WorldWideScience

Sample records for tissue development studies

  1. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... materials have been developed and tested for enhancing the differentiation of hiPSC-derived hepatocytes and fabricating biodegradable scaffolds for in-vivo tissue engineering applications. Along with various scaffolds fabrication methods we finally presented an optimized study of hepatic differentiation...... of hiPSC-derived DE cells cultured for 25 days in a 3D perfusion bioreactor system with an array of 16 small-scale tissue-bioreactors with integrated dual-pore pore scaffolds and flow rates. Hepatic differentiation and functionality of hiPSC-derived hepatocytes were successfully assessed and compared...

  2. SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, E [Gainesville, FL (United States); Flampouri, S [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Lipnharski, I [University of Florida, Gainesville, FL (United States); Bolch, W [University Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMs using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out

  3. Universality of clone dynamics during tissue development

    Science.gov (United States)

    Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.

    2018-05-01

    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

  4. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  5. Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: An in-vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Chuah, Yon Jin [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Lee, Wu Chean [University Hospital Conventry & Warwickshire NHS Trust, Clifford Bridge Road, West Midlands CV2, 2DX (United Kingdom); Wong, Hee Kit [Department of Orthopedic Surgery, National University Health System, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228 (Singapore); Kang, Yuejun, E-mail: yuejun.kang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Hee, Hwan Tak, E-mail: HTHee@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Pinnacle Spine & Scoliosis Centre, 3 Mount Elizabeth, Mount Elizabeth Medical Centre, #04-07, Singapore 228510 (Singapore); School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637459 (Singapore)

    2015-02-01

    Prior research has investigated the immediate response after application of tensile strain on annulus fibrosus (AF) cells for the past decade. Although mechanical strain can produce either catabolic or anabolic consequences to the cell monolayer, little is known on how to translate these findings into further tissue engineering applications. Till to date, the application and effect of tensile pre-strained cells to construct a three-dimensional (3D) AF tissue remains unknown. This study aims to investigate the effect of tensile pre-strained exposure of 1 to 24 h on the development of AF pellet culture for 3 weeks. Equibiaxial cyclic tensile strain was applied on AF monolayer cells over a period of 24 h, which was subsequently developed into a cell pellet. Investigation on cellular proliferation, phenotypic gene expression, and histological changes revealed that tensile pre-strain for 24 h had significant and lasting effect on the AF tissue development, with enhanced cell proliferation, and up-regulation of collagen type I, II, and aggrecan expression. Our results demonstrated the regenerative ability of AF cell pellets subjected to 24 h tensile pre-straining. Knowledge on the effects of tensile pre-strain exposure is necessary to optimize AF development for tissue reconstruction. Moreover, the tensile pre-strained cells may further be utilized in either cell therapy to treat mild disc degeneration disease, or the development of a disc construct for total disc replacement. - Highlights: • Establishment of tensile pre-strained cell line population for annulus development. • Tensile strain limits collagen gene expression declination in monolayer culture. • Tensile pre-strained cells up-regulate their matrix protein in 3D pellet culture.

  6. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  7. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Heber, E.M.; Pozzi, E.; Nigg, D.W.; Calzetta, O.; Blaumann, H.; Longhino, J.; Nievas, S.I.; Aromando, R.F.; Itoiz, M.E.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  8. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A.; Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Pozzi, E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Research and Production Reactors, Ezeiza Atomic Center, CNEA, Buenos Aires (Argentina); Nigg, D.W. [Idaho National Laboratory, Idaho Falls, Idaho (United States); Calzetta, O.; Blaumann, H.; Longhino, J. [Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, Rio Negro (Argentina); Nievas, S.I. [Department of Chemistry, CNEA, Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Trivillin, V.A. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina)], E-mail: schwint@cnea.gov.ar

    2009-07-15

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  9. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli, N. M. S.; Groen, N.; Steg, H.; Unadkat, H.; de Boer, J.; van Blitterswijk, C. A.; Wessling, M.; Stamatialis, D.

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  10. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Groen, N.; Steg, H.; Unadkat, H.V.; de Boer, Jan; van Blitterswijk, Clemens; Wessling, Matthias; Stamatialis, Dimitrios

    2014-01-01

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  11. Development of a 3D bone marrow adipose tissue model.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  12. Development and Tissue Origins of the Mammalian Cranial Base

    Science.gov (United States)

    Iseki, S.; Bamforth, S. D.; Olsen, B. R.; Morriss-Kay, G. M.

    2008-01-01

    The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the “New Head”. PMID:18680740

  13. Adipose tissue transcriptome changes during obesity development in female dogs.

    Science.gov (United States)

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2011-03-29

    During the development of obesity, adipose tissue undergoes major expansion and remodeling, but the biological processes involved in this transition are not well understood. The objective of this study was to analyze global gene expression profiles of adipose tissue in dogs, fed a high-fat diet, during the transition from a lean to obese phenotype. Nine female beagles (4.09 ± 0.64 yr; 8.48 ± 0.35 kg) were randomized to ad libitum feeding or body weight maintenance. Subcutaneous adipose tissue biopsy, blood, and dual x-ray absorptiometry measurements were collected at 0, 4, 8, 12, and 24 wk of feeding. Serum was analyzed for glucose, insulin, fructosamine, triglycerides, free fatty acids, adiponectin, and leptin. Formalin-fixed adipose tissue was used for determination of adipocyte size. Adipose RNA samples were hybridized to Affymetrix Canine 2.0 microarrays. Statistical analysis, using repeated-measures ANOVA, showed ad libitum feeding increased (P obesity development.

  14. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    Science.gov (United States)

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  15. Development of an algorithm for quantifying extremity biological tissue

    International Nuclear Information System (INIS)

    Pavan, Ana L.M.; Miranda, Jose R.A.; Pina, Diana R. de

    2013-01-01

    The computerized radiology (CR) has become the most widely used device for image acquisition and production, since its introduction in the 80s. The detection and early diagnosis, obtained via CR, are important for the successful treatment of diseases such as arthritis, metabolic bone diseases, tumors, infections and fractures. However, the standards used for optimization of these images are based on international protocols. Therefore, it is necessary to compose radiographic techniques for CR system that provides a secure medical diagnosis, with doses as low as reasonably achievable. To this end, the aim of this work is to develop a quantifier algorithm of tissue, allowing the construction of a homogeneous end used phantom to compose such techniques. It was developed a database of computed tomography images of hand and wrist of adult patients. Using the Matlab ® software, was developed a computational algorithm able to quantify the average thickness of soft tissue and bones present in the anatomical region under study, as well as the corresponding thickness in simulators materials (aluminium and lucite). This was possible through the application of mask and Gaussian removal technique of histograms. As a result, was obtained an average thickness of soft tissue of 18,97 mm and bone tissue of 6,15 mm, and their equivalents in materials simulators of 23,87 mm of acrylic and 1,07mm of aluminum. The results obtained agreed with the medium thickness of biological tissues of a patient's hand pattern, enabling the construction of an homogeneous phantom

  16. Development of tissue bank

    Directory of Open Access Journals (Sweden)

    R P Narayan

    2012-01-01

    Full Text Available The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole.

  17. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery

    Directory of Open Access Journals (Sweden)

    Katja Tangermann-Gerk

    2013-10-01

    Full Text Available Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA and Quadratic Discriminant Analysis (QDA were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery.

  18. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  19. Inflammation reduces physiological tissue tolerance in the development of work-related musculoskeletal disorders.

    Science.gov (United States)

    Barr, Ann E; Barbe, Mary F

    2004-02-01

    Work-related musculoskeletal disorders (MSDs) cause substantial worker discomfort, disability and loss of productivity. Due to the difficulty in analyzing the tissues of patients in the early stages of work-related MSD, there is controversy concerning the pathomechanisms of the development of these disorders. The pathophysiology of work-related MSD can be studied more easily in animal models. The purpose of this review is to relate theories of the development of tissue injury due to repeated motion to findings of recent investigations in animals that address the role of the inflammatory response in propagating tissue injury and contributing to chronic or recurring tissue injury. These tissue effects are related to behavioral indicators of discomfort and movement dysfunction with the aim of clarifying key time points for specific intervention approaches. The results from animal models of MSD are discussed in the light of findings in patients, whose tissues are examined at a much later phase of MSD development. Finally, a conceptual model of the potentially negative impact of inflammation on tissue tolerance is proposed along with suggestions for future research directions.

  20. Regulation of macrophage development and function in peripheral tissues

    Science.gov (United States)

    Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam

    2015-01-01

    Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899

  1. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  2. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    Science.gov (United States)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  3. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Tissue Respiration and Glycolysis in the Development of Acute Radiation Sickness

    National Research Council Canada - National Science Library

    Golubentsev, D

    1960-01-01

    The condition of tissue respiration and glycolysis in the development of acute radiation sickness has been insufficiently studied, and the factual data and opinions of various investigators are frequently contradictory...

  5. Studying cytokinesis in Drosophila epithelial tissues.

    Science.gov (United States)

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Development of a tissue engineered heart valve for pediatrics: a case study in bioengineering ethics.

    Science.gov (United States)

    Merryman, W David

    2008-03-01

    The following hypothetical case study was developed for bioengineering students and is concerned with choosing between two devices used for development of a pediatric tissue engineered heart valve (TEHV). This case is intended to elicit assessment of the devices, possible future outcomes, and ramifications of the decision making. It is framed in light of two predominant ethical theories: utilitarianism and rights of persons. After the case was presented to bioengineering graduate students, they voted on which device should be released. The results revealed that these bioengineering students preferred the more reliable (and substantially more expensive) design, though this choice precludes the majority of the world from having access to this technology. This case is intended to examine and explore where the balance lies between design, cost, and adequate distribution of biomedical devices.

  7. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    International Nuclear Information System (INIS)

    Juneja, Prabhjot; Harris, Emma J.; Kirby, Anna M.; Evans, Philip M.

    2012-01-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation

  8. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, Prabhjot, E-mail: Prabhjot.Juneja@icr.ac.uk [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Harris, Emma J. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Kirby, Anna M. [Department of Academic Radiotherapy, Royal Marsden National Health Service Foundation Trust, Sutton (United Kingdom); Evans, Philip M. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom)

    2012-11-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue

  9. Study on tissue culture for Gelidium seedling

    Science.gov (United States)

    Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin

    1996-06-01

    As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.

  10. Human natural killer cell development in secondary lymphoid tissues

    Science.gov (United States)

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  11. The local expression of adult chicken heart myosins during development. II. Ventricular conducting tissue

    NARCIS (Netherlands)

    Sanders, E.; de Groot, I. J.; Geerts, W. J.; de Jong, F.; van Horssen, A. A.; Los, J. A.; Moorman, A. F.

    1986-01-01

    The development of the ventricular conducting tissue of the embryonic chicken heart has been studied using a previous finding that morphologically recognizable atrial conducting tissue coexpresses the atrial and the ventricular myosin isoforms. It is found that, by these criteria, at 9 days part of

  12. Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry

    Science.gov (United States)

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent

    2011-02-01

    Foot ulceration remains a serious health concern for diabetic patients and has a major impact on the cost of diabetes treatment. Early detection and preventive care, such as offloading or improved hygiene, can greatly reduce the risk of further complications. We aim to assess the use of hyperspectral tissue oximetry in predicting the risk of diabetic foot ulcer formation. Tissue oximetry measurements are performed during several visits with hyperspectral imaging of the feet in type 1 and 2 diabetes mellitus subjects that are at risk for foot ulceration. The data are retrospectively analyzed at 21 sites that ulcerated during the course of our study and an ulceration prediction index is developed. Then, an image processing algorithm based on this index is implemented. This algorithm is able to predict tissue at risk of ulceration with a sensitivity and specificity of 95 and 80%, respectively, for images taken, on average, 58 days before tissue damage is apparent to the naked eye. Receiver operating characteristic analysis is also performed to give a range of sensitivity/specificity values resulting in a Q-value of 89%.

  13. Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies.

    Science.gov (United States)

    Shi, Shan-Rong; Taylor, Clive R; Fowler, Carol B; Mason, Jeffrey T

    2013-04-01

    Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study.

    Science.gov (United States)

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  15. Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone

    NARCIS (Netherlands)

    Mulder, L.; Koolstra, J.H.; Toonder, den J.M.J.; Eijden, van T.M.G.J.

    2007-01-01

    The purpose of this study was to investigate the relation between bone tissue stiffness and degree of mineralization distribution and to examine possible changes during prenatal development. Understanding this may provide insight into adaptation processes and into deformation mechanisms of the bone

  16. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    Science.gov (United States)

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  18. Electrical Impedance Spectroscopic Studies on Broiler Chicken Tissue Suitable for the Development of Practical Phantoms in Multifrequency EIT

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-06-01

    Full Text Available Phantoms are essential for assessing the system performance in Electrical Impedance Tomography (EIT. Saline phantoms with insulator inhomogeneity fail to mimic the physiological structure of real body tissue in several aspects. Saline or any other salt solutions are purely resistive and hence studying multifrequency EIT systems cannot be assessed with saline phantoms because the response of the purely resistive materials do not change over frequency. Animal tissues show a variable response over a wide band of signal frequency due to their complex physiological and physiochemical structures and hence they can suitably be used as bathing medium and inhomogeneity in the phantoms of multifrequency EIT system. An efficient assessment of a multifrequency EIT system with real tissue phantom needs a prior knowledge of the impedance profile of the bathing medium as well as the inhomogeneity. In this direction Electrical Impedance Spectroscopy (EIS of broiler chicken muscle tissue paste and broiler chicken fat tissue is conducted from 10 Hz to 2 MHz using an impedance analyzer and their impedance profiles are thoroughly studied. Results show that the broiler chicken muscle tissue paste is less resistive than the fat tissue and hence it can be successfully used as the bathing medium of the phantoms for resistivity imaging in multifrequency EIT. Fat tissue is found more resistive than the muscle tissue which makes it more suitable for the inhomogeneity in phantoms of resistivity imaging study. doi:10.5617/jeb.174 J Electr Bioimp, vol. 2, pp. 48-63, 2011

  19. Development and clinical course of diseases accompanied by connective tissue dysplasia in children of puberty age

    Directory of Open Access Journals (Sweden)

    Elizarova S.Yu.

    2011-03-01

    Full Text Available The risk of development and clinical course of somatic diseases have been analyzed in the research work. 111 adolescents suffering from connective tissue dysplasia have been under the study. It has been stated that the frequency of somatic diseases among adolescents with connective tissue dysplasia is higher than this frequency among adolescents without such disease. Phenotypic signs of connective tissue dysplasia have been revealed. They are responsible for the development of bronchial asthma and severe stomach ulcer

  20. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    Science.gov (United States)

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  1. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  2. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  3. Exploratory Studies on Biomarkers: An Example Study on Brown Adipose Tissue

    Science.gov (United States)

    Watanabe, Masahiro; Yamazaki, Naoshi; Kataoka, Masatoshi; Shinohara, Yasuo

    In mammals, two kinds of adipose tissue are known to exist, i.e., white (WAT) and brown (BAT) adipose tissue. The physiological role of WAT is storage of excess energy as fat, whereas that of BAT is the expenditure of excess energy as heat. The uncoupling protein UCP1, which is specifically expressed in brown fat mitochondria, dissipates the proton electrochemical potential across the inner mitochondrial membrane, known as a driving force of ATP synthesis, and thus it dissipates excess energy in a form of heat. Because deficiency in effective expenditure of excess energy causes accumulation of this energy in the form of fat (i.e., obesity), it is very important to understand the energy metabolism in this tissue for the development of anti-obesity drugs. In this article, in addition to providing a brief introduction to the functional properties of BAT and UCP1, the results of our exploratory studies on protein components involved in the energy-dissipating function in BAT.

  4. Detection of Met-enkephalin: Development of a RIA and of an extraction method for studies on hypophyseal and brain tissues

    International Nuclear Information System (INIS)

    Holl, R.

    1982-01-01

    The thesis describes the development of a method of detecting Met-enkephalin, and the verification of the method's suitability to measurements in extracted tissue. The tissue extraction method reported has been the first step towards the goal of establishing the method for determining Met-enkephalin in cell and tissue extracts, in culture media, plasma and liquor samples. The difficulties involved in the development of the RIA for Met-enkephalin specifically arose from the following peculiarities of the substance: a) Due to the low molecular weight, (574), ME itself does not act as an antigen, antibodies can only be obtained by means of fixation to carrier molecules. b) Enkephalin very rapidly is decomposed by endogenic proteinases. c) The fact that normal physiological processes will produce peptides very similar in sequence requires the RIA to be extremely specific. The method has first been applied to screening measurements of Met-enkephalin concentrations in various brain sectors. The radioimmunological studies have been intended to supplement and verify the immunocytochemical results obtained, with the latter experiments having been made using the same antiserum, in order to improve the basis of comparison between the immunocytochemical results and the findings on antibody specifity obtained from the RIA. (orig./MG) [de

  5. Study of trace elements distribution in various tissues structures

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Marczewska, E.

    1994-01-01

    Many papers have been written during the past ten years about TE study in cancer and normal tissues describing the use of different methods for detection of trace elements. Concentration of TE depends strongly on the sample measured. However, according to our knowledge, the role of TE in cancerous tissue is still known. Therefore, we propose to perform an experiment which will hopefully given us more information about the relationship between the concentration of elements in different tissues. The developing industry localised near Cracow becomes a serious danger for health of it's inhabitants. The negative influence of the air pollution to the living organisms is seen not only in the nature but also in humans. Therefore we want to analyse the trace element contents in the air. Such investigation will give the information about the pollution level in the City. The pollution has its obvious negative influence to health and toxic element concentration level in blood. It is interesting to check if placenta plays an effective role in foetus protection against toxic metals. In order to study this problem, the trace element analysis of placenta tissues will be done by means of synchrotron microbeam. (author). 1 ref

  6. Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain

    Science.gov (United States)

    2017-09-01

    Project Manager Boston Biomedical Innovation Center 215 First Street, Suite 500; Cambridge, MA 02142 857-307-2441 | rblackman1@partners.org | b...AWARD NUMBER: W81XWH-15-1-0480 TITLE: Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain PRINCIPAL...31/2017 4. TITLE AND SUBTITLE Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain 5a. CONTRACT NUMBER Tissue Injury

  7. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application.

    Science.gov (United States)

    Benrashid, Ehsan; McCoy, Christopher C; Youngwirth, Linda M; Kim, Jina; Manson, Roberto J; Otto, James C; Lawson, Jeffrey H

    2016-04-15

    Since the development of a dependable and durable synthetic non-autogenous vascular conduit in the mid-twentieth century, the field of vascular surgery has experienced tremendous growth. Concomitant with this growth, development in the field of bioengineering and the development of different tissue engineering techniques have expanded the armamentarium of the surgeon for treating a variety of complex cardiovascular diseases. The recent development of completely tissue engineered vascular conduits that can be implanted for clinical application is a particularly exciting development in this field. With the rapid advances in the field of tissue engineering, the great hope of the surgeon remains that this conduit will function like a true blood vessel with an intact endothelial layer, with the ability to respond to endogenous vasoactive compounds. Eventually, these engineered tissues may have the potential to supplant older organic but not truly biologic technologies, which are used currently. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. 2010 Great Lakes Human Health Fish Tissue Study Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2010 Great Lakes Human Health Fish Tissue Study (GLHHFTS). This document includes the “data dictionary” for Mercury, PFC, PBDE and PCBs.

  9. Dopaminergic Immunofluorescence Studies in Kidney Tissue.

    Science.gov (United States)

    Gildea, J J; Van Sciver, R E; McGrath, H E; Kemp, B A; Jose, P A; Carey, R M; Felder, R A

    2017-01-01

    The kidney is a highly integrated system of specialized differentiated cells that are responsible for fluid and electrolyte balance in the body. While much of today's research focuses on isolated nephron segments or cells from nephron segments grown in tissue culture, an often overlooked technique that can provide a unique view of many cell types in the kidney is slice culture. Here, we describe techniques that use freshly excised kidney tissue from rats to perform a variety of experiments shortly after isolating the tissue. By slicing the rat kidney in a "bread loaf" format, multiple studies can be performed on slices from the same tissue in parallel. Cryosectioning and staining of the tissue allow for the evaluation of physiological or biochemical responses in a wide variety of specific nephron segments. The procedures described within this chapter can also be extended to human or mouse kidney tissue.

  10. Corpus callosum tissue loss and development of motor and global cognitive impairment

    DEFF Research Database (Denmark)

    Frederiksen, Kristian S; Garde, Ellen; Skimminge, Arnold

    2011-01-01

    To examine the impact of corpus callosum (CC) tissue loss on the development of global cognitive and motor impairment in the elderly.......To examine the impact of corpus callosum (CC) tissue loss on the development of global cognitive and motor impairment in the elderly....

  11. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  12. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  13. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    Science.gov (United States)

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  14. Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies.

    Directory of Open Access Journals (Sweden)

    Tanmay A Gokhale

    2017-01-01

    Full Text Available To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to understand the electrical dynamics of cells in the context of their environment. Multicellular monolayer cultures have proven useful for investigating arrhythmias and other conduction anomalies, and because of their relatively simple structure, these constructs lend themselves to paired computational studies that often help elucidate mechanisms of the observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require the use of neonatal cells with ionic properties that change rapidly during development and have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac demonstrated the ability to create biosynthetic excitable tissues from genetically engineered and immortalized HEK293 cells with well-characterized electrical properties and the ability to propagate action potentials. In this study, we developed and validated a computational model of these excitable HEK293 cells (called "Ex293" cells using existing electrophysiological data and a genetic search algorithm. In order to reproduce not only the mean but also the variability of experimental observations, we examined what sources of variation were required in the computational model. Random cell-to-cell and inter-monolayer variation in both ionic conductances and tissue conductivity was necessary to explain the experimentally observed variability in action potential shape and macroscopic conduction, and the spatial organization of cell-to-cell conductance variation was found to not impact macroscopic behavior; the resulting model accurately reproduces both normal and drug-modified conduction behavior. The development of a computational Ex293 cell and tissue model provides a novel framework to perform paired computational-experimental studies to study normal and abnormal conduction in multidimensional excitable tissue, and the methodology of modeling

  15. Fuz regulates craniofacial development through tissue specific responses to signaling factors.

    Directory of Open Access Journals (Sweden)

    Zichao Zhang

    Full Text Available The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz(-/- mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz(-/- mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckel's cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel's cartilage is expanded in the Fuz(-/- mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling.

  16. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Directory of Open Access Journals (Sweden)

    Halima Rakhila

    Full Text Available Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2, cell adhesion (αv and β3 integrins, survival (B-cell lymphoma-2 and angiogenic (vascular endothelial cell growth factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  17. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Science.gov (United States)

    Rakhila, Halima; Girard, Karine; Leboeuf, Mathieu; Lemyre, Madeleine; Akoum, Ali

    2014-01-01

    Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF) appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO) mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT) mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2), cell adhesion (αv and β3 integrins), survival (B-cell lymphoma-2) and angiogenic (vascular endothelial cell growth) factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  18. Tissue perfusion as a key underlying concept of pressure ulcer development and treatment.

    Science.gov (United States)

    Wywialowski, E F

    1999-03-01

    The purpose of this article is to refine and advance the theory that tissue perfusion is the key concept in the development and delayed healing of pressure ulcers. The person likely to have (be at risk for) pressure ulcers is at greater risk for inadequate tissue perfusion generally and specifically at pressure points. Accordingly, the tissue perfusion theory of pressure ulcer development states that the factors that contribute to inadequate tissue perfusion should be used to predict (identify risk factors for) pressure ulcer development and delayed healing. Factors influencing a person's adequacy of tissue perfusion need to be assessed to identify risk for pressure ulcers. In addition, adequate tissue perfusion needs to be maintained to provide for healing of such wounds. Current beliefs about the causes and prevention of pressure ulcers are described. Physiologic components of the tissue perfusion theory are discussed: cellular exchange of nutrients and wastes, autoregulation of blood flow at the cellular level, and regulatory mechanisms that affect tissue perfusion when it is significantly compromised. The North American Nursing Diagnosis Association (NANDA) framework is used to classify or group examples of common pathophysiologic, treatment-related, situational, and maturational factors. Implications for research, practice, and education also are discussed.

  19. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study.

    Science.gov (United States)

    Brown, Joseph E; Partlow, Benjamin P; Berman, Alison M; House, Michael D; Kaplan, David L

    2016-01-01

    Cerclage therapy is an important treatment option for preterm birth prevention. Several patient populations benefit from cerclage therapy including patients with a classic history of cervical insufficiency; patients who present with advanced cervical dilation prior to viability; and patients with a history of preterm birth and cervical shortening. Although cerclage is an effective treatment option in some patients, it can be associated with limited efficacy and procedure complications. Development of an alternative to cerclage therapy would be an important clinical development. Here we report on an injectable, silk protein-based biomaterial for cervical tissue augmentation. The rationale for the development of an injectable biomaterial is to restore the native properties of cervical tissue. While cerclage provides support to the tissue, it does not address excessive tissue softening, which is a central feature of the pathogenesis of cervical insufficiency. Silk protein-based hydrogels, which are biocompatible and naturally degrade in vivo, are suggested as a platform for restoring the native properties of cervical tissue and improving cervical function. We sought to study the properties of an injectable, silk-based biomaterial for potential use as an alternative treatment for cervical insufficiency. These biomaterials were evaluated for mechanical tunability, biocompatibility, facile injection, and in vitro degradation. Silk protein solutions were cross-linked by an enzyme catalyzed reaction to form elastic biomaterials. Biomaterials were formulated to match the native physical properties of cervical tissue during pregnancy. The cell compatibility of the materials was assessed in vitro using cervical fibroblasts, and biodegradation was evaluated using concentrated protease solution. Tissue augmentation or bulking was demonstrated using human cervical tissue from nonpregnant hysterectomy specimens. Mechanical compression tests measured the tissue stiffness as a

  20. Effect of MELT method on thoracolumbar connective tissue: The full study.

    Science.gov (United States)

    Sanjana, Faria; Chaudhry, Hans; Findley, Thomas

    2017-01-01

    Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of temperature and tissue type on Chrysomya rufifacies (Diptera: Calliphoridae) (Macquart) development.

    Science.gov (United States)

    Flores, Micah; Longnecker, Michael; Tomberlin, Jeffery K

    2014-12-01

    The hairy maggot blow fly, Chrysomya rufifacies (Diptera: Calliphoridae), is a forensically important fly often encountered on human and other vertebrate remains in temperate and tropic regions throughout the world including Australia, Asia, Central America and North America. C. rufifacies was reared under controlled laboratory conditions on three muscle types (i.e., porcine, equine and canine) at three temperatures (i.e., 20.8, 24.8 and 28.3°C). Rate of larval weight gain across time was statistically significant between muscle types (P≤0.0001) and approaching significance across time between temperatures (P=0.0511). This research represents the first development study for C. rufifacies from central Texas, USA and the first study to examine the impact of tissue type on its development. Furthermore, these data, when compared to those available in the literature, indicate developmental differences that could be due to genetic differences in populations or possibly methods employed during the studies. Caution should be emphasized when applying development data for this species from one region to forensic investigations in other ecoregions as such differences in development based on tissue fed upon by larvae, population genetics, and methodologies used in the studies could represent error in estimating the time of colonization. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Engineering vascular development for tissue regeneration

    NARCIS (Netherlands)

    Rivron, N.C.

    2010-01-01

    Tissue engineering and regenerative medicine aim at restoring a damaged tissue by recreating in vitro or promoting its regeneratin in vovo. The vasculature is central to these therapies for the irrigation of the defective tissue (oxygen, nutrients or circulating regenerative cells) and as an

  3. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2015-01-01

    Full Text Available Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  4. Development of an experimental model of brain tissue heterotopia in the lung

    Science.gov (United States)

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  5. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  6. The main features of electrical stimulation of biological tissues by implant electrodes: study from engineering perspective and equipment development to produce

    International Nuclear Information System (INIS)

    Suarez Bagnasco, D.; Alvarez Alonso, J.; Suarez Antola, R.

    2004-08-01

    The main features of electrical stimulation of biological tissues by implant electrodes are studied.These electrodes are applied in neural prostheses and cardiac pacing.Threshold phenomena are stressed and some aspects related with implant electrode design are discussed. A fairly through theoretical research about the optimal pulse shape for electrical stimulation of biological tissues is done.The excitation functional is introduced as a criterium to identify threshold pulses of electric current. We obtain the optimal pulse shapes that minimize the energy dissipated in tissues, or the energy taken by the load seen by the pulse generator, amongst other criteria.We show how these pulse shapes can be determined from experimentally measured strength-duration (S-D) curves using rectangular pulses of current. The development of a prototype of a new equipment is described.The equipment may be used to measure S-D curves and with this information it is able to syntetize the abovementioned optimal pulse shapes. The top-down design process is presented, involving both hardware and software.The construction and assembling of the prototype, as well as the implementation of software are described.Some testing and measures with the prototype, including test with biological tissues are described and assessed

  7. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human Tissues.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available The expression pattern of Sohlh1 (spermatogenesis and oogenesis specific basic helix-loop-helix 1 and Sohlh2 in mice has been reported in previous studies. Sohlh1 and Sohlh2 are specifically expressed in spermatogonia, prespermatogonia in male mice and oocytes of primordial and primary follicles in female mice. In this report, we studied the expression pattern of Sohlh1 and Sohlh2 in human adult tissues. Immunohistochemical staining of Sohlh1 and Sohlh2 was performed in 5 samples of normal ovaries and testes, respectively. The results revealed that Sohlh genes are not only expressed in oocytes and spermatogonia, but also in granular cells, theca cells, Sertoli cells and Leydig cells, and in smooth muscles of blood vessel walls. To further investigate the expression of Sohlh genes in other adult human tissues, we collected representative normal adult tissues developed from three embryonic germ layers. Compared with the expression in mice, Sohlhs exhibited a much more extensive expression pattern in human tissues. Sohlhs were detected in testis, ovary and epithelia developed from embryonic endoderm, ectoderm and tissues developed from embryonic mesoderm. Sohlh signals were found in spermatogonia, Sertoli cells and also Leydig cells in testis, while in ovary, the expression was mainly in oocytes of primordial and primary follicles, granular cells and theca cells of secondary follicles. Compared with Sohlh2, the expression of Sohlh1 was stronger and more extensive. Our study explored the expression of Sohlh genes in human tissues and might provide insights for functional studies of Sohlh genes.

  8. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  9. Tissue quantification for development of pediatric phantom

    International Nuclear Information System (INIS)

    Alves, A.F.F.; Miranda, J.R.A.; Pina, D.R.

    2013-01-01

    The optimization of the risk- benefit ratio is a major concern in the pediatric radiology, due to the greater vulnerability of children to the late somatic effects and genetic effects of exposure to radiation compared to adults. In Brazil, it is estimated that the causes of death from head trauma are 18 % for the age group between 1-5 years and the radiograph is the primary diagnostic test for the detection of skull fracture . Knowing that the image quality is essential to ensure the identification of structures anatomical and minimizing errors diagnostic interpretation, this paper proposed the development and construction of homogeneous phantoms skull, for the age group 1-5 years. The construction of the phantoms homogeneous was performed using the classification and quantification of tissue present in the skull of pediatric patients. In this procedure computational algorithms were used, using Matlab, to quantify distinct biological tissues present in the anatomical regions studied , using pictures retrospective CT scans. Preliminary data obtained from measurements show that between the ages of 1-5 years, assuming an average anteroposterior diameter of the pediatric skull region of the 145.73 ± 2.97 mm, can be represented by 92.34 mm ± 5.22 of lucite and 1.75 ± 0:21 mm of aluminum plates of a provision of PEP (Pacient equivalent phantom). After its construction, the phantoms will be used for image and dose optimization in pediatric protocols process to examinations of computerized radiography

  10. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration.

    Science.gov (United States)

    Ebrahim, Martrez; Mulay, Shrikant R; Anders, Hans-Joachim; Thomasova, Dana

    2015-11-01

    Murine double minute (MDM)-2 is an intracellular molecule with diverse biological functions. It was first described to limit p53-mediated cell cycle arrest and apoptosis, hence, gain of function mutations are associated with malignancies. This generated a rationale for MDM2 being a potential therapeutic target in cancer therapy. Meanwhile, several additional functions and pathogenic roles of MDM2 have been identified that either enforce therapeutic MDM2 blockade or raise caution about potential side effects. MDM2 is also required for organ development and tissue homeostasis because unopposed p53 activation leads to p53-overactivation-dependent cell death, referred to as podoptosis. Podoptosis is caspase-independent and, therefore, different from apoptosis. The mitogenic role of MDM2 is also needed for wound healing upon tissue injury, while MDM2 inhibition impairs re-epithelialization upon epithelial damage. In addition, MDM2 has p53-independent transcription factor-like effects in nuclear factor-kappa beta (NFκB) activation. Therefore, MDM2 promotes tissue inflammation and MDM2 inhibition has potent anti-inflammatory effects in tissue injury. Here we review the biology of MDM2 in the context of tissue development, homeostasis, and injury and discuss how the divergent roles of MDM2 could be used for certain therapeutic purposes. MDM2 blockade had mostly anti-inflammatory and anti-mitotic effects that can be of additive therapeutic efficacy in inflammatory and hyperproliferative disorders such as certain cancers or lymphoproliferative autoimmunity, such as systemic lupus erythematosus or crescentic glomerulonephritis.

  11. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    Science.gov (United States)

    Sanders, Lindsey Kennedy

    With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a

  12. Determination of electrical characteristics of body tissues for computational dosimetry studies

    International Nuclear Information System (INIS)

    Silva, Rafael Monteiro da Cruz; Domingues, Luis Adriano M.C.; Neto, Athanasio Mpalantinos; Barbosa, Carlos Ruy Nunez

    2008-01-01

    Increasing public concern about human exposure to electromagnetic fields led to the development of International Exposure Standards, which reflect the actual scientific knowledge on this subject. Existing exposure limits (reference levels), are based on maximum admissible fields or induced currents densities inside human bodies, called basic restrictions. Since those physical quantities can not be readily measured, they must be estimated using techniques of computational dosimetry. These techniques rely on accurate computational modelling of human bodies to establish the relation of external field (electric / magnetic) to induced current (internal field). Nowadays the models available for human body simulation (FEM, FDM,...) are quite accurate, specially when using geometric discretization obtained from medical imaging techniques, however the determination of tissues characteristics (permittivity and conductivity) is still an issue to be dealt with. In current studies the electrical characteristics (permittivity and conductivity) of body tissues are based on values which were obtained from measurements done on tissue simples obtained from dead bodies. However those values may not represent adequately the behaviour of living tissues. In this paper a research designed to characterize the permittivity of human body tissues is presented, consisting of measurements and simulations designed to determine, using indirect methods, the electrical behaviour of living tissues. A study of exposure assessment on a real high voltage transmission line in Brazil, using measured permittivity values combined with a finite element model of the human body is presented in the panel. (author)

  13. Development of tissue-engineered self-expandable aortic stent grafts (Bio stent grafts) using in-body tissue architecture technology in beagles.

    Science.gov (United States)

    Kawajiri, Hidetake; Mizuno, Takeshi; Moriwaki, Takeshi; Ishibashi-Ueda, Hatsue; Yamanami, Masashi; Kanda, Keiichi; Yaku, Hitoshi; Nakayama, Yasuhide

    2015-02-01

    In this study, we aimed to describe the development of tissue-engineered self-expandable aortic stent grafts (Bio stent graft) using in-body tissue architecture technology in beagles and to determine its mechanical and histological properties. The preparation mold was assembled by insertion of an acryl rod (outer diameter, 8.6 mm; length, 40 mm) into a self-expanding nitinol stent (internal diameter, 9.0 mm; length, 35 mm). The molds (n = 6) were embedded into the subcutaneous pouches of three beagles for 4 weeks. After harvesting and removing each rod, the excessive fragile tissue connected around the molds was trimmed, and thus tubular autologous connective tissues with the stent were obtained for use as Bio stent grafts (outer diameter, approximately 9.3 mm in all molds). The stent strut was completely surrounded by the dense collagenous membrane (thickness, ∼150 µm). The Bio stent graft luminal surface was extremely flat and smooth. The graft wall of the Bio stent graft possessed an elastic modulus that was almost two times higher than that of the native beagle abdominal aorta. This Bio stent graft is expected to exhibit excellent biocompatibility after being implanted in the aorta, which may reduce the risk of type 1 endoleaks or migration. © 2014 Wiley Periodicals, Inc.

  14. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    Science.gov (United States)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  15. In vivo studies of peritendinous tissue in exercise

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, Henning; Skovgaard, D

    2000-01-01

    Soft tissue injury of tendons represents a major problem within sports medicine. Although several animal and cell culture studies have addressed this, human experiments have been limited in their ability to follow changes in specific tissue directly in response to interventions. Recently, methods...... have allowed for in vivo determination of tissue concentrations and release rates of substances involved in metabolism, inflammation and collagen synthesis, together with the measurement of tissue blood flow and oxygenation in the peritendinous region around the Achilles tendon in humans during...... exercise. This coincides with a surprisingly marked drop in tissue pressure during contraction. With regards to both circulation, metabolism and collagen formation, peritendinous tissue represents a dynamic, responsive region that adapts markedly to acute muscular activity....

  16. Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Amélie Sevin-Pujol

    Full Text Available Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to "classical" promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.

  17. The development of hyperhydric tissue on the stems of Sambucus nigra L.

    Directory of Open Access Journals (Sweden)

    Jadwiga A. Tarkowska

    2014-01-01

    Full Text Available Hyperhydric intumescences on the stems of Sambucus nigra arise in places where the stem lenticels are immersed in water. The hyperhydric tissue develops through the transformation of the multilayered phelloderm, the parenchyma of the cortex. endodermis and pericycle. The phellogen loses its meristematic properties and is either incorporated into the developing hyperhydric tissue or crushed. The succesive stages of hyperhydric changes which depend on the intense growth of cells and on the ability to devide acquired by them are presented.

  18. Implications of human tissue studies

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1986-10-01

    Through radiochemical analysis of voluntary tissue donations, the United States Transuranium and Uranium Registries are gaining improved understanding of the distribution and biokinetics of actinide elements in occupationally exposed persons. Evaluation of the first two whole body contributions to the Transuranium Registry revealed an inverse proportionality between actinide concentration and bone ash fraction. The analysis of a whole body with a documented 241 Am deposition indicated a significantly shorter half-time in liver and a greater fraction resident in the skeleton than predicted by existing models. Other studies of the Registries are designed to evaluate in vivo estimates of actinide deposition with those derived from postmortem tissue analysis, compare results of animal experiments with human data, and reviw histopathologic slides for tissue toxicity that might be attributable to exposure to uranium and the transuranic elements. The implications of these recent findings and other work of the Registries are discussed from the standpoint of their potential impact on biokinetic modeling, internal dose assessment, safety standards, and operational health physics practices

  19. Development, regulation, metabolism and function of bone marrow adipose tissues.

    Science.gov (United States)

    Li, Ziru; Hardij, Julie; Bagchi, Devika P; Scheller, Erica L; MacDougald, Ormond A

    2018-05-01

    Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold.

    Science.gov (United States)

    O'Leary, Cian; Cavanagh, Brenton; Unger, Ronald E; Kirkpatrick, C James; O'Dea, Shirley; O'Brien, Fergal J; Cryan, Sally-Ann

    2016-04-01

    Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with delamination occurring at stresses of 12-15 kPa. Crosslinked scaffolds had a compressive modulus of 1.9 kPa and mean pore diameters of 70 μm and 80 μm, depending on the freezing temperature. Histological analysis showed that the Calu-3 bronchial epithelial cell line attached and grew on CHyA-B with adoption of an epithelial monolayer on the film layer. Immunofluorescence and qRT-PCR studies demonstrated that the CHyA-B scaffolds facilitated Calu-3 cell differentiation, with enhanced mucin expression, increased ciliation and the formation of intercellular tight junctions. Co-culture of Calu-3 cells with Wi38 lung fibroblasts was achieved on the scaffold to create a submucosal tissue analogue of the upper respiratory tract, validating CHyA-B as a platform to support co-culture and cellular organisation reminiscent of in vivo tissue architecture. In summary, this study has demonstrated that CHyA-B is a promising tool for the development of novel 3D tracheobronchial co-culture in vitro models with the potential to unravel new pathways in drug discovery and drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Development and evaluation of a removable tissue-engineered muscle with artificial tendons.

