WorldWideScience

Sample records for tissue drug uptake

  1. Influence of drugs on myocardial iodine-123 metaiodobenzylguanidine uptake in rabbit myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.; Karanikas, G.; Rodrigues, M.; Sinzinger, H. [Dept. of Nuclear Medicine, University of Vienna (Austria)

    2000-03-01

    About 15 years ago, iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging was introduced for the evaluation of myocardial sympathetic nerve function. Two uptake mechanisms for MIBG have so far been identified: uptake type I, a saturable, energy-dependent mechanism, and uptake type II, a non-saturable, energy-independent mechanism. We incubated isolated rabbit myocardial tissue samples with{sup 123}I-MIBG in order to assess the uptake characteristics and the influence of varying incubation conditions. Furthermore, we examined the effects of several drugs and uptake inhibitors on the myocardial uptake of MIBG. The in vitro myocardial uptake of MIBG reached a steady plateau at 23.87%{+-}3.63% after 1 h, i.e. a concentration gradient of 10, in a thermo-independent manner within a concentration range from 1.5 to 1500 {mu}M. This indicates an unsaturable uptake process in the tested concentrations. Pre-incubation with the following drugs caused a significant inhibitory effect on myocardial MIBG uptake: haloperidol, levomepromazine, metoprolol, labetalol and clomipramine. According to our findings, the uptake mechanism seems to be an unspecific process, but the concentration gradient of 10 makes passive diffusion unlikely. Further studies with uptake-II-blocking substances as well as with isolated myocardial cells will be needed to clarify the nature of the myocardial MIBG uptake mechanism. (orig.)

  2. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    Science.gov (United States)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  3. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Arnaud Beduneau

    Full Text Available BACKGROUND: We posit that the same mononuclear phagocytes (MP that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP and tissue delivery. METHODS: Monocytes and monocyte-derived macrophages (MDM were used as vehicles of superparamagnetic iron oxide (SPIO NP and immunoglobulin (IgG or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T(2 measures using magnetic resonance imaging (MRI were used to monitor tissue distribution in animals. RESULTS: Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab'(2 fragments and for Alexa Fluor(R 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab'(2, and/or Alexa Fluor(R 488 SPIO demonstrated approximately 50% coupling yield. IgG-SPIO was found stable at 4 degrees C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated

  4. Clinical significance of abnormal nonosseous soft tissue uptake of bone tracer

    International Nuclear Information System (INIS)

    Zhu Bao; Shang Yukun; Li Jiannan; Bai Jing; Cai Liang

    2006-01-01

    Objective: To evaluate the clinical significance of abnormal soft tissue uptake of bone tracer. Methods: Thirty patients with abnormal soft tissue uptake of bone tracer on 99 Tc m -methylene diphosphonic acid (MDP) skeletal imaging were analyzed. Radioactivity of soft tissue accumulated equal to or greater than the ribs were considered as abnormal. The result was compared with pathology, MRI, CT, X-ray, ultrasound, findings for evaluating its clinical significance. Results: In 7 patients with diffuse liver uptake of 99 Tc m -MDP, 6 were massive and 1 nodular liver cancer. In 2 patients with local liver uptake, one was metastatic and the other primary liver cancer. In 5 local lung uptake cases 4 were primary lung cancer and one metastatic. In 5 cases with colonic uptake 1 was schistosomiasis while the other 4 unexplainable. Subcutaneous tissue uptake was observed in 4 patients, symmetrical uptake in 2 patients with metastatic calcification microfoci in multiple myeloma, unsymmetrical uptake in 2 patients with hemangioma and abscess. Pleural uptake in 3 patients all was metastatic cancer. Abdominal uptake in 3 patients was omentum, paravertebral soft tissue metastasis and unknown cause. Breast uptake in one patient was due to breast cancer. Conclusions: There are many causes resulting in abnormal nonosseous soft tissue uptake of 99 Tc m -MDP. The final diagnosis should correlate with clinical data and other examinations. (authors)

  5. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast.

    Science.gov (United States)

    Lanthaler, Karin; Bilsland, Elizabeth; Dobson, Paul D; Moss, Harry J; Pir, Pınar; Kell, Douglas B; Oliver, Stephen G

    2011-10-24

    The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  6. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.

  7. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models. Evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG

    International Nuclear Information System (INIS)

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke

    2017-01-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316, 243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  8. Plasma vs heart tissue concentration in humans - literature data analysis of drugs distribution.

    Science.gov (United States)

    Tylutki, Zofia; Polak, Sebastian

    2015-03-12

    Little is known about the uptake of drugs into the human heart, although it is of great importance nowadays, when science desires to predict tissue level behavior rather than to measure it. Although the drug concentration in cardiac tissue seems a better predictor for physiological and electrophysiological changes than its level in plasma, knowledge of this value is very limited. Tissue to plasma partition coefficients (Kp) come to rescue since they characterize the distribution of a drug among tissues as being one of the input parameters in physiologically based pharmacokinetic (PBPK) models. The article reviews cardiac surgery and forensic medical studies to provide a reference for drug concentrations in human cardiac tissue. Firstly, the focus is on whether a drug penetrates into heart tissue at a therapeutic level; the provided values refer to antibiotics, antifungals and anticancer drugs. Drugs that directly affect cardiomyocyte electrophysiology are another group of interest. Measured levels of amiodarone, digoxin, perhexiline and verapamil in different sites in human cardiac tissue where the compounds might meet ion channels, gives an insight into how these more lipophilic drugs penetrate the heart. Much data are derived from postmortem studies and they provide insight to the cardiac distribution of more than 200 drugs. The analysis depicts potential problems in defining the active concentration location, what may indirectly suggest multiple mechanisms involved in the drug distribution within the heart. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Thyroid uptake of I-131 during anti-thyroid drug treatment

    International Nuclear Information System (INIS)

    Hoque, M.; Alam, F.; Haque, F.S.; Karim, M.A.; Fariduddin, M.

    2004-01-01

    Hyperthyroidism is a global ailment and its treatment is very promising either by ant-thyroid drug or by radioiodine. Iodine-131 uptake test is very important for evaluation of hyperthyroid in respect to its therapy and to exclude thyroiditis. This study was performed to observe the thyroid uptake pattern during intake of anti-thyroid medicine and workout the possibility to start I-131 therapy just after withdraw of antithyroid drug without waiting few days. In this study total 252 patient's I-131 uptake test is performed. Among the patient 135 (53.57%) were female, 117 (64.43%) were male. All this patients were hyperthyroid both clinically and biochemically. Thyroid uptake was taken to all patients at 24 hours after oral administration of 5 to 10 micro-curie of I -131. Uptake was taken by an uptake system and recorded as percentage uptake. These patients are grouped into three categories. Group-A-newly diagnosed cases, who have not taken antithyroid drug or I-131 therapy, there were 82 patients in this group, and their mean uptake was 37.12 ±18.5%. Group B - this group of patients were studied during intake of antithyroid medicine, there were 130 patients in this group and their mean uptake was 34.34±16.0%. Group-B patients were further divided in two sub-groups, patients having antithyroid drug for 1 to 3 weeks (group-B 1), group B1 have mean uptake 37±21% and those were taking antithyroid for 3 weeks to 2 years (group-B2), group B2 have uptake 34.34±20%. Group C- these patients are taken from those patients who had withdrawn antithyroid drug for 3 days to 3 months, there were 40 such patients. Group C further divided into two sub-group, group-C1 (stopped for 3-10 days) and group C2 (stopped for 11 days to 3 months). Group C1 had mean uptake 38±16% and group C2 had mean uptake 35±19%. From this study it is observed that Iodine-131 uptake percentage of untreated hyperthyroid; during antithyroid drug treatment and after withdraw of antithyroid drug almost

  10. Pre-medication to block [18F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.; O'Hara, Sara M.; Curtwright, Lois A.; MacLean, Joseph R.

    2005-01-01

    34 (29.4%) after low-dose oral diazepam, in 0 of 9 (0%) after moderate-dose oral diazepam, in 3 of 45 (6.7%) after intravenous fentanyl, and in 0 of 7 (0%) after opiates prescribed for pain. Intravenous fentanyl reduced the grade of brown adipose tissue compared to no drug (P=0.0039) and low-dose diazepam (P=0.0024). Low-dose diazepam had no effect when compared to no drug (P=0.984). There were inadequate data for statistical testing of moderate-dose valium and opiates prescribed for pain. Children younger than 10 years had lower uptake grades (P=0.019) than those older than 10 years. Summary: The frequency of interfering [ 18 F]FDG uptake in brown adipose tissue is reduced by intravenous fentanyl pre-medication, which appears to be an effective alternative to the existing standard pre-medication, moderate-dose oral diazepam. (orig.)

  11. Pre-medication to block [{sup 18}F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Michael J.; O' Hara, Sara M.; Curtwright, Lois A.; MacLean, Joseph R. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2005-10-01

    opiates for pain, in 10 of 34 (29.4%) after low-dose oral diazepam, in 0 of 9 (0%) after moderate-dose oral diazepam, in 3 of 45 (6.7%) after intravenous fentanyl, and in 0 of 7 (0%) after opiates prescribed for pain. Intravenous fentanyl reduced the grade of brown adipose tissue compared to no drug (P=0.0039) and low-dose diazepam (P=0.0024). Low-dose diazepam had no effect when compared to no drug (P=0.984). There were inadequate data for statistical testing of moderate-dose valium and opiates prescribed for pain. Children younger than 10 years had lower uptake grades (P=0.019) than those older than 10 years. Summary: The frequency of interfering [{sup 18}F]FDG uptake in brown adipose tissue is reduced by intravenous fentanyl pre-medication, which appears to be an effective alternative to the existing standard pre-medication, moderate-dose oral diazepam. (orig.)

  12. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues.

    Science.gov (United States)

    Kim, Munju; Gillies, Robert J; Rejniak, Katarzyna A

    2013-11-18

    Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  13. BPA uptake in rat tissues after partial hepatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Slatkin, D.N.; Nawrocky, M.M.; Coderre, J.A.; Fisher, C.D.; Joel, D.D.; Lombardo, D.T.; Micca, P.L.

    1996-12-31

    In boron neutron capture therapy (BNCT), boron given as boronophenylalanine (BPA) accumulates transiently not only in tumors but also in normal tissues. Average boron concentrations in transplanted 9L gliosarcoma tumors of 20 rats were 2.5 to 3.7 times concentrations found in blood. Although boron levels in a variety of tissues were also higher than blood the concentrations were less than the lowest found in the tumor. Further note than although BPA is a structural analogue of phenylalanine (Phe), the pathway of BPA uptake into regenerating liver may not be linked to Phe uptake mechanisms.

  14. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    Science.gov (United States)

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin. A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized. In vitro cellular uptake was investigated by confocal microscopy, flow cytometry, and MTT assay using drug-sensitive and drug-resistant cell lines. Pharmacokinetics and biodistribution were evaluated in rats and tumor-bearing mice. Doxorubicin (Dox) was efficiently loaded into the PNP (higher than 95% of entrapment efficiency), and the diameter of Dox-PNP was in the range 20-25 nm with a narrow size distribution. In Vitro study showed that Dox-PNP exhibited higher cellular uptake into both human breast cancer cell (MCF-7) and human uterine cancer cell (MES-SA) than free doxorubicin solution (Free-Dox), especially into drug-resistant cells (MCF-7/ADR and MES-SA/Dx-5). In pharmacokinetics and tissue distribution study, the bioavailability of Dox-PNP calculated from the area under the blood concentration-time curve (AUC) was 69.8 times higher than that of Free-Dox in rats, and Dox-PNP exhibited 2 times higher bioavailability in tumor tissue of tumor-bearing mice. Dox-PNP exhibited enhanced cellular uptake of the drug. In the cytotoxic activity study, this improved cellular uptake was proved to be more advantageous in drug-resistant cell. Dox-PNP exhibited much higher bioavailability in blood plasma and more drug accumulation in tumor tissue than conventional doxorubicin

  15. Characterization of simvastatin acid uptake by organic anion transporting polypeptide 3A1 (OATP3A1) and influence of drug-drug interaction.

    Science.gov (United States)

    Atilano-Roque, Amandla; Joy, Melanie S

    2017-12-01

    Human organic anion transporting polypeptide 3A1 (OATP3A1) is predominately expressed in the heart. The ability of OATP3A1 to transport statins into cardiomyocytes is unknown, although other OATPs are known to mediate the uptake of statin drugs in liver. The pleiotropic effects and uptake of simvastatin acid were analyzed in primary human cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. Treatment with simvastatin acid reduced indoxyl sulfate-mediated reactive oxygen species and modulated OATP3A1 expression in cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. We observed a pH-dependent effect on OATP3A1 uptake, with more efficient simvastatin acid uptake at pH5.5 in HEK293 cells transfected with the OATP3A1 gene. The Michaelis-Menten constant (K m ) for simvastatin acid uptake by OATP3A1 was 0.017±0.002μM and the V max was 0.995±0.027fmol/min/10 5 cells. Uptake of simvastatin acid was significantly increased by known (benzylpenicillin and estrone-3-sulfate) and potential (indoxyl sulfate and cyclosporine) substrates of OATP3A1. In conclusion, the presence of OATP3A1 in cardiomyocytes suggests that this transporter may modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues.

    Science.gov (United States)

    Patel, Krupa J; Trédan, Olivier; Tannock, Ian F

    2013-07-01

    Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.

  17. Fractional laser-assisted drug uptake

    DEFF Research Database (Denmark)

    Banzhaf, Christina A; Thaysen-Petersen, Daniel; Bay, Christiane

    2017-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is acknowledged to increase uptake of topically applied agents in skin. AFXL channels gradually close over time, which may impair this capability. The time frame for applying a drug after AFXL exposure remains to be established. The aim...... in laser-exposed and non-laser-exposed skin at 24-48 hours. CONCLUSIONS: The time frame to maintain enhanced drug delivery sustained for several hours after AFXL exposure, corresponding to channel morphology and loss of skin integrity. Lasers Surg. Med. 49:348-354, 2017. © 2016 Wiley Periodicals, Inc....

  18. Factors influencing drug uptake during mass drug administration for control of lymphatic filariasis in rural and urban Tanzania.

    Directory of Open Access Journals (Sweden)

    William J Kisoka

    Full Text Available BACKGROUND: In most countries of Sub-Saharan Africa, control of lymphatic filariasis (LF is based on annual mass drug administration (MDA with a combination of ivermectin and albendazole. Treatment coverages are however often suboptimal for programmes to reach the goal of transmission interruption within reasonable time. The present study aimed to identify predictors and barriers to individual drug uptake during MDA implementation by the National LF Elimination Programme in Tanzania. METHODS: A questionnaire based cross sectional household survey was carried out in two rural and two urban districts in Lindi and Morogoro regions shortly after the 2011 MDA. 3279 adults (≥15 years were interviewed about personal characteristics, socio-economic status, MDA drug uptake among themselves and their children, reasons for taking/not taking drugs, and participation in previous MDA activities for LF control. FINDINGS: The overall drug uptake rate was 55.1% (range of 44.5-75.6% between districts. There was no overall major difference between children (54.8% and adults (55.2% or between females (54.9% and males (55.8%, but the role of these and other predictors varied to some extent between study sites. Major overall predictors of drug uptake among the interviewed adults were increasing age and history of previous drug uptake. Being absent from home during drug distribution was the main reason for not taking the drugs (50.2% followed by clinical contraindications to treatment (10.8%, missing household visits of drug distributors (10.6%, and households not being informed about the distribution (9.0%. CONCLUSION: Drug uptake relied more on easily modifiable provider-related factors than on individual perceptions and practices in the target population. Limited investments in appropriate timing, dissemination of accurate timing information to recipients and motivation of drug distributors to visit all households (repeatedly when residents are absent are likely

  19. The autoradiographic uptake and turnover of [1-3H] -galactose in mouse periodontal tissues

    International Nuclear Information System (INIS)

    Tonna, E.A.; Wysor, M.S.

    1980-01-01

    In 5-week-old Brookhaven National Laboratory short-lived mice, [ 3 H]-galactose was utilized in all the oral tissues studied. Uptake and turnover of the tracer assessed by autoradiography revealed three uptake peaks. Synchronous fluctuation of total grain counts was repeatedly observed in different periodontal tissues. Acid glycosaminoglycans were strongly labelled and the neutral glycosaminoglycan fraction of the tissues was labelled to a lesser degree. The radiotracer became incorporated during their symthesis. The complex plots derived may represent several metabolic events occurring simultaneously. The uptake of radiotracer in fibrogenic, osteogenic and cementogenic cells was low. Accumulation of matrical output, however, was significant. The matrical output of the cementogenic cells and the osteogenic layer mesial to the alveolar bone was the highest of all the oral tissues studied throughout the 30-day period. (author)

  20. Modulation of glucose uptake in adipose tissue by nitric oxide ...

    Indian Academy of Sciences (India)

    Madhu

    ion-dependent breakdown and trans-nitrosation reactions are ... [McGrowder D, Ragoobirsingh D and Brown P 2006 Modulation of glucose uptake in adipose tissue by nitric oxide-generating ... Briefly, nicotinamide (Sigma Chemical Co.,.

  1. Methadone Recycling Sustains Drug Reservoir in Tissue.

    Science.gov (United States)

    Linares, Oscar A; Fudin, Jeffrey; Daly, Annemarie; Schiesser, William E; Boston, Raymond C

    2015-09-01

    We hypothesize that there is a tissue store of methadone content in humans that is not directly accessible, but is quantifiable. Further, we hypothesize the mechanism by which methadone content is sustained in tissue stores involves methadone uptake, storage, and release from tissue depots in the body (recycling). Accordingly, we hypothesize that such tissue stores, in part, determine plasma methadone levels. We studied a random sample of six opioid-naïve healthy subjects. We performed a clinical trial simulation in silico using pharmacokinetic modeling. We found a large tissue store of methadone content whose size was much larger than methadone's size in plasma in response to a single oral dose of methadone 10 mg. The tissue store measured 13-17 mg. This finding could only be explained by the contemporaneous storage of methadone in tissue with dose recycling. We found that methadone recycles 2-5 times through an inaccessible extravascular compartment (IAC), from an accessible plasma-containing compartment (AC), before exiting irreversibly. We estimate the rate of accumulation (or storage) of methadone in tissue was 0.029-7.29 mg/h. We predict 39 ± 13% to 83 ± 6% of methadone's tissue stores "spillover" into the circulation. Our results indicate that there exists a large quantifiable tissue store of methadone in humans. Our results support the notion that methadone in humans undergoes tissue uptake, storage, release into the circulation, reuptake from the circulation, and re-release into the circulation, and that spillover of methadone from tissue stores, in part, maintain plasma methadone levels in humans.

  2. Trends in drug delivery through tissue barriers containing tight junctions.

    Science.gov (United States)

    Tscheik, Christian; Blasig, Ingolf E; Winkler, Lars

    2013-04-01

    A limitation in the uptake of many drugs is the restricted permeation through tissue barriers. There are two general ways to cross barriers formed by cell layers: by transcytosis or by diffusion through the intercellular space. In the latter, tight junctions (TJs) play the decisive role in the regulation of the barrier permeability. Thus, transient modulation of TJs is a potent strategy to improve drug delivery. There have been extensive studies on surfactant-like absorption enhancers. One of the most effective enhancers found is sodium caprate. However, this modulates TJs in an unspecific fashion. A novel approach would be the specific modulation of TJ-associated marvel proteins and claudins, which are the main structural components of the TJs. Recent studies have identified synthetic peptidomimetics and RNA interference techniques to downregulate the expression of targeted TJ proteins. This review summarizes current progress and discusses the impact on TJs' barrier function.

  3. Drugs Approved for Soft Tissue Sarcoma

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for soft tissue sarcoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  4. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.

    2015-11-01

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles

  5. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans

    International Nuclear Information System (INIS)

    Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V.

    1988-01-01

    In vivo glucose uptake can occur via two mechanisms, namely, insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU). Although the principal tissue sites for IMGU are skeletal muscle, the tissue sites for NIMGU at a given serum glucose concentration are not known. To examine this issue, rates of whole body glucose uptake (Rd) were measured at basal and during glucose clamp studies performed at euglycemia (approximately 90 mg/dl) and hyperglycemia (approximately 220 mg/dl) in six lean healthy men. Studies were performed during hyperinsulinemia (approximately 70 microU/ml) and during somatostatin-induced insulinopenia to measure IMGU and NIMGU, respectively. During each study, leg glucose balance (arteriovenous catheter technique) was also measured. With this approach, rates of whole body skeletal muscle IMGU and NIMGU can be estimated, and the difference between overall Rd and skeletal muscle glucose uptake represents non-skeletal muscle Rd. The results indicate that approximately 20% of basal Rd is into skeletal muscle. During insulinopenia approximately 86% of body NIMGU occurs in non-skeletal muscle tissues at euglycemia. When hyperglycemia was created, whole body NIMGU increased from 128 +/- 6 to 213 +/- 18 mg/min (P less than 0.01); NIMGU into non-skeletal muscle tissues was 134 +/- 11 and 111 +/- 6 mg/min at hyperglycemia and euglycemia, respectively, P = NS. Therefore, virtually all the hyperglycemia induced increment in NIMGU occurred in skeletal muscle. During hyperinsulinemia, IMGU in skeletal muscle represented 75 and 95% of body Rd, at euglycemia and hyperglycemia, respectively

  6. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    Science.gov (United States)

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  7. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Full text: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and LH. We carried out this study to investigate FDG uptake in SR and LH to find out the exact tissues of FDG uptake. From September 2002 to March 2003, 147 consecutive patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Of the 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations. The positive rates were 2.1% and 11.3% for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years, 3.4%) showed abnormal FDG uptake in LH, which were definitely localized in the vascular structure of the lung hilum by CT. Co-registered PET/CT imaging shows that the FDG uptake, though well known in the SR and LH regions, is not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were found in aged people. (author)

  8. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Objectives: To investigate FDG uptake on the sites of supraclavicular region (SR) and the lung hilum (LH) and find out the exact tissues of the uptake. Methods: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and EH. From September 2002 to March 2003, 147 consecutive clinical patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in the sites of SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Results: Of 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations, the positive rates were 2.1% and 11.3 % for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years,3.4%) showed abnormal LH FDG uptake, which were definitely localized in the vascular structure of the lung hilum by CT Conclusion: Co-registered PET/CT imaging shows that the FDG uptake been well known in the SR and LH regions are not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were

  9. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery.

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A

    2015-12-21

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.

  10. Uptake of mass drug administration programme for schistosomiasis control in Koome Islands, Central Uganda.

    Directory of Open Access Journals (Sweden)

    Doreen Tuhebwe

    Full Text Available Schistosomiasis is one of the neglected tropical diseases targeted for elimination in Uganda through the Mass Drug Administration (MDA programme. Praziquantel has been distributed using community resource persons in fixed sites and house-to-house visits; however the uptake is still below target coverage. In 2011/2012 MDA exercise, uptake stood at 50% yet WHO target coverage is 75% at community level. We assessed the uptake of MDA and the associated factors in Koome Islands, Central Uganda.In March 2013, we conducted a mixed methods cross sectional study in 15 randomly selected villages. We interviewed a total of 615 respondents aged 18 years and above using semi structured questionnaires and five key informants were also purposively selected. Univariate and multivariate analysis was done. MDA uptake was defined as self reported swallowing of praziquantel during the last (2012 MDA campaign. We conducted key informant interviews with Ministry of Health, district health personnel and community health workers.Self reported uptake of praziquantel was 44.7% (275/615, 95% confidence interval (CI 40.8-48.7%. Of the 275 community members who said they had swallowed praziquantel, 142 (51.6% reported that they had developed side effects. Uptake of MDA was more likely if the respondent was knowledgeable about schistosomiasis transmission and prevention (adjusted odds ratio [AOR] 1.85, 95% CI 1.22-2.81 and reported to have received health education from the health personnel (AOR 5.95, 95% CI 3.67-9.65. Service delivery challenges such as drug shortages and community health worker attrition also influenced MDA in Koome Islands.Uptake of MDA for schistosomiasis control in Koome was sub optimal. Lack of knowledge about schistosomiasis transmission and prevention, inadequate health education and drug shortages are some of the major factors associated with low uptake. These could be addressed through routine health education and systematic drug supply for the

  11. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    Science.gov (United States)

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  12. Non-malignant FDG uptake in infradiaphragmatic adipose tissue: a new site of physiological tracer biodistribution characterised by PET/CT

    International Nuclear Information System (INIS)

    Bar-Shalom, Rachel; Keidar, Zohar; Gaitini, Diana; Israel, Ora

    2004-01-01

    The purpose of this study was to characterise a benign pattern of infradiaphragmatic 18 F-fluorodeoxyglucose (FDG) uptake in cancer patients using PET/CT. Infradiaphragmatic foci of FDG uptake, localised by PET/CT in regions of normal fat tissues, were demonstrated, in conjunction with fatty uptake in the neck and shoulders, in 9 of 1,241 (0.7%) patients. The imaging and clinical characteristics of this pattern and its possible clinical significance were assessed. PET/CT precisely localised infradiaphragmatic fat uptake (IDFU) within normal retroperitoneal fatty tissue of the perirenal space (nine patients) and in the paracolic or parahepatic space (four patients). Perirenal uptake was bilateral in five patients and focal in six. Paracolic and parahepatic uptake was bilateral in three patients and linear in all four patients. There was no evidence of malignancy at any of the sites during a follow-up period of 9-21 months. IDFU was significantly more prevalent in young patients assessed for monitoring response to therapy, and was always associated with the benign supradiaphragmatic uptake pattern, although its prevalence was significantly lower. There were no significant differences between the clinical characteristics of these two patterns of benign fatty FDG uptake. It is concluded that PET/CT allows for precise identification of increased FDG uptake in abdominal fatty tissue and further exclusion of disease at such sites. This benign uptake may represent increased glucose consumption in activated brown adipose tissue, similar to the mechanism suggested for supradiaphragmatic uptake. Recognition of this benign IDFU pattern is important for correct interpretation of abdominal PET findings in cancer patients. (orig.)

  13. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    Science.gov (United States)

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  14. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Directory of Open Access Journals (Sweden)

    Courtney M. Anderson

    2015-02-01

    Full Text Available Brown adipose tissue (BAT possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ. While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.

  15. Uptake of three [3H]progestins by target tissues in vivo: implications for the design of diagnostic imaging agents

    International Nuclear Information System (INIS)

    Carlson, K.E.; Brandes, S.J.; Pomper, M.G.; Katzenellenbogen, J.A.

    1988-01-01

    We have investigated the tissue distribution of radioactivity for 0.5-4 h following the i.v. injection of three tritium-labeled progestins in estrogen-primed, immature rats. Whereas [ 3 H]progesterone shows minimal uterine uptake ( 3 H]R 5020 (promegestrone) and [ 3 H]ORG 2058 show highly selective uptake that reaches 4-5% ID/g by 1-3 h. The uterus to non-target tissue activity ratio at 2-4 h is approximately 12-20 for R 5020 and ORG 2058, but less than 2 for progesterone; the uterus to blood activity ratio for R 5020 is also high (approximately 15), but is lower for ORG 2058, possibly due to the accumulation of radiolabeled metabolites in the blood. The uterine uptake is selectively blocked by simultaneous injection of a large dose of unlabeled steroid, indicating that the uptake is mediated by a high affinity, low capacity binding system, presumably the progesterone receptor. Pronounced uptake is also observed by the liver and into fat, but is not receptor-mediated. The highly selective target tissue uptake by the two synthetic steroids, but not by progesterone, indicates that one must have ligands with sufficiently high affinity for the target tissue receptor, as well as low affinity for certain non-receptor binding proteins, in order to obtain adequate contrast between target and non-target tissues in dynamic uptake studies. These guidelines will be important in the development of suitable in vivo imaging agents based on the progesterone receptor. (author)

  16. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  17. Reduced intracellular drug accumulation in drug-resistant leukemia cells is not solely due to MDR-mediated efflux but also to decreased uptake

    Directory of Open Access Journals (Sweden)

    Angela Oliveira Pisco

    2014-10-01

    Full Text Available Expression of ABC family transporter proteins that promote drug efflux from cancer cells is a widely observed mechanism of multi-drug resistance of cancer cells. Cell adaptation in long-term culture of HL60 leukemic cells in the presence of chemotherapy leads to induction and maintenance of the ABC transporters expression, preventing further accumulation of drugs. However, we found that decreased accumulation of drugs and fluorescent dyes was also contributed by a reduced uptake by the resistant cells. Confocal time-lapse microscopy and flow cytometry revealed that fluid-phase endocytosis was diminished in drug-resistant cells compared to drug-sensitive cells. Drug uptake was increased by insulin co-treatment when cells were grown in methylcellulose and monitored under the microscope, but not when cultured in suspension. We propose that multi-drug resistance is not solely achieved by enhanced efflux capacity but also by supressed intake of the drug offering an alternative target to overcome drug resistance or potentiate chemotherapy.

  18. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  19. Research on the uptake of mercury 197 acetate in early bronchial cancers and on the variation of this uptake during drug therapy

    International Nuclear Information System (INIS)

    Gautier, H.M.

    1975-01-01

    Mercury 197 was proposed as a means to analyze the behavior of early bronchial cancers, especially during drug treatment. This choice was based on four facts: a hyperfixation of mercury has already been demonstrated in malignant intrathoracic tumors; the use of mercury 197 in acetate form gives higher uptake rates than those observed with bichloride; because of its properties mercury 197 is easy to use in routine radioisotopic practice; mercury toxicity is negligible with the preparation employed. The work was performed in two stages: analysis of the uptake conditions for mercury 197 in acetate form in order to detect the factors which influence this uptake and to define its limits and advantages; on the basis of the above notions, use of mercury 197 as tracer to follow the development of bronchial tumors, the aim being to observe the tumor volume variation under drug treatment (the changes in uptake rate are analyzed and the numerical results obtained used to estimate the degree of efficiency of the treatment proposed, the moment of maximum result and the start of a new tumoral growth) [fr

  20. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Veli [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2007-07-15

    Uptake in brown adipose tissue (hibernating fat) is sometimes seen at FDG-PET examinations. Despite a characteristic appearance, this may hide clinically relevant uptake. Stimulation of the sympathetic nervous system increases glucose uptake of brown fat. We now re-examine patients with brown fat activity that could disguise tumour uptake after pre-treatment with propranolol (a non-selective {beta}-blocker) in order to reduce the uptake. Our first examinations of this kind are reported. Eleven patients with strong brown fat uptake were studied. There was a mean of 5 days (range 2-8) between the examinations. At the second examination, 80 mg of propranolol was given orally 2 h before FDG administration. In addition to visual evaluation of the brown fat uptake, SUV assessments of the uptake in brown fat, lung, heart, liver, spleen and bone marrow were made. All patients showed complete or almost complete disappearance of the brown fat activity at the second examination (p < 0.001) both upon visual evaluation and when comparing SUVs. In seven patients there was also uptake in a known or strongly suspected malignancy, which remained unchanged between the examinations. Beyond an insignificant decrease in the myocardial uptake, there was no redistribution to the various examined organs at the second examination. Pre-treatment with a single dose of propranolol blocks the FDG uptake in brown adipose tissue, thereby increasing the specificity of the examination. The tumour uptake seems not to be impaired. (orig.)

  1. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  2. In vitro effects of toxaphene on mitochondrial calcium ATPase and calcium uptake in selected rat tissues

    International Nuclear Information System (INIS)

    Trottman, C.H.; Rao, K.S.P.; Morrow, W.; Uzodinma, J.E.; Desaiah, D.

    1985-01-01

    In vitro effects of toxaphene on Ca 2+ -ATPase activity and 45 Ca 2+ -uptake were studied in mitochondrial fractions of heart, kidney and liver tissues of rat. Mitochondrial fractions were prepared by the conventional centrifugation method. Ca 2+ -ATPase activity was determined by measuring the inorganic phosphate liberated during ATP hydrolysis. Toxaphene inhibited Ca 2+ -ATPase in a concentration dependent manner in all the three tissues. Substrate activation kinetics, with heart, kidney and liver tissue fractions, revealed that toxaphene inhibited Ca 2+ -ATPase activity non-competetively by decreasing the maximum velocity of the enzyme without affecting the enzyme-substrate affinity. Toxaphene also inhibited mitochondrial 45 Ca 2+ -uptake in the three selected tissues in a concentration dependent manner. These results indicate that toxaphene is an inhibitor of mitochondrial Ca 2+ -ATPase and calcium transport in heart, kidney and liver tissues of rat. 19 references, 5 figures

  3. Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution

    Science.gov (United States)

    Kevadiya, Bhavesh D.; Woldstad, Christopher; Ottemann, Brendan M.; Dash, Prasanta; Sajja, Balasrinivasa R.; Lamberty, Benjamin; Morsey, Brenda; Kocher, Ted; Dutta, Rinku; Bade, Aditya N.; Liu, Yutong; Callen, Shannon E.; Fox, Howard S.; Byrareddy, Siddappa N.; McMillan, JoEllyn M.; Bronich, Tatiana K.; Edagwa, Benson J.; Boska, Michael D.; Gendelman, Howard E.

    2018-01-01

    RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, “multimodal imaging theranostic nanoprobes” were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION: We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy. PMID:29290806

  4. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.

    Science.gov (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Watanabe, Tomoko; Debori, Yasuyuki; Maeda, Kazuya; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Ogilvie, Brian W; Parkinson, Andrew; Hu, Zhuohan; Sugiyama, Yuichi

    2011-06-01

    The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 μM, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.

  6. Thyroid uptake test

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    The uptake of radioiodine by the thyroid gland is altered by the iodine content of diet or drugs. American diet has a high iodine content because each slice of the white bread contains nearly 150μg of iodine due to the bleaching process employed in the production of the bread. This carrier content of iodine reduces the uptake so much, that the normal American uptakes are usually three to four times lower than the uptakes in the developing countries. The other drawback of the thyroid uptake test is that it is affected by the iodine containing drugs. Anti-diarrhoea medications are quire common in the developing countries and many of them contain iodine moiety. Without a reliable drug history, a low thyroid uptake value may lead to a misleading conclusion

  7. Uptake of {sup 99m}Tc-labeled chondroitin sulfate by chondrocytes and cartilage: a promising agent for imaging of cartilage degeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Sobal, Grazyna [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)], E-mail: grazyna.sobal@meduniwien.ac.at; Menzel, Johannes [Institute of Immunology, Medical University of Vienna, Vienna 1090 (Austria); Sinzinger, Helmut [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)

    2009-01-15

    Chondroitin sulfate (CS) is used in the treatment of human osteoarthritis as a slow-acting symptomatic drug. For this reason, we performed uptake studies with {sup 99m}TcCS using different chondrocyte cultures, as well as cartilage tissue in vitro. For uptake studies, adherent monolayer cultures of human chondrocytes (2.7x10{sup 4} cells/well) and {sup 99m}TcCS (1 {mu}Ci) were used. In parallel, we also performed uptake studies with cell suspensions of human chondrocytes at 1x10{sup 6} cells/well incubated with {sup 99m}TcCS (5 {mu}Ci) under identical conditions. Uptake was studied also in cartilage tissue samples and frozen tissue sections for autoradiography. The uptake was monitored for 10-240 min, every 10-30 min for cell cultures and for cartilage tissue up to 72 h. As the commercially available drug Condrosulf (IBSA, Lugano, Switzerland) contains magnesium (Mg) stearate as additive, we investigated the uptake with and without this additive. The washout of the tracer was assessed after the uptake experiments with PBS buffer for different time intervals (10 min-3 h). Tracer uptake in monolayer{+-}additives with low number of cells was low. With the use of chondrocytes in culture suspensions with higher number of cells, a higher uptake of 5.9{+-}0.65% and 1.0{+-}0.1% (n=6) was found, with and without additive, respectively. The saturation was achieved after 100 min. With the use of human rib cartilage, the uptake of {sup 99m}TcCS was continuously increasing with time and was very high with additive amounting to 101.8{+-}5.2% vs. 53.0{+-}8.3% (n=6) without after 72 h and showing delayed saturation up to 30 h. Thus, not only the resorption of the drug is enhanced by Mg-stearate, but also the uptake. The washout of the tracer from cartilage after 3 h of uptake amounted to 3.75{+-}1.5% with additive vs. 13.1{+-}2.1% without. After 24 h, washout was lower amounting to 1.75{+-}0.15% vs. 3.25{+-}0.25%, respectively. The autoradiographic studies paralleled the results

  8. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  9. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  10. Technetium-99m sestamibi uptake in human breast carcinoma cell lines displaying glutathione-associated drug-resistance

    International Nuclear Information System (INIS)

    Kabasakal, L.; Oezker, K.; Hayward, M.; Akansel, G.; Griffith, O.; Isitman, A.T.; Hellman, R.; Collier, D.

    1996-01-01

    An in vitro study was designed to evaluate the uptake of sestamibi (MIBI) in P-glycoprotein (Pgp) and glutathione-associated (GSH) multidrug-resistant (MDR) cell lines. MIBI uptake was studied in various human breast carcinoma cell lines, i.e. in wild-type (MCF7/wt) cells, in adriamycin-resistant (MCF7/adr) cells which express Pgp and in melphalan-resistant (MCF7/mph) cells with increased levels of GSH. The effects of buthiomine sulphoximine (BSO) and verapamil on MIBI uptake were also studied in the MCF7/mph and MCF7/adr cells respectively. The cells were incubated for 1 h with a dose of 0.1 MBq thallium-201 and technetium-99m MIBI. Both BIBI and 201 Tl uptakes were higher for MCF7/mph cells than for the other cells studied. The mean MIBI uptake in MCF7/adr cells was significantly lower than that in MCF7/wt cells (1.9%±0.5% vs 3.1%.0.6%; P 0.1). This study suggests that the uptake of MIBI is not diminished by glutathione-associated drug resistance and that MIBI uptake in a tumour sample does not necessarly indicate that a cancer is sensitive to drugs. (orig.)

  11. Mechanism to preserve phrenic nerve function during photosensitization reaction: drug uptake and photosensitization reaction effect on electric propagation

    Science.gov (United States)

    Takahashi, Haruka; Hamada, Risa; Ogawa, Emiyu; Arai, Tsunenori

    2018-02-01

    To study a mechanism of phrenic nerve preservation phenomena during a photosensitization reaction, we investigated an uptake of talaporfin sodium and photosensitization reaction effect on an electric propagation. Right phrenic nerve was completely preserved after superior vena cava isolations using the photosensitization reaction in canine animal experiments, in spite of adjacent myocardium was electrically blocked. We predicted that low drug uptake and/or low photosensitization reaction effect on the nerve might be a mechanism of that phenomena. To investigate uptake to various nerve tissue, a healthy extracted crayfish ventral nerve cord and an extracted porcine phrenic nerve were immersed in 20 μg/ml talaporfin sodium solution for 0-240 min. The mean talaporfin sodium fluorescence brightness increased depending on the immersion time. This brightness saturated around the immersion time of 120 min. We found that talaporfin sodium uptake inside the perineurium which directly related to the electric propagation function was lower than that of outside in the porcine phrenic nerve. To investigate photosensitization reaction effect on electric propagation, the crayfish nerve was immersed into the same solution for 15 min and irradiated by a 663 nm laser light with 120 mW/cm2. Since we found the action potential disappeared when the irradiation time was 25-65 s, we consider that the crayfish nerve does not tolerant to the photosensitization reaction on electric propagation function at atmospheric pressure. From these results, we think that the low uptake of talaporfin sodium inside the perineurium and low oxygen partial pressure of nerve might be the possible mechanism to preserve phrenic nerve in vivo.

  12. Characterization of brown adipose tissue 18F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population

    International Nuclear Information System (INIS)

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    18 F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake 18 F-FDG. The purpose of this study was to determine the imaging characteristics of 18 F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of 18 F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of 18 F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had 18 F-FDG uptake in BAT. 18 F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of 18 F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUV max ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT 18 F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT 18 F-FDG uptake rate (P < 0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR < 1, P < 0.05). Based on the value of OR, the most significant factor that affects BAT 18 F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of 18 F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT 18 F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting 18 F-FDG uptake.

  13. Effect of exercise training on in vivo insulin-stimulated glucose uptake in intra-abdominal adipose tissue in rats

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Fluckey, J D

    2000-01-01

    Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric) and in subcuta......Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric...

  14. Study of the Dynamic Uptake of Free Drug and Nanostructures for Drug Delivery Based on Bioluminescence Measurements

    Directory of Open Access Journals (Sweden)

    Zhongjian Fang

    2017-01-01

    Full Text Available The past two decades have witnessed the great growth of the development of novel drug carriers. However, the releasing dynamics of drug from drug carriers in vivo and the interactions between cells and drug carriers remain unclear. In this paper, liposomes were prepared to encapsulate D-luciferin, which was the substrate of luciferase and served as a model drug. Based on the theoretical calculation of active loading, methods of preparation for liposomes were optimized. Only when D-luciferin was released from liposomes or taken in by the cells could bioluminescence be produced under the catalysis of luciferase. Models of multicellular tumor spheroid (MCTS were built with 4T1-luc cells that expressed luciferase stably. The kinetic processes of uptake and distribution of free drugs and liposomal drugs were determined with models of cell suspension, monolayer cells, MCTS, and tumor-bearing nude mice. The technology platform has been demonstrated to be effective for the study of the distribution and kinetic profiles of various liposomes as drug delivery systems.

  15. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    Science.gov (United States)

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry

    International Nuclear Information System (INIS)

    Koelmel, Jeremy; Leland, Thomas; Wang, Huanhua; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2013-01-01

    The tissue level uptake and spatial distribution of gold nanoparticles (AuNPs) in rice (Oryza sativa L.) roots and shoots under hydroponic conditions was investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Rice plants were hydroponically exposed to positively, neutrally, and negatively charged AuNPs [AuNP1(+), AuNP2(0), AuNP3(−)] with a core diameter of 2 nm. Plants were exposed to AuNPs having 1.6 mg Au/L for 5 days or 0.14 mg Au/L for 3 months to elucidate how the surface charges of the nanoparticles affects their uptake into living plant tissues. The results demonstrate that terminal functional groups greatly affected the AuNP uptake into plant tissues. Au concentration determined by LA-ICP-MS in 5 day treated rice roots followed this order: AuNP1(+) > AuNP2(0) > AuNP3(−) but this order was reversed for rice shoots, indicating preferential translocation of AuNP3(−). Bioimages revealed distributions of mesophyll and vascular AuNP dependent on organ or AuNP concentration. Highlights: ► LA-ICP-MS technique was effectively used to quantify engineered AuNP in rice plant. ► Uptake and translocation of AuNPs are evident in rice roots and shoots. ► Organ level distribution of AuNPs is affected by their surface charges. ► Bioimaging of AuNP distribution in rice tissues by LA-ICP-MS was demonstrated. -- The tissue level uptake and spatial distribution of engineered gold nanoparticles (AuNP) by rice plants was demonstrated by LA-ICP-MS bioimaging

  17. Drug tendering: drug supply and shortage implications for the uptake of biosimilars

    Directory of Open Access Journals (Sweden)

    Dranitsaris G

    2017-09-01

    impact on global health care spending and should result in overall savings. However, the use of tendering to maximize the potential benefits of biosimilars has varied across the world. Therefore, the objectives of this review are to examine the drug-tendering process and its implications on drug supply and drug shortages, as well as to describe biosimilars and how tendering may influence their uptake. Keywords: biosimilars, drug shortages, drug supply, small-molecule drugs, tendering

  18. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery.

    Science.gov (United States)

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-07-01

    Folate receptor is overexpressed on the activated (but not quiescent) macrophages in both animal models and human patients with naturally occurring rheumatoid arthritis. The aim of this study was to prepare folate targeted poly(ethylene glycol) (PEG) conjugates of anionic dendrimer (G3.5 PAMAM) as targeted drug delivery systems to inflammation and to investigate its biodistribution pattern in arthritic rats. Folate-PEG-PAMAM conjugates, with different degrees of substitution were synthesized by a two-step reaction through a carbodiimide-mediated coupling reaction and loaded with indomethacin. Folate-PEG conjugation increased the drug loading efficiency by 10- to 20-fold and the in vitro release profile indicated controlled release of drug. The plasma pharmacokinetic parameters indicated an increased AUC, circulatory half-life and mean residence time for the folate-PEG conjugates. The tissue distribution studies revealed significantly lesser uptake by stomach for the folate-PEG conjugates, thereby limiting gastric-related side effect. The time-averaged relative drug exposure (r(e)) of the drug in paw for the folate-PEG conjugates ranged from 1.81 to 2.37. The overall drug targeting efficiency (T(e)) was highest for folate-PEG conjugate (3.44) when compared to native dendrimer (1.72). The folate-PEG-PAMAM conjugates are the ideal choice for targeted delivery of antiarthritic drugs to inflammation with reduced side-effects and higher targeting efficiency. Copyright 2007 Wiley Periodicals, Inc.

  19. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.

    Science.gov (United States)

    Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan

    2014-01-01

    Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue. © 2013 Published by Elsevier Ltd.

  20. Temporal relation between temperature change and FDG uptake in brown adipose tissue

    International Nuclear Information System (INIS)

    Kim, SunHee; Krynyckyi, Borys R.; Machac, Josef; Kim, Chun K.

    2008-01-01

    It has been reported that the prevalence of 18 F fluorodeoxyglucose (FDG) uptake in brown adipose tissue (BAT) is related to outdoor temperature, i.e., more frequent during the colder periods of the year. The purpose of this study was to assess the temporal relationship between BAT FDG uptake and temperature. We correlated the prevalence of BAT with average temperatures (divided into five temperature ranges) of seven different durations. One thousand four hundred ninety-five consecutive FDG Positron emission tomography (PET) studies in 1,159 patients (566 male and 593 female, mean age = 60.4 years) were retrospectively reviewed. FDG uptake with distinct patterns compatible with BAT was identified by a consensus of two readers. The local daily average temperature from January 2000 to November 2003 (beginning 60 days before the date of first PET scan) were obtained, and 2-, 3-, 7-, 14-, 30-, and 60-day average temperatures before the date of a PET study were calculated. The prevalence of BAT FDG uptake was correlated with these various average temperatures. The daily, 2-day, 3-day, and 7-day average temperature had an inverse relation with the prevalence of BAT, i.e., the lower the temperature, the higher prevalence of BAT. When the temperature was averaged over 14 days or longer, this inverse relationship between the temperature and the prevalence of BAT was no longer preserved. Our data suggest that increased FDG uptake in BAT occurs more often as an acute response to cold weather (1-7 days) rather than to prolonged periods of average cold weather. (orig.)

  1. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles

    Directory of Open Access Journals (Sweden)

    Nagalakshmi Kamaraj

    2017-07-01

    Full Text Available Biodegradable polymer based novel drug delivery systems brought a considerable attention in enhancing the therapeutic efficacy and bioavailability of various drugs. 14-deoxy 11, 12-didehydro andrographolide (poorly water soluble compound loaded polycaprolactone (nano-DDA was synthesized using the solvent evaporation technique. Nano-DDA was characterized by scanning electron microscopy (SEM and dynamic light scattering (DLS studies. Fourier Transform InfraRed Spectroscopy (FTIR was used to investigate the structural interaction between the drug and the polymer. Functional characterization of the formulation was determined using drug content, cellular uptake and in vitro drug release. 2-deoxy-D-[1-3H] glucose uptake assay was carried out to assess the antidiabetic potential of nano-DDA in L6 myotubes. The nano-DDA displayed spherical shape with a smooth surface (252.898 nm diameter, zeta potential, encapsulation and loading efficiencies of −38.9 mV, 91.98 ± 0.13% and 15.09 ± 0.18% respectively. No structural alteration between the drug and the polymer was evidenced (FTIR analysis. Confocal microscopy studies with rhodamine 123 loaded polycaprolactone nanoparticles (Rh123-PCL NPs revealed the internalization of Rh123-PCL NPs in a time dependent manner in L6 myoblasts. A dose dependent increase in glucose uptake was observed for nano-DDA with a maximal uptake of 108.54 ± 1.42% at 100 nM on L6 myotubes, thereby proving its anti-diabetic efficacy. A biphasic pattern of in vitro drug release demonstrated an initial burst release at 24 h followed by a sustained release for up to 11 days. To conclude, our results revealed that nano-DDA formulation can be a potent candidate for antidiabetic drug delivery.

  2. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    Science.gov (United States)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  3. Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues.

    Science.gov (United States)

    Fischer, Romy; Debbabi, Hajer; Blais, Anne; Dubarry, Michel; Rautureau, Michèle; Boyaka, Prosper N; Tome, Daniel

    2007-10-01

    Lactoferrin is a glycoprotein with antimicrobial and immunoregulatory properties, which is found in milk, other external secretions, and in the secondary granules of neutrophils. The present study examined the time course of uptake and the pattern of tissue accumulation of bovine lactoferrin (bLf) following intragastric intubation of a single dose to adult naïve mice or to mice daily fed bLf for 4 weeks. Following ingestion, bLf was transferred from the intestine into peripheral blood in a form with intact molecular weight (80 kDa) and localized within 10 to 20 min after oral administration in the liver, kidneys, gall bladder, spleen, and brain of both groups of mice. Immunoreactive bLf could also be detected in the luminal contents of the stomach, small intestine and colon 1 h after intragastric intubation. Interestingly, serum and tissue accumulation of bLf was approximately 50% lower in mice chronically fed this protein than in those given only the single oral dose. Furthermore, significant levels of bLf-specific IgA and IgG antibodies as well as bLf-containing IgA- and IgG immune complexes were detected in mice chronically fed bLf but not in those fed only once. Taken together, these results indicate that bLf resists major proteolytic degradation in the intestinal lumen and is readily absorbed in an antigenic form in blood and various mouse tissues. Chronic ingestion of lactoferrin reduces its uptake, probably through mechanisms such as immune exclusion, which minimize potential harmful reactions to food products.

  4. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis

    Science.gov (United States)

    Heinrichs, M. Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D.; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A.; Blumberg, Henry M.; Vashakidze, Sergo

    2017-01-01

    ABSTRACT Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary (n = 6 patients), mass-like (n = 3 patients), or consolidative (n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis (R = −0.66, P = 0.04) and acid-fast bacilli (R = −0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. PMID:28373198

  5. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis.

    Science.gov (United States)

    Kempker, Russell R; Heinrichs, M Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A; Blumberg, Henry M; Vashakidze, Sergo

    2017-06-01

    Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary ( n = 6 patients), mass-like ( n = 3 patients), or consolidative ( n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis ( R = -0.66, P = 0.04) and acid-fast bacilli ( R = -0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. Copyright © 2017 American Society for Microbiology.

  6. A novel concept for tumour targeting with radiation: Inverse dose-painting or targeting the "Low Drug Uptake Volume".

    Science.gov (United States)

    Yaromina, Ala; Granzier, Marlies; Biemans, Rianne; Lieuwes, Natasja; van Elmpt, Wouter; Shakirin, Georgy; Dubois, Ludwig; Lambin, Philippe

    2017-09-01

    We tested a novel treatment approach combining (1) targeting radioresistant hypoxic tumour cells with the hypoxia-activated prodrug TH-302 and (2) inverse radiation dose-painting to boost selectively non-hypoxic tumour sub-volumes having no/low drug uptake. 18 F-HX4 hypoxia tracer uptake measured with a clinical PET/CT scanner was used as a surrogate of TH-302 activity in rhabdomyosarcomas growing in immunocompetent rats. Low or high drug uptake volume (LDUV/HDUV) was defined as 40% of the GTV with the lowest or highest 18 F-HX4 uptake, respectively. Two hours post TH-302/saline administration, animals received either single dose radiotherapy (RT) uniformly (15 or 18.5Gy) or a dose-painted non-uniform radiation (15Gy) with 50% higher dose to LDUV or HDUV (18.5Gy). Treatment plans were created using Eclipse treatment planning system and radiation was delivered using VMAT. Tumour response was quantified as time to reach 3 times starting tumour volume. Non-uniform RT boosting tumour sub-volume with low TH-302 uptake (LDUV) was superior to the same dose escalation to HDUV (pvolume with no/low activity of hypoxia-activated prodrugs. This strategy applies on average a lower radiation dose and is as effective as uniform dose escalation to the entire tumour. It could be applied to other type of drugs provided that their distribution can be imaged. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    Science.gov (United States)

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  8. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Sofia Dias

    2018-01-01

    Full Text Available Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins, ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide on adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism, inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle cardiovascular disease.

  9. Antibody Drug Conjugates Differentiate Uptake and DNA Alkylation of Pyrrolobenzodiazepines in Tumors from Organs of Xenograft Mice.

    Science.gov (United States)

    Ma, Yong; Khojasteh, S Cyrus; Hop, Cornelis E C A; Erickson, Hans K; Polson, Andrew; Pillow, Thomas H; Yu, Shang-Fan; Wang, Hong; Dragovich, Peter S; Zhang, Donglu

    2016-12-01

    Pyrrolobenzodiazepine (PBD)-dimer is a DNA minor groove alkylator, and its CD22 THIOMAB antibody drug conjugate (ADC) demonstrated, through a disulfide linker, an efficacy in tumor reduction for more than 7 weeks with minimal body weight loss in xenograft mice after a single 0.5-1 mg/kg i.v. dose. The DNA alkylation was investigated here in tumors and healthy organs of mice to understand the sustained efficacy and tolerability. The experimental procedures included the collection of tumors and organ tissues of xenograft mice treated with the ADC followed by DNA isolation/hydrolysis/quantitation and payload recovery from reversible DNA alkylation. PBD-dimer formed a considerable amount of adducts with tissue DNA, representing approximately 98% (at 24 hours), and 99% (at 96 hours) of the total PBD-dimer in tumors, and 78-89% in liver and lung tissues, suggesting highly efficient covalent binding of the released PBD-dimer to tissue DNA. The amount of PBD-DNA adducts in tumor tissues was approximately 24-fold (at 24 hours) and 70-fold (at 96 hours) greater than the corresponding amount of adducts in liver and lung tissues. In addition, the DNA alkylation levels increased 3-fold to 4-fold from 24 to 96 hours in tumors [41/10 6 base pairs (bp) at 96 hours] but remained at the same level (1/10 6 bp) in livers and lungs. These results support the typical target-mediated cumulative uptake of ADC into tumors and payload release that offers an explanation for its sustained antitumor efficacy. In addition, the low level of DNA alkylation in normal tissues is consistent with the tolerability observed in mice. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Drug trafficking in mice: In vivo functions of OATP uptake and ABC efflux transporters

    NARCIS (Netherlands)

    Iusuf, D.

    2013-01-01

    In recent years, there has been increasing attention for drug uptake transporters of the Organic Anion-Transporting Polypeptide (human OATP, mouse Oatp, gene names SLCO, Slco) superfamily. Especially the OATP1A and OATP1B subfamilies turn out to have important physiological and pharmacological

  11. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  12. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  13. Diagnostic significance of /sup 99m/tc-marked phosphate uptake in the soft tissues of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Bostel, F.; Meybier, H.

    1981-03-01

    A patient with a right-sided carcinoma of the breast had a bone scintigram with sup(99m)Tc-methylendisphosphonate (sup(99m)Tc-MDP), which showed intensive uptake in the abnormal breast; a year after mastectomy, similar high uptake of the drug was found in the remaining breast. The radiological findings indicated a fibrocystic mastopathy without evidence of malignancy in the left breast. A review of the literature suggested that uptake of osteotropic polyphosphate compounds in the breast was of considerable significance, indicating incipient or developing malignancy. A review of our own cases cast considerable doubt on this interpretation. It is probable that MDP uptake in the breast depends in part on the hormonal pattern and may occasionally be observed during oestrogen therapy in the male (e.g. carcinoma of the prostate).

  14. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review.

