WorldWideScience

Sample records for tissue culture x-irradiation

  1. Development of a new mouse palate organ culture system and effect of X-irradiation on palatogenesis

    International Nuclear Information System (INIS)

    Hiranuma, Hiroko; Jikko, Akitoshi; Maeda, Takashi; Furukawa, Souhei

    1999-01-01

    On the basis of an already established suspension system of organ culture for mouse palate explants, we developed a new culture system, which has several advantages over the previous methods. We used a 48-well culture plate in which the explants can be cultured individually, and only 300 μl of medium is needed for each well. In order to optimize the culture results, we systematically studied the influence of main ''culture conditions'' such as tilt degree of the culturing palate, rotation speed, and addition of ascorbic acid to the medium. This system allows culturing of palates from day 13.5 of gestation to day 16.5 under serum-free conditions using a chemically defined medium, which resulted in 78% of the palates growing fused. Utilizing this culture system, the direct effect of X-irradiation on palataogesis was analyzed. A 4 Gy dose of X-irradiation was administrated at the beginning of culture period. The incidence of palatal fusion was not significantly different from that of the non-irradiated group. (author)

  2. Effects of x-irradiation on steroid biotransformations by testicular tissue. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Ellis, L.C.

    1975-01-01

    X irradiation of rat testicular tissue either in vivo or in vitro labilized the lysosomal membranes with a release of both acid phosphatase and phospholipase A 2 resulting in an increased lipid peroxidation. The results from these investigations suggest that the lipid endoperoxides and malonaldehyde are responsible for mediating the effects of radiation on steroid biotransformations. Estradiol, testosterone, 5α-dihydrotestosterone, prolactin, acetylcholine, cGMP, H 2 O 2 , PUFA, ethanol and vitamin A increased lysosomal fragility and initiated enzyme release while ATP, cAMP, vitamin E, theophylline, indomethacin, caffeine, cortisol, epinephrine, NADPH, NDGA, FSH and Zn ++ decreased both phenomena. An increase in catalase activity was consistently observed after irradiation and by cAMP indicative of an increase in testicular cAMP content following irradiation. Seminiferous tubules were found to be dependent on prostaglandins for their contractions. (U.S.)

  3. Protective action of DNA preparations on the survival of cells and yield of 8-azaguanine resistant mutations in X-irradiated cell culture of chinese hamsters

    International Nuclear Information System (INIS)

    Kuznetsova, N.N.; Feoktistova, T.P.

    1976-01-01

    A DNA preparation (molecular weight 19.6-21.0x1O 6 daltons) administered to cell culture of Chinese hamsters in concentrations of 100 to 122 μg/ml 60 minutes before and in the course of 3 days after X-irradiation (600 R) decreased the lethality of irradiated cells and reduced induction of 8-azaguanine resistant genic mutations. DNA preparations with the concentrations under study had no toxic action on cells and were not mutagenous

  4. Effects of x-irradiation on steroid biotransformations by testicular tissue. Final report, May 1, 1966--July 31, 1976. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, L.C.

    1976-08-01

    A number of parameters of testicular and body function were investigated after various dosages of x-irradiation to ascertain: what relationship they have to the radiation syndrome and testicular repression and regeneration of the rat; and how sensitive these parameters are to radiation. Changes in androgen synthesis were not well correlated with either body or gonad weights, hematocrit values or testicular histology. Lipid peroxidation, catalase activity, metabolism of testosterone, prostaglandins, cyclic nucleotides and serotonin metabolism were all related to the direct effects of radiation on the male gonad. Indirect effects on the testis appear to be mediated by serotonin and the pineal gland. The pineal gland appeared to be responsible for variations in androgen synthesis and radiosensitivity of the testis through its secretory products-melatonin and arginine vasopressin. These compounds have the capacity of inducing endocrine rhythms by affecting: the hypothalamus-pituitary axis; the liver; and/or the gonad directly.

  5. Effects of x-irradiation on steroid biotransformations by testicular tissue. Final report, May 1, 1966--July 31, 1976

    International Nuclear Information System (INIS)

    Ellis, L.C.

    1976-08-01

    A number of parameters of testicular and body function were investigated after various dosages of x-irradiation to ascertain: what relationship they have to the radiation syndrome and testicular repression and regeneration of the rat; and how sensitive these parameters are to radiation. Changes in androgen synthesis were not well correlated with either body or gonad weights, hematocrit values or testicular histology. Lipid peroxidation, catalase activity, metabolism of testosterone, prostaglandins, cyclic nucleotides and serotonin metabolism were all related to the direct effects of radiation on the male gonad. Indirect effects on the testis appear to be mediated by serotonin and the pineal gland. The pineal gland appeared to be responsible for variations in androgen synthesis and radiosensitivity of the testis through its secretory products-melatonin and arginine vasopressin. These compounds have the capacity of inducing endocrine rhythms by affecting: the hypothalamus-pituitary axis; the liver; and/or the gonad directly

  6. Effects of bacterial lipopolysaccharide and X-irradiation on the production of colony-stimulating factor and the maintenance of granulopoiesis in bone marrow culture

    International Nuclear Information System (INIS)

    Izumi, H.; Miyanomae, T.; Tsurusawa, M.; Fujita, J.; Mori, K.

    1984-01-01

    Effects of bacterial lipopolysaccharide (LPS) and X-irradiation on CSF production and granulopoiesis in long-term bone marrow cultures were studied. Levels of colony-stimulating factor (CSF) increased soon after the refeeding of the culture, but the activity was undetectable at day 7. Addition of LPS induced a significant increase in CSF levels in the culture, followed by an elevated granulopoiesis. The increase in CSF levels was suppressed when culture medium that had been harvested at refeeding on day 7 was added. Although irradiation did not increase CSF production, granulopoiesis was markedly stimulated shortly after irradiation. Thus granulopoiesis in long-term bone marrow culture may also be regulated by humoral factors such as CSF, and the culture system may represent the in vivo response to haemopoietic stimuli. (author)

  7. Augmentation by L-Dopa of growth inhibition and melanin formation of X-irradiated Harding-Passey melanoma cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Schachtschabel, D.O.; Pfab, R.; Hess, F.; Paul, N.

    1988-07-01

    Treatment of exponentially proliferating melanogenic Harding-Passey melanoma cells in monolayer culture (HPM-73 line) with a single dose of X-irradiation (up to 8 Gy) or continuously (for several weeks) with L-3,4-dihydroxyphenylalanine (L-Dopa) up to 5x10/sup -4/ M resulted in a dose-dependent inhibition of cell proliferation, but not in death of all cells. Actually, 8 Gy-irradiated or L-Dopa (2x10/sup -4/ M)-treated cultures finally reached the cell number and cell density of controls. However, a combination of a single dose of radiation (8 Gy) followed by L-Dopa (2x10/sup -4/ M)-treatment resulted in destruction of all cells. Melanin formation was stimulated by L-dopa-treatment or X-irradiation, and was further elevated by the combined application of radiation and L-Dopa-exposure. Whether the effects of exogenously applied L-Dopa, an intermediary metabolite of melanin synthesis, are due to the conversion to growth-inhibitory metabolites (quinones, radicals, etc.) inside or outside the cell, was discussed. The latter might result from release (due to membrane damage or cell desintegration) of tyrosinase or/and melanosomes into the culture medium with the consequence of extracellular synthesis of potentially cytotoxic metabolites from medium substrates. Further, endocytosis of exogenous melanosomes and tyrosinase with potentially harmful effects is feasible. An application of such a combination therapy of melanoma to clinical medicine should be considered.

  8. Augmentation by L-Dopa of growth inhibition and melanin formation of X-irradiated Harding-Passey melanoma cells in culture

    International Nuclear Information System (INIS)

    Schachtschabel, D.O.; Pfab, R.; Hess, F.; Paul, N.

    1988-01-01

    Treatment of exponentially proliferating melanogenic Harding-Passey melanoma cells in monolayer culture (HPM-73 line) with a single dose of X-irradiation (up to 8 Gy) or continuously (for several weeks) with L-3,4-dihydroxyphenylalanine (L-Dopa) up to 5x10 -4 M resulted in a dose-dependent inhibition of cell proliferation, but not in death of all cells. Actually, 8 Gy-irradiated or L-Dopa (2x10 -4 M)-treated cultures finally reached the cell number and cell density of controls. However, a combination of a single dose of radiation (8 Gy) followed by L-Dopa (2x10 -4 M)-treatment resulted in destruction of all cells. Melanin formation was stimulated by L-dopa-treatment or X-irradiation, and was further elevated by the combined application of radiation and L-Dopa-exposure. Whether the effects of exogenously applied L-Dopa, an intermediary metabolite of melanin synthesis, are due to the conversion to growth-inhibitory metabolites (quinones, radicals, etc.) inside or outside the cell, was discussed. The latter might result from release (due to membrane damage or cell desintegration) of tyrosinase or/and melanosomes into the culture medium with the consequence of extracellular synthesis of potentially cytotoxic metabolites from medium substrates. Further, endocytosis of exogenous melanosomes and tyrosinase with potentially harmful effects is feasible. An application of such a combination therapy of melanoma to clinical medicine should be considered. (orig.) [de

  9. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  10. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    The success of plant biotechnology relies on the fundamental techniques of plant tissue culture. Understanding basic biol- ogy of plants is a prerequisite for proper utilization of the plant system or parts thereof. Plant tissue culture helps in providing a basic understanding of physical and chemical requirements of cell, tissue, ...

  11. Effects of x-irradiation on cell division, oxygen consumption, and growth medium pH of an insect cell line cultured in vitro

    International Nuclear Information System (INIS)

    Koval, T.M.; Myser, W.C.; Hink, W.F.

    1975-01-01

    Cultured Trichoplusia ni cells in exponential growth were administered x-ray doses of 10,000 R and then subcultured. The untreated cell population began exponential growth within a few hours after subculture, eventually reaching stationary growth phase 96 hr later at a cell density of 2.08 x 10 6 cells/ml, whereas the irradiated cell population did not change for 24 hr after irradiation and then began exponential growth at a rate similar to that of control cells, also reaching stationary phase at 96 hr, but at a cell density of 0.93 x 10 6 cells/ml, which is less than half the maximum density of controls. From 24 to 96 hr after treatment, the x-irradiated cells were characterized by an increased consumption of oxygen that was nearly twice the amount utilized by control cells. The pH of the cell growth medium increases over 96 hr from 6.3 to 6.6 for irradiated as well as for untreated cultures, but since the number of x-rayed cells is less than half the number of untreated cells, the pH increase, per cell, of medium from irradiated cultures is about twice that of medium from control cultures

  12. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue

    Directory of Open Access Journals (Sweden)

    Abolhasan Rezaeyan

    2016-01-01

    Full Text Available This study was carried out to evaluate radioprotective effects of hesperidin (HES administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD, malondialdehyde (MDA, and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.

  13. Tissue culture and neurotoxicology

    NARCIS (Netherlands)

    Hooisma, J.

    1982-01-01

    Application of tissue culture in neurotoxicology may serve two purposes. First, they may be used to unravel the mechanism of action of neurotoxic compounds and secondly, they may be used for the screening of neurotoxic agents. Studies belonging to the first group can be subdivided into those aiming

  14. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 8. Plant Tissue Culture - Historical Developments and Applied Aspects. H R Dagla. General Article Volume 17 Issue 8 August 2012 pp 759-767. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    closely linked with the discovery and characterization of plant hormones, and has facilitated our understanding of plant growth and development. Furthermore, the ability to grow plant cells and tissues in culture and to control their development forms the basis of many practical applications in agriculture, horticulture indus-.

  16. Plant Tissue Culture Studies.

    Science.gov (United States)

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  17. Effects of naltrexone in postnatal rats on the recovery of disturbed brain and lymphatic tissues after X-irradiation or ethylnitrosourea treatment in utero

    International Nuclear Information System (INIS)

    Schmahl, W.G.; Plendl, J.; Reinoehl-Kompa, S.

    1987-01-01

    The role of endogenous opioid systems in preweaning development after intrauterine exposure to X-irradiation or ethylnitrosourea (ENU) was explored in rats using naltrexone, a potent antagonist of beta-endorphin. After daily s.c. injections of 50 mg/kg naltrexone only the prenatally untreated controls had body weights increased by 11% from control level on day 28 (weaning). In the X-irradiated as well as the ENU-treated pups no significant effects of naltrexone on body weight gain were observed. However, brain weight increased in all animals under the influence of naltrexone, irrespective of prenatal treatment or the severity of brain lesions: 9.5% above control values in untreated offspring and 14% after X-irradiation (1 Gy) on gestation day 14. The brain weight of ENU-treated rats (50 mg/kg on gest. day 14) was 13% higher after postnatal naltrexone application than that of their postnatally untreated counterparts. ENU (80 mg/kg) effects on the brain when given on gestation day 18 were ameliorated to 9.2% by naltrexone in the weaning period. Naltrexone significantly increased the thymus weight in controls. Prenatally treated animals also showed an increased thymus weight at weaning, presumably due to compensatory growth. In these cases naltrexone revealed a suppressive effect on the thymus, whereas spleen weight was apparently not influenced by naltrexone treatment. These results provide compelling evidence that endogenous opioid systems play a crucial role not only in normal development, but also in reparative growth events of the brain after prenatal injuries. The thymus, predominantly containing T-lymphocytes, seems to represent another sensitive system which is regulated under the influence of opioids

  18. Effects of naltrexone in postnatal rats on the recovery of disturbed brain and lymphatic tissues after X-irradiation or ethylnitrosourea treatment in utero

    Energy Technology Data Exchange (ETDEWEB)

    Schmahl, W.G.; Plendl, J.; Reinoehl-Kompa, S.

    1987-01-01

    The role of endogenous opioid systems in preweaning development after intrauterine exposure to X-irradiation or ethylnitrosourea (ENU) was explored in rats using naltrexone, a potent antagonist of beta-endorphin. After daily s.c. injections of 50 mg/kg naltrexone only the prenatally untreated controls had body weights increased by 11% from control level on day 28 (weaning). In the X-irradiated as well as the ENU-treated pups no significant effects of naltrexone on body weight gain were observed. However, brain weight increased in all animals under the influence of naltrexone, irrespective of prenatal treatment or the severity of brain lesions: 9.5% above control values in untreated offspring and 14% after X-irradiation (1 Gy) on gestation day 14. The brain weight of ENU-treated rats (50 mg/kg on gest. day 14) was 13% higher after postnatal naltrexone application than that of their postnatally untreated counterparts. ENU (80 mg/kg) effects on the brain when given on gestation day 18 were ameliorated to 9.2% by naltrexone in the weaning period. Naltrexone significantly increased the thymus weight in controls. Prenatally treated animals also showed an increased thymus weight at weaning, presumably due to compensatory growth. In these cases naltrexone revealed a suppressive effect on the thymus, whereas spleen weight was apparently not influenced by naltrexone treatment. These results provide compelling evidence that endogenous opioid systems play a crucial role not only in normal development, but also in reparative growth events of the brain after prenatal injuries. The thymus, predominantly containing T-lymphocytes, seems to represent another sensitive system which is regulated under the influence of opioids.

  19. The plant tissue culture

    International Nuclear Information System (INIS)

    Crocomo, O.J.; Sharp, W.R.

    1973-01-01

    Progress in the field of plant tissue culture at the Plant Biochemistry Sector, Centro de Energia na Agricultura (CENA), Piracicaba, S.P., Brazil, pertains to the simplification of development in 'Phaseolus vulgaris' by dividing the organism into its component organs, tissues, and cells and the maintenance of these components on defined culture media 'in vitro'. This achievement has set the stage for probing the basis for the stability of the differentiated states and/or the reentry of mature differentiated cells into the mitotic cell cycle and their subsequent redifferentiation. Data from such studies at the cytological and biochemical level have been invaluable in the elucidation of the control mechanisms responsible for expression of the cellular phenotype. Unlimited possibilities exist for the application of tissue culture in the vegetative propagation of 'Phaseolus' and other important cultivars in providing genocopies or a large scale and/or readily obtaining plantlets from haploid cell lines or from protoplast (wall-less cells) hybridization products following genetic manipulation. These tools are being applied in this laboratory for the development and selection of high protein synthesizing 'Phaseolus' cultivars

  20. Impact of X-irradiation on microglia.

    Science.gov (United States)

    Menzel, Franziska; Kaiser, Nicole; Haehnel, Susann; Rapp, Felicitas; Patties, Ina; Schöneberg, Nina; Haimon, Zhana; Immig, Kerstin; Bechmann, Ingo

    2018-01-01

    Irradiation is widely used to treat brain tumors, and also to create bone marrow (BM) chimeras. BM chimeras are widely used to dissect functions and origin of microglia and blood-derived mononuclear cells under homeostatic or pathological conditions. This is facilitated by the fact that microglia survive irradiation and are thus regarded radio-resistant. In this study, we tested whether microglia are indeed radio-resistant and looked for potential mechanisms that might explain this phenomenon. We analyzed the radio-resistance of microglia independently of their physiological brain environment compared to other mononuclear cells from spleen and brain after X-irradiation with 7 Gy or 30 Gy. Furthermore, we investigated long-term effects of X-irradiation on microglia using organotypic hippocampal slice cultures (OHSCs). We found a significant higher survival rate of isolated microglia 4 hr after X-irradiation with 30 Gy accompanied by a decreased proliferation rate. Investigations of apoptosis-related genes revealed no regulation of a specific antiapoptotic pathway but ataxia telangiectasia mutated (ATM), a DNA-repair-related gene, was significantly upregulated in isolated microglia 4 hr after 30 Gy. Irradiation of OHSCs with 7 and 30 Gy revealed a highly and significantly decreased cell number, morphological changes and an increase in migration velocity of microglia. Furthermore, cell loss, increased soma size and process length of microglia was also found in BM chimeras irradiated with 9.5 Gy 5 weeks after irradiation. Here, we present new evidence implying that microglia are not a homogeneous population of radio-resistant cells and report on long-term alterations of microglia that survived irradiation. © 2017 Wiley Periodicals, Inc.

  1. Pre-irradiation of tissue culture flasks leads to diminished stem and progenitor cell production in long-term bone marrow cultures

    International Nuclear Information System (INIS)

    Rooney, P.; Wright, E.G.