    Science.gov (United States)

    Nakamura, Tomohiro; Takagi, Shunya; Kamon, Takafumi; Yamasaki, Ken-Ichi; Fujisato, Toshia

    2017-02-01

    Tissue-engineered skeletal muscles were potentially useful as physiological and biochemical in vitro models. Currently, most of the similar models were constructed without tendons. In this study, we aimed to develop a simple, highly versatile tissue-engineered muscle with artificial tendons, and to evaluate the contractile, histological and molecular dynamics during differentiation. C2C12 cells were embedded in a cold type-І collagen gel and placed between two artificial tendons on a silicone sheet. The construct shrank and tightly attached to the artificial tendons with differentiation, finally detaching from the silicone sheet within 1 week of culture onset. We successfully developed a tissue-engineered skeletal muscle with two artificial tendons from C2C12 myoblasts embedded in type-І collagen gel. The isometric twitch contractile force (TCF) significantly increased during differentiation. Time to Peak Tension (TPT) and Half-Relaxation Time (1/2RT) were significantly shortened during differentiation. Myogenic regulatory factors were maximally expressed at 2 weeks, and subsequently decreased at 3 weeks of culture. Histological analysis indicated that myotube formation increased markedly from 2 weeks and well-ordered sarcomere structures were observed on the surface of the 3D engineered muscle at 3 weeks of culture. These results suggested that robust muscle structure occurred by 3 weeks in the tissue-engineered skeletal muscle. Moreover, during the developmental process, the artificial tendons might contribute to well-ordered sarcomere formation. Our results indicated that this simple culture system could be used to evaluate the effects of various pharmacological and mechanical cues on muscle contractility in a variety of research areas. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Target tissue influences on cholinergic development of parasympathetic motor neurons

    International Nuclear Information System (INIS)

    Tuttle, J.B.; Pilar, G.

    1986-01-01

    The normal function of neurons in the nervous system depends upon the orderly formation and maintenance of appropriate connections with other neurons and with non-neural target tissues. Having formed an appropriate synapse, the authors attempt to find how the interaction influences the subsequent program of neuronal differentiation and survival. The studies were made on neurons from the avian ciliary ganglion and their terminals in the iris. Concomitantly in time with the shift from an embryonic, fatiguable junction to the mature, more secure transmission, there is a large change in the capacity for ACh synthesis measured using radiolableled substrate. Only at this point in development does one detect and increase in the amount of tritium-ACh synthesized from tritium-choline in response to a pre-conditioning depolarization. The studies of development in vivo have provided a description of the steps taking place during maturation of a neuromuscular junction

  3. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  4. Increased PDGFRα Activation Disrupts Connective Tissue Development and Drives Systemic Fibrosis

    OpenAIRE

    Olson, Lorin E.; Soriano, Philippe

    2009-01-01

    PDGF signaling regulates the development of mesenchymal cell types in the embryo and in the adult, but the role of receptor activation in tissue homeostasis has not been investigated. We have generated conditional knockin mice with mutations in PDGFRα that drive increased kinase activity under the control of the endogenous PDGFRα promoter. In embryos, increased PDGFRα signaling leads to hyperplasia of stromal fibroblasts that disturbs normal smooth muscle tissue in radially patterned organs. ...

  5. Finite element model to study temperature distribution in skin and deep tissues of human limbs.

    Science.gov (United States)

    Agrawal, Mamta; Pardasani, K R

    2016-12-01

    The temperature of body tissues is viewed as an indicator of tissue response in clinical applications since ancient times. The tissue temperature depends on various physical and physiological parameters like blood flow, metabolic heat generation, thermal conductivity of tissues, shape and size of organs etc. In this paper a finite element model has been proposed to study temperature distribution in skin and deep tissues of human limbs. The geometry of human limb is taken as elliptical tapered shape. It is assumed that outer surface of the limb is exposed to the environment. The appropriate boundary conditions have been framed based on physical conditions of the problem. The model has been developed for a three dimensional steady state case. Hexahedral circular sectoral elements are used to discretize the region. The results have been computed to obtain temperature profiles and study the relation of tissue temperature with the parameters like atmospheric temperature, rate of evaporation, thickness of tissues layers and shape of the limb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    Science.gov (United States)

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to

  7. Lung cancer development in patients with connective tissue disease-related interstitial lung disease: A retrospective observational study.

    Science.gov (United States)

    Enomoto, Yasunori; Inui, Naoki; Yoshimura, Katsuhiro; Nishimoto, Koji; Mori, Kazutaka; Kono, Masato; Fujisawa, Tomoyuki; Enomoto, Noriyuki; Nakamura, Yutaro; Iwashita, Toshihide; Suda, Takafumi

    2016-12-01

    Previous studies have reported that patients with idiopathic pulmonary fibrosis occasionally develop lung cancer (LC). However, in connective tissue disease (CTD)-related interstitial lung disease (ILD), there are few data regarding the LC development. The aim of the present study was to evaluate the clinical significance of LC development in patients with CTD-ILD. A retrospective review of our database of 562 patients with ILD between 2000 and 2014 identified 127 patients diagnosed with CTD-ILD. The overall and cumulative incidences of LC were calculated. In addition, the risk factors and prognostic impact of LC development were evaluated. The median age at the ILD diagnosis was 63 years (range 37-84 years), and 73 patients (57.5%) were female. The median follow-up period from the ILD diagnosis was 67.4 months (range 10.4-322.1 months). During the period, 7 out of the 127 patients developed LC (overall incidence 5.5%). The cumulative incidences at 1, 3, and 5 years were 0.0%, 1.8%, and 2.9%, respectively. The risk of LC development was significantly higher in patients with higher smoking pack-year (odds ratio [OR] 1.028; 95% confidence interval [CI] 1.008-1.049; P = 0.007) and emphysema on chest high-resolution computed tomography (OR 14.667; 95% CI 2.871-74.926; P = 0.001). The median overall survival time after developing LC was 7.0 months (95% CI 4.9-9.1 months), and the most common cause of death was LC, not ILD. According to the Cox proportional hazard model analysis with time-dependent covariates, patients who developed LC showed significantly poorer prognosis than those who did not (hazard ratio 87.86; 95% CI 19.56-394.67; P < 0.001). In CTD-ILD, clinicians should be careful with the risk of LC development in patients with a heavy smoking history and subsequent emphysema. Although not so frequent, the complication could be a poor prognostic determinant.

  8. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    Science.gov (United States)

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  9. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  10. Are brain and heart tissue prone to the development of thiamine deficiency?

    NARCIS (Netherlands)

    Klooster, Astrid; Larkin, James R.; Wiersema-Buist, Janneke; Gans, Reinold O. B.; Thornalley, Paul J.; Navis, Gerjan; van Goor, Harry; Leuvenink, Henri G. D.; Bakker, Stephan J. L.

    Thiamine deficiency is a continuing problem leading to beriberi and Wernicke's encephalopathy. The symptoms of thiamine deficiency develop in the heart, brain and neuronal tissue. Yet, it is unclear how rapid thiamine deficiency develops and which organs are prone to development of thiamine

  11. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    Full Text Available NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes as well as in the regulation of embryonic development and aging. To fluorimetrically assess the mitochondrial redox state, Dr. Chance and co-workers measured the fluorescence of NADH and oxidized flavoproteins (Fp including flavin–adenine–dinucleotide (FAD and demonstrated their ratio (i.e. the redox ratio is a sensitive indicator of the mitochondrial redox states. The Chance redox scanner was built to simultaneously measure NADH and Fp in tissue at submillimeter scale in 3D using the freeze-trap protocol. This paper summarizes our recent research experience, development and new applications of the redox scanning technique in collaboration with Dr. Chance beginning in 2005. Dr. Chance initiated or actively involved in many of the projects during the last several years of his life. We advanced the redox scanning technique by measuring the nominal concentrations (in reference to the frozen solution standards of the endogenous fluorescent analytes, i.e., [NADH] and [Fp] to quantify the redox ratios in various biological tissues. The advancement has enabled us to identify an array of the redox indices as quantitative imaging biomarkers (including [NADH], [Fp], [Fp]/([NADH]+[Fp], [NADH]/[Fp], and their standard deviations for studying some important biological questions on cancer and normal tissue metabolism. We found that the redox indices were associated or changed with (1 tumorigenesis (cancer versus non-cancer of human breast tissue biopsies; (2 tumor metastatic potential; (3 tumor glucose uptake; (4 tumor p53 status; (5 PI3K pathway activation in pre-malignant tissue; (6 therapeutic effects on tumors; (7 embryonic stem cell differentiation; (8 the heart under fasting. Together, our work demonstrated that the tissue redox indices obtained from the redox scanning technique may provide useful information about tissue metabolism and physiology status in normal

  12. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering

    DEFF Research Database (Denmark)

    Wenger, Andreas; Kowalewski, Nadja; Stahl, Andreas

    2005-01-01

    Neovascularization is a critical step in tissue engineering applications since implantation of voluminous grafts without sufficient vascularity results in hypoxic cell death of central tissues. We have developed a three-dimensional spheroidal coculture system consisting of human umbilical vein...... endothelial cells (HUVECs) and human primary fibroblasts (hFBs) to improve angiogenesis in tissue engineering applications. Morphological analysis of cryosections from HUVEC/hFB cospheroids revealed a characteristic temporal and spatial organization with HUVECs located in the center of the cospheroid...... to the formation of heterogenic cell contacts between HUVECs and hFBs within the cospheroid. The model system introduced in this study is suitable for the development of a preformed lumenized capillary-like network ex vivo and may therefore be useful for improving angiogenesis in in vivo tissue engineering...

  13. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    Science.gov (United States)

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  14. Phytophthora ramorum tissue colonization studied with fluorescense microscopy

    Science.gov (United States)

    M. Riedel; S. Wagner; M. Gotz; L. Belbahri; F. Lefort; S. Werres

    2009-01-01

    The proceeding worldwide spread and the expanding host spectrum of P. ramorum has become a serious threat to natural plant communities. To encounter this threat detailed knowledge about infection pathways and tissue colonization is essential. To analyze these issues, histological studies of infected tissue with epifluorescence microscopy have been...

  15. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  16. Analysis of biological tissues in infant chest for the development of an equivalent radiographic phantom

    International Nuclear Information System (INIS)

    Pina, D. R.; Souza, Rafael T. F.; Duarte, Sergio B.; Alvarez, Matheus; Miranda, Jose R. A.

    2012-01-01

    Purpose: The main purpose of the present study was to determine the amounts of different tissues in the chest of the newborn patient (age ≤1 year), with the aim of developing a homogeneous phantom chest equivalent. This type of phantom is indispensable in the development of optimization procedures for radiographic techniques, including dosimetric control, which is a crucial aspect of pediatric radiology. The authors present a systematic set of procedures, including a computational algorithm, to estimate the amounts of tissues and thicknesses of the corresponding simulator material plates used to construct the phantom. Methods: The Gaussian fit of computed tomographic (CT) analysis was applied to classify and quantify different biological tissues. The methodology is summarized with a computational algorithm, which was used to quantify tissues through automated CT analysis. The thicknesses of the equivalent homogeneous simulator material plates were determined to construct the phantom. Results: A total of 180 retrospective CT examinations with anterior-posterior diameter values ranging 8.5-13.0 cm were examined. The amounts of different tissues were evaluated. The results provided elements to construct a phantom to simulate the infant chest in the posterior-anterior or anterior-posterior (PA/AP) view. Conclusions: To our knowledge, this report represents the first demonstration of an infant chest phantom dedicated to the radiology of children younger than one year. This phantom is a key element in the development of clinical charts for optimizing radiographic technique in pediatric patients. Optimization procedures for nonstandard patients were reported previously [Pina et al., Phys. Med. Biol. 49, N215-N226 (2004) and Pina et al., Appl. Radiat. Isot. 67, 61-69 (2009)]. The constructed phantom represents a starting point to obtain radiologic protocols for the infant patient.

  17. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Directory of Open Access Journals (Sweden)

    Kamila Wojciechowicz

    Full Text Available The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16 the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis, under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  18. Tissue engineering and surgery: from translational studies to human trials

    Directory of Open Access Journals (Sweden)

    Vranckx Jan Jeroen

    2017-06-01

    Full Text Available Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.

  19. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  20. Correlation study of trace metals in malignant and normal breast tissues by AAS technique

    International Nuclear Information System (INIS)

    Rahman, S.

    2012-01-01

    The study reports the application of atomic absorption spectrophotometry (AAS) for quantification of Fe, Cu and Zn in forty one formalin-fixed biopsy breast carcinoma tissue and adjoining fifteen normal tissue samples. These tissues samples were of category two breast carcinoma patients and of normal subjects. The qualitative comparison between the elements levels measured in the two types of specimens suggests significant elevation of these metals in the histopathological samples of carcinoma tissue. The samples were collected from women aged 19-51 years. Most of the patients belong to urban areas of Pakistan and middle to high socioeconomic status with the exception of few. Findings of study depicts that these elements have an important role in the initiation and development of carcinoma as consistent pattern of elevation for Fe, Cu and Zn was observed. The results showed the excessive accumulation of Fe (166.9 mg/L) in tissue samples of breast carcinoma patients (p < 0.01) than that in normal tissues samples (23.5 mg/L). In order to validate our method of analysis certified reference material Muscle Tissue Lyophilised (IAEA) MA-M-2/TM was analyzed for Fe, Cu and Zn. Determined concentrations were in good agreement with certified levels. The concentration distribution of trace elements Cu, Zn and Fe measured in the malignant tissues were found to be higher when compared to benign tissues, indicating the involvement of these metals in the breast malignancy. Results also indicate that excess iron may play a role in breast carcinogenesis. (Orig./A.B.)

  1. Heads and tails of endoderm development and adult tissue homeostasis in zebrafish

    NARCIS (Netherlands)

    Faro, A.

    2010-01-01

    The regulatory signaling pathways crucial during embryonic development seem to play key roles in adult tissues homeostasis and are often deregulated in pathological conditions. The Wnt pathway plays a pivotal role in orchestrating cell fate decisions during embryonic development, organogenesis, and

  2. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    International Nuclear Information System (INIS)

    Samet, J.; Gilliland, F.D.

    1998-01-01

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors

  3. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Samet, J.; Gilliland, F.D.

    1998-08-13

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

  4. Joint use of developed collagen-containing complexes and cell cultures in creating new tissue equivalents

    Directory of Open Access Journals (Sweden)

    K. V. Kulakova

    2016-01-01

    Full Text Available The purpose of the study is to assess the possibility of applying the integrated module as the basis of a celltissue equivalent for treatment of wounds of skin and soft tissues. In the frame of the set task the following problems were being solved: research of the spatial structure and architectonics of the surface of the developed base collagen-containing materials and their biocompatibility with cell cultures.Materials and methods. The study of a material which is a two-layer complex film, consisting of collagen and polysaccharide components was carried out. The collagen was separated from the dermis and was then impregnated with particulate demineralized bone matrix (DCM according to the original methodology. For the purposes of the study the dehydrated material was created in the form of a film. Electron microscopic examination of surfaces was performed on scanning electron microscope JEOL JSM-IT300LV in high vacuum and at low values of probe current (< 0,1 nА. Studies to assess the viability of the cells cultivated on films of collagen material (tested for cytotoxicity and the adhesive capacity were performed in vitro using strains of diploid human fibroblasts 4–6 passage. The culture condition was visually assessed using an inverted Leica microscope DM IL (Carl Zeiss, Austria, equipped with a computerizes program of control of culture growth (Leica IM 1000.Results. The data obtained in the study of the surface structure of the developed complex module showed that it seems to be promising as a basic component of the cellular-tissue system with its large number of structural formations for fixation of the cells and a well-organized barrier layer capable of vapor - permeability. Experiments in vitro confirmed the absence of toxicity of the material being studied in relation to the culture of dermal human fibroblasts, suggesting the possibility of creation on its basis of cell-tissue complex and further experimental studies in vivo

  5. Breast tissue classification in digital breast tomosynthesis images using texture features: a feasibility study

    Science.gov (United States)

    Kontos, Despina; Berger, Rachelle; Bakic, Predrag R.; Maidment, Andrew D. A.

    2009-02-01

    Mammographic breast density is a known breast cancer risk factor. Studies have shown the potential to automate breast density estimation by using computerized texture-based segmentation of the dense tissue in mammograms. Digital breast tomosynthesis (DBT) is a tomographic x-ray breast imaging modality that could allow volumetric breast density estimation. We evaluated the feasibility of distinguishing between dense and fatty breast regions in DBT using computer-extracted texture features. Our long-term hypothesis is that DBT texture analysis can be used to develop 3D dense tissue segmentation algorithms for estimating volumetric breast density. DBT images from 40 women were analyzed. The dense tissue area was delineated within each central source projection (CSP) image using a thresholding technique (Cumulus, Univ. Toronto). Two (2.5cm)2 ROIs were manually selected: one within the dense tissue region and another within the fatty region. Corresponding (2.5cm)3 ROIs were placed within the reconstructed DBT images. Texture features, previously used for mammographic dense tissue segmentation, were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance. Different texture features appeared to perform best in the 3D reconstructed DBT compared to the 2D CSP images. Fractal dimension was superior in DBT (AUC=0.90), while contrast was best in CSP images (AUC=0.92). We attribute these differences to the effects of tissue superimposition in CSP and the volumetric visualization of the breast tissue in DBT. Our results suggest that novel approaches, different than those conventionally used in projection mammography, need to be investigated in order to develop DBT dense tissue segmentation algorithms for estimating volumetric breast density.

  6. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  7. Development of radioimmunoassay for pantothenic acid in biological tissues

    International Nuclear Information System (INIS)

    Wyse, B.W.

    1977-01-01

    The purpose of this research was to develop a radioimmunoassay for quantitating pantothenic acid levels in biological tissues and to compare the new method with a microbiological procedure. Since pantothenic acid is a nonantigenic compound with a small molecular weight, it was treated as a hapten and conjugated with an immunogenic protein. A new technique for covalently linking haptens with primary alcohol groups to proteins was developed. To prepare an antiserum for the radioimmunoassay, pantothenic acid-bovine serum albumin antigen was injected into the foot pads of rabbits. As antibodies to pantothenic acid hapten were elicited they were characterized using three classical techniques: ring precipitant test, gel diffusion (Ouchterlony), and skin test (Arthus). For the radioimmunoassay an appropriate dilution of antiserum was incubated in the presence of tritium labeled pantothenic acid and non-radioactive pantothenic acid for the standard curve or tissue extracts containing pantothenic acid. After incubation overnight, the antibodies were precipitated and solubilized and the radioactivity was counted in a liquid scintillation counter. Blood pantothenic acid levels of sixty-eight senior citizens were determined by the radioimmunoassay and by microbiological assay with Lactobacillus plantarum. A highly significant correlation was found between the two assays

  8. Mechanics of needle-tissue interaction

    NARCIS (Netherlands)

    Roesthuis, Roy; van Veen, Youri; Jahya, Alex; Misra, Sarthak

    2011-01-01

    When a needle is inserted into soft tissue, interac- tion forces are developed at the needle tip and along the needle shaft. The needle tip force is due to cutting of the tissue, and the force along the needle shaft is due to friction between needle and tissue. In this study, the friction force is

  9. Access and use of human tissues from the developing world: ethical challenges and a way forward using a tissue trust

    Science.gov (United States)

    2011-01-01

    Background Scientists engaged in global health research are increasingly faced with barriers to access and use of human tissues from the developing world communities where much of their research is targeted. In part, the problem can be traced to distrust of researchers from affluent countries, given the history of 'scientific-imperialism' and 'biocolonialism' reflected in past well publicized cases of exploitation of research participants from low to middle income countries. Discussion To a considerable extent, the failure to adequately engage host communities, the opacity of informed consent, and the lack of fair benefit-sharing have played a significant role in eroding trust. These ethical considerations are central to biomedical research in low to middle income countries and failure to attend to them can inadvertently contribute to exploitation and erode trust. A 'tissue trust' may be a plausible means for enabling access to human tissues for research in a manner that is responsive to the ethical challenges considered. Summary Preventing exploitation and restoring trust while simultaneously promoting global health research calls for innovative approaches to human tissues research. A tissue trust can reduce the risk of exploitation and promote host capacity as a key benefit. PMID:21266076

  10. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Heber, Elisa M.; Itoiz, Maria E.; Molinari, Ana J.; Garabalino, Marcela A.; Trivillin, Veronica A.; Schwint, Amanda E.; Aromando, Romina F.

    2009-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na 2 10 B 10 H 10 ) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB

  11. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Boerboom, R.A.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of

  12. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    Science.gov (United States)

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  13. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications

    Directory of Open Access Journals (Sweden)

    Hui Xie

    2016-05-01

    Full Text Available One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering.

  14. Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus.

    Science.gov (United States)

    Richardson, Victoria R; Smith, Kerrie A; Carter, Angela M

    2013-12-01

    The global increase in obesity-induced type 2 diabetes (T2DM) represents a burden for healthcare systems worldwide. Of particular concern is the increased morbidity associated with T2DM, in particular cardiovascular disease (CVD), leading to premature death. Obesity initially leads to the development of insulin resistance in adipose and other tissues. Insulin resistance is initially compensated by increased insulin secretion but ultimately insufficient insulin is produced and this leads to the development of T2DM. Understanding the causal mechanisms underpinning the development of obesity-induced insulin resistance may be beneficial in improving quality of life and life expectancy, with the potential for a major global impact on healthcare systems. There is abundant evidence from animal, human studies and in vitro studies to support functional roles for a number of inflammatory factors in obesity-induced insulin resistance. In this review we provide an overview of the evidence supporting a fundamental role for the fluid phase (in particular the complement system) and the cellular components of the innate immune system in the pathogenesis of obesity-induced insulin resistance and ultimately development of T2DM. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Study on rapid propagation of Zanhuang Chinese jujube by tissue culture

    International Nuclear Information System (INIS)

    Li Yun; Wang Yu; Tian Yanting

    2002-01-01

    Zanhuang jujube is a very precious and rare variety of Chinese jujube. Its development was restricted by the under-developed propagate technique in history. The rapid propagation by tissue culture was studied and the optimum media were screened out. Through studying the condition of initial, proliferating, acclimatizing and rooting culture, 4 media, MS +6-BA 0.5 mg/L+IBA 0.1 mg/L, MS+6-BA 1.5 mg/L+IBA 0.1-0.2 mg/L, MS+KT 0.5 mg/L+NAA 0.2 mg/L and 1/2 MS+IBA 0.6 mg/L+NAA 0.2-0.3 mg/L were selected respectively

  16. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    Science.gov (United States)

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample

  17. Generation of monoclonal antibodies and development of an immunofluorometric assay for the detection of CUZD1 in tissues and biological fluids.

    Science.gov (United States)

    Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M

    2017-12-01

    CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. A probable risk factor of female breast cancer: study on benign and malignant breast tissue samples.

    Science.gov (United States)

    Rehman, Sohaila; Husnain, Syed M

    2014-01-01

    The study reports enhanced Fe, Cu, and Zn contents in breast tissues, a probable risk factor of breast cancer in females. Forty-one formalin-fixed breast tissues were analyzed using atomic absorption spectrophotometry. Twenty malignant, six adjacent to malignant and 15 benign tissues samples were investigated. The malignant tissues samples were of grade 11 and type invasive ductal carcinoma. The quantitative comparison between the elemental levels measured in the two types of specimen (benign and malignant) tissues (removed after surgery) suggests significant elevation of these metals (Fe, Cu, and Zn) in the malignant tissue. The specimens were collected just after mastectomy of women aged 19 to 59 years from the hospitals of Islamabad and Rawalpindi, Pakistan. Most of the patients belong to urban areas of Pakistan. Findings of study depict that these elements have a promising role in the initiation and development of carcinoma as consistent pattern of elevation for Fe, Cu, and Zn was observed. The results showed the excessive accumulation of Fe (229 ± 121 mg/L) in malignant breast tissue samples of patients (p factor of breast cancer. In order to validate our method of analysis, certified reference material muscle tissue lyophilized (IAEA) MA-M-2/TM was analyzed for metal studied. Determined concentrations were quite in good agreement with certified levels. Asymmetric concentration distribution for Fe, Cu, and Zn was observed in both malignant and benign tissue samples.

  19. A mathematical model for fluid shear-sensitive 3D tissue construct development.

    Science.gov (United States)

    Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai

    2013-01-01

    This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

  20. Microgravity cultivation of cells and tissues

    Science.gov (United States)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  1. Glucose diffusion in colorectal mucosa—a comparative study between normal and cancer tissues

    Science.gov (United States)

    Carvalho, Sónia; Gueiral, Nuno; Nogueira, Elisabete; Henrique, Rui; Oliveira, Luís; Tuchin, Valery V.

    2017-09-01

    Colorectal carcinoma is a major health concern worldwide and its high incidence and mortality require accurate screening methods. Following endoscopic examination, polyps must be removed for histopathological characterization. Aiming to contribute to the improvement of current endoscopy methods of colorectal carcinoma screening or even for future development of laser treatment procedures, we studied the diffusion properties of glucose and water in colorectal healthy and pathological mucosa. These parameters characterize the tissue dehydration and the refractive index matching mechanisms of optical clearing (OC). We used ex vivo tissues to measure the collimated transmittance spectra and thickness during treatments with OC solutions containing glucose in different concentrations. These time dependencies allowed for estimating the diffusion time and diffusion coefficient values of glucose and water in both types of tissues. The measured diffusion times for glucose in healthy and pathological mucosa samples were 299.2±4.7 s and 320.6±10.6 s for 40% and 35% glucose concentrations, respectively. Such a difference indicates a slower glucose diffusion in cancer tissues, which originate from their ability to trap far more glucose than healthy tissues. We have also found a higher free water content in cancerous tissue that is estimated as 64.4% instead of 59.4% for healthy mucosa.

  2. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    Science.gov (United States)

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  3. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears.

    Science.gov (United States)

    Bochyńska, A I; Van Tienen, T G; Hannink, G; Buma, P; Grijpma, D W

    2016-03-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study, a series of amphiphilic copolymers based on polyethylene glycol, trimethylene carbonate and citric acid were synthesized and subsequently end-functionalized with hexamethylene diisocyanate to form reactive adhesive materials. The shear adhesive strength of the networks to bovine meniscus tissue measured in a lap-shear adhesion test ranged between 20 and 80 kPa, which was better than for fibrin glue (10 kPa). The elastic modulus of the networks depended on composition and was in the same range as that of human meniscus. Cell compatibility was assessed using Alamar Blue staining after incubation of the bovine meniscus cells with different concentrations of the glues for 7 days. Cell viability was not affected after adding up to 3mg of the adhesive/mL of medium. The proposed materials are suitable candidates to be used as resorbable tissue adhesives for meniscus repair. They have excellent mechanical and adhesive properties that can be adjusted by varying the composition of the copolymers. Meniscal tears often occur and current treatment strategies do not bring fully satisfactory results. Use of biodegradable tissue adhesives would be an interesting option, but currently available adhesives are not suited due to toxicity or poor mechanical properties. Here, we describe the development of novel biodegradable, hyper-branched, adhesive copolymers. These adhesives cure upon contact with water forming flexible networks. Their adhesion to bovine meniscus tissue was significantly better than that of clinically used fibrin glue. The tensile properties of the cured networks were in the same range of values of the human meniscus. When physiologically relevant amounts were added to

  4. Tissue integration of polyacrylamide hydrogel: an experimental study of periurethral, perivesical, and mammary gland tissue in the pig

    DEFF Research Database (Denmark)

    Christensen, Lise H; Nielsen, John B; Mouritsen, Lone

    2008-01-01

    BACKGROUND Polyacrylamide hydrogel (PAAG) is a nondegradable water-based polymer with high viscoelasticity. The gel is used as a tissue filler, the only risk being prolonged infection with anaerobic, contaminating microorganisms if not treated early with broad-spectrum antibiotics. OBJECTIVE...... With silicone gel as reference, PAAG tissue integration and migration was studied in a longitudinal study of the pig. MATERIALS AND METHODS Forty-one pigs were used. PAAG and silicone gel were injected into mammary tissue, and PAAG was injected into urethral or bladder wall or the anal canal. Tissues...... and regional lymph nodes were examined at 1, 1 1/2, 3, 3 1/2, 6, 12, and 14 months, and other lymph nodes and organs were examined at 1, 6, 12, and 14 months. RESULTS PAAG was invaded by macrophages and giant cells that were gradually replaced by a network of fibrous tissue. Silicone gel was seen inside...

  5. Emergent material properties of developing epithelial tissues.

    Science.gov (United States)

    Machado, Pedro F; Duque, Julia; Étienne, Jocelyn; Martinez-Arias, Alfonso; Blanchard, Guy B; Gorfinkiel, Nicole

    2015-11-23

    Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. Our results show that in an epithelial

  6. A new nonlinear parameter in the developed strain-to-applied strain of the soft tissues and its application in ultrasound elasticity imaging.

    Science.gov (United States)

    Xu, Jingping; Tripathy, Sakya; Rubin, Jonathan M; Stidham, Ryan W; Johnson, Laura A; Higgins, Peter D R; Kim, Kang

    2012-03-01

    Strain developed under quasi-static deformation has been mostly used in ultrasound elasticity imaging (UEI) to determine the stiffness change of tissues. However, the strain measure in UEI is often less sensitive to a subtle change of stiffness. This is particularly true for Crohn's disease where we have applied strain imaging to the differentiation of acutely inflamed bowel from chronically fibrotic bowel. In this study, a new nonlinear elastic parameter of the soft tissues is proposed to overcome this limit. The purpose of this study is to evaluate the newly proposed method and demonstrate its feasibility in the UEI. A nonlinear characteristic of soft tissues over a relatively large dynamic range of strain was investigated. A simplified tissue model based on a finite element (FE) analysis was integrated with a laboratory developed ultrasound radio-frequency (RF) signal synthesis program. Two-dimensional speckle tracking was applied to this model to simulate the nonlinear behavior of the strain developed in a target inclusion over the applied average strain to the surrounding tissues. A nonlinear empirical equation was formulated and optimized to best match the developed strain-to-applied strain relation obtained from the FE simulation. The proposed nonlinear equation was applied to in vivo measurements and nonlinear parameters were further empirically optimized. For an animal model, acute and chronic inflammatory bowel disease was induced in Lewis rats with trinitrobenzene sulfonic acid (TNBS)-ethanol treatments. After UEI, histopathology and direct mechanical measurements were performed on the excised tissues. The extracted nonlinear parameter from the developed strain-to-applied strain relation differentiated the three different tissue types with 1.96 ± 0.12 for normal, 1.50 ± 0.09 for the acutely inflamed and 1.03 ± 0.08 for the chronically fibrotic tissue. T-tests determined that the nonlinear parameters between normal, acutely inflamed and fibrotic tissue

  7. Development of a data entry auditing protocol and quality assurance for a tissue bank database.

    Science.gov (United States)

    Khushi, Matloob; Carpenter, Jane E; Balleine, Rosemary L; Clarke, Christine L

    2012-03-01

    Human transcription error is an acknowledged risk when extracting information from paper records for entry into a database. For a tissue bank, it is critical that accurate data are provided to researchers with approved access to tissue bank material. The challenges of tissue bank data collection include manual extraction of data from complex medical reports that are accessed from a number of sources and that differ in style and layout. As a quality assurance measure, the Breast Cancer Tissue Bank (http:\\\\www.abctb.org.au) has implemented an auditing protocol and in order to efficiently execute the process, has developed an open source database plug-in tool (eAuditor) to assist in auditing of data held in our tissue bank database. Using eAuditor, we have identified that human entry errors range from 0.01% when entering donor's clinical follow-up details, to 0.53% when entering pathological details, highlighting the importance of an audit protocol tool such as eAuditor in a tissue bank database. eAuditor was developed and tested on the Caisis open source clinical-research database; however, it can be integrated in other databases where similar functionality is required.

  8. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  9. The effect of hard tissue surgical changes on soft tissue displacement: a pilot CBCT study

    Directory of Open Access Journals (Sweden)

    Leonardo Koerich

    Full Text Available ABSTRACT Introduction: This pilot study had as main objective to test the reliability of a new method to evaluate orthognathic surgery outcomes and also, to understand the effect of hard tissue changes on soft tissue displacement. Methods: The sample consisted of eight patients that underwent bimaxillary advancement and had CBCT at two time points (before surgery and 6-8 months follow-up. Voxel-based cranial base superimposition was used to register the scans. A different technique of iterative closest point (ICP was used to measure and correlate the changes. The average displacement of 15 areas (4 hard tissue and 11 soft tissue were measured twice. Results: ICC was > 0.99 for all areas. Changes in the tip of the nose did not correlate with changes in any maxillary area, whereas soft tissue A point, A point and upper lips had correlation with several areas. The highest correlation for the maxilla was between the upper lip and the left/right supra cheilion (p< 0.001, r= 0.91 and p< 0.001, r= 0.93, respectively. In the mandible, the majority of the correlations involved soft tissue pogonion, pogonion and lower incisors, with the strongest one between pogonion and lower incisors (p< 0.001, r= 0.98. Conclusion: With the proper case selection, ICP is a reliable method that can be used to assess three-dimensional changes.

  10. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development.

    Science.gov (United States)

    Sun, Hao; Lagarrigue, Frederic; Gingras, Alexandre R; Fan, Zhichao; Ley, Klaus; Ginsberg, Mark H

    2018-04-02

    Integrin activation regulates adhesion, extracellular matrix assembly, and cell migration, thereby playing an indispensable role in development and in many pathological processes. A proline mutation in the central integrin β3 transmembrane domain (TMD) creates a flexible kink that uncouples the topology of the inner half of the TMD from the outer half. In this study, using leukocyte integrin α4β7, which enables development of gut-associated lymphoid tissue (GALT), we examined the biological effect of such a proline mutation and report that it impairs agonist-induced talin-mediated activation of integrin α4β7, thereby inhibiting rolling lymphocyte arrest, a key step in transmigration. Furthermore, the α4β7(L721P) mutation blocks lymphocyte homing to and development of the GALT. These studies show that impairing the ability of an integrin β TMD to transmit talin-induced TMD topology inhibits agonist-induced physiological integrin activation and biological function in development. © 2018 Sun et al.

  11. A scalable platform for biomechanical studies of tissue cutting forces

    International Nuclear Information System (INIS)

    Valdastri, P; Tognarelli, S; Menciassi, A; Dario, P

    2009-01-01

    This paper presents a novel and scalable experimental platform for biomechanical analysis of tissue cutting that exploits a triaxial force-sensitive scalpel and a high resolution vision system. Real-time measurements of cutting forces can be used simultaneously with accurate visual information in order to extract important biomechanical clues in real time that would aid the surgeon during minimally invasive intervention in preserving healthy tissues. Furthermore, the in vivo data gathered can be used for modeling the viscoelastic behavior of soft tissues, which is an important issue in surgical simulator development. Thanks to a modular approach, this platform can be scaled down, thus enabling in vivo real-time robotic applications. Several cutting experiments were conducted with soft porcine tissues (lung, liver and kidney) chosen as ideal candidates for biopsy procedures. The cutting force curves show repeated self-similar units of localized loading followed by unloading. With regards to tissue properties, the depth of cut plays a significant role in the magnitude of the cutting force acting on the blade. Image processing techniques and dedicated algorithms were used to outline the surface of the tissues and estimate the time variation of the depth of cut. The depth of cut was finally used to obtain the normalized cutting force, thus allowing comparative biomechanical analysis

  12. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    Science.gov (United States)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  13. Fibrovascular tissue in bilateral juxtafoveal telangiectasis.

    Science.gov (United States)

    Park, D; Schatz, H; McDonald, H R; Johnson, R N

    1996-09-01

    To study the natural history and retinal findings associated with the intraretinal and subretinal fibrovascular tissues that develop in the late phases of bilateral juxtafoveal telangiectasis. The records of 10 patients (11 eyes) with bilateral juxtafoveal telangiectasis who developed these fibrovascular tissues were examined. Throughout the follow-up period (average 44 months), only 2 eyes (18%) lost 2 or more lines of vision; the final visual acuities were similar for the eyes both with and without fibrovascular tissues. Sixty-four percent of fibrovascular tissues showed little to no growth. Eyes with fibrovascular tissue commonly had retinal pigment epithelial hyperplasia (72%), draining retinal venules (82%), and retinal vascular distortion (64%). Fibrovascular tissues of bilateral juxtafoveal telangiectasis have little proliferative potential and minimal effects on visual acuity. Nevertheless, these fibrovascular tissues do remodel over time, leading to retinal vascular distortion. Given these benign findings, the role of laser photocoagulation treatment of these tissues is questionable.

  14. Clinical pilot study for the automatic segmentation and recognition of abdominal adipose tissue compartments from MRI data

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P.B.; Bauer, J.S.; Ganter, C.; Markus, C.; Rummeny, E.J.; Engels, H.P. [Klinikum rechts der Isar, Technische Univ. Muenchen (Germany). Inst. fuer Radiologie; Hauner, H. [Klinikum rechts der Isar, Technische Univ. Muenchen (Germany). Else Kroener-Fresenius-Center for Nutritional Medicine

    2012-06-15

    Purpose: In the diagnosis and risk assessment of obesity, both the amount and distribution of adipose tissue compartments are critical factors. We present a hybrid method for the quantitative measurement of human body fat compartments. Materials and Methods: MRI imaging was performed on a 1.5 T scanner. In a pre-processing step, the images were corrected for bias field inhomogeneity. For segmentation and recognition a hybrid algorithm was developed to automatically differentiate between different adipose tissue compartments. The presented algorithm is designed with a combination of shape and intensity-based techniques. To incorporate the presented algorithm into the clinical routine, we developed a graphical user interface. Results from our methods were compared with the known volume of an adipose tissue phantom. To evaluate our method, we analyzed 40 clinical MRI scans of the abdominal region. Results: Relatively low segmentation errors were found for subcutaneous adipose tissue (3.56 %) and visceral adipose tissue (0.29 %) in phantom studies. The clinical results indicated high correlations between the distribution of adipose tissue compartments and obesity. Conclusion: We present an approach that rapidly identifies and quantifies adipose tissue depots of interest. With this method examination and analysis can be performed in a clinically feasible timeframe. (orig.)

  15. Clinical pilot study for the automatic segmentation and recognition of abdominal adipose tissue compartments from MRI data

    International Nuclear Information System (INIS)

    Noel, P.B.; Bauer, J.S.; Ganter, C.; Markus, C.; Rummeny, E.J.; Engels, H.P.; Hauner, H.

    2012-01-01

    Purpose: In the diagnosis and risk assessment of obesity, both the amount and distribution of adipose tissue compartments are critical factors. We present a hybrid method for the quantitative measurement of human body fat compartments. Materials and Methods: MRI imaging was performed on a 1.5 T scanner. In a pre-processing step, the images were corrected for bias field inhomogeneity. For segmentation and recognition a hybrid algorithm was developed to automatically differentiate between different adipose tissue compartments. The presented algorithm is designed with a combination of shape and intensity-based techniques. To incorporate the presented algorithm into the clinical routine, we developed a graphical user interface. Results from our methods were compared with the known volume of an adipose tissue phantom. To evaluate our method, we analyzed 40 clinical MRI scans of the abdominal region. Results: Relatively low segmentation errors were found for subcutaneous adipose tissue (3.56 %) and visceral adipose tissue (0.29 %) in phantom studies. The clinical results indicated high correlations between the distribution of adipose tissue compartments and obesity. Conclusion: We present an approach that rapidly identifies and quantifies adipose tissue depots of interest. With this method examination and analysis can be performed in a clinically feasible timeframe. (orig.)

  16. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  17. Implications of human tissue studies for radiation protection

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1988-01-01

    Through radiochemical analysis of voluntary tissue donations, the U.S. Transuranium and Uranium Registries (USTR) are gaining improved understanding of the distribution and biokinetics of actinide elements in occupationally exposed persons. Evaluation of the first two whole-body contributions to the USTR revealed an inverse proportionality between actinide concentration and bone ash. The analysis of a whole body with significant 241 Am deposition indicated a significantly shorter half-time in liver and a greater fraction resident in the skeleton than predicted by existing models. Other studies with tissues obtained at autopsy suggest that existing biokinetic models for 238 Pu and 241 Am and the currently accepted models and limits on intake, which use these models as their basis, may be inaccurately implying that revisions of existing safety standards may be necessary. Other studies of the registries are designed to evaluate in-vivo estimates of actinide deposition with those derived from postmortem tissue analysis, to compare results of animal experiments with human data, and to review histopathologic slides for tissue changes that might be attributable to exposure to transuranic elements. The implications of these recent findings and other work of the registries is discussed from the standpoint of this potential effect on biokinetic modeling, internal dose assessment, and safety standards and operational health physics practices

  18. Implications of human tissue studies for radiation protection.

    Science.gov (United States)

    Kathren, R L

    1988-08-01

    Through radiochemical analysis of voluntary tissue donations, the U.S. Transuranium and Uranium Registries (USTR) are gaining improved understanding of the distribution and biokinetics of actinide elements in occupationally exposed persons. Evaluation of the first two whole-body contributions to the USTR revealed an inverse proportionality between actinide concentration and bone ash. The analysis of a whole body with significant 241Am deposition indicated a significantly shorter half-time in liver and a greater fraction resident in the skeleton than predicted by existing models. Other studies with tissues obtained at autopsy suggest that existing biokinetic models for 238Pu and 241Am and the currently accepted models and limits on intake, which use these models as their basis, may be inaccurately implying that revisions of existing safety standards may be necessary. Other studies of the registries are designed to evaluate in-vivo estimates of actinide deposition with those derived from postmortem tissue analysis, to compare results of animal experiments with human data, and to review histopathologic slides for tissue changes that might be attributable to exposure to transuranic elements. The implications of these recent findings and other work of the registries is discussed from the standpoint of this potential effect on biokinetic modeling, internal dose assessment, and safety standards and operational health physics practices.

