja Yaying

    2019-10-01

    Full Text Available The aim of this article is to introduce the sequence spaces $AC(f$ and $AS(f$ using arithmetic convergence and modulus function, and study algebraic and topological properties of this space, and certain inclusion results.

  13. Resilient Modulus Characterization of Alaskan Granular Base Materials

    Science.gov (United States)

    2010-08-01

    Resilient modulus (MR) of base course material is an important material input for : pavement design. In Alaska, due to distinctiveness of local climate, material source, : fines content and groundwater level, resilient properties of D-1 granular base...

  14. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  15. Elastic properties and electron transport in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  16. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  17. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    Science.gov (United States)

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  18. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve.

    Science.gov (United States)

    Straka, Frantisek; Schornik, David; Masin, Jaroslav; Filova, Elena; Mirejovsky, Tomas; Burdikova, Zuzana; Svindrych, Zdenek; Chlup, Hynek; Horny, Lukas; Daniel, Matej; Machac, Jiri; Skibová, Jelena; Pirk, Jan; Bacakova, Lucie

    2018-04-01

    The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.

  19. Non-toxic invert analog glass compositions of high modulus

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi are described. They and a specific modulus of at least 110 million inches consist essentially of, in mols, 15 to 40% SiO2, 6 to 15% Li2O, 24 to 45% of at least two bivalent oxides selected from the group consisting of Ca, NzO, MgO and CuO; 13 to 39% of at least two trivalent oxides selected from the group consisting of Al2O3, Fe2O3, B2O3, La2O3, and Y2O3 and up to 15% of one or more tetravelent oxides selected from the group consisting of ZrO2, TiO2 and CeO2. The high modulus, low density glass compositions contain no toxic elements. The composition, glass density, Young's modulus, and specific modulus for 28 representative glasses are presented. The fiber modulus of five glasses are given.

  20. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    International Nuclear Information System (INIS)

    Pol'dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret'yakov, B.N.

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit σsub(0.01) and yield limit σsub(0.2)) of three amorphous alloys on iron base Fe 80 B 20 , Fe 70 Cr 10 B 20 and Fe 70 Cr 5 Ni 5 B 20 are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials

  1. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  2. Defect-dependent elasticity: Nanoindentation as a probe of stress state

    International Nuclear Information System (INIS)

    Jarausch, K. F.; Kiely, J. D.; Houston, J. E.; Russell, P. E.

    2000-01-01

    Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2x) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films. (c) 2000 Materials Research Society

  3. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    Science.gov (United States)

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Thermodynamics and elastic properties of Ir from first-principle calculations

    International Nuclear Information System (INIS)

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou

    2013-01-01

    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  5. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  6. Modeling for analysis of the effect of Young's modulus on soft active hydrogels subject to pH stimulus

    International Nuclear Information System (INIS)

    Li Hua; Ng, Teng Yong; Yew, Yong Kin

    2009-01-01

    Modeling is conducted in this paper for analysis of the influence of Young's modulus on the response of soft active hydrogels to environmental solution pH changes. A chemo–electro–mechanical formulation termed the multi-effect-coupling pH-stimulus (MECpH) model, which was developed previously according to linear elastic theory for small deformation description, is improved in this paper through incorporation of the finite deformation formulation into the mechanical equilibrium equation. The model is expressed by coupled nonlinear partial differential equations and solved via the meshless Hermite-cloud method with the modified Newton iteration technique. The improved MECpH model is examined by comparison between the computational and published experimental results. Numerical studies are then done on the influence of Young's modulus on the distributive variations of the diffusive ion concentrations and electric potential, and on the deformation variations of the pH-stimulus-responsive hydrogels within different buffered solutions

  7. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification.

    NARCIS (Netherlands)

    Daamen, W.F.; Nillesen, S.T.M.; Wismans, P.G.P.; Reinhardt, D.; Hafmans, T.G.M.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2008-01-01

    Elastin is the prime protein in elastic tissues that contributes to elasticity of, for example, lung, aorta, and skin. Upon injury, elastic fibers are not readily replaced, which hampers tissue regeneration. Incorporation of solubilized elastin (hydrolyzed insoluble elastin fibers or elastin

  8. Molecular dynamics investigation of the elastic and fracture properties of the R-graphyne under uniaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Rouhi, Saeed, E-mail: s_rouhi@iaul.ac.ir

    2017-05-15

    In this paper, the mechanical properties of the R-graphynes are investigated by using molecular dynamics simulations. For this purpose, the uniaxial strain is applied on the nanosheets. The effects of R-graphyne chirality and dimension on their fracture and elastic properties are investigated. It is shown that the fracture properties of the armchair R-graphyne are approximately independent from the nanosheet sizes. However, a clear dependence is observed in the fracture properties of the zigzag R-graphyne on the nanosheet dimensions. Comparing the elastic modulus of the armchair and zigzag R-graphynes, it is shown that for the same sizes, the elastic modulus of armchair R-graphyne is approximately equal to 2.5 times of the elastic modulus of the zigzag ones. Pursuing the fracture process of R-graphynes with different chiralities, it is represented that the fracture propagates in the zigzag nanosheet with a higher velocity than the armchair ones.