    Science.gov (United States)

    Madikizela, Lawrence Mzukisi; Ncube, Somandla; Chimuka, Luke

    2018-04-27

    Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern. Few review papers focusing on the uptake of pharmaceuticals, in particular antibiotics, and their translocation in plant tissues have been published. In the current review paper, the work conducted on the uptake of pharmaceuticals belonging to different therapeutic groups such as antibiotics, non-steroidal anti-inflammatory drugs, β-blockers and antiepileptics is reviewed. Such work includes the occurrence of pharmaceuticals in plants, translocation once taken by plants, toxicity studies as well as implications and future studies. Furthermore, the advantages and drawbacks associated with the detection and uptake of these pharmaceuticals by plants are discussed. In addition, the physico-chemical properties that could influence the plant uptake of pharmaceuticals are deliberated. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The suprachiasmatic nucleus drives day-night variations in postprandial triglyceride uptake into skeletal muscle and brown adipose tissue.

    Science.gov (United States)

    Moran-Ramos, Sofía; Guerrero-Vargas, Natali N; Mendez-Hernandez, Rebeca; Basualdo, Maria Del Carmen; Escobar, Carolina; Buijs, Ruud M

    2017-12-01

    What is the central question of this study? What are the factors influencing day-night variations in postprandial triglycerides? What is the main finding and its importance? Rats show low postprandial plasma triglyceride concentrations early in the active period that are attributable to a higher uptake by skeletal muscle and brown adipose tissue. We show that these day-night variations in uptake are driven by the suprachiasmatic nucleus, probably via a Rev-erbα-mediated mechanism and independent of locomotor activity. These findings highlight that the suprachiasmatic nucleus has a major role in day-night variations in plasma triglycerides and that disturbances in our biological clock might be an important risk factor contributing to development of postprandial hyperlipidaemia. Energy metabolism follows a diurnal pattern, mainly driven by the suprachiasmatic nucleus (SCN), and disruption of circadian regulation has been linked to metabolic abnormalities. Indeed, epidemiological evidence shows that night work is a risk factor for cardiovascular disease, and postprandial hyperlipidaemia is an important contributor. Therefore, the aim of this work was to investigate the factors that drive day-night variations in postprandial triglycerides (TGs). Intact and SCN-lesioned male Wistar rats were subjected to an oral fat challenge during the beginning of the rest phase (day) or the beginning of the active phase (night). The plasma TG profile was evaluated and tissue TG uptake assayed. After the fat challenge, intact rats showed lower postprandial plasma TG concentrations early in the night when compared with the day. However, no differences were observed in the rate of intestinal TG secretion between day and night. Instead, there was a higher uptake of TG by skeletal muscle and brown adipose tissue early in the active phase (night) when compared with the rest phase (day), and these variations were abolished in rats bearing bilateral SCN lesions. Rev-erbα gene expression

  16. Effect of dietary fat on uptake of lysine, phenylalanine, leucine and methionine by bovine mammary tissue slices in vitro

    International Nuclear Information System (INIS)

    Nianogo, A.J.; Amos, H.E.; Dean, R.; Froetschel, A.; Fernandez, J.M.

    1989-01-01

    Four mature Holstein cows in late lactation were blocked in two groups based on milk production, in a 2x2 reversal with 21-day periods, and fed: (A) control diet; (B) A plus 1 kg/day tallow. Cows were fed sorghum silage ad libitum. Blood samples were collected from the jugular vein on day 15, 17, and 19 of each period. Fat did not effect DM intake or milk yield, however milk CP yield was 20% lower. Plasma lipids increased 33.6%, glucose decreased 9% and insulin/glucagon ratio decreased 21.2% in cow fed fat. After period two, cows were slaughtered and mammary tissue sampled for incubation in Krebs Ringer bicarbonate buffer containing 22 AA at arterial concentration and .225 μCi/ml of 14 C-labelled L-Leu, L-Phe, L-Lys or D/L Met. Dietary fat decreased tissue AA uptake rate by 21.2%. Uptake was 4.8, 10.3, 17.8 and 2.4 x 10 -3 μM/min/gm of tissue DM for Phe, Lys, Leu and Met, respectively. Results suggest that dietary fat may decrease milk protein synthesis by lowering the rate of AA uptake

  17. Introduction for the special issue on recent advances in drug delivery across tissue barriers.

    Science.gov (United States)

    Mrsny, Randall J; Brayden, David J

    2016-01-01

    This special issue of Tissue Barriers contains a series of reviews with the common theme of how biological barriers established at epithelial tissues limit the uptake of macromolecular therapeutics. By improving our functional understanding of these barriers, the majority of the authors have highlighted potential strategies that might be applied to the non-invasive delivery of biopharmaceuticals that would otherwise require an injection format for administration. Half of the articles focus on the potential of particular technologies to assist oral delivery of peptides, proteins and other macromolecules. These include use of prodrug chemistry to improve molecule stability and permeability, and the related potential for oral delivery of poorly permeable agents by cell-penetrating peptides and dendrimers. Safety aspects of intestinal permeation enhancers are discussed, along with the more recent foray into drug-device combinations as represented by intestinal microneedles and externally-applied ultrasound. Other articles highlight the crossover between food research and oral delivery based on nanoparticle technology, while the final one provides a fascinating interpretation of the physiological problems associated with subcutaneous insulin delivery and how inefficient it is at targeting the liver.

  18. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Larsen, J J; Mikines, K J

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration......-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis...

  19. Evaluation of Tissue Interactions with Mechanical Elements of a Transscleral Drug Delivery Device

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Borenstein

    2012-03-01

    Full Text Available The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device—one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene (PTFE membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation.

  20. The diagnostic significance of sup(99m)TC-marked phosphate uptake in the soft tissues of the breast

    International Nuclear Information System (INIS)

    Bostel, F.; Meybier, H.; Heidelberg Univ.

    1981-01-01

    A patient with a right-sided carcinoma of the breast had a bone scintigram with sup(99m)Tc-methylendisphosphonate (sup(99m)Tc-MDP), which showed intensive uptake in the abnormal breast; a year after mastectomy, similar high uptake of the drug was found in the remaining breast. The radiological findings indicated a fibrocystic mastopathy without evidence of malignancy in the left breast. A review of the literature suggested that uptake of osteotropic polyphosphate compounds in the breast was of considerable significance, indicating incipient or developing malignancy. A review of our own cases cast considerable doubt on this interpretation. It is probable that MDP uptake in the breast depends in part on the hormonal pattern and may occasionally be observed during oestrogen therapy in the male (e.g. carcinoma of the prostate). (orig.) [de

  1. Tumor and liver drug uptake following hepatic artery and portal vein infusion

    International Nuclear Information System (INIS)

    Sigurdson, E.R.; Ridge, J.A.; Kemeny, N.; Daly, J.M.

    1987-01-01

    Anatomic dye injection studies of the blood supply of colorectal hepatic metastases suggest that tumors are supplied predominantly by the hepatic artery. Using 13 N amino acids with dynamic gamma camera imaging in patients with colorectal hepatic metastases, it has been shown that hepatic artery infusion results in a significantly greater nutrient delivery to tumor compared with portal vein infusion. However, direct measurements of drug levels in tumor following hepatic artery and portal vein infusion in humans have not previously been reported. Patients with metastatic colorectal cancer confined to the liver received fluorodeoxyuridine (FUdR) through the hepatic artery or through the portal vein. All patients had previously failed systemic chemotherapy. Five patients with hepatic artery catheters were matched (by age, serum lactic dehydrogenase levels, percent hepatic replacement, and tumor size) with five patients with portal vein catheters. At operation, 3 H-FUdR (1 microCi/kg) and /sup 99m/Tc-macroaggregated albumin (MAA) (6 mCi) were injected into the hepatic artery or portal vein. Liver and tumor biopsies were obtained two and five minutes later. 3 H and /sup 99m/Tc were measured per gram tissue by scintillation and gamma counting. The mean liver levels following hepatic artery infusion (23.9 +/- 11.4 nmol/g) and portal vein infusion (18.4 +/- 14.5 nmol/g) did not differ. However, the mean tumor FUdR level following hepatic artery infusion was 12.4 +/- 12.2 nmol/g, compared with a mean tumor FUdR level following portal vein infusion of 0.8 +/- 0.7 nmol/g (P less than .01). This low level of tumor drug uptake after portal vein infusion of FUdR predicts minimal tumor response to treatment via this route. Thus, regional chemotherapy for established colorectal hepatic metastases should be administered through the hepatic artery

  2. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Directory of Open Access Journals (Sweden)

    Karolin Hijazi

    Full Text Available Anti-retroviral (ARV -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on

  3. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Science.gov (United States)

    Hijazi, Karolin; Cuppone, Anna M; Smith, Kieron; Stincarelli, Maria A; Ekeruche-Makinde, Julia; De Falco, Giulia; Hold, Georgina L; Shattock, Robin; Kelly, Charles G; Pozzi, Gianni; Iannelli, Francesco

    2015-01-01

    Anti-retroviral (ARV) -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on expression of drug

  4. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  5. Synthesis of drug loaded magnetic nanoparticles and their uptake into immune cells

    International Nuclear Information System (INIS)

    Prinz, Eva-Marie; Hempelmann, Rolf; Eggers, Ruth; Lee, Hyeck-Hee; Steinfeld, Ute

    2010-01-01

    Ferrite nanoparticles (Mn 0,8 Zn 0,2 Fe 2 O 4 ) are synthesized by the co-precipitation method and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. The particles are functionalized with dextran which is activated via amino or carboxymethyl groups. The chemotherapeutic drug doxorubicin (DOX) is attached to these dextran derivates in different ways. One method is based on the attachment of DOX to amino dextran by its keto group; the other is a bond to the primary amino group of DOX. The characterization of drug loaded dextran derivates is performed by Raman, FT-IR-, UV/VIS-and fluorescence spectroscopy. The biofunctionalized particles are intended for use in adoptive cancer immunotherapy as a new approach, where immune cells (T lymphocytes) will be used as new autonomous highly target specific drug delivery systems. The uptake efficiency of these particles into T lymphocytes is investigated by fluorescence and convocal microscopy.

  6. A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design.

    Science.gov (United States)

    Poulin, Patrick

    2015-07-01

    A basic assumption in pharmacokinetics-pharmacodynamics research is that the free drug concentration is similar in plasma and tissue, and, hence, in vitro plasma data can be used to estimate the in vivo condition in tissue. However, in a companion manuscript, it has been demonstrated that this assumption is violated for the ionized drugs. Nonetheless, these observations focus on in vitro static environments and do not challenge data with an in vivo dynamic system. Therefore, an extension from an in vitro to an in vivo system becomes the necessary next step. The objective of this study was to perform theoretical simulations of the free drug concentration in tissue and plasma by using a physiologically based pharmacokinetics (PBPK) model reproducing the in vivo conditions in human. Therefore, the effects of drug ionization, lipophilicity, and clearance have been taken into account in a dynamic system. This modeling exercise was performed as a proof of concept to demonstrate that free drug concentration in tissue and plasma may also differ in a dynamic system for passively permeable drugs that are ionized at the physiological pH. The PBPK model simulations indicated that free drug concentrations in tissue cells and plasma significantly differ for the ionized drugs because of the pH gradient effect between cells and interstitial space. Hence, a rule of thumb for potentially performing more accurate PBPK/PD modeling is suggested, which states that the free drug concentration in tissue and plasma will differ for the ionizable drugs in contrast to the neutral drugs. In addition to the pH gradient effect for the ionizable drugs, lipophilicity and clearance effects will increase or decrease the free drug concentration in tissue and plasma for each class of drugs; thus, higher will be the drug lipophilicity and clearance, lower would be the free drug concentration in plasma, and, hence, in tissue, in a dynamic in vivo system. Therefore, only considering the value of free

  7. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-05-01

    Full Text Available Huperzine A (Hup-A is a poorly water-soluble drug with low oral bioavailability. A self-microemulsifying drug delivery system (SMEDDS was used to enhance the oral bioavailability and lymphatic uptake and transport of Hup-A. A single-pass intestinal perfusion (SPIP technique and a chylomicron flow-blocking approach were used to study its intestinal absorption, mesenteric lymph node distribution and intestinal lymphatic uptake. The value of the area under the plasma concentration–time curve (AUC of Hup-A SMEDDS was significantly higher than that of a Hup-A suspension (P<0.01. The absorption rate constant (Ka and the apparent permeability coefficient (Papp for Hup-A in different parts of the intestine suggested a passive transport mechanism, and the values of Ka and Papp of Hup-A SMEDDS in the ileum were much higher than those in other intestinal segments. The determination of Hup-A concentration in mesenteric lymph nodes can be used to explain the intestinal lymphatic absorption of Hup-A SMEDDS. For Hup-A SMEDDS, the values of AUC and maximum plasma concentration (Cmax of the blocking model were significantly lower than those of the control model (P<0.05. The proportion of lymphatic transport of Hup-A SMEDDS and Hup-A suspension were about 40% and 5%, respectively, suggesting that SMEDDS can significantly improve the intestinal lymphatic uptake and transport of Hup-A.

  8. Early uptake and continuous accumulation of thallium-201 chloride in a benign mixed tumor of soft tissue: Case Report

    Directory of Open Access Journals (Sweden)

    Hamada Kenichiro

    2010-05-01

    Full Text Available Abstract A case of benign mixed tumor of the soft tissue in a 64-year-old Japanese male is presented. He noticed a painless, elastic hard mass sized 3 cm in the right knee, which gradually grew larger and harder in the last 5 years. Magnetic resonance imaging demonstrated a mass lesion embedded in the subcutaneous tissue with low and high signal intensity at T1- and T2-weighted images, respectively. Tl-201 scintigraphy showed an early uptake of Tl-201 within the lesion at 10 minutes after injection, which was slightly decreased but still continued at 2 hours later. The patient underwent a resection of tumor, and the pathological diagnosis was a benign mixed tumor of soft tissue without high vascularity, characterized by histological features similar to pleomorphic adenomas in the salivary glands. Immunohistochemical study proved expression of Na+/K+-ATPase of tumor cells. Overexpression of Na+/K+-ATPase of the tumor might be responsible for the early uptake of Tl-201, and poor vascular structure in this tumor might lead to continuous accumulation. The Tl-201 scintigraphic features of mixed tumor of soft tissue are assessed to resemble those of malignant soft tissue tumors.

  9. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    Science.gov (United States)

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  10. Increased technetium-99 m hydroxy diphosphonate soft tissue uptake on bone scintigraphy in chronic kidney disease patients with secondary hyperparathyroidism: correlation with hyperphosphataemia.

    Science.gov (United States)

    Enevoldsen, Lotte Hahn; Heaf, James; Højgaard, Liselotte; Zerahn, Bo; Hasbak, Philip

    2017-03-01

    In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and/or hyperphosphataemia. As human vascular smooth muscle cells produce hydroxyapatite during cell culture with increased phosphate levels and as Tc-99 m-HDP/MDP primarily binds to hydroxyapatite, we hypothesized that soft tissue accumulation would be found in patients with hyperphosphataemia. We identified 63 CKD patients diagnosed with secondary hyperparathyroidism admitted for Tc-99 m-HDP bone scan. Baseline characteristics and mean concentrations of biochemical markers (including P-calcium and P-phosphate) taken 0-3 months prior to the bone scans were collected. Soft tissue uptake was detected on bone scans in 37 of 63 (59%) patients. Primary locations were in the heart (27/37 = 73%), muscles (12/37 = 32%), lung (9/37 = 24%) and gastrointestinal tract (6/37 = 16%), and 13 of 37 (35%) patients had simultaneous uptake in more than one location. Regarding biochemical markers, patients with soft tissue uptake only differed from patients without in terms of plasma phosphate levels (1·95 ± 0·15 (n = 37) versus 1·27 ± 0·08 (n = 26), P = 0·0012). All patients with myocardial uptake (n = 27) had a coronary arteriography-verified history of coronary artery disease (CAD), whereas CAD was only present in six of the 36 patients without myocardial uptake. In conclusion, dialysis-treated CKD patients with secondary hyperparathyroidism have a high incidence of soft tissue uptake, and this finding is strongly correlated with elevated phosphate, but not calcium values. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Accumulation of polymorphonuclear leukocytes in reperfused ischemic canine myocardium: relation with tissue viability assessed by fluorine-18-2-deoxyglucose uptake

    International Nuclear Information System (INIS)

    Wijns, W.; Melin, J.A.; Leners, N.

    1988-01-01

    Polymorphonuclear leukocytes may participate in reperfusion injury. Whether leukocytes affect viable or only irreversibly injured tissue is not known. Therefore, we assessed the accumulation of 111In-labeled leukocytes in tissue samples characterized as either ischemic but viable or necrotic by metabolic, histochemical, and ultrastructural criteria. Six open-chest dogs received left anterior descending coronary occlusion for 2 hr followed by 4 hr reperfusion. Myocardial blood flow was determined by microspheres and autologous 111In-labeled leukocytes were injected intravenously. Fluorine-18-2-deoxyglucose, a tracer of exogenous glucose utilization, was injected 3 hr after reperfusion. The dogs were killed 4 hr after reperfusion. The risk and the necrotic regions were assessed following in vivo dye injection and postmortem tetrazolium staining. Myocardial samples were obtained in the ischemic but viable, necrotic and normal zones, and counted for 111In and 18F activity. Compared to normal, leukocytes were entrapped in necrotic regions (111In activity: 207 +/- 73%) where glucose uptake was decreased (26 +/- 15%). A persistent glucose uptake, marker of viability, was mainly seen in risk region (135 +/- 85%) where leukocytes accumulation was moderate in comparison to normal zone (146 +/- 44%). Thus, the glucose uptake observed in viable tissue is mainly related to myocytes metabolism and not to leukocytes metabolism

  12. Drug uptake (DAPI) of trypanosomes (T. brucei) and antitrypanosomal activity in vitro, in culture and in vivo studied by microscope fluorometry, chromatogram spectrophotometry and radiotracer techniques

    International Nuclear Information System (INIS)

    Kratzer, R.D.

    1982-01-01

    The present study had the following objectives: 1) Investigation of the specific binding and location of the diamidine DAPI within trypanosomes by fluorescence microscopy. 2) Development and standardization of a microscope fluorometry technique for measuring DAPI uptake of single trypanosomes. 3) Determination of the effect of incubation media, exposure time, and drug concentration on DAPI uptake of single trypanosomes. 4) Development of a technique applicable for quantitative fluorescence chemical analysis of DAPI uptake of trypanosomes. 5) Determination of drug uptake of trypanosomes using 14 C labelled DAPI. 6) Comparison of the values obtained by the three methods. (orig./MG)

  13. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    Science.gov (United States)

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  14. Metformin Mitigates Fibrosis and Glucose Intolerance Induced by Doxorubicin in Subcutaneous Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Luana A. Biondo

    2018-05-01

    Full Text Available Doxorubicin (DX is a chemotherapeutic drug that is used in clinical practice that promotes deleterious side effects in non-tumor tissues such as adipose tissue. We showed that DX leads to extensive damage in adipose tissue via a disruption in 5′-adenosine monophosphate-activated protein kinase (AMPK and PPAR-gamma signaling. Thus, we investigated whether co-treatment with the biguanide drug metformin (MET could prevent the side effects of DX through the activation of AMPK in adipose tissue. The goal of the present study was to verify the effects of DX and adjuvant MET treatment in subcutaneous adipose tissue (SAT and to determine whether MET could protect against chemotherapy-induced side effects. C57/BL6 mice received DX hydrochloride (2.5 mg/kg intraperitoneally 2 times per week for 2 weeks (DX, concomitantly or not, with MET administration (300 mg/kg oral daily (DX + MET. The control group (CTRL was pair-fed according to the food consumption of the DX group. After euthanasia, adipose tissue fat pads were collected, and SAT was extracted so that adipocytes could be isolated. Glucose uptake was then measured, and histological, gene, and protein analyses were performed. One-way analysis of variance was also performed, and significance was set to 5%. DX reduced retroperitoneal fat mass and epididymal pads and decreased glycemia. In cultured primary subcutaneous adipocytes, mice in the DX group had lower glucose uptake when stimulated with insulin compared with mice in the CTRL group. Adipocytes in the DX group exhibited a reduced area, perimeter, and diameter; decreased adiponectin secretion; and decreased fatty acid synthase gene expression. SAT from MET-treated mice also showed a reduction in collagen deposition. Treatment with MET prevented fibrosis and restored glucose uptake in SAT after insulin stimulation, yet the drug was unable to prevent other side effects of DX such as tissue loss and inflammatory response.

  15. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    Directory of Open Access Journals (Sweden)

    Natalia Brzozowska

    2016-05-01

    Full Text Available Cannabidiol (CBD is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp and breast cancer resistance protein (Bcrp mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−, Bcrp knockout (Abcg2−∕−, combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕− and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  16. Uptake studies with chondrotropic 99mTc-chondroitin sulfate in articular cartilage. Implications for imaging osteoarthritis in the knee

    International Nuclear Information System (INIS)

    Sobal, Grazyna; Dorotka, Ronald; Menzel, Johannes; Sinzinger, Helmut

    2013-01-01

    Chondroitin sulfate (CS) is an endogenous component of extracellular matrix in the cartilage and can be valuable for imaging of cartilage degeneration after radiolabeling. Data monitoring the uptake of 99m TcCS by human cartilage are rare. Radiolabeling was performed by 99m TcO 4 − /tin method at pH 5.0 in 0.5 M sodium acetate. For uptake studies human articular cartilage (n = 4, 65–79a) derived from individuals undergoing knee replacement (pieces of 3–5 mg wet weight), or frozen tissue sections (5 μ) for autoradiography (10 μCi) were used. The uptake was monitored from 10 min up to 96 h to achieve saturation. As the commercially available drug Condrosulf (IBSA, Lugano) contains Mg-stearate (0.25%) as additive (to improve its gastrointestinal resorption), we investigated the uptake ± additive. The washout of the tracer was examined by tissue incubation after uptake experiments (3 h and 24 h) with PBS-buffer for 10 min to 3 h. Using human articular cartilage the maximal uptake of 99m TcCS (specific activity of 4.1–6.1 Ci/mmol) was continuously increasing with time amounting to a maximum of 53.2% ± 3.2% with additive, versus 39.4% ± 2.3%, without additive, at saturation. Additive increased the resorption of the drug and consecutively its uptake. The washout of the tracer from cartilage after 3 h uptake amounted to 1.5% ± 0.2% with additive, versus 2.6% ± 0.5%, without. After 24 h washout was lower amounting to 1.1% ± 0.1% versus 1.75% ± 0.15%, respectively. Autoradiography revealed also a continuous increase in uptake of 99m TcCS with time. After 10 min of incubation the uptake increase was proportional to the incubation time, reaching the maximum at 48–72 h. Enhanced uptake at the surface (superficial zone) as compared to the subchondral part (deep zone) of slices, was observed. The non-specific uptake in the presence of 50-fold excess of cold CS was time-dependent up to a maximum of 15% (tissue) and 10% (autoradiography), at saturation. The

  17. Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application

    Science.gov (United States)

    Dancik, Yuri; Anissimov, Yuri G; Jepps, Owen G; Roberts, Michael S

    2012-01-01

    AIMS To relate the varying dermal, subcutaneous and muscle microdialysate concentrations found in man after topical application to the nature of the drug applied and to the underlying physiology. METHODS We developed a physiologically based pharmacokinetic model in which transport to deeper tissues was determined by tissue diffusion, blood, lymphatic and intersitial flow transport and drug properties. The model was applied to interpret published human microdialysis data, estimated in vitro dermal diffusion and protein binding affinity of drugs that have been previously applied topically in vivo and measured in deep cutaneous tissues over time. RESULTS Deeper tissue microdialysis concentrations for various drugs in vivo vary widely. Here, we show that carriage by the blood to the deeper tissues below topical application sites facilitates the transport of highly plasma protein bound drugs that penetrate the skin, leading to rapid and significant concentrations in those tissues. Hence, the fractional concentration for the highly plasma protein bound diclofenac in deeper tissues is 0.79 times that in a probe 4.5 mm below a superficial probe whereas the corresponding fractional concentration for the poorly protein bound nicotine is 0.02. Their corresponding estimated in vivo lag times for appearance of the drugs in the deeper probes were 1.1 min for diclofenac and 30 min for nicotine. CONCLUSIONS Poorly plasma protein bound drugs are mainly transported to deeper tissues after topical application by tissue diffusion whereas the transport of highly plasma protein bound drugs is additionally facilitated by convective blood, lymphatic and interstitial transport to deep tissues. PMID:21999217

  18. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants

    Czech Academy of Sciences Publication Activity Database

    Stuchlíková Raisová, L.; Podlipná, Radka; Szotáková, B.; Syslová, Eliška; Skálová, L.

    2017-01-01

    Roč. 141, JUL (2017), s. 37-42 ISSN 0147-6513 R&D Projects: GA ČR(CZ) GA15-05325S Institutional support: RVO:61389030 Keywords : Anthelmintics * Benzimidazoles * Drug metabolism * Drug uptake * Phytoremediation Subject RIV: CE - Biochemistry OBOR OECD: Bioremediation, diagnostic biotechnologies (DNA chips and biosensing devices) in environmental management Impact factor: 3.743, year: 2016

  19. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug.

    Science.gov (United States)

    Carlyle, Wenda C; McClain, James B; Tzafriri, Abraham R; Bailey, Lynn; Zani, Brett G; Markham, Peter M; Stanley, James R L; Edelman, Elazer R

    2012-09-28

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (pstent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Stephen R., E-mail: srbowen@wisc.edu [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); Kogel, Albert J. van der [University Medical Centre St. Radboud, Nijmegen (Netherlands); Nordsmark, Marianne [Aarhus University Hospital, Department of Experimental Clinical Oncology, Aarhus (Denmark); Bentzen, Soren M. [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Clinical Sciences Center, Madison, WI 53792 (United States); Jeraj, Robert [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Clinical Sciences Center, Madison, WI 53792 (United States); Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-08-15

    Purpose: Unique uptake and retention mechanisms of positron emission tomography (PET) hypoxia tracers make in vivo comparison between them challenging. Differences in imaged uptake of two common hypoxia radiotracers, [{sup 61}Cu]Cu-ATSM and [{sup 18}F]FMISO, were characterized via computational modeling to address these challenges. Materials and Methods: An electrochemical formalism describing bioreductive retention mechanisms of these tracers under steady-state conditions was adopted to relate time-averaged activity concentration to tissue partial oxygen tension (PO{sub 2}), a common metric of hypoxia. Chemical equilibrium constants of product concentration to reactant concentration ratios were determined from free energy changes and reduction potentials of pertinent reactions reported in the literature. Resulting transformation functions between tracer uptake and PO{sub 2} were compared against measured values in preclinical models. Additionally, calculated PO{sub 2} distributions from imaged Cu-ATSM tracer activity concentrations of 12 head and neck squamous cell carcinoma (HNSCC) patients were validated against microelectrode PO{sub 2} measurements in 69 HNSCC patients. Results: Both Cu-ASTM- and FMISO-modeled PO{sub 2} transformation functions were in agreement with preclinical measured values within single-deviation confidence intervals. High correlation (r{sup 2}=0.94, P<.05) was achieved between modeled PO{sub 2} distributions and measured distributions in the patient populations. On average, microelectrode hypoxia thresholds (2.5 and 5.0 mmHg) corresponded to higher Cu-ATSM uptake [2.5 and 2.0 standardized uptake value (SUV)] and lower FMISO uptake (2.0 and 1.4 SUV). Uncertainties in the models were dominated by variations in the estimated specific activity and intracellular acidity. Conclusions: Results indicated that the high dynamic range of Cu-ATSM uptake was representative of a narrow range of low oxygen tension whose values were dependent on

  1. Neutral tissue uptake and clearance of iohexol following lumbar myelography in rabbits

    International Nuclear Information System (INIS)

    Ekholm, S.E.; Foley, M.; Morris, T.W.; Sahler, L.

    1985-01-01

    The diffusion of water-soluble contrast media (CM) into the extracellular space of the central nervous system following injection into the subarachnoid space has previously been shown. As a result of this, water-soluble CM will come in direct contact with the neurons and may interfere with their normal function. The toxic effects would thus be a result both of the molecular properties of the CM as well as the local tissue concentration. The neuronal tissue uptake and clearance of metrizamide in rabbits following lumbar myelography was described in a previous study by our group. This study indicated some retention of metrizamide in the spinal cord probably as a result of binding of the CM to the cell membrane. The mechanism for this has not yet been shown although it may relate to the binding of metrizamide via its 2-deoxy-D-glucose (2-DG) portion and the specific glucose membrane carrier. The present investigation was performed to evaluate the diffusion kinetics of a new non-ionic CM. With iohexol, which lacks a 2-DG component in its molecule a direct relationship between the neural tissue and CSF concentration was found which seems to follow a simple diffusion model. Since iohexol shows no sign of entrapment in the tissue, the contact time for neurons will be shorter than that seen with metrizamide assuming that their rate of drainage from the SCF is identical. (orig.)

  2. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine.

  3. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    International Nuclear Information System (INIS)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine

  4. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. ``Sheddable'' PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake

    Science.gov (United States)

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-01

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic

  6. Core-shell designed scaffolds for drug delivery and tissue engineering.

    Science.gov (United States)

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The effect of amperozide on uptake and release of [3H]-dopamine in vitro from perfused rat striatal and limbic brain areas

    International Nuclear Information System (INIS)

    Eriksson, E.; Christensson, E.

    1990-01-01

    Amperozide, a putatively antipsychotic drug, was studied for its effects on uptake and release of [ 3 H]-dopamine in rat brain in vitro. Amperozide inhibited uptake of [ 3 H]-dopamine in striatal chopped tissue in vitro with an IC 50 of 18 μM. It also increased basal release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue in vitro at concentrations above 5 μM. Release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue stimulated with 5 μM amphetamine, was inhibited by 1 μM amperozide to 46%. No significant difference was found for the effect of amperozide on in vitro release of [ 3 H]-dopamine from corpus striatum compared to tissue from limbic grain regions; neither on basal release nor on amphetamine-stimulated release of dopamine. (author)

  8. Electrospun nanofibrous materials for tissue engineering and drug delivery

    Directory of Open Access Journals (Sweden)

    Wenguo Cui, Yue Zhou and Jiang Chang

    2010-01-01

    Full Text Available The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers and fiber assemblies (fiber bundles, membranes and scaffolds. This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery.

  9. Experimental studies on interactions of radiation and cancer chemotherapeutic drugs in normal tissues and a solid tumour

    International Nuclear Information System (INIS)

    Maase, H. van der

    1986-01-01

    The interactions of radiation and seven cancer chemotherapeutic drugs have been investigated in four normal tissues and in a solid C 3 H mouse mammary carcinoma in vivo. The investigated drugs were adriamycin (ADM), bleomycin (BLM), cyclophosphamide (CTX), 5-fluorouracil (5-FU), methotrexate (MTX), mitomycin C (MM-C) and cis-diamminedichloroplatinum(II) (cis-DDP). The drugs enhanced the radiation response in most cases. However, signs of radioprotection was observed for CTX in skin and for MTX in haemopoietic tissue. The interval and the sequence of the two treatment modalities were of utmost importance for the normal tissue reactions. In general, the most serious interactions occurred when drugs were administered simultaneously with or a few hours before radiation. The radiation-modifying effect of the drugs deviated from this pattern in the haemopoietic tissue as the radiation response was most enhanced on drug administration 1-3 days after radiation. Enhancement of the radiation response was generally less pronounced in the tumour model than in the normal tissues. The combined drug-radiation effect was apparently less time-dependent in the tumour than in the normal tissues. (Auth.)

  10. Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles

    International Nuclear Information System (INIS)

    Nair, Ashwin; Shen Jinhui; Thevenot, Paul; Zou Ling; Tang Liping; Cai Tong; Hu Zhibing

    2008-01-01

    Effective nanomedical devices for tumor imaging and drug delivery are not yet available. In an attempt to construct a more functional device for tumor imaging, we have embedded quantum dots (which have poor circulatory behavior) within hydrogel nanoparticles made of poly-N-isopropylacrylamide. We found that the hydrogel encapsulated quantum dots are more readily taken up by cultured tumor cells. Furthermore, in a melanoma model, hydrogel encapsulated quantum dots also preferentially accumulate in the tumor tissue compared with normal tissue and have ∼16-fold greater intratumoral uptake compared to non-derivatized quantum dots. Our results suggest that these derivatized quantum dots, which have greatly improved tumor localization, may enhance cancer monitoring and chemotherapy.

  11. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly; Ou, Kevin; Jackson, John K.; Letchford, Kevin; Cui, Jing; Wolf, Ki Tae; Graber, Florian; Zhao, Tom; Matsubara, Joanne A.; Burt, Helen; Chiao, Mu; Lin, Liwei

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved

  12. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice.

    Science.gov (United States)

    Chew, Chii Chii; Ng, Salby; Chee, Yun Lee; Koo, Teng Wai; Liew, Ming Hui; Chee, Evelyn Li-Ching; Modamio, Pilar; Fernández, Cecilia; Mariño, Eduardo L; Segarra, Ignacio

    2017-08-01

    Coadministration of diclofenac and sunitinib, tyrosine kinase inhibitor, led to sex-divergent pharmacokinetic drug-drug interaction outcomes. Male and female mice were administered 60 mg/kg PO sunitinib alone (control groups) or with 30 mg/kg PO diclofenac. Sunitinib concentration in plasma, brain, kidney and liver were determined by HPLC and non-compartmental pharmacokinetic parameters calculated. In male mice, diclofenac decreased AUC 0→∞ 38% in plasma (p diclofenac increased the liver uptake efficiency in male (27%, p diclofenac with probable clinical translatability due to potential different effects in male and female patients requiring careful selection of the NSAID and advanced TDM to implement a personalized treatment.

  13. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  14. people who inject drugs, HIV risk, and HIV testing uptake in sub-Saharan Africa.

    Science.gov (United States)

    Asher, Alice K; Hahn, Judith A; Couture, Marie-Claude; Maher, Kelsey; Page, Kimberly

    2013-01-01

    Dramatic rises in injection drug use (IDU) in sub-Saharan Africa account for increasingly more infections in a region already overwhelmed by the HIV epidemic. There is no known estimate of the number of people who inject drugs (PWID) in the region, or the associated HIV prevalence in PWID. We reviewed literature with the goal of describing high-risk practices and exposures in PWID in sub-Saharan Africa, as well as current HIV prevention activities aimed at drug use. The literature search looked for articles related to HIV risk, injection drug users, stigma, and HIV testing in sub-Saharan Africa. This review found evidence demonstrating high rates of HIV in IDU populations in sub-Saharan Africa, high-risk behaviors of the populations, lack of knowledge regarding HIV, and low HIV testing uptake. There is an urgent need for action to address IDU in order to maintain recent decreases in the spread of HIV in sub-Saharan Africa. Copyright © 2013 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  15. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake

    Science.gov (United States)

    Ensign, Laura M.; Hoen, Timothy; Maisel, Katharina; Cone, Richard; Hanes, Justin

    2013-01-01

    Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that administration of hypotonic solutions would induce fluid uptake that could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We found that hypotonic formulations markedly increased the rate at which small molecule drugs and muco-inert nanoparticles (mucus-penetrating particles, or MPP), but not conventional mucoadhesive nanparticles (CP), reached the vaginal epithelial surface in vivo in mice. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that drugs or MPP in isotonic formulations failed to reach efficiently. However, hypotonic formulations caused unencapsulated “free” drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for localized sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. In contrast, as we previously demonstrated, hypotonic delivery of drug via MPP led to better long-term retention and protection in the vagina. Importantly, we demonstrate that slightly hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. Hypotonic formulations for vaginal drug delivery via MPP may significantly improve prevention and treatment of reproductive tract diseases and disorders. PMID:23769419

  16. [Carrier-mediated Transport of Cationic Drugs across the Blood-Tissue Barrier].

    Science.gov (United States)

    Kubo, Yoshiyuki

    2015-01-01

    Studies of neurological dysfunction have revealed the neuroprotective effect of several cationic drugs, suggesting their usefulness in the treatment of neurological diseases. In the brain and retina, blood-tissue barriers such as blood-brain barrier (BBB) and blood-retinal barrier (BRB) are formed to restrict nonspecific solute transport between the circulating blood and neural tissues. Therefore study of cationic drug transport at these barriers is essential to achieve systemic delivery of neuroprotective agents into the neural tissues. In the retina, severe diseases such as diabetic retinopathy and macular degeneration can cause neurological dysfunction that dramatically affects patients' QOL. The BRB is formed by retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (outer BRB). Blood-to-retina transport of cationic drugs was investigated at the inner BRB, which is known to nourish two thirds of the retina. Blood-to-retinal transport of verapamil suggested that the barrier function of the BRB differs from that of the BBB. Moreover, carrier-mediated transport of verapamil and pyrilamine revealed the involvement of novel organic cation transporters at the inner BRB. The identified transport systems for cationic drugs are sensitive to several cationic neuroprotective and anti-angiogenic agents such as clonidine and propranolol, and the involvement of novel transporters was also suggested in their blood-to-retina transport across the inner BRB.

  17. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs.

    Science.gov (United States)

    Assmus, Frauke; Houston, J Brian; Galetin, Aleksandra

    2017-11-15

    The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237-48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pK a ≥7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56% drugs within 2-fold or 88% within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68% and 54% of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (>1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among

  18. A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human

    International Nuclear Information System (INIS)

    Poulin, Patrick; Ekins, Sean; Theil, Frank-Peter

    2011-01-01

    A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V ss ) in humans under in vivo conditions. This correlation method demonstrated inaccurate predictions of V ss for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V ss of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.

  19. Decreased cisplatin uptake by resistant L1210 leukemia cells

    International Nuclear Information System (INIS)

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  20. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  1. Uptake of SPECT radiopharmaceuticals in neocortical brain cultures

    Energy Technology Data Exchange (ETDEWEB)

    Jong, B.M. de; Royen, E.A. van

    1989-01-01

    The uptake, retention and uptake antagonism of /sup 201/Tl-DDC, /sup 201/Tl-Cl, /sup 123/I-IMP, /sup 99m/Tc-HMPAO and /sup 99m/Tc-O4/sup -/ were compared in rat neocortex cultures. /sup 201/Tl-DDC and /sup 123/I-IP revealed the highest uptake of radioactivity in the cultures. /sup 99m/Tc-HMPAO and /sup 123/I-IMP showed the highest retention of radioactivity within the tissue in washout experiments. Blocking of bioelectric activity by tetrodotoxin did not significantly affect the uptake of the radiopharmaceuticals (RPHA). Inhibition of Na K ATPase by ouabain inhibited the uptake of /sup 201/Tl-Cl (77%) and /sup 201/Tl-DDC (27%). Imipramine showed a significantly stronger inhibitory effect on /sup 123/I-IMP uptake in comparison with the effect on other RPHA. /sup 99m/Tc-O4/sup -/ was not concentrated within the cultured tissue. Under the in vitro conditions used in this study, the various RPHA were characterised by distinct differences in their interaction with cortical brain tissue.

  2. Drug pharmacokinetics and pharmacodynamics: Technological considerations

    International Nuclear Information System (INIS)

    Fowler, J.S.; Volkow, N.D.; Wolf, A.P.

    1992-01-01

    Additionally, the use of PET to examine drug pharmacokinetics and pharmacadynamics and the relationship of these properties to the behavioral, therapeutic and toxic properties of drugs and substances of abuse is emerging as a powerful new scientific tool. The pharmacokinetic properties of a drug, which comprises all of the biological processes which determine the fraction of the drug available, can be measured using the labeled drug itself. For example, the labeled drug can be used to measure the absolute uptake, regional distribution and kinetics of a drug at its site of action in the body. Additionally the labeled drug and whole body its labeled metabolites and thus provide information an potential toxic effects as well as tissue half lives. On the other hand, different labeled tracers can be used to assess drug pharmacodynamics which include the biological Processes involved in the drug's effects. For example, with appropriate radiotracers, the effects of a drug on metabolism, neurotransmitter activity, blood flew, enzyme activity or other processes can be probed

  3. Assessment of 99mTc-DMSA renoscintigraphy and uptake compared with creatinine clearance in rats with drug-induced nephrotoxicity, 1

    International Nuclear Information System (INIS)

    Yamada, Masafumi

    1991-01-01

    For evaluation of technetium-99m dimercaptosuccinic acid ( 99m Tc-DMSA) renal uptake as an absolute renal function, 99m Tc-DMSA uptake was compared with endogenous creatinine clearance (Ccr) in gentamicin-induced nephrotoxicity. Gentamicin (40 mg/kg/day) was given subcutaneously to male Wistar rats for periods of 3, 6, 9 and 12 days. On the next day, the renoscintigraphy was performed 2 hours following intravenous injection of 99m Tc-DMSA and Ccr was measured. On the 7th day, 99m Tc-DMSA uptake was significantly lower in the treated rats than that in control (32.27±0.92 vs 39.84±2.24%; p 99m Tc-DMSA uptake was measured and the histological examination was done. On the 4th day, 99m Tc-DMSA uptake was significantly lower than that on the 1st day (32.32±3.00 vs 38.91±1.95%; p 99m Tc-DMSA uptake reduces earlier than Ccr in gentamicin-induced nephrotoxicity and 99m Tc-DMSA uptake is a reliable indicator in the evaluation of a renal function in drug-induced nephrotoxicity. (author)

  4. 21 CFR 862.1715 - Triiodothyronine uptake test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Triiodothyronine uptake test system. 862.1715... Systems § 862.1715 Triiodothyronine uptake test system. (a) Identification. A triiodothyronine uptake test... plasma. Measurements of triiodothyronine uptake are used in the diagnosis and treatment of thyroid...

  5. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  6. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  7. Clearance of the high intestinal 18F-FDG uptake associated with metformin after stopping the drug

    International Nuclear Information System (INIS)

    Oezuelker, Tamer; Oezuelker, Filiz; Oezpacaci, Tevfik; Mert, Meral

    2010-01-01

    This study was done to determine whether interruption of metformin before 18 F-FDG PET/CT imaging could prevent the increased 18 F-FDG uptake in the intestine caused by this drug. Included in the study were 41 patients with known type 2 diabetes mellitus who were referred to our department for evaluation of various neoplastic diseases. Patients underwent two 18 F-FDG PET/CT scans, the first while they were on metformin and the second after they had stopped metformin. They stopped metformin and did not take any other oral antidiabetic medication starting 3 days before the second study and their blood glucose level was regulated with insulin when necessary to keep it within the range 5.55-8.33 mmol/l. FDG uptake was graded visually according to a four-point scale and semiquantitatively by recording the maximum standardized uptake value (SUVmax) in different bowel segments. A paired-samples t-test method was used to determine whether there was a significant difference between SUVmax measurements and visual analysis scores of the metabolic activity of the bowel in the PET/CT scans before and after stopping metformin. Diffuse and intense 18 F-FDG uptake was observed in bowel segments of patients, and the activity in the colon was significantly decreased both visually and semiquantitatively in PET/CT scans performed after patients stopped metformin (p 0.05). Metformin causes an increase in 18 F-FDG uptake in the bowel and stopping metformin before PET/CT study significantly decreased this unwanted uptake, especially in the colon, facilitating the interpretation of images obtained from the abdomen and preventing the obliteration of lesions. (orig.)

  8. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research.

    Science.gov (United States)

    Poulin, Patrick; Burczynski, Frank J; Haddad, Sami

    2016-02-01

    A critical component in the development of physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) models for estimating target organ dosimetry in pharmacology and toxicology studies is the understanding of the uptake kinetics and accumulation of drugs and chemicals at the cellular level. Therefore, predicting free drug concentrations in intracellular fluid will contribute to our understanding of concentrations at the site of action in cells in PBPK/PD research. Some investigators believe that uptake of drugs in cells is solely driven by the unbound fraction; conversely, others argue that the protein-bound fraction contributes a significant portion of the total amount delivered to cells. Accordingly, the current literature suggests the existence of a so-called albumin-mediated uptake mechanism(s) for the protein-bound fraction (i.e., extracellular protein-facilitated uptake mechanisms) at least in hepatocytes and cardiac myocytes; however, such mechanism(s) and cells from other organs deserve further exploration. Therefore, the main objective of this present study was to discuss further the implication of potential protein-facilitated uptake mechanism(s) on drug distribution in cells under in vivo conditions. The interplay between the protein-facilitated uptake mechanism(s) and the effects of a pH gradient, metabolism, transport, and permeation limitation potentially occurring in cells was also discussed, as this should violate the basic assumption on similar free drug concentration in cells and plasma. This was made because the published equations used to calculate drug concentrations in cells in a PBPK/PD model did not consider potential protein-facilitated uptake mechanism(s). Consequently, we corrected some published equations for calculating the free drug concentrations in cells compared with plasma in PBPK/PD modeling studies, and we proposed a refined strategy for potentially performing more accurate quantitative in vitro-to-in vivo extrapolations

  9. Indomethacin inhibits the uptake of 22sodium by ovine trophoblastic tissue in vitro

    International Nuclear Information System (INIS)

    Lewis, G.S.

    1986-01-01

    Blastocysts from several species synthesize prostaglandins in vitro, but the exact functions of the prostaglandins are unknown. The purpose of this study was to determine if indomethacin, an inhibitor of prostaglandin synthesis, would inhibit the uptake of 22sodium ([22Na]) by ovine trophoblastic tissue. To determine the concentration of indomethacin that would inhibit the synthesis of PGF2 alpha and 13,14-dihydro-15-keto-PGF2 alpha (PGFM) by blastocysts, blastocysts were collected from ewes 16 days after mating, sliced into pieces approximately 2 mm in length and incubated for 48 h at 37 degrees C in 2 ml of medium containing either 0, 0.2, 0.4, 0.8 or 1.6 mM of indomethacin. Concentrations of indomethacin greater than or equal to 0.2 mM reduced (P less than .01) trophoblastic release (ng/micrograms DNA) of PGF2 alpha from 205 +/- 71.2 to less than or equal to 3.3 +/- 0.2, reduced PGFM from 0.7 +/- 0.1 to less than or equal to 0.17 +/- 0.01, and inhibited formation of trophoblastic vesicles. In a second experiment, blastocysts were recovered from ewes 16 days after mating and pieces of trophoblast were incubated with [22Na] and either 0 or 0.4 mM of indomethacin. Indomethacin reduced the uptake of [22Na], which is an indirect measure of the transport of water across epithelia, from 3680 +/- 1118 to 934 +/- 248 cpm/micrograms DNA (P less than .03) and prevented formation of trophoblastic vesicles. Prostaglandins produced by ovine blastocysts might be involved in controlling uptake of water, which is essential for expansion of blastocysts

  10. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

    Science.gov (United States)

    Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

    2017-11-01

    Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

  11. Influence of ceftriaxone treatment on fdg uptake - an in vivo [18f]-fluorodeoxyglucose imaging study in soft tissue infections in rats

    International Nuclear Information System (INIS)

    Wyss, Matthias T.; Honer, Michael; Spaeth, Nicolas; Gottschalk, Jochen; Ametamey, Simon M.; Weber, Bruno; Schulthess, Gustav K. von; Buck, Alfred; Kaim, Achim H.

    2004-01-01

    Our aim was to determine the influence of antibiotic treatment using ceftriaxone on [ 18 F]-fluorodeoxyglucose (FDG) uptake in experimental soft tissue infections. PET scans were performed in two groups (treated n=4; non-treated n=4) at days 3, 5, and 6 after inoculation of the infection. Additional autoradiography was performed in four animals at day 7 and in three animals at day 11. The difference of FDG uptake on day 5 (after three days of antibiotic treatment) between both groups proved to be significant (df=6; T=2.52; p=0.045). FDG uptake determined at the other days did not reveal significant difference between the two groups. It seems to be possible that the effect of antibiotic treatment on FDG uptake is less evident than reported for therapy monitoring of cancer treatment. The change of FDG uptake over time in treated and untreated infections is complex and further in vivo experiments have to be initiated to investigate the potential value of clinical FDG PET in therapy monitoring of infection

  12. In vitro uptake of 14C-praziquantel by cestodes, trematodes, and a nematode

    International Nuclear Information System (INIS)

    Andrews, P.; Thomas, H.; Weber, H.

    1980-01-01

    14 C-praziquantel was rapidly taken up by Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, and isolated strobilocerci of Taenia taeniaeformis. Schistosoma mansoni lost praziquantel rapidly to drug-free medium. Chromatography of extracts prepared after incubation of S. mansoni and H. nana yielded no indication that praziquantel was metabolized. Autoradiography revealed a uniform distribution of praziquantel throughout the tissues of S. mansoni and H. nana. Uptake was considerably slower in the nematode Heterakis spumosa and apparently via the oral route

  13. Interspecies comparison of the tissue distribution of WR-2721, a radioprotective drug

    International Nuclear Information System (INIS)

    Washburn, L.C.; Rafter, J.J.; Hayes, R.L.; Yuhas, J.M.

    1975-01-01

    Pre-irradiation intravenous administration of the radioprotective drug S-2-[3-aminopropylamino]ethylphosphorothioic acid (WR-2721) has potential value in radiotherapy because it doubles the radiation resistance of normal mouse tissues while affording only minimal protection to tumors. Deficient deposition of WR- 2721 in tumor tissue has recently been demonstrated and this is thought to be a major reason for the preferential protection of normal tissues by the drug. Data originally obtained in studies using the mouse and rat indicated that the tissue distribution of WR-2721 was possibly more closely related to dose per unit surface area than to dose per unit weight. To test this hypothesis an interspecies comparison of the tissue distribution of 35 S-labeled WR-2721 was carried out in normal mice, rats, rabbits, and dogs at 15 and 30 minutes after intravenous administration. Results suggest that the surface area and body weight exert equal effects on the tissue concentration of WR-2721. The results further suggest that lower absolute doses of WR-2721 in the human, possibly as low as 20 mg/kg, may provide a radioprotective effect equivalent to that produced from 100 mg/kg in the mouse, i.e., a 50 to 80 percent increase in radiation resistance (CH)

  14. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Science.gov (United States)

    Nitta, Sachiko Kaihara; Numata, Keiji

    2013-01-01

    There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed. PMID:23344060

  15. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2013-01-01

    Full Text Available There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin, protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin. The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.

  16. HIV and hepatitis C treatment uptake among people who use drugs participating in the Amsterdam Cohort Studies, 1985-2015

    NARCIS (Netherlands)

    van Santen, Daniëla K.; van der Helm, Jannie J.; Lindenburg, Karen; Schim van der Loeff, Maarten; Prins, Maria

    2017-01-01

    Background: HIV-positive people who use drugs (PWUD) start antiretroviral therapy (ART) later than other risk groups, and among HCV-positive PWUD, HCV treatment uptake is low. Nowadays, HCV direct acting antivirals (DAAs) are available and reimbursed in the Netherlands (since 2014). The Amsterdam

  17. Cryopreservation of Precision-cut Tissue Slices for Application in Drug Metabolism Research

    NARCIS (Netherlands)

    Graaf, Inge Anne Maria de

    2002-01-01

    The research described in this thesis had two important aims. The first was to determine whether tissue slices could be used as an in vitro tool to predict the in vivo metabolism of new drugs. The second aim was to find a manner to store tissue slices for longer time periods by cryopreservation.

  18. 21 CFR 868.1730 - Oxygen uptake computer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  19. In-vivo tissue uptake and retention of Sn-117m(4+)DTPA in a human subject with metastatic bone pain and in normal mice

    International Nuclear Information System (INIS)

    Swailem, Fayez M.; Krishnamurthy, Gerbail T.; Srivastava, Suresh C.; Aguirre, Maria L.; Ellerson, Dawn L.; Walsh, T. Kent; Simpson, Laura

    1998-01-01

    Organ and tissue uptake and retention of Sn-117m(4+)DTPA were studied in a human subject treated for metastatic bone pain, and the results were compared with the biodistribution studies in five normal mice. The explanted organs from a patient who received a therapy dose of 18.6 mCi (688.2 MBq) Sn-117m(4+)DTPA and who died 47 days later were imaged with a γ-camera, and tissue samples were counted and also autoradiographed. Bone, muscle, liver, fat, lungs, kidneys, spleen, heart and pancreas tissue samples were assayed in a well counter for radioactivity. Regions of interest were drawn over bone and major organs to calculate and quantify clearance times using three in vivo Sn-117m(4+)DTPA whole-body scintigrams acquired at 1, 24 and 168 h after injection. Five normal mice injected with the same batch of Sn-117m(4+)DTPA as used for the human subject were sacrificed at 24 h, and tissue samples were collected and assayed for radioactivity for comparison with the human data. For the human subject, whole-body retention at 47 days postinjection was 81% of the injected dose, and the rest (19%) was excreted in urine. Of the whole-body retained activity at 47 days, 82.4% was in bone, 7.8% in the muscle and 1.5% in the liver, and the rest was distributed among other tissues. γ-Ray scintigrams and electron autoradiographs of coronal slices of the thoracolumbar vertebral body showed heterogenous metastatic involvement with normal bone between metastatic lesions. There was nonuniform distribution of radioactivity even within a single vertebral body, indicating normal bone between metastatic lesions. Lesion-to-nonlesion ratios ranged from 3 to 5. However, the osteoid-to-marrow cavity deposition ratio, from the microautoradiographs, was 11:1. The peak uptake in the human bone was seen at 137 h with no biological clearance. Soft tissues showed peak uptake at 1 h and exhibited three compartmental clearance components. Whole-body retention in normal mice was 38.7% of the injected

  20. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    Science.gov (United States)

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  1. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry.

    Science.gov (United States)

    Chen, Kai; Xu, Xiaoqiu; Guo, Jiawei; Zhang, Xuelin; Han, Songling; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2015-11-09

    Nanomaterials have been broadly studied for intracellular delivery of diverse compounds for diagnosis or therapy. Currently it remains challenging for discovering new biomolecules that can prominently enhance cellular internalization and tissue retention of nanoparticles (NPs). Herein we report for the first time that a mussel-inspired engineering approach may notably promote cellular uptake and tissue retention of NPs. In this strategy, the catechol moiety is covalently anchored onto biodegradable NPs. Thus, fabricated NPs can be more effectively internalized by sensitive and multidrug resistant tumor cells, as well as some normal cells, resulting in remarkably potentiated in vitro activity when an antitumor drug is packaged. Moreover, the newly engineered NPs afford increased tissue retention post local or oral delivery. This biomimetic approach is promising for creating functional nanomaterials for drug delivery, vaccination, and cell therapy.

  2. Bambuterol: uptake and metabolism in guinea pig isolated lungs

    International Nuclear Information System (INIS)

    Ryrfeldt, A.; Nilsson, E.; Tunek, A.; Svensson, L.A.

    1988-01-01

    The lung uptake and biotransformation of 3 H-bambuterol, a prodrug to terbutaline, were studied using isolated perfused and ventilated guinea pig lungs. 14 C-Sucrose was used as an extracellular marker. The lung uptake of bambuterol was significantly (0.05 greater than or equal to P greater than or equal to 0.001) higher than that found for sucrose in single-pass perfusion experiments. High-performance liquid chromatographic (HPLC) analysis showed that 95.6 +/- 3.6% of the effluent 3 H radioactivity was attributable to bambuterol. In recirculating experiments (120 min) the lung biotransformation of 3 H-bambuterol (8.5 pmol/ml) was studied. Both oxidative and hydrolytic metabolism took place. The dominating metabolites were hydroxylated bambuterol and the monocarbamate derivative which is a product of hydrolysis of bambuterol. Traces of terbutaline were also formed. The results show that bambuterol has a certain affinity to lung tissue and that the drug is, to some extent, biotransformed in the guinea pig lung

  3. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges.

    Science.gov (United States)

    Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta

    2009-08-01

    Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.

  4. [Application of ultrasound-enhanced gene and drug delivery to the ocular tissue].