  19. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: new developments and challenges.

    Science.gov (United States)

    Finosh, G T; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed.

  20. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    Science.gov (United States)

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  1. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    Science.gov (United States)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  2. Determination of 6258-70, a new semi-synthetic taxane, in rat plasma and tissues: Application to the pharmacokinetics and tissue distribution study

    Directory of Open Access Journals (Sweden)

    Simin Zhao

    2016-08-01

    Full Text Available Cancer is the leading cause of death all over the world. Among the chemotherapy drugs, taxanes play an important role in cancer treatment. 6258-70 is a new semi-synthetic taxane which has a broad spectrum of antitumor activity. A fast and reliable high performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS method was developed for quantification of 6258-70 in rat plasma and tissues in this paper. After extraction by liquid-liquid extraction method with methyl tert-butyl ether, the samples were separated on a Kinetex C18 column (50 mm×2.1 mm, 2.6 µm, Phenomenex, USA within 3 min. The method was fully validated with the matrix effect between 87.7% and 99.5% and the recovery ranging from 80.3% to 90.1%. The intra- and inter-day precisions were less than 9.5% and the accuracy ranged from −3.8% to 6.5%. The reliable method was successfully applied to the pharmacokinetics and tissue distribution studies of 6258-70 after intravenous administration in rats. The pharmacokinetic results indicated that the pharmacokinetic behavior of 6258-70 in rats was in accordance with linear features within tested dosage of 1 to 4 mg/kg, and there was no significant difference between the two genders. The tissue distribution study showed that 6258-70 had an effective penetration, spread widely and rapidly and could cross blood-brain barrier. The results of pharmacokinetics and tissue distribution may provide a guide for future study.

  3. Roentgenographic study on maxillofacial soft tissue in the mixed dentition

    International Nuclear Information System (INIS)

    Lee, Jai Hei; Ahn, Hyung Kyu

    1977-01-01

    The purpose of this study was to obtain the cephalometric maxillofacial soft tissue measurements and to define the differences that exist between male and female on the soft tissue profile who had normal occlusion in mixed dentitions. For the object of this study, cephalometric radiographs were obtained from the centric occlusion with the relaxed lip position. Copper filter was designed to obtain both hard and soft tissue structure on the same film. The subjects consist of 100 male and 100 female from 8 to 12.4 years with the normal occlusion and acceptable profiles. The author measured facial depth, vertical height from the cephalometric soft tissue profiles in the mixed dentitions. The significant test was performed to compare male with females. The following results were obtained from the study 1. In facial convexity, much more larger female than that of male. 2. Inclination of the lip posture was more larger in maxilla (male) and in female more larger in the mandible. 3. The thickness of soft tissue was thicker in male, the height of nose was more prominent in female. 4. There were no significant differences in both sexes.

  4. A tool to facilitate clinical biomarker studies - a tissue dictionary based on the Human Protein Atlas

    Directory of Open Access Journals (Sweden)

    Kampf Caroline

    2012-09-01

    Full Text Available Abstract The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies.

  5. Hard and soft tissue correlations in facial profiles: a canonical correlation study

    Directory of Open Access Journals (Sweden)

    Shamlan MA

    2015-01-01

    Full Text Available Manal A Shamlan,1 Abdullah M Aldrees2 1Faculty of Dentistry, King Abdulaziz University, Jeddah, 2Division of Orthodontics, Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia Background: The purpose of this study was to analyze the relationship between facial hard and soft tissues in normal Saudi individuals by studying the canonical correlation between specific hard tissue landmarks and their corresponding soft tissue landmarks. Methods: A retrospective, cross-sectional study was designed, with a sample size of 60 Saudi adults (30 males and 30 females who had a class I skeletal and dental relationship and normal occlusion. Lateral cephalometric radiographs of the study sample were investigated using a series of 29 linear and angular measurements of hard and soft tissue features. The measurements were calculated electronically using Dolphin® software, and the data were analyzed using canonical correlation. Results: Eighty-four percent of the variation in the soft tissue was explained by the variation in hard tissue. Conclusion: The position of the upper and lower incisors and inclination of the lower incisors influence upper lip length and lower lip position. The inclination of the upper incisors is associated with lower lip length. Keywords: facial profile, hard tissue, soft tissue, canonical correlation

  6. Observations of needle-tissue interactions

    NARCIS (Netherlands)

    Misra, Sarthak; Reed, Kyle B.; Ramesh, K.T.; Okamura, Allison M.

    2009-01-01

    Needles with asymmetric bevel tips naturally bend when they are inserted into soft tissue. In this study, we present an analytical model for the loads developed at the bevel tip during needle-tissue interaction. The model calculates the loads based on the geometry of the bevel edge and gel material

  7. Ethical and technical considerations for the creation of cell lines in the head & neck and tissue harvesting for research and drug development (Part II: Ethical aspects of obtaining tissue specimens

    Directory of Open Access Journals (Sweden)

    Upile Tahwinder

    2009-04-01

    Full Text Available Abstract Background Although much has been published for the development of cell lines, these were lab based and developed for scientific technical staff. Objective of review We discuss the ethical implications of tissue retention and present a generic consent form (Part II. We also present a simple and successful protocol for the development of cell lines and tissue harvesting for the clinical scientist (Part I. Conclusion Consent is also more proximate and assurance can be given of appropriate usage. Ethical questions concerning tissue ownership are in many institutions raised during the current consenting procedure. We provide a robust ethical framework, based on the current legislation, which allows clinicians to be directly involved in cell and tissue harvesting.

  8. Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading.

    Science.gov (United States)

    Wu, Yabin; Stoddart, Martin J; Wuertz-Kozak, Karin; Grad, Sibylle; Alini, Mauro; Ferguson, Stephen J

    2017-08-01

    Articular cartilage plays an essential role in joint lubrication and impact absorption. Through this, the mechanical signals are coupled to the tissue's physiological response. Healthy synovial fluid has been shown to reduce and homogenize the shear stress acting on the cartilage surfaces due to its unique shear-thinning viscosity. As cartilage tissues are sensitive to mechanical changes in articulation, it was hypothesized that replacing the traditional culture medium with a healthy non-Newtonian lubricant could enhance tissue development in a cartilage engineering model, where joint-kinematic-mimicking mechanical loading is applied. Different amounts of hyaluronic acid were added to the culture medium to replicate the viscosities of synovial fluid at different health states. Hyaluronic acid supplementation, especially at a physiologically healthy concentration (2.0 mg ml -1 ), promoted a better preservation of chondrocyte phenotype. The ratio of collagen II to collagen I mRNA was 4.5 times that of the control group, implying better tissue development (however, with no significant difference of measured collagen II content), with a good retention of collagen II and proteoglycan in the mechanically active region. Simulating synovial fluid properties by hyaluronic acid supplementation created a favourable mechanical environment for mechanically loaded constructs. These findings may help in understanding the influence of joint articulation on tissue homeostasis, and moreover, improve methods for functional cartilage tissue engineering. © 2017 The Author(s).

  9. Development of a fast curing tissue adhesive for meniscus tear repair.

    Science.gov (United States)

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  10. Nuclear analytical methods for trace element studies in calcified tissues

    International Nuclear Information System (INIS)

    Chaudhry, M.A.; Chaudhry, M.N.

    2001-01-01

    Full text: Various nuclear analytical methods have been developed and applied to determine the elemental composition of calcified tissues (teeth and bones). Fluorine was determined by prompt gamma activation analysis through the 19 F(p,ag) 16 O reaction. Carbon was measured by activation analysis with He-3 ions, and the technique of Proton-Induced X-ray Emission (PIXE) was applied to simultaneously determine Ca, P, and trace elements in well-documented teeth. Dental hard tissues, enamel, dentine, cement, and their junctions, as well as different parts of the same tissue, were examined separately. Furthermore, using a Proton Microprobe, we measured the surface distribution of F and other elements on and around carious lesions on the enamel. The depth profiles of F, and other elements, were also measured right up to the amelodentin junction

  11. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.

    Science.gov (United States)

    Yamamoto, Yasunori; Ito, Akira; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2011-01-01

    Skeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs. Histological studies revealed that elongated and multinucleated myotubes were observed within the tissue. Expression of muscle-specific markers, such as myogenin, myosin heavy chain and tropomyosin, were detected in the tissue constructs by western blot analysis. Further, creatine kinase activity increased during differentiation. In response to electric pulses, the artificial tissue constructs contracted to generate a physical force (the maximum twitch force, 33.2 μN [1.06 mN/mm2]). Rheobase and chronaxie of the tissue were determined as 4.45 V and 0.72 ms, respectively. These results indicate that the artificial skeletal muscle tissue constructs fabricated in this study were physiologically functional and the data obtained for the evaluation of their functional properties may provide useful information for future skeletal muscle tissue engineering studies.

  12. Bizarre (pseudomalignant) granulation-tissue reactions following ionizing-radiation exposure. A microscopic, immunohistochemical, and flow-cytometric study

    International Nuclear Information System (INIS)

    Weidner, N.; Askin, F.B.; Berthrong, M.; Hopkins, M.B.; Kute, T.E.; McGuirt, F.W.

    1987-01-01

    Two patients developed extremely bizarre (pseudomalignant) granulation-tissue reactions in the larynx and facial sinuses, following radiation therapy for carcinoma. Containing pleomorphic spindle cells and numerous (sometimes atypical) mitotic figures, both tumefactive lesions simulated high grade malignancies. While the pleomorphic cells contained vimentin immunoreactivity, they were nonreactive for low or high molecular weight keratin. Flowcytometric study of paraffin-embedded tissues revealed DNA indexes of 0.75 and 1.0. Neither recurred locally nor spread distantly after therapy. Their granulation-tissue growth pattern, and the presence of stromal and endothelial cells showing similar degrees of cytologic atypia were central to their recognition as benign. These findings show that severely atypical, sometimes aneuploid, granulation-tissue reactions can occur following radiation exposure. Care should be taken not to misinterpret these lesions as malignant

  13. A kinetic study of bitter taste receptor sensing using immobilized porcine taste bud tissues.

    Science.gov (United States)

    Wei, Lihui; Qiao, Lixin; Pang, Guangchang; Xie, Junbo

    2017-06-15

    At present, developing an efficient assay method for truly reflecting the real feelings of gustatory tissues is of great importance. In this study, a novel biosensor was fabricated to investigate the kinetic characteristics of the receptors in taste bud tissues sensing bitter substances for the first time. Porcine taste bud tissues were used as the sensing elements, and the sandwich-type sensing membrane was fixed onto a glassy carbon electrode for assembling the biosensor. With the developed sensor, the response currents induced by sucrose octaacetate, denatonium benzoate, and quercetin stimulating corresponding receptors were determined. The results demonstrated that the interaction between the analyst with their receptors were fitting to hyperbola (R 2 =0.9776, 0.9980 and 0.9601), and the activation constants were 8.748×10 -15 mol/L, 1.429×10 -12 mol/L, 6.613×10 -14 mol/L, respectively. The average number of receptors per cell was calculated as 1.75, 28.58, and 13.23, while the signal amplification factors were 1.08×10 4 , 2.89×10 3 and 9.76×10 4 . These suggest that the sensor can be used to quantitatively describe the interaction characteristics of cells or tissue receptors with their ligands, the role of cellular signaling cascade, the number of receptors, and the signal transmission pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process.

    Science.gov (United States)

    Espina, Virginia; Edmiston, Kirsten H; Heiby, Michael; Pierobon, Mariaelena; Sciro, Manuela; Merritt, Barbara; Banks, Stacey; Deng, Jianghong; VanMeter, Amy J; Geho, David H; Pastore, Lucia; Sennesh, Joel; Petricoin, Emanuel F; Liotta, Lance A

    2008-10-01

    Little is known about the preanalytical fluctuations of phosphoproteins during tissue procurement for molecular profiling. This information is crucial to establish guidelines for the reliable measurement of these analytes. To develop phosphoprotein profiles of tissue subjected to the trauma of excision, we measured the fidelity of 53 signal pathway phosphoproteins over time in tissue specimens procured in a community clinical practice. This information provides strategies for potential surrogate markers of stability and the design of phosphoprotein preservative/fixation solutions. Eleven different specimen collection time course experiments revealed augmentation (+/-20% from the time 0 sample) of signal pathway phosphoprotein levels as well as decreases over time independent of tissue type, post-translational modification, and protein subcellular location (tissues included breast, colon, lung, ovary, and uterus (endometrium/myometrium) and metastatic melanoma). Comparison across tissue specimens showed an >20% decrease of protein kinase B (AKT) Ser-473 (p 20% increases within 90-min postprocurement. Endothelial nitric-oxide synthase Ser-1177 did not change over the time period evaluated with breast or leiomyoma tissue. Treatment with phosphatase or kinase inhibitors alone revealed that tissue kinase pathways are active ex vivo. Combinations of kinase and phosphatase inhibitors appeared to stabilize proteins that exhibited increases in the presence of phosphatase inhibitors alone (ATF-2 Thr-71, SAPK/JNK Thr-183/Tyr-185, STAT1 Tyr-701, JAK1 Tyr-1022/1023, and PAK1/PAK2 Ser-199/204/192/197). This time course study 1) establishes the dynamic nature of specific phosphoproteins in excised tissue, 2) demonstrates augmented phosphorylation in the presence of phosphatase inhibitors, 3) shows that kinase inhibitors block the upsurge in phosphorylation of phosphoproteins, 4) provides a rational strategy for room temperature preservation of proteins, and 5) constitutes a

  15. Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    Tissue culture technology is used for the production of doubled haploids, cryopreservation, propagating new plant varieties, conserving rare and endangered plants, difficult-to-propagate plants, and to produce secondary metabolites and transgenic plants. The production of high quality planting material of crop plants and fruit trees, propagated from vegetative parts, has created new opportunities in global trading, benefited growers, farmers, and nursery owners, and improved rural employment. However, there are still major opportunities to produce and distribute high quality planting material, e.g. crops like banana, date palm, cassava, pineapple, plantain, potato, sugarcane, sweet potato, yams, ornamentals, fruit and forest trees. The main advantage of tissue culture technology lies in the production of high quality and uniform planting material that can be multiplied on a year-round basis under disease-free conditions anywhere irrespective of the season and weather. However, the technology is capital, labor and energy intensive. Although, labor is cheap in many developing countries, the resources of trained personnel and equipment are often not readily available. In addition, energy, particularly electricity, and clean water are costly. The energy requirements for tissue culture technology depend on day temperature, day-length and relative humidity, and they have to be controlled during the process of propagation. Individual plant species also differ in their growth requirements. Hence, it is necessary to have low cost options for weaning, hardening of micropropagated plants and finally growing them in the field. This publication describes options for reducing costs to establish and operate tissue culture facilities and primarily focus on plant micropropagation. It includes papers on the basics of tissue culture technology, low cost options for the design of laboratories, use of culture media and containers, energy and labor saving, integration and adoption of

  16. Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-02-01

    Tissue culture technology is used for the production of doubled haploids, cryopreservation, propagating new plant varieties, conserving rare and endangered plants, difficult-to-propagate plants, and to produce secondary metabolites and transgenic plants. The production of high quality planting material of crop plants and fruit trees, propagated from vegetative parts, has created new opportunities in global trading, benefited growers, farmers, and nursery owners, and improved rural employment. However, there are still major opportunities to produce and distribute high quality planting material, e.g. crops like banana, date palm, cassava, pineapple, plantain, potato, sugarcane, sweet potato, yams, ornamentals, fruit and forest trees. The main advantage of tissue culture technology lies in the production of high quality and uniform planting material that can be multiplied on a year-round basis under disease-free conditions anywhere irrespective of the season and weather. However, the technology is capital, labor and energy intensive. Although, labor is cheap in many developing countries, the resources of trained personnel and equipment are often not readily available. In addition, energy, particularly electricity, and clean water are costly. The energy requirements for tissue culture technology depend on day temperature, day-length and relative humidity, and they have to be controlled during the process of propagation. Individual plant species also differ in their growth requirements. Hence, it is necessary to have low cost options for weaning, hardening of micropropagated plants and finally growing them in the field. This publication describes options for reducing costs to establish and operate tissue culture facilities and primarily focus on plant micropropagation. It includes papers on the basics of tissue culture technology, low cost options for the design of laboratories, use of culture media and containers, energy and labor saving, integration and adoption of

  17. Development of an ex vivo cellular model of rheumatoid arthritis: critical role of CD14-positive monocyte/macrophages in the development of pannus tissue.

    Science.gov (United States)

    Nozaki, Toshiko; Takahashi, Kyoko; Ishii, Osamu; Endo, Sachio; Hioki, Kyoji; Mori, Toshihito; Kikukawa, Tadahiro; Boumpas, Dimitrios T; Ozaki, Shoichi; Yamada, Hidehiro

    2007-09-01

    To establish an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue (ST). Inflammatory cells that infiltrated pannus tissue from patients with rheumatoid arthritis (RA) were collected without enzyme digestion, and designated as ST-derived inflammatory cells. Single-cell suspensions of ST-derived inflammatory cells were cultured in medium alone. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. ST-derived inflammatory cells were transferred into the joints of immunodeficient mice to explore whether these cells could develop pannus. CD14 and CD2 cells were depleted by negative selection. Culture of ST-derived inflammatory cells from 92 of 111 patients with RA resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks. Ex vivo tissue contained fibroblasts, macrophages, T cells, and tartrate-resistant acid phosphatase-positive multinucleated cells. On calcium phosphate-coated slides, ST-derived inflammatory cell cultures showed numerous resorption pits. ST-derived inflammatory cell cultures continuously produced matrix metalloproteinase 9 and proinflammatory cytokines associated with osteoclastogenesis, such as tumor necrosis factor alpha, interleukin-8, and macrophage colony-stimulating factor. More importantly, transferring ST-derived inflammatory cells into the joints of immunodeficient mice resulted in the development of pannus tissue and erosive joint lesions. Both in vitro development and in vivo development of pannus tissue by ST-derived inflammatory cells were inhibited by depleting CD14-positive, but not CD2-positive, cells from ST-derived inflammatory cells. These findings suggest that overgrowth of inflammatory cells from human rheumatoid synovium simulates the development of pannus. This may prove informative in the screening of potential antirheumatic drugs.

  18. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    Science.gov (United States)

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  19. Alterations in the Immune Cell Composition in Premalignant Breast Tissue that Precede Breast Cancer Development.

    Science.gov (United States)

    Degnim, Amy C; Hoskin, Tanya L; Arshad, Muhammad; Frost, Marlene H; Winham, Stacey J; Brahmbhatt, Rushin A; Pena, Alvaro; Carter, Jodi M; Stallings-Mann, Melody L; Murphy, Linda M; Miller, Erin E; Denison, Lori A; Vachon, Celine M; Knutson, Keith L; Radisky, Derek C; Visscher, Daniel W

    2017-07-15

    Purpose: Little is known about the role of the immune system in the earliest stages of breast carcinogenesis. We studied quantitative differences in immune cell types between breast tissues from normal donors and those from women with benign breast disease (BBD). Experimental Design: A breast tissue matched case-control study was created from donors to the Susan G. Komen for the Cure Tissue Bank (KTB) and from women diagnosed with BBD at Mayo Clinic (Rochester, MN) who either subsequently developed cancer (BBD cases) or remained cancer-free (BBD controls). Serial tissue sections underwent immunostaining and digital quantification of cell number per mm 2 for CD4 + T cells, CD8 + T cells, CD20 + B cells, and CD68 + macrophages and quantification of positive pixel measure for CD11c (dendritic cells). Results: In 94 age-matched triplets, BBD lobules showed greater densities of CD8 + T cells, CD11c + dendritic cells, CD20 + B cells, and CD68 + macrophages compared with KTB normals. Relative to BBD controls, BBD cases had lower CD20 + cell density ( P = 0.04). Nearly 42% of BBD cases had no CD20 + B cells in evaluated lobules compared with 28% of BBD controls ( P = 0.02). The absence of CD20 + cells versus the presence in all lobules showed an adjusted OR of 5.7 (95% confidence interval, 1.4-23.1) for subsequent breast cancer risk. Conclusions: Elevated infiltration of both innate and adaptive immune effectors in BBD tissues suggests an immunogenic microenvironment. The reduced B-cell infiltration in women with later breast cancer suggests a role for B cells in preventing disease progression and as a possible biomarker for breast cancer risk. Clin Cancer Res; 23(14); 3945-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Sambit [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Cho-Hong, James Goh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Siew-Lok, Toh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore)

    2007-09-15

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly ({epsilon}-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments.

  1. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    International Nuclear Information System (INIS)

    Sahoo, Sambit; Cho-Hong, James Goh; Siew-Lok, Toh

    2007-01-01

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly (ε-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments

  2. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  3. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  4. Introduction to tissue engineering and application for cartilage engineering.

    Science.gov (United States)

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  5. Study of distribution of /sup 169/Yb, /sup 67/Ga and /sup 111/In in tumor tissue by macroautoradiography. Comparison between viable tumor tissue and necrotic tumor tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Sanada, S; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Doishita, K; Ando, I

    1977-01-01

    The localization of /sup 169/Yb, /sup 67/Ga and /sup 111/In in tumor tissues was determined macroautoradiographically. /sup 169/Yb-citrate, /sup 67/Ga-citrate and /sup 111/In-citrate were injected intravenously into rats which had received subcutaneously transplantations of Yoshida sarcoma, and were injected intraperitoneally to the mice which had received subcutaneous transplantations of Ehrlich tumor. These animals were sacrificed 3, 24 and 48 hours after injection. The tumor tissues were frozen in n-hexane (-70/sup 0/C) cooled with dry ice-acetone. After this, the frozen tumor tissues were cut into thin serial sections (10 ..mu..m) in a cryostat (-20/sup 0/C). One of these sections was then placed on x-ray film, and this film was developed after exposure of several days. The next slice of each of these sections were stained using the hematoxylin and eosin. From the observations of these autoradiogram and H-E stained slice, the following results were obtained. Concentration of /sup 169/Yb, /sup 67/Ga and /sup 111/In was predominant in viable tumor tissue rather than in necrotic tumor tissue, regardless of time after administration. /sup 67/Ga and /sup 111/In were distributed uniformly in viable tumor tissue, but there was greater deposition of /sup 169/Yb in viable tumor tissue neighboring the necrotic tumor.

  6. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  7. Expression analyses of human cleft palate tissue suggest a role for osteopontin and immune related factors in palatal development

    DEFF Research Database (Denmark)

    Jakobsen, L.P.; Borup, R.; Vestergaard, J.

    2009-01-01

    . Moreover, selected differentially expressed genes were analyzed by quantitative RT-PCR, and by immunohistochemical staining of craniofacial tissue from human embryos. Osteopontin (SPP1) and other immune related genes were significantly higher expressed in palate tissue from patients with CLP compared to CP...... and palate (CLP). In order to understand the biological basis in these cleft lip and palate subgroups better we studied the expression profiles in human tissue from patients with CL/P. In each of the CL/P subgroups, samples were obtained from three patients and gene expression analysis was performed...... and immunostaining in palatal shelves against SPP1, chemokine receptor 4 (CXCR4) and serglycin (PRG1) in human embryonic craniofacial tissue were positive, supporting a role for these genes in palatal development. However, gene expression profiles are subject to variations during growth and therefore we recommend...

  8. Development of an algorithm for quantifying extremity biological tissue; Desenvolvimento de um algoritmo quantificador de tecido biologico de extremidade

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, Ana L.M.; Miranda, Jose R.A., E-mail: analuiza@ibb.unesp.br, E-mail: jmiranda@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Instituto de Biociencias. Dept. de Fisica e Biofisica; Pina, Diana R. de, E-mail: drpina@frnb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Faculdade de Medicina. Dept. de Doencas Tropicas e Diagnostico por Imagem

    2013-07-01

    The computerized radiology (CR) has become the most widely used device for image acquisition and production, since its introduction in the 80s. The detection and early diagnosis, obtained via CR, are important for the successful treatment of diseases such as arthritis, metabolic bone diseases, tumors, infections and fractures. However, the standards used for optimization of these images are based on international protocols. Therefore, it is necessary to compose radiographic techniques for CR system that provides a secure medical diagnosis, with doses as low as reasonably achievable. To this end, the aim of this work is to develop a quantifier algorithm of tissue, allowing the construction of a homogeneous end used phantom to compose such techniques. It was developed a database of computed tomography images of hand and wrist of adult patients. Using the Matlab Registered-Sign software, was developed a computational algorithm able to quantify the average thickness of soft tissue and bones present in the anatomical region under study, as well as the corresponding thickness in simulators materials (aluminium and lucite). This was possible through the application of mask and Gaussian removal technique of histograms. As a result, was obtained an average thickness of soft tissue of 18,97 mm and bone tissue of 6,15 mm, and their equivalents in materials simulators of 23,87 mm of acrylic and 1,07mm of aluminum. The results obtained agreed with the medium thickness of biological tissues of a patient's hand pattern, enabling the construction of an homogeneous phantom.

  9. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Autoradiographic studies of oleilanilide-3H distribution in rat tissues

    International Nuclear Information System (INIS)

    Negro Alvarez, M.J.; Saez Angulo, R.M.

    1987-01-01

    In this work the possibility that oleilanilides are involved in the pathgenesis of ''toxic syndrome'' is studied. Oleilanilide- 3 H labelled in the anilidi aromatic ring has been used to determine the distribution, localization and incorporation of that compound in several tissues of rats. Liquid scintillation counting for quantitative evaluation of the total radioactivity accumulated in the tissues, as well as autoradiographic techniques have been employed as analytical procedures. Results obtained from measurement of total radioactivity have shown accumulation of oleilanilide or its metabolites in all the studied tissues, mainly in the liver. No specific radioactivity localization has been detected by autoradiographic techniques, being the labelled molecules distributed in cytaplasm and cell interstice. (Author)

  11. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  12. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Christina B. Garcia

    2015-08-01

    Full Text Available Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16 of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues.

  13. The roles of connective tissue growth factor in the development of anastomotic esophageal strictures.

    Science.gov (United States)

    Zhao, Haibin; Zhao, Lingna; Zhou, Zhihua; Wu, Yaoyi

    2015-08-12

    The aim of this study was to investigate the roles of connective tissue growth factor (CTGF) in the development of anastomotic strictures after surgical repair of the esophagus. Tissues collected from the patients were divided into three groups based on the results of endoscopy and clinical grading. Patients without dysphagia after esophagectomy were used as the control population. The protein levels of CTGF, TGF-β1, Smad2, and Smad4 were determined by immunohistochemistry (IHC) and western blot analyses, while the mRNA levels of the two growth factors were evaluated by real-time polymerase chain reaction. Compared with the control group, significantly increased (p tissues collected from the patients with stenosis were significantly up-regulated (p < 0.05) as compared with those from the control group. In addition, the levels of Smad2 and Smad4 protein were also significantly increased (p < 0.05) with the increasing severity of stenosis, and the protein levels were positively correlated with the levels of CTGF (r = 0.59, p < 0.05) and TGF-β1 (r = 0.63, p < 0.05). Inhibition of CTGF protein or mRNA expression may be a distinctive and effective therapy for the treatment of postoperative anastomotic strictures.

  14. Study into penetration speed during laser cutting of brain tissues.

    Science.gov (United States)

    Yilbas, Z; Sami, M; Patiroglu, T

    1998-01-01

    The applications of CO2 continuous-wave lasers in neurosurgery have become important in recent years. Theoretical considerations of laser applicability in medicine are subsequently confirmed experimentally. To obtain precision operation in the laser cutting process, further theoretical developments and experimental studies need to be conducted. Consequently, in the present study, the heat transfer mechanism taking place during laser-tissue interaction is introduced using Fourier theory. The results obtained from the theoretical model are compared with the experimental results. In connection with this, an experiment is designed to measure the penetration speed during the laser cutting process. The measurement is carried out using an optical method. It is found that both results for the penetration speed obtained from the theory and experiment are in a good agreement.

  15. Immersion radiography for enhancement of soft tissue contrast - experimental study and clinical application -

    International Nuclear Information System (INIS)

    Lee, Kyung Soo; Kang, Heung Sik; Kim, Chu Wan

    1986-01-01

    Detection and evaluation of early soft tissue changes are important in rheumatoid arthritis or other joint diseases. The most important factors for radiologic demonstration of soft tissue changes are resolving power and the optimization of contrast differences between structures representing skin and subcutaneous tissue densities. Phantom study was done by using combination of immersion technique and mammography to get the most reliable method for improvement of soft tissue contrast without deterioration of resolution. Clinical application was also done in 5 normal volunteers and 5 rheumatoid patients. The results indicate that soft tissue contrast, especially between skin and subcutaneous tissues can be significantly improved with combination of immersion technique and mammography with 50% ethanol in both phantom and clinical study.

  16. Increased Visceral Adipose Tissue Is an Independent Predictor for Future Development of Atherogenic Dyslipidemia.

    Science.gov (United States)

    Hwang, You-Cheol; Fujimoto, Wilfred Y; Hayashi, Tomoshige; Kahn, Steven E; Leonetti, Donna L; Boyko, Edward J

    2016-02-01

    Atherogenic dyslipidemia is frequently observed in persons with a greater amount of visceral adipose tissue (VAT). However, it is still uncertain whether VAT is independently associated with the future development of atherogenic dyslipidemia. The aim of this study was to determine whether baseline and changes in VAT and subcutaneous adipose tissue (SAT) are associated with future development of atherogenic dyslipidemia independent of baseline lipid levels and standard anthropometric indices. Community-based prospective cohort study with 5 years of follow-up. A total of 452 Japanese Americans (240 men, 212 women), aged 34-75 years were assessed at baseline and after 5 years of follow-up. Abdominal fat areas were measured by computed tomography. Atherogenic dyslipidemia was defined as one or more abnormalities in high-density lipoprotein (HDL) cholesterol, triglycerides, or non-HDL cholesterol levels. Baseline VAT and change in VAT over 5 years were independently associated with log-transformed HDL cholesterol, log-transformed triglyceride, and non-HDL cholesterol after 5 years (standardized β = -0.126, 0.277, and 0.066 for baseline VAT, respectively, and -0.095, 0.223, and 0.090 for change in VAT, respectively). However, baseline and change in SAT were not associated with any future atherogenic lipid level. In multivariate logistic regression analysis, incremental change in VAT (odds ratio [95% confidence interval], 1.73 [1.20-2.48]; P = .003), triglycerides (4.01 [1.72-9.33]; P = .001), HDL cholesterol (0.32 [0.18-0.58]; P dyslipidemia independent of age, sex, diastolic blood pressure, homeostasis model assessment insulin resistance, body mass index (BMI), change in BMI, SAT, and baseline atherogenic lipid levels. Baseline and change in VAT were independent predictors for future development of atherogenic dyslipidemia. However, BMI, waist circumference, and SAT were not associated with future development of atherogenic dyslipidemia.

  17. Numerical study of water diffusion in biological tissues using an improved finite difference method

    International Nuclear Information System (INIS)

    Xu Junzhong; Does, Mark D; Gore, John C

    2007-01-01

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)

  18. Investigation of the “true” extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Long, E-mail: long.yuan@bms.com [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Ma, Li [Biotransformation, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Dillon, Lisa [Discovery Toxicology, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Fancher, R. Marcus; Sun, Huadong [Metabolism and Pharmacokinetics, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Zhu, Mingshe [Biotransformation, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Lehman-McKeeman, Lois [Discovery Toxicology, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Aubry, Anne-Françoise [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Ji, Qin C., E-mail: qin.ji@bms.com [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States)

    2016-11-16

    LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the “true” recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the “true” recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P{sub 1} receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with {sup 3}H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the “true” recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. - Highlights: • Investigated the “true” recovery in six different tissues using incurred

  19. Investigation of the “true” extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds

    International Nuclear Information System (INIS)

    Yuan, Long; Ma, Li; Dillon, Lisa; Fancher, R. Marcus; Sun, Huadong; Zhu, Mingshe; Lehman-McKeeman, Lois; Aubry, Anne-Françoise; Ji, Qin C.

    2016-01-01

    LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the “true” recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the “true” recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P 1 receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with 3 H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the “true” recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. - Highlights: • Investigated the “true” recovery in six different tissues using incurred tissue

  20. [Feasibility of using connective tissue prosthesis for autoplastic repair of urinary bladder wall defects (an experimental study)].

    Science.gov (United States)

    Tyumentseva, N V; Yushkov, B G; Medvedeva, S Y; Kovalenko, R Y; Uzbekov, O K; Zhuravlev, V N

    2016-12-01

    Experiments on laboratory rats have shown the feasibility of autoplastic repair of urinary bladder wall defects using a connective-tissue capsule formed as the result of an inflammatory response to the presence of a foreign body. The formation of connective tissue prosthesis is characterized by developing fibrous connective tissue, ordering of collagen fibers, reducing the number of cells per unit area with a predominance of more mature cells - fibroblasts. With increasing time of observation, connective tissue prostheses were found to acquire a morphological structure similar to that of the urinary bladder wall. By month 12, the mucosa, the longitudinal and circular muscle layers were formed. The proposed method of partial autoplastic repair of urinary bladder wall is promising, has good long-term results, but requires further experimental studies.

  1. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating.

    Science.gov (United States)

    Wu, Jian-Ping; Swift, Benjamin John; Becker, Thomas; Squelch, Andrew; Wang, Allan; Zheng, Yong-Chang; Zhao, Xuelin; Xu, Jiake; Xue, Wei; Zheng, Minghao; Lloyd, David; Kirk, Thomas Brett

    2017-06-01

    Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three-dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope-like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction. © 2017 The Authors

  2. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Hyun-Tae; Hwang, Ildoo; Han, Kyung-Hwan

    2012-06-01

    Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears

    NARCIS (Netherlands)

    Bochynska, A. I.; Van Tienen, T. G.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2016-01-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study,

  4. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    Directory of Open Access Journals (Sweden)

    Stelzle Florian

    2012-06-01

    Full Text Available Abstract Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA, followed by linear discriminant analysis (LDA. To assess the potential of tissue differentiation, area under the curve (AUC, sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%. However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85. Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the

  5. Optical tomography of tissues

    International Nuclear Information System (INIS)

    Zimnyakov, D A; Tuchin, Valerii V

    2002-01-01

    Methods of optical tomography of biological tissues are considered, which include pulse-modulation and frequency-modulation tomography, diffusion tomography with the use of cw radiation sources, optical coherent tomography, speckle-correlation tomography of nonstationary media, and optoacoustic tomography. The method for controlling the optical properties of tissues is studied from the point of view of increasing a probing depth in optical coherent tomography. The modern state and prospects of the development of optical tomography are discussed. (review)

  6. Mutual relationships among body condition score, live weight, and back tissue development in meat sheep

    Directory of Open Access Journals (Sweden)

    Martin Ptáček

    2014-01-01

    Full Text Available Body tissue development and proportion affect predisposition to optimum functioning of production attributes, health, and fertility of sheep. Therefore, the objective of this study was to determine relationships among indicators of mature ewes’ nutritional status documented by the body condition score and live weight using ultrasonic evaluation of backfat thickness and depth of musculus longissimus lumborum et thoracis. The monitoring was carried out in Suffolk sheep (n = 942 for a period of 2 years. A significant increase (P P P P in vivo. Results of the present study could serve in flock management as a tool for evaluation of the current nutritional status as well as a basic ground for further research focused on development of sheep fattiness and carcass traits evaluation.

  7. Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Itai Spector

    Full Text Available INTRODUCTION: Stroma cells and extracellular matrix (ECM components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development. METHODS: Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells. RESULTS: Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development. CONCLUSIONS: The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice.

  8. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    Directory of Open Access Journals (Sweden)

    Yongbin Dong

    Full Text Available The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  9. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  10. A strategy for extending the applicability of a validated plasma calibration curve to quantitative measurements in multiple tissue homogenate samples: a case study from a rat tissue distribution study of JI-101, a triple kinase inhibitor.

    Science.gov (United States)

    Gurav, Sandip Dhondiram; Jeniffer, Sherine; Punde, Ravindra; Gilibili, Ravindranath Reddy; Giri, Sanjeev; Srinivas, Nuggehally R; Mullangi, Ramesh

    2012-04-01

    A general practice in bioanalysis is that, whatever the biological matrix the analyte is being quantified in, the validation is performed in the same matrix as per regulatory guidelines. In this paper, we are presenting the applicability of a validated LC-MS/MS method in rat plasma for JI-101, to estimate the concentrations of JI-101 in various tissues that were harvested in a rat tissue distribution study. A simple protein precipitation technique was used to extract JI-101 and internal standard from the tissue homogenates. The recovery of JI-101 in all the matrices was found to be >70%. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI-101 and 180.1 → 110.1 for internal standard. The linearity range was 5.02-4017 ng/mL. The JI-101 levels were quantifiable in the various tissue samples harvested in this study. Therefore, the use of a previously validated JI-101 assay in plasma circumvented the tedious process of method development/validation in various tissue matrices. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Taurine content of tissues of irradiated rats

    International Nuclear Information System (INIS)

    Akhalaya, M.Ya.; Bogatyrev, G.P.; Kudryashov, Yu.B.; Yartsev, E.I.

    1976-01-01

    The taurine content of tissues (liver, stomach, small intestine and spleen) of rats irradiated with doses of 700 and 450 rads has been studied. Phase changes have been found in the taurine content of radiosensitive tissues in the course of radiation injury development

  12. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study

    International Nuclear Information System (INIS)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Wu, Chen; Liu, Chih-hao; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Sudheendran, Narendran; Larin, Kirill V; Aglyamov, Salavat R; Twa, Michael D

    2015-01-01

    We present a systematic analysis of the accuracy of five different methods for extracting the biomechanical properties of soft samples using optical coherence elastography (OCE). OCE is an emerging noninvasive technique, which allows assessment of biomechanical properties of tissues with micrometer spatial resolution. However, in order to accurately extract biomechanical properties from OCE measurements, application of a proper mechanical model is required. In this study, we utilize tissue-mimicking phantoms with controlled elastic properties and investigate the feasibilities of four available methods for reconstructing elasticity (Young’s modulus) based on OCE measurements of an air-pulse induced elastic wave. The approaches are based on the shear wave equation (SWE), the surface wave equation (SuWE), Rayleigh-Lamb frequency equation (RLFE), and finite element method (FEM), Elasticity values were compared with uniaxial mechanical testing. The results show that the RLFE and the FEM are more robust in quantitatively assessing elasticity than the other simplified models. This study provides a foundation and reference for reconstructing the biomechanical properties of tissues from OCE data, which is important for the further development of noninvasive elastography methods. (paper)

  13. Comparative study of radiosensitivity of normal and regenerating tissues

    International Nuclear Information System (INIS)

    Samokhvalova, H.S.; Popova, M.F.

    1983-01-01

    A comparative study of radiosensitivity of cells of normal and regenerating tissues of bone marrow and spleen has demonstrated that single exposure to X-rays produces a lesser damaging effect on regenerating tissues than on normal ones. The data obtained indicate that the increase in radioresistance of the organism during active regeneration of the haemopoietic organs is due not merely to the increase in the dividing cell pool of these organs but also to qualitative changes in their functional state

  14. A constitutive model of soft tissue: From nanoscale collagen to tissue continuum

    KAUST Repository

    Tang, Huang

    2009-04-08

    Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.