  9. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  10. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  11. Elastic response of thermal spray deposits under indentation tests

    International Nuclear Information System (INIS)

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-01-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data

  12. Elastic properties of terbium

    DEFF Research Database (Denmark)

    Spichkin, Y.I.; Bohr, Jakob; Tishin, A.M.

    1996-01-01

    The temperature dependence of the Young modulus along the crystallographic axes b and c (E(b) and E(c)), and the internal friction of a terbium single crystal have been measured. At 4.2 K, E(b) and E(c) are equal to 38 and 84.5 GPa, respectively. The lattice part of the Young modulus and the Debye...... temperature has been calculated. The origin of the Young modulus anomalies arising at the transition to the magnetically ordered state is discussed....

  13. Young's modulus of BF wood material by longitudinal vibration

    International Nuclear Information System (INIS)

    Phadke, Sushil; Shrivastava, Bhakt Darshan; Mishra, Ashutosh; Dagaonkar, N

    2014-01-01

    All engineered structures are designed and built with consideration of resisting the same fundamental forces of tension, compression, shear, bending and torsion. Structural design is a balance of these internal and external forces. So, it is interesting to calculate the Young's moduli of Borassus Flabellifier BF wood are quite important from the application point of view. The ultrasonic waves are closely related with the elastic and inelastic properties of the materials. In the present study, we measured longitudinal wave ultrasonic velocities in BF wood material by longitudinal vibration method. After measuring ultrasonic velocity in BF wood material, we calculated Young's modulus of Borassus Flabellifier BF wood material. We used ultrasonic interferometer for measuring longitudinal wave ultrasonic velocity in BF wood material made by Mittal Enterprises, New Delhi, India in our laboratory. Borassus Flabellifier BF wood material was collected from Dhar district of Madhya Pradesh, India.

  14. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  15. Quasi-elastic high-pressure waves in 2024 Al and Cu

    International Nuclear Information System (INIS)

    Morris, C.E.; Fritz, J.N.; Holian, B.L.

    1981-01-01

    Release waves from the back of a plate slap experiment are used to estimate the longitudinal modulus, bulk modulus and shear strength of the metal in the state produced by a symmetric collision. The velocity of the interface between the metal target and a window material is measured by the axially symmetric magnetic (ASM) probe. Wave profiles for initial states up to 90 GPa for 2024 Al and up to 150 GPa for Cu have been obtained. Elastic perfectly-plastic (EPP) theory cannot account for the results. A relatively simple quasi-elastic plastic (QEP) model can

  16. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  17. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.

    Science.gov (United States)

    Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun

    2017-11-01

    A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, Ti x P y and CaTiO 3 were formed. The formation of Ti oxides and Ti x P y were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO 3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.

  18. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  19. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    Science.gov (United States)

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Structural aspects of elastic deformation of a metallic glass

    International Nuclear Information System (INIS)

    Hufnagel, T. C.; Ott, R. T.; Almer, J.

    2006-01-01

    We report the use of high-energy x-ray scattering to measure strain in a Zr 57 Ti 5 Cu 20 Ni 8 Al 10 bulk metallic glass in situ during uniaxial compression in the elastic regime up to stresses of approximately 60% of the yield stress. The strains extracted in two ways--directly from the normalized scattering data and from the pair correlation functions--are in good agreement with each other for length scales greater than 4 A. The elastic modulus calculated on the basis of this strain is in good agreement with that reported for closely related amorphous alloys based on macroscopic measurements. The strain measured for atoms in the nearest-neighbor shell, however, is smaller than that for more distant shells, and the effective elastic modulus calculated from the strain on this scale is therefore larger, comparable to crystalline alloys of similar composition. These observations are in agreement with previously proposed models in which the nominally elastic deformation of a metallic glass has a significant anelastic component due to atomic rearrangements in topologically unstable regions of the structure. We also observe that the distribution of the atomic-level stresses in the glass becomes more uniform during loading. This implies that the stiffness of metallic glasses may have an entropic contribution, analogous to the entropic contribution in rubber elasticity

  1. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  2. Influence of Elastic Anisotropy on Extended Dislocation Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, B

    1971-09-15

    The interaction forces between the partial dislocations forming an extended dislocation node are calculated using elasticity theory for anisotropic media.s are carried out for nodes of screw, edge and mixed character in Ag, which has an anisotropy ratio A equal to 3, and in a hypothetic material with A = 1 and the same shear modulus as Ag. The results are compared with three previous theories using isotropic elasticity theory. As expected, in Ag the influence of anisotropy is of the same order as the uncertainty due to the dislocation core energy

  3. Dynamic response of beams on elastic foundations to impact loading

    International Nuclear Information System (INIS)

    Prasad, B.B.; Sinha, B.P.