    1993-01-01

    Empty plastic tissue culture flasks were exposed to X-irradiation doses of 0.3-10.0 Gy, prior to the establishment of long-term bone marrow cultures. During the course of a 10 week culture period, all irradiated plastic flasks exhibited a dramatic decrease in the number of both haemopoietic stem cells and myeloid progenitor cells, in the non-adherent layer, when compared with controls. This decrease was not due to a decrease in the number of non-adherent cells produced. Histological examination of non-adherent cells showed an increase in mature granulocytic cells with few blast cells. Morphologically, the adherent layers of irradiated flasks demonstrated a delay in appearance or absence of fat cell production. X-irradiation of glass tissue culture flasks had no deleterious effect. (author)

  2. Scanning Electronmicroscopic Appearance of X-irradiated Human Fibroblasts

    OpenAIRE

    Z., SOMOSY; TAMARA, KUBASOVA; G.J., KOTELES; Frederic Joliot-Curie National Research Institure for Radiobiology and Radiohygiene; "Frederic Joliot-Curie" National Research Institure for Radiobiology and Radiohygiene; "Frederic Joliot-Curie" National Research Institure for Radiobiology and Radioh

    1983-01-01

    Scanning electron microscopic (SEM) analyses of cultured human embryo fibroblasts were performed 10 minutes, 1, 4 and 24 hours after X-irradiation with 2.5 Gy. Marked surface changes were observed 10 minutes and 1 hour after irradiation. These include the

  3. Culture of insect tissues

    International Nuclear Information System (INIS)

    Cestari, A.N.; Simoes, L.C.G.

    1978-01-01

    Several aspects are discussed related to the behavior of politenic chromosomes from Rhyncosciara salivary glands kept in culture during different periods of time, without interference of insect hormones. Nucleic acid-and protein synthesis in isolated nuclei and chromosomes are also investigated. Autoradiographic techniques and radioactive precursors for nucleic acids and proteins are used in the research. (M.A.) [pt

  4. History of plant tissue culture.

    Science.gov (United States)

    Thorpe, Trevor

    2012-01-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the beginning of the twentieth century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology in the twenty-first century. The historical development of these in vitro technologies and their applications is the focus of this chapter.

  5. Aroma production by tissue cultures.

    Science.gov (United States)

    Hrazdina, G

    2006-02-22

    Although plant tissue cultures have been in use for the past hundred years, adapting them for the production of aroma compounds started only in the 1970s. The use of tissue cultures in aroma production has its advantages, because plant cells, unlike whole plants, are not limited to geographic locations or the seasons. Cell mass can be doubled relatively rapidly and can be induced for the production of compounds in a coordinated manner. Compounds can be isolated from cells or the medium with relative ease. Therefore, it would seem to be ideal to use plant cell cultures for the production of aroma compounds. Cell cultures, however, also have some problems. The production of aroma compounds or their precursors is in relatively low amounts, and thus this production method is expensive. Additional expenses are the cost of the medium and the purification of the compounds for food use. Also, cell cultures can only be used effectively in systems for which the biochemical pathway of the aroma compounds is known. In this paper the results of experiments for the use of tissue cultures in the production of vanilla, raspberry, strawberry garlic, and onion aromas is discussed.

  6. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  7. Morphological Profiles of Neutron and X-Irradiated Small Intestine

    OpenAIRE

    K.E., CARR; S.P., HUME; A.C., NELSON; O., O'SHEA; R.A., HAZZARD; J.S., McCULLOUGH; School of Biomedical Science_Anatomy, Medical Biology Centre; MRC Cyclotron Unit, Hammersmith Hospital; Centre for Bioengineering, University of Washington; School of Biomedical Science_Anatomy, Medical Biology Centre; School of Biomedical Science_Anatomy, Medical Biology Centre; School of Biomedical Science_Anatomy, Medical Biology Centre

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile ...

  8. A method for the scrutiny of live mammalian cells in culture and for the measurement of their proliferative ability after X-irradiation

    International Nuclear Information System (INIS)

    Grote, S.J.; Joshi, G.P.; Revell, S.H.; Shaw, C.A.

    1981-01-01

    A method is described for the observation of live mammalian cells in culture with an incubated phase-contrast microscope. A sample of plated cells may be watched and their respective capacities to form a colony measured by daily cell counts. The method has first been used to make direct estimations of the plating efficiency of the diploid line of Syrian hamster fibroblasts, BHK 21 C13, and then to observe the response of synchronous samples of these cells to 220 kV X-rays. A dose of 1.4 Gy given in Gl has no immediate detectable effect on cell or nuclear morphology, and cell capacity to reach post-irradiation mitosis is unimpaired apart from delay. In contrast, after this mitosis is completed, descendant cells from some mitoses retain a normal form and clonogenic capacity, whereas the cells from other mitoses show varying degrees of abnormality and produce either slow-growth or stop-growth (micro-) colonies. (author)

  9. Morphological profiles of neutron and X-irradiated small intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; O'Shea, O.; Hazzard, R.A.; McCullough, J.S.; Hume, S.P.; Nelson, A.C.

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile of the organ after both types of radiation. Damage and recovery were seen for many of the parameters studied but there was no standard response pattern applicable for all parameters. In particular, the response of individual crypt cell types could not be predicted from knowledge of the change in crypt numbers. With regard to the holistic response of the gut, neutron irradiation appeared to have caused more damage and produced more early effects than the X-irradiation. More specifically, neutron treatment led to more damage to the neuromuscular components of the wall, while X-irradiation produced early vascular changes. (author)

  10. The anti-tumor effect of ACNU and x-irradiation on mouse glioma

    International Nuclear Information System (INIS)

    Nakagawa, Hidemitsu; Hori, Masaharu; Hasegawa, Hiroshi; Mogami, Heitaro; Hayakawa, Toru.

    1979-01-01

    Anti-tumor activities of 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) and x-irradiation on methylcholanthrene induced glioma in C 57 BL mice were studied in vitro and in vivo. In vitro experiments using cultured glioma cells (MGB cells), the synchronization of cell cycle was done by excess addition of thymidine, and the anti-tumor cell effect were investigated by mean of determinations of DNA synthesis, mitotic index and the number of the living cells following the treatments. As the results, it appeared obvious that ACNU was most effective on MGB cells in S phase and x-irradiation in M phase. As to the combined therapy of ACNU and x-irradiation, the anti-tumor effect was most remarkable when the cells were treated by x-irradiation in the G 2 , M phase, which were hervested by addition of ACNU 44 hours before irradiation. However simultaneous treatment of ACNU and x-irradiation on the cells in G 1 phase was not so remarkable. In vivo experiments the anti-tumor effect of ACNU and x-irradiation on subcutaneously or intracranially transplanted glioma in mice was investigated. Either ACNU 10 mg/kg or local x-irradiation 1240 rads showed inhibitory effect on the tumor growth and prolonged the survival time of the tumor bearing mice. The combination therapy was more effective than ACNU or x-irradiation alone, particularly combination therapy of ACNU and repeated small doses irradiation of x-ray was remarkably effective. Evidence obtained indicated that the combination therapy of ACNU and x-irradiation have synergistic anti-tumor effect on experimental mouse glioma. (author)

  11. PLANT REGENERATION THROUGH TISSUE CULTURE OF PEAR ...

    African Journals Online (AJOL)

    AISA

    culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot apex was a new appropriate tool in tissue culture. Key words: Tissue culture, culture medium, callus induction, shoot ...

  12. Tissue culture of ornamental cacti

    Directory of Open Access Journals (Sweden)

    Eugenio Pérez-Molphe-Balch

    2015-12-01

    Full Text Available Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family.

  13. The effect of X-irradiation on aqueous media containing traces of oxygen

    International Nuclear Information System (INIS)

    Evans, N.T.S.

    1981-01-01

    The effect of X-irradiation on small amounts of oxygen dissolved in 1 mM potassium chloride solution, tap water or Eagle's tissue culture medium has been followed with polarographic electrodes. Oxygen is removed from all these solutions down to concentrations corresponding to a few parts per million in the gas phase. Small amounts of hydrogen are also produced by irradiation and can be measured polarographically. Except in Eagle's medium, hydrogen peroxide is formed in the anoxic solutions, and molecular oxygen can be detected after irradiation when catalase is present in the solution. A non-volatile polarographically reducible substance is generated by irradiation of anoxic Eagle's medium. It is not decomposed by catalase but decays spontaneously in solution at a slow rate. (author)

  14. Tissue culture in forestry and agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Henke, R.R.; Hughes, K.W.; Constantin, M.J.; Hollaender, A. (eds.)

    1985-01-01

    This symposium aims to examine the current state-of-the-art in tissue culture technology and to relate this state of technology to practical, applied, and commercial interests. Thus the focus is on embryogenesis in culture: how to recognize it, factors which affect embryogenesis, use of embryogenic systems, etc.; and variability from culture. A special session on woody species again emphasized somatic embryogenesis as a means of rapid propagation. This volume emphasizes tissue culture of forest trees.

  15. Effects of x-irradiation on lens reducing systems. [Rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP/sup +/ in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1-/sup 14/C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated.

  16. Effects of x-irradiation on lens reducing systems

    International Nuclear Information System (INIS)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP + in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1- 14 C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated

  17. Plant Tissue Culture in a Bag.

    Science.gov (United States)

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  18. Walnut tissue culture: research and field applications

    Science.gov (United States)

    2004-01-01

    Vitrotech Biotecnologia Vegetal began researching propagating Juglans regia (English walnut) and various Juglans hybrids by tissue culture in 1993 and has operated on a commercial scale since 1996. Since this time, more than one and a half million walnuts of different species have been propagated and field planted. Tissue cultured...

  19. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  20. Progress in planta transformation without tissue culture

    International Nuclear Information System (INIS)

    Gu Yunhong; Chinese Academy of Sciences, Hefei; Qin Guangyong; Huo Yuping; Yu Zengliang

    2004-01-01

    With the development of planta genetic engineering, more emphases have been laid on convenient and high efficient genetic transformation methods. And transformation without tissue culture is a prospective direction of it. In this paper, traditional transformation methods and the methods of non-tissue culture were summarized. With the exploration and application of Arabidopsis transformation mechanism, with the use of ion beam-mediated transformation invented by Chinese scientists and the development of other transformation methods, transformation methods without tissue culture and planta genetic engineering could be improved rapidly. (authors)

  1. Cellular autophagocytosis induced by X-irradiation and vinblastine

    International Nuclear Information System (INIS)

    Hamberg, H.

    1983-01-01

    Autophagocytosis was induced in cultured, human glial cells by X-irradiation or exposure to vinblastine sulphate. A transmission electron microscopic investigation of the origin of the segregating membranes in the autophagic process was performed by labelling of endocytotic vacuoles and lysosomes with electron-dense marker particles (native and cationized ferritin, celloidal gold and thorium dioxide). Cytochemical demonstration of the lysosomal marker enzyme acid phosphatase and serial sectioning of the cells were also carried out. The majority of newly formed, double-membrane bounded autophagic vacuoles were devoid of markers for both lysosomes and endocytotic vacuoles. Moreover, no evidence of origin from the endoplasmic reticulum was found and the segregating membranes of this type of autophagic vacuoles were, by process of elimination, considered likely to be derived from Golgi vacuoles or, possibly, assembled de novo. Autophagy also appeared to be effected through an alternative pathway involving a lysosomal wrapping or microautophagic mechanism. (author)

  2. The autologus graft of epithelial tissue culture

    Directory of Open Access Journals (Sweden)

    Minaee B

    1999-08-01

    Full Text Available With the intention of research about culture and autologus graft of epithelial tissue we used 4 french Albino Rabbits with an average age of 2 months. After reproduction on the support in EMEM (Eagle's Minimum Essential Medium we used this for graft after 4 weeks. This region which grafted total replaced. After fixation of this sample and passing them through various process, histological sections were prepared. These sections were stained with H & E and masson's trichrome and studied by light microscope. We succeeded in graft. We hope in the near future by using the method of epithelium tissue culture improving to treat burned patients.

  3. Substituted Indoleacetic Acids Tested in Tissue Cultures

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1978-01-01

    Monochloro substituted IAA inhibited shoot induction in tobacco tissue cultures about as much as IAA. Dichloro substituted IAA inhibited shoot formation less. Other substituted IAA except 5-fluoro- and 5-bromoindole-3-acetic acid were less active than IAA. Callus growth was quite variable...

  4. Substituted Indoleacetic Acids Tested in Tissue Cultures

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1978-01-01

    Monochloro substituted IAA inhibited shoot induction in tobacco tissue cultures about as much as IAA. Dichloro substituted IAA inhibited shoot formation less. Other substituted IAA except 5-fluoro- and 5-bromoindole-3-acetic acid were less active than IAA. Callus growth was quite variable and not...... and not correlated with auxin strength measured in the Avena coleoptile test....

  5. Measurement of DNA-protein crosslinks in mammalian cells without X-irradiation

    International Nuclear Information System (INIS)

    Gantt, R.; Stephens, E.V.; Davis, S.R.

    1985-01-01

    To study the mechanisms of formation and repair of DNA-protein crosslinks in mammalian cells, the best general method to assay these lesions is the Kohn membrane alkaline elution procedure. Use of this sensitive technique requires the introduction of random strand breaks in the DNA by X-irradiation to reduce the very high molecular weight so that it elutes off the filter at an appropriate rate. This report describes an alternative method for fragmenting the DNA in the absence of X-irradiation equipment. Convenient reproducible elution rates of DNA from various mouse and human cells in culture without X-irradiation result from elution through polyvinyl chloride filters with 75 mM sodium hydroxide (0.33 ml/min) instead of the standard 20 mM EDTA-tetrapropylammonium hydroxide, pH 12.2 (0.03 to 0.04 ml/min). Dose-dependent retardation of the DNA elution was observed over the range 0 to 30 microM trans-platinum(II)diamminedichloride, and proteinase K treatment during cell lysis restored the elution rate to that of the untreated control cell DNA. In the absence of X-irradiation, this elution method measures DNA-protein crosslinks with higher sensitivity and equivalent reproducibility as the air-burst procedure

  6. Effects of hyperthermia and x irradiation on sister chromatid exchange (SCE) frequency in Chinese hamster ovary (CHO) cells

    International Nuclear Information System (INIS)

    Livingston, G.K.; Dethlefsen, L.A.

    1979-01-01

    The BrdUrd labeling method was used to evaluate the effects of hyperthermia, x irradiation, and the combined treatment on the incidence of sister chromatid exchange (SCE) in Chinese hamster ovary (CHO) cells. Cells cultured in McCoy's 5A media containing 10 μM 5-bromodeoxyuridine were synchronized after one cell cycle by mitotic shake-off. Early-G 1 cells were heated by submerging culture flasks in a 44 +- 0.05 0 C water bath for periods of 20, 40, and 60 min. By the same method, other cultures were x irradiated at doses of 100, 200, 400, and 600 rad. A third protocol involved combined treatment of 20 min at 44 0 C followed immediately by one of the above radiation doses. A fourth protocol reversed the sequence of the combined treatment applying x irradiation (200 or 400 rad) followed immediately by hyperthermia. The data showed that hyperthermia and x irradiation both elevated the frequency of SCEs significantly whether applied separately or together. The combined treatment (heat: 20 min at 44 0 C plus varying x-radiation doses) produced results suggestive of a synergistic interaction. The sequence of the heat and x irradiation did not appear to have a significant effect on the production of SCE

  7. Effects of X-irradiation on some aspects of protein metabolism in the frog, Rana hexadactyla

    International Nuclear Information System (INIS)

    Rajarami Reddy, G.; Sasira Babu, K.

    1980-01-01

    Changes in the level of total proteins and protease in brain, muscle and liver tissues of normal and X-irradiated frogs were determined. Low doses of radiation produced an increment in protein level while high doses produced decrement. However, protease activity at all doses exhibited an elevatory trend. Exposure of frogs to lethal doses resulted in increased protease activity and decreased protein content during post-irradiation periods. The results are discussed on the basis of protein destruction and lysosomal damage. (auth.)

  8. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  9. Pathogen propagation in cultured three-dimensional tissue mass

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  10. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    Science.gov (United States)

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  11. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    International Nuclear Information System (INIS)

    Rappaport, D.S.

    1977-01-01

    This study was conducted to determine what, if any, influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. The EAG was induced by immunization with B. pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Rats were either immunized, sham-immunized, irradiated (1500 R to right kidney temporarily exteriorized), sham-irradiated, or both immunized and irradiated. Immunized-irradiated animals were irradiated either 4 or 2 weeks prior to, concurrently with, or 1 or 2 weeks after immunization, and were sacrificed at 2, 4, 6, 10, or 14 weeks post-immunization. Immunized-only and sham-immunized-only animals were sacrificed at corresponding post-immunization times, and irradiated-only and sham-irradiated-only animals were sacrificed at corresponding post-irradiation times. Progressive arteriolonephrosclerosis (ANA) was observed in right (irradiated) kidneys following x irradiation. The experimental autoallergic glomerulonephritis (EAG) was observed in both kidneys following immunization. The histopathological changes associated with EAG were distinct from those associated with ANS

  12. Culturing Mouse Cardiac Valves in the Miniature Tissue Culture System.

    Science.gov (United States)

    Kruithof, Boudewijn P T; Lieber, Samuel C; Kruithof-de Julio, Marianna; Gaussin, Vincian; Goumans, Marie José

    2015-10-19

    Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve.

  13. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    International Nuclear Information System (INIS)

    Wakeford, S.; Watt, D.J.; Partridge, T.A.

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD

  14. Deficit in DNA content relative to histones in X-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.; Neubort, S.

    1976-01-01

    The DNA and histone content of HeLa S-3 cell cultures was measured by direct mass assays 21 hours after 1000 rad of X-irradiation, when the cells were arrested in G2 phase. The nuclear DNA content of such cultures was found to be deficient (73 per cent of control values). In contrast, the synthesis of nuclear histones persisted, and the total histone content was close to 100 per cent of control values. When synchronously-growing cultures were irradiated in mid-S phase and examined 3.5 hours later in G2 phase, both DNA and histone content were equal to control values. (author)

  15. Changes of proliferation kinetics after X-irradiation of a human malignant melanoma grown in nude mice

    DEFF Research Database (Denmark)

    Spang-Thomsen, M; Vindeløv, L L

    1984-01-01

    A human malignant melanoma grown in nude mice was exposed to single-dose X-irradiation and the effect on the proliferation kinetics was investigated by two methods. Flow cytometric DNA analysis was performed on tumour tissue obtained by sequential fine-needle aspirations after the treatment...