  15. The role of tissue renin angiotensin aldosterone system in the development of endothelial dysfunction and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Annayya R Aroor

    2013-10-01

    Full Text Available Epidemiological studies support the notion that arterial stiffness is an independent predictor of adverse cardiovascular events contributing significantly to systolic hypertension, impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial oxygen supply and demand, and progression of kidney disease. Although arterial stiffness is associated with aging, it is accelerated in the presence of obesity and diabetes. The prevalence of arterial stiffness parallels the increase of obesity that is occurring in epidemic proportions and is partly driven by a sedentary life style and consumption of a high fructose, high salt and high fat western diet. Although the underlying mechanisms and mediators of arterial stiffness are not well understood, accumulating evidence supports the role of insulin resistance and endothelial dysfunction. The local tissue renin angiotensin aldosterone system (RAAS in the vascular tissue and immune cells and perivascular adipose tissue is recognized as an important element involved in endothelial dysfunction which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in humans and animal models of obesity and diabetes, and associated with enhanced oxidative stress and inflammation in the vascular tissue. The cross talk between angiotensin and aldosterone underscores the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction and arterial stiffness. In addition, both innate and adaptive immunity are involved in this local tissue activation of RAAS. In this review we will attempt to present a unifying mechanism of how environmental and immunological factors are involved in this local tissue RAAS activation, and the role of this process in the development of endothelial dysfunction and arterial stiffness and targeting tissue RAAS activation.

  16. Ostomy creation with fewer sutures using tissue adhesives (cyanoacrylates) in inflammatory bowel disease: a pilot study.

    Science.gov (United States)

    Uchino, M; Ikeuchi, H; Bando, T; Sasaki, H; Chohno, T; Horio, Y; Takesue, Y

    2018-03-01

    Introduction Fistula formation around the ostomy site is a stoma-related complication often requiring surgical intervention. This complication may be caused by sutures or may develop as a complication of inflammatory bowel disease. Before conducting a clinical trial, we set out to investigate the safety of ostomy creation with fewer sutures using tissue adhesives in this pilot study. Methods Patients with inflammatory bowel disease who required surgery with ostomy creation at the Hyogo College of Medicine between January 2014 and December 2015 were enrolled. Safety was assessed by evaluating the incidence of stoma-related complications. Ostomy was restricted to loop ileostomy and was created with two sutures and tissue adhesives. Results A total of 14 patients were enrolled. Mean body mass index was 18.9 ± 2.0 kg/m 2 . There were no cases of ostomy retraction and no severe adverse events were observed. Conclusions This pilot study demonstrates that ostomy creation using tissue adhesives is safe. Although retraction and adverse events were not observed, even in patients with inflammatory bowel disease who generally exhibit delayed wound healing, the body mass index was extremely low in this series. This study does not strongly recommend ostomy creation with tissue adhesives; further studies are needed to clarify the efficacy and safety of the procedure.

  17. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  18. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  19. Engineering Complex Tissues

    Science.gov (United States)

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  20. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  1. Protein biomarkers on tissue as imaged via MALDI mass spectrometry: A systematic approach to study the limits of detection.

    Science.gov (United States)

    van de Ven, Stephanie M W Y; Bemis, Kyle D; Lau, Kenneth; Adusumilli, Ravali; Kota, Uma; Stolowitz, Mark; Vitek, Olga; Mallick, Parag; Gambhir, Sanjiv S

    2016-06-01

    MALDI mass spectrometry imaging (MSI) is emerging as a tool for protein and peptide imaging across tissue sections. Despite extensive study, there does not yet exist a baseline study evaluating the potential capabilities for this technique to detect diverse proteins in tissue sections. In this study, we developed a systematic approach for characterizing MALDI-MSI workflows in terms of limits of detection, coefficients of variation, spatial resolution, and the identification of endogenous tissue proteins. Our goal was to quantify these figures of merit for a number of different proteins and peptides, in order to gain more insight in the feasibility of protein biomarker discovery efforts using this technique. Control proteins and peptides were deposited in serial dilutions on thinly sectioned mouse xenograft tissue. Using our experimental setup, coefficients of variation were biomarkers and a new benchmarking strategy that can be used for comparing diverse MALDI-MSI workflows. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Roentgenographic studies on the soft tissue profile

    International Nuclear Information System (INIS)

    Park, Tae Won; Ahn, Hyung Kyu

    1971-01-01

    Modern orthodontics implies not only occlusal excellence, but also the positioning of teeth to produce optimal facial harmony for the individual patients. Several methods have been used in the study of facial height, width and depth were made from living subjects. These methods, however, complicate to control the subjects, therefore many investigators have used profile cephalometric technics. Practically, cephalometric technics were used in orthodontic treatment, maxillo-facial surgery and anthropometric studies. Author was studied to investigate the normal standards of soft tissue profile in Korean adolescences. The subjects consisted of 53 males and 54 females from 17 to 22 years of age and with normal occlusion and acceptable profile. Aluminum filter was designed to obtain both hard and soft tissue structures on a single film. Eight profile landmarks were plotted and drawn on the tracings of all cephalograms and eighteen depth, height an d angles were measured from each landmarks of the cephalograms. The following conclusions were obtained from this studies; 1. Total facial convexity was 170.75 in males and females samples and lower facial and labiomandibular convexity were each of 141.44, 171.05. 2. Maxillary and mandibular sulcus angulations were 137.61, 129.52 and upper and lower lip inclinations were each of 12 3.26 and 49.56 in male and females. 3. Soft tissue depth of several points were as follows; Subnasale 18.74 mm in males and 16.65 mm in females Pogonion 13.40 mm in males and 13.07 mm in females upper lip 14.06 mm in males and 11.91 mm in females lower lip 15.46 mm, 13.63 in males and females 4. The protrusion of nose were 16.28 mm in males and 15.56 mm in females 5. The vertical length of upper and lower lips were 25.67 mm, 52.96 mm and the lip posture was indicated 93.43 per cent (closed state) in centric occlusions.

  3. Adipose, bone and muscle tissues as new endocrine organs: role of reciprocal regulation for osteoporosis and obesity development.

    Science.gov (United States)

    Migliaccio, Silvia; Greco, Emanuela A; Wannenes, Francesca; Donini, Lorenzo M; Lenzi, Andrea

    2014-01-01

    The belief that obesity is protective against osteoporosis has recently been revised. In fact, the latest epidemiologic and clinical studies show that a high level of fat mass, but also reduced muscle mass, might be a risk factor for osteoporosis and fragility fractures. Furthermore, increasing evidence seems to indicate that different components such as myokines, adipokines and growth factors, released by both fat and muscle tissues, could play a key role in the regulation of skeletal health and in low bone mineral density and, thus, in osteoporosis development. This review considers old and recent data in the literature to further evaluate the relationship between fat, bone and muscle tissue.

  4. Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies

    Directory of Open Access Journals (Sweden)

    Alpaslan E

    2014-05-01

    Full Text Available Ece Alpaslan,1 Thomas J Webster1,21Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 2Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties, they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns.Keywords: nanomaterials, tissue engineering, toxicity

  5. Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat

    OpenAIRE

    1991-01-01

    Fibronectin isoforms are generated by the alternative splicing of a primary transcript derived from a single gene. In rat at least three regions of the molecule are involved: EIIIA, EIIIB, and V. This study investigated the splicing patterns of these regions during development and aging, by means of ribonuclease protection analysis. Between fetal and adult rat, the extent of inclusion of the EIIIA and/or EIIIB region in fibronectin mRNA varied according to the type of tissue analyzed; but the...

  6. An experimental study: evaluating the tissue structure of penis with 2D-ShearWave™ Elastography.

    Science.gov (United States)

    Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Liu, Y; Xing, L-X; Du, L-F; Xing, J-F

    2017-01-01

    The aim of this study was to investigate the feasibility of two-dimensional-ShearWave™ Elastography (2D-SWE) on evaluating the change of tissue structure of penis. Twenty healthy male Sprague Dawley rats were divided into penis-developed group (PDG, 52 weeks) and penis-underdeveloped group (PUDG, 5 weeks). The ultrafast ultrasound device-Aixplorer® (SuperSonic Imagine) was used for 2D-SWE imaging of the penis, the measurement index was shear wave stiffness (SWS, kPa). All rat penises were cut off immediately after ultrasonic examination. After paraffin embedding, slicing and hematoxylin-eosin staining, the tissue structure of the penis was observed under light microscope. SWS of all rat penises were measured successfully. The results showed that SWS of PDG was significantly lower than PUDG (P=0.008). At the same time, the pathological results found that there were significant differences in the tissue structures (sinusoids, smooth muscle cells and fibrocytes) of the penises between the two groups. These results suggest that there are significant differences in SWS between different tissue structures of penis. 2D-SWE is expected to be used on the etiological diagnosis of erectile dysfunction by serving as a new noninvasive method of evaluating the change of tissue structure of penis.

  7. A Histopathological Study of Pulmonary Hypertension in Connective Tissue Disease

    Directory of Open Access Journals (Sweden)

    Nobuhito Sasaki

    2011-01-01

    Full Text Available Connective tissue diseases (CTD, such as systemic sclerosis (SSc, systemic lupus erythematosus (SLE, and mixed connective tissue disease (MCTD, develop pulmonary hypertension (PH. Generally all PH cases associated with any CTD are classified into the same PH group. However, histological examination shows both common and specific lesions for each disease. In patients with SLE, fibrosis is generally rare and mild. The findings of PH in SLE are similar to those in primary pulmonary hypertension. Many cases of SSc are accompanied by fibrosis. MCTD is rather close to SSc. Arterial and arteriolar lesions of MCTD are characterized by fibrous intimal thickening. In this review, we describe the pathological features of PH associated with each CTD.

  8. Linking ontogeny and tissue regeneration: a study on tissue damage and wound healing in carp in connection to the developmental stage

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Schmidt, Jacob; Ingerslev, Hans-Christian

    regeneration since its genome is well-described and it is easy visually to follow the wound healing. In this study, carps were physically damaged in the musculature using sterile needles at day 10, 16, 24, 47 and 94 post hatch. Muscle tissue samples were subsequently taken at day 1, 3 and 7 post damage...... healing and tissue regeneration, the developmental stage of the individual may influence the immune reaction initiated following damage and thus the proliferative responses, which usually cross-talk with the immune system. Common carp (Cyprinus carpio) is an excellent fish specie to study tissue...

  9. Developments in undergraduate teaching of small-animal soft-tissue surgical skills at the University of Sydney.

    Science.gov (United States)

    Gopinath, Deepa; McGreevy, Paul D; Zuber, Richard M; Klupiec, Corinna; Baguley, John; Barrs, Vanessa R

    2012-01-01

    This article discusses recent developments in soft-tissue surgery teaching at the University of Sydney, Faculty of Veterinary Science. An integrated teaching program was developed for Bachelor of Veterinary Science (BVSc) students with the aim of providing them with optimal learning opportunities to meet "Day One" small-animal soft-tissue surgical competencies. Didactic lectures and tutorials were introduced earlier into the curriculum to prepare students for live-animal surgery practical. In addition to existing clinics, additional spay/neuter clinics were established in collaboration with animal welfare organizations to increase student exposure to live-animal surgery. A silicon-based, life-like canine ovariohysterectomy model was developed with the assistance of a model-making and special effects company. The model features elastic ovarian pedicles and suspensory ligaments, which can be stretched and broken like those of an actual dog. To monitor the volume and type of student surgical experience, an E-portfolio resource was established. This resource allows for the tracking of numbers of live, student-performed desexing surgeries and incorporates competency-based assessments and reflective tasks to be completed by students. Student feedback on the integrated surgical soft-tissue teaching program was assessed. Respondents were assessed in the fourth year of the degree and will have further opportunities to develop Day One small-animal soft-tissue surgical competencies in the fifth year. Ninety-four percent of respondents agreed or strongly agreed that they were motivated to participate in all aspects of the program, while 78% agreed or strongly agreed that they received an adequate opportunity to develop their skills and confidence in ovariohysterectomy or castration procedures through the fourth-year curriculum.

  10. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  11. Parvovirus infection: an immunohistochemical study using fetal and placental tissue.

    Science.gov (United States)

    Li, Jing Jing; Henwood, Tony; Van Hal, Sebastian; Charlton, Amanda

    2015-01-01

    Parvovirus B19 infection causes 5% to 15% of cases of nonimmune hydrops fetalis. The aim of our study was to evaluate the use of immunohistochemistry in diagnosing parvovirus infection in fetal and placental tissue during routine fetal and perinatal autopsies. Histology slides of 20 cases of confirmed parvovirus infection were reviewed, and immunohistochemistry was applied to selected blocks of fetal and placental tissue. Immunohistochemistry was positive in all 20 cases, and histologic viral inclusions were seen in 19 cases. Immunohistochemical staining was closely correlated with histology and was more sensitive than histology in detecting virally infected cells, especially in autolyzed tissue. All cases also had confirmatory evidence of parvovirus infection by polymerase chain reaction of fetal liver and positive maternal serology, where it was available. We conclude that parvovirus immunohistochemistry is a reliable method for diagnosing parvovirus infection, especially in autolyzed tissue where histologic assessment may be suboptimal.

  12. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  13. Microbial Biofilms and Breast Tissue Expanders

    Directory of Open Access Journals (Sweden)

    Melissa J. Karau

    2013-01-01

    Full Text Available We previously developed and validated a vortexing-sonication technique for detection of biofilm bacteria on the surface of explanted prosthetic joints. Herein, we evaluated this technique for diagnosis of infected breast tissue expanders and used it to assess colonization of breast tissue expanders. From April 2008 to December 2011, we studied 328 breast tissue expanders at Mayo Clinic, Rochester, MN, USA. Of seven clinically infected breast tissue expanders, six (85.7% had positive cultures, one of which grew Propionibacterium species. Fifty-two of 321 breast tissue expanders (16.2%, 95% CI, 12.3–20.7% without clinical evidence of infection also had positive cultures, 45 growing Propionibacterium species and ten coagulase-negative staphylococci. While vortexing-sonication can detect clinically infected breast tissue expanders, 16 percent of breast tissue expanders appear to be asymptomatically colonized with normal skin flora, most commonly, Propionibacterium species.

  14. An in vitro evaluation of various biomaterials for the development of a tissue-engineered lacrimal gland

    Science.gov (United States)

    Selvam, Shivaram

    The most common cause of ocular morbidity in developed countries is dry eye, many cases of which are due to lacrimal insufficiency. It has been established that lacrimal insufficiency results from processes caused by both immune-related and non-immune related events such as Sjogren's syndrome, Stevens-Johnson syndrome, chemical and thermal injuries and ocular cicatricial pemphigoid. Patients with these conditions would benefit from repair of their damaged lacrimal tissue by the creation of a replacement for the lacrimal gland. The new field of tissue engineering built on the interface between principles and methods of the life sciences with those of engineering to develop biocompatible materials has created the possibility for repairing or replacing damaged tissues. This thesis explores the use of tissue engineering principles for the development of a tissue-engineered lacrimal gland. This thesis also contributes to the development of a novel model for addressing lacrimal gland physiology and epithelial fluid transport. The first part of the research work focused on the evaluation of morphological and physiological properties of purified lacrimal gland acinar cells (pLGACs) cultured on various biopolymers: silicone, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), and poly-L-lactic acid (PLLA) in the presence and absence of an extracellular matrix, MatrigelRTM. Results indicated that PLLA demonstrated the best support expression of acinar cell-like morphology. The second part demonstrated the ex vivo reconstitution of an electrophysiologically functional lacrimal gland tissue on porous polyester membrane scaffolds. Results showed that pLGACs were capable of establishing continuous epithelial monolayers that generate active ionic fluxes consistent with current models for Na +-dependent Cl-- secretion. The third part outlined the fabrication of porous PLLA membranes, the optimal biomaterial for culturing lacrimal epithelial cells. Microporous PLLA

  15. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Directory of Open Access Journals (Sweden)

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  16. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Science.gov (United States)

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  17. Novel technique for online characterization of cartilaginous tissue properties.

    Science.gov (United States)

    Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei

    2011-09-01

    The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.

  18. Pairing experimentation and computational modelling to understand the role of tissue inducer cells in the development of lymphoid organs

    Directory of Open Access Journals (Sweden)

    Kieran eAlden

    2012-07-01

    Full Text Available The use of genetic tools, imaging technologies and ex vivo culture systems has provided significant insights into the role of tissue inducer cells and associated signalling pathways in the formation and function of lymphoid organs. Despite advances in experimental technologies, the molecular and cellular process orchestrating the formation of a complex 3-dimensional tissue is difficult to dissect using current approaches. Therefore, a robust set of simulation tools have been developed to model the processes involved in lymphoid tissue development. Specifically the role of different tissue inducer cell populations in the dynamic formation of Peyer's Patches has been examined. Utilising approaches from critical systems engineering an unbiased model of lymphoid tissue inducer cell function has been developed, that permits the development of emerging behaviours that are statistically not different from that observed in vivo. These results provide the confidence to utilise statistical methods to explore how the simulator predicts cellular behaviour and outcomes under different physiological conditions. Such methods, known as sensitivity analysis techniques, can provide insight into when a component part of the system (such as a particular cell type, adhesion molecule, or chemokine begins to have an influence on observed behaviour, and quantifies the effect a component part has on the end result: the formation of lymphoid tissue. Through use of such a principled approach in the design, calibration, and analysis of a computer simulation, a robust in silico tool can be developed which can both further the understanding of a biological system being explored, and act as a tool for the generation of hypotheses which can be tested utilising experimental approaches.

  19. Environmental regulation of valvulogenesis:implications for tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Kluin, J.; Sluijter, J.P.G.; Herwerden, van L.A.; Bouten, C.V.C.

    2011-01-01

    Ongoing research efforts aim at improving the creation of tissue-engineered heart valves for in vivo systemic application. Hence, in vitro studies concentrate on optimising culture protocols incorporating biological as well as biophysical stimuli for tissue development. Important lessons can be

  20. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  1. The study on facial soft tissue thickness using Han population in Xinjiang.

    Science.gov (United States)

    Wang, Jierui; Zhao, Xi; Mi, Congbo; Raza, Iqbal

    2016-09-01

    Facial profile is an important aspect in physical anthropology, forensic science, and cosmetic research. Thus, facial soft tissue measurement technology plays a significant role in facial restoration. A considerable amount of work has investigated facial soft tissue thickness, which significantly varies according to gender, age, and race. However, only few studies have considered the nutritional status of the investigated individuals. Moreover, no sufficient research among Chinese ethnic groups, particularly Xinjiang population in China, is currently available. Hence, the current study investigated the adaptability of facial soft tissue to the underlying hard tissue among young adults of Han population in Xinjiang, China; the analysis was performed on the basis of gender, skeletal class, and body mass index (BMI). Measurements were obtained from the lateral cephalometric radiographs of 256 adults aged 18-26 years old. Differences in soft tissue thickness were observed between genders and among skeletal classes. With regard to gender, significant differences in soft tissue thickness were found at rhinion, glabella, subnasale, stomion, labrale superius, pogonion, and gnathion among different BMI groups. Thus, nutritional status should be considered when reconstructing an individual's facial profile. Results showed that the thinnest and thickest craniofacial soft tissues existed in rhinion and lip regions, respectively. Overall, this research provides valuable data for forensic facial reconstruction and identification of young adults in Xinjiang, China. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Study of human breast tissues biochemistry by FT-Raman spectroscopy

    Science.gov (United States)

    Bitar, Renata A.; Jara, Walter Andres A.; Netto, Mário M.; Martinho, Herculano; Ramalho, Leandra Náira Z.; Martin, Airton A.

    2006-02-01

    In this work we employ the Fourier Transform Raman Spectroscopy to study the human breast tissues, both normal and pathological. In the present study we analyze 194 Raman spectra from breast tissues that were separated into 9 groups according to their corresponding histopathological diagnosis, which are as follows: Normal breast tissue, Fibrocystic condition, In Situ Duct Carcinoma, In Situ Duct Carcinoma with Necrosis, Infiltrating Duct Carcinoma, Infiltrating Duct Inflammatory Carcinoma, Infiltrating Duct Medullar Carcinoma, Infiltrating Duct Colloid Carcinoma, and Infiltrating Lobule Carcinoma. We found a strong lipids Raman band, and this structure was identified as abundant in the normal breast tissue spectra. The primary structure of proteins was identified through the shift of the amine acids bands. The identification of the secondary structure of proteins occurred through the peptide bands (Amide I and Amide III). In relation to the carbohydrates, the spectra of duct infiltrating colloid carcinoma, fibrocystic condition, and infiltrating duct carcinoma have been compared and identified. We observed an increase in the intensity of the 800-1200 cm -1 spectral region. This fact could indicate the presence of liquid cystic. We also notice alterations in the peaks in the region of 500 to 600 cm -1 and 2000 to 2100 cm -1 that may suggest changes in the nucleic acids of the cells.

  3. Development of Novel Biodegradable Amino Acid Ester Based Polyphosphazene-Hydroxyapatite Composites for Bone Tissue Engineering

    National Research Council Canada - National Science Library

    Sethuraman, Swaminathan; Nair, Lakshmi S; Singh, Anurima; Bender, Jared D; Greish, Yaser E; Brown, Paul W; Allcock, H. R; Laurencin, Cato T

    2005-01-01

    .... CPCs are attractive candidates for the development of scaffolds for bone tissue engineering, since they are moldable, resorbable, set at physiological temperature without the use of toxic chemicals...

  4. In vitro tendon tissue development from human fibroblasts demonstrates collagen fibril diameter growth associated with a rise in mechanical strength

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L; Svensson, René B

    2013-01-01

    Collagen-rich tendons and ligaments are important for joint stability and force transmission, but the capacity to form new tendon is poorly understood. In the present study, we investigated mechanical strength, fibril size, and structure during development of tendon-like tissue from adult human...

  5. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Directory of Open Access Journals (Sweden)

    Masaki Iwata

    Full Text Available Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the

  6. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Science.gov (United States)

    Iwata, Masaki; Ohno, Yoshikazu; Otaki, Joji M

    2014-01-01

    Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living

  7. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

    Directory of Open Access Journals (Sweden)

    Alexandra C Nica

    2011-02-01

    Full Text Available While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL, skin, and fat. The samples (156 LCL, 160 skin, 166 fat were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes. In addition, we apply factor analysis (FA to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes. The unique study design (Matched Co-Twin Analysis--MCTA permits immediate replication of eQTLs using co-twins (93%-98% and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%-20% have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.

  8. Models for radiation-induced tissue degeneration and conceptualization of rehabilitation of irradiated tissue by cell therapy

    International Nuclear Information System (INIS)

    Phulpin, Berengere

    2011-01-01

    Radiation therapy induced acute and late sequelae within healthy tissue included in the irradiated area. In general, lesions are characterized by ischemia, cell apoptosis and fibrosis. In this context, cell therapy using bone marrow mesenchymal stem cells (BMSC) might represent an attractive new therapeutic approach, based partly on their angiogenic ability and their involvement in the natural processes of tissue repair. The first part of this work consisted in the development of experimental mouse model of radio-induced tissue degeneration similar to that occurring after radiotherapy. The aim was to better understand the physiopathological mechanisms of radiation-induced tissue damage and to determine the best treatment strategy. The second part of this work investigated the feasibility of autologous BMSC therapy on the murine model of radiation previously established with emphasis on two pre-requisites: the retention of the injected cells within the target tissue and the evaluation of the graft on bone metabolism. This preclinical investigation in a mouse model constitutes an essential step allowing an evaluation of the benefit of cell therapy for the treatment of radiation-induced tissue injury. Data from these studies could allow the proposal of clinical studies [fr

  9. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    Science.gov (United States)

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  10. Finite element study of scaffold architecture design and culture conditions for tissue engineering.

    Science.gov (United States)

    Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien

    2009-10-01

    Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

  11. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  12. Metabolomics studies in brain tissue: A review.

    Science.gov (United States)

    Gonzalez-Riano, Carolina; Garcia, Antonia; Barbas, Coral

    2016-10-25

    Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    Science.gov (United States)

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm 2 and a spectral resolution of 6 cm -1 over

  14. A historical perspective on the development of modern concepts of tissue perfusion: prehistory to the twentieth century.

    Science.gov (United States)

    Ashby, Nathan; Squiers, Joshua

    2014-09-01

    The historical development of the concept of perfusion is traced, with particular focus on the development of the modern clinical concepts of perfusion through the fields of anatomy, physiology, and biochemistry. This article reviews many of the significant contributors to the changing ideas of perfusion up through the twentieth century that have influenced the modern physiologic circulatory and metabolic models. The developments outlined have provided the modern model of perfusion, linking the cardiopulmonary circulation, tissue oxygen utilization and carbon dioxide production, food intake, tissue waste production and elimination, and ultimately the production and utilization of ATP in the body. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Challenges in developing a reseeded, tissue-engineered aortic valve prosthesis.

    Science.gov (United States)

    Hof, Alexander; Raschke, Silja; Baier, Karina; Nehrenheim, Laura; Selig, Jessica Isabel; Schomaker, Markus; Lichtenberg, Artur; Meyer, Heiko; Akhyari, Payam

    2016-09-01

    Biological heart valve prostheses are characterized by a limited durability due to the degenerative processes after implantation. Tissue engineering may provide new approaches in the development of optimized valvular grafts. While re-endothelialization of decellularized heart valves has already been successfully implemented, interstitial repopulation still remains an unaccomplished objective although it is essential for valvular functionality and regeneration potential. The aim of this study was to compare different concepts for an improved in vitro interstitial repopulation of decellularized heart valves. A novel 3D heart valve model has been developed to investigate the cell behaviour of valvular interstitial cells (VIC) in their physiological environment and to evaluate the potential of in vitro repopulation of acellular heart valves. Ovine aortic heart valves were decellularized by detergent solutions and additionally treated with trypsin or laser perforation. Subsequently, the decellularized extracellular matrices (dECM) were reseeded with ovine VIC using reseeding devices to provide a repopulation of the matrix on a defined area under controlled conditions. After an initial attachment of the VIC, reseeded dECM were transferred into a transwell system to improve the nutrient supply inside the valvular matrix. Cell migration and expression of cell markers were analysed histologically. The results were compared with VIC cultivation in a biological scaffold. VIC did not migrate into the matrix of untreated dECM and reseeding in laser perforated dECM showed inconsistent results. However, trypsinization increased the susceptibility of the valvular cusps to VIC penetration and repopulation of superficial areas. Additionally, the cultivation of reseeded dECM in a transwell system significantly increased the total number of cells repopulating the valvular matrix and their mean migration distance, representing the best repopulation results. Immunohistological analysis

  16. The plant tissue culture

    International Nuclear Information System (INIS)

    Crocomo, O.J.; Sharp, W.R.

    1973-01-01

    Progress in the field of plant tissue culture at the Plant Biochemistry Sector, Centro de Energia na Agricultura (CENA), Piracicaba, S.P., Brazil, pertains to the simplification of development in 'Phaseolus vulgaris' by dividing the organism into its component organs, tissues, and cells and the maintenance of these components on defined culture media 'in vitro'. This achievement has set the stage for probing the basis for the stability of the differentiated states and/or the reentry of mature differentiated cells into the mitotic cell cycle and their subsequent redifferentiation. Data from such studies at the cytological and biochemical level have been invaluable in the elucidation of the control mechanisms responsible for expression of the cellular phenotype. Unlimited possibilities exist for the application of tissue culture in the vegetative propagation of 'Phaseolus' and other important cultivars in providing genocopies or a large scale and/or readily obtaining plantlets from haploid cell lines or from protoplast (wall-less cells) hybridization products following genetic manipulation. These tools are being applied in this laboratory for the development and selection of high protein synthesizing 'Phaseolus' cultivars

  17. Gut-associated lymphoid tissues for the development of oral vaccines.

    Science.gov (United States)

    Kunisawa, Jun; Kurashima, Yosuke; Kiyono, Hiroshi

    2012-05-01

    Oral vaccine has been considered to be a prospective vaccine against many pathogens especially invading across gastrointestinal tracts. One key element of oral vaccine is targeting efficient delivery of antigen to gut-associated lymphoid tissue (GALT), the inductive site in the intestine where antigen-specific immune responses are initiated. Various chemical and biological antigen delivery systems have been developed and some are in clinical trials. In this review, we describe the immunological features of GALT and the current status of antigen delivery system candidates for successful oral vaccine. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Morphological and functional development of the interbranchial lymphoid tissue (ILT) in Atlantic salmon (Salmo salar L).

    Science.gov (United States)

    Dalum, Alf Seljenes; Griffiths, David James; Valen, Elin Christine; Amthor, Karoline Skaar; Austbø, Lars; Koppang, Erling Olaf; Press, Charles McLean; Kvellestad, Agnar

    2016-11-01

    The interbranchial lymphoid tissue (ILT) of Atlantic salmon originates from an embryological location that in higher vertebrates gives rise to both primary and secondary lymphoid tissues. Still much is unknown about the morphological and functional development of the ILT. In the present work a standardized method of organ volume determination was established to study its development in relation to its containing gill and the thymus. Based on morphological findings and gene transcription data, the ILT shows no signs of primary lymphoid function. In contrast to the thymus, an ILT-complex first became discernible after the yolk-sac period. After its appearance, the ILT-complex constitutes 3-7% of the total volume of the gill (excluding the gill arch) with the newly described distal ILT constituting a major part, and in adult fish it is approximately 13 times larger than the thymus. Confined regions of T-cell proliferation are present within the ILT. Communication with systemic circulation through the distal ILT is also highly plausible thus offering both internal and external recruitment of immune cells in the growing ILT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Expression of Tissue Factor in Epithelial Ovarian Carcinoma Is Involved in the Development of Venous Thromboembolism.

    Science.gov (United States)

    Sakurai, Manabu; Matsumoto, Koji; Gosho, Masahiko; Sakata, Akiko; Hosokawa, Yoshihiko; Tenjimbayashi, Yuri; Katoh, Takashi; Shikama, Ayumi; Komiya, Haruna; Michikami, Hiroo; Tasaka, Nobutaka; Akiyama-Abe, Azusa; Nakao, Sari; Ochi, Hiroyuki; Onuki, Mamiko; Minaguchi, Takeo; Yoshikawa, Hiroyuki; Satoh, Toyomi

    2017-01-01

    Our 2007 study of 32 patients with ovarian cancer reported the possible involvement of tissue factor (TF) in the development of venous thromboembolism (VTE) before treatment, especially in clear cell carcinoma (CCC). This follow-up study further investigated this possibility in a larger cohort. We investigated the intensity of TF expression (ITFE) and other variables for associations with VTE using univariate and multivariate analyses in 128 patients with epithelial ovarian cancer initially treated between November 2004 and December 2010, none of whom had received neoadjuvant chemotherapy. Before starting treatment, all patients were ultrasonographically screened for VTE. The ITFE was graded based on immunostaining of surgical specimens. Histological types were serous carcinoma (n = 42), CCC (n = 12), endometrioid carcinoma (n = 15), mucinous carcinoma (n = 53), and undifferentiated carcinoma (n = 6). The prevalence of VTE was significantly higher in CCC (34%) than in non-CCC (17%, P = 0.03). As ITFE increased, the frequencies of CCC and VTE increased significantly (P epithelial ovarian cancer may involve TF expression in cancer tissues.

  20. Protein signature of lung cancer tissues.

    Directory of Open Access Journals (Sweden)

    Michael R Mehan

    Full Text Available Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan to compare protein expression signatures of non small-cell lung cancer (NSCLC tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment.

  1. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    Science.gov (United States)

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.

  2. Detection of neuronal tissue in meat using tissue specific DNA modifications

    Directory of Open Access Journals (Sweden)

    Harris N.

    2004-01-01

    Full Text Available A method has been developed to differentiate between non-muscle tissues such as liver, kidney and heart and that of muscle in meat samples using tissue specific DNA detection. Only muscle tissue is considered meat from the point of view of labelling (Food Labelling [Amendment] (England Regulations 2003 and Quantitative Ingredient Declaration (QUID, and also certain parts of the carcass are prohibited to be used in raw meat products (Meat Products [England] Regulations 2003. Included in the prohibited offal are brain and spinal cord. The described methodology has therefore been developed primarily to enforce labelling rules but also to contribute to the enforcement of BSE legislation on the detection of Central Nervous System (CNS tissue. The latter requires the removal of Specified Risk Material (SRM, such as bovine and ovine brain and spinal cord, from the food chain. Current methodologies for detection of CNS tissue include histological examination, analysis of cholesterol content and immunodetection. These can potentially be time consuming, less applicable to processed samples and may not be readily adapted to high throughput sample analysis. The objective of this work was therefore to develop a DNAbased detection assay that exploits the sensitivity and specificity of PCR and is potentially applicable to more highly processed food samples. For neuronal tissue, the DNA target selected was the promoter for Glial Fibrillary Acidic Protein (GFAP, a gene whose expression is restricted to astroglial cells within CNS tissue. The promoter fragments from both cattle and sheep have been isolated and key differences in the methylation patterns of certain CpG dinucleotides in the sequences from bovine and sheep brain and spinal cord and the corresponding skeletal muscle identified. These have been used to design a PCR assay exploiting Methylation Specific PCR (MSP to specifically amplify the neuronal tissue derived sequence and therefore identify the

  3. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  4. Development and characteristics of pannus-like soft tissue in osteoarthritic articular surface in rat osteoarthritis model.

    Science.gov (United States)

    Duc, P A; Yudoh, K; Masuko, K; Kato, T; Nishioka, K; Nakamura, H

    2008-01-01

    Pannus is invasive granulation tissue found on the articular cartilage having rheumatoid arthritis (RA). However, pannus-like tissue has also been found in osteoarthritis (OA). Our previous study showed that pannus-like tissue in OA (OA pannus) was frequently found in human OA samples. The purpose of the study is to investigate the development and the characteristics of OA pannus in a rat OA model. Ligaments of the knee joint were transected in Wister rats to induce OA. The knee joints were removed at weeks 1, 2, 4 and 6, and subjected to histological study. Samples were stained with hematoxylin and eosin (HE), Safranin-O and immuno-stained for vimentin, CD34, type II collagen and MMP-3. The whole knee joint of OA rats was implanted in SCID mice and kept for a further 3 weeks. Then the histological findings were evaluated in HE sections. OA pannus appeared at week 2 and extend over the articular surface. OA pannus cells were positive for vimentin and/or CD34. At week 6, a part of articular surface was restored with matrix. OA pannus cells expressed MMP-3 as well as type II collagen. Histological study of rat OA knees implanted in SCID mice showed that OA pannus cells filled the joint space and invaded articular cartilage. The presence of OA pannus was found in a rat OA model and its features were similar to those in human OA. OA pannus had both catabolic and reparative features, and the latter feature were speculated to be dominant in the later phase of the disease under a certain environmental condition.

  5. Optical signature of nerve tissue-Exploratory ex vivo study comparing optical, histological, and molecular characteristics of different adipose and nerve tissues.

    Science.gov (United States)

    Balthasar, Andrea J R; Bydlon, Torre M; Ippel, Hans; van der Voort, Marjolein; Hendriks, Benno H W; Lucassen, Gerald W; van Geffen, Geert-Jan; van Kleef, Maarten; van Dijk, Paul; Lataster, Arno

    2018-05-14

    During several anesthesiological procedures, needles are inserted through the skin of a patient to target nerves. In most cases, the needle traverses several tissues-skin, subcutaneous adipose tissue, muscles, nerves, and blood vessels-to reach the target nerve. A clear identification of the target nerve can improve the success of the nerve block and reduce the rate of complications. This may be accomplished with diffuse reflectance spectroscopy (DRS) which can provide a quantitative measure of the tissue composition. The goal of the current study was to further explore the morphological, biological, chemical, and optical characteristics of the tissues encountered during needle insertion to improve future DRS classification algorithms. To compare characteristics of nerve tissue (sciatic nerve) and adipose tissues, the following techniques were used: histology, DRS, absorption spectrophotometry, high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, and solution 2D 13 C- 1 H heteronuclear single-quantum coherence spectroscopy. Tissues from five human freshly frozen cadavers were examined. Histology clearly highlights a higher density of cellular nuclei, collagen, and cytoplasm in fascicular nerve tissue (IFAS). IFAS showed lower absorption of light around 1200 nm and 1750 nm, higher absorption around 1500 nm and 2000 nm, and a shift in the peak observed around 1000 nm. DRS measurements showed a higher water percentage and collagen concentration in IFAS and a lower fat percentage compared to all other tissues. The scattering parameter (b) was highest in IFAS. The HR-MAS NMR data showed three extra chemical peak shifts in IFAS tissue. Collagen, water, and cellular nuclei concentration are clearly different between nerve fascicular tissue and other adipose tissue and explain some of the differences observed in the optical absorption, DRS, and HR-NMR spectra of these tissues. Some differences observed between fascicular

  6. Technical and economic feasibility study for the creation of a tissue bank

    International Nuclear Information System (INIS)

    Loncomilla Sandoval, Andrea Rosi; Mendez Guerra, Karina Angelica

    2006-01-01

    The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungi or bacteria coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allograft must be sterilized. The work presented is a Technical and economic Feasibility Study for the creation of a Tissue Bank in Chile, considering the fact of lacking of such institutions in our country and the need to satisfy the population that requires tissues. It is shown the processes involved and the characteristics of a tissue bank, and also a market survey in order to meet the demand, supply, technical requirements, competitors, opportunities and legal aspects of the process. Finally, it was examined the economic feasibility at which defines the investment, financing and business projections to determine the profitability of the project

  7. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    Science.gov (United States)

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  8. Bone up: craniomandibular development and hard-tissue biomineralization in neonate mice.

    Science.gov (United States)

    Thompson, Khari D; Weiss-Bilka, Holly E; McGough, Elizabeth B; Ravosa, Matthew J

    2017-10-01

    The presence of regional variation in the osteogenic abilities of cranial bones underscores the fact that the mechanobiology of the mammalian skull is more complex than previously recognized. However, the relationship between patterns of cranial bone formation and biomineralization remains incompletely understood. In four strains of mice, micro-computed tomography was used to measure tissue mineral density during perinatal development in three skull regions (calvarium, basicranium, mandible) noted for variation in loading environment, embryological origin, and ossification mode. Biomineralization levels increased during perinatal ontogeny in the mandible and calvarium, but did not increase in the basicranium. Tissue mineral density levels also varied intracranially, with density in the mandible being highest, in the basicranium intermediate, and in the calvarium lowest. Perinatal increases in, and elevated levels of, mandibular biomineralization appear related to the impending postweaning need to resist elevated masticatory stresses. Similarly, perinatal increases in calvarial biomineralization may be linked to ongoing brain expansion, which is known to stimulate sutural bone formation in this region. The lack of perinatal increase in basicranial biomineralization could be a result of earlier developmental maturity in the cranial base relative to other skull regions due to its role in supporting the brain's mass throughout ontogeny. These results suggest that biomineralization levels and age-related trajectories throughout the skull are influenced by the functional environment and ontogenetic processes affecting each region, e.g., onset of masticatory loads in the mandible, whereas variation in embryology and ossification mode may only have secondary effects on patterns of biomineralization. Knowledge of perinatal variation in tissue mineral density, and of normal cranial bone formation early in development, may benefit clinical therapies aiming to correct

  9. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  10. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  11. Phase II Study of Neoadjuvant Bevacizumab and Radiotherapy for Resectable Soft Tissue Sarcomas

    International Nuclear Information System (INIS)

    Yoon, Sam S.; Duda, Dan G.; Karl, Daniel L.; Kim, Tae-Min; Kambadakone, Avinash R.; Chen, Yen-Lin; Rothrock, Courtney; Rosenberg, Andrew E.; Nielsen, G. Petur; Kirsch, David G.; Choy, Edwin; Harmon, David C.; Hornicek, Francis J.; Dreyfuss, Jonathan; Ancukiewicz, Marek

    2011-01-01

    Purpose: Numerous preclinical studies have demonstrated that angiogenesis inhibitors can increase the efficacy of radiotherapy (RT). We sought to examine the safety and efficacy of bevacizumab (BV) and RT in soft tissue sarcomas and explore biomarkers to help determine the treatment response. Methods and Materials: Patients with ≥5 cm, intermediate- or high-grade soft tissue sarcomas at significant risk of local recurrence received neoadjuvant BV alone followed by BV plus RT before surgical resection. Correlative science studies included analysis of the serial blood and tumor samples and serial perfusion computed tomography scans. Results: The 20 patients had a median tumor size of 8.25 cm, with 13 extremity, 1 trunk, and 6 retroperitoneal/pelvis tumors. The neoadjuvant treatment was well tolerated, with only 4 patients having Grade 3 toxicities (hypertension, liver function test elevation). BV plus RT resulted in ≥80% pathologic necrosis in 9 (45%) of 20 tumors, more than double the historical rate seen with RT alone. Three patients had a complete pathologic response. The median microvessel density decreased 53% after BV alone (p <.05). After combination therapy, the median tumor cell proliferation decreased by 73%, apoptosis increased 10.4-fold, and the blood flow, blood volume, and permeability surface area decreased by 62–72% (p <.05). Analysis of gene expression microarrays of untreated tumors identified a 24-gene signature for treatment response. The microvessel density and circulating progenitor cells at baseline and the reduction in microvessel density and plasma soluble c-KIT with BV therapy also correlated with a good pathologic response (p <.05). After a median follow-up of 20 months, only 1 patient had developed local recurrence. Conclusions: The results from the present exploratory study indicated that BV increases the efficacy of RT against soft tissue sarcomas and might reduce the incidence of local recurrence. Thus, this regimen warrants

  12. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huihui [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Othman, Shadi F [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Hong Liu [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Peptan, Ioana A [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Magin, Richard L [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States)

    2006-02-07

    Magnetic resonance microscopy (MRM) is used to monitor osteogenesis in tissue-engineered constructs. Measurements of the developing tissue's MR relaxation times (T{sub 1} and T{sub 2}), apparent diffusion coefficient (ADC) and elastic shear modulus were conducted over a 4-week growth period using an 11.74 T Bruker spectrometer with an imaging probe adapted for MR elastography (MRE). Both the relaxation times and the ADC show a statistically significant decrease after only one week of tissue development while the tissue stiffness increases progressively during the first two weeks of in vitro growth. The measured MR parameters are correlated with histologically monitored osteogenic tissue development. This study shows that MRM can provide quantitative data with which to characterize the growth and development of tissue-engineered bone.