    1987-01-01

    The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)

  4. Modeling dynamic acousto-elastic testing experiments: validation and perspectives.

    Science.gov (United States)

    Gliozzi, A S; Scalerandi, M

    2014-10-01

    Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.

  5. Elastic properties of various ceramic materials

    International Nuclear Information System (INIS)

    Zimmermann, H.

    1992-09-01

    The Young's modulus and the Poisson's ratio of various ceramics have been investigated at room temperature and compared with data from the literature. The ceramic materials investigated are Al 2 O 3 , Al 2 O 3 -ZrO 2 , MgAl 2 O 4 , LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , UO 2 , AlN, SiC, B 4 C, TiC, and TiB 2 . The dependence of the elastic moduli on porosity and temperature have been reviewed. Measurements were also performed on samples of Al 2 O 3 , AlN, and SiC, which had been irradiated to maximum neutron fluences of 1.6.10 26 n/m 2 (E>0.1 MeV) at different temperatures. The Young's modulus is nearly unaffected at fluences up to about 4.10 24 n/m 2 . However, it decreases with increasing neutron fluence and seems to reach a saturation value depending upon the irradiation temperature. The reduction of the Young's modulus is lowest in SiC. (orig.) [de

  6. Variable modulus cellular structures using pneumatic artificial muscles

    Science.gov (United States)

    Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

    2014-04-01

    This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

  7. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  8. Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique.

    Science.gov (United States)

    Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia

    2017-10-01

    Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Global model for the lithospheric strength and effective elastic thickness

    OpenAIRE

    Magdala Tesauro; Mikhail Kaban; S. A. P. L. Cloetingh

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member ‘hard’ (HRM) and a ‘soft’ (SR...

  10. Young’s modulus evaluation and thermal shock behavior of a porous SiC/cordierite composite material

    Directory of Open Access Journals (Sweden)

    Pošarac-Marković M.

    2015-01-01

    Full Text Available Porous SiC/Cordierite Composite Material with graphite content (10% was synthesized. Evaluation of Young modulus of elasticity and thermal shock behavior of these samples was presented. Thermal shock behavior was monitored using water quench test, and non destructive methods such are UPVT and image analysis were also used for accompaniment the level of destruction of the samples during water quench test. Based on the level of destruction graphical modeling of critical number of cycles was given. This approach was implemented on discussion of the influence of the graphite content on thermal stability behavior of the samples. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  11. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  12. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.

    Science.gov (United States)

    Tartibi, M; Liu, Y X; Liu, G-Y; Komvopoulos, K

    2015-11-01

    The membrane-cytoskeleton system plays a major role in cell adhesion, growth, migration, and differentiation. F-actin filaments, cross-linkers, binding proteins that bundle F-actin filaments to form the actin cytoskeleton, and integrins that connect the actin cytoskeleton network to the cell plasma membrane and extracellular matrix are major cytoskeleton constituents. Thus, the cell cytoskeleton is a complex composite that can assume different shapes. Atomic force microscopy (AFM)-based techniques have been used to measure cytoskeleton material properties without much attention to cell shape. A recently developed surface chemical patterning method for long-term single-cell culture was used to seed individual cells on circular patterns. A continuum-based cell model, which uses as input the force-displacement response obtained with a modified AFM setup and relates the membrane-cytoskeleton elastic behavior to the cell geometry, while treating all other subcellular components suspended in the cytoplasmic liquid (gel) as an incompressible fluid, is presented and validated by experimental results. The developed analytical-experimental methodology establishes a framework for quantifying the membrane-cytoskeleton elasticity of live cells. This capability may have immense implications in cell biology, particularly in studies seeking to establish correlations between membrane-cytoskeleton elasticity and cell disease, mortality, differentiation, and migration, and provide insight into cell infiltration through nonwoven fibrous scaffolds. The present method can be further extended to analyze membrane-cytoskeleton viscoelasticity, examine the role of other subcellular components (e.g., nucleus envelope) in cell elasticity, and elucidate the effects of mechanical stimuli on cell differentiation and motility. This is the first study to decouple the membrane-cytoskeleton elasticity from cell stiffness and introduce an effective approach for measuring the elastic modulus. The

  13. Biomechanical study of the bone tissue with dental implants interaction

    Directory of Open Access Journals (Sweden)

    Navrátil P.