  16. Evidence against a systemic humoral factor controlling the intestinal compensatory response following X-irradiation

    International Nuclear Information System (INIS)

    Sharp, J.G.; Osborne, J.W.; Iowa Univ., Iowa City

    1981-01-01

    The investigation was devised to determine whether changes noted in the unirradiated duodenum and colon of single rats after X-irradiation of only the exteriorized rat jejunum and ileum are mediated by a systemic humoral factor. Littermate Holtzman male rats were joined in parabiosis and one month later, the temporarily exteriorized jejunum and ileum of one member was exposed to 1.000 R of 250 kVp X-irradiation. Two days after X-irradiation, and 1, 12 and 24 h after 1 μCi/g bodyweight 3 H-thymidine was injected i.p. rats were sacrificed and appropriate tissues removed. Single rats which had the exteriorized jejunum and ileum irradiated were studied from 1-3 days after irradiation. Crypt cell migration rates were determined employing autoradiography. Tritium content and columnar cell migration rate in duodenum and colon of unirradiated rats compared to irradiated rats indicated that irradiation of one member of the pair had no effect on tritium incorporation or epithelial cell migration in the duodenum or colon of the unirradiated partner. Epithelial cell proliferation and crypt cell migration were increased in unirradiated duodenum and colon of single intestine-irradiated rats. Essentially the same changes were seen in the irradiated member of a parabiotic pair, but none of these changes were noted in the unirradiated member. The absence of stimulation in the unirradiated parabiont suggests that either a systemic humoral factor is not present after X-irradiation or is not present in sufficient concentration to be detected by these methods. (orig./MG)

  17. The protective effect of Royal Jelly against the hemopoiesis dysfunction in X-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Emori, Yutaka; Oka, Hideki; Ohya, Osamu; Tamaki, Hajime; Hayashi, Yoshiro [Zeria Pharmaceutical Co., Ltd., Konan, Saitama (Japan). Central Research Laboratories; Nomoto, Kikuo

    1998-02-01

    The protective effect of Royal Jelly (RJ) against the hemopoietic dysfunction in whole body X-irradiated C57BL/6 mice was investigated. When RJ (1.0 g/kg, po or 0.5 g/kg, ip) was administered every day beginning two weeks before X-irradiation (10 Gy), a significant increase in the number of leukocytes and erythrocytes was observed in mice treated with RJ, as compared with X-irradiated control. In addition, the number of colony forming units in culture (CFU-C) of bone marrow cells or splenocytes was significantly increased in mice treated with RJ. Therefore, when granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) in peripheral blood was measured by ELISA kit, a significant increase in the amount of GM-CSF and IL-3 was observed. These results suggest that the protective effect of RJ against hemopoietic dysfunction could be expressed through an increase in the number of hemopoietic stem cells by the induction of hemopoietic factor such as GM-CSF and IL-3. (author)

  18. Possible genetic damage from diagnostic x irradiation. A review

    International Nuclear Information System (INIS)

    Withrow, T.J.; Andersen, F.A.; Yao, K.T.S.; Stratmeyer, M.E.

    1980-08-01

    Although it is known that x irradiation is capable of producing mutations and chromosomal abnormalities in experimental systems, there is little or no direct evidence of such phenomena in humans. This report reviews some human genetic diseases and chromosomal abnormalities as well as the evidence for x-ray induced mutations and chromosomal abnormalities in experimental systems. The examination of these areas reveals that spontaneous chromosomal abnormalities and genetic diseases are associated with the same type of DNA damage that x irradiation produces in experimental systems. Therefore, it is concluded that genetic radiation damage in humans may mainfest itself as an increase in the spontaneous genetic diseases rather than as any unique disease

  19. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  20. Smallholder adoption and economic impacts of tissue culture ...

    African Journals Online (AJOL)

    This study was conducted with an objective of determining the correlates of adoption of tissue culture banana technology and its impacts on household incomes in Kenya. The results show that while some households have opted not to adopt tissue culture banana biotechnology, almost all the adopters are growing tissue ...

  1. Aeroponics for the culture of organisms, tissues and cells.

    Science.gov (United States)

    Weathers, P J; Zobel, R W

    1992-01-01

    Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati.

  2. Development of germ-free plants and tissue culture

    Science.gov (United States)

    Venketeswaran, S.

    1973-01-01

    The botanical program is reported for experiments performed at the Lunar Receiving Laboratory. Papers prepared during this program are listed. The studies reported include: tissues cultured on various mediums, nutritional studies, preparation of plant cultures for Apollo 15, and pine tissue cultures.

  3. In vitro Micropropagation of Cassava Through Low Cost Tissue Culture

    OpenAIRE

    Kwame O. Ogero; Gitonga N. Mburugu; Maina Mwangi; Omwoyo Ombori; Michael Ngugi

    2012-01-01

    Adoption of drought-tolerant crops such as cassava can help alleviate food insecurity in sub-Saharan Africa. However, production is constrained by lack of disease-free planting materials. This can be circumvented through tissue culture but the technology is costly limiting its adoption. There is therefore, need to put in place interventions that will reduce the cost of production hence making tissue culture products affordable. In this research, a low cost protocol for cassava tissue culture ...

  4. Study Progress on Tissue Culture of Maize Mature Embryo

    Science.gov (United States)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  5. Citrus tissue culture employing vegetative explants.

    Science.gov (United States)

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  6. Fine-structural effects of 1200-R abdominal x irradiation on rat intestinal epithelium

    International Nuclear Information System (INIS)

    Lieb, R.J.; McDonald, T.F.; McKenney, J.R.

    1977-01-01

    Male Charles River CD rats were shielded from the xiphoid process cranially with lead and were exposed to 1200-R abdominal x irradiation. Animals were sacrificed at 1 through 4 days following irradiation and tissues from both ileum and jejunum were prepared for electron microscopic examination. At the fine-structural level early changes were confined to a proliferation and dilation of smooth endoplasmic reticulum and to an increase in the number of lysosomes. At 4 days postirradiation, cells covering the villi were cuboidal rather than columnar and appeared to be immature crypt-type cells. The appearance of these cells was coincident with the onset of diarrhea in these animals

  7. Characterization through a data display of the different cellular responses in X-irradiated small intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; McCullough, J.S.; Nelson, A.C.; Hume, S.P.

    1992-01-01

    Previous work on small intestinal radiation injury has reported changes in epithelial and non-epithelial tissues, but with few quantitative comparisons of different responses by individual cell types. The approach used here quantifies the responses of mouse duodenum to X-irradiation with 6 Gy, 10 Gy and 20 Gy, sampled three days after treatment, and 10 Gy sampled 6 hours, 1 day and 3 days after treatment. Tissue area measurements and counts per circumference for 13 different structural elements are subjected to statistical tests. New data reported here for X-irradiation include the fact that cryptal cells do not respond uniformly, indicating that the crypt/microcolony cannot always be used as a standard unit in assessing radiation injury. Non-epithelial structures, such as submucosal arterioles, are also affected. The data display also includes control-referenced ratios, from which are calculated Tissue Indices and a final Morphological Index, which estimates total structural damage. The Indices are useful in drawing attention to unexpected changes in extent or range of data sets. In addition, the Epithelial Index appears to be a sensitive indicator of radiation damage, even at low doses and early time points. The data display includes a graph of the total Indices and summary tables of data, and encourages close study of the constituent data points. (author)

  8. Metabolic changes after non-lethal X-irradiation of rats. II

    International Nuclear Information System (INIS)

    Ahlers, I.; Ahlersova, E.; Sedlakova, A.; Praslicka, M.

    1981-01-01

    Male rats of the Wistar strain were subjected to whole-body X-irradiation with 2.39 Gy (250 R) and after irradiation they were pair-fed with the sham-irradiated control group. One, 6 and 24 h, 2, 3, 7, 14, 21, 28, and 38 days after exposure the animals were sacrificed and examined for serum and some tissue lipids. In the first hours an increase in lipolysis in the white adipose tissue and accumulation of non-esterified fatty acids and triacylglycerols (TG) in the liver predominated; phospholipid level increased in serum and liver and decreased in bone marrow and thymus. The later phase was characterized by hypertriacylglycerolaemia and a transient hypercholesterolaemia; accumulation of TG in bone marrow was the most important change, however. Changes in the lipid composition of the serum and tissues, except for an increase in TG level in thymus, returned to normal levels at the end of the observation period. Pair-feeding provided an equivalent nutritional situation in irradiated and sham-irradiated animals and thus eliminated the non-specific changes caused by different levels of food intake in both groups of animals, especially in the initial period. A sufficiently long observation period is necessary for estimating the kinetics of metabolic changes in rats exposed to non-lethal doses of X-irradiation. (author)

  9. The effects of X-irradiation on the chondrogensis of mesenchymal cells

    International Nuclear Information System (INIS)

    Ha, Jong Ryeol

    2002-01-01

    It is well known that X-irradiation affects on maturing process of differentiated chondrocytes. Nevertheless, It has been remained elusively whether X-irradiation affects the process of differentiation of mesenchymal cells which differentiate into chondrocyte, fibroblast, or muscle cells. In this study, we examined the effect of X-irradiation (with 1 to 10 Gy) on chondrogenesis using mesenchymal cells of chick limb bud. Our results show that X-irradiation dose-dependently inhibited chondrogenesis. This result suggests that immature chondroblast-like mesenchymal cells are sensitive to X-irradiation, Moreover, X-irradiation affects not only maturing process of chondrocytes, but also inhibits the chondrogenesis. Taken together, we demonstrate that the whole process of differentiation of mature chondrocytes from mesenchymal cells is affected by X-irradiation and undifferentiated cells were more affected by X-irradiation than mature cells

  10. Clinical outcomes of childhood x-irradiation for lymphoid hyperplasia

    International Nuclear Information System (INIS)

    Pottern, L.M.

    1987-01-01

    A prospective study was conducted to explore the relationship between childhood x-irradiation for lymphoid hyperplasia and the subsequent development of thyroid gland and other head and neck disorders. All individuals under 18 years of age who were x-irradiated for lymphoid hyperplasia during the years 1938-69 at Children's Hospital Medical Center, Boston comprised the exposed population. The comparison group consisted of non-exposed, surgically treated individuals. The study included a health questionnaire and a clinical examination component. A history of thyroid cancer was reported by 11 exposed subjects and no non-exposed subjects. Significantly elevated standardized incidence ratios of thyroid cancer were seen for both exposed males and females, 19.9 and 12.1, respectively. The average thyroid radiation dose was 25.8 rads and the mean latency period was 17.3 years

  11. Smallholder adoption and economic impacts of tissue culture ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... Kenya are yet to realize the full potential of tissue culture banana biotechnology. Key words: Biotechnology, adoption, tissue culture bananas, Kenya. INTRODUCTION. Most sub-Saharan African countries, if not all, are grappling with the challenge of food insecurity. Top of the agenda for world leaders today ...

  12. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  13. The role of silicon in plant tissue culture

    OpenAIRE

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The ...

  14. Basic Techniques in Mammalian Cell Tissue Culture.

    Science.gov (United States)

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  15. Application of Hanging Drop Technique for Kidney Tissue Culture.

    Science.gov (United States)

    Wang, Shaohui; Wang, Ximing; Boone, Jasmine; Wie, Jin; Yip, Kay-Pong; Zhang, Jie; Wang, Lei; Liu, Ruisheng

    2017-01-01

    The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Ex vivo culture of patient tissue & examination of gene delivery.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    This video describes the use of patient tissue as an ex vivo model for the study of gene delivery. Fresh patient tissue obtained at the time of surgery is sliced and maintained in culture. The ex vivo model system allows for the physical delivery of genes into intact patient tissue and gene expression is analysed by bioluminescence imaging using the IVIS detection system. The bioluminescent detection system demonstrates rapid and accurate quantification of gene expression within individual slices without the need for tissue sacrifice. This slice tissue culture system may be used in a variety of tissue types including normal and malignant tissue and allows us to study the effects of the heterogeneous nature of intact tissue and the high degree of variability between individual patients. This model system could be used in certain situations as an alternative to animal models and as a complementary preclinical mode prior to entering clinical trial.

  17. Tissue culture of Sophora tonkinensis Gapnep. and its quality evaluation.

    Science.gov (United States)

    Kun-Hua, Wei; Lin-Xuan, Li; Yong-Cai, Huang; Mei-Ying, Wang; Cui, Li; Jian-Hua, Miao

    2013-10-01

    Sophora tonkinensis Gapnep. is an important rare medicinal plant in China. There were only a few papers on the rapid propagation of S. tonkinensis through in vitro tissue culture, and still no report focuses on the quality analysis of in vitro tissue culture plantlets. The different concentrations of 6-benzylaminopurine (BAP), kinetin (KT), and indole-3-acetic acid (IAA) were used to establish and screen the optimal rapid propagation technology of S. tonkinensis by orthogonal test; the different concentrations of a-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and ABT rooting power (ABT) were used to screen the optimal rooting technology. For quality evaluation of tissue culture plants, three different sites were chose to finish planting experiment. The leaf characteristics, radix ex rhizoma yield, and contents of matrine and oxymatrine were evaluated, respectively, to provide evidence of high yield and good qualities of tissue culture plants. A large number of buds could be induced directly from epicotyl and hypocotyl explants on the Murashige and Skoog (MS) medium supplemented with 1.5 mg/l BAP, 0.5 mg/l IAA, and 0.5 mg/l KT; the best root induction medium was solid MS medium at half the macronutrient concentration supplemented with 1.0 mg/l NAA, 0.4 mg/l IBA, and 0.1 mg/l ABT. The rooting rate was 98%. All tissue culture plants showed normal leaf characteristics. Tissue culture plants from two sites possessed higher radix ex rhizoma yield and overall productivity of matrine and oxymatrine than those of seed plants. Tissue culture is a rapid, effective, and convenient propagation method for S. tonkinensis, and the quality of S. tonkinensis tissue culture plants meets the requirement of quality standard of China Pharmacopoeia (edition 2010), the crude drug from S. tonkinensis tissue culture plants will be suitable for substituting the crude drug from seed plants.

  18. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  19. Radiation effects in x-irradiated hydroxy compounds

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Box, H.C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 0 K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap

  20. Effect of head x-irradiation on adrenal medullary secretion

    International Nuclear Information System (INIS)

    Mieno, Masahiro

    1977-01-01

    The purpose of the present experiments was to investigate an immediate effect of head x-irradiation on the secretion of adrenaline and noradrenaline by the adrenal medulla. When the dogs were irradiated with 200 or 800 R of x-rays to their heads under pentobarbital anesthesia, the majority of the animals showed no stimulation of the adrenal medulla but the minority showed a slight but definite increase in the secretion of adrenaline, the peak being attained within 60 min after exposure. (auth.)

  1. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  2. Cell/Tissue Culture Radiation Exposure Facility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  3. Tissue-Culture Method of Cloning Rubber Plants

    Science.gov (United States)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  4. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. II. - X irradiation effects and influence of hyperthermia on the radiosensitivity

    International Nuclear Information System (INIS)

    Bueren, J.A.; Nieto, M.

    1983-01-01

    The effects of the X-irradiation on the viability of the granulocyte-macrophage precursors, has been determined by means of the agar diffusion chamber culture technique. The results show the high radiosensitivity of these cells, with survival parameter similar to those previously reported in the literature about different granulocyte-macrophage precursors. When a hyperthermic treatment is performed prior to the X-irradiation, a radiosensitization phenomenon is observed due to the synergism existent between hyperthermia and X rays on the lethality of the precursors. (Authors) 37 refs

  5. Laboratory Workflow Analysis of Culture of Periprosthetic Tissues in Blood Culture Bottles.

    Science.gov (United States)

    Peel, Trisha N; Sedarski, John A; Dylla, Brenda L; Shannon, Samantha K; Amirahmadi, Fazlollaah; Hughes, John G; Cheng, Allen C; Patel, Robin

    2017-09-01

    Culture of periprosthetic tissue specimens in blood culture bottles is more sensitive than conventional techniques, but the impact on laboratory workflow has yet to be addressed. Herein, we examined the impact of culture of periprosthetic tissues in blood culture bottles on laboratory workflow and cost. The workflow was process mapped, decision tree models were constructed using probabilities of positive and negative cultures drawn from our published study (T. N. Peel, B. L. Dylla, J. G. Hughes, D. T. Lynch, K. E. Greenwood-Quaintance, A. C. Cheng, J. N. Mandrekar, and R. Patel, mBio 7:e01776-15, 2016, https://doi.org/10.1128/mBio.01776-15), and the processing times and resource costs from the laboratory staff time viewpoint were used to compare periprosthetic tissues culture processes using conventional techniques with culture in blood culture bottles. Sensitivity analysis was performed using various rates of positive cultures. Annualized labor savings were estimated based on salary costs from the U.S. Labor Bureau for Laboratory staff. The model demonstrated a 60.1% reduction in mean total staff time with the adoption of tissue inoculation into blood culture bottles compared to conventional techniques (mean ± standard deviation, 30.7 ± 27.6 versus 77.0 ± 35.3 h per month, respectively; P < 0.001). The estimated annualized labor cost savings of culture using blood culture bottles was $10,876.83 (±$337.16). Sensitivity analysis was performed using various rates of culture positivity (5 to 50%). Culture in blood culture bottles was cost-effective, based on the estimated labor cost savings of $2,132.71 for each percent increase in test accuracy. In conclusion, culture of periprosthetic tissue in blood culture bottles is not only more accurate than but is also cost-saving compared to conventional culture methods. Copyright © 2017 American Society for Microbiology.

  6. Biotechnological applications of tissue culture to forest tree improvement.

    Science.gov (United States)

    Thorpe, T A

    1983-01-01

    Plant tissue culture techniques are of tremendous potential value to forest tree improvement. The technology is envisaged as playing a complementary role to traditional methods through exploiting spontaneous or induced genetic and epigenetic variability in culture, by use of haploidy and by the use of protoplasts. Haploids and protoplasts will aid in shortening breeding cycles and allow for unconventional crosses respectively. Clonal propagation is an integral part of any tree improvement program, and in addition can play an independent role in reforestation, clonal orchard establishment and in energy foresting. The goals, problems and limitations of these applications of tissue culture technology to forest tree improvement are indicated and assessed.