  13. Biothermomechanical behavior of skin tissue

    Institute of Scientific and Technical Information of China (English)

    F.Xu; T.J.Lu; K.A.Seffen

    2008-01-01

    Advances in laser,microwave and similar tech nologies have led to recent developments of thermal treatments involving skin tissue.The effectiveness of these treatments is governed by the coupled thermal,mechanical,biological and neural responses of the affected tissue:a favorable interaction results in a procedure with relatively little pain and no lasting side effects.Currently,even though each behavioral facet is to a certain extent established and understood,none exists to date in the interdisciplinarv area.A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin,involving bioheat transfer.biomechanics and physiology.A comprehensive literature review penrtinent to the subject is presented in this paper,covering four subject areas:(a)skin structure,(b)skin bioheat transfer and thermal damage,(c)skin biomechanics,and(d)skin biothermomechanics.The major problems,issues,and topics for further studies are also outlined.This review finds that significant advances in each of these aspects have been achieved in recent years.Although focus is placed upon the biothermomechanical behavior of skin tissue,the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.

  14. Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem.

    Science.gov (United States)

    Tameshige, Toshiaki; Ikematsu, Shuka; Torii, Keiko U; Uchida, Naoyuki

    2017-01-01

    Plant cells communicate with each other using a variety of signaling molecules. Recent studies have revealed that various types of secreted peptides, as well as phytohormones known since long ago, mediate cell-cell communication in diverse contexts of plant life. These peptides affect cellular activities, such as proliferation and cell fate decisions, through their perception by cell surface receptors located on the plasma membrane of target cells. ERECTA (ER), an Arabidopsis thaliana receptor kinase gene, was first identified as a stem growth regulator, and since then an increasing number of studies have shown that ER is involved in a wide range of developmental and physiological processes. In particular, molecular functions of ER have been extensively studied in stomatal patterning. Furthermore, the importance of ER signaling in vascular tissues of inflorescence stems, especially in phloem cells, has recently been highlighted. In this review article, first we briefly summarize the history of ER research including studies on stomatal development, then introduce ER functions in vascular tissues, and discuss its interactions with phytohormones and other receptor kinase signaling pathways. Future questions and challenges will also be addressed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Comparative in silico profiling of epigenetic modifiers in human tissues.

    Science.gov (United States)

    Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-04-06

    The technology of tissue differentiation from human pluripotent stem cells has attracted attention as a useful resource for regenerative medicine, disease modeling and drug development. Recent studies have suggested various key factors and specific culture methods to improve the successful tissue differentiation and efficient generation of human induced pluripotent stem cells. Among these methods, epigenetic regulation and epigenetic signatures are regarded as an important hurdle to overcome during reprogramming and differentiation. Thus, in this study, we developed an in silico epigenetic panel and performed a comparative analysis of epigenetic modifiers in the RNA-seq results of 32 human tissues. We demonstrated that an in silico epigenetic panel can identify epigenetic modifiers in order to overcome epigenetic barriers to tissue-specific differentiation.

  16. Evaluation of social capital in historic urban tissue (Case Study: The ...

    African Journals Online (AJOL)

    Today Social Capital as one of the most important comprehensive development factors is a key concept in new attitude to urban planning and management. In this attitude, planning is based on human resources, social capitals and collaborative participation. The social capital in historic tissue is considered from two ...

  17. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies

    Science.gov (United States)

    Zhang, Shujun

    2018-01-01

    Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study. PMID:29377896

  18. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Xingjie Hao

    2018-01-01

    Full Text Available Genome-wide association studies (GWASs have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART. With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study.

  19. Comparative studies on the distribution of rhodanese in different tissues of domestic animals.

    Science.gov (United States)

    Aminlari, M; Gilanpour, H

    1991-01-01

    1. The activity of rhodanese in different tissues of some domestic animals was measured. 2. Rhodanese was present in all tissues studied. 3. The activity of rhodanese in most tissues of sheep was higher than other animals studied. 4. In sheep and cattle the epithelium of rumen, omasum and reticulum were the richest sources of rhodanese. Significant activity of rhodanese was also present in liver and kidney. 5. In camel the liver contained the highest level of rhodanese followed by lung and rumen epithelium. Camel liver contained a third of the activity of sheep liver. 6. Equine liver had a third of the activity of sheep liver. Other tissues showed low levels of rhodanese activity. 7. Dog liver contained only 4% of the activity of sheep liver. In this animal, brain was the richest source of rhodanese. 8. The results are discussed in terms of efficacy of different tissues of animals in cyanide detoxification.

  20. Modeling the development of tissue engineered cartilage

    NARCIS (Netherlands)

    Sengers, B.G.

    2005-01-01

    The limited healing capacity of articular cartilage forms a major clinical problem. In general, current treatments of cartilage damage temporarily reliefs symptoms, but fail in the long term. Tissue engineering (TE) has been proposed as a more permanent repair strategy. Cartilage TE aims at

  1. Development and Implementation of Discrete Polymeric Microstructural Cues for Applications in Cardiac Tissue Engineering

    Science.gov (United States)

    Pinney, James Richardson

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. Despite care in the acute setting of MI, subsequent development of scar tissue and a lack of treatments for this maladaptive response lead to a poor prognosis. This has increased burdens on the cost of healthcare due to chronic disability. Here a novel therapeutic strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructural cues to attenuate the fibrotic response and improve functional outcomes is presented. Additionally, applications of integrated chemical functionalizations into discrete, micro-scale polymer structures are discussed in the realm of tissue engineering in order to impart enhancements in in vivo localization, three-dimensional manipulation and drug delivery. Polymeric microstructures, termed "microrods" and "microcubes", were fabricated using photolithographic techniques and studied in three-dimensional culture models of the fibrotic environment and by direct injection into the infarct zone of adult Sprague-Dawley rats. In vitro gene expression and functional and histological results were analyzed, showing a dose-dependent down-regulation fibrotic indicators and improvement in cardiac function. Furthermore, iron oxide nanoparticles and functionalized fluorocarbons were incorporated into the polymeric microdevices to promote in situ visualization by magnetic resonance imaging as well as to facilitate the manipulation and alignment of microstructural cues in a tissue-realistic environment. Lastly, successful encapsulation of native MGF peptide within microrods is demonstrated with release over two weeks as a proof of concept in the ability to locally deliver myogenic or supportive pharmacotherapeutics to the injured myocardium. This work demonstrates the efficacy and versatility of discrete microtopographical cues to attenuate the fibrotic response after MI and suggests a novel

  2. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications.

    Science.gov (United States)

    Zakhem, Elie; Bitar, Khalil N

    2015-10-13

    Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young's modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds.

  3. Final Report for completed IPP Project:"Development of Plasma Ablation for Soft Tissue and Bone Surgery"

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian

    2009-09-01

    ArthroCare is a medical device company that develops, manufactures, and markets an advanced surgical tool, a plasma electro-surgical system for cutting and removing tissue. The hand-held electrical discharge device produces plasma in a biocompatible conductive fluid and tissue to which it is applied during surgery. Its products allow surgeons to operate with increased precision and accuracy, limiting damage to surrounding tissue thereby reducing pain and speeding recovery for the patient. In the past, the design of ArthfoCare's plasma wands has been an empirical undertaking. One goal of this R&D program was to put the phenomena involved on a sound scientific footing, allowing optimization of existing plasma based electro-surgery system technology, and the design and manufacture of new and improved kinds of scalpels, in particular for the surgical cutting of bone. Another important related goal of the program was to develop, through an experimental approach, new plasma wand approaches to the cutting ('shaving') of hard bone tissue. The goals of the CRADA were accomplished - computer models were used to predict important parameters of the plasma discharge and the bone environment, and several different approaches to bone-shaving were developed and demonstrated. The primary goal of the project was to develop and demonstrate an atmospheric-pressure plasma tool that is suitable for surgical use for shaving bone in humans. This goal was accomplished, in fact with several different alternative plasma approaches. High bone ablation speeds were measured. The use of probes ('plasma wand' - the surgical tool) with moving active electrodes was also explored, and there are advantages to this method. Another important feature is that the newly-exposed bone surface have only a very thin necrosis layer; this feature was demonstrated. This CRADA has greatly advanced our understanding of bone removal by atmospheric pressure plasmas in liquid, and puts Arthro

  4. Final Report for completed IPP Project: Development of Plasma Ablation for Soft Tissue and Bone Surgery

    International Nuclear Information System (INIS)

    Brown, Ian

    2009-01-01

    ArthroCare is a medical device company that develops, manufactures, and markets an advanced surgical tool, a plasma electro-surgical system for cutting and removing tissue. The hand-held electrical discharge device produces plasma in a biocompatible conductive fluid and tissue to which it is applied during surgery. Its products allow surgeons to operate with increased precision and accuracy, limiting damage to surrounding tissue thereby reducing pain and speeding recovery for the patient. In the past, the design of ArthfoCare's plasma wands has been an empirical undertaking. One goal of this R and D program was to put the phenomena involved on a sound scientific footing, allowing optimization of existing plasma based electro-surgery system technology, and the design and manufacture of new and improved kinds of scalpels, in particular for the surgical cutting of bone. Another important related goal of the program was to develop, through an experimental approach, new plasma wand approaches to the cutting ('shaving') of hard bone tissue. The goals of the CRADA were accomplished - computer models were used to predict important parameters of the plasma discharge and the bone environment, and several different approaches to bone-shaving were developed and demonstrated. The primary goal of the project was to develop and demonstrate an atmospheric-pressure plasma tool that is suitable for surgical use for shaving bone in humans. This goal was accomplished, in fact with several different alternative plasma approaches. High bone ablation speeds were measured. The use of probes ('plasma wand' - the surgical tool) with moving active electrodes was also explored, and there are advantages to this method. Another important feature is that the newly-exposed bone surface have only a very thin necrosis layer; this feature was demonstrated. This CRADA has greatly advanced our understanding of bone removal by atmospheric pressure plasmas in liquid, and puts ArthroCare in a good

  5. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  6. Development of a drift tissue equivalent proportional counter for radiation protection personnel dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.

    1992-04-01

    A new multicellular geometry for proportional counter has been developed. It is made of several drift regions which are some holes drilled in the cathode in front of anodes wires. The present work is made of 3 parts: 1) A theoretical evaluation of the multicellular counter characteristics: the sensitivity increases by a factor 15 vs the Tinelli Merlin-Gerin counter; the chord length distribution study shows the possibility to use a Dirac function for the dosimetry calculations; a tissue equivalent gas mixture based on argon and propane is designed. 2) The production of a monocellular prototype made of a hole and a needle shaped anode. 3) An experimental study of the prototype electrical characteristics and a computation of the electrical field in the counter. The focalization and the electron drift into the hole, the proportional operating mode are shown. Irradiations in front of photon and neutron sources verify these results

  7. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  8. Electron probe microanalysis for clinical investigations: Microdrop and soft tissue analysis

    International Nuclear Information System (INIS)

    Ingram, M.J.; Ingram, F.D.

    1984-01-01

    The most important advantage offered by electron probe microanalysis (EPA) for clinical investigations is the ability to analyze smaller volumes of tissue than is possible with conventional techniques. The sample can be a biological soft tissue specimen, which involves subcellular localization, or a picoliter fluid droplet. In either case, the analysis can be nondestructive and permit multiple analyses for a number of elements in a given sample. The most highly developed electron microprobe analytical technique is fluid drop analysis, popularly referred to as microdrop analysis. This method provides the investigator with an analytic capability that has an accuracy of measurement often 1% or better on 20 to 30 picoliter fluid droplets. Electron microprobe techniques have been used for studies of animal hard tissue and for studies that involve insoluble inclusions. However, the development of techniques for studies of labile constituents in animal soft tissue has been much slower. It has been necessary not only to develop appropriate methods of tissue preparation, but also to establish sound techniques for tissue collection. Although there are adequate methods for collection of most types of tissue from laboratory animals, many of these methods are not suitable for human subjects. In order to provide the reader with a better understanding of the capabilities and potential for the application of electron microprobe methodology to problems in clinical medicine, the authors discuss some of their experiences with liquid droplet analysis and quantitative electrolyte distribution measurements in animal soft tissue

  9. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    Directory of Open Access Journals (Sweden)

    Jared B Hawkins

    Full Text Available Germinal centers (GCs are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  10. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    Science.gov (United States)

    Hawkins, Jared B; Jones, Mark T; Plassmann, Paul E; Thorley-Lawson, David A

    2011-01-01

    Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  11. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  12. Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair.

    Science.gov (United States)

    LeClair, Elizabeth E; Topczewski, Jacek

    2010-01-15

    Barbels are integumentary sense organs found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops paired nasal and maxillary barbels approximately one month post fertilization. Small in diameter and optically clear, these adult appendages offer a window on the development, maintenance and function of multiple cell types including skin cells, neural-crest derived pigment cells, circulatory vessels, taste buds and sensory nerves. Importantly, barbels in other otophysan fishes (e.g., catfish) are known to regenerate; however, this capacity has not been tested in zebrafish. We describe the development of the maxillary barbel in a staged series of wild type and transgenic zebrafish using light microscopy, histology and immunohistochemistry. By imaging transgenic zebrafish containing fluorescently labeled endothelial cells (Tg(fli1a:EGFP)), we demonstrate that the barbel contains a long ( approximately 2-3 mm) closed-end vessel that we interpret as a large lymphatic. The identity of this vessel was further supported by live imaging of the barbel circulation, extending recent descriptions of the lymphatic system in zebrafish. The maxillary barbel can be induced to regenerate by proximal amputation. After more than 750 experimental surgeries in which approximately 85% of the barbel's length was removed, we find that wound healing is complete within hours, followed by blastema formation ( approximately 3 days), epithelial redifferentiation (3-5 days) and appendage elongation. Maximum regrowth occurs within 2 weeks of injury. Although superficially normal, the regenerates are shorter and thicker than the contralateral controls, have abnormally organized mesenchymal cells and extracellular matrix, and contain prominent connective tissue "stumps" at the plane of section--a mode of regeneration more typical of mammalian scarring than other zebrafish appendages. Finally, we show that the maxillary barbel can regenerate after repeated injury and also in

  13. Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair.

    Directory of Open Access Journals (Sweden)

    Elizabeth E LeClair

    2010-01-01

    Full Text Available Barbels are integumentary sense organs found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops paired nasal and maxillary barbels approximately one month post fertilization. Small in diameter and optically clear, these adult appendages offer a window on the development, maintenance and function of multiple cell types including skin cells, neural-crest derived pigment cells, circulatory vessels, taste buds and sensory nerves. Importantly, barbels in other otophysan fishes (e.g., catfish are known to regenerate; however, this capacity has not been tested in zebrafish.We describe the development of the maxillary barbel in a staged series of wild type and transgenic zebrafish using light microscopy, histology and immunohistochemistry. By imaging transgenic zebrafish containing fluorescently labeled endothelial cells (Tg(fli1a:EGFP, we demonstrate that the barbel contains a long ( approximately 2-3 mm closed-end vessel that we interpret as a large lymphatic. The identity of this vessel was further supported by live imaging of the barbel circulation, extending recent descriptions of the lymphatic system in zebrafish. The maxillary barbel can be induced to regenerate by proximal amputation. After more than 750 experimental surgeries in which approximately 85% of the barbel's length was removed, we find that wound healing is complete within hours, followed by blastema formation ( approximately 3 days, epithelial redifferentiation (3-5 days and appendage elongation. Maximum regrowth occurs within 2 weeks of injury. Although superficially normal, the regenerates are shorter and thicker than the contralateral controls, have abnormally organized mesenchymal cells and extracellular matrix, and contain prominent connective tissue "stumps" at the plane of section--a mode of regeneration more typical of mammalian scarring than other zebrafish appendages. Finally, we show that the maxillary barbel can regenerate after repeated injury and

  14. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues

    Science.gov (United States)

    Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi

    2016-01-01

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791

  15. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review.

    Science.gov (United States)

    Hoogendoorn, Iris; Reenalda, Jasper; Koopman, Bart F J M; Rietman, Johan S

    2017-08-01

    Pressure ulcers are a significant problem in health care, due to high costs and large impact on patients' life. In general, pressure ulcers develop as tissue viability decreases due to prolonged mechanical loading. The relation between load and tissue viability is highly influenced by individual characteristics. It is proposed that measurements of skin blood flow regulation could provide good assessment of the risk for pressure ulcer development, as skin blood flow is essential for tissue viability. . Therefore, the aim of this systematic review is to gain insight in the relation between mechanical load and the response of the skin and underlying tissue to this loading measured in-vivo with non-invasive techniques. A systematic literature search was performed to identify articles analysing the relation between mechanical load (pressure and/or shear) and tissue viability measured in-vivo. Two independent reviewers scored the methodological quality of the 22 included studies. Methodological information as well as tissue viability parameters during load application and after load removal were extracted from the included articles and used in a meta-analysis. Pressure results in a decrease in skin blood flow parameters, compared to baseline; showing a larger decrease with higher magnitudes of load. The steepness of the decrease is mostly dependent on the anatomical location. After load removal the magnitude of the post-reactive hyperaemic peak is related to the magnitude of pressure. Lastly, shear in addition to pressure, shows an additional negative effect, but the effect is less apparent than pressure on skin viability. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  16. Migration and Tissue Tropism of Innate Lymphoid Cells

    Science.gov (United States)

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  17. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  18. Connective tissue activation. XVII

    International Nuclear Information System (INIS)

    Weiss, J.J.; Donakowski, C.; Anderson, B.; Meyers, S.; Castor, C.W.

    1980-01-01

    The platelet-derived connective tissue activating peptide (CTAP-III) has been shown to be an important factor stimulating the metabolism and proliferation of human connective tissue cell strains, including synovial tissue cells. The quantities of CTAP-III affecting the cellular changes and the amounts in various biologic fluids and tissues are small. The objectives of this study were to develop a radioimmunoassay (RIA) for CTAP-III and to ascertain the specificities of the anti-CTAP-III sera reagents. The antisera were shown not to cross-react with a number of polypeptide hormones. However, two other platelet proteins β-thromboglobulin and low affinity platelet factor-4, competed equally as well as CTAP-III for anti-CTAP-III antibodies in the RIA system. Thus, the three platelet proteins are similar or identical with respect to those portions of the molecules constituting the reactive antigenic determinants. The levels of material in normal human platelet-free plasma that inhibited anti-CTAP-III- 125 I-CTAP-III complex formation were determined to be 34+-13 (S.D.) ng/ml. (Auth.)

  19. The effect of tissue decalcification on mRNA retention within bone for in-situ hybridization studies.

    Science.gov (United States)

    Walsh, L; Freemont, A J; Hoyland, J A

    1993-06-01

    Tissue decalcification is a routine part of the preparation of bone tissue for histological studies. Although in-situ hybridization has been employed to localize mRNA of collagenous and non-collagenous bone related proteins in skeletal tissue, little is known regarding the effects of decalcifying agents on mRNA retention within tissue. In this study in-situ hybridization using an oligonucleotide probe (i.e. a poly d(T) probe) to detect total messenger RNA has been employed to investigate the effects of the decalcifying agents nitric acid, formic acid and EDTA on mRNA retention compared to undeacalcified tissue. The results show that formalin fixation and EDTA decalcification preserve substantial amounts of mRNA within the tissue. In particular, this study illustrates that it is possible to perform in-situ hybridization on formalin fixed decalcified paraffin embedded tissue.

  20. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  1. Nuclear exclusion of transcription factors associated with apoptosis in developing nervous tissue

    Directory of Open Access Journals (Sweden)

    R. Linden

    1999-07-01

    Full Text Available Programmed cell death in the form of apoptosis involves a network of metabolic events and may be triggered by a variety of stimuli in distinct cells. The nervous system contains several neuron and glial cell types, and developmental events are strongly dependent on selective cell interactions. Retinal explants have been used as a model to investigate apoptosis in nervous tissue. This preparation maintains the structural complexity and cell interactions similar to the retina in situ, and contains cells in all stages of development. We review the finding of nuclear exclusion of several transcription factors during apoptosis in retinal cells. The data reviewed in this paper suggest a link between apoptosis and a failure in the nucleo-cytoplasmic partition of transcription factors. It is argued that the nuclear exclusion of transcription factors may be an integral component of apoptosis both in the nervous system and in other types of cells and tissues.

  2. Relationships of personality traits and stress to gingival status or soft-tissue oral pathology: an exploratory study.

    Science.gov (United States)

    Minneman, M A; Cobb, C; Soriano, F; Burns, S; Schuchman, L

    1995-01-01

    The purpose of this study was to examine the relationships of personality traits and stress with gingival inflammation and with soft-tissue oral pathology. Personality traits of psychoticism (P), extroversion and introversion (E), and neuroticism (N) were measured with Eysenck's personality questionnaire (EPQ). Stress was measured with a modified organizational and individual assessment survey (OIAS) developed by Hendrix. Military recruits from Ft. Leonard Wood, Missouri, were examined for soft-tissue oral pathology and gingival status at weeks one (n = 241) and six (n = 61) of basic combat training (BCT). The EPQ and OIAS were administered to 217 recruits during week six of BCT. A discriminant analysis was used to determine correlations among study variables. Significant correlations (P personality traits and various measures of tolerance of stress. Little variance was found between groups originally presenting with or without disease. Only physical stress (P personality traits, stress variables, and gingival inflammation or soft-tissue pathology in recruits with extreme personality characteristics or perception of high physical stress levels in basic combat training.

  3. Connective tissue graft as a biological barrier for guided tissue regeneration in intrabony defects: a histological study in dogs.

    Science.gov (United States)

    Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio

    2015-06-01

    The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P  0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.

  4. The role of adipose tissue in cancer-associated cachexia.

    Science.gov (United States)

    Vaitkus, Janina A; Celi, Francesco S

    2017-03-01

    Adipose tissue (fat) is a heterogeneous organ, both in function and histology, distributed throughout the body. White adipose tissue, responsible for energy storage and more recently found to have endocrine and inflammation-modulatory activities, was historically thought to be the only type of fat present in adult humans. The recent demonstration of functional brown adipose tissue in adults, which is highly metabolic, shifted this paradigm. Additionally, recent studies demonstrate the ability of white adipose tissue to be induced toward the brown adipose phenotype - "beige" or "brite" adipose tissue - in a process referred to as "browning." While these adipose tissue depots are under investigation in the context of obesity, new evidence suggests a maladaptive role in other metabolic disturbances including cancer-associated cachexia, which is the topic of this review. This syndrome is multifactorial in nature and is an independent factor associated with poor prognosis. Here, we review the contributions of all three adipose depots - white, brown, and beige - to the development and progression of cancer-associated cachexia. Specifically, we focus on the local and systemic processes involving these adipose tissues that lead to increased energy expenditure and sustained negative energy balance. We highlight key findings from both animal and human studies and discuss areas within the field that need further exploration. Impact statement Cancer-associated cachexia (CAC) is a complex, multifactorial syndrome that negatively impacts patient quality of live and prognosis. This work reviews a component of CAC that lacks prior discussion: adipose tissue contributions. Uniquely, it discusses all three types of adipose tissue, white, beige, and brown, their interactions, and their contributions to the development and progression of CAC. Summarizing key bench and clinical studies, it provides information that will be useful to both basic and clinical researchers in designing

  5. A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R

    2015-10-05

    Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.

  6. Spectroscopy of Multilayered Biological Tissues for Diabetes Care

    Science.gov (United States)

    Yudovsky, Dmitry

    Neurological and vascular complications of diabetes mellitus are known to cause foot ulceration in diabetic patients. Present clinical screening techniques enable the diabetes care provider to triage treatment by identifying diabetic patients at risk of foot ulceration. However, these techniques cannot effectively identify specific areas of the foot at risk of ulceration. This study aims to develop non-invasive optical techniques for accurate assessment of tissue health and viability with spatial resolution on the order of 1 mm². The thesis can be divided into three parts: (1) the use of hyperspectral tissue oximetry to detect microcirculatory changes prior to ulcer formation, (2) development of a two-layer tissue spectroscopy algorithm and its application to detection of callus formation or epidermal degradation prior to ulceration, and (3) multi-layered tissue fluorescence modeling for identification of bacterial growth in existing diabetic foot wounds. The first part of the dissertation describes a clinical study in which hyperspectral tissue oximetry was performed on multiple diabetic subjects at risk of ulceration. Tissue oxyhemoglobin and deoxyhemoglobin concentrations were estimated using the Modified Beer-Lambert law. Then, an ulcer prediction algorithm was developed based on retrospective analysis of oxyhemoglobin and deoxyhemoglobin concentrations in sites that were known to ulcerate. The ulcer prediction algorithm exhibited a large sensitivity but low specificity of 95 and 80%, respectively. The second part of the dissertation revisited the hyperspectral data presented in part one with a new and novel two-layer tissue spectroscopy algorithm. This algorithm was able to detect not only oxyhemoglobin and deoxyhemoglobin concentrations, but also the thickness of the epidermis, and the tissue's scattering coefficient. Specifically, change in epidermal thickness provided insight into the formation of diabetic foot ulcers over time. Indeed, callus formation or

  7. A toolbox to explore the mechanics of living embryonic tissues

    Science.gov (United States)

    Campàs, Otger

    2016-01-01

    The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. PMID:27061360

  8. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    Directory of Open Access Journals (Sweden)

    Teng Shaolei

    2013-01-01

    Full Text Available Abstract Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs and Support Vector Machines (SVMs were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.

  9. Study on the neutron dosimetric characteristics of Tissue Equivalent Proportional Counter

    Energy Technology Data Exchange (ETDEWEB)

    Nunomiya, T.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Tsujimura, N.; Momose, T.; Shinohara, K. [Japan Nuclear Cycle Development Inst., Environment and Safety Division, Tokai Works, Tokai, Ibaraki (Japan)

    1999-03-01

    The neutron dosimetric characteristics of TEPC (Tissue Equivalent Proportional Counter) has been investigated under a cooperative study between Tohoku University and JNC since 1997. This TEPC is a spherical, large volume, single-wire proportional counter (the model LETSW-5, manufactured by Far West Technology, Inc.) and filled with a tissue equivalent gas in a spherical detector of the A-150 tissue equivalent plastic. The TEPC can measure the spectra of absorbed dose in LET and easily estimate the tissue equivalent dose to neutron. This report summarizes the dosimetric characteristics of TEPC to the monoenergetic neutrons with energy from 8 keV to 15 MeV. It is found that TEPC can estimate the ambient dose equivalent, H*(10), with an accuracy from 0.9 to 2 to the neutron above 0.25 MeV and TEPC has a good counting efficiency enough to measure neutron doses with low dose rate at the stray neutron fields. (author)

  10. Studies of tissue colonization in Rhododendron by Phytophthora ramorum

    Science.gov (United States)

    Marko Riedel; Stefan Wagner; Monika Götz; Lassaad Belbahri; Francois Lefort; Sabine Werres

    2008-01-01

    The knowledge on latency is of great importance to prevent the spread of Phytophthora ramorum with healthy looking plant material. To learn more about the tissue colonisation in Rhododendron, histological studies with epifluorescence microscopy have been started. Epifluorescence images showing P. ramorum structures in different...

  11. Technique: imaging earliest tooth development in 3D using a silver-based tissue contrast agent.

    Science.gov (United States)

    Raj, Muhammad T; Prusinkiewicz, Martin; Cooper, David M L; George, Belev; Webb, M Adam; Boughner, Julia C

    2014-02-01

    Looking in microscopic detail at the 3D organization of initiating teeth within the embryonic jaw has long-proved technologically challenging because of the radio-translucency of these tiny un-mineralized oral tissues. Yet 3D image data showing changes in the physical relationships among developing tooth and jaw tissues are vital to understand the coordinated morphogenesis of vertebrate teeth and jaws as an animal grows and as species evolve. Here, we present a new synchrotron-based scanning solution to image odontogenesis in 3D and in histological detail using a silver-based contrast agent. We stained fixed, intact wild-type mice aged embryonic (E) day 10 to birth with 1% Protargol-S at 37°C for 12-32 hr. Specimens were scanned at 4-10 µm pixel size at 28 keV, just above the silver K-edge, using micro-computed tomography (µCT) at the Canadian Light Source synchrotron. Synchrotron µCT scans of silver-stained embryos showed even the earliest visible stages of tooth initiation, as well as many other tissue types and structures, in histological detail. Silver stain penetration was optimal for imaging structures in intact embryos E15 and younger. This silver stain method offers a powerful yet straightforward approach to visualize at high-resolution and in 3D the earliest stages of odontogenesis in situ, and demonstrates the important of studying the tooth organ in all three planes of view. Copyright © 2013 Wiley Periodicals, Inc.

  12. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  13. Pathologic evaluation of normal and perfused term placental tissue

    DEFF Research Database (Denmark)

    Maroun, Lisa Leth; Mathiesen, Line; Hedegaard, Morten

    2014-01-01

    This study reports for the 1st time the incidence and interobserver variation of morphologic findings in a series of 34 term placentas from pregnancies with normal outcome used for perfusion studies. Histologic evaluation of placental tissue is challenging, especially when it comes to defining...... "normal tissue" versus "pathologic lesions." A scoring system for registration of abnormal morphologic findings was developed. Light microscopic examination was performed independently by 2 pathologists, and interobserver variation was analyzed. Findings in normal and perfused tissue were compared...... and selected findings were tested against success parameters from the perfusions. Finally, the criteria for frequent lesions with fair to poor interobserver variation in the nonperfused tissue were revised and reanalyzed. In the perfused tissue, the perfusion artefact "trophoblastic vacuolization," which...

  14. Application of laboratory microtomography to the study of mineralized tissues

    International Nuclear Information System (INIS)

    Elliot, J.C.; Davis, G.R.; Anderson, P.; Wong, F.S.L.; Dowker, S.E.P.; Mercer, C.E.

    1997-01-01

    The principles of microtomography are briefly presented and recent studies of mineralized tissues using laboratory and synchrotron X-ray sources are reviewed. Results are given of investigations undertaken with laboratory systems using either a 1 st generation (single beam of 15 mu m and energy dispersive detector) or a novel 4 th generation system with 2-D detector that can provide 3-D images with vowels of 38x38x38 mu m ''3 of specimens with diameter up to 40 mm. Studies include mineral concentration distributions in cortical bone trabecular structure in a human vertebral body, cracking of bone under compression in situ and root canal obturation and Er: YAG laser application to enamel and dentine. Future applications of microtomography to the study of mineralized tissues and their interaction with biomaterials are discussed.(Author) 31 refs

  15. Necrotizing soft tissue infections - a multicentre, prospective observational study (INFECT)

    NARCIS (Netherlands)

    Madsen, M.B.; Skrede, S.; Bruun, T.; Arnell, P.; Rosén, A.; Nekludov, M.; Karlsson, Y.; Bergey, F.; Saccenti, E.; Martins dos Santos, V.A.P.; Perner, A.; Norrby-Teglund, A.; Hyldegaard, O.

    2018-01-01

    Background: The INFECT project aims to advance our understanding of the pathophysiological mechanisms in necrotizing soft tissue infections (NSTIs). The INFECT observational study is part of the INFECT project with the aim of studying the clinical profile of patients with NSTIs and correlating

  16. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration.

    Science.gov (United States)

    Erisken, Cevat; Kalyon, Dilhan M; Zhou, Jian; Kim, Sahng G; Mao, Jeremy J

    2015-10-01

    A critical step in biomaterial selection effort is the determination of material as well as the biological properties of the target tissue. Previously, the selection of biomaterials and carriers for dental pulp regeneration has been solely based on empirical experience. In this study, first, the linear viscoelastic material functions and compressive properties of miniature pig dental pulp were characterized using small-amplitude oscillatory shear and uniaxial compression at a constant rate. They were then compared with the properties of hydrogels (ie, agarose, alginate, and collagen) that are widely used in tissue regeneration. The comparisons of the linear viscoelastic material functions of the native pulp tissue with those of the 3 hydrogels revealed the gel-like behavior of the pulp tissue over a relatively large range of time scales (ie, over the frequency range of 0.1-100 rps). At the constant gelation agent concentration of 2%, the dynamic properties (ie, storage and loss moduli and the tanδ) of the collagen-based gel approached those of the native tissue. Under uniaxial compression, the peak normal stresses and compressive moduli of the agarose gel were similar to those of the native tissue, whereas alginate and collagen exhibited significantly lower compressive properties. The linear viscoelastic and uniaxial compressive properties of the dental pulp tissue reported here should enable the more appropriate selection of biogels for dental pulp regeneration via the better tailoring of gelation agents and their concentrations to better mimic the dynamic and compressive properties of native pulp tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Adenovirus 36 DNA in human adipose tissue.

    Science.gov (United States)

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  18. Spatio-temporal regulation of ADAR editing during development in porcine neural tissues

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard; Bramsen, Jesper Bertram; Bendixen, Christian

    2012-01-01

    Editing by ADAR enzymes is essential for mammalian life. Still, knowledge of the spatio-temporal editing patterns in mammals is limited. By use of 454 amplicon sequencing we examined the editing status of 12 regionally extracted mRNAs from porcine developing brain encompassing a total of 64...... putative ADAR editing sites. In total 24 brain tissues, dissected from up to five regions from embryonic gestation day 23, 42, 60, 80, 100 and 115, were examined for editing....

  19. Potassium titanyl phosphate laser tissue ablation: development and experimental validation of a new numerical model.

    Science.gov (United States)

    Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John

    2012-10-01

    The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

  20. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  1. Adipose tissue and sustainable development: a connection that needs protection

    Directory of Open Access Journals (Sweden)

    Angelo eTremblay

    2015-05-01

    Full Text Available Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants (POPs. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health and well-being or global ecological protection.

  2. Development of a novel anisotropic self-inflating tissue expander: in vivo submucoperiosteal performance in the porcine hard palate.

    Science.gov (United States)

    Swan, Marc C; Bucknall, David G; Czernuszka, Jan T; Pigott, David W; Goodacre, Timothy E E

    2012-01-01

    The advent of self-inflating hydrogel tissue expanders heralded a significant advance in the reconstructive potential of this technique. Their use, however, is limited by their uncontrolled isotropic (i.e., uniform in all directions) expansion. Anisotropy (i.e., directional dependence) was achieved by annealing a hydrogel copolymer of poly(methyl methacrylate-co-vinyl pyrrolidone) under a compressive load for a specified time period. The expansion ratio is dictated by the percentage of vinyl pyrrolidone content and the degree of compression. The expansion rate is modified by incorporating the polymer within a silicone membrane. The in vivo efficacy of differing prototype devices was investigated in juvenile pigs under United Kingdom Home Office Licence. The devices were implanted within a submucoperiosteal pocket in a total of six porcine palates; all were euthanized by 6 weeks after implantation. A longitudinal volumetric assessment of the expanded tissue was conducted, in addition to postmortem analysis of the bony and mucoperiosteal palatal elements. Uncoated devices caused excessive soft-tissue expansion that resulted in mucoperiosteal ulceration, thus necessitating animal euthanasia. The silicone-coated devices produced controlled soft-tissue expansion over the 6-week study period. There was a statistically significant increase in the volume of expanded soft tissue with no evidence of a significant acute inflammatory response to the implant, although peri-implant capsule formation was observed. Attenuation of the bony palatal shelf was noted. A unique anisotropic hydrogel device capable of controlled expansion has been developed that addresses a number of the shortcomings of the technology hitherto available.

  3. High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues

    Directory of Open Access Journals (Sweden)

    Boel Lene WT

    2010-03-01

    Full Text Available Abstract Background In biomedical sciences, ex vivo angiography is a practical mean to elucidate vascular structures three-dimensionally with simultaneous estimation of intravascular volume. The objectives of this study were to develop a magnetic resonance (MR method for ex vivo angiography and to compare the findings with computed tomography (CT. To demonstrate the usefulness of this method, examples are provided from four different tissues and species: the human placenta, a rice field eel, a porcine heart and a turtle. Results The optimal solution for ex vivo MR angiography (MRA was a compound containing gelatine (0.05 g/mL, the CT contrast agent barium sulphate (0.43 mol/L and the MR contrast agent gadoteric acid (2.5 mmol/L. It was possible to perform angiography on all specimens. We found that ex vivo MRA could only be performed on fresh tissue because formalin fixation makes the blood vessels permeable to the MR contrast agent. Conclusions Ex vivo MRA provides high-resolution images of fresh tissue and delineates fine structures that we were unable to visualise by CT. We found that MRA provided detailed information similar to or better than conventional CTA in its ability to visualize vessel configuration while avoiding interfering signals from adjacent bones. Interestingly, we found that vascular tissue becomes leaky when formalin-fixed, leading to increased permeability and extravascular leakage of MR contrast agent.

  4. Development of a Cytocompatible Scaffold from Pig Immature Testicular Tissue Allowing Human Sertoli Cell Attachment, Proliferation and Functionality

    Directory of Open Access Journals (Sweden)

    Maxime Vermeulen

    2018-01-01

    Full Text Available Cryopreservation of immature testicular tissue before chemo/radiotherapy is the only option to preserve fertility of cancer-affected prepubertal boys. To avoid reintroduction of malignant cells, development of a transplantable scaffold by decellularization of pig immature testicular tissue (ITT able to support decontaminated testicular cells could be an option for fertility restoration in these patients. We, therefore, compared decellularization protocols to produce a cytocompatible scaffold. Fragments of ITT from 15 piglets were decellularized using three protocols: sodium dodecyl sulfate (SDS-Triton (ST, Triton-SDS-Triton (TST and trypsin 0.05%/ethylenediaminetetraacetic acid (EDTA 0.02%-Triton (TET with varying detergent concentrations. All protocols were able to lower DNA levels. Collagen retention was demonstrated in all groups except ST 1%, and a significant decrease in glycosaminoglycans was observed in the TST 1% and TET 1% groups. When Sertoli cells (SCs were cultured with decellularized tissue, no signs of cytotoxicity were detected. A higher SC proliferation rate and greater stem cell factor secretion were observed than with SCs cultured without scaffold. ST 0.01% and TET 3% conditions offered the best compromise in terms of DNA elimination and extracellular matrix (ECM preservation, while ensuring good attachment, proliferation and functionality of human SCs. This study demonstrates the potential of using decellularized pig ITT for human testicular tissue engineering purposes.

  5. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    DEFF Research Database (Denmark)

    Rasmussen, Joachim Hee; Hemmsen, Martin Christian; Sloth Madsen, Signe

    2013-01-01

    . Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.......A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequential beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B......-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imaging (DRF-THI) in clinical scans. The scan sequence...

  6. Validation of tissue microarray technology in squamous cell carcinoma of the esophagus

    NARCIS (Netherlands)

    Boone, Judith; van Hillegersberg, Richard; van Diest, Paul J.; Offerhaus, G. Johan A.; Borel Rinkes, Inne H. M.; ten Kate, Fiebo J. W.

    2008-01-01

    Tissue microarray (TMA) technology has been developed to facilitate high-throughput immunohistochemical and in situ hybridization analysis of tissues by inserting small tissue biopsy cores into a single paraffin block. Several studies have revealed novel prognostic biomarkers in esophageal squamous

  7. A systematic study of head tissue inhomogeneity and anisotropy on EEG forward problem computing

    International Nuclear Information System (INIS)

    Bashar, M.R.; Li, Y.; Wen, P.