    Science.gov (United States)

    Sonoda, Shozo; Yamashita, Toshifumi; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2013-01-01

    Visual images provide an immensely rich source of information about the external world. Eye has characteristic structure sensory cells are arranged along the eye wall, and is filled inside with vitreous body. In recent years, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent had widely spread, and numerous number of patients who suffered ocular angiogenic disease such as diabetic retinopathy, age-related macular degeneration and retinal vascular occlusion for the disease, were treated and spared the blindness. Vitreous cavity was regarded as reservoir of drug, intravitreal injection is thought a sort of drug delivery. However, with regard to the administration of a selective drug deliver, it has not yet been solved. Our aim is to establish a new method of gene transfer, drug delivery using low-energy ultrasound to the eye, to date, we confirmed drug and gene deliver to the ocular tissue such as cornea, conjunctiva and retina with high efficiency. In addition, tissue damage was minimal. We have also shown that ultrasound irradiation with combination of a microbubbles or bubble liposome could be introduced drug and gene more effectively. Based on these knowledge, we will focus on development of a new device for intraocular ultrasound exposure and potential for therapeutic application of ultrasound to humans retinal disease such as retinal artery obstruction.

  5. Uptake of 14C-labelled chloroquine and an 125I-labelled chloroquine analogue in some polypeptide hormone producing cell systems

    International Nuclear Information System (INIS)

    Dencker, L.; Lindquist, N.G.; Tjaelve, H.

    1976-01-01

    After the injection of 14 C-labelled chloroquine and the 125 I-labelled chloroquine analogue 4-(3 1 -dimethylaminopropylamino)-7-iodoquinoline [ 125 I]DAPQ into mice, rats and a monkey the distribution of the radioactivity was studied by autoradiographical methods. A high and persistent uptake occurred in some endocrine cell systems, such as the pancreatic islets, the hypophysis, the adrenal medulla and the thyroid (in cells that were probably identical with the parafollicular cells). The melanin-containing tissues were the only ones which showed a higher uptake and retention of radioactivity. The above mentioned endocrine cells and the melanocytes have a common embryological origin and common morphological and cytochemical characteristics. They have been called the APUD (Amine Precursor Uptake and Decarboxylation)-cell series. It is proposed that the polypeptide hormone producing cells and the melanocytes may use a similar mechanism for accumulating chloroquine and (as shown earlier) also some other drugs such as nicotine, alprenolol, local anesthetics and atropine. These drugs however, accumulate stronger within the melanocytes and become bound to the melanin for a long time. The ability to accumulate these drugs may be considered another characteristic of the APUD-cell series. (author)

  6. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  7. State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery

    Science.gov (United States)

    Sirsi, Shashank; Borden, Mark

    2014-01-01

    Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. PMID:24389162

  8. Dual-function radiation sensitizers and bioreductive drugs: factors affecting cellular uptake and sensitizing efficiency in analogues of RSU 1069

    International Nuclear Information System (INIS)

    Walling, J.; Stratford, I.J.; Adams, G.E.; Stephens, M.A.

    1988-01-01

    Alkyl aziridine analogues of the hypoxic cell radiosensitizer RSU 1069 have been synthesized and one, RB 7040, containing tetramethyl substituted aziridine, is a more efficient sensitizer in vitro than RSU 1069 (Ahmed et al., 1986). The extent to which variation in drug uptake can influence the sensitizing efficiency of RSU 1069 and its analogues has been investigated by determining cellular uptake as a function of pH of extracellular medium (pHsub(e)) over the range 5.4-8.4. Following exposure of V79 cells for 1 h at room temperature, the ratio of intra-to extracellular concentration (Ci/Ce) was near unity at pH 5.4. Increasing pHsub(e) to 8.4 resulted in no change in the ratio Ci/Ce for RSU 1069 (pKsub(a) = 6.04). Values of Ci/Ce increased three-fold for RSU 1165 (pKsub(a) 7.38) and eleven-fold for RB 7040 (pKsub(a) = 8.45). Radiosensitization by RSU 1069 showed little dependence on pHsub(e) whereas increasing pH caused an apparent increase in sensitizing efficiency of both RSU 1165 and RB 7040. When enhancement ratios for sensitization were normalized to take account of the effect of extracellular pH on drug uptake, efficiency of sensitization was independent of pHsub(e). (author)

  9. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening

    Directory of Open Access Journals (Sweden)

    Michaela Thomas

    2017-11-01

    Full Text Available Neurodegenerative diseases affect millions of individuals in North America and cost the health-care industry billions of dollars for treatment. Current treatment options for degenerative diseases focus on physical rehabilitation or drug therapies, which temporarily mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the central nervous system remain an untapped market due to the complexity involved in growing neural tissues, controlling their differentiation, and protecting them from the hostile environment they meet upon implantation. Designing tissue constructs for the discovery of better drug treatments are also limited due to the resolution needed for an accurate cellular representation of the brain, in addition to being expensive and difficult to translate to biocompatible materials. 3-D printing offers a streamlined solution for engineering brain tissue for drug discovery or, in the future, for implantation. New microfluidic and bioplotting devices offer increased resolution, little impact on cell viability and have been tested with several bioink materials including fibrin, collagen, hyaluronic acid, poly(caprolactone, and poly(ethylene glycol. This review details current efforts at bioprinting neural tissue and highlights promising avenues for future work.

  10. An in vivo approach for globally estimating the drug flow between blood and tissue for nafamostat mesilate: the main hydrolysis site determination in human.

    Science.gov (United States)

    Cao, Yan-Guang; Chen, Yuan-Cheng; Hao, Kun; Zhang, Ming; Liu, Xiao-Quan

    2008-11-01

    Nafamostat mesilate, an ester drug with extensive hydrolysis in vivo, exhibits species difference in the relative contribution for its hydrolysis in blood and tissues. For the rat, the main hydrolysis site may be blood and human may be tissue (mainly by liver). The paper gave in vivo evidence that human tissue may give more contribution for its hydrolysis. In the initial phase of drug administration, the drug accumulating level in tissue was low; the efflux fraction from tissue into blood can be ignorable comparing with the drug influx into tissue. Based on urine and plasma metabolite analysis, we concluded that in the initial phase almost all the drug hydrolysis in blood was excreted into urine. Then according to the initial urine metabolite analysis, we can estimate the drug hydrolysis rate in blood. The rate of drug diffusion from blood into tissues can be deduced based on the mass balance analysis of the initial blood drug. With the estimated rate constants, the drug efflux from tissues into blood was calculated according to equation: OFT-B (efflux from tissues) = OFB-U (blood hydrolysis fraction)+OFB-T (influx into tissues)-DB (hydrolysis in blood). The net flow (influent flux minus effluent flux) represented the drug hydrolysis fraction in tissue. As the result indicated, in human about 20% drug administrated was hydrolyzed in blood and nearly 80% in tissues. The relative hydrolysis fraction indicated that the main hydrolysis site in human body may locate in tissue, which was different to rats.

  11. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    DEFF Research Database (Denmark)

    Chen, Muwan; Le, Dang Q S; Hein, San

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone......, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount...... of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug....

  12. Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, V J; Ryman, B E; Jewkes, R F; Jeyasingh, K; Tattersall, M N.H.; Newlands, E S; Kaye, S B

    1979-07-01

    The possible use of liposomes (Phospholipid vesicles) to direct cytotoxic drugs to tumours led to the investigation of the tissue localization of i.v. injected sup(99m) Tc-labelled liposomes in cancer patients. 20 mg or 300 mg doses of liposomal lipid (7:2:1 molar ratio of phosphatidylcholine: cholesterol: phosphatidic acid) were used in a study of 13 patients with advanced cancer and one with polycythaemia rubra vera (PRV). In all cases except the patient with PRV the major site of uptake of the label was the liver and spleen. In the patient with PRV the liver uptake was greatly reduced and the major site of uptake was found in regions corresponding to marrow. With the exception of one patient with a primary hepatoma, there was no significant tumour uptake of the label.

  13. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

    Science.gov (United States)

    Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi

    2017-07-01

    The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

  14. P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac

    Science.gov (United States)

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M.; Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction. PMID:24520393

  15. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac.

    Science.gov (United States)

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Thompson, Brandon J; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M; Ronaldson, Patrick T; Davis, Thomas P

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction.

  16. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac.

    Directory of Open Access Journals (Sweden)

    Lucy Sanchez-Covarrubias

    Full Text Available Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP, induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp that is endogenously expressed at the blood-brain barrier (BBB. The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h, as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction.

  17. In vitro uptake of /sup 14/C-praziquantel by cestodes, trematodes, and a nematode

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, P.; Thomas, H.; Weber, H.

    1980-12-01

    /sup 14/C-praziquantel was rapidly taken up by Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, and isolated strobilocerci of Taenia taeniaeformis. Schistosoma mansoni lost praziquantel rapidly to drug-free medium. Chromatography of extracts prepared after incubation of S. mansoni and H. nana yielded no indication that praziquantel was metabolized. Autoradiography revealed a uniform distribution of praziquantel throughout the tissues of S. mansoni and H. nana. Uptake was considerably slower in the nematode Heterakis spumosa and apparently via the oral route.

  18. Drug Delivery to the Ischemic Brain

    Science.gov (United States)

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  19. Uptake, retention and organ/tissue distribution of 137Cs by Japanese catfish (Silurus asotus Linnaeus)

    International Nuclear Information System (INIS)

    Malek, M.A.; Nakahara, M.; Nakamura, R.

    2004-01-01

    The work describes the uptake, retention/biological elimination and organ/tissue distribution of 137 Cs by freshwater Japanese catfish (Silurus asotus Linnaeus) under laboratory conditions. The fish were divided into three groups based on their size and age and reared in 137 Cs-spiked water. The concentration of 137 Cs in the whole body of the live fish was measured at regular intervals up to 60 days. A significant accumulation of 137 Cs was found, but a steady state condition was not achieved by the end of the experiment. The bioaccumulation factors at steady state and the required time to reach steady state were estimated to be 1.55 and 255 days, 1.76 and 180 days and 1.99 and 160 days for large, medium and small size fish, respectively. To determine the effective half-life of 137 Cs, the fish were transferred and reared in the non-contaminated host water. The concentration of the remaining 137 Cs in the whole body of the live fish was measured up to 66 days. The average effective half-life of 137 Cs in the fish species was found to be ∼142 days for fish of all sizes. The distribution of 137 Cs in different organs/tissues of the fish was determined. Accumulation of 137 Cs in muscle/flesh of the fish was found to be ∼75% of whole body accumulation. The uptake rate and the retention capability of juvenile fish were found to be higher and therefore, these were more susceptible to 137 Cs than adult and old fish, and could be an important source of 137 Cs in the human food chain

  20. Cold exposure potentiates the effect of insulin on in vivo glucose uptake

    International Nuclear Information System (INIS)

    Vallerand, A.L.; Perusse, F.; Bukowiecki, L.J.

    1987-01-01

    The effects of cold exposure and insulin injection on the rates of net 2-[ 3 H]deoxyglucose uptake (K i ) in peripheral tissues were investigated in warm-acclimated rats. Cold exposure and insulin treatment independently increased K i values in skeletal muscles, heart, white adipose tissue, and brown adipose tissue. The effects of cold exposure were particularly evident in brown adipose tissue where the K i increased >100 times. When the two treatments were combined, it was found that cold exposure synergistically enhanced the maximal insulin responses for glucose uptake in brown adipose tissue, all white adipose tissue depots, and skeletal muscles investigated. The results indicate that cold exposure induces an insulin-like effect on K i that does not appear to be specifically associated with shivering thermogenesis in skeletal muscles, because that effect was observed in all insulin-sensitive tissues. The data also demonstrate that cold exposure significantly potentiates the maximal insulin responses for glucose uptake in the same tissues. This potentialization may result from (1) an enhanced responsiveness of peripheral tissues to insulin, possibly occurring at metabolic steps lying beyond the insulin receptor and (2) an increased tissue blood flow augmenting glucose and insulin availability and thereby amplifying glucose uptake

  1. Spatial distribution of theobromine--a low MW drug--in tissues via matrix-free NALDI-MS imaging.

    Science.gov (United States)

    Tata, Alessandra; Montemurro, Chiara; Porcari, Andreia M; Silva, Kamila C; Lopes de Faria, José B; Eberlin, Marcos N

    2014-09-01

    The ability of nano-assisted laser desorption-ionization mass spectrometry imaging (NALDI-IMS) to provide selective chemical monitoring with appropriate spatial distribution of a low molecular drug in a biological tissue was investigated. NALDI-IMS is a matrix-free laser desorption ionization (LDI) protocol based on imprinting of tissue constituents on a nanostructured surface. Using the accumulation of theobromine in rat kidney as a model, NALDI-IMS was found to provide well-resolved images of the special distribution of this low molecular weight (MW) drug in tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  2. A PET study of 18FDG uptake in soft tissue masses

    International Nuclear Information System (INIS)

    Lodge, M.A.; Marsden, P.K.; Cronin, B.F.; O'Doherty, M.J.; Lucas, J.D.; Smith, M.A.

    1999-01-01

    A study was performed with the aim of investigating some of the methodological factors affecting the ability of quantitative 2-[ 18 F]-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography to assess tumour malignancy. Twenty-nine patients with soft tissue masses were studied using a 6-hour scanning protocol and various indices of glucose metabolism were compared with histological grade. Significant differences were observed in the time-activity response of benign and high-grade tumours. High-grade sarcomas were found to reach a peak activity concentration approximately 4 h after injection whereas benign lesions reached a maximum within 30 min. This translated to improved differentiation between these two tumour types using a standard uptake value (SUV) derived from images acquired at later times. An SUV measured 4 h post-injection was found to be as useful an index of tumour malignancy as the metabolic rate of FDG determined using either Patlak or non-linear regression techniques. Each of these indices had a sensitivity and specificity of 100% and 76% respectively for the discrimination of high-grade sarcomas from benign tumours. (orig.)

  3. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  4. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  5. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    International Nuclear Information System (INIS)

    Mandal, Biman B; Kundu, S C

    2009-01-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  6. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Biman B; Kundu, S C, E-mail: kundu@hijli.iitkgp.ernet.i [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-02

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  7. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT

    International Nuclear Information System (INIS)

    Kroiss, A.; Putzer, D.; Decristoforo, C.; Uprimny, C.; Warwitz, B.; Nilica, B.; Gabriel, M.; Kendler, D.; Waitz, D.; Virgolini, I.J.; Widmann, G.

    2013-01-01

    We wanted to establish the range of 68 Ga-DOTA-TOC uptake in liver and bone metastases of patients with neuroendocrine tumours (NET) and to establish the range of its uptake in pancreatic NET. This would allow differentiation between physiological uptake and tumour-related somatostatin receptor expression in the pancreas (including the uncinate process), liver and bone. Finally, we wanted to test for differences in patients with NET, either treated or not treated with peptide receptor radionuclide therapy (PRRT). In 249 patients, 390 68 Ga-DOTA-TOC PET/CT studies were performed. The clinical indications for PET/CT were gastroenteropancreatic NET (194 studies), nongastroenteropancreatic NET (origin in the lung and rectum; 46 studies), NET of unknown primary (111 studies), phaeochromocytoma/glomus tumours (18 studies), and radioiodine-negative metastatic thyroid carcinoma (21 studies). SUV max (mean ± standard deviation) values of 68 Ga-DOTA-TOC were 29.8 ± 16.5 in 162 liver metastases, 19.8 ± 18.8 in 89 bone metastases and 34.6 ± 17.1 in 43 pancreatic NET (33.6 ± 14.3 in 30 tumours of the uncinate process and 36.3 ± 21.5 in 13 tumours of the pancreatic tail). A significant difference in SUV max (p max between nonmalignant and malignant tissue for both bone and liver metastases and for pancreatic NET including the uncinate process (p max for differentiating tumours in the uncinate process were 93.6 % and 90.0 %, respectively (p 68 Ga-DOTA-TOC is an excellent tracer for the imaging of tumours expressing somatostatin receptors on the tumour cell surface, facilitating the detection of even small tumour lesions. The noninvasive PET/CT approach by measurement of regional SUV max can offer important clinical information to distinguish between physiological and pathological somatostatin receptor expression, especially in the uncinate process. PRRT does not significantly influence SUV max , except in liver metastases of patients with NET. (orig.)

  8. Metformin Targets Brown Adipose Tissue in vivo and Reduces Oxygen Consumption in vitro

    DEFF Research Database (Denmark)

    Breining, Peter; Jensen, Jonas B; Sundelin, Elias I

    2018-01-01

    basic metabolic rate, making BAT an attractive target for treatment of type 2 diabetes. Under the hypothesis that BAT is a metformin target tissue, we investigated in vivo uptake of [11 C]-metformin tracer in mice and studied in vitro effects of metformin on cultured human brown adipocytes. Injected [11......Metformin is the most widely prescribed oral antidiabetic drug worldwide. Despite well-documented beneficial effects on health outcomes in diabetic patients, the target organs that mediate the effects of metformin remain to be established. In adult humans, brown adipose tissue (BAT) can influence...... uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose dependent manner. Collectively, these results support BAT as a putative metformin...

  9. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering

    NARCIS (Netherlands)

    Stamatialis, Dimitrios; Papenburg, B.J.; Girones nogue, Miriam; Saiful, S.; Bettahalli Narasimha, M.S.; Schmitmeier, Stephanie; Wessling, Matthias

    2008-01-01

    This paper covers the main medical applications of artificial membranes. Specific attention is given to drug delivery systems, artificial organs and tissue engineering which seem to dominate the interest of the membrane community this period. In all cases, the materials, methods and the current

  10. The relevance of parametric U-uptake models in ESR age calculations

    International Nuclear Information System (INIS)

    Gruen, Rainer

    2009-01-01

    In the ESR dating three basic parametric U-uptake models have been applied for dating teeth: early U-uptake (EU: closed system), linear U-uptake (LU) and recent U-uptake (RU, it is assumed that the dose rate contribution of U in the dental tissues is zero). In many ESR dating publications it is still assumed that samples comply with one or the other parametric U-uptake model calculation or that their correct age lies somewhere between EU and LU. Observations of the spatial distribution of uranium in dental tissues show that it is difficult to predict any relationships between the relative uptake in the dental tissues. Combined U-series/ESR age estimates can give insights into the actual U-uptake. An evaluation of published data shows that for cave sites, a significant number of results fall outside the EU and LU bracket, while for open air sites, the majority of data are outside this bracket, particularly showing greatly delayed U-uptake. This may be due to changes in the hydrological system, leading to erosion which exposes the open air site. U-leaching has also been observed on samples from open air sites, in which case any reasonable age calculation is impossible.

  11. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants.

    Science.gov (United States)

    Stuchlíková Raisová, Lucie; Podlipná, Radka; Szotáková, Barbora; Syslová, Eliška; Skálová, Lenka

    2017-07-01

    Albendazole (ABZ) is a benzimidazole anthelmintic widely used especially in veterinary medicine. Along with other drugs, anthelmintics have become one of a new class of micro-pollutants that disturb the environment but the information about their fate in plants remains limited. The present study was designed to test the uptake and biotransformation of ABZ in the ribwort plantain (Plantago lancelota), a common meadow plant, which can come into contact with this anthelmintic through the excrements of treated animals in pastures. Two model systems were used and compared: cell suspensions and whole plant regenerants. In addition, time-dependent changes in occurrence of ABZ and its metabolites in roots, basal parts of the leaves and tops of the leaves were followed up. Ultrahigh-performance liquid chromatography coupled with high mass accuracy tandem mass spectrometry (UHPLC-MS/MS) led to the identification of 18 metabolites of ABZ formed in the ribwort. In both model systems, the same types of ABZ biotransformation reactions were found, but the spectrum and abundance of the ABZ metabolites detected in cell suspensions and regenerants differed significantly. Cell suspensions seem to be suitable only for qualitative estimations of drug biotransformation reactions while regenerants were shown to represent an adequate model for the qualitative as well as quantitative evaluation of drug uptake and metabolism in plants. Copyright © 2017. Published by Elsevier Inc.

  12. Dissimilarities in the metabolism of antiretroviral drugs used in HIV pre-exposure prophylaxis in colon and vagina tissues.

    Science.gov (United States)

    To, Elaine E; Hendrix, Craig W; Bumpus, Namandjé N

    2013-10-01

    Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Extravascular transport in normal and tumor tissues.

    Science.gov (United States)

    Jain, R K; Gerlowski, L E

    1986-01-01

    The transport characteristics of the normal and tumor tissue extravascular space provide the basis for the determination of the optimal dosage and schedule regimes of various pharmacological agents in detection and treatment of cancer. In order for the drug to reach the cellular space where most therapeutic action takes place, several transport steps must first occur: (1) tissue perfusion; (2) permeation across the capillary wall; (3) transport through interstitial space; and (4) transport across the cell membrane. Any of these steps including intracellular events such as metabolism can be the rate-limiting step to uptake of the drug, and these rate-limiting steps may be different in normal and tumor tissues. This review examines these transport limitations, first from an experimental point of view and then from a modeling point of view. Various types of experimental tumor models which have been used in animals to represent human tumors are discussed. Then, mathematical models of extravascular transport are discussed from the prespective of two approaches: compartmental and distributed. Compartmental models lump one or more sections of a tissue or body into a "compartment" to describe the time course of disposition of a substance. These models contain "effective" parameters which represent the entire compartment. Distributed models consider the structural and morphological aspects of the tissue to determine the transport properties of that tissue. These distributed models describe both the temporal and spatial distribution of a substance in tissues. Each of these modeling techniques is described in detail with applications for cancer detection and treatment in mind.

  14. A strategy for increasing the brain uptake of a radioligand in animals: use of a drug that inhibits plasma protein binding

    International Nuclear Information System (INIS)

    Haradahira, Terushi; Zhang, Ming-Rong; Maeda, Jun; Okauchi, Takashi; Kawabe, Kouichi; Kida, Takayo; Suzuki, Kazutoshi; Suhara, Tetsuya

    2000-01-01

    A positron-emitter labeled radioligand for the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptor, [ 11 C]L-703,717, was examined for its ability to penetrate the brain in animals by simultaneous use with drugs having high-affinity separate binding sites on human serum albumin. [ 11 C]L-703,717 has poor blood-brain barrier (BBB) permeability because it binds tightly to plasma proteins. Co-injection of warfarin (50-200 mg/kg), a drug that binds to albumin and resembles L-703,717 in structure, dose-dependently enhanced the penetration by [ 11 C]L-703,717 in mice, resulting in a five-fold increase in the brain radioactivity at 1 min after the injection. Drugs structurally unrelated to L-703,717, salicylate, phenol red, and L-tryptophan, were less effective or ineffective in increasing the uptake of [ 11 C]L-703,717. These results suggest that the simultaneous use of a drug that inhibits the binding of a radioligand to plasma proteins is a useful way to overcome the poor BBB permeability of the radioligand triggered by its tight binding to plasma proteins. In brain distribution studies in rodents, it was found that, after the increase in brain uptake with warfarin, much of the glycine site antagonist accumulates in the cerebellum but its pharmacological specificity did not match the glycine site of NMDA receptors

  15. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Hembruff, Stacey L; Laberge, Monique L; Villeneuve, David J; Guo, Baoqing; Veitch, Zachary; Cecchetto, Melanie; Parissenti, Amadeo M

    2008-01-01

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7 DOX-2 ), epirubicin (MCF-7 EPI ), paclitaxel (MCF-7 TAX-2 ), or docetaxel (MCF-7 TXT ). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  17. Seasonal variation in the effect of constant ambient temperature of 24 C in reducing FDG uptake by brown adipose tissue in children

    International Nuclear Information System (INIS)

    Zukotynski, Katherine A.; Fahey, Frederic H.; Laffin, Stephen; Davis, Royal; Treves, S. Ted; Grant, Frederick D.; Drubach, Laura A.

    2010-01-01

    It has been shown that warming patients prior to and during 18 F-FDG uptake by controlling the room temperature can decrease uptake by brown adipose tissue (BAT). The aim of this study is to determine if this effect is subject to seasonal variation. A retrospective review was conducted of all patients referred for whole-body 18 F-FDG PET between December 2006 and December 2008. After December 2007, all patients were kept in the PET injection room at a constant 24 C for 30 min before and until 1 h following FDG administration. Patients over 22 years of age and those who received pre-medication known to reduce FDG uptake by BAT were excluded. One hundred and three patients were warmed to 24 C prior to scanning. The number of patients showing uptake by BAT in this group was compared to a control group of 99 patients who underwent PET prior to December 2007 when the injection room temperature was 21 C. Uptake by BAT occurred in 9% of studies performed after patient warming (24 C), compared to 27% of studies performed on the control group (21 C) (p 0.05). Maintaining room temperature at a constant 24 C for 30 min prior to and 1 h after IV tracer administration significantly decreases FDG uptake by BAT in children. This effect is greatest in the summer and winter. (orig.)

  18. In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion.

    Science.gov (United States)

    Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping

    2012-01-01

    To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on

  19. Difference in Uptake of Tetrodotoxin and Saxitoxins into Liver Tissue Slices among Pufferfish, Boxfish and Porcupinefish

    Directory of Open Access Journals (Sweden)

    Yuji Nagashima

    2018-01-01

    Full Text Available Although pufferfish of the family Tetraodontidae contain high levels of tetrodotoxin (TTX mainly in the liver, some species of pufferfish, boxfish of the family Ostraciidae, and porcupinefish of the family Diodontidae do not. To clarify the mechanisms, uptake of TTX and saxitoxins (STXs into liver tissue slices of pufferfish, boxfish and porcupinefish was examined. Liver tissue slices of the pufferfish (toxic species Takifugu rubripes and non-toxic species Lagocephalus spadiceus, L. cheesemanii and Sphoeroides pachygaster incubated with 50 µM TTX accumulated TTX (0.99–1.55 µg TTX/mg protein after 8 h, regardless of the toxicity of the species. In contrast, in liver tissue slices of boxfish (Ostracion immaculatus and porcupinefish (Diodon holocanthus, D. liturosus, D. hystrix and Chilomycterus reticulatus, TTX content did not increase with incubation time, and was about 0.1 µg TTX/mg protein. When liver tissue slices were incubated with 50 µM STXs for 8 h, the STXs content was <0.1 µg STXs/mg protein, irrespective of the fish species. These findings indicate that, like the toxic species of pufferfish T. rubripes, non-toxic species such as L. spadiceus, L. cheesemanii and S. pachygaster, potentially take up TTX into the liver, while non-toxic boxfish and porcupinefish do not take up either TTX or STXs.

  20. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    Science.gov (United States)

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  1. A systematic review of Hepatitis C virus treatment uptake among people who inject drugs in the European Region

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V; Sperle, Ida; Maticic, Mojca

    2014-01-01

    in relation to the number of patients who either: (a) tested HCV antibody-positive; (b) tested positive for HCV-RNA; or (c) tested positive for HCV-RNA and met additional treatment criteria. RESULTS: Twenty-five articles from 12 countries were included in the review. Among groups of drug-using study......BACKGROUND: Fifteen million adults in the World Health Organization European Region are estimated to have active hepatitis C infection. Intravenous drug use is a major hepatitis C transmission route in this region, and people who inject drugs (PWID) constitute a high-risk and high......-prevalence population. A systematic review was conducted to assess levels of hepatitis C treatment uptake among PWID in Europe. METHODS: Searches in MEDLINE and EMBASE were carried out for articles in any language published between 1 January 2000 and 31 December 2012. Articles were included in the review...

  2. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro.

    Directory of Open Access Journals (Sweden)

    Deborah G Nguyen

    Full Text Available Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI. This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM. Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

  3. Drug injection into fat tissue with a laser based microjet injector

    Science.gov (United States)

    Han, Tae-hee; Hah, Jung-moo; Yoh, Jack J.

    2011-05-01

    We have investigated a new micro drug jet injector using laser pulse energy. An infrared laser beam of high energy (˜3 J/pulse) is focused inside a driving fluid in a small chamber. The pulse then induces various energy releasing processes, and generates fast microjets through a micronozzle. The elastic membrane of this system plays an important role in transferring mechanical pressure and protecting drug from heat release. In this paper, we offer the sequential images of microjet generation taken by a high speed camera as an evidence of the multiple injections via single pulse. Furthermore, we test the proposed system to penetrate soft animal tissues in order to evaluate its feasibility as an advanced transdermal drug delivery method.

  4. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    Science.gov (United States)

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  5. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  6. Modeling uptake kinetics of cadmium by field-grown lettuce

    International Nuclear Information System (INIS)

    Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick

    2008-01-01

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions

  7. Uptake of tritium through foliage in capsicum fruitescens, L

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1977-01-01

    Tritium uptake and release patterns throuogh foliage in Capsicum fruitescens, L. were investigated using twelve potted plants, under different conditions of exposure and release. The plants studied belonged to two age groups, 3 months and 5 months. The average half residence time for the species was found to be 42.6 min, on the basis of treating the entire group of plants as a single cluster. The individual release rates showed a variation of up to a factor of two, for half residence time values (Tsub(1/2)). The second component was not easily resolvable in most of the cases. Tissue bound tritium showed interesting uptake patterns. The ratios between tissue bound tritium and tissue free water tritium concentrations indicated regular mode of uptake with well defined rate constants in the case of long exposure periods. (author)

  8. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. The impact of currently used oral antihyperglycemic drugs on dysfunctional adipose tissue

    Directory of Open Access Journals (Sweden)

    Tomić-Naglić Dragana

    2017-01-01

    Full Text Available Obesity is a disease with pandemic frequency, often accompanied by chronic metabolic and organic complications. Type 2 diabetes mellitus (T2DM is among the most common metabolic complications of obesity. The first step in the treatment of T2DM is medical nutrition therapy combined with moderate physical activity and with advice to patients to reduce their body weight. Pharmacotherapy starts with metformin, and in the case of inadequate therapeutic response, another antihyperglycemic agent should be added. The most clinical experience exists with sulfonylurea agents, but their use is limited due to high incidence of hypoglycemia and increase in body weight. Based on the fact that dysfunction of adipose tissue can lead to the development of chronic degenerative complications, precise use of drugs with a favorable effect on the functionality of adipose tissue represents an imperative of modern T2DM treatment. Antihyperglycemic drugs of choice in obese individuals are those which cause maturation of adipocytes, improvement of secretion of protective adipokines, and redistribution of fat mass from visceral to subcutaneous depots. Oral antihyperglycemic agents that can affect the functionality of adipose tissue are metformin, SGLT-2 inhibitors, DPP-4 inhibitors, and thiazolidinediones.

  10. Uptake of 3-[125I]iodo-α-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    International Nuclear Information System (INIS)

    Shikano, Naoto; Ogura, Masato; Okudaira, Hiroyuki; Nakajima, Syuichi; Kotani, Takashi; Kobayashi, Masato; Nakazawa, Shinya; Baba, Takeshi; Yamaguchi, Naoto; Kubota, Nobuo; Iwamura, Yukio; Kawai, Keiichi

    2010-01-01

    Introduction: We examined 3-[ 123 I]iodo-α-methyl-L-tyrosine ([ 123 I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. Methods: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [ 125 I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [ 125 I]IMT uptake were examined. Results: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B 0 AT was not detected. [ 125 I]IMT uptake in DLD-1 cells involved Na + -independent system L primarily and Na + -dependent system(s). Uptake of [ 125 I]IMT in Na + -free buffer followed Michaelis-Menten kinetics, with a K m of 78 μM and V max of 333 pmol/10 6 cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [ 125 I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-β-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [ 125 I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [ 125 I]IMT uptake except L-serine and D/L-cysteine. Conclusions: [ 125 I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is involved in LAT1 depends on the structure of the group corresponding to the amino acid

  11. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  12. Polymeric Micro- and Nanofabricatced Devices for Oral Drug Delivery

    Science.gov (United States)

    Fox, Cade Brylee

    While oral drug administration is by far the most preferred route, it is accompanied by many barriers that limit drug uptake such as the low pH of the stomach, metabolic and proteolytic enzymes, and limited permeability of the intestinal epithelium. As a result, many drugs ranging from small molecules to biological therapeutics have limited oral bioavailability, precluding them from oral administration. To address this issue, microfabrication has been applied to create planar, asymmetric devices capable of binding to the lining of the gastrointestinal tract and releasing drug at high concentrations, thereby increasing oral drug uptake. While the efficacy of these devices has been validated in vitro and in vivo, modifying their surfaces with nanoscale features has potential to refine their properties for enhanced drug delivery. This dissertation first presents an approach to fabricate polymeric microdevices coated with nanowires in a rapid, high throughput manner. The nanowires demonstrate rapid drug localization onto the surface of these devices via capillary action and increased adhesion to epithelial tissue, suggesting that this fabrication technique can be used to create devices with enhanced properties for oral drug delivery. Also presented are microdevices sealed with nanostraw membranes. The nanostraw membranes provide sustained drug release by limiting drug efflux from the devices, prevent drug degradation by limiting influx of outside biomolecules, and enhance device bioadhesion by penetrating into the mucus layer of the intestinal lining. Finally, an approach that dramatically increases the capacity and efficiency of drug loading into microdevices over previous methods is presented. A picoliter-volume printer is used to print drug directly into device reservoirs in an automated fashion. The technologies presented here expand the capabilities of microdevices for oral drug delivery by incorporating nanoscale structures that enhance device bioadhesion

  13. A strategy for increasing the brain uptake of a radioligand in animals: use of a drug that inhibits plasma protein binding

    Energy Technology Data Exchange (ETDEWEB)

    Haradahira, Terushi E-mail: terushi@nirs.go.jp; Zhang, Ming-Rong; Maeda, Jun; Okauchi, Takashi; Kawabe, Kouichi; Kida, Takayo; Suzuki, Kazutoshi; Suhara, Tetsuya

    2000-05-01

    A positron-emitter labeled radioligand for the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptor, [{sup 11}C]L-703,717, was examined for its ability to penetrate the brain in animals by simultaneous use with drugs having high-affinity separate binding sites on human serum albumin. [{sup 11}C]L-703,717 has poor blood-brain barrier (BBB) permeability because it binds tightly to plasma proteins. Co-injection of warfarin (50-200 mg/kg), a drug that binds to albumin and resembles L-703,717 in structure, dose-dependently enhanced the penetration by [{sup 11}C]L-703,717 in mice, resulting in a five-fold increase in the brain radioactivity at 1 min after the injection. Drugs structurally unrelated to L-703,717, salicylate, phenol red, and L-tryptophan, were less effective or ineffective in increasing the uptake of [{sup 11}C]L-703,717. These results suggest that the simultaneous use of a drug that inhibits the binding of a radioligand to plasma proteins is a useful way to overcome the poor BBB permeability of the radioligand triggered by its tight binding to plasma proteins. In brain distribution studies in rodents, it was found that, after the increase in brain uptake with warfarin, much of the glycine site antagonist accumulates in the cerebellum but its pharmacological specificity did not match the glycine site of NMDA receptors.

  14. Nanotechnology in drug delivery and tissue engineering: from discovery to applications.

    Science.gov (United States)

    Shi, Jinjun; Votruba, Alexander R; Farokhzad, Omid C; Langer, Robert

    2010-09-08

    The application of nanotechnology in medicine, referred to as nanomedicine, is offering numerous exciting possibilities in healthcare. Herein, we discuss two important aspects of nanomedicine, drug delivery and tissue engineering, highlighting the advances we have recently experienced, the challenges we are currently facing, and what we are likely to witness in the near future.

  15. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications

    OpenAIRE

    Shi, Jinjun; Votruba, Alexander R.; Farokhzad, Omid C.; Langer, Robert

    2010-01-01

    The application of nanotechnology in medicine, referred to as nanomedicine, is offering numerous exciting possibilities in healthcare. Herein, we discuss two important aspects of nanomedicine—drug delivery and tissue engineering—highlighting the advances we have recently experienced, the challenges we are currently facing, and what we are likely to witness in the near future.

  16. Uptakes of trace elements in Zn-deficient mice

    International Nuclear Information System (INIS)

    Ohyama, T.; Yanaga, M.; Yoshida, T.; Maetsu, H.; Suganuma, H.; Omori, T.

    2002-01-01

    A multitracer technique was used to obtain uptake rates of essential trace elements in various organs and tissues in Zn-deficient mice. A multitracer solution, containing more than 20 radioisotopes, was injected intraperitoneally into Zn-deficient state mice and control ones. Uptake rates of the radioisotopes were compared with concentrations of trace elements determined by instrumental neutron activation analysis (INAA) in order to study a specific metabolism of Zn and other essential trace elements, such as Mn, Co, Se, Rb, and Sr. The result suggests that Zn is supplied from bone to other organs and tissues and an increase in Co concentration in all organs and tissues depends on its chemical form, under the Z-deficient state. (author)

  17. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  18. Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats.

    Science.gov (United States)

    López de las Hazas, Maria-Carmen; Rubió, Laura; Kotronoulas, Aristotelis; de la Torre, Rafael; Solà, Rosa; Motilva, Maria-José

    2015-07-01

    Hydroxytyrosol (HT) is the most prominent phenolic compound of virgin olive oil and due to its scientifically validated biological activities it is entering to the market as a potentially useful supplement for cardiovascular disease prevention. The aim of the present study was to investigate the relationship between the HT dose intake and its tissue uptake in rats, and thus, providing complementary information in relation to the target-dose relationship. Rats were given a refined olive oil enriched with HT at different doses (1, 10, and 100 mg/kg) and they were sacrificed after 5 h to ensure the cell tissue uptake of HT and its metabolites. Plasma samples and different organs as liver, kidney, heart and brain were obtained, and HT metabolites were analyzed by UPLC-MS/MS. The results showed that HT and its metabolites could be accumulated in a dose-dependent manner basically in the liver, kidney, and brain and were detected in these tissues even at nutritionally relevant human doses. The detection of free HT in liver and kidney was noteworthy. To date, this appears to be the only biologically active form, and thus, it provides relevant information for optimizing the potential applications of HT to prevent certain hepatic and renal diseases. In recent years, HT and its derivatives have led to a great interest from the virgin olive oil producers and manufacturers of nutraceutical supplements. The increasing interest in HT is mainly due to the European Food Safety Agency (EFSA) Panel on Dietetic Products, Nutrition, and Allergies (NDA) scientific opinion that established a cause-and-effect relationship between the consumption of olive oil polyphenols and protection of LDL particles from oxidative damage . Based on this positive opinion, the health claim "Olive oil polyphenols contribute to the protection of blood lipids from oxidative stress" was included in the list of health claims , being the only authorized health claim in the European Union regarding polyphenols

  19. Uptake of manganese in potatoes tolerant of high tissue manganese levels

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.B.

    1987-01-01

    Observations on the accumulations of Mn in potatoes (Solanum tuberosum cv. Norland) focused on factors which enabled plants in field studies to withstand high concentrations of Mn in their foliage. A microculture method for assessing nutrient uptake was introduced and applied to studies of the effects of P and temperature on Mn toxicity. Potato plants in microculture behaved similarly in the symptomatology of Mn toxicity to those grown in solution culture but were more responsive to P. The effects of both P and temperature on Mn toxicity in microculture correlated with changes in Mn uptake and with growth reductions due to low P or temperature stress. The uptake of Mn from solution culture increased with increasing P level in solution. This increase was attributed to an increased health and vitality of potato plants under high P and to changes in pH and nutrient solution concentration as plants matured at different rates. When limited control over solution pH and nutrient concentration was provided the effects of P on Mn uptake were largely eliminated. The well-documented time dependence of Mn accumulation was confirmed in a fractionation experiment.

  20. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications

    Science.gov (United States)

    Shi, Jinjun; Votruba, Alexander R.; Farokhzad, Omid C.; Langer, Robert

    2010-01-01

    The application of nanotechnology in medicine, referred to as nanomedicine, is offering numerous exciting possibilities in healthcare. Herein, we discuss two important aspects of nanomedicine—drug delivery and tissue engineering—highlighting the advances we have recently experienced, the challenges we are currently facing, and what we are likely to witness in the near future. PMID:20726522

  1. Factors influencing intracellular uptake and radiosensitization by 2-nitroimidazoles in vitro

    International Nuclear Information System (INIS)

    Brown, D.M.; Gonzalez-Mendez, R.; Brown, J.M.

    1983-01-01

    In this study it is shown that the radiosensitization of hypoxic Chinese hamster ovary (HA-1) cells in vitro by misonidazole (MIS) and other 1-substituted 2-nitroimidazoles depends on the rate and extent of intracellular uptake of these radiosensitizers, which in turn is governed by their lipophilicity [expressed as the octanol:water partition coefficient (P)]. As the lipophilicity of the compounds decreased, the rate of drug entry into the cells was slower, and below P values of approximately 0.05, peak intracellular drug concentrations were found to be lower than that of MIS (P=0.43). In addition, the number of hydroxyl groups on the side chain of the nitroimidazole molecule influenced the uptake of drug into the cells. For compounds of similar P, but differing in the number of side-chain hydroxyl groups, the addition of a single hydroxyl group to the molecule decreased the amount of drug entering the cell by a factor of approximately 2. These compounds enter the cell by nonmediated passive diffusion since altering the energy (ATP) capacity of the cell by 2-deoxyglucose did not affect uptake. It is also shown that increases in temperature or decreases in pH can increase the intracellular uptake of MIS. For example, equal intracellular and extracellular concentrations (100% uptake) of MIS were obtained if cells were heated to 44-45 0 C for 15 min compared to 20-40% uptake at 37 0 C. Increases in MIS uptake by factors of 2 to 3 could be demonstrated within 30 min when cells were incubated in Hanks' balanced salt solution at pH between 6.0 and 6.3 without loss of cell viability. In addition, MIS uptake in aerobic cultured cells varied from 15 to 60% depending on the cell line and culure conditions used

  2. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    Science.gov (United States)

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  3. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  4. Polycaprolactone thin films for retinal tissue engineering and drug delivery

    Science.gov (United States)

    Steedman, Mark Rory

    This dissertation focuses on the development of polycaprolactone thin films for retinal tissue engineering and drug delivery. We combined these thin films with techniques such as micro and nanofabrication to develop treatments for age-related macular degeneration (AMD), a disease that leads to the death of rod and cone photoreceptors. Current treatments are only able to slow or limit the progression of the disease, and photoreceptors cannot be regenerated or replaced by the body once lost. The first experiments presented focus on a potential treatment for AMD after photoreceptor death has occurred. We developed a polymer thin film scaffold technology to deliver retinal progenitor cells (RPCs) to the affected area of the eye. Earlier research showed that RPCs destined to become photoreceptors are capable of incorporating into a degenerated retina. In our experiments, we showed that RPC attachment to a micro-welled polycaprolactone (PCL) thin film surface enhanced the differentiation of these cells toward a photoreceptor fate. We then used our PCL thin films to develop a drug delivery device capable of sustained therapeutic release over a multi-month period that would maintain an effective concentration of the drug in the eye and eliminate the need for repeated intraocular injections. We first investigated the biocompatibility of PCL in the rabbit eye. We injected PCL thin films into the anterior chamber or vitreous cavity of rabbit eyes and monitored the animals for up to 6 months. We found that PCL thin films were well tolerated in the rabbit eye, showing no signs of chronic inflammation due to the implant. We then developed a multilayered thin film device containing a microporous membrane. We loaded these devices with lyophilized proteins and quantified drug elution for 10 weeks, finding that both bovine serum albumin and immunoglobulin G elute from these devices with zero order release kinetics. These experiments demonstrate that PCL is an extremely useful

  5. Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue. II. Characterization of 45Ca2+ uptake into plasma membrane vesicles

    International Nuclear Information System (INIS)

    Giannini, J.L.; Ruiz-Cristin, J.; Briskin, D.P.

    1987-01-01

    Calcium uptake was examined in sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue using 45 Ca 2+ . Uptake of 45 Ca 2+ by the vesicles was ATP-dependent and radiotracer accumulated by the vesicles could be released by the addition of the calcium ionophore A23187. The uptake was stimulated by gramicidin D but slightly inhibited by carbonylcyanide m-chlorophenylhydrazone. Although the latter result might suggest some degree of indirect coupling of 45 Ca 2+ uptake to ATP utilization via ΔμH + , no evidence for a secondary H + /Ca 2+ antiport in this vesicle system could be found. Following the imposition of an acid-interior pH gradient, proton efflux from the vesicle was not enhanced by the addition of Ca 2+ and an imposed pH gradient could not drive 45 Ca 2+ uptake. Optimal uptake of 45 Ca 2+ occurred broadly between pH 7.0 and 7.5 and the transport was inhibited by orthovanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol but insensitive to nitrate and azide. The dependence of 45 Ca 2+ uptake on both calcium and Mg:ATP concentration demonstrated saturation kinetics with K/sub m/ values of 6 micromolar and 0.37 millimolar, respectively. While ATP was the preferred substrate for driving 45 Ca 2+ uptake, GTP could drive transport at about 50% of the level observed for ATP. The results of this study demonstrate the presence of a unique primary calcium transport system associated with the plasma membrane which could drive calcium efflux from the plant cell

  6. In vivo effect of 3,5,3'-triiodothyronine on calcium uptake in several tissues in the rat: Evidence for a physiological role for calcium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane

    International Nuclear Information System (INIS)

    Segal, J.

    1990-01-01

    Calcium has been shown in vitro to serve as the first messenger for the rapid effect of thyroid hormone at the level of the plasma membrane. In the present study the physiological relevance of this mechanism is examined in the whole animal. To this end, the effect of T3 on 45calcium uptake and sugar 2-deoxyglucose (2-DG) uptake, an effect that requires extracellular calcium, and the influence of calcium blockers thereon were measured in ventricles, atria, diaphragm, fat, and liver in the rat. In the first three tissues, T3 produced comparable changes in 45Ca uptake and 2-DG uptake (T3 increased 2-DG uptake in fat, where 45Ca uptake was undetected, and had no effect in liver); this activity was blocked by the calcium channel blocker cadmium. The effect of T3 on 45Ca uptake, like its effect on the in vivo uptake of 2-DG described previously, was biphasic and time related; at physiological doses of 0.01 and 0.1 micrograms/100 g BW, T3 increased 45Ca uptake, whereas at greater (pharmacological) doses of 1 and 100 micrograms/100 g BW, T3 was without effect or inhibited 45Ca uptake. In ventricles and atria, the stimulatory effect of T3 on 45Ca uptake was very rapid within 2 min, at which time it was at or near maximum (50-90% above control) and then declined gradually and was not seen after 10-20 min. Of the several calcium blockers employed, verapamil (organic) and cadmium (inorganic) were found to be the most effective. Verapamil and cadmium produced a rapid, transient, and dose-related inhibition of 45Ca uptake in the tissues examined (except fat tissue where, under the experimental conditions employed, 45Ca uptake was undetected). Verapamil, given iv (200 micrograms/100 g BW) or ip (1 mg/100 g BW), reduced tissue 45Ca uptake by 50-90% within 2 or 10 min, respectively, and then its inhibitory effect diminished rapidly and was not seen after 20-30 min

  7. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    International Nuclear Information System (INIS)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah

    2005-01-01

    99m Tc-sestamibi(MIBI) and 99m Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99m Tc-MIBI and 99m Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (ρ < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But

  8. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  9. Diagnostic significance of gallium lung uptake in patients with normal chest radiographs

    International Nuclear Information System (INIS)

    MacMahon, H.; Bekerman, C.

    1978-01-01

    Nine patients were encountered with normal chest radiographs, but diffuse bilateral lung uptake of 67 Ga-citrate. They were divided into three groups. The first consisted of 6 patients who had lymphoma or leukemia and had had multiple cycles of chemotherapy. Here, abnormal uptake may have resulted from a toxic effect of the drugs or from a low-grade, subclinical infectious process. The 2 patients in the second group were drug addicts and a subradiographic interstitial inflammatory reaction was probably responsible for abnormal uptake. The last patient had diffuse uptake of 67 Ga-citrate throughout the lungs two weeks before lymphomatous infiltrates became radiographically visible

  10. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  11. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    International Nuclear Information System (INIS)

    Shen Jie; Sun Minjie; Ping Qineng; Ying Zhi; Liu Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  12. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shen Jie; Sun Minjie; Ping Qineng; Ying Zhi; Liu Wen, E-mail: Pingqn2004@yahoo.com.cn [School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing (China)

    2010-01-15

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  13. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  14. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  15. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  16. Drug-Loadable Calcium Alginate Hydrogel System for Use in Oral Bone Tissue Repair.

    Science.gov (United States)

    Chen, Luyuan; Shen, Renze; Komasa, Satoshi; Xue, Yanxiang; Jin, Bingyu; Hou, Yepo; Okazaki, Joji; Gao, Jie

    2017-05-06

    This study developed a drug-loadable hydrogel system with high plasticity and favorable biological properties to enhance oral bone tissue regeneration. Hydrogels of different calcium alginate concentrations were prepared. Their swelling ratio, degradation time, and bovine serum albumin (BSA) release rate were measured. Human periodontal ligament cells (hPDLCs) and bone marrow stromal cells (BMSCs) were cultured with both calcium alginate hydrogels and polylactic acid (PLA), and then we examined the proliferation of cells. Inflammatory-related factor gene expressions of hPDLCs and osteogenesis-related gene expressions of BMSCs were observed. Materials were implanted into the subcutaneous tissue of rabbits to determine the biosecurity properties of the materials. The materials were also implanted in mandibular bone defects and then scanned using micro-CT. The calcium alginate hydrogels caused less inflammation than the PLA. The number of mineralized nodules and the expression of osteoblast-related genes were significantly higher in the hydrogel group compared with the control group. When the materials were implanted in subcutaneous tissue, materials showed favorable biocompatibility. The calcium alginate hydrogels had superior osteoinductive bone ability to the PLA. The drug-loadable calcium alginate hydrogel system is a potential bone defect reparation material for clinical dental application.

  17. Free fatty acid has a negative correlation with myocardial uptake of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Eo, Jae Seon; Lee, Won Woo; Park, Eun Kyung; So, Young; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Free fatty acid (FFA) is a marker of insulin resistance. Myocardial uptake of FDG is influenced by insulin resistance. We investigated the correlation of FFA and myocardial uptake of FDG in whole body PET. We measured serum FFA levels in consecutive 112 patients who underwent whole body FDG PET due to malignancy work up. Twelve patients with diabetes. 13 with liver disease, 4 with suspicious ischemic heart disease. 1 with steroid therapy, and 10 with final diagnosis of benign disease were excluded. After fasting of diet or beverages for at least 6 hours, blood was aspirated at peripheral vein for measurement of FFA and glucose in serum. FDG was injected as a dose of 0.14 mCi/kg body weight. Fifty minutes later, whole body PET scan was performed from skull base to upper thigh. Maximum SUV (maxSUV) using lean body weight was obtained in heart. liver, cerebellum, muscle and malignant tissues. Finally 72 patients (M:F 45:27, age 56.9{+-}15.8 years) were enrolled. There were 27 non small cell lung cancer, 14 lymphoma, 10 esophageal cancer, 3 breast cancer, 3 colon cancer, 3 renal cell cancer, 2 melanoma, and 10 other cancers. Serum glucose level was 96.6{+-}14.3 mg/dL. Serum FFA level was 720.0{+-}315.2 uEq/L. MaxSUV of main malignant tissue ranged from 0.7 to 11.5 (mean 4.9{+-}2.6). MaxSUV of each organs were 1.0 to 14.6 (mean 4.0{+-}3.0) in heart, 2.7 to 6.4 (mean 3.9{+-}0.6) in cerebellum, 1.0 to 2.6 (mean 1.9{+-}0.3) in liver, and 0.6 to 1.1 (mean 0.8{+-}0.1) in gluteal muscle. FFA and maxSUV of heart had a negative correlation. The best fitting line was MaxSUV of Heart = -4.4583 x In(FF A) + 32.964. But FFA had no correlation with any other parameters like serum glucose level, and MaxSUV of cerebellum, muscle, liver and malignant tissues. We found a negative correlation between FFA levels and myocardial uptake of FDG. FFA modifying drugs such as nicotinic acid derivatives may have influence on myocardial uptake of FDG.

  18. {sup 68}Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, A.; Putzer, D.; Decristoforo, C.; Uprimny, C.; Warwitz, B.; Nilica, B.; Gabriel, M.; Kendler, D.; Waitz, D.; Virgolini, I.J. [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Widmann, G. [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria)

    2013-04-15

    We wanted to establish the range of {sup 68}Ga-DOTA-TOC uptake in liver and bone metastases of patients with neuroendocrine tumours (NET) and to establish the range of its uptake in pancreatic NET. This would allow differentiation between physiological uptake and tumour-related somatostatin receptor expression in the pancreas (including the uncinate process), liver and bone. Finally, we wanted to test for differences in patients with NET, either treated or not treated with peptide receptor radionuclide therapy (PRRT). In 249 patients, 390 {sup 68}Ga-DOTA-TOC PET/CT studies were performed. The clinical indications for PET/CT were gastroenteropancreatic NET (194 studies), nongastroenteropancreatic NET (origin in the lung and rectum; 46 studies), NET of unknown primary (111 studies), phaeochromocytoma/glomus tumours (18 studies), and radioiodine-negative metastatic thyroid carcinoma (21 studies). SUV{sub max} (mean {+-} standard deviation) values of {sup 68}Ga-DOTA-TOC were 29.8 {+-} 16.5 in 162 liver metastases, 19.8 {+-} 18.8 in 89 bone metastases and 34.6 {+-} 17.1 in 43 pancreatic NET (33.6 {+-} 14.3 in 30 tumours of the uncinate process and 36.3 {+-} 21.5 in 13 tumours of the pancreatic tail). A significant difference in SUV{sub max} (p < 0.02) was found in liver metastases of NET patients treated with PRRT. There were significant differences in SUV{sub max} between nonmalignant and malignant tissue for both bone and liver metastases and for pancreatic NET including the uncinate process (p < 0.0001). At a cut-off value of 17.1 the specificity and sensitivity of SUV{sub max} for differentiating tumours in the uncinate process were 93.6 % and 90.0 %, respectively (p < 0.0001). {sup 68}Ga-DOTA-TOC is an excellent tracer for the imaging of tumours expressing somatostatin receptors on the tumour cell surface, facilitating the detection of even small tumour lesions. The noninvasive PET/CT approach by measurement of regional SUV{sub max} can offer important clinical

  19. Nitrite uptake by nitrogen-depleted wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, W A; Johnson, R E; Volk, R J

    1974-01-01

    Intact, 14-day-old nitrogen-depleted wheat (Triticum vulgare cv. Blueboy) seedlings were exposed to solutions of 0.5 mM KNO/sub 2/, 0.05 mM CaSO/sub 4/ and 1 mM sodium 2-(N-morpholino)-ethanesulfonate, pH 6.1. Nitrite uptake was determined from depletion of the ambient solution or from incorporation of /sup 15/N in the tissue. An initial nitrite uptake shoulder was followed by a relatively slow uptake rate which subsequently increased to a substantially greater rate. This accelerated phase was maintained through 24 h. Nitrite accumulated to a slight extent in the root tissues during the first few hours but declined to low values when the accelerated rate was fully developed, indicating an increase in nitrite reductase activity paralleling the increase in nitrite uptake capacity. About 50% of the nitrogen absorbed as nitrite was translocated to the shoots by 9 to 12 h. Development of the accelerated nitrite uptake rate was restricted in excised roots, in intact plants kept in darkness, by 400 ..mu..g puromycin ml/sup -1/ and by 1 mM L-ethionine. When puromycin and L-ethionine were added after the accelerated phase had been initiated, their effects were not as detrimental as when they were added at first exposure to KNO/sub 2/. The two inhibitors restricted translocation more than uptake. The data indicate an involvement of protein synthesis and a requirement for movement of a substance from shoots to roots for maximal development of the accelerated nitrite uptake phase. A requirement for protein synthesis in the transport of soluble organic nitrogen from roots to shoots is also suggested.

  20. Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification

    Directory of Open Access Journals (Sweden)

    Eugene K. Lee

    2017-11-01

    Full Text Available Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC-derived cardiomyocytes and three-dimensional engineered cardiac tissue constructs to better recapitulate human heart function and drug responses. As these new platforms become increasingly sophisticated and high throughput, the drug screens result in larger multidimensional datasets. Improved automated analysis methods must therefore be developed in parallel to fully comprehend the cellular response across a multidimensional parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS electrically paced at a range of frequencies and exposed to a library of compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a classification model that can automatically predict the mechanistic action of an unknown cardioactive drug.

  1. Correlation of leaf damage with uptake and translocation of glyphosate in velvetleaf (Abutilon theophrasti)

    International Nuclear Information System (INIS)

    Feng, P.C.C.; Ryerse, J.S.; Sammons, R.D.