  7. [Issues of large scale tissue culture of medicinal plant].

    Science.gov (United States)

    Lv, Dong-Mei; Yuan, Yuan; Zhan, Zhi-Lai

    2014-09-01

    In order to increase the yield and quality of the medicinal plant and enhance the competitive power of industry of medicinal plant in our country, this paper analyzed the status, problem and countermeasure of the tissue culture of medicinal plant on large scale. Although the biotechnology is one of the most efficient and promising means in production of medicinal plant, it still has problems such as stability of the material, safety of the transgenic medicinal plant and optimization of cultured condition. Establishing perfect evaluation system according to the characteristic of the medicinal plant is the key measures to assure the sustainable development of the tissue culture of medicinal plant on large scale.

  8. Development of a vinasse culture medium for plant tissue culture

    International Nuclear Information System (INIS)

    Silva, A.L.L.D.; Gollo, L.

    2014-01-01

    Vinasse is the main pollutant (effluent) obtained from the distillation of sugarcane in the production of fuel alcohol. However, this residue is rich in nutrients that are required by plants. We developed a new culture medium using vinasse for the In vitro propagation of an orchid. The vinasse was treated (decanted and filtered), and the nutrients were determined and quantified. Different formulations using vinasse were tested for an In vitro culture. The vinasse dilutions demonstrated a good buffering effect. The ideal vinasse dilution for media formulation was 2.5%. The best KC formulations with vinasse were KCV1 and KCV5. Compared to KC medium, these formulations demonstrated similar results for In vitro multiplication, with the exception of protocorm-like body number, which was inferior in the vinasse formulations. Conversely, for In vitro elongation and rooting, these vinasse media were superior to KC medium. KC medium promotes a low rooting rate (8%) compared to 68 and 100% obtained by KCV1 and KCV5, respectively. Moreover, plantlets cultured on KC medium become protocorm-like body clusters, which impeded the acclimatization of these explants. Plantlets elongated and rooted on KCV1 and KCV5 were successfully acclimatized with a 91% survival rate for both KC vinasse formulations. This study shows the great potential of this technology as a rational alternative to vinasse disposal and adds value to what is currently considered a waste product. (author)

  9. Use of diathermy for weeding heterogeneous tissue cultures.

    Science.gov (United States)

    Marks, R M; Penny, R

    1986-06-01

    Cultures generated from tissues consisting of multiple types of cells are often heterogeneous. Unless the cell type of interest has or can be given some selective growth advantage it may be overgrown by other cells. While developing techniques for the tissue culture of microvascular endothelial cells we evaluated an electrosurgical generator (diathermy) to selectively kill nonendothelial cells. Primary cell cultures were observed at X 100 magnification under phase contrast microscopy and a needle electrode apposed to the cell to be destroyed. A return electrode was constructed by placing a sterile clip in contact with the culture medium. The diathermy power setting controlled the area of lysis. Use of this technique allowed weeding of unwanted cells without damage to endothelial cells, which were able to grow to confluence in pure culture.

  10. Cell death by apoptosis following X-irradiation of the foetal and neonatal rat kidney

    International Nuclear Information System (INIS)

    Gobe, G.C.; Harmon, B.V.

    1988-01-01

    A light and electron microscopic study was undertaken to determine the type of cell death induced by X-irradiation in the developing kidney. Five-day-old Sprague-Dawley rats were exposed to a whole-body dose of either 2 or 5 Gy, and foetuses in the eighteenth day of development were exposed to a dose of 4 Gy. The kidneys were examined at 4, 8 and 24 h, and at 1 and 2 weeks post-irradiation. The dying cells from both control and treated kidneys showed the morphological features of apoptosis, a distinct form of cell death that has been identified in mammalian tissues under physiological as well as pathological conditions. Necrosis was not detected. Apoptosis was infrequent in control kidneys and insignificant in extent when compared with the proliferative activity of the cells of the superficial nephrons. There was a pronounced increase in apoptosis during the first day after irradiation. (author)

  11. Enhancement of the efficacy of x-irradiation by pentobarbital in a rodent brain-tumor model

    International Nuclear Information System (INIS)

    Olson, J.J.; Friedman, R.; Orr, K.; Delaney, T.; Oldfield, E.H.

    1990-01-01

    Radiation therapy is an important component of brain tumor treatment, but its efficacy is limited by its toxicity to the surrounding normal tissue. Pentobarbital acts as a cerebral radioprotectant, but the selectivity of its protection for the central nervous system has not been demonstrated. To determine if pentobarbital also protects tumor against ionizing radiation, five groups of Fischer 344 rats were observed after exposure to varying combinations of the presence or absence of implanted tumor, pentobarbital, and radiation treatment. The first three groups underwent cerebral implantations of a suspension of 9L gliosarcoma cells. Group 1 was left untreated and served as tumor-bearing controls. Group 2 received 30 Gy of whole-brain x-irradiation without anesthesia 8 days after tumor implantation. Group 3 received the same radiation treatment 15 minutes after pretreatment with 60 mg/kg of pentobarbital intraperitoneally. Groups 4 and 5 served as radiation controls, receiving 30 Gy of x-irradiation while awake and 30 Gy of x-irradiation after pentobarbital administration, respectively. Survival was calculated from the death of the last tumor-bearing rat. The mean survival time in tumor-bearing control rats was 20.8 +/- 2.6 days (+/- standard deviation). X-irradiation alone significantly enhanced the period of survival in rats implanted with the 9L tumor (29.7 +/- 5.6 days, p less than 0.03). Further significant prolongation of survival was seen with the addition of pentobarbital to the treatment regimen (39.9 +/- 13.5 days, p less than 0.01). Nontumor-bearing rats irradiated while awake (Group 4) survived 30.9 +/- 2.3 days. All of their pentobarbital-anesthetized counterparts in Group 5 survived. If pentobarbital had offered radioprotection to the tumor, then Group 3 would have had a shorter survival period than Group 2

  12. EUPHORBIACEAE - A CRITICAL REVIEW ON PLANT TISSUE CULTURE

    Directory of Open Access Journals (Sweden)

    Rajesh Kondamudi

    2009-05-01

    Full Text Available The members of Euphorbiaceae are valuable source of different kinds of useful products like dyes, edible tubers, oil crops, furniture, agricultural implements, ornamental plants, pharmacological products, rubber, timber and aesthetic items. Micropropagation is an alternative mean of propagation that can be employed in conservation of the flora in relatively shorter time. Tissue culture is useful for multiplying and conserving the species, which are difficult to regenerate by conservation methods and save them from extinction. Cryopreservation of germplasm would help in maintaining the genetic diversity of the endangered population. Improved cell and tissue culture technologies would help in producing the active compounds in vitro with better productivities without cutting down the natural resources. There is sufficient progress at research level to suggest that the tissue culture of Euphorbiaceae can and should be further developed. This review emphasizes the in vitro manipulation and remarkable achievements with biotechnology in this family made during the last six decades.

  13. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    Science.gov (United States)

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  14. Identification of Stevioside Using Tissue Culture-Derived Stevia ( Leaves

    Directory of Open Access Journals (Sweden)

    Ziaul Karim Md.

    2015-01-01

    Full Text Available Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for identification of stevioside from tissue culture-derived stevia leaf. Stevioside in the sample was identified using HPLC by measuring the retention time. The percentage of stevioside content in the leaf samples was found to be 9.6%. This identification method can be used for commercial production and industrialization of stevia through in vitro culture across the world.

  15. Methods of epithelial tissue culture in albino rabbit skin

    Directory of Open Access Journals (Sweden)

    Anarluki J

    1998-05-01

    Full Text Available With the intention of research of various methods of epithelial tissue culture we've studied five French Albino rabbits with an average of 8 weeks. In order to evaluate and control growth and proliferation of autologus cultured tissue samples were obtained on 1st, 5th and 8th days. After fixation of these samples and passing them through various processes, histologic sections were prepared. These sections were stained with H-E and studied by light microscope, we succeeded in developing the original donor surface by 18 times.

  16. The Role of Silicon in Plant Tissue Culture

    Directory of Open Access Journals (Sweden)

    Iyyakkannu eSivanesan

    2014-10-01

    Full Text Available Growth and morphogenesis of in vitro cultures of plant cells, tissues and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production.

  17. The role of silicon in plant tissue culture.

    Science.gov (United States)

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production.

  18. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    Science.gov (United States)

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  19. Bridging the gap between cell culture and live tissue

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-11-01

    Full Text Available Traditional in vitro two-dimensional (2-D culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011. In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease. It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues. In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature.

  20. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    Science.gov (United States)

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display. © 2015 Wiley Periodicals, Inc.

  1. X-irradiation of mice in the early fetal period. Pt. 2

    International Nuclear Information System (INIS)

    Kriegel, H.; Weber, L.; Schmahl, W.

    1979-01-01

    Pregnant NMRI mice were X-irradiated with 50, 100 and 200 R, respectively, on the twelfth gestational day. The brains of their offspring were weighed and examined for acetylcholinesterase and Na,K-ATPase activities from birth until the 64th postnatal day. The postnatal brain weights were influenced by the prenatal irradiation in a dose-dependent manner. At birth the brains of the treated animals weighed less than those of the controls. After a limited period of restitution (postnatal days 3 to 10), weights fell again, as compared to the controls, and persisted at subnormal levels. This was assumed to be a sequel of surplus neuron cell formation and their speedy degradation as soon as neuronal function had been established. The curves of the activites (per gram of brain tissue) of acetylcholinesterase as well as Na,K-ATPase showed oscillating compensatory responses to the prenatal irradiation. Activities were preferentially found at supernormal levels, the oscillation lasting as long as the restitution period of the brain weights. With the 50 R and 100 R groups, enzyme activities were steadily above the control levels from the 16th until the 48th day after birth. On the 64th postnatal day all enzyme activities but one (200 R, Na,K-ATPase) had returned to the control levels. Oscillating responses to prenatal X-irradiation have been described for the DNA-synthesis in livers and brains of mice during the first three postnatal weeks. From this perspective, our results are discussed as the outcome of radiation-induced alterations in genome activity. (orig.) [de

  2. A Method to Preclude Moisture Condensation in Plated Tissue Cultures

    Science.gov (United States)

    Alex M. Diner

    1992-01-01

    Excessive condensate normally accumulates in in vitro-illuminated petri dishes containing plant tissue cultures, causing avariety of problems. A dark-colored rubber net-mesh placed over the petri dishes prevented such condensation, even when charcoal-supplemented media are used under high light intensity in a growth chamber.

  3. Local Sugars Alternatives for Tissue Culture of Dendrobium Hybrid ...

    African Journals Online (AJOL)

    Nafiisah

    In developing countries, commercial exploitation of tissue culture technology is limited by high cost of production. ... cost alternative sugars for the in vitro micropropagation of Dendrobium cv. sonia was investigated. ... local growers are unable to meet the hotel demands (The president of the Republic of Mauritius, 2008).

  4. Banana Musa tissue culture plants enhanced by endophytic fungi

    African Journals Online (AJOL)

    Mo

    Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic fungi. T. Dubois, C. S. Gold, D. Coyne, P. Paparu, E. Mukwaba, S. Athman, S. Kapinduand E. Adipala1. International Institute of Tropical Agriculture, Southern and Eastern Africa Regional Centre, Namulonge. P.O. Box ...

  5. Evaluation of nutritional properties of tissue cultured sorghum ...

    African Journals Online (AJOL)

    Tissue culture techniques are commonly used in plants as an efficient way to propagate and store valuable genotypes. ... 1 and El Gardam) were developed at the Jomo Kenyatta University of Agriculture and Technology towards improvement for water stress tolerance for improved food production in the ASALs in Kenya.

  6. Assessing the determinants of tissue culture banana adoption in ...

    African Journals Online (AJOL)

    In this study cross-section data was used to analyze the effect of farmers' demographic, socioeconomic and institutional setting, market access and physical attributes on the probability and intensity of tissue culture banana (TCB) adoption. The study was carried out between July 2011 and November 2011. Both descriptive ...

  7. Plant Tissue Culture - Historical Developments and Applied Aspects

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 8. Plant Tissue Culture - Historical Developments and Applied Aspects. H R Dagla. General Article Volume 17 Issue 8 August 2012 pp 759-767. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Anthemideae: advances in tissue culture, genetics and transgenic ...

    African Journals Online (AJOL)

    Anthemideae: advances in tissue culture, genetics and transgenic biotechnology. Jaime A Teixeira da Silva. Abstract. Members of the Anthemideae include important floricultural (cut-flower) and ornamental (pot and garden) crops, as well as plants of medicinal and ethno-pharmacological interest. Despite the use of many of ...

  9. [Tissue culture of medicinal plant and abscisic acid].

    Science.gov (United States)

    Fang, Hui-Yong; Zhu, Hong; Yao, Jian-Xun; Jia, Cai-Feng; Shan, Gao-Wei; Li, Min-Hui

    2013-01-01

    Abscisic acid (ABA) plays a key role in many physiological processes of plants, and it was also applied to fields of medicinal plant biotechnology. The article presents a review of some recent application of ABA in enhancing the production of secondary metabolites of medicinal plants, improving the in vitro conservation in medicinal plant tissue culture system.

  10. Oxidative stress in recalcitrant tissue cultures of grapevine.

    Science.gov (United States)

    Benson, E E; Roubelakis-Angelakis, K A

    1994-03-01

    Thiobarbituric acid reactive substances (TBARS), and fluorescent compounds with spectral characteristics typical of products associated with oxidative stress in senescent and aging plant and animal cells, were detected in tissue cultures of the recalcitrant grapevine Vitis vinifera L. cultivar, Sultanina. These compounds increased during the early stages of dedifferentiation (callogenesis) of nodal stem explants. Catalase activity was not detected in the original explant, but was induced during callogenic dedifferentiation. Conversely, superoxide dismutase activity was detectable in the original explant, but diminished during the first week of callus induction. Transfer to callus induction medium promoted a large increase in the sulfhydryl content of nodal tissues. TBARS and fluorescent products accumulated in Sultanina callus during long-term culture (over 6 months). The possibility that oxidative stress may contribute to culture recalcitrance in this vine is discussed.

  11. Propagation of Aquilaria malaccensis seedlings through tissue culture techniques

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Zaiton Ahmad; Mohd Rafaie Abdul Salam; Nurhayati Irwan; Affrida Abu Hassan; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis or karas is the principal source of gaharu resin, which is used in many cultures for incense, perfumes and traditional medicines. The species is mainly propagated conventionally through seeds, cuttings and graftings. Propagation by seeds is usually a reliable method for other forest species, but for karas, this technique is inadequate to meet the current demand of seedling supplies. This is principally due to its low seed viability, low germination rate, delayed rooting of seedlings, long life-cycle and rare seed production. Tissue culture has several advantages over conventional propagation, especially for obtaining large number of uniform and high-yielding plantlets or clones. This paper presents the current progress on mass-propagation of Aquilaria malaccensis seedlings through tissue culture technique at Nuclear Malaysia. (author)

  12. The role of activated charcoal in plant tissue culture.

    Science.gov (United States)

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  13. Variations on metabolic activities of legume tissues through radiation in tissue culture

    International Nuclear Information System (INIS)

    Batra, Amla

    1977-01-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content. (author)

  14. Effects of X irradiation on the growth of normal and hyperplastic mouse mammary gland transplants

    International Nuclear Information System (INIS)

    Faulkin, L.J.; Mitchell, D.J.; Cardiff, R.D.; Rosenblatt, L.S.; Goldman, M.

    1983-01-01

    To avoid the problems associated with whole-body radiation, pieces of X-irradiated normal or hyperplastic mammary tissue were transplanted to the host gland-free fat pad of nonexposed mice. The percentage of the fat pad filled by growth of the transplants at 4, 8, and 12 weeks after transplanation was measured. Growth of lobule transplants was moderately inhibited by 4 Gy. While some of the lobules survived 12 Gy, their growth was severely inhibited. The hyperplastic outgrowth lines were variable but more resitant than lobules to growth retardiation. Line Z5D was more susceptible than D 1 , and Z5C 1 was least susceptible, with 88% growing well after 12 Gy. In order to distinguish between transient and permainent growth retardation, tissue was taken from the irradiated and control transplants and retransplanted to new hosts without further radiation. The second generation of X-ray-exposed tissue filled more of the fat pad than the first-generation transplants, but significantly less than the nonexposed controls. The experiments described provide a means of demonstrating X-ray-induced changes in the mammary gland from growth inhibition to carcinogenesis

  15. X irradiation of human epidermis in vitro. 2

    International Nuclear Information System (INIS)

    Wollina, U.; Fueller, J.; Burger, B.; Hipler, C.; Jena Univ.

    1989-01-01

    On the example of the reduction of epidermal adhesion of FITC wheat germ agglutinine (WGA) the direct membrane effect of a single X irradiation (44 kV and 220 kV) was analyzed in vitro. Human normal skin and psoriasis centres were compared. Normal skin showed no alteration of microscopically visible FITC-WGA adhesion on epidermal cells over the whole dose range. Foci of psoriasis responded to doses of ≥ 5 Gy (44 and 220 kV) with a drastic reduction of epidermal lectin binding to lower and medium cell layers. Maximum efficacy was with 5 Gy (44 kV) or 10 Gy (220 kV). A dose elevation up to 20 Gy did not result in an increase of efficacy. Topographically the radiosensitive FITC-WGA adhesion could chiefly be seen in the dermal ridges. The findings support the impression of an increased radiosensitivity of the lesional psoriatic epidermis compared with normal skin. This is connected with an abnormal differentiation of keratinocytes in psoriasis. (author)

  16. Repair of membrane damage in X-irradiated E. coli

    International Nuclear Information System (INIS)

    Gillies, N.E.; Ratnajothi, N.H.; Hewamanna, R.; Obioha, F.I.