    2010-01-01

    Full text: In this study, we propose a stochastic method to analyze the effects of inhomogeneous anisotropic tissue conductivity on electroencephalogram (EEG) in forward computation. We apply this method to an inhomogeneous and anisotropic spherical human head model. We apply stochastic finite element method based on Legendre polynomials, Karhunen-Loeve expansion and stochastic Galerkin methods. We apply Volume and Wang's constraints to restrict the anisotropic conductivities for both the white matter (WM) and the skull tissue compartments. The EEGs resulting from deterministic and stochastic FEMs are compared using statistical measurement techniques. Based on these comparisons, we find that EEGs generated by incorporating WM and skull inhomogeneous anisotropic tissue properties individually result in an average of 56.5 and 57.5% relative errors, respectively. Incorporating these tissue properties for both layers together generate 43.5% average relative error. Inhomogeneous scalp tissue causes 27% average relative error and a full inhomogeneous anisotropic model brings in an average of 45.5% relative error. The study results demonstrate that the effects of inhomogeneous anisotropic tissue conductivity are significant on EEG.

  8. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  9. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India); Verma, Sudhanshu; Manjubala, I. [Biomedical Engineering Division, School of Bio Sciences and Technology, VIT University, Vellore 632014 (India); Madhan, B., E-mail: bmadhan76@yahoo.co.in [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India)

    2014-12-01

    Keratin has gained much attention in the recent past as a biomaterial for wound healing owing to its biocompatibility, biodegradability, intrinsic biological activity and presence of cellular binding motifs. In this paper, a novel biomimetic scaffold containing keratin, chitosan and gelatin was prepared by freeze drying method. The prepared keratin composite scaffold had good structural integrity. Fourier Transform Infrared (FTIR) spectroscopy showed the retention of the native structure of individual biopolymers (keratin, chitosan, and gelatin) used in the scaffold. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) results revealed a high thermal denaturation temperature of the scaffold (200–250 °C). The keratin composite scaffold exhibited tensile strength (96 kPa), compression strength (8.5 kPa) and water uptake capacity (> 1700%) comparable to that of a collagen scaffold, which was used as control. The morphology of the keratin composite scaffold observed using a Scanning Electron Microscope (SEM) exhibited good porosity and interconnectivity of pores. MTT assay using NIH 3T3 fibroblast cells demonstrated that the cell viability of the keratin composite scaffold was good. These observations suggest that the keratin–chitosan–gelatin composite scaffold is a promising alternative biomaterial for tissue engineering applications. - Highlights: • Fabrication of novel Keratin-Chitosan-Gelatin composite scaffold • Keratin composite scaffold shows excellent water uptake capacity and porosity • Keratin composite scaffold shows good thermal and physical stability • Biocompatibility of the developed scaffold is comparable to collagen scaffolds • Developed scaffold is a promising material for soft tissue engineering applications.

  10. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  11. iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize

    Science.gov (United States)

    Dong, Yongbin; Wang, Qilei; Du, Chunguang; Xiong, Wenwei; Li, Xinyu; Zhu, Sailan; Li, Yuling

    2017-01-01

    Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize. PMID:28837076

  12. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    Science.gov (United States)

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  13. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    Science.gov (United States)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  14. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    Science.gov (United States)

    Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.

    2013-03-01

    A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.

  15. Development of a fluorescence endoscopic system for pH mapping of gastric tissue

    Science.gov (United States)

    Rochon, Philippe; Mordon, Serge; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Chopin, Claude

    2003-10-01

    Measurement of gastro intestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia induced dysfonctions. However, current pH measurements techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). BCECF which pKa is in the physiological pH range is suitable for pH tissue measurements in vivo. This study aimed to develop and evaluate an endoscopic imaging system for real time pH measurements in the stomach in order to provide to ICU a new tool for gastro intestinal intramucosal pH (pHim) measurements. This fluorescence imaging technique should allow the temporal exploration of sequential events, particularly in ICU where the pHim provides a predictive information of the patient' status. The experimental evaluations of this new and innovative endoscopic fluorescence system confirms the accuracy of pH measurement using BCECF.

  16. Development of luminescent pH sensor films for monitoring bacterial growth through tissue.

    Science.gov (United States)

    Wang, Fenglin; Raval, Yash; Chen, Hongyu; Tzeng, Tzuen-Rong J; DesJardins, John D; Anker, Jeffrey N

    2014-02-01

    Although implanted medical devices (IMDs) offer many benefits, they are susceptible to bacterial colonization and infections. Such infections are difficult to treat because bacteria could form biofilms on the implant surface, which reduce antibiotics penetration and generate local dormant regions with low pH and low oxygen. In addition, these infections are hard to detect early because biofilms are often localized on the surface. Herein, an optical sensor film is developed to detect local acidosis on an implanted surface. The film contains both upconverting particles (UCPs) that serve as a light source and a pH indicator that alters the luminescence spectrum. When irradiated with 980 nm light, the UCPs produce deeply penetrating red light emission, while generating negligible autofluorescence in the tissue. The basic form of the pH indicator absorbs more of upconversion luminescence at 661 nm than at 671 nm and consequently the spectral ratio indicates pH. Implanting this pH sensor film beneath 6-7 mm of porcine tissue does not substantially affect the calibration curve because the peaks are closely spaced. Furthermore, growth of Staphylococcus epidermidis on the sensor surface causes a local pH decrease that can be detected non-invasively through the tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microangiographic study of the canine dental tissues: a preliminary report

    International Nuclear Information System (INIS)

    Miyabayashi, T.; Morgan, J.P.

    1987-01-01

    A microangiographic study of the dental tissues was performed on one adult mongrel dog to examine the usefulness of the technique. This preliminary study used 30% wt/vol Micropaque suspension which was perfused into the common carotid arteries. After the complete perfusion, the specimen was fixed into a mixture of 10% buffered neutral formalin solution and 95% ethyl alcohol. The mandibular bone with teeth in situ was decalcified. The specimen was embedded in methyl methacrylate. One mm slab sections were made, and then the microangiographs were made. Adequate filling of arterioles was evident on the microangiographs. This technique is shown to be useful in characterizing the nature of the blood supply to the bone and teeth that might be involved in the pathogenesis of radiation-induced injury in the canine dental and periodontal tissues

  18. The Development of Three Dimensional (3D) Fabrication Apparatus for Tissue Engineering Application

    International Nuclear Information System (INIS)

    Marina Talib

    2015-01-01

    Microstereolithography has been chosen as a means for the creation of 3D tissue scaffolds. It offers a unique way to precisely control matrix architecture including size, shape, inter connectivity, branching, geometry and orientation, which will yield biomimetic structures varying in design and material composition. This paper discussed the development of stereo lithography apparatus. This allowed some understanding of the process to be achieved, with small volumes of test material, before moving to a commercialised setup. The equipment's developed in this project was a UV light engine. This development involved modification of a high power ultra-bright LED device, which emits light at wavelengths similar to the Envisiontec Desktop projector (365 nm). (author)

  19. Role of lymphotoxin and homeostatic chemokines in the development and function of local lymphoid tissues in the respiratory tract.

    Science.gov (United States)

    Rangel-Moreno, Javier; Carragher, Damian; Randall, Troy D

    2007-01-01

    Secondary lymphoid organs are strategically placed to recruit locally activated antigen presenting cells (APCs) as well as naïve, recirculating T and B cells. The structure of secondary lymphoid organs - separated B and T zones, populations of specialized stromal cells, high endothelial venules and lymphatic vessles - has also evolved to maximize encounters between APCs and lymphocytes and to facilitate the expansion and differentiation of antigen-stimulated T and B cells. Many of the general mechanisms that govern the development and organization of secondary lymphoid organs have been identified over the last decade. However, the specific cellular and molecular interactions involved in the development and organization of each secondary lymphoid organ are slightly different and probably reflect the cell types available at that time and location. Here we review the mechanisms involved in the development, organization and function of local lymphoid tissues in the respiratory tract, including Nasal Associated Lymphoid Tissue (NALT) and inducible Bronchus Associated Lymphoid Tissue (iBALT).

  20. Development of a bedside viable ultrasound protocol to quantify appendicular lean tissue mass.

    Science.gov (United States)

    Paris, Michael T; Lafleur, Benoit; Dubin, Joel A; Mourtzakis, Marina

    2017-10-01

    Ultrasound is a non-invasive and readily available tool that can be prospectively applied at the bedside to assess muscle mass in clinical settings. The four-site protocol, which images two anatomical sites on each quadriceps, may be a viable bedside method, but its ability to predict musculature has not been compared against whole-body reference methods. Our primary objectives were to (i) compare the four-site protocol's ability to predict appendicular lean tissue mass from dual-energy X-ray absorptiometry; (ii) optimize the predictability of the four-site protocol with additional anatomical muscle thicknesses and easily obtained covariates; and (iii) assess the ability of the optimized protocol to identify individuals with low lean tissue mass. This observational cross-sectional study recruited 96 university and community dwelling adults. Participants underwent ultrasound scans for assessment of muscle thickness and whole-body dual-energy X-ray absorptiometry scans for assessment of appendicular lean tissue. Ultrasound protocols included (i) the nine-site protocol, which images nine anterior and posterior muscle groups in supine and prone positions, and (ii) the four-site protocol, which images two anterior sites on each quadriceps muscle group in a supine position. The four-site protocol was strongly associated (R 2  = 0.72) with appendicular lean tissue mass, but Bland-Altman analysis displayed wide limits of agreement (-5.67, 5.67 kg). Incorporating the anterior upper arm muscle thickness, and covariates age and sex, alongside the four-site protocol, improved the association (R 2  = 0.91) with appendicular lean tissue and displayed narrower limits of agreement (-3.18, 3.18 kg). The optimized protocol demonstrated a strong ability to identify low lean tissue mass (area under the curve = 0.89). The four-site protocol can be improved with the addition of the anterior upper arm muscle thickness, sex, and age when predicting appendicular lean tissue mass

  1. Development and Feasibility Testing of Image-Guided Minimally Invasive Tissue for Diagnosis Treatment of Benign and Malignant Breast Disease

    Science.gov (United States)

    Jeffrey, Stefanie S.

    1999-01-01

    Dr. Robert Mah and Dr. Stefanie Jeffrey worked on the development of the NASA Smart Probe in its application as a device to measure and interpret physiologic and image-based parameters of breast tissue. To date the following has been achieved: 1 . Choice of candidate sensors to be tested in breast tissue. 2. Preliminary designs for probe tip, specifically use of different tip shapes, cutting edges, and sensor configuration. 3. Design of sonographic guidance system. 4. Design of data extraction and analysis tool using scanned information of images of the breast tissue to provide a higher dimension of information for breast tissue characterization and interpretation. 5. Initial ex-vivo (fruit and tofu) and in-vivo (rodent) testing to confirm unique substance and tissue characterization by the Smart Probe software.

  2. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Aydin, Halil Murat; Hu, Bin; Suso, Josep Sulé; El Haj, Alicia; Yang, Ying

    2011-02-21

    The key criteria for assessing the success of bone tissue engineering are the quality and quantity of the produced minerals within the cultured constructs. The accumulation of calcium ions and inorganic phosphates in culture medium serves as nucleating agents for the formation of hydroxyapatite, which is the main inorganic component of bone. Bone nodule formation is one of the hallmarks of mineralization in such cell cultures. In this study, we developed a new two-step procedure to accelerate bone formation in which mouse bone cell aggregates were produced first on various chemically treated non-adhesive substrates. After this step, the bone cells' growth and mineralization were followed in conventional culture plates. The number and size of cell aggregates were studied with light microscopy. The minerals' formation in the form of nodules produced by the cell aggregates and the bone crystal quality were studied with Fourier Transform Infrared (FTIR) spectroscopy. The FTIR spectra of the ash specimens (mineral phase only) from thermal gravimetric analysis (TGA) provided valuable information of the quality of the minerals. The υ(4) PO(4) region (550-650 cm(-1)), which reveals apatitic and non-apatitic HPO(4) or PO(4) environments, and phosphate region (910-1180 cm(-1)) were examined for the minerals produced in the form of nodules. The peak position and intensity of the spectra demonstrate that the quality of the bone produced by cell aggregates, especially from the bigger ones, which were formed on Plunoric treated substrates, exhibit a composition more similar to that of native bone. This work establishes a new protocol for high quality bone formation and characterization, with the potential to be applied to bone tissue engineering.

  3. Reliability of in vivo measurements of the dielectric properties of anisotropic tissue: a simulative study

    International Nuclear Information System (INIS)

    Huo Xuyang; Shi Xuetao; You Fusheng; Fu Feng; Liu Ruigang; Tang Chi; Dong Xiuzhen; Lu Qiang

    2013-01-01

    A simulative study was performed to measure the dielectric properties of anisotropic tissue using several in vivo and in vitro probes. COMSOL Multiphysics was selected to carry out the simulation. Five traditional probes and a newly designed probe were used in this study. One of these probes was an in vitro measurement probe and the other five were in vivo. The simulations were performed in terms of the minimal tissue volume for in vivo measurements, the calibration of a probe constant, the measurement performed on isotropic tissue and the measurement performed on anisotropic tissue. Results showed that the in vitro probe can be used to measure the in-cell dielectric properties of isotropic and anisotropic tissues. When measured with the five in vivo probes, the dielectric properties of isotropic tissue were all measured accurately. For the measurements performed on anisotropic tissue, large errors were observed when the four traditional in vivo probes were used, but only a small error was observed when the new in vivo probe was used. This newly designed five-electrode in vivo probe may indicate the dielectric properties of anisotropic tissue more accurately than these four traditional in vivo probes. (paper)

  4. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    Energy Technology Data Exchange (ETDEWEB)

    Lazebnik, Mariya [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Popovic, Dijana [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); McCartney, Leah [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); Watkins, Cynthia B [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Lindstrom, Mary J [Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI (United States); Harter, Josephine [Department of Pathology, University of Wisconsin, Madison, WI (United States); Sewall, Sarah [Department of Pathology, University of Wisconsin, Madison, WI (United States); Ogilvie, Travis [Department of Pathology, University of Calgary, Calgary, AB (Canada); Magliocco, Anthony [Department of Pathology, University of Calgary, Calgary, AB (Canada); Breslin, Tara M [Department of Surgery, University of Wisconsin, Madison, WI (United States); Temple, Walley [Department of Surgery and Oncology, University of Calgary, Calgary, AB (Canada); Mew, Daphne [Department of Surgery and Oncology, University of Calgary, Calgary, AB (Canada); Booske, John H [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Okoniewski, Michal [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); Hagness, Susan C [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States)

    2007-10-21

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  5. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    Science.gov (United States)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  6. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    International Nuclear Information System (INIS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M; Temple, Walley; Mew, Daphne; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-01-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%

  7. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    OpenAIRE

    Hellingman, Catharine

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for cartilage reconstructions in otorhinolaryngology as well as in plastic surgery and orthopaedics. The aim of this thesis is to find new tools by which cartilage tissue engineering can be better control...

  8. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  9. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  10. Accelerator based nuclear analytical methods for trace element studies in materials- calcified tissues

    International Nuclear Information System (INIS)

    Chaudhri, M. Anwar

    2006-01-01

    Full text: Various nuclear analytical methods have been developed and applied to determine the elemental composition of calcified tissues (teeth and bones). Fluorine was determined by prompt gamma activation analysis through the 19 F(p,αγ) 16 O reaction. Carbon was measured by activation analysis with He-3 ions, and the technique of Proton-Induced X-ray Emission (PIXE) was applied to simultaneously determine Ca, P, and trace elements in well-documented teeth. Dental hard tissues: enamel, dentine, cementum, and their junctions, as well as different parts of the same tissue, were examined separately. Furthermore, using a Proton Microprobe, we measured the surface distribution of F and other elements on and around carious lesions on the enamel. The depth profiles of F, and other elements, were also measured right up to the amelodentin junction. (author)

  11. Guiding tissue regeneration with ultrasound in vitro and in vivo

    Science.gov (United States)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.

  12. Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application.

    Science.gov (United States)

    Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald

    2014-08-01

    The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation

  13. Investigation of optical coherence tomography as an imaging modality in tissue engineering

    International Nuclear Information System (INIS)

    Yang Ying; Dubois, Arnaud; Qin Xiangpei; Li Jian; Haj, Alicia El; Wang, Ruikang K

    2006-01-01

    Monitoring cell profiles in 3D porous scaffolds presents a major challenge in tissue engineering. In this study, we investigate optical coherence tomography (OCT) as an imaging modality to monitor non-invasively both structures and cells in engineered tissue constructs. We employ time-domain OCT to visualize macro-structural morphology, and whole-field optical coherence microscopy to delineate the morphology of cells and constructs in a developing in vitro engineered bone tissue. The results show great potential for the use of OCT in non-invasive monitoring of cellular activities in 3D developing engineered tissues

  14. Oral soft tissue disorders are associated with gastroesophageal reflux disease: retrospective study.

    Science.gov (United States)

    Watanabe, Masaaki; Nakatani, Eiji; Yoshikawa, Hiroo; Kanno, Takahiro; Nariai, Yoshiki; Yoshino, Aya; Vieth, Michael; Kinoshita, Yoshikazu; Sekine, Joji

    2017-08-07

    Dental erosion (DE), one of oral hard tissue diseases, is one of the extraoesophageal symptoms defined as the Montreal Definition and Classification of gastroesophageal reflux disease (GERD). However, no study evaluated the relationship between GERD and oral soft tissues. We hypothesized that oral soft tissue disorders (OSTDs) would be related to GERD. The study aimed to investigate the association OSTDs and GERD. GERD patients (105 cases), older and younger controls (25 cases each) were retrospectively examined for oral symptoms, salivary flow volume (Saxon test), swallowing function (repetitive saliva swallowing test [RSST]), teeth (decayed, missing, and filled [DMF] indices), and soft tissues (as evaluation of OSTDs, gingivitis; papillary, marginal, and attached [PMA] gingival indexes, simplified oral hygiene indices [OHI-S], and inflammatory oral mucosal regions). Clinical histories, which included body mass index [BMI], the existence of alcohol and tobacco use, and bruxism, were also investigated. A P value of bruxism, as an exacerbation factor of periodontal disease, in the GERD patients was significantly more frequent than in either control group (P = 0.041). OSTDs were associated with GERD, which was similar to the association between DE and GERD.

  15. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  16. Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.

    Science.gov (United States)

    Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Zam, Azhar; Schmidt, Michael; Douplik, Alexandre; Nkenke, Emeka

    2010-04-01

    Laser surgery does not provide haptic feedback for operating layer-by-layer and thereby preserving vulnerable anatomical structures like nerve tissue or blood vessels. Diffuse reflectance spectra can facilitate remote optical tissue differentiation. It is the aim of the study to use this technique on soft tissue samples, to set a technological basis for a remote optical feedback system for tissue-specific laser surgery. Diffuse reflectance spectra (wavelength range: 350-650 nm) of ex vivo types of soft tissue (a total of 10,800 spectra) of the midfacial region of domestic pigs were remotely measured under reduced environmental light conditions and analyzed in order to differentiate between skin, mucosa, muscle, subcutaneous fat, and nerve tissue. We performed a principal components (PC) analysis (PCA) to reduce the number of variables. Linear discriminant analysis (LDA) was utilized for classification. For the tissue differentiation, we calculated the specificity and sensitivity by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Six PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. All of the types of soft tissue could be differentiated with high specificity and sensitivity. Only the tissue pairs nervous tissue/fatty tissue and nervous tissue/mucosa showed a decline of differentiation due to bio-structural similarity. However, both of these tissue pairs could still be differentiated with a specificity and sensitivity of more than 90%. Analyzing diffuse reflectance spectroscopy with PCA and LDA allows for remote differentiation of biological tissue. Considering the limitations of the ex vivo conditions, the obtained results are promising and set a basis for the further development of a feedback system for tissue-specific laser surgery. (c) 2010 Wiley-Liss, Inc.

  17. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments

    Science.gov (United States)

    Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.

    2015-01-01

    Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731

  18. Isolation of pre-antral follicles from human ovarian medulla tissue

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Rasmussen, Annette; Byskov, Anne Grete

    2011-01-01

    Cryopreservation of ovarian tissue for fertility preservation is based on the ovarian cortex that contains the vast majority of the follicular reserve, while the remaining tissue, the medulla is discarded. The present study describes the development of a gentle method for isolating pre...

  19. Tissue engineering of ligaments for reconstructive surgery.

    Science.gov (United States)

    Hogan, MaCalus V; Kawakami, Yohei; Murawski, Christopher D; Fu, Freddie H

    2015-05-01

    The use of musculoskeletal bioengineering and regenerative medicine applications in orthopaedic surgery has continued to evolve. The aim of this systematic review was to address tissue-engineering strategies for knee ligament reconstruction. A systematic review of PubMed/Medline using the terms "knee AND ligament" AND "tissue engineering" OR "regenerative medicine" was performed. Two authors performed the search, independently assessed the studies for inclusion, and extracted the data for inclusion in the review. Both preclinical and clinical studies were reviewed, and the articles deemed most relevant were included in this article to provide relevant basic science and recent clinical translational knowledge concerning "tissue-engineering" strategies currently used in knee ligament reconstruction. A total of 224 articles were reviewed in our initial PubMed search. Non-English-language studies were excluded. Clinical and preclinical studies were identified, and those with a focus on knee ligament tissue-engineering strategies including stem cell-based therapies, growth factor administration, hybrid biomaterial, and scaffold development, as well as mechanical stimulation modalities, were reviewed. The body of knowledge surrounding tissue-engineering strategies for ligament reconstruction continues to expand. Presently, various tissue-engineering techniques have some potential advantages, including faster recovery, better ligamentization, and possibly, a reduction of recurrence. Preclinical research of these novel therapies continues to provide promising results. There remains a need for well-designed, high-powered comparative clinical studies to serve as a foundation for successful translation into the clinical setting going forward. Level IV, systematic review of Level IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  20. An experimental study on tissue damage following subcutaneous injection of water soluble contrast media

    International Nuclear Information System (INIS)

    Kim, Seung Hyup; Park, Jae Hyung; Kang, Heung Sik; Kim, Chu Wan; Han, Man Chung; Kim, Yong Il

    1989-01-01

    The water soluble contrast media cause tissue necrosis infrequently by extravasation during intravenous injection in various radiological examinations. However, it has not been well documented that what kind and what concentration of contrast media can cause tissue necrosis. And also, the mechanism of tissue necrosis by extravasated contrast media has not been well known. The purpose of this experimental study was to evaluate the frequency and severity of tissue damage following subcutaneous injection of various water soluble contrast media to investigate the characteristics of the contrast media acting on the tissue damage, and to provide the basic data for the clinical application. Meglumine ioxithalamate,sodium and meglumine ioxithalamate, iopromide, iopamidol, ioxaglate,meglumine diatrizoate and sodium diatrizoate of various iodine content and osmolality were injected into subcutaneous tissue of the dorsum of 970 feet of 485 rats. The tissue reaction of injection sites were grossly examined with period from 1 day to 8 weeks after the injection. Representative gross changes were correlated with histologic findings. The results were as follows; 1. The basic tissue damage by extravasated contrast media was acute and chronic inflammatory reaction of the soft tissue with subsequent progress into the hemorrhagic and necrotizing lesion. 2. Lager volume of contrast media caused more severe tissue damage. 3. Contrast media of higher osmolality caused more severe tissue damage. 4. At same osmolality, contrast media of higher iodine content caused more severe tissue damage

  1. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hamid Tebyanian

    2017-12-01

    CONCLUSION: Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue.

  2. Nonlinear optics for the study of human scar tissue

    Science.gov (United States)

    Ferro, D. P.; Vieira-Damiani, G.; Adam, R. L.; Cesar, C. L.; Metze, Konradin

    2012-03-01

    Collagen fibers are an essential component of the dynamic process of scarring, which accompanies various diseases. Scar tissue may reveal different morphologic expressions, such as hypertrophic scars or keloids. Collagen fibers can be visualized by fluorescent light when stained with eosin. Second Harmonic Generation (SHG) creates a non linear signal that occurs only in molecules without inversion symmetry and is particularly strong in the collagen fibers arranged in triple helices. The aim of this study was to describe the methodology for the analysis of the density and texture of collagen in keloids, hypertrophic scars and conventional scars. Samples were examined in the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC) at the State University of Campinas. The images were acquired in a multiphoton microscopy LSM 780-NLO Zeiss 40X. Both signals, two-photon fluorescence (TPEF) and SHG, were excited by a Mai-Tai Ti:Sapphire laser at 940 nm. We used a LP490/SP485 NDD filter for SHG, and a BP565-610 NDD filter for fluorescence In each case, ten images were acquired serially (512×512 μm) in Z-stack and joined together to one patchwork-image . Image analysis was performed by a gliding-box-system with in-house made software. Keloids, hypertrophic scars and normal scar tissue show different collagen architecture. Inside an individual case differences of the scar process may be found between central and peripheral parts. In summary, the use of nonlinear optics is a helpful tool for the study of scars tissue.

  3. Technical note: The development of a methodology for ruminal and colon tissue biopsying of young Holstein dairy calves.

    Science.gov (United States)

    van Niekerk, J K; Middeldorp, M; Steele, M A

    2018-05-09

    The objectives of this study were to develop a methodology for biopsying the rumen and colon of young dairy calves and to collect suitable quality tissue samples for microscopic and gene expression analysis. Six Holstein dairy bull calves (45.0 ± 1.5 kg birth weight) were ruminally cannulated during the second week of life and weaned at the end of wk 6. Ruminal and colon tissue samples were collected at the end of wk 5, 6, 7, 8, and 12. Calves were not sedated but were restrained in a chute for sampling. The endoscope (100 cm length, 9.8 mm diameter) was introduced through the rumen cannula to harvest ruminal tissue. Endoscopic biopsies of the rumen with endoscopic biopsy forceps were unsuccessful 85% of the time because they were unable to shear the ruminal tissue. Thereafter, an Allis clamp was used to retrieve the blind sac through the rumen cannula to perform direct tissue biopsying with surgical scissors. To biopsy the colon, the lubricated distal tip of an endoscope was slowly inserted into the calf's anus. A total of 6 colon tissue samples (12.6 ± 0.74 mg) were collected per calf per time point from the distal colon 30 to 40 cm from the calf's anus using endoscopic biopsy forceps, which were inserted through the instrument channel. A new forcep was used between sites and calves. Between calves, the outside of the endoscope was washed with 4% chlorohexidine and rinsed with water and the instrument channel was washed with distilled water and 70% ethanol. Colon and ruminal samples were processed for histological measurements, and RNA was isolated and sequenced. High-quality RNA (RNA integrity number 8.8 ± 0.08) was collected from samples, and light and electron microscopy was performed on samples. In conclusion, endoscopic biopsying can be used for tissue harvest in the colon of young calves. However, it was found that collecting ruminal tissue by retracting the rumen from the cannula and taking samples with surgical scissors was more successful than an

  4. Tissue bioengineering and artificial organs.

    Science.gov (United States)

    Llames, Sara; García, Eva; Otero Hernández, Jesús; Meana, Alvaro

    2012-01-01

    The scarcity of organs and tissues for transplant and the need of immunosuppressive drugs to avoid rejection constitute two reasons that justify organ and tissue production in the laboratory. Tissue engineering based tissues (TE) could allow to regenerate the whole organ from a fragment or even to produce several organs from an organ donor for grafting purposes. TE is based in: (1) the ex vivo expansion of cells, (2) the seeding of these expanded cells in tridimensional structures that mimic physiological conditions and, (3) grafting the prototype. In order to graft big structures it is necessary that the organ or tissue produced "ex vivo" bears a vascular tree to ensure the nutrition of its deep layers. At present, no technology has been developed to provide this vascular tree to TE derived products. Thus, these tissues must be thin enough to acquire nutrients during the first days by diffusion from surrounding tissues. This fact constitutes nowadays the greatest limitation of technologies for organ development in the laboratory.In this chapter, all these problems and their possible solutions are commented. Also, the present status of TE techniques in the regeneration of different organ systems is reviewed.

  5. Development of methods for body composition studies

    International Nuclear Information System (INIS)

    Mattsson, Soeren; Thomas, Brian J

    2006-01-01

    This review is focused on experimental methods for determination of the composition of the human body, its organs and tissues. It summarizes the development and current status of fat determinations from body density, total body water determinations through the dilution technique, whole and partial body potassium measurements for body cell mass estimates, in vivo neutron activation analysis for body protein measurements, dual-energy absorptiometry (DEXA), computed tomography (CT) and magnetic resonance imaging (MRI, fMRI) and spectroscopy (MRS) for body composition studies on tissue and organ levels, as well as single- and multiple-frequency bioimpedance (BIA) and anthropometry as simple easily available methods. Methods for trace element analysis in vivo are also described. Using this wide range of measurement methods, together with gradually improved body composition models, it is now possible to quantify a number of body components and follow their changes in health and disease. (review)

  6. Development of methods for body composition studies

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Soeren [Department of Radiation Physics, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Thomas, Brian J [School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD 4001 (Australia)

    2006-07-07

    This review is focused on experimental methods for determination of the composition of the human body, its organs and tissues. It summarizes the development and current status of fat determinations from body density, total body water determinations through the dilution technique, whole and partial body potassium measurements for body cell mass estimates, in vivo neutron activation analysis for body protein measurements, dual-energy absorptiometry (DEXA), computed tomography (CT) and magnetic resonance imaging (MRI, fMRI) and spectroscopy (MRS) for body composition studies on tissue and organ levels, as well as single- and multiple-frequency bioimpedance (BIA) and anthropometry as simple easily available methods. Methods for trace element analysis in vivo are also described. Using this wide range of measurement methods, together with gradually improved body composition models, it is now possible to quantify a number of body components and follow their changes in health and disease. (review)

  7. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  8. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  9. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    Science.gov (United States)

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  10. Cytotoxic assessment of silver nanoparticles in embryonic development and kidney tissue in pregnant mice

    Directory of Open Access Journals (Sweden)

    Bagher seyedalipour

    2015-10-01

    Full Text Available Background and Aim: Regarding the widespread use of silver nanoparticles in medecine and lack of a detailed study of toxicity effects of these particles on fetus, this study was carried out to investigate histopathological changes of the kidneys and also embryonic development following exposure to silver nanoparticles. Materials and Methods: In this experimental study, thirty five female NMRI mice were randomly divided into five equal groups i.e. one control group and four experimental groups. The experimental groups intraperitoneally (IP received silver nanoparticles at concentrations of 50, 100, 200 and 400 mg/ kg . .every other day. On the 17th day  of pregnancy, the mice were dissected and  their kidneys and embryos tissues were separated and stained with hematoxylin and eosin for histopathological examinations. .Finally, the obtained data was fed into SPSS software (V:16 using statistical tests including Kolmogrof-Smearnof, one-way variance analysis, Dante, Mann-Whitney and Kruskal-Wallis and P<0.05 was taken as the significant level. Results: Histopathological assessment of kidney tissue following IP administration of silver nanoparticle indicated pathological changes including congestion, necrosis, inflammatory cell infiltration, vacuolar degeneration compared to the control group. Our findings showed that silver nanoparticles during the gestation period affects fetal organogenesis, evolution of neural structure, liver lobulation and fetal growth retardation. Mean number of somites in groups receiving doses of 200 and 400 mg kg, . significantly reduced compared to the control group (P<0.05. Conclusion: The obtained results suggest that  passing of silver nanoparticles through placenta is possible and damage caused by the particles  could lead to the deformity or developmental retardation of the fetus.

  11. Evaluation of collagen in connective tissue walls of odontogenic cysts--a histochemical study.

    Science.gov (United States)

    Vij, Ruchieka; Vij, Hitesh; Rao, Nirmala N

    2011-03-01

    The purpose of this study was to evaluate the nature of collagen in the connective tissue walls of odontogenic cysts, like the odontogenic keratocyst (OKC), dentigerous cyst and radicular cyst using picrosirius red stained sections. Furthermore, it was intended to assess if the capsular connective tissue can affect the nature of overlying epithelium, thus emphasizing the role of epithelial-mesenchymal interactions in biological behaviour of the cysts. The material for the study included 51 formalin-fixed paraffin-embedded tissue blocks (15 odontogenic keratocyst, 15 dentigerous cysts, 15 radicular cysts and four normal mucosa and two dental follicular tissue as controls), retrieved from the Department of Oral Pathology and Microbiology, MCODS, Manipal. Tissue blocks were sectioned at 5-μm thickness, stained with picrosirius red stain and observed with polarization and light microscopy. Few sections of OKC and dentigerous cyst exhibited greenish-yellow birefringence in sub-epithelial region, whereas others showed a yellowish-orange birefringence under polarization microscopy. Most radicular cysts had yellowish-orange to orange birefringence. Shift in colour in case OKC and dentigerous cyst was attributed to the presence of inflammation in those sections. These regions also exhibited either a change in phenotype or thickness of overlying epithelium. This technique can be used to study the nature of collagen fibres in odontogenic cyst walls. Further studies with an increased sample size and using various epithelial and mesenchymal markers and ssDNA antibodies should be carried out to confirm the effect of epithelial-mesenchymal interactions on the nature of epithelium of odontogenic cysts. © 2010 John Wiley & Sons A/S.

  12. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p differences detected in optical properties and hemoglobin content by optical measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy

  13. The Role of MicroRNAs in Natural Tissue Development and Application in Regenerative Medicine

    DEFF Research Database (Denmark)

    Andersen, Morten Østergaard; Dillschneider, Philipp; Kjems, Jørgen

    2013-01-01

    to specifically target tissue engineering and repair, either in culture or in association with implanted cells and/or implants. We will here summarise these methods providing examples from present literature. Based on previous results, we will also predict more advanced technologies that may deliver mi......Many cellular functions rely on the coordinated expression and repression of a large number of messenger RNAs; these are tightly controlled in part by microRNAs (miRNAs) at the posttranscriptional level. The number of characterised miRNAs that are involved in tissue development and repair...... will revolutionise regenerative medicine. This chapter will introduce miRNA biology and their role in controlling pluripotency, stem cell differentiation, proliferation, senescence, survival, inflammation and angiogenesis. There are several strategies by which miRNA-modulating technologies can be used...

  14. Evaluation of dose components for healthy tissue tolerance studies on dogs at the HFR Petten

    International Nuclear Information System (INIS)

    Watkins, P.; Moss, R.L.; Siefert, A.; Huiskamp, R.; Gavin, P.; Konijnenberg, M.

    1993-01-01

    Before the start of clinical trails of BNCT on glioma patients at the Petten reactor, certain preconditions must be determined. In particular the tolerance of healthy brain tissue exposed to the epithermal neutron beam requires investigation. In these studies, beagle dogs have been subjected to different levels of irradiation and 10 B, the latter in the form of BSH. To support this work a treatment planning tool is being developed to predict the various dose components within the treatment volume. A Monte Carlo code, MCNP, has been used to simulate the particle transport and to predict the different dose rate distributions. The doses rates generated by MCNP are manipulated with a processing code, TREAT, to give irradiation times, peak dose positions and to display the required data in a graphical format. This paper explains the basic methodology used in the system and a practical case is presented for one of the healthy tissue tolerance dogs. Doses, both physical and RBE weighted, have been produced for pre-treatment planning studies

  15. Practical experience in post-mortem tissue donation in consideration of the European tissue law.

    Science.gov (United States)

    Karbe, Thomas; Braun, Christian; Wulff, Birgit; Schröder, Ann Sophie; Püschel, Klaus; Bratzke, Hansjürgen; Parzeller, Markus

    2010-03-01

    In consequence of the European guidelines of safety and quality standards for the donation, retrieval, storing and distribution of human tissues and cells the purpose of tissue transplantation was implemented into German legislation in May 2007. The law came into effect on August 1st 2007 considering of the European rules. The Institutes for Legal Medicine of the University of Frankfurt/Main and the University Medical Center Hamburg-Eppendorf developed a model for tissue retrieval. The Institute of Legal Medicine (I.f.R.) at the University Medical Center Hamburg cooperates with the German Institute of Cell and Tissue Replacement (Deutsches Institut für Zell--und Gewebeersatz DIZG). Potential post-mortem tissue donors (PMTD) among the deceased are selected by standardized sets of defined criteria. The procedure is guided by the intended exclusion criteria of the tissue regulation draft (German Transplant Law TPG GewV) in accordance with the European Guideline (2006/17/EC). Following the identification of the donor and subsequent removal of tissue, the retrieved samples were sent to the DIZG, a non-profit tissue bank according to the tissue regulation. Here the final processing into transplantable tissue grafts takes place, which then results in the allocation of tissue to hospitals in Germany and other European countries. The Center of Legal Medicine at the Johann Wolfgang Goethe-University Medical Center Frankfurt/Main cooperates since 2000 with Tutogen, a pharmaceutical company. Harvesting of musculoskeletal tissues follows corresponding regulations. To verify the outcome of PMTD at the I.f.R. Hamburg, two-statistic analysis over 12 and 4 months have been implemented. Our results have shown an increasing number of potential appropriate PMTD within the second inquiry interval but a relatively small and unvaryingly rate of successful post-mortem tissue retrievals similar to the first examination period. Thus, the aim of the model developed by the I.f.R. is to

  16. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    Science.gov (United States)

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  17. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2007-05-01

    Full Text Available Abstract Background Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS, a recent method for similarity-preserving data embedding, is substantially refined and used for (a assessing the quality and reliability of centroid gene expression patterns, and for (b derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering. Results Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a correlation-based similarity measure. As a main result, by using power transformation of correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is inherently connected to expression patterns of pre-storage, intermediate and storage phase of endosperm development. Conclusion The new HiT-MDS-2 method helps to create global views of expression patterns and to validate centroids obtained from clustering programs. Furthermore, functional gene annotation for developing endosperm barley tissue is successfully mapped to the visualization, making easy localization of major centroids of enriched functional categories possible.

  18. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  19. Genome-Wide Epigenetic Characterization of Tissues from Three Germ Layers Isolated from Sheep Fetuses

    OpenAIRE

    Capra, Emanuele; Toschi, Paola; Del Corvo, Marcello; Lazzari, Barbara; Scapolo, Pier A.; Loi, Pasqualino; Williams, John L.; Stella, Alessandra; Ajmone-Marsan, Paolo

    2017-01-01

    DNA methylation of regulatory and growth-related genes contributes to fetal programming which is important for maintaining the correct development of three germ layers of the embryo that develope into different tissues and organs, and which persists into adult life. In this study, a preliminary epigenetic screen was performed to define genomic regions that are involved in fetal epigenome remodeling. Embryonic ectodermic tissues (origin of nervous tissue), mesenchymal tissues (origin of connec...

  20. Rates of development of immatures of three species of Chrysomya (Diptera: Calliphoridae) reared in different types of animal tissues: implications for estimating the postmortem interval.

    Science.gov (United States)

    Thyssen, Patricia Jacqueline; de Souza, Carina Mara; Shimamoto, Paula Midori; Salewski, Thais de Britto; Moretti, Thiago Carvalho

    2014-09-01

    Blowflies have major medical and sanitary importance because they can be vectors of viruses, bacteria, and helminths and are also causative agents of myiasis. Also, these flies, especially those belonging to the genus Chrysomya, are among the first insects to arrive at carcasses and are therefore valuable in providing data for the estimation of the minimum postmortem interval (PMImin). The PMImin can be calculated by assessing the weight, length, or development stage of blowfly larvae. Lack of information on the variables that might affect these parameters in different fly species can generate inaccuracies in estimating the PMImin. This study evaluated the effects of different types of bovine tissues (the liver, muscle, tongue, and stomach) and chicken heart on the development rates of larvae of Chrysomya albiceps Wiedemann, Chrysomya megacephala Fabricius, and Chrysomya putoria Wiedemann (Diptera: Calliphoridae). The efficiency of each rearing substrate was assessed by maggot weight gain (mg), larval development time (h), larval and pupal survival (%), and emergence interval (h). The development rates of larvae of all blowfly species studied here were directly influenced by the type of food substrate. Tissues that have high contents of protein and fat (muscle and heart) allowed the highest larval weight gain. For bovine liver, all Chrysomya species showed slower growth, by as much as 48 h, compared to the other tissues. Different rates of development are probably associated with specific energy requirements of calliphorids and the nutritional composition of each type of food.