    1998-01-01

    Uptake and translocation of glyphosate in three commercial formulations were examined in velvetleaf, a dicotyledonous weed that is commonly treated with glyphosate. The formulations included Roundup(R) (MON35085), Roundup Ultra, and Touchdown(R) as sold in Canada. A minimal amount of 14C-glyphosate was spiked into a lethal rate of each formulation, and the short-term (3 to 72 h) uptake into the treated leaf and subsequent translocation into the plant were measured. Time-course studies showed very rapid uptake and translocation of glyphosate in the Ultra formulation. In comparison, the uptake and translocation of glyphosate in Touchdown was much slower but continued throughout the 72-h period. Glyphosate in the Roundup formulation showed intermediate uptake and translocation. Tissue necrosis at the application sites of Ultra and Roundup was visible within 24 h after treatment. Examinations using stereo and fluorescence microscopy revealed extensive cell death and tissue disruption. Tissue necrosis from Ultra and Roundup was also observed in blank formulations containing no glyphosate and therefore was likely caused by the surfactants. In contrast, the application sites of Touchdown produced little to no leaf damage. Our results demonstrated a direct correlation between tissue necrosis and rapid rates of glyphosate uptake and translocation. (author)

  2. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma

    Directory of Open Access Journals (Sweden)

    Salvesen Gerd S

    2009-12-01

    Full Text Available Abstract Background Hypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix. Methods One group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min, whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif, collagen content, oxygen stress (measured as malondialdehyd levels, lymphatics and transcapillary transport in the tumors. Results The uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%, but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake. Conclusion We showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2.

  3. Novel scalable silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA) composite materials for tissue engineering and drug delivery applications

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Hemmingsen, Mette; Wojcik, Magdalena

    2013-01-01

    material with increased hydrophilicity in regard to virgin silicone elastomer, making it suitable as a scaffold for tissue engineering and with the concomitant possibility for delivering drug from the scaffold to the tissue. Interpenetrating polymer networks (IPNs) of silicone elastomer and PHEMA......In recent years hydrogels have received increasing attention as potential materials for applications in regenerative medicine. They can be used for scaffold materials providing structural integrity to tissue constructs, for controlled delivery of drugs and proteins to cell and tissues......, and for support materials in tissue growth. However, the real challenge is to obtain sufficiently good mechanical properties of the hydrogel. The present study shows the combination of two normally non-compatible materials, silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA), into a novel composite...

  4. Biomimickry of UPEC Cytoinvasion: A Novel Concept for Improved Drug Delivery in UTI

    Directory of Open Access Journals (Sweden)

    Clara Maria Pichl

    2016-02-01

    Full Text Available Urinary tract infections (UTIs are among the most common bacterial infections. In an increasing number of cases, pathogen (multi-resistance hampers durable treatment success via the standard therapies. On the functional level, the activity of urinary excreted antibiotics is compromized by the efficient tissue colonization mechanism of uropathogenic Escherichia coli (UPEC. Advanced drug delivery systems aim at exploiting a glycan-mediated targeting mechanism, similar to the UPEC invasion pathway, to increase bioavailability. This may be realized by conjugation of intravesically applied drugs or drug carriers to chosen plant lectins. Higher local drug concentrations in or nearby bacterial reservoirs may be gained, with higher chances for complete eradication. In this study, preliminary parameters to clarify the potential of this biorecognitive approach were evaluated. Glycan-triggered interaction cascades and uptake processes of several plant lectins with distinct carbohydrate specificities were characterized, and wheat germ agglutinin (WGA could be identified as the most promising targeter for crossing the urothelial membrane barrier. In partially differentiated primary cells, intracellular accumulation sites were largely identical for GlcNAc- and Mannose-specific lectins. This indicates that WGA-mediated delivery may also enter host cells via the FimH-dependent uptake pathway.

  5. Design of compounds having enhanced tumour uptake, using serum albumin as a carrier. Pt. 2

    International Nuclear Information System (INIS)

    Schilling, U.; Friedrich, E.A.; Sinn, H.; Schrenk, H.H.; Clorius, J.H.; Maier-Borst, W.

    1992-01-01

    In the present in vivo study the uptake kinetics of radioiodinated albumin were determined in normal organs, and tumours of rats using sequential scintigraphy. Results indicate that cellular uptake of the marker takes place. Fluorescence was not observed in muscle tissue. This appears to suggest that the albumin uptake is greater in tumours than in normal tissue, and that it is metabolized in the tumour cells. (Author)

  6. 3D Photo-Fabrication for Tissue Engineering and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rúben F. Pereira

    2015-03-01

    Full Text Available The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.

  7. Can tumor uptake Tc-99m MDP ?

    International Nuclear Information System (INIS)

    Yand Shun, Fang; Yao, Ming; Zeng, Jun; Shi Zhen, Yu; Zhao Lan, Xiang; Dong Qiang, Gang

    2003-01-01

    To explore the mechanism of technetium-99m-methylene diphosphonate (MDP) uptake within tumor through analyze a distribution of Tc-99m MDP in mice bearing tumor cell lines. Methods: The uptake of Tc-99m MDP was analyzed in seven human tumor cell lines ( SPC-A1 adenocarcinoma of lung cancer, Bcap-37 Breast cancer, T-24 Bladder cancer, SKOV3 Ovary carcinoma, Hela-229 Cervical carcinoma, SCI-OS Osteosarcoma, SCI-375 Melanoma) and mouse Lewis lung cancer cell line. They were transplanted into athymic mice, SCID nude mice and C57BL/6 mice, respectively. Approximately 10(6) cells of each cell line were injected subcutaneously into a right chest of mouse. After 4 and 5 weeks, the Tc-99m MDP scintigraphy were determined 6 hours after tail vein injection of 74MBq in 0.05ml every mouse. Result: Biodistribution and tumor uptake MDP was different in the various cell types investigated. According to the Region Ratio program of Siemens Power Macintosh 9500 Computer System, region of interests (RIOs) placed on a small part of the tumor and horizontal copied to left background (T/B) and thoracic spine (T/N) of mice in Tc-99m MDP imaging. The average cpm/pixel ratios were calculated by standardized uptake measure (SUM) and determined the tumor-positive value (T/B) greater than or equal to 1.2. T/B of cell lines were sorted from higher to lower as follows: SCI-OS, Lewis, SKOV3, SCI-375, T-24, SPC-A1, Bcap-37, Hela-229. T/N: SCI-OS, SKOV3, T-24, SCI-375, Lewis, SPC-A1, Bcap-37, Hela-229. The biodistribution data of 99Tcm-MDP in SPC-A1 tumor-bearing BALB/c nude mice were given as ID/g and represent the means D (n=13) in 30 hours after injection of Tc-99m MDP. ID/g of major tissue were sorted from higher to lower as follows: thoracic spine, lumbar, ribs, kidneys, the center of tumor, the ulcer of tumor, the surrounding of tumor, lymph node, blood, lungs, heart, liver. Conclusions: Most of tumor can uptake Tc-99m MDP including human adenocarcinoma. The uptake rate in the center tissue of

  8. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair.

    Science.gov (United States)

    Oshiro, Joao Augusto; Sato, Mariana Rillo; Scardueli, Cassio Rocha; Lopes de Oliveira, Guilherme Jose Pimentel; Abucafy, Marina Paiva; Chorilli, Marlus

    2017-01-01

    Bioactive molecules such as peptides and proteins can optimize the repair of bone tissue; however, the results are often unpredictable when administered alone, owing to their short biological half-life and instability. Thus, the development of bioactive molecule-loaded drug delivery systems (DDS) to repair bone tissue has been the subject of intense research. DDS can optimize the repair of bone tissue owing to their physicochemical properties, which improve cellular interactions and enable the incorporation and prolonged release of bioactive molecules. These characteristics are fundamental to favor bone tissue homeostasis, since the biological activity of these factors depends on how accessible they are to the cell. Considering the importance of these DDS, this review aims to present relevant information on DDS when loaded with osteogenic growth peptide and bone morphogenetic protein. These are bioactive molecules that are capable of modulating the differentiation and proliferation of mesenchymal cells in bone tissue cells. Moreover, we will present different approaches using these peptide and protein-loaded DDS, such as synthetic membranes and scaffolds for bone regeneration, synthetic grafts, bone cements, liposomes, and micelles, which aim at improving the therapeutic effectiveness, and we will compare their advantages with commercial systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    Science.gov (United States)

    Chen, Muwan; Le, Dang QS; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug. PMID:22904634

  10. Initial plasma disappearance and tissue uptake of 131I-albumin in normal rabbits

    International Nuclear Information System (INIS)

    Bent-Hansen, L.

    1991-01-01

    The simultaneous plasma disappearance curves of 131I-albumin and 125I-fibrinogen were recorded in normal rabbits for 1 hr. Using fibrinogen as a plasma reference, the disappearance curves of albumin were shown to contain two separate phases of efflux: one fast from zero to 10 min. comprising 8% of the total tracer; and one slow appearing in the interval of 10 to 60 min. containing another 9% of the tracer. Total albumin escape was analyzed to yield an initial slope of 0.024 ± 0.004 min-1, corresponding to a wholebody unidirectional albumin clearance (Cl(0)) of 0.090 ± 0.009 ml(min*100 g)-1. The distribution of efflux was assessed by biopsy uptakes using the same tracers in spleen, kidney, heart, lung, liver, intestine, skin, muscle, and brain. The disappearance curve generally reflects a biphasic pattern of uptake in peripheral tissue, predominantly by muscle and lung. The rapid phase has contributions from the fast near equilibration of liver, and intestine and skin are significant codeterminants of the slow phase. Due to their low body masses highly perfused organs such as kidney, spleen, and heart have little influence on the plasma disappearance. In accordance, the Cl(0) determined for the wholebody was higher than initial clearances found in skin (0.053 ml(min*100 g)-1) and muscle (0.054 ml(min*100 g)-1), but much lower than those found in the highly perfused organs. The initial (unidirectional) rates of peripheral albumin transfer demonstrated, ranged from 10 to 30 times higher than estimates of lymphatic return, suggesting that transcapillary albumin exchange is mediated by high-rate bidirectional diffusion. The rapid decrease of net albumin exchange rates suggests a second, highly significant barrier located within the interstitial matrix, which restricts plasma escape and reduces plasma to lymph albumin transport

  11. Increased technetium-99 m hydroxy diphosphonate soft tissue uptake on bone scintigraphy in chronic kidney disease patients with secondary hyperparathyroidism

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte Hahn; Heaf, James Goya; Højgaard, Liselotte

    2017-01-01

    In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and/or hyperphosphata......In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and...... patients diagnosed with secondary hyperparathyroidism admitted for Tc-99 m-HDP bone scan. Baseline characteristics and mean concentrations of biochemical markers (including P-calcium and P-phosphate) taken 0-3 months prior to the bone scans were collected. Soft tissue uptake was detected on bone scans....../or hyperphosphataemia. As human vascular smooth muscle cells produce hydroxyapatite during cell culture with increased phosphate levels and as Tc-99 m-HDP/MDP primarily binds to hydroxyapatite, we hypothesized that soft tissue accumulation would be found in patients with hyperphosphataemia. We identified 63 CKD...

  12. 10B uptake by cells for boron neutron capture synovectomy

    International Nuclear Information System (INIS)

    Binello, E.; Yanch, J.C.; Shortkroff, S.

    2000-01-01

    Boron Neutron Capture Synovectomy (BNCS) proposes to use the 10 B(n,α) 7 Li reaction to ablate inflamed synovium (a tissue lining articular joints) in patients with Rheumatoid Arthritis. Boron uptake is an important parameter for treatment design. In this study, a simple method was developed to determine K 2 B 12 H 12 (KBH) uptake in vitro by non-adhering monocytic cells (representative of synovial cells in inflamed joints). Uptake was quantified as a function of incubation time and boron concentration, as well as following washout: no significant difference was found between incubation times tested; average uptake ranged from 55 to 60% of 10 B incubation concentrations varying from 1000 to 5000 ppm: approximately 15% of the 10 B concentration was measured upon re-incubation in boron-free medium. These results agree well with those obtained ex vivo using human arthritic synovium, a significant finding in light of the difficulty typically associated with obtaining such tissue. The full characterization of 10 B uptake for BNCS (with KBH) is discussed. (author)

  13. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    Directory of Open Access Journals (Sweden)

    Chen M

    2012-08-01

    Full Text Available Muwan Chen,1,2 Dang QS Le,1,2 San Hein,2 Pengcheng Li,1 Jens V Nygaard,2 Moustapha Kassem,3 Jørgen Kjems,2 Flemming Besenbacher,2 Cody Bünger11Orthopaedic Research Lab, Aarhus University Hospital, Aarhus C, Denmark; 2Interdisciplinary Nanoscience Center (iNANO, Aarhus University, Aarhus C, Denmark; 3Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, DenmarkAbstract: Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other

  14. Intracellular Drug Uptake-A Comparison of Single Cell Measurements Using ToF-SIMS Imaging and Quantification from Cell Populations with LC/MS/MS.

    Science.gov (United States)

    Newman, Carla F; Havelund, Rasmus; Passarelli, Melissa K; Marshall, Peter S; Francis, Ian; West, Andy; Alexander, Morgan R; Gilmore, Ian S; Dollery, Colin T

    2017-11-21

    ToF-SIMS is a label-free imaging method that has been shown to enable imaging of amiodarone in single rat macrophage (NR8383) cells. In this study, we show that the method extends to three other cell lines relevant to drug discovery: human embryonic kidney (HEK293), cervical cancer (HeLa), and liver cancer (HepG2). There is significant interest in the variation of drug uptake at the single cell level, and we use ToF-SIMS to show that there is great diversity between individual cells and when comparing each of the cell types. These single cell measurements are compared to quantitative measurements of cell-associated amiodarone for the population using LC/MS/MS and cell counting with flow cytometry. NR8383 and HepG2 cells uptake the greatest amount of amiodarone with an average of 2.38 and 2.60 pg per cell, respectively, and HeLa and Hek 293 have a significantly lower amount of amiodarone at 0.43 and 0.36 pg per cell, respectively. The amount of cell-associated drug for the ensemble population measurement (LC/MS/MS) is compared with the ToF-SIMS single cell data: a similar amount of drug was detected per cell for the NR8383, and HepG2 cells at a greater level than that for the HEK293 cells. However, the two techniques did not agree for the HeLa cells, and we postulate potential reasons for this.

  15. Uptake and distribution of mercury within higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Beauford, W; Barber, J; Barringer, A R

    1977-04-15

    The uptake and distribution of inorganic mercury (HgCl/sub 2/) within higher plants (Pisum sativum and Mentha spicata) was examined using solution culture and radiotracer techniques. Plants were found to tolerate an external level of 1 mgHg/kg of solution but both physiological and biochemical processes were affected at 5 mgHg/kg and 10 mgHg/kg. The uptake of Hg into plants grown in hydroponic solution was a function of external concentration. Over the concentration range considered the accumulation of Hg in the roots was linear on a log-log basis although the uptake of the element into the shoots appeared to be two-phased. The distribution of Hg in plants was asymmetrical with much greater amounts of the element in the roots than the shoots. Although the level of Hg increased generally in plant tissues with increasing external levels, the proportion retained in the roots, relative to the shoots, was constant (approximately 95%). Two binding characteristics of the Hg within plant tissue were detected. A major proportion of Hg was tightly bound, being unaffected by treatment with ethanol and hydrochloric acid. The remaining Hg in the tissue was removed by either water or hydrochloric acid treatment. Cell fractionation indicated that the major binding component of Hg in plant tissues was the cell wall.

  16. Biodistribution and breast tumor uptake of 16α-[18F]-fluoro-17β-estradiol in rat

    International Nuclear Information System (INIS)

    Sasaki, Masayuki; Fukumura, Toshimitsu; Kuwabara, Yasuo; Yoshida, Tsuyoshi; Nakagawa, Makoto; Ichiya, Yuichi; Masuda, Kouji

    2000-01-01

    To evaluate the usefulness of 16α-[ 18 F]-fluoro-17β-estradiol (FES) for the assessment of estrogen receptor (ER), we examined the tissue distribution and kinetics of FES in immature female Sprague-Dawley rats and then examined FES uptake in rat breast tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA). The FES uptake by the uterus, an ER-rich tissue, was highly selective and it was 3.34±0.79%ID/g at 60 minutes and 1.57±0.57%ID/g at 120 minutes after injection. The FES uptakes in ER-negative tissues were 0.12±0.05%ID/g or less and 0.05±0.03%ID/g or less, respectively. Coadministration of unlabeled β-estradiol showed marked depression of uterine FES uptake. The FES uptake by rat breast tumors was 0.14±0.06%ID/g at 60 min and 0.12±0.09%ID/g at 120 min. The FES uptake by rat breast tumors correlated with the ER concentration (r=0.45, p<0.05). In conclusion, these results suggest that the FES uptake by tissue is mainly ER mediated and FES is thus useful for detecting ER positive breast tumors. (author)

  17. Human engineered heart tissue as a model system for drug testing.

    Science.gov (United States)

    Eder, Alexandra; Vollert, Ingra; Hansen, Arne; Eschenhagen, Thomas

    2016-01-15

    Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Uptake of technetium from seawater by red abalone Haliotis rufescens

    International Nuclear Information System (INIS)

    Spies, R.B.

    1975-01-01

    Technetium accumulation from seawater by the abalone Haliotis rufescens was studied with 95 Tc. Concentration factors, uptake rates, steady state concentrations, and biological half-lives were determined experimentally for whole-body uptake. Whole-body concentration factors ranged from 135 to 205; biological half-life was 60 days. Changes in concentration factors were determined for six tissues during the uptake period. The highest activities were in the order of: digestive gland>gill>kidneys>heart>gonad>columnar muscle. Dead shells accumulated little activity compared to shells of living abalone. Gills and digestive system appear to be the routes of entry. Autoradiography shows that of the muscular tissues the outer edge of the foot and epipodium are the most active and the edible columnar muscle the least active. (author)

  19. Pharmacokinetics and Efficacy of Topically Applied Nonsteroidal Anti-Inflammatory Drugs in Retinochoroidal Tissues in Rabbits

    Science.gov (United States)

    Kida, Tetsuo; Kozai, Seiko; Takahashi, Hiroaki; Isaka, Mitsuyoshi; Tokushige, Hideki; Sakamoto, Taiji

    2014-01-01

    Purpose To evaluate the pharmacokinetics and efficacy of topically applied nonsteroidal anti-inflammatory drugs (NSAIDs) in the retinochoroidal tissues of rabbits. Methods The cyclooxygenase (COX) inhibitory activity of diclofenac, bromfenac, and amfenac, an active metabolite of nepafenac, were determined using human-derived COX-1 and COX-2. Each of the three NSAIDs was applied topically to rabbits, and after 0.5 to 8 hrs, the concentration of each drug in the aqueous humor and the retinochoroidal tissues was measured by liquid chromatography-tandem mass spectrometry. The pharmacokinetics of the drugs in the tissues after repeated doses as is done on patients was calculated by a simulation software. The inhibitory effect of each NSAID on the breakdown of the blood-retinal barrier was assessed by the vitreous protein concentration on concanavalin A-induced retinochoroidal inflammation in rabbits. Results The half-maximal inhibitory concentration (IC50) of diclofenac, bromfenac, and amfenac was 55.5, 5.56, and 15.3 nM for human COX-1, and 30.7, 7.45, and 20.4 nM for human COX-2, respectively. The three NSAIDs were detected in the aqueous humor and the retinochoroidal tissue at all-time points. Simulated pharmacokinetics showed that the levels of the three NSAIDs were continuously higher than the IC50 of COX-2, as an index of efficacy, in the aqueous humor, whereas only the bromfenac concentration was continuously higher than the IC50 at its trough level in the retinochoroidal tissues. The intravitreous concentration of proteins was significantly reduced in rabbits that received topical bromfenac (P = 0.026) but not the other two NSAIDs. Conclusions Topical bromfenac can penetrate into the retinochoroidal tissues in high enough concentrations to inhibit COX-2 and exerts its inhibitory effect on the blood-retinal barrier breakdown in an experimental retinochoroidal inflammation in rabbits. Topical bromfenac may have a better therapeutic benefit than diclofenac and

  20. Pharmacokinetics and efficacy of topically applied nonsteroidal anti-inflammatory drugs in retinochoroidal tissues in rabbits.

    Directory of Open Access Journals (Sweden)

    Tetsuo Kida

    Full Text Available PURPOSE: To evaluate the pharmacokinetics and efficacy of topically applied nonsteroidal anti-inflammatory drugs (NSAIDs in the retinochoroidal tissues of rabbits. METHODS: The cyclooxygenase (COX inhibitory activity of diclofenac, bromfenac, and amfenac, an active metabolite of nepafenac, were determined using human-derived COX-1 and COX-2. Each of the three NSAIDs was applied topically to rabbits, and after 0.5 to 8 hrs, the concentration of each drug in the aqueous humor and the retinochoroidal tissues was measured by liquid chromatography-tandem mass spectrometry. The pharmacokinetics of the drugs in the tissues after repeated doses as is done on patients was calculated by a simulation software. The inhibitory effect of each NSAID on the breakdown of the blood-retinal barrier was assessed by the vitreous protein concentration on concanavalin A-induced retinochoroidal inflammation in rabbits. RESULTS: The half-maximal inhibitory concentration (IC50 of diclofenac, bromfenac, and amfenac was 55.5, 5.56, and 15.3 nM for human COX-1, and 30.7, 7.45, and 20.4 nM for human COX-2, respectively. The three NSAIDs were detected in the aqueous humor and the retinochoroidal tissue at all-time points. Simulated pharmacokinetics showed that the levels of the three NSAIDs were continuously higher than the IC50 of COX-2, as an index of efficacy, in the aqueous humor, whereas only the bromfenac concentration was continuously higher than the IC50 at its trough level in the retinochoroidal tissues. The intravitreous concentration of proteins was significantly reduced in rabbits that received topical bromfenac (P = 0.026 but not the other two NSAIDs. CONCLUSIONS: Topical bromfenac can penetrate into the retinochoroidal tissues in high enough concentrations to inhibit COX-2 and exerts its inhibitory effect on the blood-retinal barrier breakdown in an experimental retinochoroidal inflammation in rabbits. Topical bromfenac may have a better therapeutic benefit

  1. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    Science.gov (United States)

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Uptake of cadmium from hydroponic solutions by willows (Salix spp ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2011-11-16

    Nov 16, 2011 ... which indicated that cadmium uptake across the plasma membrane was ... to cadmium pollution in water-soil-plant systems because .... plants were separated into roots and shoots, blotted dry with paper tissue .... Analysis of the kinetic constants for cadmium uptake ..... proteins (Welch and Norvell, 1999).

  3. Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies.

    Directory of Open Access Journals (Sweden)

    Tim D Fryer

    Full Text Available Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO positron emission tomography (PET is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs, two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity.Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI and tetrazolium chloride (TTC staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9, tissue oxygen partial pressure (PtO2 was measured in the ischemic tissue during both control and NBO conditions.As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2.Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications of FMISO imaging.

  4. Are predictions of cancer response to targeted drugs, based on effects in unrelated tissues, the 'Black Swan' events?

    Science.gov (United States)

    Kurbel, Beatrica; Golem, Ante Zvonimir; Kurbel, Sven

    2015-01-01

    Adverse effects of targeted drugs on normal tissues can predict the cancer response. Rash correlates with efficacy of erlotinib, cetuximab and gefitinib and onset of arterial hypertension with response to bevacizumab, sunitinib, axitinib and sorafenib, possible examples of 'Black Swan' events, unexpected scientific observations, as described by Karl Popper in 1935. The proposition is that our patients have individual intrinsic variants of cell growth control, important for tumor response and adverse effects on tumor-unrelated tissue. This means that the lack of predictive side effects in healthy tissue is linked with poor results of tumor therapy when tumor resistance is caused by mechanisms that protect all cells of that patient from the targeted drug effects.

  5. Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan.

    Science.gov (United States)

    Sun, Lijuan; Camps, Stefan G; Goh, Hui Jen; Govindharajulu, Priya; Schaefferkoetter, Joshua D; Townsend, David W; Verma, Sanjay K; Velan, S Sendhil; Sun, Lei; Sze, Siu Kwan; Lim, Su Chi; Boehm, Bernhard Otto; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing

    2018-01-01

    Capsinoids are reported to increase energy expenditure (EE) via brown adipose tissue (BAT) stimulation. However, imaging of BAT activation by capsinoids remains limited. Because BAT activation is a potential therapeutic strategy for obesity and related metabolic disorders, we sought to prove that capsinoid-induced BAT activation can be visualized by 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). We compared capsinoids and cold exposure on BAT activation and whole-body EE. Twenty healthy participants (8 men, 12 women) with a mean age of 26 y (range: 21-35 y) and a body mass index (kg/m2) of 21.7 (range: 18.5-26.0) underwent 18F-FDG PET and whole-body calorimetry after ingestion of 12 mg capsinoids or ≤2 h of cold exposure (∼14.5°C) in a crossover design. Mean standardized uptake values (SUVs) of the region of interest and BAT volumes were calculated. Blood metabolites were measured before and 2 h after each treatment. All of the participants showed negligible 18F-FDG uptake post-capsinoid ingestion. Upon cold exposure, 12 participants showed avid 18F-FDG uptake into supraclavicular and lateral neck adipose tissues (BAT-positive group), whereas the remaining 8 participants (BAT-negative group) showed undetectable uptake. Capsinoids and cold exposure increased EE, although cold induced a 2-fold increase in whole-body EE and higher fat oxidation, insulin sensitivity, and HDL cholesterol compared with capsinoids. Capsinoids only increased EE in BAT-positive participants, which suggests that BAT mediates EE evoked by capsinoids. This implies that capsinoids stimulate BAT to a lesser degree than cold exposure as evidenced by 18F-FDG uptake below the presently accepted SUV thresholds defining BAT activation. This trial was registered at www.clinicaltrials.gov as NCT02964442. © 2018 American Society for Nutrition. All rights reserved.

  6. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability

    International Nuclear Information System (INIS)

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed

    2017-01-01

    Significant efforts have been made to develop a suitable biocompatible scaffold for bone tissue engineering. In this work, a chitosan-graft-poly(acrylic acid-co-acrylamide)/hydroxyapatite nanocomposite scaffold was synthesized through a novel multi-step route. The prepared scaffolds were characterized for crystallinity, morphology, elemental analysis, chemical bonds, and pores size in their structure. The mechanical properties (i.e. compressive strength and elastic modulus) of the scaffolds were examined. Further, the biocompatibility of scaffolds was determined by MTT assays on HUGU cells. The result of cell culture experiments demonstrated that the prepared scaffolds have good cytocompatibility without any cytotoxicity, and with the incorporation of hydroxyapatite in their structure improves cell viability and proliferation. Finally, celecoxib as a model drug was efficiently loaded into the prepared scaffolds because of the large specific surface area. The in vitro release of the drug displayed a biphasic pattern with a low initial burst and a sustained release of up to 14 days. Furthermore, different release kinetic models were employed for the description of the release process. The results suggested that the prepared cytocompatible and non-toxic nanocomposite scaffolds might be efficient implants and drug carriers in bone-tissue engineering. - Highlights: • A series of biocompatible scaffolds were synthesized through a novel multi-step route. • The mechanical properties of the scaffolds were found close to those of trabecular bone. • The prepared scaffolds were able to load celecoxib efficiently as a model drug. • The celecoxib release was mainly controlled by a Fickian diffusion process. • The scaffold can be efficient as an implant for tissue engineering and drug delivery.

  7. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability

    Energy Technology Data Exchange (ETDEWEB)

    Saber-Samandari, Samaneh, E-mail: samaneh.saber@gmail.com [Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10 (Turkey); Saber-Samandari, Saeed, E-mail: saeedss@aut.ac.ir [New Technologies Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2017-06-01

    Significant efforts have been made to develop a suitable biocompatible scaffold for bone tissue engineering. In this work, a chitosan-graft-poly(acrylic acid-co-acrylamide)/hydroxyapatite nanocomposite scaffold was synthesized through a novel multi-step route. The prepared scaffolds were characterized for crystallinity, morphology, elemental analysis, chemical bonds, and pores size in their structure. The mechanical properties (i.e. compressive strength and elastic modulus) of the scaffolds were examined. Further, the biocompatibility of scaffolds was determined by MTT assays on HUGU cells. The result of cell culture experiments demonstrated that the prepared scaffolds have good cytocompatibility without any cytotoxicity, and with the incorporation of hydroxyapatite in their structure improves cell viability and proliferation. Finally, celecoxib as a model drug was efficiently loaded into the prepared scaffolds because of the large specific surface area. The in vitro release of the drug displayed a biphasic pattern with a low initial burst and a sustained release of up to 14 days. Furthermore, different release kinetic models were employed for the description of the release process. The results suggested that the prepared cytocompatible and non-toxic nanocomposite scaffolds might be efficient implants and drug carriers in bone-tissue engineering. - Highlights: • A series of biocompatible scaffolds were synthesized through a novel multi-step route. • The mechanical properties of the scaffolds were found close to those of trabecular bone. • The prepared scaffolds were able to load celecoxib efficiently as a model drug. • The celecoxib release was mainly controlled by a Fickian diffusion process. • The scaffold can be efficient as an implant for tissue engineering and drug delivery.

  8. Difluoromethylornithine enhanced uptake of tritiated putrescine in 9L rat brain tumors

    International Nuclear Information System (INIS)

    Redgate, E.S.; Grudziak, A.G.; Deutsch, M.; Boggs, S.S.

    1997-01-01

    Difluoromethylornithine (DFMO) depletes endogenous putrescine and enhances the uptake of and retention of [ 3 H] putrescine in vitro. To determine if DFMO also enhances uptake of [ 3 H] putrescine in vivo, DFMO and trace doses of [ 3 H] putrescine, dissolved in artificial CSF, were infused into growing (6-9 day) 9L brain tumors by means of osmotic pumps. When 7-day osmotic pumps were loaded with 1 μCi [ 3 H] putrescine, with or without 10 or 100 mM DFMO, pumped at 1 μl/h, the mean uptake after 3 days was 168 ± 62 cpm/mg tumor (17 rats) without DFMO, 300 ± 197 cpm/mg tumor (11 rats) with 10 mM DFMO and 1088 ± 421 cpm/mg tumor (11 rats) with 100 mM DFMO (p ≤ 0.05 vs. control). Significantly less radioactivity was detected in the contralateral brain and in nonbrain tissues (0.5 ± 0.1 to 14 ± 5 cpm/mg). To measure the extent of [ 3 H] putrescine distribution in the tumor, the same dose of drugs was delivered for a longer period of time, using 14-day pumps to allow tumors to become large enough to be divided into 1.4 mm thick transections. The mean radioactivity in the sections from eight control rats receiving [ 3 H] putrescine without DFMO were not significantly different between the sections (174 ± 61 cpm/mg tumor for sections containing the cannulas, 273 ± 61 and 259 ± 91 cpm/mg for adjacent sections). In the six rats given 100 mM DFMO there was a significant increase in mean radioactivity in the cannula containing section (2251 ± 919 cpm/mg tumor). Mean counts from adjacent sections in these rats were 97 ± 44 and 33 ± 13 cpm/mg. Values for contralateral corpus striatum and nonbrain tissues ranged from 0.7 ± 0.3 to 4.3 ± 1.5 cpm/mg tissue. When DFMO was delivered directly to the tumors while [ 3 H] putrescine was infused intraperitoneally, the uptake in the tumor slices was low (5-10 cpm/mg in different slices). These results demonstrate that infusion of DFMO directly into growing 9L brain tumors can selectively enhance the uptake of exogenous [ 3 H

  9. Uptake and Tissue Distribution of Pharmaceuticals and Personal Care Products in Wild Fish from Treated-Wastewater-Impacted Streams.

    Science.gov (United States)

    Tanoue, Rumi; Nomiyama, Kei; Nakamura, Haruna; Kim, Joon-Woo; Isobe, Tomohiko; Shinohara, Ryota; Kunisue, Tatsuya; Tanabe, Shinsuke

    2015-10-06

    A fish plasma model (FPM) has been proposed as a screening technique to prioritize potential hazardous pharmaceuticals to wild fish. However, this approach does not account for inter- or intraspecies variability of pharmacokinetic and pharmacodynamic parameters. The present study elucidated the uptake potency (from ambient water), tissue distribution, and biological risk of 20 pharmaceutical and personal care product (PPCP) residues in wild cyprinoid fish inhabiting treated-wastewater-impacted streams. In order to clarify the uncertainty of the FPM for PPCPs, we compared the plasma bioaccumulation factor in the field (BAFplasma = measured fish plasma/ambient water concentration ratio) with the predicted plasma bioconcentration factor (BCFplasma = fish plasma predicted by use of theoretical partition coefficients/ambient water concentration ratio) in the actual environment. As a result, the measured maximum BAFplasma of inflammatory agents was up to 17 times higher than theoretical BCFplasma values, leading to possible underestimation of toxicological risk on wild fish. When the tissue-blood partition coefficients (tissue/blood concentration ratios) of PPCPs were estimated, higher transportability into tissues, especially the brain, was found for psychotropic agents, but brain/plasma ratios widely varied among individual fish (up to 28-fold). In the present study, we provide a valuable data set on the intraspecies variability of PPCP pharmacokinetics, and our results emphasize the importance of determining PPCP concentrations in possible target organs as well as in the blood to assess the risk of PPCPs on wild fish.

  10. Uptake and utilization of nutrients by developing kernels of Zea mays L

    International Nuclear Information System (INIS)

    Lyznik, L.A.

    1987-01-01

    The mechanisms involved in amino acid and sugar uptake by developing maize kernels were investigated. In the pedicel region of maize kernel, the site of nutrient unloading from phloem terminals, amino acids are accumulated in considerable amounts and undergo significant interconversion. A wide spectrum of enzymatic activities involved in the metabolism of amino acids is observed in these tissues. Subsequently, amino acids are taken up by the endosperm tissue in processes which require energy and the presence of carrier proteins. Conversely, no evidence was found that energy and carriers are involved in sugar uptake. This process of sugar uptake is not inhibited by metabolic inhibitors and shows nonsaturable kinetics, but the uptake is pH-dependent. L-glucose is taken up at a significantly reduced rate in comparison to D-glucose uptake. Based on analysis of radioactivity distribution among sugar fractions after incubations of kernels with radiolabeled D-glucose, it seems that sucrose is not efficiently resynthesized from D-glucose in the endosperm tissue. Thus, the proposed mechanism of sucrose transport involving sucrose hydrolysis in the pedicel region and subsequent resynthesis in endosperm cells may not be the main pathway. The evidence that transfer cells play an active role in D-glucose transport is presented

  11. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation.

    Science.gov (United States)

    Martiney, J A; Ferrer, A S; Cerami, A; Dzekunov, S; Roepe, P

    1999-01-01

    The biochemical mechanism of chloroquine resistance in Plasmodium falciparum remains unknown. We postulated that chloroquine-resistant strains could alter ion fluxes that then indirectly control drug accumulation within the parasite by affecting pH and/or membrane potential ('altered partitioning mechanism'). Two principal intracellular pH-regulating systems in many cell types are the amiloride-sensitive Na+/H+ exchanger (NHE), and the sodium-independent, stilbene-sensitive Cl-/HCO3- antiporter (AE). We report that under physiological conditions (balanced CO2 and HCO3-) chloroquine uptake and susceptibility are not altered by amiloride analogues. We also do not detect a significant difference in NHE activity between chloroquine-sensitive and chloroquine-resistant strains via single cell photometry methods. AE activity is dependent on the intracellular and extracellular concentrations of Cl- and HCO3- ions. Chloroquine-resistant strains differentially respond to experimental modifications in chloride-dependent homeostasis, including growth, cytoplasmic pH and pH regulation. Chloroquine susceptibility is altered by stilbene DIDS only on chloroquine-resistant strains. Our results suggest that a Cl(-)-dependent system (perhaps AE) has a significant effect on the uptake of chloroquine by the infected erythrocyte, and that alterations of this biophysical parameter may be part of the mechanism of chloroquine resistance in P. falciparum.

  12. Effect of metformin therapy on the levels of certain adipose tissue hormones and mediators of nonspecific generalized inflammation in patients with newly diagnosed type 2 diabetes

    Directory of Open Access Journals (Sweden)

    A.M. Urbanovych

    2015-05-01

    Full Text Available The aim of the study was to investigate the influence of the drug metformin on the levels of adipose tissue hormones and generalized nonspecific mediators of inflammation in type 2 diabetes. 38 patients with newly diagnosed type 2 diabetes were followed up before and after 12 months of hypoglycemic monotherapy with glucophage. The results indicate that the normalization of carbohydrate metabolism indices and decreased body weight of patients in the presence of the therapy is due not only to direct effects of metformin in improving glucose uptake by peripheral tissues, but by the ability of the drug to modulate adipocytokine secretion.

  13. Diffuse Myocardial Uptake of 99mTc-HDP in Multiple Myeloma

    International Nuclear Information System (INIS)

    Demirel, Koray; Sadic, Murat; Korkmaz, Meliha; Comak, Aylin; Atilgan, Hasan Ikbal; Koca, Goekhan

    2013-01-01

    Soft tissue uptake is a rare finding in bone scintigraphy, with an incidence of 2%. Although the mechanism has not yet been fully clarified, several causes have been reported for this unusual uptake pattern. This paper presents a case of diffuse myocardial accumulation of technetium-99m hydroxymethylene diphosphonate ( 99m Tc-HDP) without either solid/visceral organ or soft tissue with multiple myeloma (MM) in skeletal scintigraphy. A 93-year-old man with hypertension and chronic heart failure for 14 years underwent bone scanning due to a 2-month history of back pain within a 1-year period of MM. Three hours later, 99m Tc-HDP late static images showed diffuse myocardial radiotracer accumulation and there were no other sites of abnormal soft tissue or visceral uptake. Myocardial accumulation had disappeared on 24-h delayed static images. This accumulation was thought to be related with AL-type amyloidosis associated with MM

  14. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip

    International Nuclear Information System (INIS)

    Snyder, J E; Hamid, Q; Wang, C; Chang, R; Sun, W; Emami, K; Wu, H

    2011-01-01

    The objective of this paper is to introduce a novel cell printing and microfluidic system to serve as a portable ground model for the study of drug conversion and radiation protection of living liver tissue analogs. The system is applied to study behavior in ground models of space stress, particularly radiation. A microfluidic environment is engineered by two cell types to prepare an improved higher fidelity in vitro micro-liver tissue analog. Cell-laden Matrigel printing and microfluidic chips were used to test radiation shielding to liver cells by the pro-drug amifostine. In this work, the sealed microfluidic chip regulates three variables of interest: radiation exposure, anti-radiation drug treatment and single- or dual-tissue culture environments. This application is intended to obtain a scientific understanding of the response of the multi-cellular biological system for long-term manned space exploration, disease models and biosensors.

  15. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, J E; Hamid, Q; Wang, C; Chang, R; Sun, W [Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104 (United States); Emami, K; Wu, H, E-mail: sunwei@drexel.edu, E-mail: weisun@tsinghua.edu.cn [Radiation Biophysics Lab, NASA Johnson Space Center, Houston, TX 77586 (United States)

    2011-09-15

    The objective of this paper is to introduce a novel cell printing and microfluidic system to serve as a portable ground model for the study of drug conversion and radiation protection of living liver tissue analogs. The system is applied to study behavior in ground models of space stress, particularly radiation. A microfluidic environment is engineered by two cell types to prepare an improved higher fidelity in vitro micro-liver tissue analog. Cell-laden Matrigel printing and microfluidic chips were used to test radiation shielding to liver cells by the pro-drug amifostine. In this work, the sealed microfluidic chip regulates three variables of interest: radiation exposure, anti-radiation drug treatment and single- or dual-tissue culture environments. This application is intended to obtain a scientific understanding of the response of the multi-cellular biological system for long-term manned space exploration, disease models and biosensors.

  16. Evaluation of uptake and distribution of gold nanoparticles in solid tumors

    Science.gov (United States)

    England, Christopheri G.; Gobin, André M.; Frieboes, Hermann B.

    2015-11-01

    Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticulo-endothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.

  17. In vivo drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold

    DEFF Research Database (Denmark)

    Sun, Ming; Chen, Muwan; Wang, Miao

    2016-01-01

    Bone tissue-engineered scaffolds with therapeutic effects must meet the basic requirements as to support bone healing at the defect side and to release an effect drug within the therapeutic window. Here, a rapid prototyped PCL scaffold embedded with chitosan/nanoclay/β-tricalcium phosphate...

  18. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.

    Science.gov (United States)

    Jiang, Yanjiao; Chen, Jing; Deng, Chao; Suuronen, Erik J; Zhong, Zhiyuan

    2014-06-01

    Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cyclosporine, a P-glycoprotein modulator, increases [18F]MPPF uptake in rat brain and peripheral tissues: microPET and ex vivo studies

    International Nuclear Information System (INIS)

    Lacan, Goran; Way, Baldwin M.; Plenevaux, Alain; Defraiteur, Caroline; Lemaire, Christian; Aerts, Joel; Luxen, Andre; Rubins, Daniel J.; Cherry, Simon R.; Melega, William P.

    2008-01-01

    Pretreatment with cyclosporine, a P-glycoprotein (P-gp) modulator increases brain uptake of 4-(2'-methoxyphenyl)-1-[2'-(N-2''-pyridinyl)-p-[ 18 F] fluorobenzamido] ethylpiper azine ([ 18 F]MPPF) for binding to hydroxytryptamine 1A (5-HT 1A ) receptors. Those increases were quantified in rat brain with in vivo microPET and ex vivo tissue studies. Each Sprague-Dawley rat (n=4) received a baseline [ 18 F]MPPF microPET scan followed by second scan 2-3 weeks later that included cyclosporine pretreatment (50 mg/kg, i.p.). Maximum a posteriori reconstructed images and volumetric ROIs were used to generate dynamic radioactivity concentration measurements for hippocampus, striatum, and cerebellum, with simplified reference tissue method (SRTM) analysis. Western blots were used to semiquantify P-gp regional distribution in brain. MicroPET studies showed that hippocampus uptake of [ 18 F]MPPF was increased after cyclosporine; ex vivo studies showed similar increases in hippocampus and frontal cortex at 30 min, and for heart and kidney at 2.5 and 5 min, without concomitant increases in [ 18 F]MPPF plasma concentration. P-gp content in cerebellum was twofold higher than in hippocampus or frontal cortex. These studies confirm and extend prior ex vivo results (J. Passchier, et al., Eur J Pharmacol, 2000) that showed [ 18 F]MPPF as a substrate for P-gp. Our microPET results showed that P-gp modulation of [ 18 F]MPPF binding to 5-HT 1A receptors can be imaged in rat hippocampus. The heterogeneous brain distribution of P-gp appeared to invalidate the use of cerebellum as a nonspecific reference region for SRTM modeling. Regional quantitation of P-gp may be necessary for accurate PET assessment of 5-HT 1A receptor density when based on tracer uptake sensitive to P-gp modulation. (orig.)

  20. Synthesis of diethylenetriaminepentaacetic acid conjugated inulin and utility for cellular uptake of liposomes

    International Nuclear Information System (INIS)

    Essien, H.; Lai, J.Y.; Hwang, K.J.

    1988-01-01

    The synthesis, binding of radioactive cations, liposomal encapsulation, and biodistribution of the oxidized-inulin reaction product with ethylenediamine and diethylenetriaminepentaacetic acid (4) are described. The four-step synthesis of the inulin derivative proceeded in a good overall yield of 72%. The complex of the inulin derivative with either 67 Ga3+ or 111 In3+ was stable in vivo and did not readily distribute into tissues, being excreted primarily in urine after intravenous administration to mice. The liposome-entrapped inulin derivative can be loaded with radioactive heavy metal cations by mobile ionophores in high radiochemical yields of 80-91%. Following the intravenous administration of the liposomal encapsulation of the indium-111-labeled inulin derivative, the entrapped compound had a biodistribution characteristic of liposomes and allowed an estimation of the extent of the intracellular uptake of liposomes. The ability of the inulin derivative to chelate many different types of metals will allow the use of this probe for studying subtle differences in tissue distribution resulting from different drug targeting or delivery protocols in the same animal by multiple labeling techniques. Moreover, the chelate-conjugated inulin permits studies of the applications of drug delivery systems in primates or human subjects by noninvasive techniques such as gamma-scintigraphic or nuclear magnetic resonance imaging methods

  1. The role of the extracellular matrix in tissue distribution of macromolecules in normal and pathological tissues: potential therapeutic consequences.

    Science.gov (United States)

    Wiig, Helge; Gyenge, Christina; Iversen, Per Ole; Gullberg, Donald; Tenstad, Olav

    2008-05-01

    The interstitial space is a dynamic microenvironment that consists of interstitial fluid and structural molecules of the extracellular matrix, such as glycosaminoglycans (hyaluronan and proteoglycans) and collagen. Macromolecules can distribute in the interstitium only in those spaces unoccupied by structural components, a phenomenon called interstitial exclusion. The exclusion phenomenon has direct consequences for plasma volume regulation. Early studies have assigned a major role to collagen as an excluding agent that accounts for the sterical (geometrical) exclusion. More recently, it has been shown that the contribution of negatively charged glycosaminoglycans might also be significant, resulting in an additional electrostatical exclusion effect. This charge effect may be of importance for drug uptake and suggests that either the glycosaminoglycans or the net charge of macromolecular substances to be delivered may be targeted to increase the available volume and uptake of macromolecular therapeutic agents in tumor tissue. Here, we provide an overview of the structural components of the interstitium and discuss the importance the sterical and electrostatical components have on the dynamics of transcapillary fluid exchange.

  2. Multiscale Modeling of Antibody Drug Conjugates: Connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy

    Science.gov (United States)

    Cilliers, Cornelius; Guo, Hans; Liao, Jianshan; Christodolu, Nikolas; Thurber, Greg M.

    2016-01-01

    Antibody drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from non-specific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody drug conjugate Kadcyla in HER2 positive mouse xenografts. This model is able to capture the impact of the drug antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs. PMID:27287046

  3. Uptake, distribution, and incorporation of 59Fe in tissue and blood of rainbow trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Walker, R.L.

    1975-01-01

    A study was designed to evaluate the storage iron facilities in various tissues and to trace the distribution of radioiron in tissues and blood following an intraperitoneal (i.p.) injection of 59 Fe. Iron deficiency anemia was induced in an experimental group of rainbow trout in order to measure its effect on red blood cell production and mobilization of storage iron. Most of the 59 Fe was absorbed from the peritoneal cavity within 24 hrs. after the i.p. injection. Equilibrium between the plasma 59 Fe pool and that of the tissue was established by day 8. Experimental fish RBC 59 Fe content increased to 70 to 80 percent of the initial injected dose by day 16 compared to 50 percent in the controls. This was attributed to the difference in reticulocyte count which was 10 to 12 percent for the bled and 2 to 3 percent for control fish. The rate that iron is incorporated into hemoglobin by immature red cells is much slower (about half) than the rate of RBC 59 Fe uptake, thus, iron is temporarily stored in the cytoplasm. The iron for hemoglobin formation was obtained from liver iron stores which dropped from 12 percent to less than 1 percent of the initial injected dose by day 16. Total iron concentration in liver decreased from 200 to less than 100 μg Fe/g. The decrease in liver iron may have stimulated iron absorption by the intestine and pyloric caeca. There is evidence for a feedback mechanism mediated by transferrin

  4. A two-compartment exposure device for foliar uptake study

    International Nuclear Information System (INIS)

    Zuo, Q.; Lin, H.; Zhang, X.L.; Li, Q.L.; Liu, S.Z.; Tao, S.

    2006-01-01

    An airtight two-chamber exposure devise was designed for investigating foliar uptake of polycyclic aromatic hydrocarbons (PAHs) by plants. The upper and the bottom chambers of the device were air-tightly separated by an aluminum foil and the plant aerial tissues and roots were exposed in the two chambers, respectively. The device was tested using maize exposed to several PAH species. Positive correlations between air and aerial tissue concentrations of the exposed PAH species were revealed. PAHs spiking in the culture solution had no influence on the leaf concentrations. -- A two-compartment gastight exposure device was developed for investigation of foliar uptake of PAHs by plants

  5. Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells and Tissues Following Combat Associated Trauma

    Science.gov (United States)

    2013-09-01

    death pathways such as apoptosis subsequent to acute trauma as soon as possible, ideally by self- administration of a drug or a biologic that can be... Drugs to Ocular Tissues Including Retina and Cornea . Mol Ther, 2007;16(1):107- 14. 3. Read SP, Cashman SM, and Kumar-Singh R: POD...1 AD_________________ Award Number: W81XWH-12-1-0374 TITLE: Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells

  6. Cadmium and zinc uptake by vegetable tissues after nine annual applications of phosphate fertilizer to soil

    International Nuclear Information System (INIS)

    Mortvedt, J.J.

    1984-01-01

    Plant uptake of heavy metals such as Cd and Zn applied to soil as contaminants in P fertilizers is of concern because of their possible entry into the human food chain. Concentrations in P fertilizers generally range from 1 to 50 mg kg/sup -1/ of Cd and 50 to 500 mg kg/sup -1/ of Zn, but much higher concentrations have been reported. Such wide ranges are due to variations in heavy metal contents of phosphate rock (PR) used to produce P fertilizers. Samples of vegetable tissues grown in New York on soil fertilized with triple superphosphate (TSP) for nine years of a 10-year experiment were analyzed for Cd and Zn. Results of this study show that plant availability of Cd and Zn contaminants in P fertilizers is rather low, even at high rates of P fertilization

  7. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    Science.gov (United States)

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Tumor grade-related thallium-201 uptake in chondrosarcomas

    International Nuclear Information System (INIS)

    Kaya, G.C.; Demir, Y.; Ozkal, S.

    2010-01-01

    Diagnosis of low-grade chondrosarcoma, especially discrimination between enchondroma and low-grade chondrosarcoma, may be difficult pathologically. The aim of this study was to evaluate the value of thallium-201 (Tl-201) scintigraphy in the diagnosis of chondrosarcoma and to investigate whether there was a correlation between Tl-201 uptake and tumor grade. We retrospectively evaluated 121 patients with pathologically proven bone and soft tissue tumors diagnosed between the years 1999 and 2007. All patients were followed by the Bone and Soft Tissue Tumor Working Group in our hospital. Twenty-three patients, mean age 44±15 (range 17-72) years, with a diagnosis of cartilaginous tumors were included. Increased Tl-201 uptake at the lesion sites greater than background was evaluated as malignant tumor. For the pathologic classification, a grading system (grade 1-3) based on the histopathologic findings was used. Pearson correlation coefficient was used to determine whether there was any correlation between Tl-201 uptake and tumor grade in chondrosarcoma. There were 7 enchondromas and 16 chondrosarcomas. Four of 16 patients with chondrosarcoma had lesions pathologically classified as grade 3, 5 as grade 2, and 7 had grade 1 chondrosarcoma. Increased Tl-201 uptake was observed in all patients with grade 3 chondrosarcoma and 2 patients with grade 2 chondrosarcoma. Of 10 patients with chondrosarcoma, 3 grade 2 chondrosarcomas and 7 grade 1 chondrosarcomas, there was no Tl-201 uptake in the tumor region. A significant correlation was found between Tl-201 uptake and tumor grade in chondrosarcoma (p=0.002, r=0.71). Only a few reports in literature have demonstrated false negative results in low-grade chondrosarcoma. Tl-201 uptake was related to tumor grade in chondrosarcoma. If there is a possibility of chondrosarcoma, Tl-201 scintigraphy should be reported with caution. (author)

  9. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues

    Science.gov (United States)

    Tzur-Balter, Adi; Shatsberg, Zohar; Beckerman, Margarita; Segal, Ester; Artzi, Natalie

    2015-01-01

    Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance. PMID:25670235

  10. Tritium uptake kinetics in crayfish (Orconectes immunis)

    International Nuclear Information System (INIS)

    Patrick, P.H.

    1985-06-01

    Uptake of tritiated water (HTO) by Orconectes immunis was investigated under laboratory conditions. Tritium uptake in the tissue-free water fraction (TFWT) was described using an exponential model. When steady-state was reached, the ratio of TFWT to HTO was approximately 0.9. Uptake of tritium in the organically-bound fraction (OBT) proceeded slowly, and had not reached steady-state after 117 days of culture. Although steady-state was never reached, the maximum observed ration of OBT to TFWT in whole animals was approximately 0.6. However, this ratio exceeded unity in the exoskeleton. Specific activity ratios of OBT between crayfish and lettuce (food source) were less than or at unity for various test conditions

  11. Advances and Challenges of Liposome Assisted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Lisa eSercombe

    2015-12-01

    Full Text Available The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

  12. Positron imaging feasibility studies: characteristics of [3H]thymidine uptake in rodent and canine neoplasms

    International Nuclear Information System (INIS)

    Larson, S.M.; Weiden, P.L.; Grunbaum, J.

    1981-01-01

    Uptake [ 3 H]thymidine was studied in BALB/c mice with EMT-6 sarcoma, in Buffalo rats with Morris 7777 hepatoma, and in nine dogs with spontaneous neoplasms: four lymphomas, two osteosarcomas, two soft-tissue sarcomas, and a thyroid carcinoma. High tumor-to-tissue ratios were observed for all tumor types assayed, and absolute uptakes, when computed as percent dose per gram tumor normalized for body weight, were similar for transplanted and spontaneous tumors. In the rodent tumors, radiothymidine was retained for at least 3 hr in the tumor without appreciable loss. In canine neoplasms, although the highest uptakes were observed in cellular tumors with many mitotic figures, tumor uptake showed significant variability that did not correlate with any obvious histologic change, and thus may reflect true biologic differences in metabolism among tumors at different sites in the same animal. These studies provide additional experimental evidence that the ratios of neoplastic to normal tissue and the kinetics of thymidine uptake by tumors are suitable for positron emission tomography of neoplasms in small and large, animals, including both transplanted and spontaneous tumors

  13. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    Energy Technology Data Exchange (ETDEWEB)

    Millett, J., E-mail: j.millett@lboro.ac.uk [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Foot, G.W. [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Svensson, B.M. [Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala (Sweden)

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  14. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    International Nuclear Information System (INIS)

    Millett, J.; Foot, G.W.; Svensson, B.M.

    2015-01-01

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  15. Uptake of gold nanoparticles in primary human endothelial cells

    DEFF Research Database (Denmark)

    Klingberg, Henrik; Oddershede, Lene B.; Löschner, Katrin

    2015-01-01

    Gold nanoparticles (AuNPs) are relevant in nanomedicine for drug delivery in the vascular system, where endothelial cells are the first point of contact. We investigated the uptake of 80 nm AuNPs in primary human umbilical vein endothelial cells (HUVECs) by flow cytometry, 3D confocal microscopy......–3 or more particles. Pre-treatment with chlorpromazine inhibited the AuNP-uptake in HUVECs, indicating that internalisation occurred mainly by clathrin-mediated endocytosis. Cell activation by exposure to tumour necrosis factor or lipopolysaccharide had a slight or no effect on the uptake of Au...

  16. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization.