    1984-01-01

    When E. coli B/r or E. coli K12 AB1157 were X-irradiated in the presence of oxygen and incubated immediately after irradiation in broth containing penicillin in concentration that on its own was not lethal to unirradiated bacteria, substantial additional killing was caused. When treatment with penicillin was delayed for increasing times after irradiation the additional killing became progressively less. These results were interpreted as demonstrating the repair or removal of oxygen-dependent radiation-induced lesions in the bacterial membranes. Removal of these lesions was inhibited by incubation of the irradiated bacteria at low temperature before treatment with penicillin or by exposing the cells to a non-lethal concentration of toluene before irradiation. These observations suggest that an enzymatic repair process may be involved in the removal of the membrane lesions. The fatty acid mutant E. coli K 1060 proved exceptional in that some additional killing by penicillin was detectable after anaerobic as well as aerobic irradiation. This points to the importance of membrane composition in the development of those radiation lesions that are brought to light by penicillin treatment. (author)

  17. Ferritin-iron increases killing of Chinese hamster ovary cells by X-irradiation

    International Nuclear Information System (INIS)

    Nelson, J.M.; Stevens, R.G.

    1992-01-01

    Stationary-phase Chinese hamster ovary cells were cultured in medium containing ferritin (∼19% iron by weight) added at concentrations ranging from 0 to 128 μg/ml. One set of cultures was unirradiated, another set exposed to 4.0 Gy of X-ray. Clonogenic cell survival was assessed in each set of cultures. In the absence of added ferritin, 4.0 Gy killed approximately 50% of the cells. In the absence of radiation, ferritin was not toxic at less than 48 μg/ml; above 48 μg/ml, toxicity increased with concentration. Apoferritin was not toxic at any concentration tested (up to 1000 μg/ml). Although 32 μg/ml ferritin, reflecting only a 3-6 fold increase in iron concentration over normal serum, was not toxic, it reduced survival of X-irradiated cells by an additional 75%. These results indicate that a sublethal concentration of ferritin can be a potent radiosensitizer. (Author)

  18. The induction of micronuclei in X-irradiated Beagle dog lymphocytes

    International Nuclear Information System (INIS)

    Rithidech, K.; Lozano, D.; Brooks, A.L.

    1988-01-01

    We developed a simple, sensitive, and reproducible method using the micronucleus assay in dog blood lymphocytes for detecting genotoxic effects of ionizing radiation. Micronuclei (MM) are expressed in cells that have undergone 1 cell division. Thus, it was important to determine the optimum culture condition and sampling time to obtain a maximum number of such cells. To identify cells that have divided, cytochalasin B was added to block cytokinesis. Cells were harvested at 72, 76, or 94 h after incubation with different concentrations of phytohaemagglutinin (PHA) 15 or 16. After optimizing the culture time and PHA concentration, the system was calibrated by evaluating the dose response for the induction of MN by X rays. Blood samples were drawn, X-irradiated (0.0, 0.5, 1.0, 2.0, or 4.0 Gy), grown in optimum culture medium, harvested at 94 h after incubation, and the frequency of MN analyzed in binucleated cells. The dose-response relationship was fit by a quadratic model; micronuclei/binucleated cell = 0.017 + 0.046D + 0.0093D 2 , where D = dose. The MN assay in dog blood lymphocytes provides a sensitive and reliable technique for measuring genotoxic damage in a large animal model. The MN assay will be very useful for evaluating genotoxic effects of hazardous agents after both chronic and acute exposures and for estimating radiation dose. (author)

  19. [Asepsis sowing and tissue culture of Bletilla striata].

    Science.gov (United States)

    Zeng, Songjun; Huang, Xiangli; Chen, Zhilin; Chen, Jiantong; Duan, Jun

    2004-09-01

    The asepsis sowing and tissue culture of Bletilla striata were studied. The results indicated that the embyro culture had highest sprouting percent and plantlets percent when their embryos were mature. The optimal medium for the embryo culture was 1/2 MS. Adding 10% coconut juice can promote embyros sprouting and plantlets formation, 1% active carbon can improve plantlets growing. The best medium for the top of plantlet on culture and multiplication was 1/2 MS + 6-BA 0.5 mg/L + NAA 0.2 mg/L. The best medium of rooting was 1/2 MS + NAA 0.5 mg/L, and 10% banana juice can improve rooting of plantlets.

  20. Improved Diagnosis of Prosthetic Joint Infection by Culturing Periprosthetic Tissue Specimens in Blood Culture Bottles

    Directory of Open Access Journals (Sweden)

    Trisha N. Peel

    2016-01-01

    Full Text Available Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM in addition to applying the Infectious Diseases Society of America (IDSA criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014 at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32% met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively; this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003. The time to microorganism detection was shorter with BCBs than with standard media (P < 0.0001, with aerobic and anaerobic BCBs yielding positive results within a median of 21 and 23 h, respectively. Results of our study demonstrate that the semiautomated method of periprosthetic tissue culture in blood culture bottles is more sensitive than and as specific as agar and thioglycolate broth cultures and yields results faster.

  1. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  2. IMPURITY CENTRES.Ni+ and Ni3+ centers in X-irradiated CaF2

    OpenAIRE

    Casas, J.; Den Hartog, H.; Alcalá, R.

    1980-01-01

    Optical and EPR measurements of CaF2 : Ni before and after X-irradiation are reported. An absorption band at 255 nm grows during X-irradiation. The thermal evolution of this band and some bleaching experiments in 15 K X-irradiated samples containing Vk centers indicate that the 255 nm band is due to Ni+ centers. Some EPR signals associated with the Ni+ centers are also observed. Low temperature measurements show that there are two slightly different kinds of centers one of them having tetrago...

  3. Effects of x-irradiation of young female beagles on life span and tumor incidence

    International Nuclear Information System (INIS)

    Rosenblatt, L.S.; Book, S.A.; Goldman, M.

    1986-01-01

    Causes of death and the occurrence of neoplasia in female beagle dogs were evaluated retrospectively for 57 unexposed and 296 exposed dogs given single or fractionated whole-body x-irradiation exposures of 100 or 300 R. Some dogs subsequently were bred, and all were observed for the duration of their lives. The pathology for these dogs was derived from clinical records, gross-necropsy reports, tissue slides, and Formalin-fixed tissues. The results of this study indicated dose-related shortening of life span was clearly evident; causes of death due to either neoplasia (50%) or nonneoplastic disease (50%), with few exceptions, were similar in control and irradiated dogs; the incidences of neoplasms were not significantly greater for irradiated dogs than for controls, but the latency period decreased as dose increased; protraction increased survival in dogs given 300 R but not 100 R, which is attributable solely to amelioration of incidence rates of nonmammary neoplasia; and the cumulative rates of death due to mammary tumors were the same in dogs exposed to 100 R and 300 R. 14 refs., 6 figs., 2 tabs

  4. Study of homing patterns of x-irradiated murine lymphoid cells

    International Nuclear Information System (INIS)

    Crouse, D.A.

    1974-01-01

    Effects of in vitro x-ray exposure of murine lymphoid cells on their subsequent in vivo homing patterns were studied. The homing of lymphoid cells to various tissues and organs was followed by using radio-labeled cell preparations or by following the distribution of cells with a specific immunological memory. X irradiation of 51 Cr-labeled spleen, lymph node, bone marrow, or thymus cells was found to significantly alter their subsequent in vivo distribution. Irradiated cells demonstrated an increased distribution to the liver and a significantly lower retention in the lungs. Cells going to the lymph nodes of Peyer's patches showed a significant exposure dependent decrease in homing following irradiation. Irradiated lymph node cells homed in greater numbers to the spleen and bone marrow, while irradiated cells from other sources showed a decrease or no change indistribution to the same tissues. Lymph node cell suspensions from dinitrophenyl-bovine gamma globulin (DNP-BGG) immune LBN rats were prepared, irradiated (0 and 200 R) and injected into intermediate (LBN) hosts and controls. Irradiated memory cells provided a secondary antibody response, which was delayed but not suppressed when compared to unirradiated cells. Alteration in homing of lymphocytes caused by various physical and chemical agents was a result of effects on cell membrane characteristics which controlled some aspects of the phenomenon. Radiation (100 to 200 R) may have had a similar effect or it may have resulted in the selective elimination of a population of cells. (U.S.)

  5. Hydrodynamic effects on cells in agitated tissue culture reactors

    Science.gov (United States)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  6. The enhancing effect of fractionated whole-body x-irradiation on replication of endogenous leukemia viruses in BALB/c mice

    International Nuclear Information System (INIS)

    Takamori, Yasuhiko; Okumoto, Masaaki; Iwai, Mineko; Iwai, Yoshiaki

    1976-01-01

    The incidence of leukemia, changes in the tissue weight of spleen and thymus, and the expression of endogenous viruses were examined with BALB/c mice following 4 weekly fractionated whole-body x-irradiation of 170 R each, starting at 4 weeks of age. The leukemia incidence was quite low for the unirradiated controls, while 60% of the irradiated male mice developed thymic lymphoma. The virus-positive cells appeared earlier in the spleen than in the thymus and bone marrow, and increased with aging. The time of appearance of virus-positive cells in these tissues was remarkably promoted by the fractionated x-irradiation, and its frequency was also enhanced. (auth.)

  7. Development of resistance to coccidiosis in the absence of merogonic development using X-irradiated Eimeria acervulina oocysts

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, M.C.; Augustine, P.C.; Barta, J.R.; Castle, M.D.; Danforth, H.D. (US Dept. of Agriculture, Beltsville, MD (USA))

    1991-04-01

    Sporulated oocysts of the protozoan Eimeria acervulina were subjected to 0, 10, 15, 20, or 30 krad of X-irradiation and inoculated into susceptible outbred chickens to determine if radioattenuated coccidia could induce protection against parasite challenge. Irradiation treatment had an appreciable dose-dependent effect on parasite development. Insignificant numbers of oocysts were produced by chickens inoculated with parasites that had been exposed to greater than 10 krad X-irradiation. Sporozoites exposed to 15 or 20 krad irradiation conferred significant protection against the appearance of intestinal lesions after parasite challenge. Sporozoites subjected to the highest dose level (30 krad) did not produce any significant level of protection. To investigate this phenomenon further and assess intracellular parasite development, susceptible outbred strains of chickens were administered either nonirradiated (0 krad) oocysts or oocysts that were exposed to an optimal dose (15 krad) or a high dose (30 krad) of X-irradiation. Immunofluorescence staining of tissue sections from each treatment group at various intervals after the initial administration of irradiated parasites indicated that sporozoites exposed to 15 krad irradiation were as capable of invading the host intestinal epithelium as nonirradiated sporozoites. However, at 48, 60, 72, and 96 hr, there was a marked reduction in merogonic development in groups receiving irradiated sporozoites compared to those inoculated with nonirradiated parasites. The latter parasites underwent profuse merogonic development; in contrast, irradiated parasites demonstrated little (15 krad) or no (30 krad) merogonic development. These results suggest that induction of a protective immune response occurs during a critical period early in intracellular development of E. acervulina.

  8. Addressing the instability of DNA nanostructures in tissue culture.

    Science.gov (United States)

    Hahn, Jaeseung; Wickham, Shelley F J; Shih, William M; Perrault, Steven D

    2014-09-23

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable

  9. Synthesis of the flavour precursor, alliin, in garlic tissue cultures.

    Science.gov (United States)

    Hughes, J; Tregova, A; Tomsett, A B; Jones, M G; Cosstick, R; Collin, H A

    2005-01-01

    The path of synthesis of alkyl cysteine sulphoxides, or flavour precursors, in the Alliums is still speculative. There are two proposed routes for alliin biosynthesis, one is from serine and allyl thiol while the other is from glutathione and an allyl source via gamma glutamyl peptides. The routes have been investigated by exposing undifferentiated callus cultures of garlic and onion to potential pathway intermediates. After a period of incubation of 2 days the callus was extracted, and analysed for flavour precursors and related compounds by HPLC. Standards of alliin, isoallin and propiin were synthesised and their identity confirmed by HPLC and NMR. Putative intermediates selected included the amino acids serine and cysteine, as well as more complex intermediates such as allylthiol, allyl cysteine and glutathione. Both garlic and onion tissue cultures were able to synthesize alliin following incubation with allylthiol, and cysteine conjugates such as allyl cysteine. The ability of the tissue cultures to form alliin from intermediates was compatible with the proposed routes of synthesis of alliin.

  10. Design of a miniature tissue culture system to culture mouse heart valves.

    Science.gov (United States)

    Lieber, Samuel C; Kruithof, Boudewijn P T; Aubry, Nadine; Vatner, Stephen F; Gaussin, Vinciane

    2010-03-01

    Valvular heart disease is a leading cause of morbidity and mortality in adults but little is known about the underlying etiology. A better understanding of the genetic and hemodynamic mechanisms involved in growth and remodeling of heart valves during physiological and pathological conditions is needed for a better understanding of valvular heart disease. Here, we report the design of a miniature tissue culture system (MTCS) that allows the culture of mitral valves from perinatal to adult mice. The design of the MTCS is novel in that fine positioning and cannulation can be conducted with hearts of different sizes (perinatal to adult). Perfusion of the heart and hence, culture of the mitral valve in its natural position, occurs in a hydraulically sealed culture bath environment. Using the MTCS, we successfully cultured the mitral valve of adult mouse hearts for 3 days. Histological analysis indicated that the cultured valves remained viable and their extracellular matrix organization was similar to age-matched native valves. Gene expression could also be modified in cultured valves by perfusion with medium containing beta-galactosidase-expressing adenovirus. Thus, the MTCS is a new tool to study the genetic and hemodynamic mechanisms underlying the three-dimensional organization of the heart valves, which could provide insights in the pathology of valvular heart disease and be used in animal models for the development of tissue-engineered heart valves.

  11. The pyramidal neuron in cerebral cortex following prenatal X-irradiation

    International Nuclear Information System (INIS)

    Donoso, J.A.; Norton, S.

    1982-01-01

    Pregnant rats were subjected to whole body X-irradiation amounting to 125 R, on gestational day 15. Cortical pyramidal neurons were examined in irradiated and control offspring at 4 weeks and 4 to 6 months postnatally. All gestationally irradiated rats developed ectopic cortex located below the corpus callosum adjacent to the caudate nucleus in the forebrain. With the rapid Golgi stain, counts were made of dendritic spines on the apical dendrites of layer 5 pyramidal cells in the normally-located cortex and compared with similar neurons in the ectopias. Dendritic spines were present on all pyramidal cells but spines were more sparse on ectopic pyramidal cells. Electron microscopic examination of ectopic and layered cortex in irradiated rats showed axodendritic synapses on the spines and shafts of the dendrites and axosomatic synapses, all of which were indistinguishable morphologically from synapses in control cortex. As a result of the observations made with the light and electron microscopes, it is concluded that the ectopic cortex may contain functional cells in spite of the abnormal location of the tissue

  12. Cell Migration in Tissues: Explant Culture and Live Imaging.

    Science.gov (United States)

    Staneva, Ralitza; Barbazan, Jorge; Simon, Anthony; Vignjevic, Danijela Matic; Krndija, Denis

    2018-01-01

    Cell migration is a process that ensures correct cell localization and function in development and homeostasis. In disease such as cancer, cells acquire an upregulated migratory capacity that leads to their dissemination throughout the body. Live imaging of cell migration allows for better understanding of cell behaviors in development, adult tissue homeostasis and disease. We have optimized live imaging procedures to track cell migration in adult murine tissue explants derived from: (1) healthy gut; (2) primary intestinal carcinoma; and (3) the liver, a common metastatic site. To track epithelial cell migration in the gut, we generated an inducible fluorescent reporter mouse, enabling us to visualize and track individual cells in unperturbed gut epithelium. To image intratumoral cancer cells, we use a spontaneous intestinal cancer model based on the activation of Notch1 and deletion of p53 in the mouse intestinal epithelium, which gives rise to aggressive carcinoma. Interaction of cancer cells with a metastatic niche, the mouse liver, is addressed using a liver colonization model. In summary, we describe a method for long-term 3D imaging of tissue explants by two-photon excitation microscopy. Explant culturing and imaging can help understand dynamic behavior of cells in homeostasis and disease, and would be applicable to various tissues.

  13. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and... Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification. Synthetic cell and tissue culture media and components are substances that are composed entirely of defined...

  14. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  15. The effects of X-irradiation on ex vivo expansion of cryopreserved human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Hayashi, Naoki; Takahashi, Kenji; Kashiwakura, Ikuo

    2010-01-01

    In our previous study (Life Sciences 84: 598, 2009), we demonstrated that placental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells have the effect to support the regeneration of freshly prepared X-irradiated hematopoietic stem/progenitor cells (HSPCs). Generally, HSPCs are supplied from companies, institutions, and cell banks that cryopreserve them for clinical and experimental use. In this study, the influence of cryopreservation on the responses of HSPCs to irradiation and co-culture with stromal cells is assessed. After cryopreservation with the optimal procedure, 2 Gy-irradiated HSPCs were cultured with or without stromal cells supplemented with combination of interleukin-3, stem cell factor, and thrombopoietin. The population of relatively immature CD34 + /CD38 - cells in cryopreserved cells was significantly higher than in fresh cells prior to cryopreservation; furthermore, the hematopoietic progenitor populations of CD34 + /CD45RA + cells and CD34 + /CD117 + cells in cryopreserved cells were significantly lower than that in fresh cells. However, the rate of expansion in the cryopreserved HSPCs was lower than in the fresh HSPCs. In the culture of cryopreserved cells irradiated with 2 Gy, the growth rates of CD34 + cells, CD34 + /CD38 - cells, and hematopoietic progenitors were greater than growth rates of their counter parts in the culture of fresh cells. Surprisingly, the effect to support the hematopoiesis in co-culture with stromal cells was never observed in the X-irradiated HSPCs after cryopreservation. The present results demonstrated that cryopreserving process increased the rate of immature and radio-resistant HSPCs but decreased the effects to support the hematopoiesis by stromal cells, thus suggesting that cryopreservation changes the character of HSPCs. (author)

  16. Organ and plantlet regeneration of Menyanthes trifoliata through tissue culture

    Directory of Open Access Journals (Sweden)

    Urszula Adamczyk-Rogozińska

    2014-01-01

    Full Text Available The conditions for the regeneration of plants through organogenesis from callus tissues of Menyanthes trifoliata are described. The shoot multiplication rate was affected by basal culture media, the type and concentration of cytokinin and subculture number. The best response was obtained when caulogenic calli were cultured on the modified Schenk and Hildebrandt medium (SH-M containing indole-3-acetic acid (IAA 0,5 mg/l and 6-benzyladenine (BA 1 mg/l or zeatin (2 mg/l. Under these conditions ca 7 shoots (mostly 1 cm or more in length per culture in the 5th and 6th passages could be developed. In older cultures (after 11-12 passages there was a trend for more numerous but shorter shoot formation. All regenerated shoots could be rooted on the SH-M medium supplemented with 0.5 mg/l IAA within 6 weeks; 80% of in vitro rooted plantlets survived their transfer to soil.