  1. Culture of three-dimensional tissue model and its application in bystander-effect research

    International Nuclear Information System (INIS)

    Wu Ruqun; Xu An; Wu Lijun; Hu Burong

    2012-01-01

    Compared with the cultured monolayer (2D) cells, three-dimensional (3D) tissue could be more similar to the environment in vivo including the physical support, chemical factors, cell-cell and cell-matrix interaction and so on. With the development of three-dimensional cell culture techniques (TDCC), 3D tissue is widely used in the areas of bystander effect research. This review focuses on introducing the TDCC method and its application in bystander-effect research. First, the development process of 3D tissue culture method was introduced. Secondly, the induction of radiation induced bystander effects both in 2D cell and 3D tissue and its mechanisms were reviewed. Finally, because heavy ion (carbon ion beam) has been developed as a useful tool to cure solid cancer, and the 3D tissue model is an ideal material to study the damages on body after being irradiated and to understand the underlying mechanisms, future study about heavy ion radiation inducing bystander effect in 3D tissue was discussed. (authors)

  2. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  3. A facile in vitro model to study rapid mineralization in bone tissues.

    Science.gov (United States)

    Deegan, Anthony J; Aydin, Halil M; Hu, Bin; Konduru, Sandeep; Kuiper, Jan Herman; Yang, Ying

    2014-09-16

    Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate

  4. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  5. A 3D human tissue-engineered lung model to study influenza A infection.

    Science.gov (United States)

    Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather

    2018-05-05

    Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.

  6. Variations on metabolic activities of legume tissues through radiation in tissue culture

    International Nuclear Information System (INIS)

    Batra, Amla

    1977-01-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content. (author)

  7. Variations on metabolic activities of legume tissues through radiation in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Batra, A [Rajasthan Univ., Jaipur (India). Dept. of Botany

    1977-12-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content.

  8. Design and 3D Printing of Scaffolds and Tissues

    Directory of Open Access Journals (Sweden)

    Jia An

    2015-06-01

    Full Text Available A growing number of three-dimensional (3D-printing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS and fused deposition modeling (FDM processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

  9. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    Science.gov (United States)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  10. Regenerative endodontics as a tissue engineering approach: past, current and future.

    Science.gov (United States)

    Malhotra, Neeraj; Mala, Kundabala

    2012-12-01

    With the reported startling statistics of high incidence of tooth decay and tooth loss, the current interest is focused on the development of alternate dental tissue replacement therapies. This has led to the application of dental tissue engineering as a clinically relevant method for the regeneration of dental tissues and generation of bioengineered whole tooth. Although, tissue engineering approach requires the three main key elements of stem cells, scaffold and morphogens, a conductive environment (fourth element) is equally important for successful engineering of any tissue and/or organ. The applications of this science has evolved continuously in dentistry, beginning from the application of Ca(OH)(2) in vital pulp therapy to the development of a fully functional bioengineered tooth (mice). Thus, with advances in basic research, recent reports and studies have shown successful application of tissue engineering in the field of dentistry. However, certain practical obstacles are yet to be overcome before dental tissue regeneration can be applied as evidence-based approach in clinics. The article highlights on the past achievements, current developments and future prospects of tissue engineering and regenerative therapy in the field of endodontics and bioengineered teeth (bioteeth). © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  11. Prevalence of Malignant Soft Tissue Tumors inExtremities: An Epidemiological Study in Syria

    Directory of Open Access Journals (Sweden)

    Habib Reshadi

    2014-06-01

    Full Text Available Background:   Although the majority of soft tissue masses are benign, it is important to consider malignancy in differential diagnoses. Because most soft tissue sarcomas present as a painless mass, clinicians must watch for signs suggestive of malignancy, including large size, rapid growth, and site deep into the deep fascia.The purpose of this study was to determine the relative prevalence according to sex and age, site of tumor, skeletal distribution, and treatment (surgery, chemotherapy and radiotherapy before and after surgery, and ascertain the relative frequency of these tumors in specific anatomic sites and age groups based on pathological studies. Methods: A total of 308 patients, with a musculoskeletal tumor were evaluated retrospectively. All of the patients enrolled into this study were referred to the Beirouni Hospital of Damascus University with a proven diagnosis of alignant soft tissue tumors from the beginning of January 2008 until the end of 2010. The prevalence of the malignant soft tissue tumors in these patients was analyzed. For purposes of analysis, all lesions were placed in 1 of 9 categories: hand and wrist, forearm, humorous (arm, proximal limb girdle (axilla and shoulder, foot and ankle, thigh, hip and buttocks region, trunk, and other lesions. Age and sex also were recorded. Results: Malignant tumors consisted of seven diagnostic categories: malignant fibrous histiocytoma (23%, liposarcoma (22%, rhabdomyosarcoma (9%, leiomyosarcoma (8%, malignant schwannoma (5%, dermatofibrosarcoma protuberans (5%, synovial sarcoma (10%, fibrosarcoma (13%, extraskeletal chondrosarcoma (1%, and extraskeletal Ewing sarcoma (4%. Conclusions: Despite the multitude of pathologic possibilities, most malignant soft-tissue tumors are classified into a small number of diagnoses. These may be further defined when the site of the lesion and the age of the patient are considered. Knowledge of tumor prevalence will assist radiologists in

  12. Prevalence of Malignant Soft Tissue Tumors inExtremities: An Epidemiological Study in Syria

    Directory of Open Access Journals (Sweden)

    Habib Reshadi

    2014-06-01

    Full Text Available Background:   Although the majority of soft tissue masses are benign, it is important to consider malignancy in differential diagnoses. Because most soft tissue sarcomas present as a painless mass, clinicians must watch for signs suggestive of malignancy, including large size, rapid growth, and site deep into the deep fascia.The purpose of this study was to determine the relative prevalence according to sex and age, site of tumor, skeletal distribution, and treatment (surgery, chemotherapy and radiotherapy before and after surgery, and ascertain the relative frequency of these tumors in specific anatomic sites and age groups based on pathological studies. Methods: A total of 308 patients, with a musculoskeletal tumor were evaluated retrospectively. All of the patients enrolled into this study were referred to the Beirouni Hospital of Damascus University with a proven diagnosis of alignant soft tissue tumors from the beginning of January 2008 until the end of 2010. The prevalence of the malignant soft tissue tumors in these patients was analyzed. For purposes of analysis, all lesions were placed in 1 of 9 categories: hand and wrist, forearm, humorous (arm, proximal limb girdle (axilla and shoulder, foot and ankle, thigh, hip and buttocks region, trunk, and other lesions. Age and sex also were recorded. Results: Malignant tumors consisted of seven diagnostic categories: malignant fibrous histiocytoma (23%, liposarcoma (22%, rhabdomyosarcoma (9%, leiomyosarcoma (8%, malignant schwannoma (5%, dermatofibrosarcoma protuberans (5%, synovial sarcoma (10%, fibrosarcoma (13%, extraskeletal chondrosarcoma (1%, and extraskeletal Ewing sarcoma (4%. Conclusions: Despite the multitude of pathologic possibilities, most malignant soft-tissue tumors are classified into a small number of diagnoses. These may be further defined when the site of the lesion and the age of the patient are considered. Knowledge of tumor prevalence will assist radiologists in

  13. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  14. 3D Printing of Personalized Organs and Tissues

    Science.gov (United States)

    Ye, Kaiming

    2015-03-01

    Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.

  15. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo

    2009-01-01

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  16. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    International Nuclear Information System (INIS)

    Tanaka, Simon; Iber, Dagmar

    2013-01-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH–PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand–receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand–receptor based Turing mechanisms can also result from BMP–receptor, SHH–receptor, and GDNF–receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor–ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature. (paper)

  17. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    Science.gov (United States)

    Tanaka, Simon; Iber, Dagmar

    2013-10-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH-PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand-receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand-receptor based Turing mechanisms can also result from BMP-receptor, SHH-receptor, and GDNF-receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor-ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature.

  18. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    NARCIS (Netherlands)

    C.A. Hellingman (Catharine)

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for

  19. Immunofluorescent histological studies of the role of fibronectin in the expression of the associative preferences of embryonic tissues.

    Science.gov (United States)

    Armstrong, P B; Armstrong, M T

    1981-08-01

    The identity of the chemical factors controlling the spreading behaviour of sheets of cells was examined in organ culture. When aggregates of two dissimilar tissues are apposed in organ culture, one tissue spreads reproducibly over the surface of the second. The present study employed indirect immunofluorescent localization techniques to evaluate the hypothesis that the spreading behaviour of chick embryonic heart tissue in culture is dominated by the presence or absence of the cell-surface and extracellular matrix protein fibronectin in the surface layers of the aggregates. Specifically, the hypothesis proposes that aggregates that display surface fibronectin earlier after culturing and/or in higher quantities segregate internally to aggregates that are slower to develop a surface layer of fibronectin or in which this layer contains reduced amounts of fibronectin. The hypothesis has been supported for 3 categories of behaviour of chick embryo heart tissue: (1) myocyte aggregates spread over myocyte aggregates containing a 20% admixture of heart fibroblasts, which in turn spread over heart fibroblast aggregates; (2) 5-day embryonic ventricle-tissue fragments maintained in culture for 0.5 days spread over ventricle fragments cultured for 2.5 days; and (3) 2-day embryonic ventricle spreads over 5-day ventricle. In all these situations, the aggregate type that segregates to an internal position displays more fibronectin at its surface than aggregate types that spread to occupy an external position. Evidence is presented that the fibronectin in heart tissue aggregates is elaborated by heart fibroblasts.

  20. Optical clearing of vaginal tissues in cadavers

    Science.gov (United States)

    Chang, Chun-Hung; Hardy, Luke A.; Peters, Michael G.; Bastawros, Dina A.; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2018-02-01

    A nonsurgical laser procedure is being developed for treatment of female stress urinary incontinence (SUI). Previous studies in porcine vaginal tissues, ex vivo, as well as computer simulations, showed the feasibility of using near-infrared laser energy delivered through a transvaginal contact cooling probe to thermally remodel endopelvic fascia, while preserving the vaginal wall from thermal damage. This study explores optical properties of vaginal tissue in cadavers as an intermediate step towards future pre-clinical and clinical studies. Optical clearing of tissue using glycerol resulted in a 15-17% increase in optical transmission after 11 min at room temperature (and a calculated 32.5% increase at body temperature). Subsurface thermal lesions were created using power of 4.6 - 6.4 W, 5.2-mm spot, and 30 s irradiation time, resulting in partial preservation of vaginal wall to 0.8 - 1.1 mm depth.

  1. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  2. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  3. Evaluation of impedance on biological Tissues using automatic control measurement system

    International Nuclear Information System (INIS)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo; Lee, Moo Seok; Kim, Sang Sik; Kim, Gun FDo; Lee, Jong Kyu

    2015-01-01

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  4. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs.

    Directory of Open Access Journals (Sweden)

    Maarten Sonnaert

    Full Text Available To progress the fields of tissue engineering (TE and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.

  5. [Tissue-specific nucleoprotein complexes].

    Science.gov (United States)

    Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh

    2000-01-01

    A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.

  6. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  7. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tailoring the foreign body response for in situ vascular tissue engineering

    NARCIS (Netherlands)

    Rothuizen, T.C.; Damanik, Febriyani; Anderson, J.; Lavrijsen, T.; Cox, M.A.J.; Rabelink, T.J.; Moroni, Lorenzo; Rotmans, J.

    2015-01-01

    This study describes a screening platform for a guided in situ vascular tissue engineering approach. Polymer rods were developed that upon 3 weeks of subcutaneous implantation evoke a controlled inflammatory response culminating in encapsulation by a tube-shaped autologous fibrocellular tissue

  9. Connective tissue fibroblasts and Tcf4 regulate myogenesis

    Science.gov (United States)

    Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle

    2011-01-01

    Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349

  10. Osteoimmunology: the study of the relationship between the immune system and bone tissue.

    Science.gov (United States)

    Arboleya, Luis; Castañeda, Santos

    2013-01-01

    Bone tissue is a highly regulated structure, which plays an essential role in various physiological functions. Through autocrine and paracrine mechanisms, bone tissue is involved in hematopoiesis, influencing the fate of hematopoietic stem cells. There are a number of molecules shared by bone cells and immune system cells indicating that there are multiple connections between the immune system and bone tissue. In order to pool all the knowledge concerning both systems, a new discipline known under the term «osteoimmunology» has been developed. Their progress in recent years has been exponential and allowed us to connect and increase our knowledge in areas not seemingly related such as rheumatoid erosion, postmenopausal osteoporosis, bone metastases or periodontal disease. In this review, we have tried to summarize the most important advances that have occurred in the last decade, especially in those areas of interest related to rheumatology. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  11. Positron range in tissue-equivalent materials: experimental microPET studies

    Science.gov (United States)

    Alva-Sánchez, H.; Quintana-Bautista, C.; Martínez-Dávalos, A.; Ávila-Rodríguez, M. A.; Rodríguez-Villafuerte, M.

    2016-09-01

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with 18F, 13N or 68Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  12. Mechanostimulation Protocols for Cardiac Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marco Govoni

    2013-01-01

    Full Text Available Owing to the inability of self-replacement by a damaged myocardium, alternative strategies to heart transplantation have been explored within the last decades and cardiac tissue engineering/regenerative medicine is among the present challenges in biomedical research. Hopefully, several studies witness the constant extension of the toolbox available to engineer a fully functional, contractile, and robust cardiac tissue using different combinations of cells, template bioscaffolds, and biophysical stimuli obtained by the use of specific bioreactors. Mechanical forces influence the growth and shape of every tissue in our body generating changes in intracellular biochemistry and gene expression. That is why bioreactors play a central role in the task of regenerating a complex tissue such as the myocardium. In the last fifteen years a large number of dynamic culture devices have been developed and many results have been collected. The aim of this brief review is to resume in a single streamlined paper the state of the art in this field.

  13. Assessment of radioactive residues arising from radiolabel instability in a multiple dose tissue distribution study in rats

    International Nuclear Information System (INIS)

    Slatter, J.G.; Sams, J.P.; Easter, J.A.

    2003-01-01

    Our study objectives were to quantitatively determine the effect of radiolabel instability on terminal phase radioactive tissue residues in a multiple dose tissue distribution study, to quantitatively compare tissue residue artifacts (non drug-related radioactivity) from two chemically-distinct radiolabel locations, and to conduct a definitive multiple dose tissue distribution study using the better of the two radiolabeled compounds. We compared the excretion and tissue distribution in rats of [ 14 C]linezolid, radiolabeled in two different locations, after 7 consecutive once daily [ 14 C] oral doses. The radiolabels were in the acetamide (two carbon) and oxazolidinone (isolated carbon) functional groups. Terminal phase tissue residue and excretion data were compared to data from rats dosed orally with [ 14 C]sodium acetate. Drug-related radioactivity was excreted rapidly over 24 h. After a single dose, the acetamide and oxazolidinone radiolabel sites both gave 3% of dose as exhaled 14 CO 2 . After 7 daily [ 14 C] oral doses, terminal phase radioactive tissue residues were higher from the acetamide radiolabel, relative to the oxazolidinone radiolabel, and were primarily not drug-related. In the definitive tissue distribution study, low concentrations of drug-related radioactivity in skin and thyroid were observed. We conclude that although small amounts of radiolabel instability do not significantly affect single dose tissue radioactivity C max and area under the curve (AUC), artifacts arising from radiolabel instability can prolong the apparent terminal phase half life and complicate study data interpretation. When possible, it is always preferable to use a completely stable radiolabel site. (author)

  14. Assessment of radioactive residues arising from radiolabel instability in a multiple dose tissue distribution study in rats

    Energy Technology Data Exchange (ETDEWEB)

    Slatter, J.G. [Pharmacia Corp., Peapack, NJ (United States); Sams, J.P.; Easter, J.A. [Pharmacia Corp., Kalamazoo, MI (United States)] [and others

    2003-05-01

    Our study objectives were to quantitatively determine the effect of radiolabel instability on terminal phase radioactive tissue residues in a multiple dose tissue distribution study, to quantitatively compare tissue residue artifacts (non drug-related radioactivity) from two chemically-distinct radiolabel locations, and to conduct a definitive multiple dose tissue distribution study using the better of the two radiolabeled compounds. We compared the excretion and tissue distribution in rats of [{sup 14}C]linezolid, radiolabeled in two different locations, after 7 consecutive once daily [{sup 14}C] oral doses. The radiolabels were in the acetamide (two carbon) and oxazolidinone (isolated carbon) functional groups. Terminal phase tissue residue and excretion data were compared to data from rats dosed orally with [{sup 14}C]sodium acetate. Drug-related radioactivity was excreted rapidly over 24 h. After a single dose, the acetamide and oxazolidinone radiolabel sites both gave 3% of dose as exhaled {sup 14}CO{sub 2}. After 7 daily [{sup 14}C] oral doses, terminal phase radioactive tissue residues were higher from the acetamide radiolabel, relative to the oxazolidinone radiolabel, and were primarily not drug-related. In the definitive tissue distribution study, low concentrations of drug-related radioactivity in skin and thyroid were observed. We conclude that although small amounts of radiolabel instability do not significantly affect single dose tissue radioactivity C{sub max} and area under the curve (AUC), artifacts arising from radiolabel instability can prolong the apparent terminal phase half life and complicate study data interpretation. When possible, it is always preferable to use a completely stable radiolabel site. (author)

  15. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  16. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  17. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  18. Cloning, Expression, and Characterization of Sorbitol Transporters from Developing Sour Cherry Fruit and Leaf Sink Tissues1

    Science.gov (United States)

    Gao, Zhifang; Maurousset, Laurence; Lemoine, Remi; Yoo, Sang-Dong; van Nocker, Steven; Loescher, Wayne

    2003-01-01

    The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persica L. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 and PcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (Km sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity. PMID:12692316

  19. Tissue characterization using magnetic resonance elastography: preliminary results

    International Nuclear Information System (INIS)

    Kruse, S.A.; Smith, J.A.; Lawrence, A.J.; Dresner, M.A.; Manduca, A.; Greenleaf, J.F.; Ehman, R.L.

    2000-01-01

    The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for non-invasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves. (author)

  20. The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores.

    Science.gov (United States)

    Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas

    2013-09-01

    The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.

  1. Adverse event reporting and developments in radiation biology after normal tissue injury: International Atomic Energy Agency consultation

    International Nuclear Information System (INIS)

    Chen Yuhchyau; Trotti, Andy; Coleman, C. Norman; Machtay, Mitchell; Mirimanoff, Rene O.; Hay, John; O'Brien, Peter C.; El-Gueddari, Brahim; Salvajoli, Joao V.; Jeremic, Branislav

    2006-01-01

    Purpose: Recent research has enhanced our understanding of radiation injury at the molecular-cellular and tissue levels; significant strides have occurred in standardization of adverse event reporting in clinical trials. In response, the International Atomic Energy Agency, through its Division of Human Health and its section for Applied Radiation Biology and Radiotherapy, organized a consultation meeting in Atlanta (October 2, 2004) to discuss developments in radiobiology, normal tissue reactions, and adverse event reporting. Methods and Materials: Representatives from cooperative groups of African Radiation Oncology Group, Curriculo Radioterapeutica Ibero Latino Americana, European Organization for Research and Treatment of Cancer, National Cancer Institute of Canada Clinical Trials Group, Radiation Therapy Oncology Group, and Trans-Tasman Radiation Oncology Group held the meeting discussion. Results: Representatives of major radiotherapy groups/organizations and prominent leaders in radiotherapy discussed current understanding of normal tissue radiobiologic effects, the design and implementation of future clinical and translational projects for normal tissue injury, and the standardization of adverse-event reporting worldwide. Conclusions: The consensus was to adopt NCI comprehensive adverse event reporting terminology and grading system (CTCAE v3.0) as the new standard for all cooperative group trials. Future plans included the implementation of coordinated research projects focusing on normal tissue biomarkers and data collection methods

  2. Rapidly dissociated autologous meniscus tissue enhances meniscus healing: An in vitro study.

    Science.gov (United States)

    Numpaisal, Piya-On; Rothrauff, Benjamin B; Gottardi, Riccardo; Chien, Chung-Liang; Tuan, Rocky S

    Treatment of meniscus tears is a persistent challenge in orthopedics. Although cell therapies have shown promise in promoting fibrocartilage formation in in vitro and preclinical studies, clinical application has been limited by the paucity of autologous tissue and the need for ex vivo cell expansion. Rapid dissociation of the free edges of the anterior and posterior meniscus with subsequent implantation in a meniscus lesion may overcome these limitations. The purpose of this study was to explore the effect of rapidly dissociated meniscus tissue in enhancing neotissue formation in a radial meniscus tear, as simulated in an in vitro explant model. All experiments in this study, performed at minimum with biological triplicates, utilized meniscal tissues from hind limbs of young cows. The effect of varying collagenase concentration (0.1%, 0.2% and 0.5% w/v) and treatment duration (overnight and 30 minutes) on meniscus cell viability, organization of the extracellular matrix (ECM), and gene expression was assessed through a cell metabolism assay, microscopic examination, and quantitative real-time reverse transcription polymerase chain reaction analysis, respectively. Thereafter, an explant model of a radial meniscus tear was used to evaluate the effect of a fibrin gel seeded with one of the following: (1) fibrin alone, (2) isolated and passaged (P2) meniscus cells, (3) overnight digested tissue, and (4) rapidly dissociated tissue. The quality of in vitro healing was determined through histological analysis and derivation of an adhesion index. Rapid dissociation in 0.2% collagenase yielded cells with higher levels of metabolism than either 0.1% or 0.5% collagenase. When seeded in a three-dimensional fibrin hydrogel, both overnight digested and rapidly dissociated cells expressed greater levels of collagens type I and II than P2 meniscal cells at 1 week. At 4 and 8 weeks, collagen type II expression remained elevated only in the rapid dissociation group. Histological

  3. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  4. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  5. The magnitude of linear dichroism of biological tissues as a result of cancer changes

    Science.gov (United States)

    Bojchuk, T. M.; Yermolenko, S. B.; Fedonyuk, L. Y.; Petryshen, O. I.; Guminetsky, S. G.; Prydij, O. G.

    2011-09-01

    The results of studies of linear dichroism values of different types of biological tissues (human prostate, esophageal epithelial human muscle tissue in rats) both healthy and infected tumor at different stages of development are shown here. The significant differences in magnitude of linear dichroism and its spectral dependence in the spectral range λ = 330 - 750 nm both among the objects of study, and between biotissues: healthy (or affected by benign tumors) and cancer patients are established. It is researched that in all cases in biological tissues (prostate gland, esophagus, human muscle tissue in rats) with cancer the linear dichroism arises, the value of which depends on the type of tissue and time of the tumor process. As for healthy tissues linear dichroism is absent, the results may have diagnostic value for detecting and assessing the degree of development of cancer.

  6. Cortisol in tissue and systemic level as a contributing factor to the development of metabolic syndrome in severely obese patients.

    Science.gov (United States)

    Constantinopoulos, Petros; Michalaki, Marina; Kottorou, Anastasia; Habeos, Ioannis; Psyrogiannis, Agathoklis; Kalfarentzos, Fotios; Kyriazopoulou, Venetsana

    2015-01-01

    Adrenal and extra-adrenal cortisol production may be involved in the development of metabolic syndrome (MetS). To investigate the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the expression of HSD11B1, nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptors) α (NR3C1α) and β (NR3C1β) in the liver, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of severely obese patients with and without MetS. The study included 37 severely obese patients (BMI ≥ 40 kg/m(2)), 19 with MetS (MetS+ group) and 18 without (MetS- group), studied before and during bariatric surgery. Before the day of surgery, urinary free cortisol (UFC) and diurnal variation of serum and salivary cortisol were estimated. During surgery, biopsies of the liver, VAT and SAT were obtained. The expression of HSD11B1, NR3C1α and NR3C1β was evaluated by RT-PCR. UFC and area under the curve for 24-h profiles of serum and salivary cortisol were lower in the MetS- group. In the MetS- group, mRNA levels of HSD11B1 in liver exhibited a negative correlation with liver NR3C1α (LNR3C1α) and VAT expression of HSD11B1 was lower than the MetS+ group. We observed a downregulation of the NR3C1α expression and lower VAT mRNA levels of HSD11B1 in the MetS- group, indicating a lower selective tissue cortisol production and action that could protect these patients from the metabolic consequences of obesity. In the MetS- group, a lower activity of the HPA axis was also detected. Taken together, cortisol in tissue and systematic level might play a role in the development of MetS in severely obese patients. © 2015 European Society of Endocrinology.

  7. A descriptive study to provide evidence of the teratogenic and cellular effects of sibutramine and ephedrine on cardiac- and liver-tissue of chick embryos.

    Science.gov (United States)

    Oberholzer, Hester Magdalena; Van Der Schoor, Ciska; Taute, Helena; Bester, Megan Jean

    2015-08-01

    Exposure to drugs during pregnancy is a major concern, as some teratogenic compounds can influence normal foetal development. Although the use of drugs during pregnancy should generally be avoided, exposure of the developing foetus to teratogens may occur unknowingly since these compounds may be hidden in products that are being marketed as "all natural." The aim of the current study was to investigate the possible teratogenic and cellular effects of sibutramine-a serotonin-norepinephrine reuptake inhibitor used in the treatment of obesity-on the heart and liver tissue of chick embryos. Ephedrine was used as a positive control. The chick embryo model was chosen because it has been used in studying developmental and experimental biology and teratology with great success. The embryos were exposed to three different concentrations of sibutramine and ephedrine respectively. The results obtained revealed that both compounds exhibited embryotoxicity when compared to the control groups. Liver and heart tissue of the exposed embryos was severely affected by these compounds in a dose-related manner. Morphology similar to that of muscle dystrophy was observed in the heart, where the muscle tissue was infiltrated by adipose and connective tissue. Severe liver steatosis was also noted. A more in-depth investigation into the molecular pathways involved might provide more information on the exact mechanism of toxicity of these products influencing embryonic development. © 2015 Wiley Periodicals, Inc.

  8. Experimental and computational development of a natural breast phantom for dosimetry studies

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2013-01-01

    This paper describes the experimental and computational development of a natural breast phantom, anthropomorphic and anthropometric for studies in dosimetry of brachytherapy and teletherapy of breast. The natural breast phantom developed corresponding to fibroadipose breasts of women aged 30 to 50 years, presenting radiographically medium density. The experimental breast phantom was constituted of three tissue-equivalents (TE's): glandular TE, adipose TE and skin TE. These TE's were developed according to chemical composition of human breast and present radiological response to exposure. Completed the construction of experimental breast phantom this was mounted on a thorax phantom previously developed by the research group NRI/UFMG. Then the computational breast phantom was constructed by performing a computed tomography (CT) by axial slices of the chest phantom. Through the images generated by CT a computational model of voxels of the thorax phantom was developed by SISCODES computational program, being the computational breast phantom represented by the same TE's of the experimental breast phantom. The images generated by CT allowed evaluating the radiological equivalence of the tissues. The breast phantom is being used in studies of experimental dosimetry both in brachytherapy as in teletherapy of breast. Dosimetry studies by MCNP-5 code using the computational model of the phantom breast are in progress. (author)

  9. Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies

    NARCIS (Netherlands)

    Klumpers, Ursula M. H.; Veltman, Dick J.; Boellaard, Ronald; Comans, Emile F.; Zuketto, Cassandra; Yaqub, Maqsood; Mourik, Jurgen E. M.; Lubberink, Mark; Hoogendijk, Witte J. G.; Lammertsma, Adriaan A.

    2008-01-01

    A single-tissue compartment model with plasma input is the established method for analysing [(11)C]flumazenil ([(11)C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been

  10. [Fuzzing pattern recognition study on Raman spectrum of tumor peripheral tissue].

    Science.gov (United States)

    Luo, Lei; Zhao, Yuan-li; Ge, Xiang-hong; Zhang, Xiao-dong; Hao, Zhi-fang; Lü, Jing

    2006-06-01

    On the basis of some theories about fuzzing pattern recognition, the present article studied the data preprocessing of the Raman spectrum of tumor peripheral tissue, and feature extraction and selection. According to these features the authors improved the leaning towards the bigger membership function of trapezoidal distribution. The authors built the membership function of Raman spectrum of tumor peripheral tissue which belongs to malignant tumor on the basis of 40 specimens, and designed the classifier. The test of other 40 specimens showed that the discrimination of malignant tumor is 82.4%, while that of beginning tumor is 73.9%.

  11. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  12. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  13. [Development of a digital chest phantom for studies on energy subtraction techniques].

    Science.gov (United States)

    Hayashi, Norio; Taniguchi, Anna; Noto, Kimiya; Shimosegawa, Masayuki; Ogura, Toshihiro; Doi, Kunio

    2014-03-01

    Digital chest phantoms continue to play a significant role in optimizing imaging parameters for chest X-ray examinations. The purpose of this study was to develop a digital chest phantom for studies on energy subtraction techniques under ideal conditions without image noise. Computed tomography (CT) images from the LIDC (Lung Image Database Consortium) were employed to develop a digital chest phantom. The method consisted of the following four steps: 1) segmentation of the lung and bone regions on CT images; 2) creation of simulated nodules; 3) transformation to attenuation coefficient maps from the segmented images; and 4) projection from attenuation coefficient maps. To evaluate the usefulness of digital chest phantoms, we determined the contrast of the simulated nodules in projection images of the digital chest phantom using high and low X-ray energies, soft tissue images obtained by energy subtraction, and "gold standard" images of the soft tissues. Using our method, the lung and bone regions were segmented on the original CT images. The contrast of simulated nodules in soft tissue images obtained by energy subtraction closely matched that obtained using the gold standard images. We thus conclude that it is possible to carry out simulation studies based on energy subtraction techniques using the created digital chest phantoms. Our method is potentially useful for performing simulation studies for optimizing the imaging parameters in chest X-ray examinations.

  14. 3D bio-etching of a complex composite-like embryonic tissue.

    Science.gov (United States)

    Hazar, Melis; Kim, Yong Tae; Song, Jiho; LeDuc, Philip R; Davidson, Lance A; Messner, William C

    2015-08-21

    Morphogenesis involves a complex series of cell signaling, migration and differentiation events that are coordinated as tissues self-assemble during embryonic development. Collective cell movements such as those that occur during morphogenesis have typically been studied in 2D with single layers of cultured cells adhering to rigid substrates such as glass or plastic. In vivo, the intricacies of the 3D microenvironment and complex 3D responses are pivotal in the formation of functional tissues. To study such processes as collective cell movements within 3D multilayered tissues, we developed a microfluidic technique capable of producing complex 3D laminar multicellular structures. We call this technique "3D tissue-etching" because it is analogous to techniques used in the microelectromechanics (MEMS) field where complex 3D structures are built by successively removing material from a monolithic solid through subtractive manufacturing. We use a custom-designed microfluidic control system to deliver a range of tissue etching reagents (detergents, chelators, proteases, etc.) to specific regions of multilayered tissues. These tissues were previously isolated by microsurgical excision from embryos of the African claw-toed frog, Xenopus laevis. The ability to shape the 3D form of multicellular tissues and to control 3D stimulation will have a high impact on tissue engineering and regeneration applications in bioengineering and medicine as well as provide significant improvements in the synthesis of highly complex 3D integrated multicellular biosystems.

  15. Histological evaluation of tissue reactions to newly synthetized calcium silicate- and hydroxyapatite-based bioactive materials: in vivo study

    Directory of Open Access Journals (Sweden)

    Opačić-Galić Vanja

    2017-01-01

    Full Text Available Introduction/Objective. Development of materials which could be used as biological bone substitutes is one of the most valuable and active fields of biomaterial research. The goal of the study was to research the reaction of tissue on calcium silicate- (CS and hydroxyapatitebased (CS-HA newly synthesized nanomaterials, after being implanted into the subcutaneous tissue of a rats and direct pulp capping of rabbit teeth. Methods. The tested materials were implanted in 40 Wistar male rats, sacrificed after seven, 15, 30, and 60 days. The direct pulp capping was performed on the teeth of rabbits. Cavities were prepared on the vestibular surface of the incisors. The animals were sacrificed after 10 and 15 days. The control material was mineral trioxide aggregate (MTA. Histological analysis covered the tracking of inflammatory reaction cellular components, presence of gigantic cells, and necrosis of the tissue. Results. Seven days after the implantation, the strongest inflammatory response was given by the MTA (3.3 Ѓ} 0.48, while CS and CS-HA scored 3 ± 0.71. After 60 days, the rate of inflammatory reactions dropped, which was the least visible with CS-HA (0.2 ± 0.45. The least visible inflammatory reaction of the rabbits’ pulp tissue was spotted with the CS (1.83 ± 0.75, than with the MTA and CS-HA (2.67 ± 1.53, 3 ± 0.63. Conclusion. The newly synthesized materials caused a slight reaction of the subcutaneous tissue. CS-HA showed the best tissue tolerance. Nanostructural biomaterials caused a slight to moderate inflammatory reaction of the rabbits’ pulp tissue only in the immediate vicinity of the implanted material.

  16. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    Science.gov (United States)

    Rodriguez-Canales, Jaime; Hanson, Jeffrey C; Hipp, Jason D; Balis, Ulysses J; Tangrea, Michael A; Emmert-Buck, Michael R; Bova, G Steven

    2013-01-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This updated chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high-quality, appropriately anatomically tagged scientific results. Improvement in this area will significantly increase life science quality and productivity. The chapter is divided into introduction, materials, protocols, and notes subheadings. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this chapter, readers are advised to read through the entire

  17. Morphology of urethral tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  18. Tissues development in stems of Aristolochia clematitis L. in the point of view of multicellular complexes formation

    Directory of Open Access Journals (Sweden)

    Zofia Puławska

    2014-01-01

    Full Text Available After cytokinesis the cells do not separate but remain within the wall of the mother cell. After a series of divisions a multicellular complex arises. In the stems of Aristolochia clematitis procambium is closer related to protoxylem than to protophloem, and metaphloem is closer related to metaxylem than to protophloem. Since protophloem has a closer common origin with fibre primordia than with the remaining tissues, it cannot be decided unequivocally what is the origin of the fibres or when procambium differentiates. The common origin of the primary vascular tissues is visible in the pattern of the multicellular complexes, whereas the common origin of the secondary vascular tissue developing in the underground several-year-old parts of the stem can be traced in the arrangement of the single radial tiers. Some characteristics of symplastic growth are discussed.

  19. Development and validation of a numerical model for cross-section optimization of a multi-part probe for soft tissue intervention.

    Science.gov (United States)

    Frasson, L; Neubert, J; Reina, S; Oldfield, M; Davies, B L; Rodriguez Y Baena, F

    2010-01-01

    The popularity of minimally invasive surgical procedures is driving the development of novel, safer and more accurate surgical tools. In this context a multi-part probe for soft tissue surgery is being developed in the Mechatronics in Medicine Laboratory at Imperial College, London. This study reports an optimization procedure using finite element methods, for the identification of an interlock geometry able to limit the separation of the segments composing the multi-part probe. An optimal geometry was obtained and the corresponding three-dimensional finite element model validated experimentally. Simulation results are shown to be consistent with the physical experiments. The outcome of this study is an important step in the provision of a novel miniature steerable probe for surgery.

  20. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  1. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  2. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. The volume of fluid injected into the tissue expander and the tissue expansion

    Directory of Open Access Journals (Sweden)

    Mahmood Omranifard

    2014-01-01

    Full Text Available Background: Replacement of the lost tissue is the major concerns of the plastic surgeons. Expanded area should be coherent with the surrounding tissue. Tissue expansion technique is the reforming methods the skin tissue scarcities. Several methods for tissue expansion are available; including usage of silicon balloon and injecting fluid into the tissue expander. Materials and Methods: In a clinical trial study, 35 patients, with burn scars, in the face, skull and neck area were studied. We provided a tissue expander device with capacities of 125, 250 and 350cc. Fluid was injected inside the device, 3 consecutive weeks with 1-week interval. After 3 months the device was set out and the tissue expansion was measured using a transparent board and the results were analyzed. Multiple regression was done by SPSS 20 to analyze the data. Results: Regression model showed Skin expansion was positively correlated with the volume of the injected fluid. For each centimeter square of skin expansion, about 6-8 ml of fluid must be injected. Conclusion: Correction of skin defects resulting from burning scar is possible using tissue expanders. The tissue expansion is correlated with the amount of the injected fluid.

  4. Quantification of Tissue Trauma following Insulin Pen Needle Insertions in Skin

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Larsen, Rasmus; Vestergaard, Jacob Schack

    Objective: Within the field of pen needle development, most research on needle design revolves around mechanical tensile testing and patient statements. Only little has been published on the actual biological skin response to needle insertions. The objective of this study was to develop a computa......Objective: Within the field of pen needle development, most research on needle design revolves around mechanical tensile testing and patient statements. Only little has been published on the actual biological skin response to needle insertions. The objective of this study was to develop...... a computational method to quantify tissue trauma based on skin bleeding and immune response. Method: Two common sized pen needles of 28G (0.36mm) and 32G (0.23mm) were inserted into skin of sedated LYD pigs prior to termination. Four pigs were included and a total of 32 randomized needle insertions were conducted...... diameter. Conclusion: A computational and quantitative method has been developed to assess tissue trauma following insulin pen needle insertions. Application of the method is tested by conduction of a needle diameter study. The obtained quantitative measures of tissue trauma correlate positively to needle...

  5. Biochemical imaging of tissues by SIMS for biomedical applications

    International Nuclear Information System (INIS)

    Lee, Tae Geol; Park, Ji-Won; Shon, Hyun Kyong; Moon, Dae Won; Choi, Won Woo; Li, Kapsok; Chung, Jin Ho

    2008-01-01

    With the development of optimal surface cleaning techniques by cluster ion beam sputtering, certain applications of SIMS for analyzing cells and tissues have been actively investigated. For this report, we collaborated with bio-medical scientists to study bio-SIMS analyses of skin and cancer tissues for biomedical diagnostics. We pay close attention to the setting up of a routine procedure for preparing tissue specimens and treating the surface before obtaining the bio-SIMS data. Bio-SIMS was used to study two biosystems, skin tissues for understanding the effects of photoaging and colon cancer tissues for insight into the development of new cancer diagnostics for cancer. Time-of-flight SIMS imaging measurements were taken after surface cleaning with cluster ion bombardment by Bi n or C 60 under varying conditions. The imaging capability of bio-SIMS with a spatial resolution of a few microns combined with principal component analysis reveal biologically meaningful information, but the lack of high molecular weight peaks even with cluster ion bombardment was a problem. This, among other problems, shows that discourse with biologists and medical doctors are critical to glean any meaningful information from SIMS mass spectrometric and imaging data. For SIMS to be accepted as a routine, daily analysis tool in biomedical laboratories, various practical sample handling methodology such as surface matrix treatment, including nano-metal particles and metal coating, in addition to cluster sputtering, should be studied

  6. Engineered Muscle Actuators: Cells and Tissues

    National Research Council Canada - National Science Library

    Dennis, Robert G; Herr, Hugh; Parker, Kevin K; Larkin, Lisa; Arruda, Ellen; Baar, Keith

    2007-01-01

    .... Our primary objectives were to engineer living skeletal muscle actuators in culture using integrated bioreactors to guide tissue development and to maintain tissue contractility, to achieve 50...

  7. Mechanical Characterization of Tissue-Engineered Cartilage Using Microscopic Magnetic Resonance Elastography

    Science.gov (United States)

    Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.

    2014-01-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  8. Surgical considerations when reporting MRI studies of soft tissue sarcoma of the limbs

    Energy Technology Data Exchange (ETDEWEB)

    De la Hoz Polo, Marcela [Kings College Hospital, Radiology Department, London, Brixton (United Kingdom); Dick, Elizabeth [St Mary' s Hospital, Imperial College Healthcare NHS Trust, Radiology Department, London (United Kingdom); Bhumbra, Rej [Newham and The Royal London Hospitals, Trauma and Orthopaedic Department, Barts Health Orthopaedic Centre, London, Whitechapel (United Kingdom); Pollock, Rob [Royal National Orthopaedic Hospital, Trauma and Orthopaedic Department, Stanmore (United Kingdom); Sandhu, Ranbir [University Hospitals Birmingham, Radiology Department, Queen Elizabeth Hospital, Birmingham (United Kingdom); Saifuddin, Asif [Royal National Orthopaedic Hospital, Radiology Department, Stanmore (United Kingdom)

    2017-12-15

    Soft tissue sarcomas (STS) are rare tumours that require prompt diagnosis and treatment at a specialist centre. Magnetic resonance imaging (MRI) has become the modality of choice for identification, characterisation, biopsy planning and staging of soft tissue masses. MRI enables both the operating surgeon and patient to be optimally prepared prior to surgery for the likelihood of margin-negative resection and to anticipate possible sacrifice of adjacent structures and consequent loss of function. The aim of this review is to aid the radiologist in performing and reporting MRI studies of soft tissue sarcomas, with particular reference to the requirements of the surgical oncologist. (orig.)