    Science.gov (United States)

    Lee, Jung-Hwan; Mandakhbayar, Nandin; El-Fiqi, Ahmed; Kim, Hae-Won

    2017-09-15

    Inducing differentiation and maturation of resident multipotent stem cells (MSCs) is an important strategy to regenerate hard tissues in mal-calcification conditions. Here we explore a co-delivery approach of therapeutic molecules comprised of ion and drug through a mesoporous bioglass nanoparticle (MBN) for this purpose. Recently, MBN has offered unique potential as a nanocarrier for hard tissues, in terms of high mesoporosity, bone bioactivity (and possibly degradability), tunable delivery of biomolecules, and ionic modification. Herein Sr ion is structurally doped to MBN while drug Phenamil is externally loaded as a small molecule activator of BMP signaling, for the stimulation of osteo/odontogenesis and mineralization of human MSCs derived from dental pulp. The Sr-doped MBN (85Si:10Ca:5Sr) sol-gel processed presents a high mesoporosity with a pore size of ∼6nm. In particular, Sr ion is released slowly at a daily rate of ∼3ppm per mg nanoparticles for up to 7days, a level therapeutically effective for cellular stimulation. The Sr-MBN is internalized to most MSCs via an ATP dependent macropinocytosis within hours, increasing the intracellular levels of Sr, Ca and Si ions. Phenamil is loaded maximally ∼30% into Sr-MBN and then released slowly for up to 7days. The co-delivered molecules (Sr ion and Phenamil drug) have profound effects on the differentiation and maturation of cells, i.e., significantly enhancing expression of osteo/odontogenic genes, alkaline phosphatase activity, and mineralization of cells. Of note, the stimulation is a result of a synergism of Sr and Phenamil, through a Trb3-dependent BMP signaling pathway. This biological synergism is further evidenced in vivo in a mal-calcification condition involving an extracted tooth implantation in dorsal subcutaneous tissues of rats. Six weeks post operation evidences the osseous-dentinal hard tissue formation, which is significantly stimulated by the Sr/Phenamil delivery, based on histomorphometric

  17. Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts

    International Nuclear Information System (INIS)

    Hand, W.L.; King-Thompson, N.L.

    1990-01-01

    Enucleated human polymorphonuclear leukocytes (PMN cytoplasts), which have no nuclei and only a few granules, retain many of the functions of intact neutrophils. To better define the mechanisms and intracellular sites of antimicrobial agent accumulation in human neutrophils, we studied the antibiotic uptake process in PMN cytoplasts. Entry of eight radiolabeled antibiotics into PMN cytoplasts was determined by means of a velocity gradient centrifugation technique. Uptakes of these antibiotics by cytoplasts were compared with our findings in intact PMN. Penicillin entered both intact PMN and cytoplasts poorly. Metronidazole achieved a concentration in cytoplasts (and PMN) equal to or somewhat less than the extracellular concentration. Chloramphenicol, a lipid-soluble drug, and trimethoprim were concentrated three- to fourfold by cytoplasts. An unusual finding was that trimethroprim, unlike other tested antibiotics, was accumulated by cytoplasts more readily at 25 degrees C than at 37 degrees C. After an initial rapid association with cytoplasts, cell-associated imipenem declined progressively with time. Clindamycin and two macrolide antibiotics (roxithromycin, erythromycin) were concentrated 7- to 14-fold by cytoplasts. This indicates that cytoplasmic granules are not essential for accumulation of these drugs. Adenosine inhibited cytoplast uptake of clindamycin, which enters intact phagocytic cells by the membrane nucleoside transport system. Roxithromycin uptake by cytoplasts was inhibited by phagocytosis, which may reduce the number of cell membrane sites available for the transport of macrolides. These studies have added to our understanding of uptake mechanisms for antibiotics which are highly concentrated in phagocytes

  18. Extraosseous uptake of 99sup(m)technetium methylene diphosphonate

    International Nuclear Information System (INIS)

    Sty, J.R.; Kun, L.; Casper, J.; Babbitt, D.P.

    1980-01-01

    A child with a ganglioneuroblastoma and tumor uptake of 99 sup(m)technetium methylene diphosphate ( 99 sup(m)Tc-MDP) is presented. After surgical removal of an encapsulated tumor and radiation therapy, an interval bone scan demonstrated the same presurgical abnormality. Awareness of abnormal uptake of 99 sup(m)Tc-MDP in irradiated renal tissue prevents interpreting radiation nephritis as recurrent tumor. (orig.) [de

  19. Uptake of NO-releasing drugs by the P2 nucleoside transporter in trypanosomes

    Directory of Open Access Journals (Sweden)

    L. Soulère

    1999-11-01

    Full Text Available Nitric oxide (NO· has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO· can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2·- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-. ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO·-releasing compounds. In this way, the rate of formation of peroxynitrite from NO· and O2·- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO·-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO·-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.

  20. Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling

    NARCIS (Netherlands)

    Bowen, S.R.; Kogel, A.J. van der; Nordsmark, M.; Bentzen, S.M.; Jeraj, R.

    2011-01-01

    PURPOSE: Unique uptake and retention mechanisms of positron emission tomography (PET) hypoxia tracers make in vivo comparison between them challenging. Differences in imaged uptake of two common hypoxia radiotracers, [(61)Cu]Cu-ATSM and [(18)F]FMISO, were characterized via computational modeling to

  1. Diffuse Myocardial Uptake of {sup 99m}Tc-HDP in Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Koray; Sadic, Murat; Korkmaz, Meliha; Comak, Aylin; Atilgan, Hasan Ikbal; Koca, Goekhan [Ministry of Health Ankara Training and Research Hospital, Ankara (Turkmenistan)

    2013-09-15

    Soft tissue uptake is a rare finding in bone scintigraphy, with an incidence of 2%. Although the mechanism has not yet been fully clarified, several causes have been reported for this unusual uptake pattern. This paper presents a case of diffuse myocardial accumulation of technetium-99m hydroxymethylene diphosphonate ({sup 99m}Tc-HDP) without either solid/visceral organ or soft tissue with multiple myeloma (MM) in skeletal scintigraphy. A 93-year-old man with hypertension and chronic heart failure for 14 years underwent bone scanning due to a 2-month history of back pain within a 1-year period of MM. Three hours later, {sup 99m}Tc-HDP late static images showed diffuse myocardial radiotracer accumulation and there were no other sites of abnormal soft tissue or visceral uptake. Myocardial accumulation had disappeared on 24-h delayed static images. This accumulation was thought to be related with AL-type amyloidosis associated with MM.

  2. Toxicology and drug delivery by cucurbit[n]uril type molecular containers.

    Science.gov (United States)

    Hettiarachchi, Gaya; Nguyen, Duc; Wu, Jing; Lucas, Derick; Ma, Da; Isaacs, Lyle; Briken, Volker

    2010-05-06

    Many drug delivery systems are based on the ability of certain macrocyclic compounds - such as cyclodextrins (CDs) - to act as molecular containers for pharmaceutical agents in water. Indeed beta-CD and its derivatives have been widely used in the formulation of hydrophobic pharmaceuticals despite their poor abilities to act as a molecular container (e.g., weak binding (K(a)containers that bind to a variety of cationic and neutral species with high affinity (K(a)>10(4) M(-1)) and therefore show great promise as a drug delivery system. In this study we investigated the toxicology, uptake, and bioactivity of two cucurbit[n]urils (CB[5] and CB[7]) and three CB[n]-type containers (Pentamer 1, methyl hexamer 2, and phenyl hexamer 3). All five containers demonstrated high cell tolerance at concentrations of up to 1 mM in cell lines originating from kidney, liver or blood tissue using assays for metabolic activity and cytotoxicity. Furthermore, the CB[7] molecular container was efficiently internalized by macrophages indicating their potential for the intracellular delivery of drugs. Bioactivity assays showed that the first-line tuberculosis drug, ethambutol, was as efficient in treating mycobacteria infected macrophages when loaded into CB[7] as when given in the unbound form. This result suggests that CB[7]-bound drug molecules can be released from the container to find their intracellular target. Our study reveals very low toxicity of five members of the cucurbit[n]uril family of nanocontainers. It demonstrates the uptake of containers by cells and intracellular release of container-loaded drugs. These results provide initial proof-of-concept towards the use of CB[n] molecular containers as an advanced drug delivery system.

  3. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  4. Determination of drug residues by CLAR-MS/MS in animal tissues

    International Nuclear Information System (INIS)

    Brenes Jimenez, Jose Eduardo

    2009-01-01

    Produced food of animal origin, present the possibility of occurrence of any contact with substances that have negative effects on the health of people who consume them. The use of drugs in veterinary medicine is one of the possible sources of such waste; so, the conditions for the analysis of some classes of antibiotics in animal tissues are based on the study. Costa Rica and the countries that are export destination, have regulation and programs for control before to be distributed in local markets, or post if it is received any complaint of pollution. The high resolution liquid chromatography coupled to mass spectrometers (CLAR-MS/MS) allows the analysis of analytes monitored, according to the specifications required by the legislation. The cases of two laboratories in Costa Rica are presented as the only ones who have the ability to perform the analysis of drug residues CLAR-MS/MS. (author) [es

  5. Eyelid skin as a potential site for drug delivery to conjunctiva and ocular tissues.

    Science.gov (United States)

    See, Gerard Lee; Sagesaka, Ayano; Sugasawa, Satoko; Todo, Hiroaki; Sugibayashi, Kenji

    2017-11-25

    The feasibility of topical application onto the (lower) eyelid skin to deliver hydrophilic and lipophilic compounds into the conjunctiva and ocular tissues was evaluated by comparing with conventional eye drop application. Skin permeation and the concentration of several model compounds, and skin impedance were determined utilizing eyelid skin from hairless rats, as well as abdominal skin in the same animals for comparison. In vitro static diffusion cells were used to assess the skin permeation in order to provide key insights into the relationship between the skin sites and drugs. The obtained results revealed that drug permeation through the eyelid skin was much higher than that through abdominal skin regardless of the drug lipophilicity. Specifically, diclofenac sodium salt and tranilast exhibited approximately 6-fold and 11-fold higher permeability coefficients, respectively, through eyelid skin compared with abdominal skin. Histomorphological evaluation and in vivo distribution of model fluorescent dyes were also examined in the conjunctiva and skin after eyelid administration by conventional microscope and confocal laser scanning microscope analyses. The result revealed that eyelid skin has a thinner stratum corneum, thereby showing lower impedance, which could be the reason for the higher drug permeation through eyelid skin. Comparative evaluation of lipophilic and hydrophilic model compounds administered via the eyelid skin over 8h revealed stronger fluorescence intensity in the skin and surrounding tissues compared with eye drop administration. These results suggested that the (lower) eyelid skin is valuable as a prospective site for ophthalmic medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Studies on the T sub 3 suppression test with reference to the thyrodial sup 123 I uptake in Graves' disease; Comparison of 24-hour and 3-hour uptake

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takahiko; Kobayashi, Isao; Yamaguchi, Yoshiyuki; Iwashita, Akira; Inukai, Toshihiko; Ohshima, Kihachi; Shimomura, Yohnosuke; Kobayashi, Setsuo (Gunma Univ., Maebashi (Japan). School of Medicine)

    1990-06-01

    Eighty-three patients with Graves' disease had been treated with methylmercaptoimidazole (MMI). They were prescribed a maintenance dose of antithyroid drug (MMI, 5 mg/day) at the time of a T{sub 3} suppression test. The 3-hour and 24-hour thyroidal {sup 123}I uptake after T{sub 3} administration (75 {mu}g/day, 2 weeks) were measured (post T{sub 3} uptake). In 38 patients whose post T{sub 3} uptake was below 35% in post T{sub 3} 24-hour uptake, treatment was stopped. The T{sub 3} suppression test was then repeated 1 and 3 months later. During a one-year follow up, 26 remained well, while 12 relapsed within 6 to 12 months. We have observed a good correlation between 3-hour uptake and 24-hour uptake of {sup 123}I after T{sub 3} administration (r=0.847, p<0.001). In 38 patients who showed positive T{sub 3} suppression, most patients with MMI withdrawal produced a marked overshoot of post T{sub 3} 3-hour and 24-hour uptake at one month. Retrospective analysis indicated that there was no significant difference in circulating thyroid hormone levels between remission and relapse groups. The present study provides evidence that 3-hour uptake values are able to be substituted for 24-hour uptake values during a T{sub 3} suppression test. In addition, overshoot of thyroidal uptake after antithyroid drug withdrawal was observed in 3-hour values, similar to 24-hour values. (author).

  7. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood-brain barrier

    NARCIS (Netherlands)

    Doze, P; Van Waarde, A; Elsinga, P H; Hendrikse, N H; Vaalburg, W

    Low cerebral uptake of some therapeutic drugs can be enhanced by modulation of P-glycoprotein (P-gp), an ATP-driven drug efflux pump at the blood-brain barrier (BBB). We investigated the possibility of increasing cerebral uptake of the beta-adrenergic ligands S-1'-[(18)F]-fluorocarazolol (FCAR) and

  8. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Projecting ADME Behavior and Drug-Drug Interactions in Early Discovery and Development: Application of the Extended Clearance Classification System.

    Science.gov (United States)

    El-Kattan, Ayman F; Varma, Manthena V; Steyn, Stefan J; Scott, Dennis O; Maurer, Tristan S; Bergman, Arthur

    2016-12-01

    To assess the utility of Extended Clearance Classification System (ECCS) in understanding absorption, distribution, metabolism, and elimination (ADME) attributes and enabling victim drug-drug interaction (DDI) predictions. A database of 368 drugs with relevant ADME parameters, main metabolizing enzymes, uptake transporters, efflux transporters, and highest change in exposure (%AUC) in presence of inhibitors was developed using published literature. Drugs were characterized according to ECCS using ionization, molecular weight and estimated permeability. Analyses suggested that ECCS class 1A drugs are well absorbed and systemic clearance is determined by metabolism mediated by CYP2C, esterases, and UGTs. For class 1B drugs, oral absorption is high and the predominant clearance mechanism is hepatic uptake mediated by OATP transporters. High permeability neutral/basic drugs (class 2) showed high oral absorption, with metabolism mediated generally by CYP3A, CYP2D6 and UGTs as the predominant clearance mechanism. Class 3A/4 drugs showed moderate absorption with dominant renal clearance involving OAT/OCT2 transporters. Class 3B drugs showed low to moderate absorption with hepatic uptake (OATPs) and/or renal clearance as primary clearance mechanisms. The highest DDI risk is typically seen with class 2/1B/3B compounds manifested by inhibition of either CYP metabolism or active hepatic uptake. Class 2 showed a wider range in AUC change likely due to a variety of enzymes involved. DDI risk for class 3A/4 is small and associated with inhibition of renal transporters. ECCS provides a framework to project ADME profiles and further enables prediction of victim DDI liabilities in drug discovery and development.

  10. Specific in vitro uptake of serotonin by cells in the anterior pituitary of the rat

    International Nuclear Information System (INIS)

    Johns, M.A.; Azmitia, E.C.; Krieger, D.T.

    1982-01-01

    In vivo studies have suggested that serotonin (5HT) influences anterior pituitary function at the hypothalamic level. The present in vitro study investigated the possibility that 5HT may act directly on the anterior pituitary. The high affinity uptake of [3H]5HT into adult rat anterior pituitary tissue was examined in two types of experiments. 1) To test the specificity and saturability of uptake of 5HT in the anterior pituitary, pituitary tissue was incubated (37 C) with [3H]5HT (10(-8)-10(-6) M) in the presence and absence of excess (10(-5) M) unlabeled 5HT, norepinephrine, fluoxetine (FLUOX), metergoline, or cyproheptadine. A Hofstee analysis of the specific uptake of [3H]5HT gave an apparent Km value of 4.23 x 10(-7) M and a Vmax of 1576 pmol/g/10 min [3H]5HT. The total uptake of [3H]5HT was not altered by norepinephrine or metergoline, but was significantly reduced (P less than 0.01-0.001) by FLUOX and cyproheptadine. Uptake was shown to be temperature and sodium dependent and not directly dependent on energy derived from glycolysis or aerobic metabolism. 2) To study the site of uptake of 5 HT in the anterior pituitary, in concomitant radioautographic experiments, tissue was incubated with [3H]5HT with and without excess 5HT or FLUOX. Three patterns of silver grain distribution were observed: 1) nonrandom concentrations over select anterior pituitary cells near blood vessels, 2) heavy aggregates of silver grains usually associated with blood vessels, and 3) a seemingly random dispersal of grains over pituitary tissue. Tissue incubated with [3H]5HT alone contained 10% heavily labeled cells, 32% moderately labeled cells, and 58% weakly labeled cells. In contrast, no heavily labeled cells were seen when tissue was incubated with either excess 5HT or FLUOX in addition to [3H]5HT. Our findings of saturable and specific high affinity uptake of [3H]5HT into a subgroup of anterior pituitary cells suggest a direct pituitary action of 5HT

  11. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture...

  12. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    Science.gov (United States)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  13. Muscle contraction increases carnitine uptake via translocation of OCTN2

    Energy Technology Data Exchange (ETDEWEB)

    Furuichi, Yasuro [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa (Japan); Sugiura, Tomoko; Kato, Yukio [Faculty of Pharmacy, Kanazawa University, Kanazawa (Japan); Takakura, Hisashi [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan); Hanai, Yoshiteru [Nagoya Institute of Technology, Nagoya (Japan); Hashimoto, Takeshi [Ritsumeikan University, Kusatsu (Japan); Masuda, Kazumi, E-mail: masuda@ed.kanazawa-u.ac.jp [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly

  14. Muscle contraction increases carnitine uptake via translocation of OCTN2

    International Nuclear Information System (INIS)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio; Takakura, Hisashi; Hanai, Yoshiteru; Hashimoto, Takeshi; Masuda, Kazumi

    2012-01-01

    Highlights: ► Muscle contraction augmented carnitine uptake into rat hindlimb muscles. ► An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. ► Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. ► OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL uptake ) of L-[ 3 H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL uptake of [ 14 C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL uptake of L-[ 3 H]carnitine in the contracting muscles increased 1.4–1.7-fold as compared to that in the contralateral resting muscles (p uptake of [ 14 C]IAP was much higher than that of L-[ 3 H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.

  15. Mitoxantrone Loaded Superparamagnetic Nanoparticles for Drug Targeting: A Versatile and Sensitive Method for Quantification of Drug Enrichment in Rabbit Tissues Using HPLC-UV

    Directory of Open Access Journals (Sweden)

    Rainer Tietze

    2010-01-01

    Full Text Available In medicine, superparamagnetic nanoparticles bound to chemotherapeutics are currently investigated for their feasibility in local tumor therapy. After intraarterial application, these particles can be accumulated in the targeted area by an external magnetic field to increase the drug concentration in the region of interest (Magnetic-Drug-Targeting. We here present an analytical method (HPLC-UV, to detect pure or ferrofluid-bound mitoxantrone in a complex matrix even in trace amounts in order to perform biodistribution studies. Mitoxantrone could be extracted in high yields from different tissues. Recovery of mitoxantrone in liver tissue (5000 ng/g was 76±2%. The limit of quantification of mitoxantrone standard was 10 ng/mL ±12%. Validation criteria such as linearity, precision, and stability were evaluated in ranges achieving the FDA requirements. As shown for pilot samples, biodistribution studies can easily be performed after application of pure or ferrofluid-bound mitoxantrone.

  16. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2016-07-01

    Full Text Available Evodiamine (EVO and rutaecarpine (RUT are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.

  17. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery.

    Science.gov (United States)

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin

    2015-05-01

    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Use of positron emission tomography for determination of tissue specific kinetics

    International Nuclear Information System (INIS)

    Miller, L.F.; Kabalka, G.; Khan, M.; Rahim, A.; Wyatt, M.; Thie, J.; Apostoaei, I.; Nichols, T.; Smith, G.

    2000-01-01

    Dynamic PET scans from several patients with GBM are analyzed to determine the biokinetic characteristics of various tissue types. Time-dependent responses are extracted from several regions of interest (ROIs), and these time-dependent data sets are analyzed to obtain biokinetic information from normal brain tissue, from various regions of tumors, and from areas that represent concentration in blood. Uptake rates, time constants, and other biokinetic data are obtained. It is noted that rates of uptake in tumor regions are approximately twice as fast as in normal tissue and that two rates of uptake are clearly identified in each tissue region and in blood. This information is useful for optimization of BNCT treatment protocols and for determining rate constants that can be related to cellular-level distributions of pharmaceuticals. (author)

  19. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    Science.gov (United States)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  20. Minor rheumatology: Nonsystemic rheumatic disease of juxta-articular soft tissues of the upper extremity. Part 2. Drug and non-drug treatments

    Directory of Open Access Journals (Sweden)

    Andrei Evgenyevich Karateev

    2015-01-01

    Full Text Available The treatment of rheumatic diseases of juxta-articular soft tissues (RDJAST of the upper extremity (rotator cuff tendinitis, epicondylitis, de Quervain’s syndrome, trigger finger, carpal tunnel syndrome entails a combination of drug and nondrug therapies. The basic agents that have been proven to be efficacious in this pathology are nonsteroidal anti-inflammatory drugs (NSAIDs and glucocorticosteroids (GCs. The paper considers the largest and known studies that are an evidence base for the expediency of using agents, such NSAIDs, local administration of GCs, hyaluronic acid, and plateletrich plasma, as well as different non-drug treatments, in RDJAST. The latter (physiotherapy, exercises, and rehabilitation programs should be regarded as a necessary component of the therapeutic process in patients with RDJAST-associated chronic pain. Preservation of obvious pain and impaired function despite medical therapy should be regarded as an indication for surgical treatment.

  1. Normal patterns of 18F-FDG appendiceal uptake in children

    Energy Technology Data Exchange (ETDEWEB)

    Reavey, Hamilton E. [Emory University, Department of Radiology and Imaging Sciences, Division of Nuclear Medicine Molecular Imaging, Atlanta, GA (United States); Alazraki, Adina L.; Simoneaux, Stephen F. [Emory University, Department of Radiology and Imaging Sciences, Division of Pediatric Imaging, Children' s Healthcare of Atlanta at Egleston, Atlanta, GA (United States)

    2014-04-15

    Prior to interpreting PET/CT, it is crucial to understand the normal biodistribution of fluorodeoxyglucose (FDG). It is also important to realize that the normal biodistribution can vary between adults and children. Although many studies have defined normal patterns of pediatric FDG uptake in structures like the thymus, brown fat and bone marrow, patterns of normal pediatric bowel activity, specifically uptake within the appendix, have not been well described. Active lymphoid tissue has increased FDG uptake when compared with inactive tissue. Since children have more active lymphoid tissue than adults, and because the appendix contains aggregated lymphoid tissue, we postulated that appendiceal uptake may be increased in pediatric patients. To define the normal level of appendiceal FDG activity in children by evaluating a series of consecutive FDG PET/CT scans performed for other indications. After obtaining IRB approval, we retrospectively reviewed 128 consecutive whole-body pediatric FDG PET/CT examinations obtained for a variety of clinical indications. CT scans on which the appendix could not be visualized were excluded from analysis. CT scans on which the appendix could be visualized were evaluated for underlying appendiceal pathology. Studies with appendiceal or periappendiceal pathology by CT criteria were excluded. A region of interest (ROI) was placed over a portion of each appendix and appendiceal maximum standardized uptake value (SUVmax) was calculated. If an adjacent loop of bowel activity interfered with accurate measurements of the appendix SUVmax, the scan was excluded from the analysis. A chart review was performed on patients with elevated appendiceal SUVmax values to ensure that the patients did not have clinical symptomatology suggestive of acute appendicitis. When the appendix or a portion of the appendix could be visualized and accurately measured, the SUVmax was determined. SUVmax of the appendix was compared to the SUVmax of normal liver and

  2. Analysis of diffuse gallium lung uptake

    International Nuclear Information System (INIS)

    Harada, Masahumi; Sui, Osamu; Mukaijo, Toshihumi; Tokuyama, Noritami; Tanouchi, Miki; Kitsukawa, Kaoru

    1989-01-01

    Diffuse lung uptake of Ga-67 was observed on scintigrams in 56 patients. It was considered attributable to drugs in 21 patients. Only 7 patients complained of fever, cough, and dyspnea, 5 of whom spontaneously recovered without any treatment. This seemed to reflect clinically reversible cases, as well as to support the usefulness of Ga-67 scintigraphy in early detection of drug-induced pneumonitis. In one patient that died of acute pneumonitis, only a small amount of cyclophosphamide (3,400 mg) had been administered. Drug dosage seemed to be unrelated to the prognosis of drug-induced pneumonitis. Seventeen patients underwent Ga-67 scintigraphy within one month after the completion of chemotherapy. The most frequently given dosage of cyclophosphamide was 2,000 mg or less. In early detecting drug-induced pneumonitis, the optimum time of Ga-67 scintigraphy was considered to be the first one month after completion of chemotherapy. (Namekawa, K)

  3. Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Jørgensen, K.; Andresen, Thomas Lars

    2003-01-01

    Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes ...

  4. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, Vincenzo, E-mail: vguarino@unina.it; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology, National Research Council of Italy, V.le Kennedy 54, Naples (Italy)

    2015-12-17

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial’s manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell–biomaterial and cell– cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.

  5. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    International Nuclear Information System (INIS)

    Guarino, Vincenzo; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi

    2015-01-01

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial’s manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell–biomaterial and cell– cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues

  6. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    Science.gov (United States)

    Guarino, Vincenzo; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi

    2015-12-01

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial's manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell-biomaterial and cell- cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.

  7. The effects of capillary transit time heterogeneity (CTH on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Hugo Angleys

    2016-10-01

    Full Text Available Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc is coupled with its oxygen consumption (CMRO2 remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC to arrive at CMRglc. Capillary transit time heterogeneity (CTH, which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

  8. Toward a unified model of passive drug permeation II: the physiochemical determinants of unbound tissue distribution with applications to the design of hepatoselective glucokinase activators.

    Science.gov (United States)

    Ghosh, Avijit; Maurer, Tristan S; Litchfield, John; Varma, Manthema V; Rotter, Charles; Scialis, Renato; Feng, Bo; Tu, Meihua; Guimaraes, Cris R W; Scott, Dennis O

    2014-10-01

    In this work, we leverage a mathematical model of the underlying physiochemical properties of tissues and physicochemical properties of molecules to support the development of hepatoselective glucokinase activators. Passive distribution is modeled via a Fick-Nernst-Planck approach, using in vitro experimental data to estimate the permeability of both ionized and neutral species. The model accounts for pH and electrochemical potential across cellular membranes, ionization according to Henderson-Hasselbalch, passive permeation of the neutral species using Fick's law, and passive permeation of the ionized species using the Nernst-Planck equation. The mathematical model of the physiochemical system allows derivation of a single set of parameters governing the distribution of drug molecules across multiple conditions both in vitro and in vivo. A case study using this approach in the development of hepatoselective glucokinase activators via organic anion-transporting polypeptide-mediated hepatic uptake and impaired passive distribution to the pancreas is described. The results for these molecules indicate the permeability penalty of the ionized form is offset by its relative abundance, leading to passive pancreatic exclusion according to the Nernst-Planck extension of Fickian passive permeation. Generally, this model serves as a useful construct for drug discovery scientists to understand subcellular exposure of acids or bases using specific physiochemical properties. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    International Nuclear Information System (INIS)

    Dang Fei; Zhong Huan; Wang Wenxiong

    2009-01-01

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg -1 day -1 . The efflux rate constant was 0.091 day -1 following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 μg Cu L -1 for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  10. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas; Eriksen, J

    2002-01-01

    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal...... rate constant for the initial taurine uptake was reduced by 45% (high-affinity system) and 49% (low affinity system) in the resistant subline whereas the affinity of the transporters to taurine was unchanged. By immunoblotting we identified 3 TauT protein bands in the 50-70 kDa region. A visible...... reduction in the intensity of the band with the lowest molecular weight was observed in resistant cells. Quantitative RT-PCR indicated a significant reduction in the amount of taurine transporter mRNA in the resistant cells. Drug resistance in DNR Ehrlich cells is associated with overexpression of the mdr1...

  11. Polyamine deprivation-induced enhanced uptake of methylglyoxal bis(guanylhydrazone) by tumor cells.

    Science.gov (United States)

    Seppänen, P; Alhonen-Hongisto, L; Jänne, J

    1981-05-05

    1. Putrescine and spermidine depletion produced by alpha-difluoromethylornithine, an irreversible inhibitor or ornithine decarboxylase (EC 4.1.1.17), resulted in a strikingly enhanced cellular uptake of methylglyoxal bis(guanylhydrazone) in cultured Ehrlich ascites carcinoma cells and human lymphocytic leukemia cells. 2. A prior priming of the cells with difluoromethylornithine followed by a short exposure of the cells to methylglyoxal bis(guanylhydrazone) rapidly established intracellular concentrations of the latter drug approaching 10 mM. 3. The enhanced transport of methylglyoxal bis(guanylhydrazone) into the tumor cells apparently required metabolic energy as the uptake of extracellular drug rapidly ceased and intracellular methylglyoxal bis(guanylhydrazone) was excreted into the medium when the glycolysis of the tumor cells was inhibited by iodoacetate. 4. A sequential treatment of cultured tumor cells with difluoromethylornithine until established polyamine depletion followed by an addition of low concentrations of methylglyoxal bis(guanylhydrazone) produced an antiproliferative action not achieved with either of the drugs alone. 5. A similar treatment schedule, i.e a priming of mice inoculated with Ehrlich ascites cells with difluoromethylornithine for a few days, likewise enhanced the uptake of methylglyoxal bis(guanylhydrazone) by the carcinoma cells, but only marginally increased the drug concentration in the liver and small intestine of the animals.

  12. Investigation of the Relationship of Some Antihypertensive Drugs with Oxidant/Antioxidant Parameters and DNA Damage on Rat Uterus Tissue

    Directory of Open Access Journals (Sweden)

    Mustafa Talip Sener

    2011-01-01

    Full Text Available Background: In this study, we investigated the effects of treatment with chronic antihypertensivedrugs (clonidine, methyldopa, amlodipine, ramipril and rilmenidine on oxidant-antioxidantparameters and toxic effects on DNA in rat uterus tissue. In addition, uterus tissues were examinedhistopathologically.Materials and Methods: A total of 36 albino Wistar rats were divided into the following six groups:0.075 mg/kg clonidine group; 100 mg/kg methyldopa group; 2 mg/kg amlodipine group; 2.5 mg/kgramipril group; 0.5 mg/kg rilmenidine group; and the healthy group. Rats underwent chronic drugadministration for 30 days and at the end, biochemical and histopathological examinations wereperformed. All data were subjected to one-way ANOVA test.Results: We divided these drugs into the following three groups according to their effects on ratuteri: (I mild negative effects (clonidine, (II moderate negative effects (rilmenidine, methyldopaand (III drugs which had severe negative effects (amlodipine, ramipril.Conclusion: These data may help with selection of antihypertensive drugs, in order to determinewhich drugs have the lowest toxicity in pregnant and non-pregnant (pre-pregnancy women.

  13. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    Science.gov (United States)

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  14. Hepatic steatosis is associated with increased hepatic FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Keramida, Georgia, E-mail: G.Keramida@bsms.ac.uk [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Potts, Jon [Department of Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Bush, Janice [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Dizdarevic, Sabina; Peters, A. Michael [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom)

    2014-05-15

    Objective: The use of liver as a reference tissue for semi-quantification of tumour FDG uptake may not be valid in hepatic steatosis (HS). Previous studies on the relation between liver FDG uptake and HS have been contradictory probably because they ignored blood glucose (BG). Because hepatocyte and blood FDG concentrations equalize, liver FDG uptake parallels BG, which must therefore be considered when studying hepatic FDG uptake. We therefore re-examined the relation between HS and liver uptake taking BG into account. Methods: This was a retrospective study of 304 patients undergoing routine PET/CT with imaging 60 min post-FDG. Average standard uptake value (SUV{sub ave}), maximum SUV (SUV{sub max}) and CT density (index of HS) were measured in a liver ROI. Blood pool SUV was based on the left ventricular cavity (SUV{sub LV}). Correlations were assessed using least squares fitting of continuous data. Patients were also divided into BG subgroups (<4, 4–5, 5–6, 6–8, 8–10 and 10+ mmol/l). Results: SUV{sub ave}, SUV{sub max} and SUV{sub LV} displayed similar relations with BG. SUV{sub max}/SUV{sub LV}, but not SUV{sub ave}/SUV{sub LV}, correlated significantly with BG. SUV{sub max}, but not SUV{sub ave}, correlated inversely with CT density before and after adjusting for BG. SUV{sub max}/SUV{sub ave} correlated more strongly with CT density than SUV{sub max}. CT density correlated inversely with SUV{sub max}/SUV{sub LV} but positively with SUV{sub ave}/SUV{sub LV}. Conclusions: Hepatic SUV is more influenced by BG than by HS. Its relation with BG renders it unsuitable as a reference tissue. Nevertheless, hepatic fat does correlate positively with liver SUV, although this is seen only with SUV{sub max} because SUV{sub ave} is ‘diluted’ by hepatic fat.

  15. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  16. Penetration and pharmacokinetics of non-steroidal anti-inflammatory drugs in rat prostate tissue.

    Science.gov (United States)

    Yellepeddi, Venkata K; Radhakrishnan, Jayashree; Radhakrishnan, Rajan

    2018-02-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) involves inflammation of the prostate and affects the quality of life of men of all ages. It is well reported in clinical studies that the treatment for CP/CPPS using nonsteroidal anti-inflammatory drugs (NSAIDs) produced favorable outcomes. However, currently, there are no guidelines on choice of the NSAIDs for the treatment of CP/CPPS. Therefore, in the current research study, we evaluated the prostate tissue penetration of four NSAIDs in rats to provide guidance on choice of NSAIDs for the treatment of CP/CPPS. Male Sprague-Dawley rats were administered orally with four NSAIDs viz. celecoxib, diclofenac, ibuprofen, and naproxen at 500 mg/kg dose. The animals were then sacrificed at various time points, and their prostate tissues were harvested. The NSAIDs were then extracted from the prostate tissues using liquid extraction technique, and their concentration in prostate tissue was quantified using high-performance liquid chromatography (HPLC). The prostate tissue penetration and related pharmacokinetic parameters were evaluated by non-compartmental analysis. The HPLC method for quantifying NSAIDs in prostate tissue resulted in single, sharp peaks without any interference and all validation parameters were within limits. Celecoxib showed the highest area under the curve (AUC) [146.50 ± 2.75 μg/mL*h] of all NSAID's. A two-factor analysis of variance (ANOVA) with replication indicated an overall statistically significant difference in the pharmacokinetic parameters for celecoxib, diclofenac, ibuprofen, and naproxen. This study for the first time reported the relative prostate tissue penetration of four NSAIDs. The pharmacokinetic data indicated that celecoxib has the highest penetration and retention in rat prostate tissues. Therefore, celecoxib may be considered as a better choice for the treatment CP/CPPS involving NSAIDs. © 2017 Wiley Periodicals, Inc.

  17. Study on the enhanced cellular uptake effect of daunorubicin on leukemia cells mediated via functionalized nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guo Dadong; Wu Chunhui; Hu Hongli; Wang Xuemei [State Key Lab of Bioelectronics (Chien-Shiung Wu Lab), Southeast University, Nanjing 210096 (China); Li Xiaomao [Department of Physics, University of Saarland, D-66041 Saarbruecken (Germany); Chen Baoan, E-mail: xuewang@seu.edu.c [Zhongda Hospital, School of Clinical Medical, Southeast University, Nanjing 210096 (China)

    2009-04-15

    The success of cancer chemotherapy is largely dependent on the efficient anticancer drug accumulation in target tumor tissues and cells so as to inhibit the proliferation of the cancer cells. Recently, some biocompatible nanomaterials have been utilized as drug target delivery systems and have shown the great potential to effectively afford the sustained drug delivery for the target cancer cells. In this study, we have explored the possibility for the bio-application of the functionalized nickel (Ni) nanoparticles and the efficiency of the functionalized Ni nanoparticles on drug permeability, and cellular uptake of leukemia K562 cells in vitro has been probed via atomic force microscopy, inverted fluorescence microscopy and confocal microscopy, electrochemical study and MTT (3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide) assay. It is observed that the presence of relevant Ni nanoparticles could induce the membrane structure change of target cells and efficiently improve the permeability of the cell membrane so that the combination of these Ni nanoparticles with anticancer drug daunorubicin could have a synergistic effect on the efficient cytotoxicity suppression in leukemia cancer cells. These observations indicate the great potential of Ni nanoparticles in the future biomedical application including target cancer diagnosis and chemotherapy.

  18. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.

    Science.gov (United States)

    Gheysens, Olivier; Postnov, Andrey; Deroose, Christophe M; Vandermeulen, Corinne; de Hoon, Jan; Declercq, Ruben; Dennie, Justin; Mixson, Lori; De Lepeleire, Inge; Van Laere, Koen; Klimas, Michael; Chakravarthy, Manu V

    2015-10-01

    The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. Minimal variability in skeletal muscle glucose

  19. Kinetics of [14C-5] 8-methoxypsoralen uptake by UVA irradiated and non-irradiated rabbit eye tissues

    International Nuclear Information System (INIS)

    Malinin, G.I.; Glew, W.B.; Roberts, W.P.; Nigra, T.P.

    1981-01-01

    Total 8-methoxypsoralen (8-MOP) in intact and UVA irradiated rabbit eye tissues and its unaltered fraction in aqueous and eye lenses were determined over the 24 hours after i.v. injection of [ 14 C-5] and carrier 8-MOP at the concentration of 50 microCi and 5 mg/kg. No 8-MOP was detected at the end of 24 hours in intact and irradiated aqueous, vitreous and retina in contrast to one hour when the respective levels were congruent to 220, greater than 0 and congruent to 160 ng/g. Eye-plasma drug concentration ratios were less than 0.5 initially, but increased thereafter. While the average lens 8-MOP levels of congruent to 140 ng/g remained unchanged for 24 hours, no unaltered drug was detected beyond eight hours. Measurable amounts of label at the end of 24 hours also persisted in the cornea, iris, sclera and conjunctiva

  20. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    Science.gov (United States)

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  1. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  2. Changes in uptake of 3H-progesterone by female rat brain and pituitary from birth to sexual maturity

    International Nuclear Information System (INIS)

    Presl, J.; Figarova, V.; Herzmann, J.; Roehling, S.

    1975-01-01

    3 H-progesterone uptake by various parts of the brain, pituitary and skeletal muscle was compared in newborn, 5-, 10-, 15-, 20-, 25-and 50-day-old female rats at 1 hr after a single intraperitoneal injection of 50 μCi/100 g body weight. High uptake values in newborn animals and in those aged 5 days were found in all tissues investigated. A sharp decrease in accumulation was observed from birth and/or 5th day of life. The uptake by the pituitary was higher than those by other tissues investigated. The ratio of radioactivity concentration between the tissues and the cerebellar cortex increased significantly only in the posterior hypothalamus of adult females (at the age of 50 days). In the pituitary the ratio tissue/cortex was already significantly higher in newborns. The high level of brain radioactivity in the youngest animals probably was a manifestation of high plasma concentrations of the tritiated progesterone. The striking decrease in the uptake of radioactivity by the brain and pituitary during the first two weeks of life most likely reflected a decreased level of plasma radioactivity, as shown indirectly by the concomitant decrease in the labelled progesterone uptake by the skeletal muscle. The increase in the tissue/cortex ratio in the posterior hypothalamus with the attainment of sexual maturity suggested the first appearance of a specific binding capacity for the progesterone which is present in the pituitary since birth. (author) assumed to be

  3. Quantification of cellular uptake of DNA nanostructures by qPCR.

    Science.gov (United States)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias; Sørensen, Rasmus Schøler; Schaffert, David; Kjems, Jørgen

    2014-05-15

    DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides, proteins and polymers can be precisely positioned on DNA nanostructures. This exceptional ability to produce modular nanoscale devices with tunable and controlled behavior has initiated an interest in employing DNA nanostructures for drug delivery. However, to obtain this the relationship between cellular interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed by quantitative polymerase chain reaction, allowing a linear dynamic range of detection of five orders of magnitude. We demonstrate the use of this method for high-throughput screening, which could prove efficient to identify key features of DNA nanostructures enabling cell penetration. The method described here is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. 16α-[77Br]bromoestradiol-17β: a high specific-activity, gamma-emitting tracer with uptake in rat uterus and induced mammary tumors

    International Nuclear Information System (INIS)

    Katzenellenbogen, J.A.; Senderoff, S.G.; McElvany, K.D.; O'Brien, H.A. Jr.; Welch, M.J.

    1981-01-01

    16α-[ 77 Br]bromoestradiol-17β (compound 1) has been synthesized by radiobromination of estrone enoldiacetate. Tissue uptake studies performed 1 hr after administration of compound 1 to immature or mature female rats showed uterus-to-blood ratios of 13, with nontarget tissue-to-blood ratios ranging from 0.6 to 2. Co-administration of unlabeled estradiol caused a selective depression in the uterine uptake with no effect on nontarget tissue uptake. In adult animals bearing adenocarcinomas induced by DMBA (7,12-dimethylbenz(a)anthracene), tumor-to-blood ratios of 6.3 were obtained, this uptake also being depressed in animals treated with unlabeled estradiol. The studies demonstrate that compound 1 has suitable binding properties and sufficiently high specific activity so that its uptake in estrogen target tissues in vivo is mediated primarily by the estrogen receptor. Furthermore, they suggest that this compound may be suitable for imaging human breast tumors that contain estrogen receptors

  5. Radioactive choline uptake in the isolated rat phrenic nerve-hemidiaphragm preparation. A biochemical and autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Veldsema-Currie, R.D.; van Marle, J.; Langemeijer, M.W.; Lind, A.; van Weeren-Kramer, J.

    1984-10-01

    When hemidiaphragms are stimulated via the phrenic nerve in the presence of 10 microM radioactive choline (Ch), the rate of radioactive Ch uptake in the endplate-rich area (EPA) is greater than that in the endplate-poor muscle (M). Ch uptake in the EPA is temperature-dependent, with a Q10 of 2.9 and an activation energy of 19.5 kcal/mol. It is inhibited in a Na+-depleted medium, in the absence of Ca2+, and by 10-20 microM hemicholinium-3 (HC-3) and it is not inhibited by alpha-bungarotoxin even when the muscle is completely paralyzed. In the absence of stimulation the rate of uptake in the EPA is slightly, but not significantly, greater than in M. Using autoradiography, we find an enhanced amount of isotope in the nerve terminals and their immediate vicinities compared with the muscle fibres, in both stimulated and unstimulated hemidiaphragms. There is no enhanced uptake of isotope into the nerve terminals in stimulated tissues in the presence of 26 microM HC-3. The uptake of isotope into the muscle is not altered by any of these treatments. There is a positive correlation between the initial rate of radioactive Ch uptake in the EPA and the amount of isotope in the nerve terminals (the mean corrected grain density above the nerve terminals). Without correcting for the large amount of diffusion that occurs, the ratio of the grain density above the synapses to that above the muscle fibres is 1.66 in tissue stimulated at 1 Hz, 1.04 in stimulated tissues in the presence of 26 microM HC-3, and 1.31 in unstimulated tissues.

  6. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery

    Science.gov (United States)

    Khan, R. U.; Wang, L.; Yu, H.; Zain-ul-Abdin; Akram, M.; Wu, J.; Haroon, M.; Ullah, R. S.; Deng, Zh; Xia, X.

    2018-02-01

    It is a highly desirable goal of researchers to develop effective biomaterials with minimum recovery time and affordable treatment expense for tissue engineering and drug delivery. In this scenario, numerous synthetic and natural polymers have been used. Among those synthetic polymers, polyorganophosphazenes (POPs) have got much attention as highly promising candidates for applications in tissue engineering and drug delivery. Polyorganophosphazenes are hybrid polymers containing inorganic backbone consisting of alternating nitrogen and phosphorus atoms with two organic side groups. POPs possess a wide range of unique properties, i.e., synthetic flexibility, biocompatibility, osteocompatibility, osteoinductivity, sustainability and degradability into harmless end products with predictable degradation rate and adjustable mechanical strength. Moreover, their tunable hydrophilic/hydrophobic and stimuli responsive properties add extra points to their use in biomedical applications. In addition, their various polymeric forms, i.e., microspheres, nano/microfibres, micelles, membranes, polymersomes, hydrogels and nano-conjugate linear polymers provide different carriers to efficiently deliver various hydrophilic/hydrophobic therapeutic agents both in vitro and in vivo. This review focuses on the most recent progress that has been made in the synthesis and applications of POPs in tissue engineering and their different polymeric forms used for drug delivery. Moreover, we have also summarized the effect of different side groups on the overall efficiency of POPs. The bibliography includes 239 references.

  7. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei; Zhong Huan [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2009-09-14

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg{sup -1} day{sup -1}. The efflux rate constant was 0.091 day{sup -1} following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 {mu}g Cu L{sup -1} for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  8. Neutron autoradiography imaging of selective boron uptake in human metastatic tumours

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, Via Bassi 6, Pavia (Italy)], E-mail: saverio.altieri@pv.infn.it; Bortolussi, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, Via Bassi 6, Pavia (Italy); Bruschi, P.; Chiari, P.; Fossati, F.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Prati, U.; Roveda, L. [Unit of cancer surgery, Cancer Center of Excellence, Foundation T. Campanella, Catanzaro (Italy); Zonta, A.; Zonta, C.; Ferrari, C.; Clerici, A. [Department of Surgery, University of Pavia, Piazza Botta, Pavia (Italy); Nano, R. [Department of Animal Biology, University of Pavia, Piazza Botta, Pavia (Italy); Pinelli, T. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, Via Bassi 6, Pavia (Italy)

    2008-12-15

    The ability to selectively hit the tumour cells is an essential characteristic of an anti-tumour therapy. In boron neutron capture therapy (BNCT) this characteristic is based on the selective uptake of {sup 10}B in the tumour cells with respect to normal tissues. An important step in the BNCT planning is the measurement of the boron concentration in the tissue samples, both tumour and healthy. When the tumour is spread through the healthy tissue, as in the case of metastases, the knowledge of the different kinds of tissues in the sample being analysed is crucial. If the percentage of tumour and normal tissues cannot be evaluated, the obtained concentration is a mean value depending on the composition of the different samples being measured. In this case an imaging method that could give information both on the morphology and on the spatial distribution of boron concentration in the sample would be a fundamental support. In this paper, the results of the boron uptake analysis in the tumour and in the healthy samples taken from human livers after boron phenylalanine (BPA) infusion are shown; boron imaging was performed using neutron autoradiography.

  9. 99mTc-MDP bone uptake in secondary hyperparathyroidism: comparison among mandible, cranium, radius and femur

    International Nuclear Information System (INIS)

    Boasquevisque, Edson; Silva, Jorge Wagner Esteves da; Bernardo, Vanessa V. de Albuquerque; Macedo, Sara Mello Santana de; Boasquevisque, Camila S.

    2008-01-01

    Full text: Objective: Evaluating bone involvement in secondary hyperparathyroidism (SHPT) by 99m Tc-MDP uptake in the mandible, cranium, radius and femur and with data correlation with PTHi serum (Intact Parathyroid Hormone). Materials and Methods: In a prospective study of 54 patients with SHPT due to chronic renal disease and 15 normal individuals (control group), all patients had elevated serum PTHi, concentration and positive 99m Tc-MDP bone scintigraphy. Bone uptake measurements were carried out drawing regions-of-interest (ROI) on the mandible, posterior cranium, distal radius and proximal femur. Additionally, soft tissue uptake was measured with one region-of-interest on the internal tight soft tissue (BG). The ROI-BG ratio used as the index of normalized bone uptake. Results: The uptake differences from SHPT and control groups mainly for mandible (p = 0,001) and cranium (p = 0,002) were statistically significant, even when the SHPT groups were separated according to serum PTHi levels. There was increased bone uptake with the increased levels of PTHi serum. All of the mandibles of the SHPT patients were abnormal with 33% having focal lesions. Conclusions: The bone uptake in SHPT group was abnormal in all areas evaluated, with high uptake of 99m Tc-MDP correlated to the increase of PTHi serum concentration. (author)

  10. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.

    Science.gov (United States)

    Chen, Yuhang; Zhou, Shiwei; Li, Qing

    2011-03-01

    The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Cases of diffusely increased 18F FDG uptake in bone marrow

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Kawakami, Yasuhiko; Matsunaga, Naofumi

    2009-01-01

    A whole body imaging of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT provides assessment of FDG uptake in bone marrow and other systemic organs. Diffuse increase of FDG uptake in bone marrow can be associated with leukocytosis, infection, anemia, administration of granulocyte-colony stimulating factor or erythropoietin. and cytokine-producing neoplasms and myeloproliferative syndromes, and etc, and this finding can be an important sign indicative of hyper-metabolism in hemopoietic tissue associated by various etiology. Diffuse increase of FDG uptake in bone marrow affect on FDG uptake in other organs or primary lesions, and must be differentiated from diffuse bone marrow involvement of malignant tumors. In this paper, we report cases of diffuse increase of FDG uptake in bone marrow experienced in our hospital, and discuss the mechanisms and diagnostic importance of this finding, by referring to the published literatures. (author)

  12. The effect of social functioning and living arrangement on treatment intent, specialist assessment and treatment uptake for hepatitis C virus infection among people with a history of injecting drug use: The ETHOS study.

    Science.gov (United States)

    Fortier, Emmanuel; Alavi, Maryam; Micallef, Michelle; Dunlop, Adrian J; Balcomb, Annie C; Day, Carolyn A; Treloar, Carla; Bath, Nicky; Haber, Paul S; Dore, Gregory J; Bruneau, Julie; Grebely, Jason

    2015-11-01

    The objective was to assess social functioning and its association with treatment intent, specialist assessment and treatment uptake for hepatitis C virus (HCV) infection among people with a history of injecting drug use. ETHOS is a prospective observational cohort evaluating the provision of HCV assessment and treatment among people with chronic HCV and a history of injecting drug use, recruited from nine community health centres and opioid substitution treatment clinics (NSW, Australia). Social functioning was assessed using a short form of the Opioid Treatment Index social functioning scale. Those classified in the highest quartile (score >6) were considered having lower social functioning. Analyses were performed using logistic regression. Among 415 participants (mean age 41 years, 71% male), 24% were considered having lower social functioning, 70% had early HCV treatment intent (intention to be treated in the next 12 months), 53% were assessed by a specialist and 27% initiated treatment. Lower social functioning was independently associated with unemployment, unstable housing, recent injecting drug use and moderate to extremely severe symptoms of depression, anxiety and stress. Lower social functioning was independently associated with reduced early HCV treatment intent (aOR 0.51, 95% CI 0.30-0.84) and lower specialist assessment (aOR 0.48, 95% CI 0.29-0.79), but not HCV treatment uptake (aOR 0.76, 95% CI 0.40-1.43). Living with someone was independently associated with HCV treatment uptake (with someone and children: aOR 2.28, 95% CI 1.01-5.14; with someone and no children: aOR 2.36, 95% CI 1.30-4.31), but not early HCV treatment intent or specialist assessment. This study highlights the need for the development and implementation of strategies targeting people who inject drugs with lower social functioning to enhance HCV treatment intent and specialist assessment. Further, strategies to enhance social support may play a role in increasing HCV treatment

  13. Over-the-counter drugs block heart accumulation of MIBG

    International Nuclear Information System (INIS)

    Sherman, P.S.; Fisher, S.J.; Wieland, D.M.; Sisson, J.C.

    1985-01-01

    Previous work in the authors' laboratory using chemically sympathectomized animals showed that > 50% of meta-iodobenzyl-guanidine (MIBG) in the heart is localized in adrenergic nerves. In the present study, commonly used drugs known to alter the uptake and/or release of norepinephrine by adrenergic neurons have been evaluated for their effect on the biodistribution of MIBG. Pseudoephedrine (Sudafed), phenylpropanolamine (Dexatrim) and phenylephrine (Neosynephrine) were administered (5 mg/kg, i.p.) to rats; amphetamine was also evaluated (0.8mg/kg, i.p.). Thirty minutes later I-125-MIBG (0.2-0.4 Ci/mm) was injected i.v.; animals (N=3) were sacrificed 2 h following radiotracer. Compared to controls (N = 3), drug pretreatments resulted in large decreases in radiotracer concentration in adrenergic-rich tissues such as left atrium, left ventricle, spleen and parotid glands. Pseudoephedrine caused decreases (%) of 78, 57, 48 and 35 in the four tissues, respectively. Each of the four drugs caused a greater decrease in I-125-MIBG concentration in the left atrium than in the left ventricle. Comparative studies using H-3-norepinephrine are in progress. Entex, a nasal decongestant containing both phenylephrine and phenylpropanolamine, markedly diminished the heart and salivary gland accumulation of I-123-MIBG in a normal male volunteer. These preliminary studies suggest that commonly used sympathomimetic agents, including some over-the-counter preparations, decrease the accumulation of MIBG in adrenergic neurons. These results also suggest that patients should be carefully screened for drug usage prior to MIBG scintigraphy of the heart

  14. Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography.

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J; Vavrek, Marissa; Koeplinger, Kenneth A; Schneider, Bradley B; Covey, Thomas R

    2008-07-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2, and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by high-performance liquid chromatography (HPLC) with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  15. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  16. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    Science.gov (United States)

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. The effect of steroid on FDG uptake in experimental tumors, granulomatous and inflammatory lesions

    International Nuclear Information System (INIS)

    Zhao Songji; Yuji Kuge; Kunihiro Nakada; Masayuki Sato; Toshiki Takei; Zhao Yan; Nagara Tamaki; Masashi Kohanawa; Ken-ichi Seki

    2004-01-01

    Objectives: FDG accumulates not only in malignant tumors but also inflammatory lesions, especially in granulomatous lesions, which makes differentiate malignant tumors from benign lesions difficult. To obtain a clue for differentiating malignant lesions from benign ones by FDG-PET, we determined the effect of steroid on FDG uptake in granulomatous and inflammatory lesions, and compared them with those in malignant tumors in rats. Methods: Rats were inoculated with a suspension of allogenic hepatoma cells (KDH-8), Bacille bili e de Calmette-Guerin-(BCG) or Staphylococcus aureus (S. aureus), or with turpentine oil into the left calf muscle. Two weeks after KDH-8, 19 days after BCG, or one week after S. aureus or turpentine oil inoculations, the rats were fasted overnight and divided into two subgroups (n=5-6, in each group): Prednisolone (PRE)-pretreated (Methylprednisolone acetate, 8 mg/kg body weight, i.m. injection 20 hour before the FDG intravenous injection) and control (untreated) groups. Radioactivity in tissues was determined one hour after i.v. injection of FDG. FDG uptake in tissues were expressed as the percentage of injected dose per gram of tissue after normalization to animal's weight (%ID/g tissue/kg body weight). Results: FDG uptake in the tumor, granulomatous and inflammatory lesions were shown in Table. In the untreated animals, remarkably higher accumulations of FDG were observed in the tumor and granulomatous lesions, compared with those in the inflammatory lesions induced by S. aureus and turpentine oil. There was no significant difference in the level of FDG uptake between the tumor and granulomatous lesions, and between the two inflammatory lesions. PRE pre-treatment significantly decreased the level of FDG uptake in granulomatous lesions induced by BCG, inflammatory lesions induced by S. aureus and turpentine oil to 52%, 73% and 76% of the control value, respectively. The level of FDG uptake in the tumor was not significantly decreased by PRE

  18. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.

    Science.gov (United States)

    Diribe, C O; Warhurst, D C

    1985-09-01

    A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.

  19. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  20. Tissue uptake, distribution and elimination of {sup 14}C-PFOA in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ulhaq, Mazhar [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden); Sundström, Maria [Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm (Sweden); Larsson, Pia; Gabrielsson, Johan [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden); Bergman, Åke [Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm (Sweden); Norrgren, Leif [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden); Örn, Stefan, E-mail: Stefan.Orn@slu.se [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden)

    2015-06-15

    Highlights: • Bioconcentration of PFOA at steady-state was approximately 20–30 times. • High concentrations were observed in bile and intestines implying enterohepatic circulation. • PFOA accumulated in oocytes indicating maternal transfer. - Abstract: Perfluorooctanoic acid (PFOA) is a long-chain perfluorinated chemical that has been shown to be non-degradable and persistent in the environment. Laboratory studies on bioconcentration and compound-specific tissue distribution in fish can be valuable for prediction of the persistence and environmental effects of the chemicals. In the present study male and female zebrafish (Danio rerio) were continuously exposed to 10 μg/L of radiolabeled perfluorooctanoic acid ({sup 14}C-PFOA) for 40 days, after which the exposed fish were transferred to fresh clean water for another 80 days wash-out period. At defined periodic intervals during the uptake and wash-out, fish were sampled for liquid scintillation counting and whole body autoradiography to profile the bioconcentration and tissue distribution of PFOA. The steady-state concentration of {sup 14}C-PFOA in the zebrafish was reached within 20–30 days of exposure. The concentration-time course of {sup 14}C-PFOA displayed a bi-exponential decline during washout, with a terminal half-life of approximately 13–14 days. At steady-state the bioconcentration of {sup 14}C-PFOA into whole-body fish was approximately 20–30 times greater than that of the exposure concentration, with no differences between females and males. The bioconcentration factors for liver and intestine were approximately 100-fold of the exposure medium, while in brain, ovary and gall bladder the accumulation factors were in the range 15–20. Whole-body autoradiograms confirmed the highest labeling of PFOA in bile and intestines, which implies enterohepatic circulation of PFOA. The {sup 14}C-PFOA was also observed in maturing vitellogenic oocytes, suggesting chemical accumulation via yolk proteins

  1. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  2. Selective uptake of a toxic lipophilic anthracycline derivative by the low-density lipoprotein receptor pathway in cultured fibroblasts

    International Nuclear Information System (INIS)

    Vitols, S.G.; Masquelier, M.; Peterson, C.O.