    2011-12-01

    Full Text Available The article deals with the stress-strain analysis of human mandible in the physiological state and after the dental implant application. The evaluation is focused on assessing of the cancellous bone tissue modeling-level. Three cancellous bone model-types are assessed: Non-trabecular model with homogenous isotropic material, nontrabecular model with inhomogeneous material obtained from computer tomography data using CT Data Analysis software, and trabecular model built from mandible section image. Computational modeling was chosen as the most suitable solution method and the solution on two-dimensional level was carried out. The results show that strain is more preferable value than stress in case of evaluation of mechanical response in cancellous bone. The non-trabecular model with CT-obtained material model is not acceptable for stress-strain analysis of the cancellous bone for singularities occurring on interfaces of regions with different values of modulus of elasticity.

  14. Design and demonstration of an intracortical probe technology with tunable modulus.

    Science.gov (United States)

    Simon, Dustin M; Charkhkar, Hamid; St John, Conan; Rajendran, Sakthi; Kang, Tong; Reit, Radu; Arreaga-Salas, David; McHail, Daniel G; Knaack, Gretchen L; Sloan, Andrew; Grasse, Dane; Dumas, Theodore C; Rennaker, Robert L; Pancrazio, Joseph J; Voit, Walter E

    2017-01-01

    Intracortical probe technology, consisting of arrays of microelectrodes, offers a means of recording the bioelectrical activity from neural tissue. A major limitation of existing intracortical probe technology pertains to limited lifetime of 6 months to a year of recording after implantation. A major contributor to device failure is widely believed to be the interfacial mechanical mismatch of conventional stiff intracortical devices and the surrounding brain tissue. We describe the design, development, and demonstration of a novel functional intracortical probe technology that has a tunable Young's modulus from ∼2 GPa to ∼50 MPa. This technology leverages advances in dynamically softening materials, specifically thiol-ene/acrylate thermoset polymers, which exhibit minimal swelling of memory polymer-based multichannel intracortical probe can be fabricated, that the mechanical properties are stable for at least 2 months and that the device is capable of single unit recordings for durations up to 77 days in vivo. This novel technology, which is amenable to processes suitable for manufacturing via standard semiconductor fabrication techniques, offers the capability of softening in vivo to reduce the tissue-device modulus mismatch to ultimately improve long term viability of neural recordings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 159-168, 2017. © 2016 Wiley Periodicals, Inc.

  15. Young's modulus of crystal bar zirconium and zirconium alloys (zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium) to 1000 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1975-09-01

    This report contains experimentally determined data on the dynamic elastic moduli of zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium and Marz grade crystal bar zirconium. Data on both the dynamic Young's moduli and shear moduli of the alloys have been measured at room temperature and Young's modulus as a function of temperature has been determined over the temperature range 300 K to 1000 K. In every case, Young's modulus decreases linearly with increasing temperature and is expressed by an empirical equation fitted to the data. Differences in Young's modulus values determined from specimens with longitudinal axes parallel and perpendicular to the rolling direction are small, as are the differences between Young's moduli determined from strip, bar stock and fuel sheathing. (author)

  16. The elasticity and failure of fluid-filled cellular solids: theory and experiment.

    Science.gov (United States)

    Warner, M; Thiel, B L; Donald, A M

    2000-02-15

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.

  17. The elasticity and failure of fluid-filled cellular solids: Theory and experiment

    Science.gov (United States)

    Warner, M.; Thiel, B. L.; Donald, A. M.

    2000-02-01

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.

  18. Rubber elasticity for percolation network consisting of Gaussian chains

    International Nuclear Information System (INIS)

    Nishi, Kengo; Noguchi, Hiroshi; Shibayama, Mitsuhiro; Sakai, Takamasa

    2015-01-01

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G 0 , must be equal to G/G 0 = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels

  19. Rubber elasticity for percolation network consisting of Gaussian chains

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Kengo, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp; Noguchi, Hiroshi; Shibayama, Mitsuhiro, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Sakai, Takamasa, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  20. Elastic properties of liquid and solid argon in nanopores

    International Nuclear Information System (INIS)

    Schappert, Klaus; Pelster, Rolf

    2013-01-01

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β Ar,ads of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β Ar,surf increases with the thickness of the solid layers reaching the bulk value β Ar,liquid only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid–solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. (paper)