  9. Scintigraphic imaging of focal hypoxic tissue: development and clinical applications of 123I-IAZA

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2002-09-01

    Full Text Available Affected tissues in a number of diseases, including cancer, stroke, cardiac infarction and diabetes, develop focal tissue hypoxia during their progression. The presence of hypoxic tissue may make the disease refractory to therapy, as in the case of solid tumor therapy using low LET ionizing radiation. In other pathologies, the detection of viable but hypoxic tissues may serve as a prodromal indicator of developing disease (e.g. diabetes,or as a prognostic indicator for management of the disease (e.g. stroke. Over the past two decades, a number of hypoxia radioimaging agents have been developed and tested clinically. Of these, 18F-Fmiso and 123I-IAZA are the most widely used radiotracers for PET and SPECT/planar imaging, respectively. IAZA and Fmiso are a 2-nitroimidazoles that chemically bind to subcellular components of viable hypoxic tissues. They sensitize hypoxic tumour to the killing effects of ionizing radiation via mechanisms that mimic the radiosensitizing effects of oxygen, and are therefore called oxygen mimetics. The oxygen mimetic effect is attributable in large part to the covalent binding of reductively-activated nitroimidazole intermediates to critical cellular macromolecules. Nitroimidazoles labelled with gamma-emitting radionuclides (e.g. 18F-Fmiso and 123I-IAZA have been used as scintigraphic markers of tumour hypoxia, based on the need to identify radioresistant hypoxic tumour cells as part of the radiotherapy planning process. Broader interest in non-invasive, imaging-based identification of focal hypoxia in a number of diseases has extended hypoxia studies to include peripheral vascular disease associated with diabetes, rheumatoid arthritis, stroke, myocardial ischaemia, brain trauma and oxidative stress. In this review, the current status of hypoxia-selective studies with 123I-IAZA , an experimental diagnostic radiopharmaceutical, is reviewed with respect to its pre-clinical development and clinical applications.Os tecidos

  10. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    Science.gov (United States)

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-07

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  11. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  12. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Science.gov (United States)

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  13. Development of Three-Dimensional Multicellular Tissue-Like Constructs for Mutational Analysis Using Macroporous Microcarriers

    Science.gov (United States)

    Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.

    2002-01-01

    A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2

  14. An algorithm to biological tissues evaluation in pediatric examinations

    International Nuclear Information System (INIS)

    Souza, R.T.F.; Miranda, J.R.A.; Alvarez, M.; Velo, A.F.; Pina, D.R.

    2011-01-01

    A prerequisite for the construction of phantoms is the quantification of the average thickness of biological tissues and the equivalence of these simulators in simulator material thicknesses. This study aim to develop an algorithm to classify and quantify tissues, based on normal distribution of CT numbers of anatomical structures found in the mean free path of the X-rays beam, using the examination histogram to carry out this evaluation. We have considered an algorithm for the determination of the equivalent biological tissues thickness from histograms. This algorithm classifies different biological tissues from tomographic exams in DICOM format and calculates the average thickness of these tissues. The founded results had revealed coherent with literature, presenting discrepancies of up to 21,6%, relative to bone tissue, analyzed for anthropomorphic phantom (RANDO). These results allow using this methodology in livings tissues, for the construction of thorax homogeneous phantoms, of just born and suckling patients, who will be used later in the optimization process of pediatrics radiographic images. (author)

  15. Biochemical Markers of Joint Tissue Turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Sondergaard, Bodil Cecilie; Christiansen, Claus

    2009-01-01

    available for the study of tissue turnover in each of the three compartments of the articular joint, that is the bone, the cartilage, and the synovium. Finally, we provide some perspective to future developments in biomarker discovery and discuss the potential impact such technologies could have on the drug...

  16. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.

    Science.gov (United States)

    Marti-Figueroa, Carlos R; Ashton, Randolph S

    2017-05-01

    Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis

  17. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    Science.gov (United States)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  18. Fabrication of scaffolds in tissue engineering: A review

    Science.gov (United States)

    Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng

    2018-03-01

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

  19. [Biofabrication: new approaches for tissue regeneration].

    Science.gov (United States)

    Horch, Raymund E; Weigand, Annika; Wajant, Harald; Groll, Jürgen; Boccaccini, Aldo R; Arkudas, Andreas

    2018-04-01

    techniques are based on the assembling of cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures, that can be utilized not only to potentially produce functional replacement tissues or organs but also to serve as new models for basic research. Mimicking the stromal microenvironment of tumor cells to study the process of tumor formation and progression, metastasis, angiogenesis and modulation of the associated processes is one of these applications under research. To this end a close collaboration of specialists from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery will be necessary to develop future strategies that can overcome current limitations of tissue generation. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Phosphorus MRS study in bone and soft-tissue tumors

    International Nuclear Information System (INIS)

    Du Xiangke; Jiang Baoguo

    2000-01-01

    Objective: To study the metabolite changes in bone and soft-tissue tumors using phosphorus MRS for better understanding of the phospholipid metabolite and energy metabolite of tumors, which will provide more information for clinical diagnosis and therapy. Methods: Phosphorus MRS and MRI were performed in 14 bone and soft-tissue tumor patients (benign 6, malignant 8) and 19 healthy volunteers at 2.0 T. The areas under the peak of various metabolite in spectra were measured. The ratios of the other metabolite related to β-ATP, ATP, and Pcr were calculated. Intracellular pH was calculated according to the chemical shift change of Pi relative to Pcr. Results: The ratio of PME/β-ATP, PME/ATP, Pcr/PME in both benign and malignant group, intracellular pH in malignant group and LEP/Pcr in benign group were higher than that of the normal group significantly (P < 0.01). the ratios of Pi/Pcr in benign and malignant group, PDE/ATP, PDE/β-ATP, LET/Pcr, Pi/β-ATP in malignant group and LET/β-ATP in benign group were significantly different from that of the normal group (P < 0.05). Between benign and malignant tumors group, the ratios of Pcr/PME and Intracellular pH were different significantly (P < 0.05). Conclusion: The in vivo phosphorus MRS can non-invasively find abnormal phospholipid metabolite, energy metabolite and pH changes in bone and soft tissue tumors

  1. Parkinson-dementia complex and development of a new stable isotope dilution assay for BMAA detection in tissue

    International Nuclear Information System (INIS)

    Snyder, Laura R.; Cruz-Aguado, Reyniel; Sadilek, Martin; Galasko, Douglas; Shaw, Christopher A.; Montine, Thomas J.

    2009-01-01

    β-Methylamino-L-alanine (BMAA) has been proposed as a global contributor to neurodegenerative diseases, including Parkinson-dementia complex (PDC) of Guam and Alzheimer's disease (AD). The literature on the effects of BMAA is conflicting with some but not all in vitro data supporting a neurotoxic action, and experimental animal data failing to replicate the pattern of neurodegeneration of these human diseases, even at very high exposures. Recently, BMAA has been reported in human brain from individuals afflicted with PDC or AD. Some of the BMAA in human tissue reportedly is freely extractable (free) while some is protein-associated and liberated by techniques that hydrolyze the peptide bond. The latter is especially intriguing since BMAA is a non-proteinogenic amino acid that has no known tRNA. We attempted to replicate these findings with techniques similar to those used by others; despite more than adequate sensitivity, we were unable to detect free BMAA. Recently, using a novel stable isotope dilution assay, we again were unable to detect free or protein-associated BMAA in human cerebrum. Here we review the development of our new assay for tissue detection of BMAA and show that we are able to detect free BMAA in liver but not cerebrum, nor do we detect any protein-associated BMAA in mice fed this amino acid. These studies demonstrate the importance of a sensitive and specific assay for tissue BMAA and seriously challenge the proposal that BMAA is accumulating in human brain.

  2. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    Science.gov (United States)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  3. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    International Nuclear Information System (INIS)

    Baum, O I; Omelchenko, A I; Sobol, E N; Zheltov, G I; Romanov, G S; Romanov, O G

    2013-01-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method. (paper)

  4. Osseointegration of subperiosteal implant via guided tissue regeneration. A pilot study

    DEFF Research Database (Denmark)

    Hjørting-Hansen, E; Helbo, M; Aaboe, M

    1995-01-01

    The principle of guided tissue regeneration was applied in an attempt to generate bone to cover a subperiosteal implant. Titanium frame works, casted on individual impressions of the anterior surface of the tibia of 4 Copenhagen White rabbits, were stabilized to the tibia by microscrews, and half...... of them were covered by an expanded polytetrafluoroethylene augmentation membrane. The observation period was 12 weeks. Guided bone regeneration partly covering the implants was seen at all experimental sides; on the control sides the implants were mainly embedded in fibrous tissue. Studies...... are in progress with the aim of reducing marked marrow space formation observed in all the regenerated areas....

  5. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  6. Synovial tissue research

    DEFF Research Database (Denmark)

    Orr, Carl; Sousa, Elsa; Boyle, David L

    2017-01-01

    The synovium is the major target tissue of inflammatory arthritides such as rheumatoid arthritis. The study of synovial tissue has advanced considerably throughout the past few decades from arthroplasty and blind needle biopsy to the use of arthroscopic and ultrasonographic technologies that enable...... easier visualization and improve the reliability of synovial biopsies. Rapid progress has been made in using synovial tissue to study disease pathogenesis, to stratify patients, to discover biomarkers and novel targets, and to validate therapies, and this progress has been facilitated by increasingly...... diverse and sophisticated analytical and technological approaches. In this Review, we describe these approaches, and summarize how their use in synovial tissue research has improved our understanding of rheumatoid arthritis and identified candidate biomarkers that could be used in disease diagnosis...

  7. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  8. A study on tissue compensator thickness ratio and an application for 4MV X-rays

    International Nuclear Information System (INIS)

    Kim, Young Bum; Kwon, Young Ho; Jung, Hee Young; Kim, You Hyun

    1996-01-01

    A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of 5cm x 5cm, 10cm x 10cm, 15cm x 15cm, 20 x 20cm for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was 10% difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was 2% difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  9. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  10. Tissue Engineering the Cornea: The Evolution of RAFT

    Science.gov (United States)

    Levis, Hannah J.; Kureshi, Alvena K.; Massie, Isobel; Morgan, Louise; Vernon, Amanda J.; Daniels, Julie T.

    2015-01-01

    Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro. PMID:25809689

  11. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F.

    2017-01-01

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  12. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F

    2017-04-25

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  13. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Directory of Open Access Journals (Sweden)

    Kheng Lim Goh

    2017-04-01

    Full Text Available Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs. The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre

  14. Elimination of spiral waves in cardiac tissue by multiple electrical shocks

    NARCIS (Netherlands)

    Panfilov, A.V.; Müller, Stefan C.; Zykov, Vladimir S.; Keener, James P.

    1999-01-01

    We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback

  15. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells

    Science.gov (United States)

    Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.

    2017-07-01

    There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.

  16. The cereal starch endosperm development and its relationship with other endosperm tissues and embryo.

    Science.gov (United States)

    Zheng, Yankun; Wang, Zhong

    2015-01-01

    The cereal starch endosperm is the central part of endosperm, and it is rich in starch and protein which are the important resources for human food. The starch and protein are separately accumulated in starch granules and protein bodies. Content and configuration of starch granules and protein bodies affect the quality of the starch endosperm. The development of starch endosperm is mediated by genes, enzymes, and hormones, and it also has a close relationship with other endosperm tissues and embryo. This paper reviews the latest investigations on the starch endosperm and will provide some useful information for the future researches on the development of cereal endosperm.

  17. Development of a Tissue-Engineered Lymphatic Graft Using Nanocomposite Polymer for the Treatment of Secondary Lymphedema.

    Science.gov (United States)

    Kanapathy, Muholan; Kalaskar, Deepak; Mosahebi, Afshin; Seifalian, Alexander M

    2016-03-01

    Damage of the lymphatic vessels, commonly due to surgical resection for cancer treatment, leads to secondary lymphedema. Tissue engineering approach offers a possible solution to reconstruct this damage with the use of lymphatic graft to re-establish the lymphatic flow, hence preventing lymphedema. The aim of this study is to develop a tissue-engineered lymphatic graft using nanocomposite polymer and human dermal lymphatic endothelial cells (HDLECs). A nanocomposite polymer, the polyhedral oligomeric silsequioxane-poly(carbonate-urea)urethane (POSS-PCU), which has enhanced mechanical, chemical, and physical characteristics, was used to develop the lymphatic graft. POSS-PCU has been used clinically for the world's first synthetic trachea, lacrimal duct, and is currently undergoing clinical trial for coronary artery bypass graft. Two designs and fabrication methods were used to manufacture the conduits. The fabrication method, the mechanical and physical properties, as well as the hydraulic conductivity were tested. This is followed by in vitro cell culture analysis to test the cytocompatibility of HDLEC with the polymer surface. Using the casted extrusion method, the nanocomposite lymphatic graft demonstrates desirable mechanical property and hydraulic conductivity to re-establish the lymphatic flow. The conduit has high tensile strength (casted: 74.86 ± 5.74 MPa vs. coagulated: 31.33 ± 3.71 MPa; P nanocomposite polymer. It displays excellent mechanical property and cytocompatibility to HDLECs, offering much promise for clinical applications and as a new treatment option for secondary lymphedema. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  19. Necrotizing soft tissue infections - a multicentre, prospective observational study (INFECT)

    DEFF Research Database (Denmark)

    Madsen, M. B.; Skrede, S.; Bruun, T.

    2018-01-01

    these to patient-important outcomes. With this protocol and statistical analysis plan we describe the methods used to obtain data and the details of the planned analyses. Methods: The INFECT study is a multicentre, prospective observational cohort study. Patients with NSTIs are enrolled in five Scandinavian......Background: The INFECT project aims to advance our understanding of the pathophysiological mechanisms in necrotizing soft tissue infections (NSTIs). The INFECT observational study is part of the INFECT project with the aim of studying the clinical profile of patients with NSTIs and correlating...

  20. Trace elemental correlation study in malignant and normal breast tissue by PIXE technique

    International Nuclear Information System (INIS)

    Raju, G.J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G.A.V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P.V.B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka

    2006-01-01

    Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors

  1. An exploratory study of relational, persuasive, and nonverbal communication in requests for tissue donation.

    Science.gov (United States)

    Siminoff, Laura A; Traino, Heather M; Gordon, Nahida H

    2011-10-01

    This study explores the effects of tissue requesters' relational, persuasive, and nonverbal communication on families' final donation decisions. One thousand sixteen (N = 1,016) requests for tissue donation were audiotaped and analyzed using the Siminoff Communication Content and Affect Program, a computer application specifically designed to code and assist with the quantitative analysis of communication data. This study supports the important role of communication strategies in health-related decision making. Families were more likely to consent to tissue donation when confirmational messages (e.g., messages that expressed validation or acceptance) or persuasive tactics such as credibility, altruism, or esteem were used during donation discussions. Consent was also more likely when family members exhibited nonverbal immediacy or disclosed private information about themselves or the patient. The results of a hierarchical log-linear regression revealed that the use of relational communication during requests directly predicted family consent. The results provide information about surrogate decision making in end-of-life situations and may be used to guide future practice in obtaining family consent to tissue donation.

  2. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  3. Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle

    International Nuclear Information System (INIS)

    Kim, Jonghun; Park, Sungmin; Nam, Gyungmok; Yoon, Sang-Hee

    2016-01-01

    Despite all the recent advances in biodegradable material-based microneedles, the bending and failure (especially buckling) of a biodegradable microneedle during skin tissue insertion remains a major technical hurdle for its large-scale commercialization. A reduction in skin tissue puncture force during microneedle insertion remains an essential issue in successfully developing a biodegradable microneedle. Here, we consider uniaxial and equibiaxial prestrains applied to a skin tissue as mechanophysical stimuli that can reduce the skin tissue puncture force, and investigate the effect of prestrain on the changes in skin tissue puncture force. For a porcine skin tissue similar to that of humans, the skin tissue puncture force of a flat-end microneedle is measured with a z-axis stage equipped with a load cell, which provides a force-time curve during microneedle insertion. The findings of this study lead to a quantitative characterization of the relationship between prestrain and the skin tissue puncture force

  4. Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghun; Park, Sungmin; Nam, Gyungmok; Yoon, Sang-Hee [Inha Univ., Incheon (Korea, Republic of)

    2016-10-15

    Despite all the recent advances in biodegradable material-based microneedles, the bending and failure (especially buckling) of a biodegradable microneedle during skin tissue insertion remains a major technical hurdle for its large-scale commercialization. A reduction in skin tissue puncture force during microneedle insertion remains an essential issue in successfully developing a biodegradable microneedle. Here, we consider uniaxial and equibiaxial prestrains applied to a skin tissue as mechanophysical stimuli that can reduce the skin tissue puncture force, and investigate the effect of prestrain on the changes in skin tissue puncture force. For a porcine skin tissue similar to that of humans, the skin tissue puncture force of a flat-end microneedle is measured with a z-axis stage equipped with a load cell, which provides a force-time curve during microneedle insertion. The findings of this study lead to a quantitative characterization of the relationship between prestrain and the skin tissue puncture force.

  5. Development of a Sterile Amniotic Membrane Tissue Graft Using Supercritical Carbon Dioxide

    Science.gov (United States)

    2015-03-04

    indistinguishable. Such results suggest that the mechanism of bacterial inactivation occurs through in- tracellular acidification due to enhanced...does not ensure complete tissue sterility.11,32,33 Unlike metals and plastics , the sterilization of soft, bio- logical tissues have many challenges

  6. Impact of dental implant insertion method on the peri-implant bone tissue: Experimental study

    Directory of Open Access Journals (Sweden)

    Stamatović Novak

    2013-01-01

    Full Text Available Background/Aim. The function of dental implants depends on their stability in bone tissue over extended period of time, i.e. on osseointegration. The process through which osseointegration is achieved depends on several factors, surgical insertion method being one of them. The aim of this study was to histopathologically compare the impact of the surgical method of implant insertion on the peri-implant bone tissue. Methods. The experiment was performed on 9 dogs. Eight weeks following the extraction of lower premolars implants were inserted using the one-stage method on the right mandibular side and two-stage method on the left side. Three months after implantation the animals were sacrificed. Three distinct regions of bone tissue were histopathologically analyzed, the results were scored and compared. Results. In the specimens of one-stage implants increased amount of collagen fibers was found in 5 specimens where tissue necrosis was also observed. Only moderate osteoblastic activity was found in 3 sections. The analysis of bone-to-implant contact region revealed statistically significantly better results regarding the amount of collagen tissue fibers for the implants inserted in the two-stage method (Wa = 59 105, α = 0.05. No necrosis and osteoblastic activity were observed. Conclusion. Better results were achieved by the two-stage method in bone-to-implant contact region regarding the amount of collagen tissue, while the results were identical regarding the osteoblastic activity and bone tissue necrosis. There was no difference between the methods in the bone-implant interface region. In the bone tissue adjacent to the implant the results were identical regarding the amount of collagen tissue, osteoblastic reaction and bone tissue necrosis, while better results were achieved by the two-stage method regarding the number of osteocytes.

  7. Engineering tendon and ligament tissues: present developments towards successful clinical products.

    Science.gov (United States)

    Rodrigues, Márcia T; Reis, Rui L; Gomes, Manuela E

    2013-09-01

    Musculoskeletal diseases are one of the leading causes of disability worldwide. Among them, tendon and ligament injuries represent an important aspect to consider in both athletes and active working people. Tendon and ligament damage is an important cause of joint instability, and progresses into early onset of osteoarthritis, pain, disability and eventually the need for joint replacement surgery. The social and economical burden associated with these medical conditions presents a compelling argument for greater understanding and expanding research on this issue. The particular physiology of tendons and ligaments (avascular, hypocellular and overall structural mechanical features) makes it difficult for currently available treatments to reach a complete and long-term functional repair of the damaged tissue, especially when complete tear occurs. Despite the effort, the treatment modalities for tendon and ligament are suboptimal, which have led to the development of alternative therapies, such as the delivery of growth factors, development of engineered scaffolds or the application of stem cells, which have been approached in this review. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  9. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.

    Science.gov (United States)

    Hadjipieri, Margarita; Georgiadou, Egli C; Marin, Alicia; Diaz-Mula, Huertas M; Goulas, Vlasios; Fotopoulos, Vasileios; Tomás-Barberán, Francisco A; Manganaris, George A

    2017-06-14

    Carotenoids are the main colouring substances found in orange-fleshed loquat fruits. The aim of this study was to unravel the carotenoid biosynthetic pathway of loquat fruit (cv. 'Obusa') in peel and flesh tissue during distinct on-tree developmental stages through a targeted analytical and molecular approach. Substantial changes regarding colour parameters, both between peel and flesh and among the different developmental stages, were monitored, concomitant with a significant increment in carotenoid content. Key genes and individual compounds that are implicated in the carotenoid biosynthetic pathway were further dissected with the employment of molecular (RT-qPCR) and advanced analytical techniques (LC-MS). Results revealed significant differences in carotenoid composition between peel and flesh. Thirty-two carotenoids were found in the peel, while only eighteen carotenoids were identified in the flesh. Trans-lutein and trans-β-carotene were the major carotenoids in the peel; the content of the former decreased with the progress of ripening, while the latter registered a 7.2-fold increase. However, carotenoid profiling of loquat flesh indicated trans-β-cryptoxanthin, followed by trans-β-carotene and 5,8-epoxy-β-carotene to be the most predominant carotenoids. High amounts of trans-β-carotene in both tissues were supported by significant induction in a chromoplast-specific lycopene β-cyclase (CYCB) transcript levels. PSY1, ZDS, CYCB and BCH were up-regulated and CRTISO, LCYE, ECH and VDE were down-regulated in most of the developmental stages compared with the immature stage in both peel and flesh tissue. Overall, differential regulation of expression levels with the progress of on-tree fruit development was more evident in the middle and downstream genes of carotenoid biosynthetic pathway. Carotenoid composition is greatly affected during on-tree loquat development with striking differences between peel and flesh tissue. A link between gene up- or down

  10. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    Science.gov (United States)

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  11. The study on the effect of low-temperature heat treatment on tissue dehydration fish pond

    Directory of Open Access Journals (Sweden)

    N. S. Rodionova

    2013-01-01

    Full Text Available The paper is studied thermo-moisture treatment of carp on the provisional application of vacuum packaging. The degree of hydration of the carp meat tissues equally depends on the prepackaging, as well as the characteristics of the fluid in the chamber system. With increasing temperature the degree of hydration of meat carp tissue decreases with the reduction of the difference in its numerical values of packed and unpacked samples. Obtained a graph of depence dependence of the speed of carp meat tissue dehydration of the processing temperature. Revealed that the presence of plastic packaging, as well as wetting fluid help reduce the dehydration speed of carp meat tissues.

  12. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  13. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  14. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    Science.gov (United States)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  15. Exatecan in pretreated adult patients with advanced soft tissue sarcoma: results of a phase II--study of the EORTC Soft Tissue and Bone Sarcoma Group

    DEFF Research Database (Denmark)

    Reichardt, P; Nielsen, Ole Steen; Bauer, S

    2007-01-01

    No standard treatment is established for patients with advanced soft tissue sarcoma after previous chemotherapy with anthracyclines and ifosfamide, given either in combination or sequentially. Exatecan (DX-8951f) is a totally synthetic analogue of the topoisomerase I-inhibitor camptothecin, which...... was synthesised to impart increased aqueous solubility, greater tumour efficacy, and less toxicity than camptothecin itself, topotecan or irinotecan. Since some activity against soft tissue sarcomas, especially leiomyosarcomas, has been reported for topoisomerase I-inhibitors, a study with a new and more potent...... agent seemed justified. We report on a prospective multicentre phase II study of Exatecan in adult soft tissue sarcomas failing 1 or 2 lines of chemotherapy in advanced phase, performed within the STBSG of EORTC. Thirty-nine patients (16 leiomyosarcomas and 23 other histologies) were included in two...

  16. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

    Science.gov (United States)

    Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

    2018-02-20

    nanoelectronics into rodent brains. First, we describe the design of ultraflexible mesh nanoelectronics with size features and mechanical properties similar to brain tissue and a novel syringe-injection methodology that allows the mesh nanoelectronics to be precisely delivered to targeted brain regions in a minimally invasive manner. Next, we discuss time-dependent histology studies showing seamless and stable integration of mesh nanoelectronics within brain tissue on at least one year scales without evidence of chronic immune response or glial scarring characteristic of conventional implants. Third, armed with facile input/output interfaces, we describe multiplexed single-unit recordings that demonstrate stable tracking of the same individual neurons and local neural circuits for at least 8 months, long-term monitoring and stimulation of the same groups of neurons, and following changes in individual neuron activity during brain aging. Moving forward, we foresee substantial opportunities for (1) continued development of mesh nanoelectronics through, for example, broadening nanodevice signal detection modalities and taking advantage of tissue-like properties for selective cell targeting and (2) exploiting the unique capabilities of mesh nanoelectronics for tackling critical scientific and medical challenges such as understanding and potentially ameliorating cell and circuit level changes associated with natural and pathological aging, as well as using mesh nanoelectronics as active tissue scaffolds for regenerative medicine and as neuroprosthetics for monitoring and treating neurological diseases.

  17. Combined Bisulfite Restriction Analysis for brain tissue identification.

    Science.gov (United States)

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    Science.gov (United States)

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  20. Status quo of management of the human tissue banks in Taiwan.

    Science.gov (United States)

    Chou, Ching-Pang; Chou, Szu-Cheng; Chen, Ying-Hua; Chen, Yu-Hsuan; Lee, Ming-Shin

    2017-03-01

    As the technologies associated with transplantation and biological tissue engineering continue to advance, human cells and tissues form an integral part to the practice of regenerative medicine. The patient's use of tissues entails the risk of introducing, transmitting and spreading communicable diseases. To prevent such risk and to ensure that the human organs, tissues and cells remain intact and functional after being handled and processed, the transplanted tissues must be subject to good management standards through all stages of collection, screening, processing, storage and distribution as the safety of the users is of the utmost importance. On February 2009, the government of Taiwan promulgated the Regulations for Administration on Human Organ Bank that requires all human tissues banks to adhere to the Good Tissue Practice for Human Organ, Tissue and Cell in terms of establishment and operation in order to cope with the international management trend and the development and management need of the domestic industry. Six years have passed since the law became effective. This article seeks to introduce the current management mechanism and status quo of management of human tissue banks in Taiwan. We also conducted statistical analysis of the data relating to the tissue banks to identify potential risks and the room for improvement. The study concludes that human tissue banks in Taiwan are on the right track with their management practice, leading to a state of steady development and progress.

  1. Lasers in Esthetic Dentistry: Soft Tissue Photobiomodulation, Hard Tissue Decontamination, and Ceramics Conditioning

    Directory of Open Access Journals (Sweden)

    Karen Müller Ramalho

    2014-01-01

    Full Text Available The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm for dentin decontamination, diode (660 nm for soft tissue biomodulation, and Er:YAG laser (2,940 nm for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success.

  2. Waterjet cutting of periprosthetic interface tissue in loosened hip prostheses: an in vitro feasibility study

    NARCIS (Netherlands)

    Kraaij, Gert; Tuijthof, Gabrielle J. M.; Dankelman, Jenny; Nelissen, Rob G. H. H.; Valstar, Edward R.

    2015-01-01

    Waterjet cutting technology is considered a promising technology to be used for minimally invasive removal of interface tissue surrounding aseptically loose hip prostheses. The goal of this study was to investigate the feasibility of waterjet cutting of interface tissue membrane. Waterjets with 0.2

  3. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  4. Consent to tissue banking for research: qualitative study and recommendations.

    Science.gov (United States)

    Soto, Carmen; Tarrant, Carolyn; Pritchard-Jones, Kathy; Dixon-Woods, Mary

    2012-07-01

    To explore how families of children with cancer experience giving consent for tissue banking and to produce recommendations on good practice. 79 participants from 42 families (41 mothers, 18 fathers, 20 children and young people with cancer) took part in semistructured interviews to explore their experiences of being approached for consent to tissue banking. Tertiary care facilities for childhood cancer. Families are generally supportive of tissue banking, although they report that it may be difficult for them to consider all the implications when asked for consent. They typically do not want detailed information when consent is sought close to diagnosis, preferring to see tissue banking as part of routine practice. Families often recognise that their consent may not be fully informed, but are content to give consent based on their understanding at the time. Some may want a chance to go over the information and revisit their decision when things have settled. Families' views can inform practical recommendations for optimising the experience of consent for tissue banking. Current guidelines for obtaining consent should be revisited to take account of families' preferences.

  5. Irradiation-induced hypoxia in bones and soft tissues: an experimental study

    International Nuclear Information System (INIS)

    Aitasalo, K.; Aro, H.

    1986-01-01

    Bone marrow and subcutaneous tissue pO 2 and pCO 2 were measured by means of implanted tissue tonometers in irradiated and nonirradiated rabbit hind limbs. The x-ray dose was 500, 1000, 1500, 2000, and 3000 rads. Tissue gas tensions were measured 1 day and 5 and 11 weeks after radiation. The pCO 2 changes in both tissues were slight but not statistically significant. The subcutaneous tissue pO 2 decreased during the acute phase of irradiation injury, and the effect of irradiation was dose-dependent. Later on, irradiation had no significant effects on the subcutaneous pO 2 , although light microscopy of the affected tissues showed fibrosis and blood vessel changes. The response of the subcutaneous pO 2 to systemic hyperoxia also increased in the chronic phase of irradiation injury as a sign of improved microcirculation. The bone marrow showed a high radiosensitivity. Irradiation caused a rapid dose-dependent decrease of the marrow pO 2 , and the marrow pO 2 decreased with time during the chronic phase of irradiation injury. The marrow pO 2 responded slowly and marginally to an increment of arterial pO 2 during breathing 100% oxygen as further evidence of impaired vascular pattern. The results showed that irradiation causes only a transient impairment of tissue perfusion in the skin. However, irradiation-damaged marrow was characterized by progressive tissue hypoxia

  6. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  7. Methodology for dynamic biaxial tension testing of pregnant uterine tissue.

    Science.gov (United States)

    Manoogian, Sarah; Mcnally, Craig; Calloway, Britt; Duma, Stefan

    2007-01-01

    Placental abruption accounts for 50% to 70% of fetal losses in motor vehicle crashes. Since automobile crashes are the leading cause of traumatic fetal injury mortality in the United States, research of this injury mechanism is important. Before research can adequately evaluate current and future restraint designs, a detailed model of the pregnant uterine tissues is necessary. The purpose of this study is to develop a methodology for testing the pregnant uterus in biaxial tension at a rate normally seen in a motor vehicle crash. Since the majority of previous biaxial work has established methods for quasi-static testing, this paper combines previous research and new methods to develop a custom designed system to strain the tissue at a dynamic rate. Load cells and optical markers are used for calculating stress strain curves of the perpendicular loading axes. Results for this methodology show images of a tissue specimen loaded and a finite verification of the optical strain measurement. The biaxial test system dynamically pulls the tissue to failure with synchronous motion of four tissue grips that are rigidly coupled to the tissue specimen. The test device models in situ loading conditions of the pregnant uterus and overcomes previous limitations of biaxial testing. A non-contact method of measuring strains combined with data reduction to resolve the stresses in two directions provides the information necessary to develop a three dimensional constitutive model of the material. Moreover, future research can apply this method to other soft tissues with similar in situ loading conditions.

  8. Effect of antiseptic irrigation on infection rates of traumatic soft tissue wounds: a longitudinal cohort study.

    Science.gov (United States)

    Roth, B; Neuenschwander, R; Brill, F; Wurmitzer, F; Wegner, C; Assadian, O; Kramer, A

    2017-03-02

    Acute traumatic wounds are contaminated with bacteria and therefore an infection risk. Antiseptic wound irrigation before surgical intervention is routinely performed for contaminated wounds. However, a broad variety of different irrigation solutions are in use. The aim of this retrospective, non-randomised, controlled longitudinal cohort study was to assess the preventive effect of four different irrigation solutions before surgical treatment, on wound infection in traumatic soft tissue wounds. Over a period of three decades, the prophylactic application of wound irrigation was studied in patients with contaminated traumatic wounds requiring surgical treatment, with or without primary wound closure. The main outcome measure was development of wound infection. From 1974-1983, either 0.04 % polihexanide (PHMB), 1 % povidone-iodine (PVP-I), 4 % hydrogen peroxide, or undiluted Ringer's solution were concurrently in use. From 1984-1996, only 0.04 % PHMB or 1 % PVP-I were applied. From 1997, 0.04 % PHMB was used until the end of the study period in 2005. The combined rate for superficial and deep wound infection was 1.7 % in the 0.04 % PHMB group (n=3264), 4.8 % in the 1 % PVP-I group (n=2552), 5.9 % in the Ringer's group (n=645), and 11.7 % in the 4 % hydrogen peroxide group (n=643). Compared with all other treatment arms, PHMB showed the highest efficacy in preventing infection in traumatic soft tissue wounds (p<0.001). However, compared with PVP-I, the difference was only significant for superficial infections. The large patient numbers in this study demonstrated a robust superiority of 0.04 % PHMB to prevent infection in traumatic soft tissue wounds. These retrospective results may further provide important information as the basis for power calculations for the urgently needed prospective clinical trials in the evolving field of wound antisepsis.

  9. Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro?

    Science.gov (United States)

    Surrao, Denver C; Khan, Aasma A; McGregor, Aaron J; Amsden, Brian G; Waldman, Stephen D

    2011-08-01

    Tissue engineering is a promising approach for articular cartilage repair; however, it is challenging to produce adequate amounts of tissue in vitro from the limited number of cells that can be extracted from an individual. Relatively few cell expansion methods exist without the problems of de-differentiation and/or loss of potency. Recently, however, several studies have noted the benefits of three-dimensional (3D) over monolayer expansion, but the ability of 3D expanded chondrocytes to synthesize cartilaginous tissue constructs has not been demonstrated. Thus, the purpose of this study was to compare the properties of engineered cartilage constructs from expanded cells (monolayer and 3D microcarriers) to those developed from primary chondrocytes. Isolated bovine chondrocytes were grown for 3 weeks in either monolayer (T-Flasks) or 3D microcarrier (Cytodex 3) expansion culture. Expanded and isolated primary cells were then seeded in high density culture on Millicell™ filters for 4 weeks to evaluate the ability to synthesize cartilaginous tissue. While microcarrier expansion was twice as effective as monolayer expansion (microcarrier: 110-fold increase, monolayer: 52-fold increase), the expanded cells (monolayer and 3D microcarrier) were not effectively able to synthesize cartilaginous tissue in vitro. Tissues developed from primary cells were substantially thicker and accumulated significantly more extracellular matrix (proteoglycan content: 156%-292% increase; collagen content: 70%-191% increase). These results were attributed to phenotypic changes experienced during the expansion phase. Monolayer expanded chondrocytes lost their native morphology within 1 week, whereas microcarrier-expanded cells were spreading by 3 weeks of expansion. While the use of 3D microcarriers can lead to large cellular yields, preservation of chondrogenic phenotype during expansion is required in order to synthesize cartilaginous tissue.

  10. Transcriptome architecture across tissues in the pig

    Directory of Open Access Journals (Sweden)

    Folch Josep M

    2008-04-01

    Full Text Available Abstract Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes and between sexes (19 genes. The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome.

  11. Three-dimensional micro-scale strain mapping in living biological soft tissues.

    Science.gov (United States)

    Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter

    2018-04-01

    Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro

  12. The use of time-of-flight camera for navigating robots in computer-aided surgery: monitoring the soft tissue envelope of minimally invasive hip approach in a cadaver study.

    Science.gov (United States)

    Putzer, David; Klug, Sebastian; Moctezuma, Jose Luis; Nogler, Michael

    2014-12-01

    Time-of-flight (TOF) cameras can guide surgical robots or provide soft tissue information for augmented reality in the medical field. In this study, a method to automatically track the soft tissue envelope of a minimally invasive hip approach in a cadaver study is described. An algorithm for the TOF camera was developed and 30 measurements on 8 surgical situs (direct anterior approach) were carried out. The results were compared to a manual measurement of the soft tissue envelope. The TOF camera showed an overall recognition rate of the soft tissue envelope of 75%. On comparing the results from the algorithm with the manual measurements, a significant difference was found (P > .005). In this preliminary study, we have presented a method for automatically recognizing the soft tissue envelope of the surgical field in a real-time application. Further improvements could result in a robotic navigation device for minimally invasive hip surgery. © The Author(s) 2014.

  13. Callosal tissue loss parallels subtle decline in psychomotor speed. A longitudinal quantitative MRI study. The LADIS Study

    NARCIS (Netherlands)

    Jokinen, H.; Frederiksen, K.S.; Garde, E.; Skimminge, A.; Siebner, H.; Waldemar, G.; Ylikoski, R.; Madureira, S.; Verdelho, A.; van Straaten, E.C.W.; Barkhof, F.; Fazekas, F.; Schmidt, R.; Pantoni, L.; Inzitari, D.; Erkinjuntti, T.

    2012-01-01

    Cross-sectional studies have suggested that corpus callosum (CC) atrophy is related to impairment in global cognitive function, mental speed, and executive functions in the elderly. Longitudinal studies confirming these findings have been lacking. We investigated whether CC tissue loss is associated

  14. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    Science.gov (United States)

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  15. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

  16. Development of T Lymphocytes in the Nasal-associated Lymphoid Tissue (NALT from Growing Wistar Rats

    Directory of Open Access Journals (Sweden)

    Gustavo A. Sosa

    2004-01-01

    Full Text Available The aim of the present report was to study the development of several T-lymphocyte subsets in the nasal-associated lymphoid tissue (NALT of growing Wistar rats. CD5+ and CD4+ lymphocytes gradually increased with age. A predominance of CD8α+ over CD4+ T cells was found from 7 to 45 days but from 45 to 60 days of age T helper cells outnumbered the cytotoxic subpopulation. The majority of CD8+ T lymphocytes expressed the heterodimeric isoform. The most relevant findings by immunohistochemistry are: (1 the predominance of TCRγδ+ and CD8α+ cells at 7 days postpartum over all the other T-cell subpopulations; and (2 that TCRγβ+ outnumbered TCRαβ+ T cells from 7 to 45 days postpartum whereas αβ T cells predominated in 45- and 60-day-old rats. Besides, cytometric studies have shown that the percentages of TCRγ+, CD8+, as well as the population coexpressing both phenotypes (TCRγδ+CD8α+, were significantly higher in rats at 7 days postpartum when compared to 60 day-old rats. In the present study, the finding of a high number of γδ+ and CD8+ T cells early in NALT development may indicate the importance of these subpopulations in the protection of the nasal mucosa in suckling and weaning Wistar rats.

  17. A model of a code of ethics for tissue banks operating in developing countries.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2012-12-01

    Ethical practice in the field of tissue banking requires the setting of principles, the identification of possible deviations and the establishment of mechanisms that will detect and hinder abuses that may occur during the procurement, processing and distribution of tissues for transplantation. This model of a Code of Ethics has been prepared with the purpose of being used for the elaboration of a Code of Ethics for tissue banks operating in the Latin American and the Caribbean, Asia and the Pacific and the African regions in order to guide the day-to-day operation of these banks. The purpose of this model of Code of Ethics is to assist interested tissue banks in the preparation of their own Code of Ethics towards ensuring that the tissue bank staff support with their actions the mission and values associated with tissue banking.

  18. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  19. Mechanical characterization of bioprinted in vitro soft tissue models

    International Nuclear Information System (INIS)

    Zhang, Ting; Ouyang, Liliang; Sun, Wei; Yan, Karen Chang

    2013-01-01

    Recent development in bioprinting technology enables the fabrication of complex, precisely controlled cell-encapsulated tissue constructs. Bioprinted tissue constructs have potential in both therapeutic applications and nontherapeutic applications such as drug discovery and screening, disease modelling and basic biological studies such as in vitro tissue modelling. The mechanical properties of bioprinted in vitro tissue models play an important role in mimicking in vivo the mechanochemical microenvironment. In this study, we have constructed three-dimensional in vitro soft tissue models with varying structure and porosity based on the 3D cell-assembly technique. Gelatin/alginate hybrid materials were used as the matrix material and cells were embedded. The mechanical properties of these models were assessed via compression tests at various culture times, and applicability of three material constitutive models was examined for fitting the experimental data. An assessment of cell bioactivity in these models was also carried out. The results show that the mechanical properties can be improved through structure design, and the compression modulus and strength decrease with respect to time during the first week of culture. In addition, the experimental data fit well with the Ogden model and experiential function. These results provide a foundation to further study the mechanical properties, structural and combined effects in the design and the fabrication of in vitro soft tissue models. (paper)

  20. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and