    1985-01-01

    N-(N-Retinoyl)-L-leucyldoxorubicin 14-linoleate (r11-DOX), a new lipophilic derivative of doxorubicin, was synthesized and incorporated into low-density lipoprotein (LDL). The drug-LDL complex contained 100- 200 drug molecules/LDL particle. When cultured normal human fibroblasts were incubated with 125 I-LDL-incorporated drug, there was a perfect correlation between the cellular uptake plus degradation of 125 I-LDL and the cellular drug accumulation. The presence of excess native LDL inhibited the cellular uptake and degradation of 125 I-LDL and the drug accumulation to the same extent. In contrast, methylated LDL, which does not bind to the LDL receptor, did not alter the cellular uptake and degradation of 125 I-LDL nor did it alter the drug accumulation. When LDL receptor negative fibroblasts from a patient with the homozygous form of familial hypercholesterolemia were incubated with the drug- 125 I-LDL complex, cellular drug accumulation was very low. The drug-LDL complex inhibited the growth of cultured normal human fibroblasts. The drug incorporated into methylated LDL was much less toxic. These findings suggest that r11-DOX incorporated into LDL is delivered to cells selectively by the LDL receptor pathway. This might be of value in the treatment of leukemia, since it has been previously found that leukemic cells exhibit higher LDL receptor activity than white blood cells and bone marrow cells from healthy subjects

  3. Fighting cancer with nanomedicine---drug-polyester nanoconjugates for targeted cancer therapy

    Science.gov (United States)

    Yin, Qian

    The aim of my Ph. D. research is to develop drug-polyester nanoconjugates (NCs) as a novel translational polymeric drug delivery system that can successfully evade non-specific uptake by reticuloendothelial system (RES) and facilitate targeted cancer diagnosis and therapy. By uniquely integrating well-established chemical reaction-controlled ring opening polymerization (ROP) with nanoprecipitation technique, I successfully developed a polymeric NC system based on poly(lactic acid) and poly(O-carboxyanhydrides) (OCA) that allows for the quantitative loading and controlled release of a variety of anticancer drugs. The developed NC system could be easily modified with parmidronate, one of bisphosphonates commonly used as the treatment for disease characterized by osteolysis, to selectively deliver doxorubicin (Doxo) to the bone tissues and substantially to improve their therapeutic efficiency in inhibiting the growth of osteosarcoma in both murine and canine models. More importantly, the developed NCs could avidly bind to human serum albumin, a ubiquitous protein in the blood, to bypass the endothelium barrier and penetrate into tumor tissues more deeply and efficiently. When compared with PEGylated NCs, these albumin-bound NCs showed significantly reduced accumulation in RES and enhanced tumor accumulation, which consequently contributed to higher their tumor inhibition capabilities. In addition, the developed NC system allows easy incorporation of X-ray computed tomography (CT) contrast agents to largely facilitate personalized therapy by improving diagnosis accuracy and monitoring therapeutic efficacy. Through the synthetic and formulation strategy I developed, a large quantity (grams or larger-scale) of drug-polyester NCs can be easily obtained, which can be used as a model drug delivery system for fundamental studies as well as a real drug delivery system for disease treatment in clinical settings.

  4. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Science.gov (United States)

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  5. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Sylvia Wagner

    Full Text Available BACKGROUND: The blood-brain barrier (BBB represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. CONCLUSIONS/SIGNIFICANCE: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  6. 99mTc-MDP bone uptake in secondary hyperparathyroidism. Comparison of the mandible, cranium, radius, and femur

    International Nuclear Information System (INIS)

    Boasquevisque, Edson; Mandarim-de-Lacerda, Carlos A.; Silva, Jorge Wagner Esteves da; Albuquerque Bernardo, V.V. de; Macedo, S. Mello Santana de; Oliveira, Andre Ribeiro Nogueira de; Pires Kasai, Erika Tami; Boasquevisque, Camila S.

    2008-01-01

    The objective of this study to evaluate the bone involvement of the mandible, cranium, radius, and femur in secondary hyperparathyroidism (SHPT) using 99m Tc-methylene diphosphonate sodium (MDP) uptake correlated with the serum intact parathyroid hormone (PTHi). In a prospective study of 54 patients with SHPT due to chronic renal disease and 15 normal individuals (control group), all patients had elevated serum PTHi and 99m Tc-MDP bone scintigraphy. Bone uptake was measured in regions of interest (ROIs) in the mandible posterior cranium, distal radius, and proximal femur. In addition, soft tissue uptake was measured in one ROI in the soft tissues of the medial thigh (BG). The ROI-BG ratio was used as an index of the normalized bone uptake. The uptake differences in the SHPT and control groups were statistically significant for the mandible (P=0.001) and cranium (P=0.002). When the SHPT group was subclassified according to serum PTHi levels, the bone uptake increased with the serum PTHi level. All mandibles of the patients with SHPT were abnormal, and 33% had focal lesions. The bone uptake in the SHPT group was abnormal in all areas evaluated, and a high uptake of 99m Tc-MDP was correlated with an increased serum PTHi. (author)

  7. 99mTc-labeled chondroitin sulfate-uptake by chondrocytes and cartilage. Potential agent for osteoarthritis imaging?

    International Nuclear Information System (INIS)

    Sobal, G.; Sinzinger, H.; Menzel, J.

    2002-01-01

    Aim: Chondroitin sulfate (CS) is an endogenous component of cartilage proteoglycan which could monitor osteoarthritic cartilage degradation after radiolabeling. This substance is used in the treatment of human osteoarthritis as a slow acting symptomatic drug (CONDROSULF; Sanova Pharma, Vienna; Ibsa, Switzerland). Material and Methods: Radiolabeling of CS was performed using 99m TcO 4 -/stannous chloride in 0.50 M sodium acetate buffer at pH 5.0. The quality control of the tracer was performed using ITLC-SG chromatography and 0.2 M saline in 10% ethanol as solvent to detect colloid content. Aluminium oxide IB-F TLC-sheets and ethanol as solvent were used to estimate free pertechnetate. For uptake studies cultured human chondrocytes and age-matched cartilage were used. Uptake of the tracer in chondrocytes was studied in monolayer and in suspension cultures at 37 0 C. Uptake was monitored for a total of 120-180 minutes, samples being drawn every 10 minutes. Because the commercially available drug Condrosulf contains calcium stearate as additive to improve the resorption of the drug, we investigated also the uptake with and without additive. Results: The tracer was stable over 6h period after labeling (95% of the radiochemical purity). In plasma the stability was lower amounting to 75%. Viability of chondrocytes after incubation with either CS-preparation was found by trypan blue exclusion to be above 95 %. Uptake of the tracer performed in monolayer ± additives was low and amounted to 0.5%±0.05%, n=6. The cells were saturated already after an incubation interval of 10 minutes. In suspension cultures a maximal uptake of 1.0%±0.1%, n=6 and 5.9%±0.65%, n=6 was found, without and with additives, respectively, the saturation was achieved after 100 min. Thus, not only the resorption of the drug is enhanced by Ca-stearate, but also uptake increases in presence of this additive. Using human rib cartilage the uptake of the tracer was much higher amounting to 4.9%±2.3%, n

  8. Distribution of 238Pu in tissues of fish from the canal in Miamisburg, Oho

    International Nuclear Information System (INIS)

    Kennedy, C.W.; Bartelt, G.E.

    1978-01-01

    The 238 Pu concentrations of varous tissues were measured for seven species of freshwater fish from an ecosystem containing elevated levels of 238 Pu. The highest levels of 238 Pu were found in the gastrointestinal tracts and gills, while the lowest levels were found in muscle tissue. A rapid uptake of 238 Pu was observed for hatchery bluegills introduced into this system. High plutonium concentrations in the gastrointestinal tracts and gills suggest that these organs are potential uptake sites. The presence of 238 Pu in certain tissues (liver, gonads, bone, and muscle) indicates that there is a translocation of 238 Pu from the uptake sites

  9. Assessment of drug disposition in the perfused rat brain by statistical moment analysis

    International Nuclear Information System (INIS)

    Sakane, T.; Nakatsu, M.; Yamamoto, A.; Hashida, M.; Sezaki, H.; Yamashita, S.; Nadai, T.

    1991-01-01

    Drug disposition in the brain was investigated by statistical moment analysis using an improved in situ brain perfusion technique. The right cerebral hemisphere of the rat was perfused in situ. The drug and inulin were injected into the right internal carotid artery as a rapid bolus and the venous outflow curve at the posterior facial vein was obtained. The infusion rate was adjusted to minimize the flow of perfusion fluid into the left hemisphere. The obtained disposition parameters were characteristics and considered to reflect the physicochemical properties of each drug. Antipyrine showed a small degree of initial uptake. Therefore, its apparent distribution volume (Vi) and apparent intrinsic clearance (CLint,i) were small. Diazepam showed large degrees of both influx and efflux and, thus, a large Vi. Water showed parameters intermediate between those of antipyrine and those of diazepam. Imipramine, desipramine, and propranolol showed a large CLint,i compared with those of the other drugs. The extraction ratio of propranolol significantly decreased with increasing concentrations of unlabeled propranolol in the perfusion fluid. These findings may be explained partly by the tissue binding of these drugs. In conclusion, the present method is useful for studying drug disposition in the brain

  10. Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity

    Directory of Open Access Journals (Sweden)

    Duan YR

    2012-07-01

    Full Text Available Peihao Yin,1,* Yan Wang,1,* YanYan Qiu,1 LiLi Hou,1 Xuan Liu,1 Jianmin Qin,1 Yourong Duan,2 Peifeng Liu,2 Ming Qiu,3 Qi Li11Department of Clinical Oncology, Putuo Hospital and Interventional Cancer Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 2Shanghai Cancer Institute, Jiaotong University, Shanghai, China; 3Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China *These authors contributed equally to this workBackground: Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs made of methoxy polyethylene glycol (mPEG, polylactic-co-glycolic acid (PLGA, poly-L-lysine (PLL, and cyclic arginine-glycine-aspartic acid (cRGD loaded with bufalin, ie, bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs, in SW620 colon cancer-bearing mice.Methods: BNPs showed uniform size. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these nanoparticles were studied in vitro. The tumor targeting, cellular uptake, and growth-inhibitory effect of BNPs in vivo were tested.Results: BNPs were of uniform size with an average particle size of 164 ± 84 nm and zeta potential of 2.77 mV. The encapsulation efficiency was 81.7% ± 0.89%, and the drug load was 3.92% ± 0.16%. The results of in vitro cytotoxicity studies showed that although the blank NPs were nontoxic, they enhanced the cytotoxicity of bufalin in BNPs. Drug release experiments showed that the release of the drug was prolonged and sustained. The results of confocal laser scanning microscopy indicated that BNPs could effectively bind to human umbilical vein endothelial cells. In the SW620

  11. A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout

    International Nuclear Information System (INIS)

    Baldisserotto, B.; Kamunde, C.; Matsuo, A.; Wood, C.M.

    2004-01-01

    The present study examined the interactions between elevated dietary calcium (as ionic Ca 2+ in the form of CaCl 2 ·2H 2 O) and acute waterborne Cd exposure (50 μg/l as CdNO 3 for 3 h) on whole body uptake and internal distribution of newly accumulated Cd, Ca 2+ , and Na + in juvenile rainbow trout (Oncorhynchus mykiss). Fish were fed with three diets 20 (control), 30 and 60 mg Ca 2+ /g food: for 7 days before fluxes were measured with radiotracers over a 3 h period. The two elevated Ca 2+ diets reduced the whole body uptake of both Ca 2+ and Cd by >50% and similarly reduced the internalization of both newly accumulated metals in most tissues, effects which reflect the shared branchial uptake route for Ca 2+ and Cd. As the Ca 2+ concentrations of the fluid phases of the stomach and intestinal contents were greatly elevated by the experimental diets, increased gastrointestinal Ca 2+ uptake likely caused the down-regulation of the branchial Ca 2+ (and Cd) uptake pathway. Waterborne Na + uptake and internal distribution were not affected. While plasma Ca 2+ surged after the first two feedings of the 60 mg Ca 2+ /g diet, internal homeostasis was quickly restored. Total Ca 2+ , Na + , and Cl - levels in tissues were not affected by diets. While dietary Ca 2+ protected against waterborne Cd uptake, it did not protect against the relative inhibition of waterborne Ca 2+ uptake caused by waterborne Cd. Acute exposure to 50 μg/l Cd reduced the uptake and internalization of newly accumulated Ca 2+ (but not Na + ) by 70% or more, regardless of diet. Since elevated dietary Ca 2+ reduces waterborne Cd uptake, fish eating a Ca 2+ -rich invertebrate diet may be more protected against waterborne Cd toxicity in a field situation

  12. Gastrointestinal uptake and fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium

    International Nuclear Information System (INIS)

    Chowdhury, M.J.; McDonald, D.G.; Wood, C.M.

    2004-01-01

    Adult rainbow trout were pre-exposed to a sublethal concentration of dietary Cd (500 mg/kg dry wt.) for 30 days to induce acclimation. A gastrointestinal dose of radiolabeled Cd (276 μg/kg wet wt.) was infused into the stomach of non-acclimated and Cd-acclimated trout through a stomach catheter. Repetitive blood samples over 24 h and terminal tissue samples were taken to investigate the gastrointestinal uptake, plasma clearance kinetics, and tissue distribution of Cd. Only a small fraction of the infused dose (non-acclimated: 2.4%; Cd-acclimated: 6.6%) was internalized across the gut wall, while most was bound in the gut tissues (10-24%) or remained in the lumen (16-33%) or lost from the fish (∼50%) over 24 h. Cadmium loading during pre-exposure produced a profound increase of total Cd in the blood plasma (∼28-fold) and red blood cells (RBC; ∼20-fold). The plasma Cd-time profiles consisted of an apparent rising (uptake) phase and a declining (clearance) phase with a maximum value of uptake in 4 h, suggesting that uptake of gastrointestinally infused Cd was very rapid. Acclimation to dietary Cd did not affect plasma Cd clearance (∼0.5 ml/min), but enhanced new Cd levels in the plasma (but not in the RBC), and resulted in a longer half-life for plasma Cd. Tissue total and new Cd levels varied in different regions of the gastrointestinal tract, and overall levels in gut tissues were much greater than in non-gut tissues, reflecting the Cd exposure route. Dietary Cd, but not the infused Cd, greatly increased total Cd levels of all gut tissues in the order posterior-intestine (640-fold) > cecae (180-fold) > mid-intestine (94-fold) > stomach (53-fold) in Cd-acclimated fish relative to naieve fish. Among non-gut tissues in the Cd-acclimated fish, the great increases of total Cd levels were observed in the liver (73-fold), kidney (39-fold), carcass (35-fold), and gills (30-fold). The results provide some clear conclusions that may be useful for environmental risk

  13. Radioiodine uptake and thyroid hormone levels on or off simultaneous carbimazole medication. A prospective paired comparison

    International Nuclear Information System (INIS)

    Walter, M.A.; Mueller-Brand, J.; Christ-Crain, M.; Mueller, B.

    2005-01-01

    Aim: To allow radioiodine (RAI) treatment in patients with need for anti-thyroid drug medication and low RAI uptakes we investigated the feasibility of discontinuing carbimazole for 3 days to enhance the RAI uptake without concurrent exacerbation of hyperthyroidism. Methods: We prospectively investigated RAI dynamics and thyroid hormone concentration in 12 patients with low RAI uptake ( 4 , T 3 and TSH were monitored. Results: Discontinuation of carbimazole for 3 days led to a significant increase of RAI uptake in all patients. We found an enhancement up to 4.9-fold compared to the measurement on carbimazole. The mean RAI uptake increased from 15.2±4.4% to 50.1±15.5% (p<0.001). The intrapersonal radioiodine half-life increased from 4.2±1.6 days to 5.4±0.7 days (p=0.13). Mean thyroid hormone concentration was not affected by the three day withdrawal of anti-thyroid drugs and no patient suffered from an aggravation of biochemical hyperthyroidism. Conclusion: A withdrawal of carbimazole for 3 days is long enough to provide sufficiently high RAI uptakes for RAI treatment in patients with low RAI uptakes and short enough to avoid the risk of exacerbation of hyperthyroidism. (orig.)

  14. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    Science.gov (United States)

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  15. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work?

    Science.gov (United States)

    Steele, Maureen; Silins, Edmund; Flaherty, Ian; Hiley, Sarah; van Breda, Nick; Jauncey, Marianne

    2018-01-01

    Wheel-filtration of pharmaceutical opioid tablets is a recognised harm reduction strategy, but uptake of the practice among people who inject drugs is low. The study aimed to: (i) examine perceptions of filtration practices; (ii) provide structured education on wheel-filtration; and (iii) assess uptake of the practice. Frequent opioid tablet injectors (n = 30) attending a supervised injecting facility in Sydney, Australia, received hands-on instruction on wheel-filtration based on recommended practice. Pre-education, post-education and follow-up questionnaires were administered. Wheel-filtration was generally regarded as better than cotton-filtration (the typical method) in terms of perceived effects on health, ease of use and overall drug effect. Sixty-eight percent of those who said they would try wheel-filtration after the education had actually done so. Of those who usually used cotton-filtration, over half (60%) had used wheel-filtration two weeks later. Uptake of safer preparation methods for pharmaceutical opioid tablets increases after structured education in wheel-filtration. Findings suggest that SIFs are an effective site for this kind of education. Supervised injecting facility workers are uniquely positioned to provide harm reduction education at the time of injection. [Steele M, Silins E, Flaherty I, Hiley S, van Breda N, Jauncey M. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work? Drug Alcohol Rev 2018;37:116-120]. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  16. Extraosseous uptake of sup(99m)technetium methylene diphosphonate: Neuroblastoma or radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sty, J R; Kun, L; Casper, J; Babbitt, D P [Wisconsin Univ., Milwaukee (USA). Dept. of Radiology

    1980-01-01

    A child with a ganglioneuroblastoma and tumor uptake of sup(99m)technetium methylene diphosphonate (sup(99m)Tc-MDP) is presented. After surgical removal of an encapsulated tumor and radiation therapy, an interval bone scan demonstrated the same presurgical abnormality. Awareness of abnormal uptake of sup(99m)Tc-MDP in irradiated renal tissue prevents interpreting radiation nephritis as recurrent tumor.

  17. Technetium uptake predicts remission and relapse in Grave's disease patients on antithyroid drugs for at least 1 year in South Indian subjects.

    Science.gov (United States)

    Singhal, Neha; Praveen, V P; Bhavani, Nisha; Menon, Arun S; Menon, Usha; Abraham, Nithya; Kumar, Harish; JayKumar, R V; Nair, Vasantha; Sundaram, Shanmugha; Sundaram, Padma

    2016-01-01

    Most of the information on remission related factors in Grave's disease are derived from Western literature. It is likely that there may be additional prognostic factors and differences in the postdrug treatment course of Grave's disease in India. To study factors which predict remission/relapse in Grave's disease patients from South India. Also to establish if technetium (Tc) uptake has a role in predicting remission. Records of 174 patients with clinical, biochemical, and scintigraphic criteria consistent with Grave's disease, seen in our Institution between January 2006 and 2014 were analyzed. Patient factors, drug-related factors, Tc-99m uptake and other clinical factors were compared between the remission and nonremission groups. Mann-Whitney U-test and Chi-square tests were used when appropriate to compare the groups. Fifty-seven (32.7%) patients attained remission after at least 1 year of thionamide therapy. Of these, 11 (19.2%) patients relapsed within 1 year. Age, gender, goiter, and presence of extrathyroidal manifestations were not associated with remission. Higher values of Tc uptake were positively associated with remission (P- 0.02). Time to achievement of normal thyroid function and composite dose: Time scores were significantly associated with remission (P - 0.05 and P - 0.01, respectively). Patients with lower FT4 at presentation had a higher chance of remission (P - 0.01). The relapse rates were lower than previously reported in the literature. A higher Tc uptake was found to be significantly associated with relapse also (P - 0.009). The prognostic factors associated with remission in Graves's disease in this South Indian study are not the same as that reported in Western literature. Tc scintigraphy may have an additional role in identifying people who are likely to undergo remission and thus predict the outcome of Grave's disease.

  18. Technetium uptake predicts remission and relapse in Grave's disease patients on antithyroid drugs for at least 1 year in South Indian subjects

    Directory of Open Access Journals (Sweden)

    Neha Singhal

    2016-01-01

    Full Text Available Context: Most of the information on remission related factors in Grave's disease are derived from Western literature. It is likely that there may be additional prognostic factors and differences in the postdrug treatment course of Grave's disease in India. Aim: To study factors which predict remission/relapse in Grave's disease patients from South India. Also to establish if technetium (Tc uptake has a role in predicting remission. Subjects and Methods: Records of 174 patients with clinical, biochemical, and scintigraphic criteria consistent with Grave's disease, seen in our Institution between January 2006 and 2014 were analyzed. Patient factors, drug-related factors, Tc-99m uptake and other clinical factors were compared between the remission and nonremission groups. Statistical Analysis Used: Mann–Whitney U-test and Chi-square tests were used when appropriate to compare the groups. Results: Fifty-seven (32.7% patients attained remission after at least 1 year of thionamide therapy. Of these, 11 (19.2% patients relapsed within 1 year. Age, gender, goiter, and presence of extrathyroidal manifestations were not associated with remission. Higher values of Tc uptake were positively associated with remission (P- 0.02. Time to achievement of normal thyroid function and composite dose: Time scores were significantly associated with remission (P - 0.05 and P - 0.01, respectively. Patients with lower FT4 at presentation had a higher chance of remission (P - 0.01. The relapse rates were lower than previously reported in the literature. A higher Tc uptake was found to be significantly associated with relapse also (P - 0.009. Conclusion: The prognostic factors associated with remission in Graves's disease in this South Indian study are not the same as that reported in Western literature. Tc scintigraphy may have an additional role in identifying people who are likely to undergo remission and thus predict the outcome of Grave's disease.

  19. Studies on the T3 suppression test with reference to the thyrodial 123I uptake in Graves' disease

    International Nuclear Information System (INIS)

    Yamaguchi, Takahiko; Kobayashi, Isao; Yamaguchi, Yoshiyuki; Iwashita, Akira; Inukai, Toshihiko; Ohshima, Kihachi; Shimomura, Yohnosuke; Kobayashi, Setsuo

    1990-01-01

    Eighty-three patients with Graves' disease had been treated with methylmercaptoimidazole (MMI). They were prescribed a maintenance dose of antithyroid drug (MMI, 5 mg/day) at the time of a T 3 suppression test. The 3-hour and 24-hour thyroidal 123 I uptake after T 3 administration (75 μg/day, 2 weeks) were measured (post T 3 uptake). In 38 patients whose post T 3 uptake was below 35% in post T 3 24-hour uptake, treatment was stopped. The T 3 suppression test was then repeated 1 and 3 months later. During a one-year follow up, 26 remained well, while 12 relapsed within 6 to 12 months. We have observed a good correlation between 3-hour uptake and 24-hour uptake of 123 I after T 3 administration (r=0.847, p 3 suppression, most patients with MMI withdrawal produced a marked overshoot of post T 3 3-hour and 24-hour uptake at one month. Retrospective analysis indicated that there was no significant difference in circulating thyroid hormone levels between remission and relapse groups. The present study provides evidence that 3-hour uptake values are able to be substituted for 24-hour uptake values during a T 3 suppression test. In addition, overshoot of thyroidal uptake after antithyroid drug withdrawal was observed in 3-hour values, similar to 24-hour values. (author)

  20. Effects of the Monoamine Uptake Inhibitors RTI-112 and RTI-113 on Cocaine- and Food-Maintained Responding in Rhesus Monkeys

    Science.gov (United States)

    SS, Negus; NK, Mello; HL, Kimmel; LL, Howell; FI, Carroll

    2009-01-01

    Cocaine blocks uptake of the monoamines dopamine, serotonin and norepinephrine, and monoamine uptake inhibitors constitute one class of drugs under consideration as candidate “agonist” medications for the treatment of cocaine abuse and dependence. The pharmacological selectivity of monoamine uptake inhibitors to block uptake of dopamine, serotonin and norepinephrine is one factor that may influence the efficacy and/or safety of these compounds as drug abuse treatment medications. To address this issue, the present study compared the effects of 7-day treatment with a non-selective monoamine uptake inhibitor (RTI-112) and a dopamine-selective uptake inhibitor (RTI-113) on cocaine- and food-maintained responding in rhesus monkeys. Monkeys (N=3) were trained to respond for cocaine injections (0.01 mg/kg/inj) and food pellets under a second-order schedule [FR2(VR16:S)] during alternating daily components of cocaine and food availability. Both RTI-112 (0.0032–0.01 mg/kg/hr) and RTI-113 (0.01–0.056 mg/kg/hr) produced dose-dependent, sustained and nearly complete elimination of cocaine self-administration. However, for both drugs, the potency to reduce cocaine self-administration was similar to the potency to reduce food-maintained responding. These findings do not support the hypothesis that pharmacological selectivity to block dopamine uptake is associated with behavioral selectivity to decrease cocaine- vs. food-maintained responding in rhesus monkeys. PMID:18755212

  1. Micro Regional Heterogeneity of 64Cu-ATSM and 18F-FDG Uptake in Canine Soft Tissue Sarcomas

    DEFF Research Database (Denmark)

    Zornhagen, Kamilla Westarp; Hansen, Anders Elias; Oxboel, Jytte

    2015-01-01

    OBJECTIVES: Tumour microenvironment heterogeneity is believed to play a key role in cancer progression and therapy resistance. However, little is known about micro regional distribution of hypoxia, glycolysis and proliferation in spontaneous solid tumours. The overall aim was simultaneous...... investigation of micro regional heterogeneity of 64Cu-ATSM (hypoxia) and 18F-FDG (glycolysis) uptake and correlation to endogenous markers of hypoxia, glycolysis, proliferation and angiogenesis to better therapeutically target aggressive tumour regions and prognosticate outcome. METHODS: Exploiting...... the different half-lives of 64Cu-ATSM (13h) and 18F-FDG (2h) enabled simultaneous investigation of micro regional distribution of hypoxia and glycolysis in 145 tumour pieces from four spontaneous canine soft tissue sarcomas. Pairwise measurements of radioactivity and gene expression of endogenous markers...

  2. PRELIMINARILY DEVELOPMENT OF A MOISTURE-ACTIVATED BIORESORBABLE POLYMERIC PLATFORM FOR DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Renê O. do Couto

    2015-08-01

    Full Text Available Bioresorbable polymeric films were prepared by solvent casting using a tyrosine-derived polycarbonate and metronidazole (MDZ as the model drug at 2.5%, 5% and 10% (w/w. Drug loading did not affect the water uptake, drug release, polymer degradation or erosion profiles. All devices released approximately 85% (w/w of the drug within a 1.5 h period. This may be attributed to the rapid water uptake of the polymer. An increase in the water uptake correlated with a linear rate increase of the polymer degradation (0.968 ≤ R2 ≤ 0.999. Moreover, MDZ presented a remarkable plasticizing effect for the polymer and drug loading exerted a significant impact on the mechanical properties of the obtained films. The results obtained can be used to further the development of novel biocompatible and biodegradable polymeric platforms for the delivery of metronidazole and other drugs in a broad range of pharmaceutical applications.

  3. Correlation of hepatic 18F-fluorodeoxyglucose uptake with fatty liver

    International Nuclear Information System (INIS)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam

    2006-01-01

    Liver demonstrates heterogeneous FDG uptake and sometimes it shows abnormally increased uptake even though there is no malignant tissue. However, there was no previous study to correlate these various pattern of hepatic FDG uptake with benign liver disease. Therefore, we evaluated the significance of hepatic FDG uptake associated with various clinical factors including fatty liver, liver function tests and lipid profiles. We reviewed a total of 188 patients (male/female: 120/68, mean age: 50 ± 9) who underwent PET/CT for screening of malignancy. Patients with DM, impaired glucose tolerance, previous severe hepatic disease or long-term medication history were excluded. The FDG uptake in liver was analyzed semi-quantitatively using ROI on transaxial images (segment 8) and we compared mean standardized uptake value (SUV) between fatty liver and non-fatty liver group. We also evaluated the correlation between hepatic FDG uptake and various clinical factors including serum liver function test (ALT, AST), γ -GT, total cholesterol and triglyceride concentration. The effect of alcoholic history and body mass index on hepatic FDG uptake was analyzed within the fatty liver patients. The hepatic FDG uptake of fatty liver group was significantly higher than that of non-fatty liver group. Serum total cholesterol and triglyceride concentration showed significant correlation with hepatic FDG uptake. However, there was no significant correlation between other factors (ALT, AST, and γ -GT) and FDG uptake. Also there was no difference of mean SUV between normal and abnormal groups on the basis of alcoholic history and body mass index within fatty liver patients. Fatty liver and high serum triglyceride concentration were the independent factors affecting hepatic FDG uptake according to multivariate analysis. In conclusion, hepatic FDG uptake was strongly correlated with fatty liver and serum triglyceride concentration

  4. Insulin action in adipose tissue and muscle in hypothyroidism.

    Science.gov (United States)

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Boutati, Eleni; Maratou, Eirini; Panagiotakos, Demosthenes B; Koukkou, Efi; Tzanela, Marinela; Thalassinos, Nikos; Raptis, Sotirios A

    2006-12-01

    Although insulin resistance in thyroid hormone excess is well documented, information on insulin action in hypothyroidism is limited. To investigate this, a meal was given to 11 hypothyroid (HO; aged 45 +/- 3 yr) and 10 euthyroid subjects (EU; aged 42 +/- 4 yr). Blood was withdrawn for 360 min from veins (V) draining the anterior abdominal sc adipose tissue and the forearm and from the radial artery (A). Blood flow (BF) in adipose tissue was measured with 133Xe and in forearm with strain-gauge plethysmography. Tissue glucose uptake was calculated as (A-V)glucose(BF), lipoprotein lipase as (A-V)Triglycerides(BF), and lipolysis as [(V-A)glycerol(BF)]-lipoprotein lipase. The HO group had higher glucose and insulin levels than the EU group (P hypothyroidism: 1) glucose uptake in muscle and adipose tissue is resistant to insulin; 2) suppression of lipolysis by insulin is not impaired; and 3) hypertriglyceridemia is due to decreased clearance by the adipose tissue.

  5. Kinetics of [123I]iodide uptake and discharge by perchlorate in studies of inhibition of iodide binding by antithyroid drugs

    International Nuclear Information System (INIS)

    McCruden, D.C.; Connell, J.M.C.; Alexander, W.D.; Hilditch, T.E.

    1985-01-01

    Thyroidal binding of iodide was studied by kinetic analysis of [ 123 ]iodide uptake and its discharge by perchlorate in 80 hyperthyroid subjects receiving antithyroid drug therapy. Five dosage regimens ranging from 5 mg carbimazole twice daily to 15 mg methimazole twice daily were studied. Binding inhibition was estimated at 5-7 h after drug as an index of the mean effect of the 12 hourly regimen. In all cases, except one in the lowest dose group, binding was found to be markedly reduced with mean binding rates ranging from 0.002 to 0.020 min -1 (normal > 0.15 min -1 ). The net clearance of iodide in the lowest dose group was reduced to a mean value near the upper limit of the euthyroid range, whereas in the highest dose group it lay at the lower limit of the euthyroid range. These results were reflected in the serum thyroid hormone response. There was a reducing incidence of inadequate control of hyperthyroidism and an increasing incidence of hypothyroidism with increasing thiourylene dose. The exit rate constant of free iodide for the various doses showed values from 0.048 to 0.055 min -1 . Correpsonding mean values for the discharge rate constant after perchlorate were 0.087 to 0.105 min -1 . This suggests that perchlorate increases the rate of iodide release from the thyroid gland. Studies at a later interval after drug (12-14 h) showed no change in discharge rate constant. This leads to the conclusion that perchlorate may further inhibit iodide binding in subjects receiving antithyroid drug therapy. (author)

  6. Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment

    DEFF Research Database (Denmark)

    Haedersdal, M; Katsnelson, J; Sakamoto, F H

    2011-01-01

    Photodynamic therapy (PDT) of thick skin lesions is limited by topical drug uptake. Ablative fractional resurfacing (AFR) creates vertical channels that may facilitate topical PDT drug penetration and improve PDT-response in deep skin layers. The purpose of this study was to evaluate whether pre-...

  7. Extraosseous uptake of sup(99m)technetium methylene diphosphonate: Neuroblastoma or radiation therapy

    International Nuclear Information System (INIS)

    Sty, J.R.; Kun, L.; Casper, J.; Babbitt, D.P.

    1980-01-01

    A child with a ganglioneuroblastoma and tumor uptake of sup(99m)technetium methylene diphosphonate (sup(99m)Tc-MDP) is presented. After surgical removal of an encapsulated tumor and radiation therapy, an interval bone scan demonstrated the same presurgical abnormality. Awareness of abnormal uptake of sup(99m)Tc-MDP in irradiated renal tissue prevents interpreting radiation nephritis as recurrent tumor. (orig.) [de

  8. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    International Nuclear Information System (INIS)

    Felker, F.C.

    1990-01-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced [ 14 C]sucrose uptake into kernels. [ 14 C]Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-[ 14 C]glucose was absorbed much more slowly than D-[ 14 C]glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium

  9. Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multi-drug resistance in tumours by PET

    International Nuclear Information System (INIS)

    Lewis, J.S.; Dearling, J.L.S.; Blower, P.J.; Sosabowski, J.K.; Zweit, J.; Carnochan, P.; Kelland, L.R.; Coley, H.M.

    2000-01-01

    Experience with imaging of the multi-drug resistance (MDR) phenotype in tumours using technetium-99m sestamibi, a substrate of the P-glycoprotein (Pgp) transporter, suggests that better quantification of images and separation of MDR from other variables affecting tracer uptake in tumours are required. One approach to these problems is the development of short half-life positron-emitting tracers which are substrates of Pgp. Several lipophilic cationic copper(I) bis(diphosphine) complexes labelled with copper-64 have been synthesised and evaluated in vitro as substrates for Pgp. The synthesis is rapid and efficient with no need for purification steps. The chemistry is suitable for use with very short half-life radionuclides such as copper-62 (9.7 min) and copper-60 (23.7 min). Incubation of the complexes with human serum in vitro showed that they are sufficiently stable in serum to support clinical imaging, and the more lipophilic members of the series are taken up rapidly by cells (Chinese hamster ovary and human ovarian carcinoma) in vitro with great avidity. Uptake in human ovarian carcinoma cells is significantly reduced after several months of conditioning in the presence of doxorubicin, which induces increased Pgp expression. Uptake in hooded rat sarcoma (HSN) cells, which express Pgp, is significantly increased in the presence of the MDR modulator cyclosporin A. Biodistribution studies in hooded rats show rapid blood clearance, excretion through both kidneys and liver, and low uptake in other tissues. The one complex investigated in HSN tumour-bearing rats showed uptake in tumour increasing up to 30 min p.i. while it was decreasing in other tissues. We conclude that diphosphine ligands offer a good basis for development of radiopharmaceuticals containing copper radionuclides, and that this series of complexes should undergo further evaluation in vivo as positron emission tomography imaging agents for MDR. (orig.)

  10. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    International Nuclear Information System (INIS)

    Tamura, Akitoshi; Miyawaki, Izuru; Yamada, Toru; Kimura, Juki; Funabashi, Hitoshi

    2013-01-01

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased

  11. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akitoshi, E-mail: akitoshi-tamura@ds-pharma.co.jp; Miyawaki, Izuru; Yamada, Toru; Kimura, Juki; Funabashi, Hitoshi

    2013-08-15

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased

  12. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    OpenAIRE

    Tutton, P. J.; Barkla, D. H.

    1982-01-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-indu...

  13. Perceived Devaluation and STI Testing Uptake among a Cohort of Street-Involved Youth in a Canadian Setting.

    Science.gov (United States)

    Karamouzian, Mohammad; Shoveller, Jean; Dong, Huiru; Gilbert, Mark; Kerr, Thomas; DeBeck, Kora

    2017-10-01

    Perceived devaluation has been shown to have adverse effects on the mental and physical health outcomes of people who use drugs. However, the impact of perceived devaluation on sexually transmitted infections (STI) testing uptake among street-involved youth, who face multiple and intersecting stigmas due to their association with drug use and risky sexual practices, has not been fully characterized. Data were obtained between December 2013 and November 2014 from a cohort of street-involved youth who use illicit drugs aged 14-26 in Vancouver, British Columbia. Multivariable generalized estimating equations were constructed to assess the independent relationship between perceived devaluation and STI testing uptake. Among 300 street-involved youth, 87.0% reported a high perceived devaluation score at baseline. In the multivariable analysis, high perceived devaluation was negatively associated with STI testing uptake after adjustment for potential confounders (Adjusted Odds Ratio = 0.38, 95% Confidence Interval 0.15-0.98). Perceived devaluation was high among street-involved youth in our sample and appears to have adverse effects on STI testing uptake. HIV prevention and care programs should be examined and improved to better meet the special needs of street-involved youth in non-stigmatizing ways.

  14. Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    International Nuclear Information System (INIS)

    Valletta, Alessio; Chronopoulou, Laura; Palocci, Cleofe; Baldan, Barbara; Donati, Livia; Pasqua, Gabriella

    2014-01-01

    Poly(lactic-co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine

  15. Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Valletta, Alessio [“Sapienza” University of Rome, Department of Environmental Biology (Italy); Chronopoulou, Laura; Palocci, Cleofe, E-mail: cleofe.palocci@uniroma1.it [“Sapienza” University of Rome, Department of Chemistry (Italy); Baldan, Barbara [University of Padua, Department of Biology (Italy); Donati, Livia; Pasqua, Gabriella [“Sapienza” University of Rome, Department of Environmental Biology (Italy)

    2014-12-15

    Poly(lactic-co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine.

  16. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    Science.gov (United States)

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Studies of labelling conditions for gentamicin with99mTc Biological uptake

    International Nuclear Information System (INIS)

    Carvalho, O.G. de; Almeida, M.A.T.M. de; Muramoto, E.

    1989-10-01

    Gentamicin sulphate is an aminoglycoside antibiotic type specifically used for treatment of infections produced by Gram-negative bacterias but on the hand it presents ototoxic reactions as a serious side effect. The optimal labelling conditions of gentamicin sulphate with 99m Tc, using sodium pertechnetate solutions eluted from a 99 Mo - 99m Tc generator, were stablished by testing differents masses of antibiotic and reducing agent (SnCl 2 .2H 2 O), and also different reaction times and final labelling pH. The labelling yields were determined through ascendent type crimatographic analysis using metylacetone and 0,9% NaCl solution as solvents. From the studies of the biological uptake of 99m Tc gentamicin sulphate per gram of eight different organs and tissues from Wistar rats, it was shown that for a dose of 0,3 mg of 99m Tc-gentamicin intravenously administered. The kidneys, presented the greatest affinity for the drug, being thus the main excretory organs of the product. (author) [pt

  18. Ruminant and industrial trans-fatty acid uptake in the heart.

    Science.gov (United States)

    Ganguly, Riya; LaVallee, Renee; Maddaford, Thane G; Devaney, Brittany; Bassett, Chantal M C; Edel, Andrea L; Pierce, Grant N

    2016-05-01

    Dietary trans-fats are strongly associated with heart disease. However, the capacity for the tissues of the body, and specifically the heart, to take up trans-fats is unknown. It is also unknown if different trans-fats have different uptake capacities in the heart and other tissues of the body. Diets of low-density lipoprotein receptor-deficient mice were supplemented for 14weeks with foods that contained 1.5% of the trans-fat elaidic acid or vaccenic acid. Tissues were extracted and frozen in liquid nitrogen, and then lipids were analyzed by gas chromatography for fatty acid content. Isolated cardiomyocytes were also exposed to elaidic or vaccenic acid in cell culture media for 24h. Dietary supplementation with vaccenic or elaidic acid resulted in a 20-fold higher accumulation of these TFAs in fat deposits in the body in comparison to liver. Liver tissue accumulated about twice as much per gram tissue as heart. Similar quantities of both elaidic acid and vaccenic acid were taken up by the tissues. Isolated cardiomyocytes exhibited an unusually large uptake of trans-fat, and this was dependent upon both the concentration and duration of exposure to the trans-fats but not upon the type of trans-fat. Expression levels of CD36 and FATP4 were not significantly changed during dietary interventions or exposure of cells to trans-fats. We conclude that fat, liver and heart (including cardiomyocytes) are all capable of accumulating trans-fat in response to dietary supplementation without changes in fatty acid transport protein expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Fluoride Uptake Profiles of Selected European Toothpastes into Hard Tissues and Plaque.

    Science.gov (United States)

    Moore, Joel; Schneiderman, Eva; Farmer, Teresa; Zsiska, Marianne

    2017-09-01

    To compare the fluoridating potential of selected European toothpastes using a combination of enamel, dentin, and plaque in vitromodels. Four in vitromodels were included: 1) Enamel Fluoride (F) Uptake (EFU); 2) Dentin F Uptake (DFU); 3) Enamel Solubility Reduction (ESR); and 4) Plaque F Uptake (PFU). A core set of marketed products was included in all studies, plus a standard toothpaste (1100 ppm F as NaF/silica) and placebo control (the PFU study did not include a placebo control). Test dentifrices: [A] Fluocaril® Bi-Fluoré 250 (1500 ppm F as NaF+1000 ppm F as SMFP); [B] LacerAnticaries (2500 ppm F as SMFP); [C] Elmex® Caries Professional™ (1450 ppm F as SMFP+1.5% arginine); [D] Colgate® Triple Action (1450 ppm F as SMFP); [E] Placebo (0 ppm F); and [F] standard toothpaste (1100 ppm as NaF/silica). In all studies (EFU, DFU, ESR, and PFU), assessments were compared for each pair using the Tukey-Kramer HSD test (p F = B = C = D > E; DFU: A > F = B = C = D = E; PFU: A = B > F = C = D). In demineralization prevention, the Fluocaril dentifrice [A] also provided the greatest benefit (ESR: A = F = C = B = D > E). In all studies that included a placebo control, all of the F-containing dentifrices performed better than the placebo control. While these results demonstrate that all of the marketed products tested provide effective anticaries benefits, the Fluocaril Bi-Fluoré 250 dentifrice consistently delivered unsurpassed performance. It delivered the highest level of F to plaque, provided greater measures of efficacy in both remineralization and inhibition of demineralization, and delivered substantial improvement in fluoridation of dentin, suggesting the potential for delivering both coronal and root caries benefits.

  20. Investigation of the Relationship of Some Antihypertensive Drugs with Oxidant/Antioxidant Parameters and DNA Damage on Rat Uterus Tissue

    OpenAIRE

    Mustafa Talip Sener; Hamit Hakan Alp; Beyzagul Polat; Bunyamin Borekci; Yakup Kumtepe; Nesrin Gursan; Serkan Kumbasar; Suleyman Salman; Halis Suleyman

    2011-01-01

    Background In this study, we investigated the effects of treatment with chronic antihypertensive drugs (clonidine, methyldopa, amlodipine, ramipril and rilmenidine) on oxidant-antioxidant parameters and toxic effects on DNA in rat uterus tissue. In addition, uterus tissues were examined histopathologically. Materials and Methods A total of 36 albino Wistar rats were divided into the following six groups: 0.075 mg/kg clonidine group; 100 mg/kg methyldopa group; 2 mg/kg amlodipine group; 2.5 mg...

  1. Differential effect of alpha-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis(guanylhydrazone) by a rat prostate-derived tumor

    International Nuclear Information System (INIS)

    Heston, W.D.; Kadmon, D.; Covey, D.F.; Fair, W.R.

    1984-01-01

    The uptake of exogenously administered radiolabeled polyamines by a rat prostate-derived tumor line, the Dunning R3327 MAT-Lu, and various normal tissues was studied. Pretreatment of tumor cells in vitro with alpha-difluoromethylornithine (DFMO), a polyamine synthesis inhibitor, resulted in a markedly enhanced uptake of both [ 14 C]putrescine and [14 C]spermidine. The in vitro uptake of [ 14 C]putrescine by these cells was effectively inhibited by unlabeled spermine, spermidine, 1,8-diaminooctane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,4-diaminopentane, and 1,4-diaminobutane, but less effectively by 1,4-diamino-2,3-butene and 1,4-diamino-2,3-butyne. The diamines, 1,3-diaminopropane and 1,2-diaminoethane, were ineffective in inhibiting [ 14 C]putrescine uptake in vitro into the R3327 MAT-Lu cell line. When tumor-bearing animals were pretreated with DFMO or with DFMO and 5-alpha-dihydrotestosterone propionate, the tumor and prostate uptake of [ 14 C]putrescine and [ 14 C]-cadaverine was enhanced but not substantially increased in other tissues. In contrast to the in vitro results, spermidine and spermine were not enhanced substantially by DFMO pretreatment into any tissue, and their uptake into the tumor actually decreased. Ethylenediamine, which does not utilize the polyamine transport system, did not have its uptake increased into any tissue following DFMO pretreatment. The chemotherapeutic agent, methylglyoxal bis(guanylhydrazone), which utilizes the polyamine transport system for uptake into cells, exhibited uptake behavior different from that of the polyamines

  2. Differential effect of alpha-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis(guanylhydrazone) by a rat prostate-derived tumor

    Energy Technology Data Exchange (ETDEWEB)

    Heston, W.D.; Kadmon, D.; Covey, D.F.; Fair, W.R.

    1984-03-01

    The uptake of exogenously administered radiolabeled polyamines by a rat prostate-derived tumor line, the Dunning R3327 MAT-Lu, and various normal tissues was studied. Pretreatment of tumor cells in vitro with alpha-difluoromethylornithine (DFMO), a polyamine synthesis inhibitor, resulted in a markedly enhanced uptake of both (/sup 14/C)putrescine and (14 C)spermidine. The in vitro uptake of (/sup 14/C)putrescine by these cells was effectively inhibited by unlabeled spermine, spermidine, 1,8-diaminooctane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,4-diaminopentane, and 1,4-diaminobutane, but less effectively by 1,4-diamino-2,3-butene and 1,4-diamino-2,3-butyne. The diamines, 1,3-diaminopropane and 1,2-diaminoethane, were ineffective in inhibiting (/sup 14/C)putrescine uptake in vitro into the R3327 MAT-Lu cell line. When tumor-bearing animals were pretreated with DFMO or with DFMO and 5-alpha-dihydrotestosterone propionate, the tumor and prostate uptake of (/sup 14/C)putrescine and (/sup 14/C)-cadaverine was enhanced but not substantially increased in other tissues. In contrast to the in vitro results, spermidine and spermine were not enhanced substantially by DFMO pretreatment into any tissue, and their uptake into the tumor actually decreased. Ethylenediamine, which does not utilize the polyamine transport system, did not have its uptake increased into any tissue following DFMO pretreatment. The chemotherapeutic agent, methylglyoxal bis(guanylhydrazone), which utilizes the polyamine transport system for uptake into cells, exhibited uptake behavior different from that of the polyamines.

  3. Radioiodine uptake and thyroid hormone levels on or off simultaneous carbimazole medication. A prospective paired comparison

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.A.; Mueller-Brand, J. [Inst. of Nuclear Medicine, Univ. Hospital Basel (Switzerland); Christ-Crain, M.; Mueller, B. [Div. of Endocrinology, Univ. Hospital Basel (Switzerland)

    2005-02-01

    Aim: To allow radioiodine (RAI) treatment in patients with need for anti-thyroid drug medication and low RAI uptakes we investigated the feasibility of discontinuing carbimazole for 3 days to enhance the RAI uptake without concurrent exacerbation of hyperthyroidism. Methods: We prospectively investigated RAI dynamics and thyroid hormone concentration in 12 patients with low RAI uptake (<30%) under simultaneous carbimazole medication and 3 days after discontinuation. At both time points fT{sub 4}, T{sub 3} and TSH were monitored. Results: Discontinuation of carbimazole for 3 days led to a significant increase of RAI uptake in all patients. We found an enhancement up to 4.9-fold compared to the measurement on carbimazole. The mean RAI uptake increased from 15.2{+-}4.4% to 50.1{+-}15.5% (p<0.001). The intrapersonal radioiodine half-life increased from 4.2{+-}1.6 days to 5.4{+-}0.7 days (p=0.13). Mean thyroid hormone concentration was not affected by the three day withdrawal of anti-thyroid drugs and no patient suffered from an aggravation of biochemical hyperthyroidism. Conclusion: A withdrawal of carbimazole for 3 days is long enough to provide sufficiently high RAI uptakes for RAI treatment in patients with low RAI uptakes and short enough to avoid the risk of exacerbation of hyperthyroidism. (orig.)

  4. Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegeli

    International Nuclear Information System (INIS)

    Zhang Li; Wang Wenxiong

    2007-01-01

    Gastrointestinal metal uptake represents a potential route for metal bioaccumulation in marine fish. Drinking of seawater for osmoregulation causes constant waterborne exposure of the gastrointestinal tract. Tissue specific Cd and Zn accumulation and distribution were investigated in juvenile black sea bream (Acanthopagrus schlegeli) exposed to waterborne Cd (5.7 nM) and Zn (2.6 nM) for 4 h-7 days. The intestine accumulated a large portion of the Cd (43-58%) and Zn (18-28%), and had the highest Cd (>1.0 nmol g -1 ) and Zn (>1.8 nmol g -1 ) concentrations of all body fractions, suggesting that the intestines were the major uptake sites for these waterborne metals. Among all the segments of the gastrointestinal tract, the anterior intestine played the most important role in Cd and Zn uptake. A gastrointestinal injection assay was conducted to distinguish waterborne metal uptake by the intestines and the gills. The intestine contained over 90% of the Cd in the body after depuration for 3-7 days, suggesting that little waterborne Cd entered the rest of the body through the intestine, and that Cd may exert its toxic effects on the gastrointestinal system. In contrast, intestine retained less than 20% of the total Zn after depuration, suggesting that Zn tended to be transported from the intestine to the internal tissues via the cardiovascular system. The uptake kinetics of waterborne Cd and Zn by the intestines and the gills were determined as a first-order and saturated pattern, respectively, over a wide range of ambient metal concentrations (6.2 nM-4.5 μM for Cd, and 13 nM-15 μM for Zn). An in vitro intestinal perfusion assay investigated the effects of intestinal metal composition and drinking rate on uptake. The presence of EDTA significantly reduced intestinal Zn uptake to 11%, while cysteine improved it by 59%. The intestinal Cd and Zn uptake rates were unaffected by the perfusion rate

  5. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

    Science.gov (United States)

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-08-01

    Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Flavonoid rutin increases thyroid iodide uptake in rats.

    Directory of Open Access Journals (Sweden)

    Carlos Frederico Lima Gonçalves

    Full Text Available Thyroid iodide uptake through the sodium-iodide symporter (NIS is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO, the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH, and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.

  7. Mechanism of /sup 67/Ga uptake by an experimental abscess. Permeability of plasma from blood vessel in abscess

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Kazuo; Ogawa, Hiroshi; Ando, Atsushi; Ando, Itsuko; Hiraki, Tatsunosuke; Hisada, Kinichi

    1985-06-01

    In the previous paper, we reported that /sup 67/Ga was accumulated in abscess and uptake rate of /sup 67/Ga in abscess increased with time after the injection of /sup 67/Ga-citrate. The present study was undertaken to elucidate the influence of blood flow on the accumulation of /sup 67/Ga in abscess. Five days after subcutaneous injection of 0.2 ml of turpentine to the rats, /sup 131/I-human serum albumin (HSA) was injected intravenously to the rats. At an appropriate time after the injection (10 min to 6 days), uptake rates of /sup 131/I-HSA in abscess and normal tissues were measured. Similarly, /sup 51/Cr-red blood cells (RBC) were injected intravenously to the above rats and the uptake rates of /sup 51/Cr-RBC were also measured. One, three, and 24 hours after injection of /sup 131/I-HSA, the uptake rates of /sup 131/I-HSA in abscess were 1.32 %dose/g, 1.84 %dose/g, and 0.82 %dose/g, respectively. However, the uptake rates of /sup 51/Cr-RBC in abscess was very small, and the value was 0.14 %dose/g at 24 hours after the injection. In the case of abscess, blood in the tissue fluid was very little, but the permeability of /sup 131/I-HSA from the blood vessel in the tissue was much larger than that of normal tissues. From these facts, it was deduced that the accelerated permeability caused the abscess accumulation of /sup 67/Ga.

  8. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    Science.gov (United States)

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (Pcellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (Pcellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via caspase activation. Preliminary investigations substantiated that Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals must be further explored and utilized for the delivery of noscapinoids to melanoma cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Plant uptake of pentachlorophenol from sludge-amended soils

    International Nuclear Information System (INIS)

    Bellin, C.A.; O'Connor, G.A.

    1990-01-01

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of 14 C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal 14 C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge

  10. Vapor Phase Hydrogen Peroxide Sanitization of an Isolator for Aseptic Filling of Monoclonal Antibody Drug Product - Hydrogen Peroxide Uptake and Impact on Protein Quality.

    Science.gov (United States)

    Hubbard, Aaron; Reodl, Thomas; Hui, Ada; Knueppel, Stephanie; Eppler, Kirk; Lehnert, Siegfried; Maa, Yuh-Fun

    2018-03-15

    A monoclonal antibody drug product (DP) manufacturing process was transferred to a different production site, where aseptic filling took place within an isolator that was sanitized using vapor phase hydrogen peroxide (VPHP). A quality-by-design approach was applied for study design to understand the impact of VPHP uptake in the isolator on DP quality. A combination of small-scale and manufacturing-scale studies was performed to evaluate the sensitivity of the monoclonal antibody to hydrogen peroxide (H2O2) as well as VPHP uptake mechanisms during the filling process. The acceptable H2O2 level was determined to be 100 ng/mL for the antibody in the H2O2 spiking study; protein oxidation was observed above this threshold. The most prominent sources of VPHP uptake were identified to be via the silicone tubing assembly (associated with the peristaltic pumps) and open, filled vials. Silicone tubing, an effective depot to H2O2, could absorb VPHP during different stages of the filling process and discharge H2O2 into the DP solution during filling interruptions. A small-scale isolator model, established to simulate manufacturing-scale conditions, was a useful tool in understanding H2O2 uptake in relation to tubing dimensions and VPHP concentration in the isolator air (or atmosphere). Although the tubing assembly had absorbed a substantial amount of VPHP during the decontamination phase, the majority of H2O2 could be removed during tubing cleaning and sterilization in the subsequent isolator aeration phase, demonstrating that H2O2 in the DP solution is taken up primarily via atmospheric VPHP residues in the isolator during filling. Picarro sensor monitoring suggested that the validated VPHP aeration process generates reproducible residual VPHP profiles in isolator air, thus allowing small-scale studies to provide more relevant recommendations on tubing size and interruption time limits for commercial manufacturing. The recommended process parameters were demonstrated to be

  11. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  12. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  13. Ultrasound-Stimulated Drug Delivery Using Therapeutic Reconstituted High-Density Lipoprotein Nanoparticles.