  17. Effects of X-irradiation and sodium butyrate on cell-cycle traverse on normal and radiosensitive lymphoblastoid cells

    International Nuclear Information System (INIS)

    Smith, P.J.; Anderson, C.O.; Watson, J.V.

    1985-01-01

    We have used a multi-parameter flow-cytometric technique to analyse changes in cell-cycle phase distribution (early and late G1, S and G2+M phases) for normal and X-ray-sensitive (ataxia-telangiectasia, A-T) lymphoblastoid cells exposed to X-irradiation and sodium butyrate (either alone or in combination). Sodium butyrate, an inhibitor of histone deacetylase, is a useful pharmacological tool for determining the proposed role of a histone acetylation-based chromatin surveillance system in controlling cell-cycle responses to DNA damage. We report that X-irradiated A-T cells (acute doses up to 1.5 Gy) demonstrate deficiencies in the capacity to traverse G1 and G2+M phases, although we can find no evidence of the specific involvement of a sodium butyrate-sensitive process in normal cells or abnormalities in the responses of A-T cells to the drug. We conclude that abnormal cellular control of G1 transition in A-T may be the basis of disturbed cellular differentiation in vivo, particularly in non-proliferating tissues under conditions of accumulated environmental or spontaneous DNA damage

  18. G2 block in Chinese hamster cells induced by x-irradiation, hyperthermia, cycloheximide, or actinomycin-D

    International Nuclear Information System (INIS)

    Dewey, W.C.; Highfield, D.P.

    1976-01-01

    The entry of cells into mitosis was monitored by shaking off mitotic cells from monolayer cultures. The location in G 2 of the x-ray transition point (TP), beyond which the cells were not delayed by x irradiation moved closer to mitosis as the dose was increased, i.e., at 10 min before prophase for 100 to 200 rad, and at 19 min for 30 to 60 rad. Treatment with cycloheximide (CH, 20 μg/ml) at the time of irradiation (50 to 100 rad) shifted the TP for x irradiation by 5 to 9 min toward mitosis. Calculations from these shifts in TP with radiation dose indicated that the logarithm of both the fraction of cells in G 2 not delayed by irradiation and the fraction beyond the TP for CH (located at 26 min before phophase for 5 to 50 μg/ml) not delayed by irradiation decreased linearly with dose (anti D 0 of 30 rad). Furthermore, inhibition of protein synthesis by CH, with or without a simultaneous treatment with actinomycin D (AMD), prevented repair of damage causing mitotic delay for a period of time equal to the duration of the CH treatment

  19. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  20. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  1. Tobacco clones derived from tissue culture with supersensitivity to ozone

    International Nuclear Information System (INIS)

    Sun, E.J.; Kang, H.W.

    2003-01-01

    New tobacco clones supersensitive to ozone were obtained from tissue culture. - At least two supersensitive tobacco somaclones were obtained from tissue culture (TC) , when this approach was used to asexually propagate Bel-W3 tobacco indicator plants. These somaclones can detect as low as 30 ppb ozone for a 4-h exposure duration both within CSTR exposure chambers and in ambient air. Comparison of the injury index and their coefficient of variance showed that the TC plantlets usually have more uniform performance in response to ozone in addition to their higher sensitivity. A quick regeneration procedure was established to preserve the supersensitive germplasm immediately when it was found. The TC plantlets will flower and produce seed similar to seed-grown tobacco. The TC approach proved to be a better propagation system for valuable indicator plant species. The mechanism that causes the variation and the possible difference in their genome from seed-grown tobacco is still unknown. Further studies are needed in the future to determine if factors in the TC system may be responsible for the sensitivity difference

  2. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    Science.gov (United States)

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of x-irradiation on a temperate bacteriophage of Haemophilus influenzae

    International Nuclear Information System (INIS)

    Boling, M.E.; Randolph, M.L.

    1977-01-01

    The inactivation of bacteriophage HPlcl by x rays in a complex medium was found to be exponential, with a D 0 (the x-ray exposure necessary to reduce the survival of the phage to 37 percent) of approximately 90 kR. Analysis of results of sucrose sedimentation of DNA from x-irradiated whole phage showed that the D 0 for intactness of single strands was about 105 kR, and for intactness of double strands, it was much higher. The D 0 for attachment of x-irradiated phage to the host was roughly estimated as about 1,100 kR. Loss of DNA from the phage occurred and was probably due to lysis of the phage by x irradiation, but the significance of the damage is not clear. The production of single-strand breaks approaches the rate of survival loss after x irradiation. However, single-strand breaks produced by uv irradiation, in the presence of H 2 O 2 , equivalent to 215 kR of x rays, showed no lethal effect on the phage. Although uv-sensitive mutants of the host cell, Haemophilus influenzae, have been shown to reactivate uv-irradiated phage less than does the wild-type host cell, x-irradiated phage survive equally well on the mutants as on the wild type, a fact suggesting that other repair systems are involved in x-ray repair

  4. Environmental enrichment to alleviate maze performance deficits in rats with microcephaly induced by X-irradiation

    International Nuclear Information System (INIS)

    Shibagaki, M.; Seo, M.; Asano, T.; Kiyono, S.

    1981-01-01

    Pregnant rats received 150 R of X-irradiation on day 17 of gestation. The male offspring were reared under environmentally enriched (EC), standard colony (SC) or impoverished conditions (IC) for 30 days after weaning. Then the Hebb-Williams maze test was carried out. The effects of X-irradiation and environment were both significant in initial, repetitive and total error scores and running time. Further analysis revealed that both EC-SC and EC-IC differences in initial, repetitive and total error scores were significant in X-irradiated animals, whereas only the EC-IC difference in initial and total error scores was significant in sham-irradiated control animals. Total protein, protein/g cortex, total benzodiazepine and muscarine cholinergic receptor bindings, and muscarinic cholinergic receptor binding/mg protein in the cerebral cortex were decreased in X-irradiated groups, compared to controls, but the effect of environment was not significant in these items. The results confirmed that environmental enrichment is a useful tool to alleviate the learning decrements in prenatally X-irradiated microcephalic rats. (author)

  5. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  6. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    Science.gov (United States)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  7. Cerebellar malformations in prenatally x-irradiated rats: quantitative analysis and detailed description

    International Nuclear Information System (INIS)

    Inouye, M.

    1979-01-01

    Pregnant WKA/HoK rats were exposed to 100 R or 200 R x-irradiation on one of gestation days 16 through 21. Offspring were killed at 60 days of age and the cerebellum was examined. The cerebellum of animals exposed to 200 R was slightly reduced in weight but not in width. The observed reduction in the dorsoventral length of the cerebellum was more evident when the x-irradiation was early in gestation. The anterior portions of hemispheres were situated anterior to the culmen in every 200 R group. Histologically, ectopic Purkinje cells in the granule cell layer and white matter appeared following x-irradiation on day 20 or 21, but they were not found following earlier treatment. In the cerebellum of animals exposed to 100 R the reduction in size was mild and the folial abnormalities were rare, but the number of sublobules decreased

  8. Myelin repair by Schwann cells in the regenerating goldfish visual pathway: regional patterns revealed by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nona, S.N.; Stafford, C.A.; Cronly-Dillon, J.R. (Manchester Univ. (United Kingdom). Inst. of Science and Technology); Duncan, A. (Guy' s Hospital, London (United Kingdom). Dept. of Anatomy); Scholes, J. (University Coll., London (United Kingdom))

    1994-07-01

    In the regenerating goldfish optic nerves, Schwann cells of unknown origin reliably infiltrate the lesion site forming a band of peripheral-type myelinating tissue by 1-2 months, sharply demarcated form the adjacent new CNS myelin. To investigate this effect, we have interfered with cell proliferation by locally X-irradiating the fish visual pathway 24 h after the lesion. As assayed by immunohistochemistry and EM, irradiation retards until 6 months formation of new myelin by Schwann cells at the lesion site, and virtually abolishes oligodendrocyte myelination distally, but has little or no effect on nerve fibre regrowth. Optic nerve astrocyte processes normally fail to re-infiltrate the lesion, but re-occupy it after irradiation, suggesting that they are normally excluded by early cell proliferation at this site. Moreover, scattered myelinating Schwann cells also appear in the oligodendrocyte-depleted distal optic nerve after irradiation, although only as far as the optic tract. (Author).

  9. Bone morphogenetic protein-induced cartilage development in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Urist, M.R.

    1984-03-01

    Outgrowths of mesenchyme-type cells from explants of allogeneic rat muscle onto a substratum of bone matrix containing bone morphogenetic protein (BMP) differentiate into cartilage. When BMP is chemically extracted from the bone matrix, the explanted cells develop only into fibrous tissue. When exogenous bovine BMP is introduced into the culture medium, either as a microsuspension or as a layer of particles between the matrix and the muscle cell tissue, cartilage develops at the interface between the matrix and the mesenchymal cell outgrowth. The chondrogenetic response is induced by as little as 2 micrograms of BMP; the optimum dose is 10 micrograms/40 mg (wet weight) of explant. The endogenous BMP equivalent for a comparable chondrogenetic response is about 0.6 micrograms/mg of allogeneic matrix. The minimum time for transfer of BMP to mesenchymal cell receptors is 1.0 hour, adequate time is 2.5 hours, and optimum time is approximately 5.0 hours. Measured in terms of incorporation of /sup 3/H-thymidine into DNA and of /sup 35/S sulfate into glycosaminoglycan, there is a latent period of one to three days preceeding the differentiation of mesenchyme-type cells into cartilage. During this latent period BMP-modulated mesenchymal cells disaggregate, migrate, reaggregate, and proliferate on new surfaces and constitute the morphogenetic phase of bone development. By the fourth day cells simultaneously undergo mitotic division, synthesize extracellular cartilage matrix, and establish the cytodifferentiation phase of development.

  10. Low dose X-irradiation mitigates diazepam induced depression in rat brain.

    Science.gov (United States)

    Kaur, Amandeep; Singla, Neha; Dhawan, D K

    2016-10-01

    Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The use of tissue culture techniques to detect irradiated vegetables

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Sharabi, N.E.; Nabulsi, I

    2001-01-01

    the ability of two tissue culture methods, callus and vegetable growth induction, to detect irradiated vegetables was evaluated. Potato tubers, carrot roots, garlic cloves and onion bulbs were subjected to various gamma radiation doses (0, 25, 100, 150, 250, 500, 750, and 1000 Gy). Irradiated vegetables were cultured in vitro and in vivo (pots). Gamma irradiation significantly reduced callus-forming ability especially in carrot and potato where no callus was observed in doses higher than 50 Gy. Length of shoots and roots growing from irradiated garlic and onion explants was considerably reduced starting from the 25 Gy dose. No roots were formed on garlic explants at any irradiation dose. Garlic leaves growing from irradiated explants were spotted with purple to brown spots. The intensity of these spots increased as gamma ray dosage increased. In the pot experiment, potato plant appeared in the control only. On the contrary, a complete sprouting of garlic and onion was seen in all irradiation treatments. It was not possible to distinguish between the various irradiation treatments and the control 3 days after planting in pots. The two in vitro techniques, tested in our study, may effectively be used to detect irradiated vegetables and estimate the range of doses used. The callus formation method is more useful for potato and carrot, since regeneration of shoots in vitro from these two plants takes along time, making this method unpractical. The other technique is very useful in the case of onion and garlic since it is rapid. The two techniques can be used with most of the vegetables that can be cultured in vitro. (Author)

  12. Human epithelial tissue culture study on restorative materials.

    Science.gov (United States)

    Forster, András; Ungvári, Krisztina; Györgyey, Ágnes; Kukovecz, Ákos; Turzó, Kinga; Nagy, Katalin

    2014-01-01

    Health condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions. Morphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24h observation) and proliferation (72h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue(®) (AB) assays on control surface (cell-culture plate) and on the restorative materials (n=3×20 specimens/material). SEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72h compared to 24h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia. The results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility. The examined materials are indicated for use

  13. Mass micropropagation of pineapple tissue culture using bioreactor technology

    International Nuclear Information System (INIS)

    Irwan Syafri; Amir Hamzah Harun; Rusli Ibrahim

    2005-01-01

    Pineapple (ananas comosus) is the most important fruit in terms of revenue earner in this country. The export of the canned pineapple is about 2 million standard cases annually valued at RM 60 million, while the export of fresh pineapple is about 40,000 tonnes worth about RM 10 million. The industry for canning is however, an ailing industry with production on the decline since the 70s. Scaling up the pineapple propagation using in vitro methods seems to be possible solutions for the lack of planting material. Temporary immersion system (TIS) has been described by Teisson and Alvard (1995) for plant tissue culture propagation. This system, also known as RITA, has been successfully used with embryogenic tissues of banana (Alvard et al 1993), coffee (Berthouly 1991), rubber (Etienne et al 1993) and sugarcane (Lorenzo et al 1998). In this study, the system has been set up with a potential capacity of 3 manifolds with 10 RITA each, to multiply meristem explants at different immersion periods. The system was compared with the conventional micropropagation system on solid medium. Both systems were treated with MS media containing 2.5 mg/l BAP and 0.1 NAA. In TIS the shoots were able to multiplied faster in comparison with solid media. The multiplication rates were increased up to 1:3 to 1:5 compared to normal propagation on solid media. The results show that TIS not only increase the propagation rates of pineapple but could also be adapted to reduce implementation costs to establish low-cost propagation systems. (Author)

  14. Embryonic myocardium shows increased longevity as a functional tissue when cultured in the presence of a noncardiac tissue layer.

    Science.gov (United States)

    Eisenberg, Leonard M; Eisenberg, Carol A

    2006-04-01

    A major aim of regenerative medicine is the construction of bioengineered organs and tissue for transplantation into human patients; yet living tissue is dynamic, and thus arranging cellular and extracellular constituents into an architecture resembling normal adult organs may not be sufficient to maintain tissue stability. In this study, we used cultures of embryonic chick heart tissue as a model to explore how newly formed cardiac tissue constructs can sustain their morphological structure and functional capabilities over extended periods. During the initial days of incubation, embryonic cardiac explants will thrive as beating three-dimensional tissue aggregates. However, within the first week of culture, cardiac aggregates lose their contractile function and flatten. After 2 weeks of incubation, the cardiac cells will have spread out into a homogeneous monolayer and dedifferentiated to a noncardiac phenotype. In contrast, when the embryonic heart tissue was co-cultured with a noncardiac cell layer obtained from adult bone marrow, the cardiac aggregates maintained their contractile function, three-dimensional tissue morphology, and myocyte phenotype for a full month of incubation. The capacity of this noncardiac cell layer to sustain the phenotype and morphology of the cardiac explants was partially replicated by treatment of the heart tissue with conditioned media from bone marrow cells. These findings are discussed in regard to the importance of adjacent cell layers for facilitating organogenesis in the developing embryo and having potential utility in producing stable bioengineered tissue constructs.

  15. [Application of plant tissue culture in field of Chinese medicine resources].

    Science.gov (United States)

    Wang, Juan; Li, Jin-Xin; Li, Jian-Li; Gao, Wen-Yuan

    2017-06-01

    Plant tissue culture technology has been widely used in the field of traditional Chinese medicine(TCM) resources with its unique advantages, playing an important role in the protection of TCM resources. In this review, some applications of plant tissue culture were summarized, including production of active compounds by using plant tissue culture, genetic diversity analysis, Dao-di herbs, elicitor application, biosynthesis and transgenic plants. Through the above researches will promote the further development of plant tissue culture technology, making it play a greater role in the field of TCM resources. Copyright© by the Chinese Pharmaceutical Association.

  16. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...

  17. X-irradiation effects on the activity of dehydrogenases in the cockroach, Periplaneta Americana L

    Energy Technology Data Exchange (ETDEWEB)

    Vijayalakshmi, S. (Sri Sathya Sai Inst. of Higher Learning, Anantpur (India))

    1984-05-01

    Sublethal dose of X-irradiation caused an early increase and subsequent normalization in succinate and lactate dehydrogenases of the cockroach, while lethal dose produced an irreversible fall in succinate dehydrogenase and a gradual elevation in lactate dehydrogenase at all post-irradiation periods studied, suggesting dose dependent impairment of aerobic and anaerobic pathways.

  18. Differential effects of fractionated X irradiation on mouse spermatogonial stem cells

    NARCIS (Netherlands)

    van der Meer, Y.; Huiskamp, R.; Davids, J. A.; de rooij, D. G.

    1993-01-01

    The response of spermatogonial stem cells to fractionated X irradiation was studied in the various stages of the spermatogenic cycle of the CBA mouse. Fractionated doses of 2 + 2, 1 + 3, and 3 + 1 Gy with a 24-h interval between the doses were compared with a single dose of 4 Gy. The numbers of

  19. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    International Nuclear Information System (INIS)

    Rappaport, D.S.; Casarett, G.W.

    1979-01-01

    This study was conducted to determine what influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. EAG was induced in female Sprague-Dawley rats by immunization with Bordetella pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Progressive arteriolonephrosclerosis (ANS) was observed in right (irradiated) kidneys following unilateral renal irradiation (1500 rad). Rats were either immunized, sham-immunized, irradiated, sham-irradiated, or both immunized and irradiated. Light and immunofluorescent microscopic observation, urine protein content, and kidney weights were evaluated. In immunized-irradiated animals the effects of irradiation and immunization were largely additive. Immunization did not considerably influence the development and course of ANS and irradiation did not considerably influence the development and course of EAG

  20. NMR-based metabolomics of mammalian cell and tissue cultures

    International Nuclear Information System (INIS)

    Aranibar, Nelly; Borys, Michael; Mackin, Nancy A.; Ly, Van; Abu-Absi, Nicholas; Abu-Absi, Susan; Niemitz, Matthias; Schilling, Bernhard; Li, Zheng Jian; Brock, Barry; Russell, Reb J.; Tymiak, Adrienne; Reily, Michael D.

    2011-01-01

    NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.

  1. Flowering of Woody Bamboo in Tissue Culture Systems

    Directory of Open Access Journals (Sweden)

    Jin-Ling Yuan

    2017-09-01

    Full Text Available Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.