    Science.gov (United States)

    Xiong, Fangyuan; Nirupama, Sabnis; Sirsi, Shashank R; Lacko, Andras; Hoyt, Kenneth

    2017-01-01

    The abnormal tumor vasculature and the resulting abnormal microenvironment are major barriers to optimal chemotherapeutic drug delivery. It is well known that ultrasound (US) can increase the permeability of the tumor vessel walls and enhance the accumulation of anticancer agents. Reconstituted high-density lipoproteins (rHDL) nanoparticles (NPs) allow selective delivery of anticancer agents to tumor cells via their overexpressed scavenger receptor type B1 (SR-B1) receptor. The goal of this study is to investigate the potential of noninvasive US therapy to further improve delivery and tumor uptake of the payload from rHDL NPs, preloaded with an infrared dye (IR-780), aimed to establish a surrogate chemotherapeutic model with optical localization. Athymic nude mice were implanted orthotopically with one million breast cancer cells (MDA-MB-231/Luc). Three weeks later, animals were divided into seven groups with comparable mean tumor size: control, low, moderate, and high concentration of rHDL NPs alone groups, as well as these three levels of rHDL NPs plus US therapy groups ( N = 7 to 12 animals per group), where low, moderate and high denote 5, 10, and 50 µg of the IR-780 dye payload per rHDL NP injection, respectively. The US therapy system included a single element focused transducer connected in series with a function generator and power amplifier. A custom 3D printed cone with an acoustically transparent aperture and filled with degassed water allowed delivery of focused US energy to the tumor tissue. US exposure involved a pulsed sequence applied for a duration of 5 min. Each animal in the US therapy groups received a slow bolus co-injection of MB contrast agent and rHDL NPs. Animals were imaged using a whole-body optical system to quantify intratumoral rHDL NP accumulation at baseline and again at 1 min, 30 min, 24 h, and 48 h. At 48 h, all animals were euthanized and tumors were excised for ex vivo analysis. We investigated a noninvasive optical imaging

  14. Rabbit hindlimb glucose uptake assessed with positron-emitting fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Mossberg, K.A.; Rowe, R.W.; Tewson, T.J.; Taegtmeyer, H.

    1989-01-01

    The feasibility of estimating skeletal muscle glucose uptake in vivo was examined by using the glucose analogue 2-[ 18 F]deoxy-2-fluoro-D-glucose (2-[ 18 F]FDG) in the rabbit hindlimb. A pair of collimated coincidence gamma photon detectors was used to monitor the accumulation of tracer in the tissue after 2-[ 18 F]FDG injection. Time-activity curves were generated on a second-by-second basis under control conditions, during increased contractile activity, or hyperinsulinemia. The arterial input of 2-[ 18 F]FDG, plasma glucose, lactate, free fatty acids, and insulin were determined. A graphical (Patlak plot) procedure was used to determine the fractional rate of tracer phosphorylation and therefore trapping in the muscle. From the graphical analysis, the estimated rate of glucose phosphorylation (R) in the unperturbed state was calculated to be 0.037 mumol.min-1.ml-1 of tissue. During perturbation by electrical stimulation, an increase in the rate of tracer phosphorylation (K) was observed. No change in the rate of tracer phosphorylation was observed during hyperinsulinemia. The results support the use of 2-[ 18 F]FDG and the graphical procedure for the noninvasive assessment of glucose uptake by skeletal muscle in vivo. The method described is sensitive to changes in the rate of tracer uptake with respect to time and physiological interventions

  15. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  16. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  17. What significance can be attributed to high bone uptake of 67GA citrate in patients with HIV infection?

    International Nuclear Information System (INIS)

    Sabbatini, S.; Bini, A.; Turba, E.

    1989-01-01

    The authors observed high uptake of 67 Ga citrate in the spine and in some cases also in the ribs in 15 patients with HIV infection. 12 were also carriers of opportunistic infections, 14 had anaemia with reduced Hb synthesis. 9 were undergoing treatment with antifolic drugs or AZT. The high bone uptake of the radio-indicator was related to the presence of opportunistic infections, the eventual treatment with myelotoxic drugs and the reduction of Hb values. (orig.) [de

  18. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives.

    Science.gov (United States)

    Yasinzai, Masoom; Khan, Momin; Nadhman, Akhtar; Shahnaz, Gul

    2013-10-01

    Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.

  19. Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion.

    Science.gov (United States)

    Kolandhasamy, Prabhu; Su, Lei; Li, Jiana; Qu, Xiaoyun; Jabeen, Khalida; Shi, Huahong

    2018-01-01

    Microplastic pollution is recognized as an emerging threat to aquatic ecosystems. One of the main environmental risks associated with microplastics is their bioavailability to marine organisms. Up to date, ingestion has been widely accepted as the sole way for the animals to uptake microplastics. Nevertheless, microplastics have also been found in some organs which are not involved in the process of ingestion. We hypothesize that the animal might uptake microplastics through adherence in addition to ingestion. To test this hypothesis, we collected mussels from the fishery farms, conducted exposure/clearance experiments and analyzed the accumulation of microplastics in specific organ of mussels. Our studies clearly showed the uptake of microplastic in multiple organs of mussels. In the field investigations, we found that the abundance of microplastic by weight but not by individual showed significant difference among organs, and the intestine contained the highest level of microplastics (9.2items/g). In the uptake and clearance experiment, the accumulation and retention of microfibers could also be observed in all tested organs of mussels including foot and mantle. Our results strongly suggest that adherence rather than ingestion led to the accumulation of microplastics in those organs which are not involved in ingestion process. To our best knowledge, it is the first time to propose that adherence is a novel way for animals to uptake microplastics beyond ingestion. This new finding makes us rethink about the bioavailability, accumulation and toxicity of microplastics to aquatic animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    Science.gov (United States)

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  1. A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Baldisserotto, B.; Kamunde, C.; Matsuo, A.; Wood, C.M

    2004-03-30

    The present study examined the interactions between elevated dietary calcium (as ionic Ca{sup 2+} in the form of CaCl{sub 2}{center_dot}2H{sub 2}O) and acute waterborne Cd exposure (50 {mu}g/l as CdNO{sub 3} for 3 h) on whole body uptake and internal distribution of newly accumulated Cd, Ca{sup 2+}, and Na{sup +} in juvenile rainbow trout (Oncorhynchus mykiss). Fish were fed with three diets 20 (control), 30 and 60 mg Ca{sup 2+}/g food: for 7 days before fluxes were measured with radiotracers over a 3 h period. The two elevated Ca{sup 2+} diets reduced the whole body uptake of both Ca{sup 2+} and Cd by >50% and similarly reduced the internalization of both newly accumulated metals in most tissues, effects which reflect the shared branchial uptake route for Ca{sup 2+} and Cd. As the Ca{sup 2+} concentrations of the fluid phases of the stomach and intestinal contents were greatly elevated by the experimental diets, increased gastrointestinal Ca{sup 2+} uptake likely caused the down-regulation of the branchial Ca{sup 2+} (and Cd) uptake pathway. Waterborne Na{sup +} uptake and internal distribution were not affected. While plasma Ca{sup 2+} surged after the first two feedings of the 60 mg Ca{sup 2+}/g diet, internal homeostasis was quickly restored. Total Ca{sup 2+}, Na{sup +}, and Cl{sup -} levels in tissues were not affected by diets. While dietary Ca{sup 2+} protected against waterborne Cd uptake, it did not protect against the relative inhibition of waterborne Ca{sup 2+} uptake caused by waterborne Cd. Acute exposure to 50 {mu}g/l Cd reduced the uptake and internalization of newly accumulated Ca{sup 2+} (but not Na{sup +}) by 70% or more, regardless of diet. Since elevated dietary Ca{sup 2+} reduces waterborne Cd uptake, fish eating a Ca{sup 2+}-rich invertebrate diet may be more protected against waterborne Cd toxicity in a field situation.

  2. Relation between the location of elements in the periodic table and tumor-uptake rate

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1985-01-01

    The bipositive ions and anions, with few exceptions, indicated a low tumor uptake rate. On the other hand, compounds of Hg, Au and Bi, which have a strong binding power to protein, showed a high tumor uptake rate. As Hg/sup 2 +/, Au/sup +/ and Bi/sup 3 +/ are soft acids according to the classification of Lewis acids, it was thought that these ions would bind strongly to soft bases (R-SH, R-S-) present in tumor tissue. For many hard acids such as /sup 85/Sr/sup 2 +/, /sup 67/Ga/sup 3 +/, /sup 181/Hf/sup 4 +/, and /sup 95/Nb/sup 5 +/, tumor uptake rates are shown as a function of ionic potentials of the metal ions. Considering the present data and previously reported results, it was presumed that hard acids of trivalence, quadrivalence and pentavalence would replace calcium in the calcium salts of hard bases. Ionic potentials of alkaline metals and Tl were small, but the tumor-uptake rate of these elements indicated various values. As Ge and Sb are bound by covalent bonds to chloride, GeCl/sub 4/ and SbCl/sub 3/ behaved differently from many metallic compounds in tumor tissue.

  3. Relation between the location of elements in the periodic table and tumor-uptake rate.

    Science.gov (United States)

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1985-01-01

    The bipositive ions and anions, with few exceptions, indicated a low tumor uptake rate. On the other hand, compounds of Hg, Au and Bi, which have a strong binding power to protein, showed a high tumor uptake rate. As Hg2+, Au+ and Bi3+ are soft acids according to the classification of Lewis acids, it was thought that these ions would bind strongly to soft bases (R-SH, R-S-) present in tumor tissue. For many hard acids such as 85Sr2+, 67Ga3+, 181Hf4+, and 95Nb5+, tumor uptake rates are shown as a function of ionic potentials (valency/ionic radii) of the metal ions. Considering the present data and previously reported results, it was presumed that hard acids of trivalence, quadrivalence and pentavalence would replace calcium in the calcium salts of hard bases (calcium salts of acid mucopolysaccharides, etc.). Ionic potentials of alkaline metals and Tl were small, but the tumor-uptake rate of these elements indicated various values. As Ge and Sb are bound by covalent bonds to chloride, GeCl4 and SbCl3 behaved differently from many metallic compounds in tumor tissue.

  4. Estimation of sodium uptake through the gill of the rainbow trout Salmo gairdneri

    Energy Technology Data Exchange (ETDEWEB)

    Gardaire, E.; Avella, M.; Isaia, J.; Bornancin, M.; Mayer-Gostan, N.

    1985-01-01

    Sodium exchanges through the gill epithelia were estimated in the rainbow trout, Salmo gairdneri, using the perfused head technique. The head tissues accumulate radioactivity. In addition there exists an extrabranchial entry of sodium, which is 20 times smaller than the branchial one. The study of the evolution of venous and arterial sodium specific activities as a function of time is necessary before flux measurements are achieved. Contrary to previous studies, an uptake at the primary lamella level is demonstrated. Uptake of sodium through the secondary lamellae can be measured rapidly while at least 30 min are needed for measurement of uptake through the primary lamellae. Chloride cells of the primary lamellae contribute to about 20% of the total sodium uptake.

  5. Antilipolytic drug boosts glucose metabolism in prostate cancer

    International Nuclear Information System (INIS)

    Andersen, Kim Francis; Divilov, Vadim; Koziorowski, Jacek; Pillarsetty, NagaVaraKishore; Lewis, Jason S.

    2013-01-01

    Introduction: The antilipolytic drug Acipimox reduces free fatty acid (FFA) levels in the blood stream. We examined the effect of reduced FFAs on glucose metabolism in androgen-dependent (CWR22Rv1) and androgen-independent (PC3) prostate cancer (PCa) xenografts. Methods: Subcutaneous tumors were produced in nude mice by injection of PC3 and CWR22Rv1 PCa cells. The mice were divided into two groups (Acipimox vs. controls). Acipimox (50 mg/kg) was administered by oral gavage 1 h before injection of tracers. 1 h after i.v. co-injection of 8.2 MBq (222 ± 6.0 μCi) 18 F-FDG and ∼ 0.0037 MBq (0.1 μCi) 14 C-acetate, 18 F-FDG imaging was performed using a small-animal PET scanner. Counting rates in reconstructed images were converted to activity concentrations. Quantification was obtained by region-of-interest analysis using dedicated software. The mice were euthanized, and blood samples and organs were harvested. 18 F radioactivity was measured in a calibrated γ-counter using a dynamic counting window and decay correction. 14 C radioactivity was determined by liquid scintillation counting using external standard quench corrections. Counts were converted into activity, and percentage of the injected dose per gram (%ID/g) tissue was calculated. Results: FDG biodistribution data in mice with PC3 xenografts demonstrated doubled average %ID/g tumor tissue after administration of Acipimox compared to controls (7.21 ± 1.93 vs. 3.59 ± 1.35, P = 0.02). Tumor-to-organ ratios were generally higher in mice treated with Acipimox. This was supported by PET imaging data, both semi-quantitatively (mean tumor FDG uptake) and visually (tumor-to-background ratios). In mice with CWR22Rv1 xenografts there was no effect of Acipimox on FDG uptake, either in biodistribution or PET imaging. 14 C-acetate uptake was unaffected in PC3 and CWR22Rv1 xenografts. Conclusions: In mice with PC3 PCa xenografts, acute administration of Acipimox increases tumor uptake of 18 F-FDG with general

  6. Bladder uptake of liposomes after intravesical administration occurs by endocytosis.

    Directory of Open Access Journals (Sweden)

    Bharathi Raja Rajaganapathy

    Full Text Available Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.

  7. Pharmacokinetics and modeling of immune cell trafficking: quantifying differential influences of target tissues versus lymphocytes in SJL and lipopolysaccharide-treated mice

    Directory of Open Access Journals (Sweden)

    Banks William A

    2012-10-01

    Full Text Available Abstract Background Immune cell trafficking into the CNS and other tissues plays important roles in health and disease. Rapid quantitative methods are not available that could be used to study many of the dynamic aspects of immune cell-tissue interactions. Methods We used pharmacokinetics and modeling to quantify and characterize the trafficking of radioactively labeled lymphocytes into brain and peripheral tissues. We used variance from two-way ANOVAs with 2 × 2 experimental designs to model the relative influences of lymphocytes and target tissues in trafficking. Results We found that in male CD-1 mice, about 1 in 5,000 intravenously injected lymphocytes entered each gram of brain. Uptake by brain was 2 to 3 times higher in naïve SJL females, but uptake by spleen and clearance from blood was lower, demonstrating a dichotomy in immune cell distribution. Treatment of CD-1 mice with lipopolysaccharide (LPS increased immune cell uptake into brain but decreased uptake by spleen and axillary nodes. Conclusions Differences in brain uptake and in uptake by spleen between SJL and CD-1 mice were primarily determined by lymphocytes, whereas differences in uptake with LPS were primarily determined by lymphocytes for the brain but by the tissues for the spleen and the axillary lymph node. These results show that immune cells normally enter the CNS and that tissues and immune cells interact in ways that can be quantified by pharmacokinetic models.

  8. Atomic Force Microscopy Images Label-Free, Drug Encapsulated Nanoparticles In Vivo and Detects Difference in Tissue Mechanical Properties of Treated and Untreated: A Tip for Nanotoxicology

    Science.gov (United States)

    Lamprou, Dimitrios A.; Venkatpurwar, Vinod; Kumar, M. N. V. Ravi

    2013-01-01

    Overcoming the intractable challenge of imaging of label-free, drug encapsulated nanoparticles in tissues in vivo would directly address associated regulatory concerns over 'nanotoxicology'. Here we demonstrate the utility of Atomic Force Microscopy (AFM) for visualising label-free, drug encapsulated polyester particles of ∼280 nm distributed within tissues following their intravenous or peroral administration to rodents. A surprising phenomenon, in which the tissues' mechanical stiffness was directly measured (also by AFM) and related to the number of embedded nanoparticles, was utilised to generate quantitative data sets for nanoparticles localisation. By coupling the normal determination of a drug's pharmacokinetics/pharmacodynamics with post-sacrifice measurement of nanoparticle localisation and number, we present for the first time an experimental design in which a single in vivo study relates the PK/PD of a nanomedicine to its toxicokinetics. PMID:23724054

  9. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.

    Science.gov (United States)

    Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T

    2016-09-01

    Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme.

    Science.gov (United States)

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; Chaudhary, Pankaj; Suresh Kumar, M A; Lee, Stephen; Peña, Louis A; Waring, Michael; Sitharaman, Balaji; Naidu, Mamta

    2015-01-01

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24h. However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Lipoprotein lipase: genetics, lipid uptake, and regulation.

    Science.gov (United States)

    Merkel, Martin; Eckel, Robert H; Goldberg, Ira J

    2002-12-01

    Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.

  12. Patterns of brown fat uptake of 18F-fluorodeoxyglucose in positron emission tomography/computed tomography scan

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) has become the common imaging modality in oncological practice. FDG uptake is seen in brown adipose tissue in a significant number of patients. Recognizing the uptake patterns is important for optimal FDG PET interpretation. The introduction of PET/computed tomography (PET/CT) revolutionized PET imaging, bringing much-needed anatomical information. Careful review and correlation of FDG PET images with anatomical imaging should be performed to characterize accurately any lesion having high FDG uptake

  13. Extraosseous uptake of /sup 99/sup(m)technetium methylene diphosphonate. Neuroblastoma or radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sty, J R; Kun, L; Casper, J; Babbitt, D P

    1980-01-01

    A child with a ganglioneuroblastoma and tumor uptake of /sup 99/sup(m)technetium methylene diphosphate (/sup 99/sup(m)Tc-MDP) is presented. After surgical removal of an encapsulated tumor and radiation therapy, an interval bone scan demonstrated the same presurgical abnormality. Awareness of abnormal uptake of /sup 99/sup(m)Tc-MDP in irradiated renal tissue prevents interpreting radiation nephritis as recurrent tumor.

  14. Hepatoblastoma: A Need for Cell Lines and Tissue Banks to Develop Targeted Drug Therapies

    Directory of Open Access Journals (Sweden)

    Rishi Raj Rikhi

    2016-03-01

    Full Text Available Limited research exists regarding the most aggressive forms of hepatoblastoma. Cell lines of the rare subtypes of hepatoblastoma with poor prognosis are not only difficult to attain, but are challenging to characterize histologically. A community approach to educating parents and families of the need for donated tissue is necessary for scientists to have access to resources for murine models and drug discovery. Herein we describe the currently available resources, the today’s existing gaps in research, and the path to move forward for uniform cure of hepatoblastoma.

  15. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows

    Science.gov (United States)

    Schultz, Melissa M.; Painter, Meghan M.; Bartell, Stephen E.; Logue, Amanda; Furlong, Edward T.; Werner, Stephen L.; Schoenfuss, Heiko L.

    2011-01-01

    Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimeplwles promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305 ng/L and 1104 ng/L) and SER (5.2 ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28 ng/L induced vitellogenin in male fish—a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies.

  16. Correlation of hepatic {sup 18}F-fluorodeoxyglucose uptake with fatty liver

    Energy Technology Data Exchange (ETDEWEB)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2006-10-15

    Liver demonstrates heterogeneous FDG uptake and sometimes it shows abnormally increased uptake even though there is no malignant tissue. However, there was no previous study to correlate these various pattern of hepatic FDG uptake with benign liver disease. Therefore, we evaluated the significance of hepatic FDG uptake associated with various clinical factors including fatty liver, liver function tests and lipid profiles. We reviewed a total of 188 patients (male/female: 120/68, mean age: 50 {+-} 9) who underwent PET/CT for screening of malignancy. Patients with DM, impaired glucose tolerance, previous severe hepatic disease or long-term medication history were excluded. The FDG uptake in liver was analyzed semi-quantitatively using ROI on transaxial images (segment 8) and we compared mean standardized uptake value (SUV) between fatty liver and non-fatty liver group. We also evaluated the correlation between hepatic FDG uptake and various clinical factors including serum liver function test (ALT, AST), {gamma} -GT, total cholesterol and triglyceride concentration. The effect of alcoholic history and body mass index on hepatic FDG uptake was analyzed within the fatty liver patients. The hepatic FDG uptake of fatty liver group was significantly higher than that of non-fatty liver group. Serum total cholesterol and triglyceride concentration showed significant correlation with hepatic FDG uptake. However, there was no significant correlation between other factors (ALT, AST, and {gamma} -GT) and FDG uptake. Also there was no difference of mean SUV between normal and abnormal groups on the basis of alcoholic history and body mass index within fatty liver patients. Fatty liver and high serum triglyceride concentration were the independent factors affecting hepatic FDG uptake according to multivariate analysis. In conclusion, hepatic FDG uptake was strongly correlated with fatty liver and serum triglyceride concentration.

  17. ARSENIC AND COPPER UPTAKE BY CABBAGES GROWN ON POLLUTED SOILS

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Kim Phuong

    2017-11-01

    Full Text Available Cabbages (Brassica Juncea (L. Czern were grown in pot experiments on typical unpolluted and polluted soils with concentration changing from 20.50 - 50.00 mg As/kg and 156.00 - 413.00 mg Cu/kg dry soil. The results demonstrate the elevation of As and Cu in soil may lead to increased uptake by these cabbages subsequent entry into human food chain. It was found 11.84- 32.12 mg As/kg and 46.86 - 94.47 mg Cu/kg dry leaves. It has tendency increase uptake and accumulation of Cu in cabbage tissue with increasing cultivated time, whereas, it was found accumulation of As in cabbages tissue decreased with time prolonging. The quantity of As and Cu in these cabbages, were significant higher than 0.2 mg As/kg and 5.0 mg Cu/kg fresh vegetable, the permissible limit concentration in fresh vegetable. This indicated that human may As and Cu exposure occur through eating these vegetables.

  18. Development and Characterization of Nanoembedded Microparticles for Pulmonary Delivery of Antitubercular Drugs against Experimental Tuberculosis.

    Science.gov (United States)

    Goyal, Amit Kumar; Garg, Tarun; Rath, Goutam; Gupta, Umesh Datta; Gupta, Pushpa

    2015-11-02

    The foremost objective of the present research study was to develop and evaluate the potential of rifampicin (RIF) and isoniazid (INH) loaded spray dried nanoembedded microparticles against experimental tuberculosis (TB). In this study, RIF-INH loaded various formulations (chitosan, guar gum, mannan, and guar gum coated chitosan) were prepared by spray drying and characterized on the basis of in vitro as well as in vivo studies. Results showed that guar gum spray dried particles showed uniform size distribution with smooth surface as compare to mannan formulations. Guar gum batches exhibited excellent flow ability attributed to their optimum moisture content and uniform size distribution. The drug release showed the biphasic pattern of release, i.e., initial burst followed by a sustained release pattern. The preferential uptake of guar gum coated formulations suggested the presence and selective uptake capability of mannose moiety to the specific cell surface of macrophages. In vivo lung distribution study showed that guar gum coated chitosan (GCNP) batches demonstrated prolonged residence at the target site and thereby improve the therapeutic utility of drug with a significant reduction in systemic toxicity. Optimized drug loaded GCNP formulation has resulted in almost 5-fold reduction of the number of bacilli as compared to control group. Histopathology study also demonstrated that none of the treated groups show any evidence of lung tissue abnormality. Hence, GCNPs could be a promising carrier for selective delivery of antitubercular drugs to alveolar macrophages with the interception of minimal side effects, for efficient management of TB.

  19. 16 alpha-[77Br]bromoestradiol-17 beta: a high specific-activity, gamma-emitting tracer with uptake in rat uterus and uterus and induced mammary tumors

    International Nuclear Information System (INIS)

    Katzenellenbogen, J.A.; Senderoff, S.G.; McElvany, K.D.; O'Brien, H.A. Jr.; Welch, M.J.

    1981-01-01

    16 alpha-[77Br]bromoestradiol-17 beta (Compound 1) has been synthesized by radiobromination of estrone enoldiacetate. Tissue uptake studies performed 1 h after administration of Compound 1 to immature or mature female rats showed uterus-to-blood ratios of 13, with nontarget issue-to-blood ratios ranging from 0.6 to 2. Co-administration of unlabelled estradiol caused a selective depression in the uterine uptake with no effect on nontarget tissue uptake. In adult animals bearing adenocarcinomas induced by DMBA (7,12-dimethylbenz(a)anthracene), tumor-to-blood ratios of 6.3 were obtained, this uptake also being depressed in animals treated with unlabeled estradiol. The studies demonstrate that Compound 1 has suitable binding properties and sufficiently high specific activity so that its uptake in estrogen target tissues in vivo is mediated primarily by the estrogen receptor. Furthermore, they suggest that this compound may be suitable for imaging human breast tumors that contain estrogen receptors

  20. Analysis of the factors associated with Tc-99m pertechnetate uptake in thyrotoxicosis and Graves' disease

    International Nuclear Information System (INIS)

    Kidokoro-kunii, Yo; Emoto, Naoya; Cho, Keiichi; Oikawa, Shinichi

    2006-01-01

    To determine the factors associated with 20 minute Tc-99m pertechnetate thyroid uptake, we examined all patients in whom thyrotoxicosis was diagnosed at Chiba-Hokusoh Hospital, Nippon Medical School from 2001 April through 2003 March. Patients with thyrotoxicosis diagnosed during this period were 57 with Graves' disease (76%), 11 with transient hyperthyroxinemia (TH) (14.7%), and 7 with subacute thyroiditis (SAT) (9.3%). The uptake of Tc-99m ranged from 0.97% to 40.1% in Graves' disease and from 0.15% to 0.8% in TH. Although TH may include spontaneous resolution of Graves' disease as well as painless thyroiditis, no treatment was necessary for these patients. Uptake in all patients with SAT was less than 0.5%. There were significant correlations between the level of Tc-99m uptake and the levels of free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH)-binding inhibitory immunoglobulin (TBII), and thyroid stimulating antibody (TSAb) in patients with Graves' disease. Older patients with Graves' disease showed lower uptake than did younger patients. Both Tc-99m pertechnetate uptake and TBII levels, but not fT3, fT4 or TSAb levels, at the beginning of antithyroid drug treatment correlated significantly with the duration of treatment until the daily dose of methimazole reached 5 mg. These data suggest that Tc-99m pertechnetate uptake reflects the severity of Graves' disease and its response to the medical treatment and that antithyroid drug therapy is not necessary when the uptake is less than 0.9%. (author)

  1. Inert gas transport in blood and tissues.

    Science.gov (United States)

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport. © 2011 American Physiological Society. Compr Physiol 1:569-592, 2011.

  2. Predicting Human Clearance of OATP substrates using Cynomolgus monkey: In vitro-in vivo scaling of hepatic uptake clearance.

    Science.gov (United States)

    de Bruyn, Tom; Ufuk, Ayse; Cantrill, Carina; Kosa, Rachel E; Bi, Yi-An; Niosi, Mark; Modi, Sweta; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena Vs; Galetin, Aleksandra; Houston, J Brian

    2018-05-02

    This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV, respectively. Total uptake clearance values in plated hepatocytes ranged over three orders of magnitude in both species with a similar rank order and good agreement in the relative contribution of active transport to total uptake between cynomolgus monkey and human. In vivo hepatic clearance for these nine drugs was determined in cynomolgus monkey after intravenous dosing. Hepatic clearances showed a similar range to human parameters and good predictions from respective hepatocyte parameters (with 2.7 and 3.8-fold bias on average, respectively). The use of cross species empirical scaling factors (based on either dataset average or individual drug scaling factor from cynomolgus monkey data) improved prediction (less bias, better concordance) of human hepatic clearance from human hepatocyte data alone. In vitro intracellular binding in hepatocytes also correlated well between species. It is concluded that the minimal species differences observed for the current dataset between cynomolgus monkey and human hepatocyte uptake, both in vitro and in vivo, support future use of this preclinical model to delineate drug hepatic uptake and enable prediction of human in vivo intrinsic hepatic clearance. The American Society for Pharmacology and Experimental Therapeutics.

  3. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines.

    Directory of Open Access Journals (Sweden)

    Maricla Galetti

    Full Text Available BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism.The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes.Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake.Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells.

  4. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625

    Directory of Open Access Journals (Sweden)

    Galdiero E

    2017-04-01

    Full Text Available Emilia Galdiero,1 Annarita Falanga,2 Antonietta Siciliano,1 Valeria Maselli,1 Marco Guida,1 Rosa Carotenuto,1 Margherita Tussellino,1 Lucia Lombardi,3 Giovanna Benvenuto,4 Stefania Galdiero2 1Department of Biology, 2Department of Pharmacy and CiRPEB, University of Naples Federico II, 3Department of Experimental Medicine, Second University of Naples, 4Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Abstract: The use of quantum dots (QDs for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies. Keywords: membranotropic peptide, delivery, blood–brain barrier, nanoparticles, genotoxicity

  5. Liposomal Conjugates for Drug Delivery to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Frieder Helm

    2015-04-01

    Full Text Available Treatments of central nervous system (CNS diseases often fail due to the blood–brain barrier. Circumvention of this obstacle is crucial for any systemic treatment of such diseases to be effective. One approach to transfer drugs into the brain is the use of colloidal carrier systems—amongst others, liposomes. A prerequisite for successful drug delivery by colloidal carriers to the brain is the modification of their surface, making them invisible to the reticuloendothelial system (RES and to target them to specific surface epitopes at the blood–brain barrier. This study characterizes liposomes conjugated with cationized bovine serum albumin (cBSA as transport vectors in vitro in porcine brain capillary endothelial cells (PBCEC and in vivo in rats using fluorescently labelled liposomes. Experiments with PBCEC showed that sterically stabilized (PEGylated liposomes without protein as well as liposomes conjugated to native bovine serum albumin (BSA were not taken up. In contrast, cBSA-liposomes were taken up and appeared to be concentrated in intracellular vesicles. Uptake occurred in a concentration and time dependent manner. Free BSA and free cBSA inhibited uptake. After intravenous application of cBSA-liposomes, confocal fluorescence microscopy of brain cryosections from male Wistar rats showed fluorescence associated with liposomes in brain capillary surrounding tissue after 3, 6 and 24 h, for liposomes with a diameter between 120 and 150 nm, suggesting successful brain delivery of cationized-albumin coupled liposomes.

  6. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    Science.gov (United States)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  7. Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake.

    Science.gov (United States)

    Riccardi, Keith; Li, Zhenhong; Brown, Janice A; Gorgoglione, Matthew F; Niosi, Mark; Gosset, James; Huard, Kim; Erion, Derek M; Di, Li

    2016-10-01

    Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: In Vitro Cellular Uptake

    Directory of Open Access Journals (Sweden)

    Min Wu

    2017-12-01

    Full Text Available Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved by U.S. Food and Drug Administration (FDA, including a single generic product, sodium ferric gluconate complex in sucrose. In this study, we compared the cellular iron uptake profiles of the brand (Ferrlecit® and generic sodium ferric gluconate (SFG products. We used a colorimetric assay to examine the amount of iron uptake by three human macrophage cell lines. This is the first published study to provide a parallel evaluation of the cellular uptake of a brand and a generic IV iron drug in a mononuclear phagocyte system. The results showed no difference in iron uptake across all cell lines, tested doses, and time points. The matching iron uptake profiles of Ferrlecit® and its generic product support the FDA’s present position detailed in the draft guidance on development of SFG complex products that bioequivalence can be based on qualitative (Q1 and quantitative (Q2 formulation sameness, similar physiochemical characterization, and pharmacokinetic bioequivalence studies.

  9. Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F-fluorodeoxyglucose uptake pattern on positron emission tomography

    International Nuclear Information System (INIS)

    Lee, Jong Doo; Yun, Mijin; Lee, Jae Myun; Choi, Youjeong; Choi, Youn-Hee; Kim, Ji Su; Kim, Se Jong; Park, Jeon Han; Kim, Kyung Sik; Lee, Woo Jung; Yang, Woo Ick; Park, Young Nyun; Han, Kwang-Hyub; Yoo, Naechun; Lim, Sang Moo

    2004-01-01

    18 F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) scan has been found to reflect tumour aggressiveness and prognosis in various types of cancer. In this study, the gene expression profiles of hepatocellular carcinomas (HCCs) were evaluated to determine whether HCCs with high 18 F-FDG uptake have more aggressive biological potential than those with low uptake. Surgical specimens were obtained from ten patients with HCC (six males and four females, age range 38-68 years). The tumour samples were divided into two groups based on the 18 F-FDG PET scan findings: high 18 F-FDG uptake (n=4) and low 18 F-FDG uptake (n=6). The pathological tumour grade was closely correlated with the 18 F-FDG uptake pattern: HCCs with high 18 F-FDG uptake were pathologically Edmondson-Steiner grade III, while those with low uptake were either grade II or grade II with a focal area of grade III. The total RNA was extracted from the frozen tissues of all HCCs (n=10) and adjacent non-cancerous tissue (n=7). The gene expression profiles were evaluated using an oligoDNA microarray. The HCCs with high 18 F-FDG uptake showed increased expression of 11 genes - including vascular cell adhesion molecule-1, vinexin beta and core 1 UDP-galactose: N-acetylgalactosamine-alpha-R-beta 1,3-galactosyltransferase and the natural killer cell inhibitory receptor - compared to those with low uptake (p 18 F-FDG uptake appear to have more aggressive biological properties than those with low uptake. (orig.)

  10. Dose dependent transfer of 203lead to milk and tissue uptake in suckling offspring studied in rats and mice

    International Nuclear Information System (INIS)

    Palminger Hallen, I.; Oskarsson, A.

    1993-01-01

    The dose-dependent transfer of 203 Pb to milk and uptake in suckling rats and mice during a three-day nursing period was studied. On day 14 of lactation, the dams were administered a single intravenous dose of lead, labelled with 203 Pb, in four or five doses from 0.0005 to 2.0 mg Pb/kg b.wt. There was a linear relationship between Pb levels in plasma and milk of both species. The Pb milk: plasma ratios at 24 hr after administration were 119 and 89 in mice and rats, respectively. At 72 hr the Pb milk: plasma ratio had decreased to 72 in mice and 35 in rats. The tissue levels of lead in the suckling rats and mice were also linearly correlated with lead concentration in milk at 72 hr, showing that milk could be used as an indicator of lead exposure to the suckling offspring. It is concluded that lead is transported into rat and mouse milk to a very high extent and the excretion into milk is more efficient in mice than in rats. On the other hand, rat pups had higher lead levels in tissues than mice pups, which might be due to a higher bioavailability and/or a lower excretion of lead in rat pups. Thus, lead in breast milk could be used as a biological indicator of lead exposure in the mother as well as in the suckling offspring. (au) (38 refs.)

  11. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    Science.gov (United States)

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  12. The effect of non-steroidal anti-inflammatory drugs on the metabolism of 14C-arachidonic acid by human gingival tissue in vitro

    International Nuclear Information System (INIS)

    Elattar, T.M.; Lin, H.S.; Tira, D.E.

    1983-01-01

    We investigated the effect of non-steroidal anti-inflammatory drugs on prostaglandins (PGs) and 12-hydroxyeicosatetraenoic acid (12-HETE) formation by inflamed human gingival tissues. Gingival tissue homogenates were incubated with 14 C-arachidonic acid in the presence of indomethacin, piroxicam, or ibuprofen, and the organic solvent extracts were chromatographed on silica gel plates with standards for radiometric assay. There was a significant negative trend between the doses (10(-7)-10(-3) M) of each of indomethacin, piroxicam, and ibuprofen, and the amounts of PGF2 alpha, PGE2, PGD2, and 15-keto-PGE2 produced. All three drugs have a significant inhibitory effect on PGs and 12-HETE production at 10(-3) M when compared with the control. The rank order effectiveness of the drugs, at 10(-3) M, on PG inhibition was indomethacin greater than piroxicam greater than ibuprofen, and on 12-HETE inhibition was indomethacin greater than ibuprofen greater than piroxicam

  13. Intrabronchial Microdialysis: Effects of Probe Localization on Tissue Trauma and Drug Penetration into the Pulmonary Epithelial Lining Fluid

    DEFF Research Database (Denmark)

    Rottbøll, Lisa Amanda Holm; Skovgaard, Kerstin; Barington, Kristiane

    2015-01-01

    (PELF). The objective of this study was to investigate the effect of intrabronchial microdialysis on the integrity of the bronchial epithelium. Microdialysis sampling in PELF in proximal (n=4) and distal bronchi (n=4) was performed after intravenous inulin and florfenicol administration in anaesthetized...... pigs. Inulin was used as a marker molecule of permeability of the epithelium, and florfenicol was used as test drug. Bronchial tissue was examined by histopathology (distal and proximal bronchi) and gene expression analysis (RT-qPCR, proximal bronchi) at the termination of the experiment (6.5hr....... Likewise, florfenicol penetration into PELF was unaffected by bronchial histopathology. However, this independency of pathology on drug penetration may not be valid for other antibiotics. We conclude that short-term microdialysis drug quantification can be performed in proximal bronchi without disruption...

  14. Positron emission tomography in drug development

    International Nuclear Information System (INIS)

    Rubin, R. H.; Fischman, A. J.

    1997-01-01

    There are four kinds of measurements that can be carried out with positron emission tomography (PET) that can contribute significantly to the process of drug development: pharmacodynamic measurement of tissue metabolism influenced by a given drug; precise measurements of tissue blood flow; tissue pharmacokinetics of a given drug following administration of a particular dose; and the temporal course of ligand-receptor interaction. One or more of these measurements can greatly improve the decision making involved in determining the appropriate dose of a drug, the clinical situations in which a drug might be useful, and the linkage of pharmacokinetics with pharmacodynamics, which is at the heart of effective drug development. The greater the potential of a particular compound as a therapeutic agent, the greater the potential for PET to contribute to the drug development process

  15. Prediction of remission in Graves' disease after thionamide therapy by technetium-99m early uptake

    International Nuclear Information System (INIS)

    Misaki, Takashi; Dokoh, Shigeharu; Koh, Toshikiyo; Shimbo, Shin-ichiro; Hidaka, Akinari; Iida, Yasuhiro; Kasagi, Kanji; Konishi, Junji.

    1991-01-01

    In the clinical management of Graves' thyrotoxicosis, one of the most important subject is when to stop antithyroid drugs after achieving an euthyroid state. T 3 suppression test and other methods have been used to forecast the outcome after drug cessation, but the results were not always satisfactory. We have attempted to predict remission of Graves' disease by single measurement of early technetium uptake without administration of triiodothyronine. Drugs were discontinued in the seventy-five patients with Graves' disease on maintenance doses of either methimazole or propylthiouracil who showed normalized uptake (4.0% or less). Of 64 patients evaluable after twelve months, 55 (86%) remained euthyroid, 8 relapsed, and 1 became hypothyoid. With its accuracy in prediction of short-term remission comparable or superior to T 3 suppression test, this rapid and simple method seemed suitable for routine use in clinical practice. (author)

  16. 99Tcm pertechnetate uptake by hepatoma cells induced by tissue specific hNIS gene expression

    International Nuclear Information System (INIS)

    Chen Libo; Luo Quanyong; Yu Yongli; Yuan Zhibin; Lu Hankui; Zhu Ruisen; Guo Lihe

    2007-01-01

    Objective: Human sodium/iodide symporter (hNIS) gene could be used both as an ideal reporter gene and promising therapeutic gene. Rather than radioiodine, 99 Tc m pertechnetate has been proven to be a better radiopharmaceutical for tracing and imaging purposes. Herein, the authors investigated the feasibility of monitoring hNIS gene expression in hepatoma cells using 99 Tc m pertechnetate as a tracer. Methods: Hepatoma cells MH3924A were stably transfected with recombinant retroviral vector in which hNIS cDNA was driven by murine albumin enhancer/promoter (mAlb) and coupled to hygromycin resistance gene. The uptake and efflux of 99 Tc m pertechnetate by transfected hepatoma cells were tested with 99 Tc m pertechnetate (74 kBq) solution adulterated into the culture media and counted after media suspension discharge at different intervals. In further tests, 50 μmol/L NaClO 4 and 500 μmol/L Ouabain were added into the media for 99 Tc m inhibition tests. For in vive studies, five ACI rats bearing NIS transfected hepatoma xenografts were injected with 99 Tc m pertechnetate (15.8 MBq) and followed by dynamic acquisition (0.57 1, 2 and 4 h) with small gamma camera to semi-quantitatively analyze the radioactivity distribution. Results: In vitro tests, the peak uptake of 99 Tc m pertechnetate by cultured transfected MH3924A cells was up to 254 folds higher than that by the wild type cells. 99 Tc m uptake by transfected cells were significantly inhibited by NaClO 4 down to 2.44% (P 99 Tc m pertechnetate out of cultured transfected cells became rapid immediately after renewal of culture media (half life 99 Tc m accumulations by hNIS transfected tumor xenografts were obvious in early phases of the acquisition with peak uptake at 12 min and gradually declining later on. Conclusions: hNIS transfected hepatoma cells can avidly uptake 99 Tc m pertechnetate both in vitro and in vive. It is feasible to utilize 99 Tc m pertechnetate for monitoring and even quantitatively analyzing

  17. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT.

    Science.gov (United States)

    Kroiss, A; Putzer, D; Decristoforo, C; Uprimny, C; Warwitz, B; Nilica, B; Gabriel, M; Kendler, D; Waitz, D; Widmann, G; Virgolini, I J

    2013-04-01

    We wanted to establish the range of (68)Ga-DOTA-TOC uptake in liver and bone metastases of patients with neuroendocrine tumours (NET) and to establish the range of its uptake in pancreatic NET. This would allow differentiation between physiological uptake and tumour-related somatostatin receptor expression in the pancreas (including the uncinate process), liver and bone. Finally, we wanted to test for differences in patients with NET, either treated or not treated with peptide receptor radionuclide therapy (PRRT). In 249 patients, 390 (68)Ga-DOTA-TOC PET/CT studies were performed. The clinical indications for PET/CT were gastroenteropancreatic NET (194 studies), nongastroenteropancreatic NET (origin in the lung and rectum; 46 studies), NET of unknown primary (111 studies), phaeochromocytoma/glomus tumours (18 studies), and radioiodine-negative metastatic thyroid carcinoma (21 studies). SUVmax (mean ± standard deviation) values of (68)Ga-DOTA-TOC were 29.8 ± 16.5 in 162 liver metastases, 19.8 ± 18.8 in 89 bone metastases and 34.6 ± 17.1 in 43 pancreatic NET (33.6 ± 14.3 in 30 tumours of the uncinate process and 36.3 ± 21.5 in 13 tumours of the pancreatic tail). A significant difference in SUVmax (p TOC is an excellent tracer for the imaging of tumours expressing somatostatin receptors on the tumour cell surface, facilitating the detection of even small tumour lesions. The noninvasive PET/CT approach by measurement of regional SUVmax can offer important clinical information to distinguish between physiological and pathological somatostatin receptor expression, especially in the uncinate process. PRRT does not significantly influence SUVmax, except in liver metastases of patients with NET.

  18. Cardiac retention of PET neuronal imaging agent LMI1195 in different species: Impact of norepinephrine uptake-1 and -2 transporters

    International Nuclear Information System (INIS)

    Yu, Ming; Bozek, Jody; Kagan, Mikhail; Guaraldi, Mary; Silva, Paula; Azure, Michael; Onthank, David; Robinson, Simon P.

    2013-01-01

    Introduction: Released sympathetic neurotransmitter norepinephrine (NE) in the heart is cleared by neuronal uptake-1 and extraneuronal uptake-2 transporters. Cardiac uptake-1 and -2 expression varies among species, but the uptake-1 is the primary transporter in humans. LMI1195 is an NE analog labeled with 18 F for PET evaluation of cardiac neuronal function. This study investigated the impact of cardiac neuronal uptake-1 associated with different species on LMI1195 heart uptake. Methods: Cardiac uptake-1 was blocked by desipramine, a selective uptake-1 inhibitor, and sympathetic neuronal denervation was induced by 6-hydroxydopamine, a neurotoxin, in rats, rabbits and nonhuman primates (NHP). Tissue biodistribution and cardiac imaging of LMI1195 and 123 I-metaiodobenzylguanidine (MIBG) were performed. Results: In rats, uptake-1 blockade did not alter LMI1195 heart uptake compared to the control at 60-min post injection [1.41 ± 0.07 vs. 1.47 ± 0.23 % injected dose per gram tissue (%ID/g)]. In contrast, LMI1195 heart uptake was reduced by 80% in uptake-1 blocked rabbits. In sympathetically denervated rats, LMI1195 heart uptake was similar to the control (2.18 ± 0.40 vs. 2.58 ± 0.76 %ID/g). However, the uptake decreased by 79% in denervated rabbits. Similar results were found in MIBG heart uptake in rats and rabbits with uptake-1 blockade. Consistently, LMI1195 cardiac imaging showed comparable myocardial activity in uptake-1 blocked or sympathetically denervated rats to the control, but marked activity reduction in uptake-1 blocked or denervated rabbits and NHPs. Conclusions: LMI1195 is retained in the heart of rabbits and NHPs primarily via the neuronal uptake-1 with high selectivity and can be used for evaluation of cardiac sympathetic denervation. Similar to the human, the neuronal uptake-1 is the dominant transporter for cardiac retention of NE analogs in rabbits and NHPs, but not in rats

  19. Relation between the location of elements in the periodic table and various organ-uptake rates.

    Science.gov (United States)

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1989-01-01

    Fifty four elements and 65 radioactive compounds were examined to determine the organ uptake rates for rats 3, 24 and 48 h after i.v. injection of these compounds. They were prepared as carrier free nuclides, or containing a small amount of stable nuclide. Generally speaking, behaviors of K, Rb, Cs and Tl in all the organs were very similar to one another, but they differed from that of Na. Bivalent hard acids were avidly taken up into bone; therefore, uptake rates in soft tissues were very small. Hard acids of tri-, quadri- and pentavalence which were taken up into the soft tissue organs decreased more slowly from these organs than other ions. Soft acids such as Hg2+ were bound very firmly to the component in the kidney. Anions (with few exceptions), GeCl4 and SbCl3 were rapidly excreted in urine, so that the uptake rates in organs were low.

  20. Interplay of Drug-Metabolizing Enzymes and Transporters in Drug Absorption and Disposition.

    Science.gov (United States)

    Shi, Shaojun; Li, Yunqiao

    2014-01-01

    In recent years, the functional interplay between drug-metabolizing enzymes (DMEs) and drug transporters (DTs) in drug absorption and disposition, as well as the complex drug interactions (DIs), has become an intriguing contention, which has also been termed the "transport-metabolism interplay". The current mechanistic understanding for this interplay is first discussed. In the present article, studies investigating the interplay between cytochrome P450 enzymes (CYPs) and efflux transporters have been systematically reviewed in vitro, in situ, in silico, in animals and humans, followed by CYPs-uptake transporters, CYPs-uptake transporters-efflux transporters, and phase II metabolic enzymes-transporters interplay studies. Although several cellular, isolated organ and whole animal studies, in conjunction with simulation and modelling, have addressed the issue that DMEs and DTs can work cooperatively to affect the bioavailability of shared substrate drugs, convincing evidences in human studies are still lacking. Furthermore, the functional interplay between DMEs and DTs will be highly substrate- and dose- dependent. Additionally, we review recent studies to evaluate the influence of genetic variations in the interplay between DMEs and DTs, which might be helpful for the prediction of pharmacokinetics (PK) and possible DIs in human more correctly. There is strong evidence of coordinately regulated DEMs and DTs gene expression and protein activity (e.g. nuclear receptors). Taken together, further investigations and analysis are urgently needed to explore the functional interplay of DMEs and DTs and to delineate the underlying mechanisms.

  1. Indium-111 octreotide uptake in the surgical scar

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, B.; Bekis, R.; Durak, H.; Derebeck, E. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Nuclear Medicine; Sen, M. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Radiation Oncology

    1999-07-01

    Indium-111 octreotide uptake has been reported in various somatostatin receptor positive tumors, granulomas and autoimmune diseases in which activated leucocytes may play a role, subcutaneous cavernous hemangioma and angiofibroma. We present Indium-111 octreotide uptake in a surgical abdominal scar tissue 1.5 to 6 months after surgery in a patient who had been treated for recurrent carcinoid tumor in the rectosigmoid junction. Indium-111 octreotide uptake in a surgical scar may be related to the binding to somatostatin receptors in the activated lymphocytes and fibroblasts that is previously reported. (orig.) [German] In verschiedenen Somatostatinrezeptor-positiven Tumoren, Granulomen, bei Autoimmunerkrankungen, in denen aktivierte Leukozyten eine Rolle spielen, subcutanen kavernoesen Hammangiomen und Angiofibromen wurde ueber die Anreicherung von Indium-111-Oktreotid berichtet. Wir berichten ueber die Anreicherung von Indium-111-Oktreotid in einer chirurgischen Narbe ueber dem Abdomen nach 1,5 und 6 Monaten bei einem Patienten mit einem Rezidiv-Karzinoid im rektosigmoidalen Uebergang. Die Anreicherung von Indium-111-Oktreotid in chirurgischen Narbengewebe koennte in Zusammenhang stehen mit einer Bindung an Somatostationrezeptoren in aktivierten Lymphozyten und Fibroblasten, ueber die schon berichtet wurde. (orig.)

  2. Quantitative understanding of nanoparticle uptake in watermelon plants

    Directory of Open Access Journals (Sweden)

    Ramesh Raliya

    2016-08-01

    Full Text Available The use of agrochemical-nutrient fertilizers has come under scrutiny in recent years due to concerns that they damage the ecosystem and endanger public health. Nanotechnology offers many possible interventions to mitigate these risks by use of nanofertilizers, nanopesticides, and nanosensors; and concurrently increases profitability, yields, and sustainability within the agricultural industry. Aerosol based foliar delivery of nanoparticles may help to enhance nanoparticle uptake and reduce environmental impacts of chemical fertilizers conventionally applied through a soil route. The purpose of this work was to study uptake, translocation, and accumulation of various gold nanostructures, 30 to 80 nm, delivered by aerosol application to a watermelon plant. Cellular uptake and accumulation of gold nanoparticles were quantified by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS. Observations suggested that nanoparticles could be taken up by the plant through direct penetration and transport through the stomatal opening. Observed translocation of nanoparticles from leaf to root shows evidence that nanoparticles travel by the phloem transport mechanism. Accumulation and transport of nanoparticles depend on nanoparticle shape, application method, and nature of plant tissues.

  3. The relationship between histopathological findings in oral squamous cell carcinoma and FDG uptake on PET

    International Nuclear Information System (INIS)

    Izumisawa, Mitsuru; Shozushima, Masanori; Sato, Hirotaka

    2003-01-01

    It is known that, in fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of oral cancer, FDG uptake may vary even among different cases of the same squamous cell carcinoma. However, the details of this phenomenon have not yet been elucidated. In this study, we analyzed the relationship between histopathological findings in oral squamous cell cancer and PET findings on FDG uptake. We examined 45 patients with oral squamous cell carcinoma who had undergone FDG PET before treatment. FDG uptake was assessed by a standardized uptake value (SUV) calculated according to the PET-measured tissue concentration of FDG, the administered dose of radionuclide, and the body weight of the patient. The relationship between the mean SUV and each of the following parameters was examined: histological grade of malignancy, degree of cell differentiation, size and/or local extent of the primary lesion, and cell density of the tumor. The mean SUV of FDG uptake did not depend on the histological grade of malignancy or on the degree of cell differentiation, but tended to be greater the larger the primary lesion. SUV also depended on cell density, increasing with the percentage of tumor parenchyma. It is concluded that cancer cell density greatly influences the SUV of FDG, in that a tumor with fewer cellular elements in cancer tissue tends to become a false negative. (author)

  4. Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution.

    Science.gov (United States)

    Su, Yu-Hong; Zhu, Yong-Guan

    2005-01-01

    Atrazine is a widely used herbicide, and its persistence in soil and water causes environmental concerns. In the past, plant uptake processes are mainly investigated for single contaminants. However, in many cases, contaminants co-exist in environmental matrix, such as soil, and plant uptake of one contaminant may be influenced by its co-existing ones. The uptake of atrazine by rice seedlings (Oryza sativa L.) from nutrient solution through the roots was investigated in a solution culture, over an exposure period of 4 weeks. Atrazine accumulation in plant tissues was determined by gas chromatography, and lead was determined using atomic absorption spectrometry. With different ratios of atrazine and Pb2+ concentrations in solution, the observed atrazine concentrations in shoots and roots varied significantly. In atrazine-Pb2+ mixture systems, the added Pb2+ either increased or decreased the concentrations or BCFs of atrazine in seedlings (relative to those without Pb2+), depending on the atrazine-Pb2+ ratio in nutrient solution. The enhanced atrazine uptake results presumably from atrazine-Pb2+ complex formation. The reduced atrazine uptake, which occurred mainly at high atrazine concentrations, is attributed to atrazine toxicity that inhibited seedling growth and transpiration. The formation of atrazine-Pb2+ complex both in the solution and within plant tissues may affect the accumulation of both contaminants by rice plants.

  5. The Thrombospondin-1 Mimetic ABT-510 Increases the Uptake and Effectiveness of Cisplatin and Paclitaxel in a Mouse Model of Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Nicole E. Campbell

    2010-03-01

    Full Text Available Epithelial ovarian cancer (EOC comprises approximately 90% of ovarian cancers and arises from the surface epithelium. Typical treatment of EOC involves cytoreductive surgery combined with chemotherapy. More recent therapies have targeted the tumor vasculature using antiangiogenic compounds such as thrombospondin-1 (TSP-1. TSP-1 mimetic peptides such as ABT-510 have been created and have been in various clinical trials. We have previously shown that ABT-510 reduces abnormal vasculature associated with tumor tissue and increases the presence of mature blood vessels. It has been hypothesized that treatment with antiangiogenic compounds would allow increased delivery of cytotoxic agents and enhance treatment. In this study, we evaluated the potential role of ABT-510 and various chemotherapeutics (cisplatin and paclitaxel on tumor progression, angiogenesis, and the benefits of combinational treatments on tissue uptake and perfusion using an orthotopic syngeneic mouse model of EOC. Animals were treated with ABT-510 (100 mg/kg per day alone or in combination with cisplatin (2 mg/kg per 3 days or paclitaxel (10 mg/kg per 2 days at 60 days after tumor induction. Radiolabeled and fluorescently labeled paclitaxel demonstrated a significant increase in tumor uptake after ABT-510 treatment. Combined treatment with ABT-510 and cisplatin or paclitaxel resulted in a significant increase in tumor cell and tumor endothelial cell apoptosis and a resultant decrease in ovarian tumor size. Combined treatment also regressed secondary lesions and eliminated the presence of abdominal ascites. The results from this study show that through vessel normalization, ABT-510 increases uptake of chemotherapy drugs and can induce regression of advanced ovarian cancer.