  2. Cloning of medicinal plants through tissue culture--a review.

    Science.gov (United States)

    Chaturvedi, H C; Jain, Madhu; Kidwai, N R

    2007-11-01

    In order to have standardized formulations, the chemical constituents from plants and their parts are required to be uniform both qualitatively and quantitatively. Furthermore, an ever increasing demand of uniform medicinal plants based medicines warrants their mass cloning through plant tissue culture strategy. A good number of medicinal plants have been reported to regenerate in vitro from their various parts, but a critical evaluation of such reports reveals that only a few complete medicinal plants have been regenerated and still fewer have actually been grown in soil, while their micropropagation on a mass scale has rarely been achieved, particularly in those medicinal plants where conventional propagation is inadequate, like, the mass clonal propagation of Dioscorea floribunda leading to its successful field trials. Such facts make it imperative to document the factual position of micropropagation of medicinal plants bringing out the advancements made along with the short falls, in this important area. The present review deals with the futuristic view on the said subject restricted to higher plants.

  3. An ultrastructural study of the effects of x-irradiation on the oral epithelium of the rat: Qualitative aspects

    International Nuclear Information System (INIS)

    Liu, H.M.; Meyer, J.; Waterhouse, J.P.

    1976-01-01

    Adult male rats of Simonsen strain were given a dose of 5000 r at 50 peak KV of x-irradiation directed at the lower lip, which was everted through a hole in a lead rubber cylinder shielding the head and body of the animal. Light and electron microscopic observations were made on specimens of lip oral mucosa from animals killed at 2, 6, 26 and 50 h and at 12 days after irradiation. The experimental model met the aim of permitting the study of the sequential effects of a high dose of irradiation without causing ulceration of the mucosa. Widespread degenerative changes were noted in the basal cells as early as 2 h after x-irradiation, increasing in degree up to 50 h. They included inflation of the outer nuclear envelope and rough endoplasmic reticulum (RER) with loss of robisomes, swelling of mitochondria and disarrangement of cristae evident at 2 h, followed at 6 h by swelling of nucleus and cytoplasm and 26 h by frank membrane breaks. Irreversible degrees of damage were noted in a small though growing minority of cells. Immediate mobilization of the Golgi-lysosomal system was evident as an increase in size of the zone, maximal at 2 h, and subsequent autophagic activity. Signs of recovery, beginning at 26 h, were noted in nuclear envelope, RER, intracellular space, and in mitotic activity by 50 h. Virtually complete recovery was seen at 12 days. It is held that the successful confinement of irradiation to a small tissue volume, the effective activity of the lysosomal system and the short epithelial turnover time were important factors in limiting the damage and in permitting recovery. (author)

  4. Histophysiology of cellular immunity reactions in B-cell deprived rabbits. An X-irradiation model for delineation of an 'isolated T-cell system'.

    Science.gov (United States)

    Veldman, J E; Keuning, F J

    1978-10-16

    Three times sublethal total body X-irradiation with thymus shielding--at 2 weeks' intervals--delineated a temporarily B-cell deprived animal model, only reconstituted with recently thymus-derived cells. The thymusdependent areas of peripheral lymphoid tissue-repleted with T-cells--are described. The cellular immune capacity of these animals with an "isolated T-cell system" was analyzed by means of skin allografting. Histological and autoradiographic studies were performed in draining lymph nodes after a variety of antigenic stimuli: skin allografts, S. java vaccin, horse-gamma-globulin, horse spleen ferritin and a contact sensitizer (Oxazolone).

  5. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Comparative study on Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant status.

    Science.gov (United States)

    Stajner, D; Popović, B M; Calić-Dragosavac, D; Malenčić, D; Zdravković-Korać, S

    2011-11-01

    This study was designed to examine Allium schoenoprasum tissue culture organs antioxidant and scavenging activity and to make a comparison between Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant activity. This study reports the results on the root, stalk and leaf antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase), reduced glutathione quantity, flavonoids and soluble protein contents and quantities of malonyldialdehyde and ·OH radical. In Allium schoenoprasum tissue culture organs the total antioxidant capacity was determined by the FRAP method and scavenger activity by the DPPH method. The present results indicated that the crude extract of Allium schoenoprasum tissue culture exhibited antioxidant and scavenging abilities in all investigated plant parts, especially in the roots. According to our results, the tissue culture plants exhibited the highest activities in the roots in contrast to the cultivated plants where highest activities were observed in the leaves. Copyright © 2011 John Wiley & Sons, Ltd.

  7. A study of morphogenesis of digital malformation on rat embryo by x-irradiation

    International Nuclear Information System (INIS)

    Kim, Jhai Dhuck; You, Dong Soo

    1981-01-01

    The author studied in the effects of x-irradiation to the development of digital malformation in gestation rats. The time-matings occurred between 6 p.m. and 8 a.m. and females with copulation plugs at 8 a.m. were isolated and properly marked for evidence of copulation. The lower abdomen of mothers were exposed to x-irradiation on the 11 1/2th day of gestation, the critical period developing digital malformation, respectively 100, 150, 200, 250, 300 and 350 rads. At 18 1/2th day of post-conception total 50 pregnant females were dissected and the incidence of digital malformations were obtained. Rat embryos on the 12, 13, 14, 15, 16th day of gestation irradiated by 250 rads were examined for morphogenesis of digital malformation. Digital radiating lines were examined in water and histologically by H-E stain. Supra vital stain samples by Nile-blue sulfate in 37 .deg. C normal saline were prepared for the observation of cell necrosis regions and morphogenesis of digits. The results obtained were as follows; 1. By x-irradiation on 11th day of gestation, digital malformations of Ectrodactylia, Syndactylia, Polydactylia and Hematodactylia were developed. Ectrodactylia showed the effective relationship to the amount of irradiation, however Syndactylia and Poydactylia did not. 2. By x-irradiation, cell necrosis of digital germ was appeared markedly, but in 48 hours after irradiation was depressed to the periphery of digital germ and in 72 hours after irradiation was disappeared. Digital radiating line showed marked state of malformation in 48 hours after irradiation and continued to show the same amount of physiological cell necrosis as the compared control group in 72 hours after irradiation. But in the Syndactylia, physiological cell necrosis was not able to be recognized. 3. Ectrodactylia induced by x-irradiation was considered as the direct result of cell necrosis of digital origin, however, Polydactylia and Syndactylia were considered as the result of some effect in

  8. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  9. Scanning electron microscopy of surface features of hamster embryo cells transformed in vitro by x-irradiation

    International Nuclear Information System (INIS)

    Borek, C.; Fenoglio, C.M.

    1976-01-01

    Scanning electron microscope studies were carried out on Syrian hamster embryo cells transformed in vitro by x-irradiation (300 rads) (x-ray transformed) and on normal nonirradiated and irradiated nontransformed controls. Transformed cells appeared in scanning electron microscopy as pleomorphic, thick cells piling up over each other and exhibiting extensive surface features consisting of microvilli, blebs, and ruffles. These surface structures were seen on single as well as on densely cultured transformed cells during both interphase and mitosis. The complex surface was observed shortly after transformation (on cells of a 20-day-old clone) and seems a permanent feature of the x-ray transformed cells (present after 8 years in culture). All controls appeared by scanning electron microscopy as regular, flat, and smooth cells which grew in high-density cultures to seemingly contact-inhibited monolayers. During mitosis the normal cells (control, nontransformed) displayed surface excrescences similar to those of the transformed cells making the mitotic normal cells indistinguishable from transformed cells. The complex surface features in the normal cells were temporary and reversed back to characteristic smoothness upon reentrance into interphase

  10. Research progress in plant mutation by combining ion beam irradiations and tissue culture

    International Nuclear Information System (INIS)

    Zhou Linbin; Li Wenjian; Qu Ying; Li Ping

    2007-01-01

    About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)

  11. Combined effects of x-irradiation and bleomycin on the proliferation of isoproterenol-stimulated mouse parotid glands

    International Nuclear Information System (INIS)

    Shoju, Masumi

    1977-01-01

    Effects of x-irradiation and bleomycin (BLM) on DNA synthesis in isoproterenol (IPR)-stimulated mouse parotid glands were investigated. The incorporation of thymidine- 3 H into DNA in parotid glands increased remarkably in 16 hours with a peak at 22 hours after the injection of IPR. When x-irradiation (250 rads) was given at 1 hour after IPR (early G 1 phase), the stimulation of DNA synthesis was inhibited by about 50%, and the beginning of DNA synthesis was delayed nearly 6 hours. BLM injected in the early G 1 phase was also effective in inhibiting DNA synthesis. However, the injection of BLM in the late G 1 or S phase did not interfere with DNA synthesis. Combined x-irradiation and BLM inhibited DNA synthesis and delayed the beginning of the S phase far more strikingly than did x-irradiation alone. When BLM was injected at various intervals before and after x-irradiation, the greatest inhibition was found just after irradiation. Therefore, a longer interval between x-irradiation and BLM injection had a tendency to decrease the rate of inhibiting DNA synthesis. These findings were confirmed by measuring the labeling index and the mitotic index in the acinar cells of the mouse parotid gland. These results suggest that simultaneous application of x-irradiation and BLM has the greatest effect. (Evans, J.)

  12. Swimming immobility time decreased in prenatally x-irradiated microcephalic rats

    International Nuclear Information System (INIS)

    Seo, Misako; Kiyono, Sigehiro; Shibagaki, Masamitsu

    1986-01-01

    Pregnant rats were X-irradiated (150 R) on gestation day 17, and the offspring were weaned at 21 days of age. After recording the spontaneous activity for one hour using Animex apparatus at 40 days of age, male offspring were tested for swimming immobility time on two consecutive days at 62 days of age. All X-irradiated pups were microcephalic, and their mean total brain weight was 78.5 % of the control group. Although no difference was found in spontaneous activity between the two groups, swimming immobility time was significantly shortened in the microcephalic group. The results suggest that the swimming immobility time is an indicator of adaptability to novel situation rather than an expression of helplessness, lowered mood or depressed state as originally proposed by Porsolt et al. (author)

  13. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, C.H.L.; Kraft, S.C.; Rothberg, R.M.

    1975-10-01

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis.

  14. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    International Nuclear Information System (INIS)

    Rieger, C.H.L.; Kraft, S.C.; Rothberg, R.M.

    1975-01-01

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis

  15. Selective elimination of intracortically projecting neurons of the rat neocortex by prenatal x-irradiation

    International Nuclear Information System (INIS)

    Jensen, K.F.

    1981-01-01

    The development of new racing methods has suggested that there are species differences in the extent of the contribution of the different layers of the neocortex to the callosal projection. The present investigation has utilized prenatal x-irradiation to selectively eliminate the late forming neurons of the supragranular layers of the rat neocortex. The reduction in the neuronal population of the supragranular layers closely parallels the reduction in the corpus callosum. These results indicate that the primary source of neurons of the callosal projection, are the late forming neurons of the supragranular layers. Thus, the current results suggest that low dose prenatal x-irradiation may be used to evaluate important developmental events in the formation of neocortical circuitry

  16. Untargeted viral mutagenesis is not found in X-irradiated monkey cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.; Lee, W.; Bushar, H.F.

    1988-01-01

    The existence of untargeted viral mutagenesis in X-irradiated cells was investigated in a mammalian virus/cell system, where a low level of such viral mutagenesis can be demonstrated in UV-irradiated cells. In the positive control experiment UV-elicited mutagenesis was shown with cell exposures of 5, 10 and 15 J/m 2 and a delay of 24 h between cell irradiation and infection with unirradiated herpes simplex virus. Although X-ray doses of 1, 3 and 10 Gy elicit enhanced reactivation of UV-irradiated virus, no untargeted mutagenesis for any X-ray dose at post-irradiation infection times of 0, 24 or 72 h was observed in this study. Thus untargeted mutagenesis of herpes simplex virus was not demonstrated in X-irradiated monkey cells, under conditions where X-ray-enhanced reactivation occurs and where untargeted mutagenesis in UV-irradiated cells occurs. (author)

  17. Delayed reproductive death as a dominant phenotype in cell clones surviving X-irradiation

    International Nuclear Information System (INIS)

    Chang, W.P.; Little, J.B.

    1992-01-01

    Residual damage manifested as reduced cloning efficiency was observed in many of the cloned progeny of Chinese hamster ovary (CHO) cells and human carcinoma SQ-20B cells surviving X-irradiation. This stable phenotype, which we have termed delayed reproductive death, persisted for >50 generations of cell replication post-irradiation. Clones showing this phenotype were aneuploid, and formed colonies with a high proportion of giant cells. By somatic cell hybridization of CHO clones, the delayed reproductive death phenotype was found to be a dominant trait; the cloning efficiency of hybrid clones was persistently depressed, as compared with that of control hybrid cells. These results suggest that delayed reproductive death represents a specific cellular response that may persist in some of the progeny of mammalian cells for long periods after X-irradiation. (author)

  18. Repair and replication of DNA in hereditary (bilateral) retinoblastoma cells after X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.; Char, D.; Charles, W.C.; Rand, N.

    1982-04-01

    Fibroblasts from patients with hereditary retinoblastoma reportedly exhibit increased sensitivity to killing by X-rays. Although some human syndromes with similar or greater hypersensitivity to DNA-damaging agents (e.g., X-rays, ultraviolet light, and chemical carcinogens), such as xeroderma pigmentosum, are deficient in DNA repair, most do not have such clearly demonstrable defects in repair. Retinoblastoma cells appear to be normal in repairing single-strand breaks and performing repair replication after X-irradiation and also in synthesizing poly(adenosine diphosphoribose). Semiconservative DNA replication in these cells, however, is slightly more resistant than normal after X-irradiation, suggesting that continued replication of damaged parental DNA could contribute to the pathogenesis of the disease. This effect is small, however, and may be a consequence rather than a cause of the fundamental enzymatic abnormality in retinoblastoma that causes the tumorigenesis.

  19. Chromosome damage in G0 X-irradiated lymphocytes from patients with hereditary retinoblastoma

    International Nuclear Information System (INIS)

    Morten, J.E.; Harnden, D.G.; Taylor, A.M.

    1981-01-01

    The amount of chromosome damage in peripheral blood lymphocytes following 400 rads G0 X-irradiation in 10 of 11 hereditary retinoblastoma patients was shown to be intermediate between that in normals and damage in trisomy 21 patients. The difference between normals and hereditary retinoblastoma patients was small, it varied between hereditary retinoblastoma patients, and no difference was detected following 200 rads G0 X-irradiation. No difference was found in levels of spontaneous chromosome damage in hereditary retinoblastoma patients, trisomy 21 patients, and normals. These results suggest that, although sensitivity to ionizing radiation may be associated with hereditary retinoblastoma, the observed difference is so small that it is probably not the major effect of the gene predisposing to retinoblastoma

  20. Revision washout decreases implant capsule tissue culture positivity: a multicenter study.

    Science.gov (United States)

    Henry, Gerard D; Carson, Culley C; Wilson, Steven K; Wiygul, Jeremy; Tornehl, Chris; Cleves, Mario A; Simmons, Caroline J; Donatucci, Craig F

    2008-01-01

    Positive cultures, visible biofilm and confocal micrography confirm bacterial presence on clinically uninfected inflatable penile prostheses at revision surgery. Salvage irrigation has been proved to rescue patients with clinically infected inflatable penile prostheses. Similar washout at revision for noninfectious reasons significantly lowers subsequent infection rates. We investigated a larger series of patients for positive culture rates and evaluated implant capsule tissue culture rates before and after revision washout. At 4 institutions a total of 148 patients with inflatable penile prostheses underwent revision surgery for noninfectious reasons between June 2001 and September 2005. Swab cultures of the fluid around the pump and visible biofilm were obtained. Also, in 65 patients a wedge of tissue from the capsule that forms around the pump was cultured. After implant removal revision washout of the implant spaces was performed and a second wedge of tissue was cultured. Of the 148 patients 97 (66%) had positive bacterial swab cultures of the fluid around the pump or biofilm. A total of 124 isolates were cultured. Of the 65 implant capsule tissue cultures obtained before washout 28 (43%) were positive for bacteria, while 16 (25%) obtained after revision washout were positive. Positive cultures and visible bacterial biofilm are present on clinically uninfected inflatable penile prostheses at revision surgery in most patients. Revision washout appears to decrease the bacterial load on implant capsule tissue at revision surgery of inflatable penile prostheses for noninfectious reasons.

  1. The potential of prolonged tissue culture to reduce stress generation and retraction in engineered heart valve tissues.

    Science.gov (United States)

    van Vlimmeren, Marijke A A; Driessen-Mol, Anita; Oomens, Cees W J; Baaijens, Frank P T

    2013-03-01

    In tissue-engineered (TE) heart valves, cell-mediated processes cause tissue compaction during culture and leaflet retraction at time of implantation. We have quantified and correlated stress generation, compaction, retraction, and tissue quality during a prolonged culture period of 8 weeks. Polyglycolic acid/poly-4-hydroxybutyrate strips were seeded with vascular-derived cells and cultured for 4-8 weeks. Compaction in width, generated force, and stress was measured during culture. Retraction in length, generated force, and stress was measured after release of constraints at weeks 4, 6, and 8. Further, the amount of DNA, glycosaminoglycans (GAGs), collagen, and collagen cross-links was assessed. During culture, compaction and force generation increased to, respectively, 63.9% ± 0.8% and 43.7 ± 4.3 mN at week 4, after which they remained stable. Stress generation reached 27.7 ± 3.2 kPa at week 4, after which it decreased to ∼8.5 kPa. At release of constraints, tissue retraction was 44.0% ± 3.7% at week 4 and decreased to 29.2% ± 2.8% and 26.1% ± 2.2% at, respectively, 6 and 8 weeks. Generated force (8-16 mN) was lower at week 6 than at weeks 4 and 8. Generated stress decreased from 11.8 ± 0.9 kPa at week 4 to 1.4 ± 0.3 and 2.4 ± 0.4 kPa at, respectively, weeks 6 and 8. The amount of GAGs increased at weeks 6 and 8 compared to week 4 and correlated to the reduced stress and retraction. In summary, prolonged culture resulted in decreased stress generation and retraction, likely as a result of the increased amount of GAGs. These results demonstrate the potential of prolonged tissue culture in developing functional, nonretracting, TE heart valves.