  6. Factors affecting gastric uptake in whole body FDG-PET imaging

    International Nuclear Information System (INIS)

    Tomemori, Takashi; Kitagawa, Mami; Nakahara, Tadaki; Wu, Jin; Nakagawa, Keiichi; Uno, Kimiichi; Abe, Kinji; Tomiyoshi, Katsumi

    2001-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[ 18 F]-fluoro-D-glucose (FDG) is very useful for the detection and staging of tumors. However, FDG is also accumulated in the normal tissues in various degrees. This physiological FDG uptake is often seen in intestine, making confusion with malignant tumor. The aim of this study was to identify factors influencing physiological FDG uptake in the stomach. A total of 136 people who underwent cancer screening or staging of tumors except for gastric cancer using FDG whole-body PET was examined (mean age: 55.6 yrs). All subjects fasted for at least 4 hours before the PET study and were administrated with FDG intravenously (mean FDG dose: 308.9 MBq). Emission images were acquired on a whole-body PET scanner and images were reconstructed without attenuation correction. The intensity of gastric uptake of FDG whole-body PET image was visually classified into 3 grades; grade 2 = the intensity of gastric uptake more than pulmonary uptake, grade 1 = the intensity of gastric uptake equal to or less than pulmonary uptake, grade 0 = no contrast between gastric uptake and background. Twenty-eight subjects (20.6%) were classified into grade 2, 42 subjects (30.9%) were grade 1 and 66 subjects (48.5%) were grade 0. Subjects' age, fasting time, FDG dose, serum glucose level, free fatty acid level and insulin level were not significantly correlated with the intensity of gastric uptake. But the subjects with higher gastric uptake tended to have anti-Helicobactor pylori (H. pylori) antibodies. The rate of having anti-H.pylori antibodies in the grade 2 group is significantly higher than the grade 1 group (85.7% vs. 72.5%, p<0.05), and that of the grade 1 group is significantly higher than the grade 0 group (72.5% vs. 42.2%, p<0.01). Gastric uptake was observed in about half of subjects. Especially, approximately 20% of all showed high gastric uptake, which was associated with H.pylori infection. Therefore, most of the subjects with high

  7. Factors affecting gastric uptake in whole body FDG-PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tomemori, Takashi; Kitagawa, Mami; Nakahara, Tadaki; Wu, Jin; Nakagawa, Keiichi; Uno, Kimiichi; Abe, Kinji; Tomiyoshi, Katsumi [Nishidai Clinic Diagnostic Imaging Center, Tokyo (Japan)

    2001-06-01

    Positron emission tomography (PET) using 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose (FDG) is very useful for the detection and staging of tumors. However, FDG is also accumulated in the normal tissues in various degrees. This physiological FDG uptake is often seen in intestine, making confusion with malignant tumor. The aim of this study was to identify factors influencing physiological FDG uptake in the stomach. A total of 136 people who underwent cancer screening or staging of tumors except for gastric cancer using FDG whole-body PET was examined (mean age: 55.6 yrs). All subjects fasted for at least 4 hours before the PET study and were administrated with FDG intravenously (mean FDG dose: 308.9 MBq). Emission images were acquired on a whole-body PET scanner and images were reconstructed without attenuation correction. The intensity of gastric uptake of FDG whole-body PET image was visually classified into 3 grades; grade 2 = the intensity of gastric uptake more than pulmonary uptake, grade 1 = the intensity of gastric uptake equal to or less than pulmonary uptake, grade 0 = no contrast between gastric uptake and background. Twenty-eight subjects (20.6%) were classified into grade 2, 42 subjects (30.9%) were grade 1 and 66 subjects (48.5%) were grade 0. Subjects' age, fasting time, FDG dose, serum glucose level, free fatty acid level and insulin level were not significantly correlated with the intensity of gastric uptake. But the subjects with higher gastric uptake tended to have anti-Helicobactor pylori (H. pylori) antibodies. The rate of having anti-H.pylori antibodies in the grade 2 group is significantly higher than the grade 1 group (85.7% vs. 72.5%, p<0.05), and that of the grade 1 group is significantly higher than the grade 0 group (72.5% vs. 42.2%, p<0.01). Gastric uptake was observed in about half of subjects. Especially, approximately 20% of all showed high gastric uptake, which was associated with H.pylori infection. Therefore, most of the subjects

  8. The uptake and overflow of radiolabelled β-adrenoceptor blocking agents by the isolated vas deferens of the rat

    International Nuclear Information System (INIS)

    Lewis, M.J.

    1977-01-01

    A comparison of uptake into and overflow from the isolated vas deferens of the rat has been made between [ 3 H]-noradrenaline ([ 3 H]-NA), [ 14 C]-D-sorbitol and three radio-labelled β-adrenoceptor blocking agents, [ 14 C]-practolol, [ 14 C]-(+-)-propranolol and [ 3 H]-penbutolol. The accumulation of [ 3 H]-NA after 30 min incubation was reduced by desmethylimipramine (DMI) 1 x 10 -8 M and was also reduced in vasa from rats pretreated with 6-hydroxydopamine (6-OHDA). This was not so with [ 14 C]-D-sorbitol. 6-OHDA pretreatment of the rats reduced the uptake of [ 3 H]-penbutolol after 30 min incubation but not that of [ 14 C]-propranolol or [ 14 C]-practolol. DMI 1 x 10 -8 M did not alter the tissue uptake of [ 14 C]-propanolol, [ 14 C]-practolol or [ 3 H]-penbutolol. Electrical stimulation of vasa preloaded with [ 3 H]-NA caused a significantly greater increase in [ 3 H]-NA overflow than during the resting, unstimulated periods. No such increase in overflow was observed with [ 14 C]-sorbitol or any of the three β-adrenoceptor blocking agents used. The β-adrenoceptor blocking agent penbutolol was shown to possess adrenergic neurone blocking activity in the isolated vas deferens of the rat. It is concluded that any effect that practolol or (+-)-propranolol have on noradrenergic neurones is brought about without the need for these drugs to gain access to the interior of the neurone. (author)

  9. Technetium-99m-HDP uptake characteristics in equine fractures: a retrospective study.

    Science.gov (United States)

    Scheidegger, E; Geissbühlerl, U; Doherr, M G; Lang, J

    2006-10-01

    Bone scintigraphy is a very sensitive diagnostic tool to detect elevated bone metabolism. In cases of fractures and fissure fractures, the radiopharmaceutical uptake in the bone is said to be increased within a few hours after the injury. In this retrospective study, the scintigraphic uptake characteristics at the fracture site of 36 horses with radiographically confirmed fractures or fissure fractures were evaluated. Uptake ratios between the fracture region and adjacent normal bone or soft tissue activity respectively were calculated and compared to different anamnestic and radiographic data. The overall sensitivity of bone scintigraphy was 94.4% (34 positive cases out of 36). In the 36 horses, no correlation between the age of the fracture and the radiopharmaceutical uptake was found. However, there seems to be a lack of sensitivity in early detection of equine pelvic fractures when a standing bone scintigraphy examination protocol is used.

  10. An exposure system for measuring nasal and lung uptake of vapors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, A.R.; Brookins, L.K.; Gerde, P. [National Inst. for Working Life, Solna (Sweden)

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposure system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.

  11. Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated Generation 4 polylysine dendrimer in rats.

    Science.gov (United States)

    Leong, Nathania J; Mehta, Dharmini; McLeod, Victoria M; Kelly, Brian D; Pathak, Rashmi; Owen, David J; Porter, Christopher Jh; Kaminskas, Lisa M

    2018-05-28

    PEGylated polylysine dendrimers have demonstrated potential as inhalable drug delivery systems that can improve the treatment of lung cancers. Their treatment potential may be enhanced by developing constructs that display prolonged lung retention, together with good systemic absorption, the capacity to passively target lung tumours from the blood and highly selective, yet rapid liberation in the tumour microenvironment. This study sought to characterise how the nature of cathepsin B cleavable peptide linkers, used to conjugate doxorubicin to a PEGylated (PEG570) G4 polylysine dendrimer, affect drug liberation kinetics and intravenous and pulmonary pharmacokinetics in rats. The construct bearing a self-emolative diglycolic acid-V-Citrulline linker exhibited faster doxorubicin release kinetics compared to constructs bearing self emolative diglycolic acid-GLFG, or non-self emolative glutaric acid-GLFG linkers. The V-Citrulline construct exhibited slower plasma clearance, but faster absorption from the lungs than a GLFG construct, although mucociliary clearance and urinary elimination were unchanged. Doxorubicin-conjugation enhanced localisation in the bronchoalveolar lavage fluid compared to lung tissue, suggesting that projection of doxorubicin from the dendrimer surface reduced tissue uptake. These data show that the linker chemistry employed to conjugate drugs to PEGylated carriers can affect drug release profiles and systemic and lung disposition. Copyright © 2018. Published by Elsevier Inc.

  12. Effect of amine uptake inhibitors on the uptake of 14C-bretylium in intact and degenerating sympathetic nerves of the rat

    International Nuclear Information System (INIS)

    Almgren, O.

    1981-01-01

    The effect of different amine uptake inhibitors on the accumulation of 14 C-bretylium in sympathetically denervated or decentralized salivary glands were studied in vivo in rats 11-14 hours after the surgical intervention. The time period chosen is known to be critical for the delaying effect of bretylium on the degeneration transmitter release in sympathetically innervated organs. Cocaine, desmethylimipramine (DMI), protriptyline or reserpine all depressed the uptake of 14 C-bretylium in both denervated and decentralized salivary glands, cocaine being the most efficient one. DMI and protriptyline, but not cocaine inhibit the degeneration delaying effect of bretylium, while all three agents inhibit amine uptake at level of the nerve cell membrane. Apparently, bretylium reaches the critical sites of its degeneration delaying action by the axonal amine pump but only a small fraction of the drug entering the degenerating adrenergic nerve terminal is needed at the critical sites to interact with the degeneration processes. The difference between the tricyclic antidepressants on one hand and cocaine on the other with respect to the effect on the degeneration delaying action of bretylium, must depend on some action different from the axonal membrane uptake inhibition. Reserpine which is known not to interfere with the delaying effect of bretylium on the denervation degeneration did reduce the uptake of 14 C-bretylium. This fact seems to indicate that the site of action of bretylium is located outside the adrenergic nerve granules. (author)

  13. Effects of antibiotics on uptake of calcium into isolated nerve terminals

    International Nuclear Information System (INIS)

    Atchison, W.D.; Adgate, L.; Beaman, C.M.

    1988-01-01

    The goal of the present study was to determine whether several antibiotics which are known to block neuromuscular transmission would impair depolarization-dependent and/or -independent uptake of calcium into isolated nerve terminals prepared from forebrain synaptosomes of rats by conventional methods. Antibiotics tested for potential block of Ca++ uptake included the aminoglycosides neomycin and streptomycin, the lincosamide clindamycin, oxytetracycline and polymyxin B. Drugs were applied in concentrations ranging from 1 to 1000 microM. Uptake of 45Ca was determined during depolarization induced by an elevated K+ concentration (77.5 mM). Influxes of 45Ca during 1 and 10 sec of depolarization were used to assess Ca++ uptake via a fast, inactivating path and total uptake, respectively. Uptake of 45Ca during 10 sec of depolarization into synaptosomes which were previously depolarized for 10 sec in the presence of 77.5 mM K+ but in the absence of external Ca++ was used to measure uptake during a slow, noninactivating path. Total depolarization-dependent uptake of 45Ca was depressed significantly by all antibiotics tested except oxytetracycline; however, the various agents differed with respect to their efficacy and potency as blockers of Ca influx. The fast component of uptake, which is thought to be associated with neurotransmitter release, was decreased significantly by all antibiotics. Neomycin and polymyxin were the most potent and most effective at lowering fast phase 45Ca influx; streptomycin, was intermediate in effectiveness whereas clindamycin and oxytetracycline were only effective at concentrations greater than or equal to 100 microM. Only clindamycin, streptomycin and polymyxin B caused significant reductions in the slow phase of 45Ca uptake

  14. Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions.

    Science.gov (United States)

    Palmgrén, Joni J; Mönkkönen, Jukka; Korjamo, Timo; Hassinen, Anssi; Auriola, Seppo

    2006-11-01

    Loss of drug content during cell culture transport experiment can lead to misinterpretations in permeability analysis. This study analyses drug adsorption to various plastic containers and drug retention in cultured cells under in vitro conditions. The loss of various drugs to polystyrene tubes and well plates was compared to polypropylene and glass tubes both in deionised water and buffer solution. In cellular uptake experiments, administered drugs were obtained from cultured cells by liquid extraction. Samples were collected at various time points and drug concentrations were measured by a new HPLC-MS/MS method. Acidic drugs (hydrochlorothiazide, naproxen, probenicid, and indomethacin) showed little if any sorption to all tested materials in either water or buffer. In the case of basic drugs, substantial loss to polystyrene tubes and well plates was observed. After 4.5 h, the relative amount remaining in aqueous test solution stored in polystyrene tubes was 64.7 +/- 6.8%, 38.4 +/- 9.1%, 31.9 +/- 6.7%, and 23.5 +/- 6.1% for metoprolol, medetomidine, propranolol, and midazolam, respectively. Interestingly, there was no significant loss of drugs dissolved in buffer to any of the tested materials indicating that buffer reduced surficial interaction. The effect of drug concentration to sorption was also tested. Results indicated that the higher the concentration in the test solution the lower the proportional drug loss, suggesting that the polystyrene contained a limited amount of binding sites. Cellular uptake studies showed considerable retention of drugs in cultured cells. The amounts of absorbed drugs in cellular structures were 0.45%, 4.88%, 13.15%, 43.80%, 23.57% and 11.22% for atenolol, metoprolol, medetomidine, propranolol, midazolam, and diazepam, respectively. Overall, these findings will benefit development and validation of further in vitro drug permeation experiments.

  15. Layer-by-layer assembled multilayers and polymeric nanoparticles for drug delivery in tissue engineering applications

    Science.gov (United States)

    Mehrotra, Sumit

    Tissues and organs in vivo are structured in three dimensional (3-D) ordered assemblies to maintain their metabolic functions. In the case of an injury, certain tissues lack the regenerative abilities without an external supportive environment. In order to regenerate the natural in vivo environment post-injury, there is a need to design three-dimensional (3-D) tissue engineered constructs of appropriate dimensions along with strategies that can deliver growth factors or drugs at a controlled rate from such constructs. This thesis focuses on the applications of hydrogen bonded (H-bonded) nanoscale layer-by-layer (LbL) assembled multilayers for time controlled drug delivery, fabrication of polymeric nanoparticles as drug delivery carriers, and engineering 3-D cellular constructs. Axonal regeneration in the central nervous system after spinal cord injury is often disorganized and random. To support linear axonal growth into spinal cord lesion sites, certain growth factors, such as brain-derived neurotrophic factor (BDNF), needs to be delivered at a controlled rate from an array of uniaxial channels patterned in a scaffold. In this study, we demonstrate for the first time that H-bonded LbL assembled degradable thin films prepared over agarose hydrogel, whereby the protein was loaded separately from the agarose fabrication, provided sustained release of protein under physiological conditions for more than four weeks. Further, patterned agarose scaffolds implanted at the site of a spinal cord injury forms a reactive cell layer of leptomeningeal fibroblasts in and around the scaffold. This limits the ability of axons to reinnervate the spinal cord. To address this challenge, we demonstrate the time controlled release of an anti-mitotic agent from agarose hydrdgel to control the growth of the reactive cell layer of fibroblasts. Challenges in tissue engineering can also be addressed using gene therapy approaches. Certain growth factors in the body are known to inhibit

  16. Uptake and localisation of lead in the root system of Brassica juncea

    International Nuclear Information System (INIS)

    Meyers, Donald E.R.; Auchterlonie, Graeme J.; Webb, Richard I.; Wood, Barry

    2008-01-01

    The uptake and distribution of Pb sequestered by hydroponically grown (14 days growth) Brassica juncea (3 days exposure; Pb activities 3.2, 32 and 217 μM) was investigated. Lead uptake was restricted largely to root tissue. Examination using scanning transmission electron microscopy-energy dispersive spectroscopy revealed substantial and predominantly intracellular uptake at the root tip. Endocytosis of Pb at the plasma membrane was not observed. A membrane transport protein may therefore be involved. In contrast, endocytosis of Pb into a subset of vacuoles was observed, resulting in the formation of dense Pb aggregates. Sparse and predominantly extracellular uptake occurred at some distance from the root tip. X-ray photoelectron spectroscopy confirmed that the Pb concentration was greater in root tips. Heavy metal rhizofiltration using B. juncea might therefore be improved by breeding plants with profusely branching roots. Uptake enhancement using genetic engineering techniques would benefit from investigation of plasma membrane transport mechanisms. - The sites of Pb sequestration within the root system of hydroponically grown Brassica juncea were identified

  17. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    Abe, Nanami; Kashiwagi, Atsunori; Shigeta, Yukio

    1992-01-01

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125 I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125 I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both * 4- and ** 8-wk diabetic rats was significantly ( * p ** p 125 I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  18. Will mass drug administration eliminate lymphatic filariasis? Evidence from northern coastal Tanzania.

    Science.gov (United States)

    Parker, Melissa; Allen, Tim

    2013-07-01

    This article documents understandings and responses to mass drug administration (MDA) for the treatment and prevention of lymphatic filariasis among adults and children in northern coastal Tanzania from 2004 to 2011. Assessment of village-level distribution registers, combined with self-reported drug uptake surveys of adults, participant observation and interviews, revealed that at study sites in Pangani and Muheza districts the uptake of drugs was persistently low. The majority of people living at these highly endemic locations either did not receive or actively rejected free treatment. A combination of social, economic and political reasons explain the low uptake of drugs. These include a fear of treatment (attributable, in part, to a lack of trust in international aid and a questioning of the motives behind the distribution); divergence between biomedical and local understandings of lymphatic filariasis; and limited and ineffective communication about the rationale for mass treatment. Other contributory factors are the reliance upon volunteers for distribution within villages and, in some locations, strained relationships between different groups of people within villages as well as between local leaders and government officials. The article also highlights a disjuncture between self-reported uptake of drugs by adults at a village level and the higher uptake of drugs recorded in official reports. The latter informs claims that elimination will be a possibility by 2020. This gives voice to a broader problem: there is considerable pressure for those implementing MDA to report positive results. The very real challenges of making MDA work are pushed to one side - adding to a rhetoric of success at the expense of engaging with local realities. It is vital to address the kind of issues raised in this article if current attempts to eliminate lymphatic filariasis in mainland coastal Tanzania are to achieve their goal.

  19. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    Science.gov (United States)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the

  20. Luminal flow amplifies stent-based drug deposition in arterial bifurcations.

    Directory of Open Access Journals (Sweden)

    Vijaya B Kolachalama

    2009-12-01

    Full Text Available Treatment of arterial bifurcation lesions using drug-eluting stents (DES is now common clinical practice and yet the mechanisms governing drug distribution in these complex morphologies are incompletely understood. It is still not evident how to efficiently determine the efficacy of local drug delivery and quantify zones of excessive drug that are harbingers of vascular toxicity and thrombosis, and areas of depletion that are associated with tissue overgrowth and luminal re-narrowing.We constructed two-phase computational models of stent-deployed arterial bifurcations simulating blood flow and drug transport to investigate the factors modulating drug distribution when the main-branch (MB was treated using a DES. Simulations predicted extensive flow-mediated drug delivery in bifurcated vascular beds where the drug distribution patterns are heterogeneous and sensitive to relative stent position and luminal flow. A single DES in the MB coupled with large retrograde luminal flow on the lateral wall of the side-branch (SB can provide drug deposition on the SB lumen-wall interface, except when the MB stent is downstream of the SB flow divider. In an even more dramatic fashion, the presence of the SB affects drug distribution in the stented MB. Here fluid mechanic effects play an even greater role than in the SB especially when the DES is across and downstream to the flow divider and in a manner dependent upon the Reynolds number.The flow effects on drug deposition and subsequent uptake from endovascular DES are amplified in bifurcation lesions. When only one branch is stented, a complex interplay occurs - drug deposition in the stented MB is altered by the flow divider imposed by the SB and in the SB by the presence of a DES in the MB. The use of DES in arterial bifurcations requires a complex calculus that balances vascular and stent geometry as well as luminal flow.

  1. LDL Receptors as Gateways for Intracellular Porphyrin Uptake

    International Nuclear Information System (INIS)

    Novick, S.; Laster, B.; Quastel, M.

    2004-01-01

    Boronated compounds are currently being studied for possible use in Boron Neutron Capture Therapy (BNCT). We found that one of these agents, BOPP (tetrakis-carborane-carboxylate, esters of 2,4-bis (a,b- dihydroxyethyl) deuteroporphyrin IX), could also be labeled with indium (In-BOPP) and, therefore, could also be used potentially to transport high Z atoms into tumor cell DNA for AET (Auger Electron Therapy). In order to assess the uptake of these agents into cells, the role of the LDL receptor in the intracellular accumulation of BOPP and In-BOPP was investigated. Pre-incubation of V-79 Chinese hamster cells in medium containing delipidized fetal bovine serum (FBS) markedly increased the subsequent uptake of intracellular boron transported by both BOPP and In-BOPP when compared with cells that had been pre-incubated with medium containing 10% normal FBS (lipidized). The increased uptake was characterized by elevated levels of receptor, and greater affinity was shown for both BOPP and In-BOPP, although less marked with the latter. Positive cooperativity was demonstrated by sigmoid saturation curves, Scatchard analysis and Hill plots. Increasing the amount of LDL in the incubation medium had a relatively small effect on the total accumulation of either indium or boron atoms inside the cell. Furthermore, chemical acetylation of LDL did not decrease the intracellular uptake of either boron or indium transported by BOPP or In-BOPP. It is thus concluded that BOPP and In-BOPP preferentially enter the cells directly by way of the LDL receptor and that only a small fraction of these molecules are transported into the cells indirectly using serum LDLs as their carriers. These data suggest a novel way of bringing greater amounts of boron and indium (and perhaps other agents) into tissues. Porphyrins can be used to transport different agents into tumor cells because they are tumor affinic molecules. Tumors express a higher number of LDL receptors than do most normal tissues

  2. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis.

    Science.gov (United States)

    Das, Suchismita; de Oliveira, Letuzia M; da Silva, Evandro; Ma, Lena Q

    2017-08-01

    We investigated the effects of arsenate (AsV) and fluoride (F) on each other's uptake in an As-sensitive plant Pteris ensiformis. Plants were exposed to 1) 0.1 × Hoagland solution control, 2) 3.75 mg L -1 As and 1.9, 3.8, or 7.6 mg L -1 F, or 3) 1 mg L -1 F and 3.75 mg L -1 or 7.5 mg L -1 As for 7 d in hydroponics. P. ensiformis accumulated 14.7-32.6 mg kg -1 As at 3.75 mg L -1 AsV, and 99-145 mg kg -1 F at 1 mg L -1 F. Our study revealed that AsV and F increased each other's uptake when co-present. At 1.9 mg L -1 , F increased frond As uptake from 14.7 to 40.3 mg kg -1 , while 7.5 mg L -1 As increased frond F uptake from 99 to 371 mg kg -1 . Although, AsV was the predominant As species in all tissues, F enhanced AsIII levels in the rhizomes and fronds, while the reverse was observed in the roots. Increasing As concentrations also enhanced TBARS and H 2 O 2 in tissues, indicating oxidative stress. However, F alleviated As stress by lowering their levels in the fronds. Frond and root membrane leakage were also evident due to As or F exposure. The results may facilitate better understanding of the mechanisms underlying the co-uptake of As and F in plants. However, the mechanisms of how they enhance each other's uptake in P. ensiformis need further investigation. Published by Elsevier Ltd.

  3. Uptake, transport and persistence of 14C yeast mannans in plants

    International Nuclear Information System (INIS)

    Kovalenko, A.G.; Kluge, S.

    1988-01-01

    Low-molecular branched-chain 14 C-mannan from Candida tropicalis and high-molecular linear 14 C-mannan from Rhodotorula rubra are not taken up by intact plants. Mechanical injury of plants is a prerequisite for the uptake and transport of polysaccharides in plant tissues. Mannans injected through the epidermis into the parenchyma of tobacco leaves remain mostly confined to the place of injection or to the respective intercostal field. The presence of dimethyl sulfoxide in the solution stimulates the uptake of mannans through intact roots of tobacco, thorn apple and potato plants. Mannans injected in the intercellular space of the parenchyma tissue of tobacco leaves maintain their polymeric structure for at least five days, which almost corresponds with the duration of their antiviral activity in the plants. These results suggest the antiphytoviral activity in fact to be due to the mannans or to principles stimulated by them rather than to their catabolites. (author)

  4. Application of ion exchange resin in floating drug delivery system.

    Science.gov (United States)

    Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant

    2008-10-01

    The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.

  5. Rolipram depresses [{sup 3}H]2-deoxyglucose uptake in mouse brain and heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Megumi; Hosoi, Rie; Kobayashi, Kaoru; Inoue, Osamu [Department of Medical Physics, School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita-shi, Osaka (Japan); Nishimura, Tsunehiko [Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2002-09-01

    The effects of systemic administration of rolipram, a selective phosphodiesterase type 4 inhibitor, on [{sup 3}H]2-deoxyglucose (DG) uptake in brain and peripheral tissues were examined. Rolipram significantly and dose-dependently decreased [{sup 3}H]DG uptake in brain, heart and skeletal muscle. In contrast, the radioactivity concentrations in the plasma of rolipram-treated mice were significantly higher than those of control mice at all times after injection of the tracer. In the kinetic study, the initial uptake of [{sup 3}H]DG in brain was decreased by rolipram, whereas no significant differences were observed in the uptake in heart and skeletal muscle. However, radioactivity concentrations in the brain, heart and skeletal muscle 30 min after the injection of [{sup 3}H]DG were significantly lowered by rolipram to about 60%, 10% and 10% of control values, respectively. The uptake of [{sup 13}N]ammonia in brain and heart of rolipram-treated mice was slightly decreased, which indicated that rolipram diminished both cerebral and cardiac blood flow. These results indicate that the phosphorylation process via hexokinase rather than the transport of [{sup 3}H]DG might be depressed by rolipram. Together with the previous observations that inhibition of protein kinase A (PKA) markedly enhanced [{sup 14}C]DG uptake in rat brain, these results indicate an important role of the cAMP/PKA systems in the regulation of glucose metabolism in the living brain as well as in peripheral tissues such as the heart and skeletal muscle. (orig.)

  6. Fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Erlendsson, Andrés M; Doukas, Apostolos G; Farinelli, William A

    2016-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is rapidly evolving as one of the foremost techniques for cutaneous drug delivery. While AFXL has effectively improved topical drug-induced clearance rates of actinic keratosis, treatment of basal cell carcinomas (BCCs) has been challenging......, potentially due to insufficient drug uptake in deeper skin layers. This study sought to investigate a standardized method to actively fill laser-generated channels by altering pressure, vacuum, and pressure (PVP), enquiring its effect on (i) relative filling of individual laser channels; (ii) cutaneous...

  7. Uptake and distribution of 14C during and following exposure to [14C]methyl isocyanate

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Kennedy, A.L.; Stock, M.F.; Brown, W.E.; Alarie, Y.

    1988-01-01

    Guinea pigs were exposed to [ 14 C]methyl isocyanate ( 14 CH 3 -NCO, 14 C MIC) for periods of 1 to 6 hr at concentrations of 0.5 to 15 ppm. Arterial blood samples taken during exposure revealed immediate and rapid uptake of 14 C. Clearance of 14 C was then gradual over a period of 3 days. Similarly 14 C was present in urine and bile immediately following exposure, and clearance paralleled that observed in blood. Guinea pigs fitted with a tracheal cannula and exposed while under anesthesia showed a reduced 14 C uptake in blood indicating that most of the 14 C MIC uptake in normal guinea pigs occurred from retention of this agent in the upper respiratory tract passages. In exposed guinea pigs 14 C was distributed to all examined tissues. In pregnant female mice similarly exposed to 14 C MIC, 14 C was observed in all tissues examined following exposure including the uterus, placenta, and fetus. While the form of 14 C distributed in blood and tissues has not yet been identified, these findings may help to explain the toxicity of MIC or MIC reaction products on organs other than the respiratory tract, as noted by several investigators

  8. Drug distribution in man: a positron emission tomography study after oral administration of the labelled neuroprotective drug vinpocetine

    International Nuclear Information System (INIS)

    Gulyas, Balazs; Halldin, Christer; Sandell, Johan; Farde, Lars; Sovago, Judit; Cselenyi, Zsolt; Vas, Adam; Kiss, Bela; Karpati, Egon

    2002-01-01

    Direct information on the distribution of a drug requires measurements in various tissues. Such data have until now been obtained in animals, or have indirectly been calculated from plasma measurements in humans using mathematical models. Here we suggest the use of positron emission tomography (PET) as a method to obtain direct measurements of drug distribution in the human body. The distribution in body and brain of vinpocetine, a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases, was followed after oral administration. Vinpocetine was labelled with carbon-11 and radioactivity was measured by PET in stomach, liver, brain and kidney in six healthy volunteers. The radioactivity in blood and urine as well as the fractions of [ 11 C]vinpocetine and labelled metabolites in plasma were also determined. After oral administration, [ 11 C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the administration of the labelled drug. Brain distribution was heterogeneous, similar to the distribution previously reported after intravenous administration. These findings indicate that vinpocetine, administered orally in humans, readily enters the bloodstream from the stomach and gastrointestinal tract and, consequently, passes the blood-brain barrier and enters the brain. Radioactivity from [ 11 C]vinpocetine was also demonstrated in the kidneys and in urine, indicating that at least a part of the radioactive drug and labelled metabolites is eliminated from the body through the kidneys. This study is the first to demonstrate that PET might be a useful, direct and non-invasive tool to study the distribution and pharmacokinetics of orally

  9. Drug distribution in man: a positron emission tomography study after oral administration of the labelled neuroprotective drug vinpocetine.

    Science.gov (United States)

    Gulyás, Balázs; Halldin, Christer; Sóvágó, Judit; Sandell, Johan; Cselényi, Zsolt; Vas, Adám; Kiss, Béla; Kárpáti, Egon; Farde, Lars

    2002-08-01

    Direct information on the distribution of a drug requires measurements in various tissues. Such data have until now been obtained in animals, or have indirectly been calculated from plasma measurements in humans using mathematical models. Here we suggest the use of positron emission tomography (PET) as a method to obtain direct measurements of drug distribution in the human body. The distribution in body and brain of vinpocetine, a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases, was followed after oral administration. Vinpocetine was labelled with carbon-11 and radioactivity was measured by PET in stomach, liver, brain and kidney in six healthy volunteers. The radioactivity in blood and urine as well as the fractions of [(11)C]vinpocetine and labelled metabolites in plasma were also determined. After oral administration, [(11)C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the administration of the labelled drug. Brain distribution was heterogeneous, similar to the distribution previously reported after intravenous administration. These findings indicate that vinpocetine, administered orally in humans, readily enters the bloodstream from the stomach and gastrointestinal tract and, consequently, passes the blood-brain barrier and enters the brain. Radioactivity from [(11)C]vinpocetine was also demonstrated in the kidneys and in urine, indicating that at least a part of the radioactive drug and labelled metabolites is eliminated from the body through the kidneys. This study is the first to demonstrate that PET might be a useful, direct and non-invasive tool to study the distribution and pharmacokinetics of orally

  10. Unexpected radionuclide uptake due to calcification in muscles

    International Nuclear Information System (INIS)

    Khier, A.

    1999-01-01

    Full text: A male patient aged 27 years was injected with 1000 MBq of 99 Tc m -MDP. The patient was an active man indulging in contact sport. He presented with lower back and pelvic pain. Spot pictures were made of the pelvis, lumbar spine and femurs. Unexpected active radionuclide uptake in the muscles was seen. In the delayed static images, there was focal accumulation of tracer uptake in the muscles overlying the mid-shaft of the left femur consistent with myositis ossificans. Myositis ossificans is a benign ossifying process that is generally solitary and well circumscribed. It is most commonly found in the muscles but it may occur in other connective tissues, especially tendons and subcutaneous fat. This was presumably associated with chronic muscular injuries contracted during sports activity

  11. Relationship between root growth, temperature and anion uptake

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The uptake and release were studied of /sup 35/S-sulfate ions by whole intact roots of maize seedlings. From the total incorporated sulfur only 20% were released back to the unlabelled culture solution. In correspondence to the physiological and biochemical-structural vertical gradient of the growing differentiating roots, the release of /sup 35/S from the apical root part was much lower than from the differentiated tissues.

  12. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  13. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch

    Directory of Open Access Journals (Sweden)

    David R Lionberger

    2010-11-01

    Full Text Available David R Lionberger1, Michael J Brennan21Southwest Orthopedic Group, Houston, TX, USA; 2Department of Medicine, Bridgeport Hospital, Bridgeport, CT, USAAbstract: The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs, diclofenac, and DETP in patients with acute soft tissue injuries was included. Relevant literature was identified on MEDLINE using the search terms topical NSAIDs, diclofenac, diclofenac epolamine, acute pain, sports injury, soft tissue injury, strain, sprain, and contusion, and from citations in retrieved articles covering the years 1978–2008. Review of published, randomized clinical trials and meta-analyses shows that topical NSAIDs are significantly more effective than placebo in relieving acute pain; the pooled average relative benefit was 1.7 (95% confidence interval, 1.5–1.9. In a limited number of comparisons, topical and oral NSAIDs provided comparable pain relief, but the use of topical agents produced lower plasma drug concentrations and fewer systemic adverse events (AEs. The physical–chemical properties of diclofenac epolamine make it well suited for topical use. In patients with acute soft tissue injuries treated with DETP, clinical data report an analgesic benefit within hours of the first application, and significant pain relief relative to placebo within 3 days. Moreover, DETP displayed tolerability comparable with placebo; the most common AEs were pruritus and other application site reactions. Review of published literature suggests that DETP is generally safe and well tolerated, clinically efficacious, and a rational treatment option for patients experiencing acute pain associated with strains, sprains, and contusions, and other localized painful conditions

  14. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch.

    Science.gov (United States)

    Lionberger, David R; Brennan, Michael J

    2010-11-10

    The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP) in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac, and DETP in patients with acute soft tissue injuries was included. Relevant literature was identified on MEDLINE using the search terms topical NSAIDs, diclofenac, diclofenac epolamine, acute pain, sports injury, soft tissue injury, strain, sprain, and contusion, and from citations in retrieved articles covering the years 1978-2008. Review of published, randomized clinical trials and meta-analyses shows that topical NSAIDs are significantly more effective than placebo in relieving acute pain; the pooled average relative benefit was 1.7 (95% confidence interval, 1.5-1.9). In a limited number of comparisons, topical and oral NSAIDs provided comparable pain relief, but the use of topical agents produced lower plasma drug concentrations and fewer systemic adverse events (AEs). The physical-chemical properties of diclofenac epolamine make it well suited for topical use. In patients with acute soft tissue injuries treated with DETP, clinical data report an analgesic benefit within hours of the first application, and significant pain relief relative to placebo within 3 days. Moreover, DETP displayed tolerability comparable with placebo; the most common AEs were pruritus and other application site reactions. Review of published literature suggests that DETP is generally safe and well tolerated, clinically efficacious, and a rational treatment option for patients experiencing acute pain associated with strains, sprains, and contusions, and other localized painful conditions.

  15. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. (Univ. of Saskatchewan, Saskatoon (Canada))

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  16. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  17. Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Erlendsson, Andrés M; Paasch, Uwe

    2016-01-01

    Ablative fractional lasers enhance uptake of topical therapeutics and the concept of fractional laser-assisted drug delivery has now been taken into clinical practice. Objectives We systematically reviewed preclinical data and clinical evidence for fractional lasers to enhance drug uptake...... level of evidence was reached for actinic keratoses treated with methylaminolevulinate for photodynamic therapy (level IB, 5 randomized controlled trials), substantiating superior and long-lasting efficacy versus conventional photodynamic therapy. No adverse events were reported, but ablative fractional...... laser-assisted drug delivery implies risks of systemic drug absorption, especially when performed over large skin areas. Conclusions Fractional laser-assisted drug delivery is beneficial in enhancing preclinical and clinical outcomes for certain skin conditions....

  18. RAPID NITRATE UPTAKE RATES AND LARGE SHORT-TERM STORAGE CAPACITIES MAY EXPLAIN WHY OPPORTUNISTIC GREEN MACROALGAE DOMINATE SHALLOW EUTROPHIC ESTUARIES1.

    Science.gov (United States)

    Kennison, Rachel L; Kamer, Krista; Fong, Peggy

    2011-06-01

    We quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO 3 - ) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch. et N. L. Gardner using mesocosms modeling shallow coastal estuaries in Mediterranean climates. Uptake of NO 3 - (μmol · g dry weight [dwt] -1  · h -1 ) was measured as loss from the water after 1, 2, 4, 8, 12, and 24 h and storage as total tissue nitrogen (% dwt) and nitrate (ppm). Both species of algae exhibited a high affinity for NO 3 - across all N pulses and initial tissue contents. There was greater NO 3 - removal from the water for depleted than enriched algae across all time intervals. In the low-N-pulse treatment, U. intestinalis and U. expansa removed all measurable NO 3 - within 8 and 12 h, respectively, and in the medium and high treatments, removal was high and then decreased over time. Maximum mean uptake rates of nitrate were greater for U. expansa (∼300 μmol · g dwt -1  · h -1 ) than U. intestinalis (∼100 μmol · g dwt -1  · h -1 ); however, uptake rates were highly variable over time. Overall, U. expansa uptake rates were double those of U. intestinalis. Maximum tissue NO 3 - for U. expansa was >1,000 ppm, five times that of U. intestinalis, suggesting that U. expansa has a greater storage capacity in this cellular pool. These results showed that opportunistic green algae with differing tissue nutrient histories were able to efficiently remove nitrate from the water across a wide range of N pulses; thus, both are highly adapted to proliferate in estuarine environments with pulsed nutrient supplies. © 2011 Phycological Society of America.

  19. Characteristics of [18F] fluorodeoxyglucose uptake in human colon cancer cells

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Jeong, Jae Min; Lee, Myung Chul; Koh, Chang Soon

    1997-01-01

    Cancer tissues are characterized by increased glucose uptake. 18 F-fluorodeoxyglucose(FDG), a glucose analogue is used for the diagnosis of cancer in PET studies. This study was aimed to compare the glucose uptake and glucose transporter 1(GLUT1) expression in various human colon cancer cells. We measured FDG uptake by cell retention study and expression of GLUT1 using Western blotting. Human colon cancer cells, SNU-C2A, SNU-C4 and SNU-C5, were used. The cells were incubated with 1μ Ci/ml of FDG in HEPES- buffered saline for one hour. The FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 16.8±1.36, 12.3±5.55 and 61.0±2.17 cpm/μg of protein, respectively. Dose-response and time-course studies represent that FDG uptake of cancer cells were dose dependent and time dependent. The rate of FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 0.29±0.03, 0.21±0.09 and 1.07±0.07 cpm/min/μg of protein, respectively. Western blot analysis showed that the GLUT1 expression of SNU-C5 was significantly higher than those of SNU-C2A and SNU-C4. These results represent that FDG uptake into human colon cancer cells are different from each other. In addition, FDG uptake and expression of GLUT1 are closely related in human colon cancer cells

  20. Uptake kinetics of relatively insoluble particles by tracheobronchial lymph nodes

    International Nuclear Information System (INIS)

    Thomas, R.G.

    1976-01-01

    Tracheobronchial lymph nodes accumulate a portion of material deposited in the deep lung following inhalation of relatively insoluble particles. Experiments involving a variety of compounds, inhaled singly or repeatedly, indicate that the kinetics of lymph node uptake are fairly independent of particle characteristics and mammalian species. The buildup per unit weight of nodal tissue compared with that of lung tissue, with time, can be represented by a linear logarithmic function. However, since the scatter in experimental points may be large at any given time after inhalation exposure, a number of different kinetic descriptions of uptake can be derived. The logarithmic pattern of accumulation can be approximated over an extended time range (several years) by use of a combination of first-order kinetics of loss from the lung and of buildup in lymph nodes, but it is recognized that the processes are much more complicated than this treatment would indicate. Clearance (loss) from the lymph nodes is not well defined, but this aspect is discussed in light of the kinetic models presented

  1. The effect of non-steroidal anti-inflammatory drugs on the metabolism of /sup 14/C-arachidonic acid by human gingival tissue in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Elattar, T.M.; Lin, H.S.; Tira, D.E.

    1983-09-01

    We investigated the effect of non-steroidal anti-inflammatory drugs on prostaglandins (PGs) and 12-hydroxyeicosatetraenoic acid (12-HETE) formation by inflamed human gingival tissues. Gingival tissue homogenates were incubated with /sup 14/C-arachidonic acid in the presence of indomethacin, piroxicam, or ibuprofen, and the organic solvent extracts were chromatographed on silica gel plates with standards for radiometric assay. There was a significant negative trend between the doses (10(-7)-10(-3) M) of each of indomethacin, piroxicam, and ibuprofen, and the amounts of PGF2 alpha, PGE2, PGD2, and 15-keto-PGE2 produced. All three drugs have a significant inhibitory effect on PGs and 12-HETE production at 10(-3) M when compared with the control. The rank order effectiveness of the drugs, at 10(-3) M, on PG inhibition was indomethacin greater than piroxicam greater than ibuprofen, and on 12-HETE inhibition was indomethacin greater than ibuprofen greater than piroxicam.

  2. Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment

    DEFF Research Database (Denmark)

    Haedersdal, M; Katsnelson, J; Sakamoto, F H

    2011-01-01

    Photodynamic therapy (PDT) of thick skin lesions is limited by topical drug uptake. Ablative fractional resurfacing (AFR) creates vertical channels that may facilitate topical PDT drug penetration and improve PDT-response in deep skin layers. The purpose of this study was to evaluate whether pre......-treating the skin with AFR before topically applied methyl aminolevulinate (MAL) could enable a deep PDT-response....

  3. Apolipoprotein CIII overexpression exacerbates diet-induced obesity due to adipose tissue higher exogenous lipid uptake and retention and lower lipolysis rates.

    Science.gov (United States)

    Raposo, Helena F; Paiva, Adriene A; Kato, Larissa S; de Oliveira, Helena C F

    2015-01-01

    Hypertriglyceridemia is a common type of dyslipidemia found in obesity. However, it is not established whether primary hyperlipidemia can predispose to obesity. Evidences have suggested that proteins primarily related to plasma lipoprotein transport, such as apolipoprotein (apo) CIII and E, may significantly affect the process of body fat accumulation. We have previously observed an increased adiposity in response to a high fat diet (HFD) in mice overexpressing apoCIII. Here, we examined the potential mechanisms involved in this exacerbated response of apoCIII mice to the HFD. We measured body energy balance, tissue capacity to store exogenous lipids, lipogenesis and lipolysis rates in non-transgenic and apoCIII overexpressing mice fed a HFD during two months. Food intake, fat excretion and whole body CO2 production were similar in both groups. However, the adipose tissue mass (45 %) and leptin plasma levels (2-fold) were significantly greater in apoCIII mice. Lipogenesis rates were similar, while exogenous lipid retention was increased in perigonadal (2-fold) and brown adipose tissues (40 %) of apoCIII mice. In addition, adipocyte basal lipolysis (55 %) and in vivo lipolysis index (30 %) were significantly decreased in apoCIII mice. A fat tolerance test evidenced delayed plasma triglyceride clearance and greater transient availability of non-esterified fatty acids (NEFA) during the post-prandial state in the apoCIII mice plasma. Thus, apoCIII overexpression resulted in increased NEFA availability to adipose uptake and decreased adipocyte lipolysis, favoring lipid enlargement of adipose depots. We propose that plasma apoCIII levels represent a new risk factor for diet-induced obesity.

  4. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of i...

  5. Design and development of hyaluronan-functionalized polybenzofulvene nanoparticles as CD44 receptor mediated drug delivery system

    Science.gov (United States)

    Licciardi, Mariano; Scialabba, Cinzia; Giammona, Gaetano; Paolino, Marco; Razzano, Vincenzo; Grisci, Giorgio; Giuliani, Germano; Makovec, Francesco; Cappelli, Andrea

    2017-06-01

    A tri-component polymer brush (TCPB ), composed of a polybenzofulvene copolymer bearing low molecular weight hyaluronic acid (HA) on the surface of its cylindrical brush-like backbone and oligo-PEG fractions, was employed in the preparation of 350 nm nanostructured drug delivery systems capable of delivering the anticancer drug doxorubicin. The obtained drug delivery systems were characterized on the basis of drug loading and release, dimensions and zeta potential, morphology and in vitro cell activity, and uptake on three different human cell lines, namely the bronchial epithelial 16HBE, the breast adenocarcinoma MCF-7, and the colon cancer HCT116 cells. Finally, the ability of doxorubicin-loaded TCPB nanoparticles (DOXO-TCPB) to be internalized into cancer cells by CD44 receptor mediated uptake was assessed by means of uptake studies in HCT cells. These data were supported by anti-CD44-FITC staining assay. The proposed TCPB nanostructured drug delivery systems have many potential applications in nanomedicine, including cancer targeted drug delivery.

  6. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  7. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  8. Radioisotopic Studies of Brain Uptake

    International Nuclear Information System (INIS)

    Oldendorf, W. H.

    1970-01-01

    Measurements of the uptake of radioactive substances in the brain tissues after their administration by injection or inhalation provide an a traumatic approach to the study of blood flow and metabolic processes in the brain. This paper reviews the anatomical,physiological and physical problems arising in the measurement of radioactivity in the brain. The factors governing the passage of various classes of substances through the brain capillaries and their transport through the brain tissues are first considered. The physical problems arising in the measurement of radioactivity in the brain are then discussed. The main difficulties in such measurements is shown to arise from the contribution to the observed counting rate from radioactivity in the scalp and skull. This contribution can be minimized by the use of special collimators designed to view only a part of the brain but to include in their field of view a minimum of non-neural tissue. A further possibility arises with radioisotopes such as 113 In m which emit characteristic X radiation as well as y radiation since the contribution of the former to the total observed counting rate is almost entirely due to radioactivity in the superficial tissues whereas that of the latter is due to radioactivity in the superficial tissues and the brain. By recording the counting rates in appropriate channels of the photon spectrum it is thus possible to correct the results for radioactivity in the scalp and skull. With radioisotopes such as 75 Sc which emit two or more photons in cascade, coincidence counting techniques offer still a further possibility to minimize the contribution from radioactivity in the superficial tissues. Various potential applications of these techniques are described. (author)

  9. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  10. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    International Nuclear Information System (INIS)

    Joshy, K.S.; Sharma, Chandra P.; Kalarikkal, Nandakumar; Sandeep, K.; Thomas, Sabu; Pothen, Laly A.

    2016-01-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake

  11. Poly (D,L-lactide-co-glycolide nanoparticles: Uptake by epithelial cells and cytotoxicity

    Directory of Open Access Journals (Sweden)

    J. H. Hamman

    2014-03-01

    Full Text Available Nanoparticles as drug delivery systems offer benefits such as protection of the encapsulated drug against degradation, site-specific targeting and prolonged blood circulation times. The aim of this study was to investigate nanoparticle uptake into Caco-2 cell monolayers, their co-localization within the lysosomal compartment and their cytotoxicity in different cell lines. Rhodamine-6G labelled poly(D,L-lactide-co-glycolide (PLGA nanoparticles were prepared by a double emulsion solvent evaporation freeze-drying method. Uptake and co-localisation of PLGA nanoparticles in lysosomes were visualized by confocal laser scanning microscopy. The cytotoxicity of the nanoparticles was evaluated on different mammalian cells lines by means of Trypan blue exclusion and the MTS assay. The PLGA nanoparticles accumulated in the intercellular spaces of Caco-2 cell monolayers, but were also taken up transcellularly into the Caco-2 cells and partially co-localized within the lysosomal compartment indicating involvement of endocytosis during uptake. PLGA nanoparticles did not show cytotoxic effects in all three cell lines. Intact PLGA nanoparticles are therefore capable of moving across epithelial cell membranes partly by means of endocytosis without causing cytotoxic effects.

  12. Uptake of [N-methyl-{sup 11}C]{alpha}-methylaminoisobutyric acid in untreated head and neck cancer studied by PET

    Energy Technology Data Exchange (ETDEWEB)

    Sutinen, Eija; Jyrkkioe, Sirkku; Minn, Heikki [Department of Oncology and Radiotherapy, Turku University Central Hospital, PO Box 52, 20521 Turku (Finland); Turku PET Centre, Turku University Central Hospital, Turku (Finland); Alanen, Kalle [Department of Pathology, Turku University Central Hospital, Turku (Finland); Naagren, Kjell [Turku PET Centre, Turku University Central Hospital, Turku (Finland)

    2003-01-01

    Amino acid transport system A is expressed strongly in neoplastic cells. [N-methyl-{sup 11}C]{alpha}-Methylaminoisobutyric acid ({sup 11}C-MeAIB) is a recently developed tracer for PET studies on system A amino acid transport. {sup 11}C-MeAIB is a metabolically stable amino acid analogue which is transported from plasma into the tissue by system A. This study evaluated the kinetics of {sup 11}C-MeAIB uptake from plasma into tumour tissue and normal tissues in 13 patients with untreated head and neck cancer. {sup 11}C-MeAIB uptake in tumour was compared with histological grade and proliferative activity. Tracer uptake was quantitated by calculating the standardised uptake values (SUVs) and the kinetic influx constants (K{sub i}) using graphical analysis. All tumours accumulated {sup 11}C-MeAIB and were visualised clearly. In the graphical analysis, linear plots were achieved; the mean K{sub i} value of tumour was 0.056{+-}0.026 min{sup -1}, and the mean SUV was 6.1{+-}2.7. A close correlation between graphically obtained K{sub i} and semi-quantitative SUV in tumours was found (r=0.887, P=0.00005). We could not demonstrate a correlation between the uptake of {sup 11}C-MeAIB and the grade of malignancy or the proliferative index, as assessed using Ki-67 immunohistochemical assay. Head and neck cancer can be effectively imaged with {sup 11}C-MeAIB PET. {sup 11}C-MeAIB showed active and rapid transport into tumour tissue and salivary glands. Further studies on the applicability of {sup 11}C-MeAIB PET for radiation treatment planning in the head and neck region and the regulation of system A amino acid transport under different metabolic states are warranted. (orig.)

  13. Influence of hydraulics on the uptake of ammonium by two freshwater plants

    NARCIS (Netherlands)

    Bal, K.D.; Brion, N.; Woule-Ebongué, V.; Schoelynck, J.; Jooste, A.; Barrón, C.; Dehairs, F.; Meire, P.; Bouma, T.J.

    2013-01-01

    1 Macrophytes are important in the biogeochemistry of flowing rivers, although most information so far has relied on measurements of nutrients in plant tissues. This yields only indirect information on the nutrient uptake fluxes by roots and shoots and about nutrient translocation between roots

  14. Cadmium-109 uptake by tumors derived from Balb C/3T3 cell lines with varying degrees of the transformed phenotype

    International Nuclear Information System (INIS)

    Morton, K.; Alazraki, N.; Winge, D.; Lynch, R.E.

    1986-01-01

    To determine if tumors are rich in metallothionein, the authors measured the vivo uptake of subcutaneously-injected carrier-free cadmium-109 in tumors and in normal tissues of Balb/C mice. The tumors were grown in the mice from cultured Balb/3T3 cells transformed by the Moloney murine sarcoma virus. Uptake of cadmium-109 per gram of tissue was greatest for liver, kidney, and spleen. However, tumor uptake of cadmium-109 was markedly greater than that in blood, skeletal muscle, bones, intestine or adipose tissue. B Sephadex G-75 chromatography, the radioactivity in tumor and in liver lysates eluted with cytochrome-C, a molecule similar in molecular weight to metal-lothionein. To determine if metallothionein levels are related to the degree of malignancy of tumors, cadmium-109 uptake in the tumors from the virally-transformed cells was compared to that in tumors from non-transformed Balb/3T3 cells and two derivative chemically transformed cell lines. There was strong correlation between the substrate-independent growth in soft agarose of the four cell lines, the rate of growth of the corresponding tumors, and the amount of cadmium-109 uptake in the tumors. The authors conclude that metallothionein levels may be elevated in tumors as a function of the degree of expression of the transformed phenotype

  15. Microfluidics Enables Small-Scale Tissue-Based Drug Metabolism Studies With Scarce Human Tissue

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Verpoorte, Elisabeth; Groothuis, Geny M. M.; Merema, M.T.

    2011-01-01

    Early information on the metabolism and toxicity properties of new drug candidates is crucial for selecting the right candidates for further development. Preclinical trials rely on cell-based in vitro tests and animal studies to characterize the in vivo behavior of drug candidates, although neither

  16. Thyrotoxic Graves' disease with normal thyroidal technetium-99m pertechnetate uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ikekubo, Katsuji; Hino, Megumu; Ito, Hidetomi; Koh, Toshikiyo; Ishihara, Takashi; Kurahachi, Hiroyuki (Kobe City General Hospital (Japan)); Kasagi, Kanji; Hidaka, Akinari; Mori, Toru

    1990-07-01

    We saw 24 thyrotoxic Graves' patients with normal thyroidal uptake of technetium-99m pertechnetate ({sup 99m}Tc) out of 201 untreated thyrotoxic Graves' patients seen over 4 years. The clinical and laboratory findings for these patients were studied and analyzed. Thyroid uptake and scintigraphic examinations by means of {sup 99m}Tc, TBII and TSab activity measurement clearly distinguished these patients from other thyrotoxic disorders (destruction-induced thyrotoxicosis and autonomously functioning thyroid lesions). Different from other disorders, these patients had not lower but normal thyroid uptake and also showed diffuse and discrete trapping into the enlarged glands. These patients had significantly smaller goiters, a lower serum thyroid hormone level, and lower TBII and TSab activity, when compared with other high {sup 99m}Tc uptake groups with Graves' disease, and their condition could be easily controlled with small amounts of antithyroid drugs. Our study indicates that thyrotoxic Graves' disease with normal {sup 99m}Tc uptake exists and {sup 99m}Tc uptake study and TBII activity measurement is very useful for the diagnosis. The normal {sup 99m}Tc uptake thyrotoxic Graves' patient might be early stage patients with general Graves' disease and their early discrimination from general Graves' patients is very advantageous for treatment and prognosis. (author).

  17. Comparative uptake of gamma-emitting fission product nuclides by plants

    International Nuclear Information System (INIS)

    D'souza, T.J.; Mistry, K.B.

    1974-01-01

    The comparative uptake of long-lived gamma-emitting fission product nuclides 106 Ru, 125 Sb, 137 Cs and 144 Ce, present in global fallout from nuclear explosions, by maize (Zea mays L) plants was examined in water culture experiments. Over identical duration of plant growth, the extent of accumulation of the radionuclides in aerial tissues was in the following decreasing order: 137 Cs >, 125 Sb >, 106 Ru > and 144 Ce. In roots, however, the retention of 144 Ce and 106 Ru was greater than that of 137 Cs and 125 Sb. Complementary studies with maize and rice (Oryza sativa L) grown on two contrasting soil types, namely, laterite and black clay loam indicated that 137 Cs uptake by plants was markedly greater than that of the other radionuclides in both soil types. Plant uptake of 106 Ru and 125 Sb was significantly higher than that of 144 Ce in the black soil. In the laterite, however, 144 Ce uptake far exceeded that of 106 Ru and 125 Sb. In general, maize removed higher amounts of the radionuclides than rice from both soil types. (author)

  18. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    Science.gov (United States)

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  19. The relationship between root growth, temperature and anion uptake

    International Nuclear Information System (INIS)

    Holobrada, M.; Mistrik, I.; Kolek, J.

    1980-01-01

    The uptake and release were studied of 35 S-sulfate ions by whole intact roots of maize seedlings. From the total incorporated sulfur only 20% were released back to the unlabelled culture solution. In correspondence to the physiological and biochemical-structural vertical gradient of the growing differentiating roots, the release of 35 S from the apical root part was much lower than from the differentiated tissues. (author)

  20. Inhibition of high affinity choline uptake by N-allyl-3-quinuclidinol

    International Nuclear Information System (INIS)

    Asermely, K.E.; O'Neill, J.J.

    1986-01-01

    The peripheral actions of N-allyl-3-quinuclidinol (N-Al-3-OHQ) on high affinity choline uptake (HAChU) on rat phrenic nerve diaphragm are described. Endplate regions (EPA) identified by the Koelle histochemical techniques for acetylcholinesterase, were dissected from adult rat hemidiaphragms and placed in cold Krebs solution (pH-7.35). All measurements of HAChU were at 37 0 C in buffers containing tritium choline (5 μM 0.124 μC/mmole) at intervals of 1, 2, 4, 8, 15 and 30 min. Tissues were washed 3x, digested in 1N NaOH and counted for tritium in Chaikoff's solution. All data are expressed as pmole Ch/g wet weight. Comparison between EPA and non-EPA tissue demonstrate HAChU and slow choline diffusion, respectively. Steady state is observed in 15 min. N-Al-3-OHQ produces 15% inhibition at 5 x 10 -5 M compared with 50% inhibition on brain synaptosomes. At 5 x 10 -4 M N-Al-3-OHQ, 30% inhibition is observed. Attempts to deplete ACh by pre-stimulation with high K + -ion (25 mM) were unsuccessful; tissue 3 H-choline uptake appeared to oscillate over a 30 min period