  2. Abnormal G1 arrest in the cell lines from LEC strain rats after X-irradiation

    International Nuclear Information System (INIS)

    Hayashi, M.; Uehara, K.; Kirisawa, R.; Endoh, D.; Arai, S.; Okui, T.

    1997-01-01

    The effect of X-irradiation of cell lines from LEC and WKAH strain rats on a progression o cell cycle was investigated. When WKAH rat ells were exposed to 5 Gy of X-rays and their cell cycle distribution was determined by a flow cytometer, the proportion of S-phase cells decrease and that of G2/M-phase cells in creased at 8 hr post-irradiation. At 18 and 24 hr post-irradiation, approximately 80% of the cells appeared in the G1 phase. On the contrary, the proportion of S-phase cells increased and that of G1-phase cells decreased in LEC rats during 8-24 hr post-irradiation, compared with that at 0 hr post-irradiation. Thus, radiation-induced delay in the progression from the G1 phase to S phase (G1 arrest) was observed inWKAH rat cells but not in LEC rat cells. In the case of WKAH rat cells, the intensities of the bands of p53 protein increased at 1 and 2 hr after X-irradiation at 5 Gy, compared with those of un-irradiated cells and at 0 hr post-irradiation. In contrast, the intensities of the bands were faint and did not significantly increase in LEC rat ells during 0-6 hr incubation after X-irradiation. Present results suggested that the radioresistant DNA synthesis in LEC rat cells is thought to be due to the abnormal G1 arrest following X-irradiation

  3. Plant tissue culture study on two different races of purslane ...

    African Journals Online (AJOL)

    This study was performed on two races of purslane; agronomic purslane and wild one. All the explants were cultured on MS basal medium supplement with 30 g/l sucrose, 8 g/l agar and different plant growth regulator. Petioles, shoot tips and leaves of wild purslane and also leaves of agronomic purslane were cultured in ...

  4. Application of tissue culture to cashew ( Anacardium occidentale L ...

    African Journals Online (AJOL)

    Summary of the previous works on the in vitro culture of cashew is highlighted with emphasis on the critical factors that influence the explants response and plantlet regeneration. The recalcitrant nature of cashew has been attributed to the limited success recorded so far in the in vitro culture of the crop and abnormal ...

  5. X-irradiation induced photo- and thermostimulated luminescence of CsCdF3:Mn crystals

    International Nuclear Information System (INIS)

    Springis, M.; Sharakovsky, A.; Tale, I.; Rogulis, U.

    2005-01-01

    Photo- and thermostimulated luminescence (PSL and TSL respectively) of previously X-irradiated CsCdF 3 crystal doped with Mn were investigated. After X-irradiation of CsCdF 3 crystal at 8 K PSL bands at about 300 nm and 550 nm appear. Several stimulation bands can be revealed for luminescence at 300 nm and 550 nm. The stimulation band at 340 nm is related to an F-type centre absorption band in accordance with the Mollwo-Ivey relation for halide crystals. Subsequent heating of the crystal after X-irradiation at 8 K shows TSL peaks in the temperature regions 8 K-90 K and 200 K-300 K. The spectral composition of the TSL involves both bands at 300 nm and 550 nm. Experiments performed allow us to suggest that the PSL band at 300 nm should be the result of electron recombination with self-trapped holes (STH), but the luminescence at 550 nm is related to Mn ions. The mechanisms of radiative recombinations as well as the thermal stability of both STH and Mn ions are discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Radiosensitivity of pulmonary alveolar macrophages in rats exposed to local X-irradiation

    International Nuclear Information System (INIS)

    Gong Yifen; Fei Lihua; Wu Dechang

    1987-01-01

    The radiosensitivity of pulmonary alveolar macrophages (PAMs) in rats exposed to local thoracic X-irradiatoin was studied. The percentages of mitotic and labeling cells were used as biological endpoints. The parameters of radiosensitivity of PAMs obtained on the second day after local exposure are as follows: D 0 = 0.68 Gy, Dq = 0.06 Gy, n = 1.1 for mitotic cells and D 0 = 1.04 Gy, Dq = 0.12 Gy, n = 1.12 for labeling cells. The parameters of radiosensitivity of PAMs in bronchical lavage obtained immediately after X-irradiation are: D 0 = 3.56 Gy, Dq = 0.77 Gy, n = 1.24 for labeling cells and D 0 = 3.69 Gy, Dq = 0.35 Gy, n = 1.1 for mitotic cells. The comparison of thses results indicates that the radiation effect on PAMs obtained immediately after X-irradiation is less severe than that of PAMs obtained 2 days later. It might be caused by the delay of cell cycle within 2 days after X-irradiation

  7. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    Science.gov (United States)

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of hyperthermia and X-irradiation on mouse stromal tissue

    NARCIS (Netherlands)

    Wondergem, J.; Begg, A. C.; Haveman, J.

    1986-01-01

    The sensitivity of normal stroma to heat, irradiation and heat combined with irradiation has been studied using the tumour bed effect (TBE) assay. Irradiation before implantation led to a TBE. This TBE was dose dependent below 15 Gy, the TBE remaining relatively constant above 15 Gy. The interval

  9. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    Energy Technology Data Exchange (ETDEWEB)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  10. Equine ovarian tissue viability after cryopreservation and in vitro culture

    Science.gov (United States)

    The efficiency of several cryoprotective agents were compared using both slow-freezing and vitrification methods. Results indicate that the viability of ovarian tissue cells increases when DMSO (slow-freezing) and ethylene glycol (vitrification) are used....

  11. The effect of low-dose X-irradiation on immune system

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Keiichiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1996-06-01

    The hypothesis of radiation hormesis has been proposed. To elucidate the hormetic effect on the immune system, we studied the mitogen-induced proliferation of splenocytes of F344/NSlc rat and BALB/c mouse after low-dose X-irradiation. Con A, PHA or LPS-induced proliferation of rat splenocytes prepared at 4 hr after irradiation was augmented with 5 cGy. This augmentation was observed within a few hours after irradiation, being a temporary effect. In case of mice, the proliferation of splenocytes induced by Con A, PHA or LPS was augmented by irradiation with 2.5 cGy. Thus, some phenomena of hormetic effect on the immune system were observed. However, the mechanism of augmentation of immune splenocytes is uncertainty. Therefore, we examined changes in production of LTB{sub 4} and IL-1 being inflammatory mediators. After 5 cGy irradiation the production of LTB{sub 4} of rat splenocyte showed a significant increase. Furthermore, 2.5 cGy irradiation also enhanced, the biological activity of intracellular IL-1 of LPS-stimulated mouse splenocytes. Additionally, to elucidate the stimulative effect on the antitumor immunity by low-dose X-irradiation, we studied the changes in the incidence of thymic lymphoma using AKR mice and of spontaneous metastasis to lung using tumor bearing mice. The incidence of thymic lymphoma was significantly decreased and the life span was significantly prolonged by periodical low-dose X-irradiation in terms of breeding of AKR mice. By an irradiation with 15 cGy, numbers of lung colony in the tumor bearing mice were decreased by 57% relative to the sham-irradiated controls. Then, IL-6 and TNF-{alpha} production of tumor bearing mice splenocytes were enhanced. These findings suggest that the low-dose X-irradiation might have caused a light inflammation and might have induced an augmentation of immune splenocytes. Furthermore, these results indicate that an augmentation of the antitumor immunity was induced by low-dose X-irradiation. 127 refs.

  12. Growth of Igbo-Ora virus in some tissue cultures.

    Science.gov (United States)

    Olaleye, O D; Omilabu, S A; Baba, S S

    1990-08-01

    VERO, MRC5, MDCK, and MA104 cells were tested for their ability to support the growth of Igbo-Ora virus. In VERO and MRC5 cell cultures the virus replicated to high titres causing apparent cytopathic effects (CPE) (cell rounding and complete lysis) and formation of complement fixing antigens. The virus grew to lower infectious titre in MDCK and MA104 cell cultures in which CPE was limited to cell rounding only.

  13. Therapeutically important proteins from in vitro plant tissue culture systems.

    Science.gov (United States)

    Doran, Pauline M

    2013-01-01

    Plant cells cultured in liquid medium in bioreactors are now being used commercially to produce biopharmaceutical proteins. The emergence of in vitro plant cell culture as a production vehicle reflects the importance of key biosafety and biocontainment concerns affecting the competitiveness of alternative systems such as mammalian cell culture and agriculture. Food plant species are particularly attractive as hosts for in vitro protein production: the risk of transgene escape and food chain contamination is eliminated using containment facilities, while regulatory approval for oral delivery of drugs may be easier than if non-edible species were used. As in whole plants, proteolysis in cultured plant cells can lead to significant degradation of foreign proteins after synthesis; however, substantial progress has been made to counter the destructive effects of proteases in plant systems. Although protein secretion into the culture medium is advantageous for product recovery and purification, measures are often required to minimise extracellular protease activity and product losses due to irreversible surface adsorption. Disposable plastic bioreactors, which are being used increasingly in mammalian cell bioprocessing, are also being adopted for plant cell culture to allow rapid scale-up and generation of saleable product. This review examines a range of technical and regulatory issues affecting the choice of industrial production platform for foreign proteins, and assesses progress in the development of in vitro plant systems for biopharmaceutical production.

  14. Efforts to accelerate domestication of winged bean (Psophocarpus tetragonolobus (L.) DC.) by means of induced mutations and tissue culture

    NARCIS (Netherlands)

    Klu, G.Y.P.

    1996-01-01

    This thesis describes mutation breeding and tissue culture techniques developed for accelerated domestication of winged bean ( Psophocarpustetragonolobus (L.) DC.). The tissue culture techniques, which are the first steps towards genetic transformation of

  15. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  16. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor

    Science.gov (United States)

    Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.

    1999-01-01

    PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  17. Variation in bioactive principles of Artemisia amygdalina Decne. in wild and tissue culture regenerants.

    Science.gov (United States)

    Rasool, Rafia; Ganai, Bashir Ahmad; Akbar, Seema; Kamili, Azra Nahaid; Dar, Muhammad Younus; Masood, Akbar

    2013-05-01

    Wild and tissue culture raised regenerants of Artemisia amygdalina, a critically endangered and endemic plant of Kashmir and North West Frontier Provinces of Pakistan were screened for the amount of bioactive principles and in particular antimalarial compound artemesinin. Phytochemical screening of extracts revealed the presence of terpenes, alkaloids, phenolics, tannins (polyphenolics), cardiac glycosides and steroids in wild (aerial, inflorescence) and tissue culture regenerants (in vitro grown plant, callus and green house acclimatized plants). HPLC of Artemisia amygdalina revealed the presence of artemesinin in petroleum ether extracts of wild aerial part, tissue culture raised plant and green house acclimatized plants. Acetonitrile and water in 70:30 ratios at flow rate of 1ml/min was standardised as mobile phase. Retention time for standard chromatogram was 6.7. Wild inflorescences and callus does not produce artemesinin. This is the first report of phytochemical screening and artemesinin estimation of wild and tissue culture raised regenerants of Artemisia amygdalina.

  18. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    Science.gov (United States)

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  19. Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.

  20. Study on the propagation of some sugar cane clones derived from tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Chagvardieff, P.; Mauboussin, J.C.; Weil, J.

    1983-01-01

    The study of the propagation by cuttings of sugar-cane clones derived from tissue cultures showed that the emergence of one bud setts was variable. A definition of parameters for this germination is proposed: germination vigour, germination capacity, shooting vigour, shooting capacity. Variants optained, among them germination or shooting vigour, were always improved when compared with the control; this might result from a cell rejuvenation induced by the tissue culture. 11 references.

  1. In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation.

    Science.gov (United States)

    Shih, Sharon M-H; Doran, Pauline M

    2009-09-10

    Plant virus accumulation was investigated in vitro using three different forms of plant tissue culture. Suspended cells, hairy roots and shooty teratomas of Nicotiana benthamiana were infected with tobacco mosaic virus (TMV) using the same initial virus:biomass ratio. Viral infection did not affect tissue growth or morphology in any of the three culture systems. Average maximum virus concentrations in hairy roots and shooty teratomas were similar and about an order of magnitude higher than in suspended cells. Hairy roots were considered the preferred host because of their morphological stability in liquid medium and relative ease of culture. The average maximum virus concentration in the hairy roots was 0.82+/-0.14 mg g(-1) dry weight; viral coat protein represented a maximum of approximately 6% of total soluble protein in the biomass. Virus accumulation in hairy roots was investigated further using different modes of semi-continuous culture operation aimed at prolonging the root growth phase and providing nutrient supplementation; however, virus concentrations in the roots were not enhanced compared with simple batch culture. The relative infectivity of virus in the biomass declined by 80-90% during all the cultures tested, irrespective of the form of plant tissue used or mode of culture operation. Hairy root cultures inoculated with a transgenic TMV-based vector in batch culture accumulated green fluorescent protein (GFP); however, maximum GFP concentrations in the biomass were relatively low at 39 microg g(-1) dry weight, probably due to genetic instability of the vector. This work highlights the advantages of using hairy roots for in vitro propagation of TMV compared with shooty teratomas and suspended plant cells, and demonstrates that batch root culture is more effective than semi-continuous operations for accumulation of high virus concentrations in the biomass.

  2. Organoid culture systems for prostate epithelial and cancer tissue

    NARCIS (Netherlands)

    Drost, Jarno; Karthaus, Wouter R.|info:eu-repo/dai/nl/37034958X; Gao, Dong; Driehuis, Else; Sawyers, Charles L.; Chen, Yu; Clevers, Hans|info:eu-repo/dai/nl/07164282X

    2016-01-01

    This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material

  3. Tissue culture as a plant production technique for horticultural crops

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... Recovery of regenerants from transformed cells. - Cell culture .... methods. Micropropagation techniques. Micropropagation is a simple concept. The basic pro- tocols were well established by the 1960s and a whole research field and ... the environment are naturally contaminated on their sur- faces (and ...

  4. Rat fetal ventral mesencephalon grown as solid tissue cultures

    DEFF Research Database (Denmark)

    Höglinger, G U; Sautter, J; Meyer, Morten

    1998-01-01

    in vitro (DIV) in the presence or absence (controls) of BDNF [100 ng/ml]. The dopamine content in the culture medium, analyzed by HPLC, was significantly higher (4-5 fold) in the BDNF group at DIV 8 and DIV 12 compared to the corresponding control levels (40 pg/ml). The number of tyrosine hydroxylase...

  5. Tissue culture in Pinus caribaea Mor. var. Hondurensis barr. and ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... and Harada (1979), L-glutamine is very important for somatic embryogenesis. They reached this conclusion after comparing the performance of individual amino acids in carrot cultures and they discovered that carrot somatic embryos were best promoted by L-glutamine. Secondly, the concentrations of the ...

  6. Organoid culture systems for prostate epithelial and cancer tissue

    NARCIS (Netherlands)

    Drost, Jarno; Karthaus, Wouter R; Gao, Dong; Driehuis, Else; Sawyers, Charles L; Chen, Yu; Clevers, Hans

    This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material

  7. Plant Regeneration Through Tissue Culture Of Pear Millet ...

    African Journals Online (AJOL)

    1. 1. 2,5), MS(5) and N6(1.100.25) culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot ...

  8. Tissue cultures from adult human postmortem subcortical brain areas

    NARCIS (Netherlands)

    Verwer, R. W. H.; Dubelaar, E. J. G.; Hermens, W. T. J. M. C.; Swaab, D. F.

    2002-01-01

    Animal models used to study human aging and neurodegeneration do not display all symptoms of these processes as they are found in humans. Recently, we have shown that many cells in neocortical slices from adult human postmortem brain may survive for extensive periods in vitro. Such cultures may

  9. Callus formation using in vitro tissue culture technique in cultivated ...

    African Journals Online (AJOL)

    Abhishek

    2013-07-24

    Jul 24, 2013 ... cotyledon, coteledonary node and hypocotyl measuring 4 to 5 mm obtained from asceptically grown seedlings were inoculated on the surface of different culture medium. Murashige and Skoog (MS) salts supplemented with B5 vitamins was used as basal medium and fortified with different concentrations of ...

  10. [Research progress of co-culture system for constructing vascularized tissue engineered bone].

    Science.gov (United States)

    Fu, Weili; Xiang, Zhou

    2014-02-01

    To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

  11. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  12. Quantitation of ranaviruses in cell culture and tissue samples

    DEFF Research Database (Denmark)

    Holopainen, Riikka; Honkanen, Jarno; Jensen, Britt Bang

    2011-01-01

    – epithelioma papulosum cyprini (EPC) and bluegill fry (BF-2) – were infected with four of the isolates (EHNV, ECV, FV3 and DFV), and the viral quantity was determined from seven time points during the first three days after infection. The qPCR was also used to determine the viral load in tissue samples from...... pike (Esox lucius) fry challenged experimentally with EHNV....

  13. Pattern matching and adaptive image segmentation applied to plant reproduction by tissue culture

    Science.gov (United States)

    Vazquez Rueda, Martin G.; Hahn, Federico

    1999-03-01

    This paper shows the results obtained in a system vision applied to plant reproduction by tissue culture using adaptive image segmentation and pattern matching algorithms, this analysis improves the number of tissue obtained and minimize errors, the image features of tissue are considered join to statistical analysis to determine the best match and results. Tests make on potato plants are used to present comparative results with original images processed with adaptive segmentation algorithm and non adaptive algorithms and pattern matching.

  14. Sites of production of sex steroids: secretion of steroids from x-irradiated and polycystic ovaries of rats

    International Nuclear Information System (INIS)

    Sawada, T.; Ichikawa, S.

    1978-01-01

    Ovaries of immature rats and PMS-induced pregnant rats were unilaterally x-irradiated. Ten days later, the concentrations of pregnane compounds in the ovarian venous plasma were measured. LH (2 μg) was injected iv 30 min before bleeding. A comparison of steroid levels in the ovarian venous effluent of rats with and without destruction of selected tissue components by irradiation of the ovaries suggests that the follicles contribute to the secretion of 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnan-20-one in the presence of interstitial gland tissue. Because it is known that follicular tissue is involved in the production of estrogens, we studied the interrelationship between the secretion of the two progesterone metabolites and estrogens in follicular polycystic ovaries of androgen-sterilized rats. Normal ovaries of diestrus-2 rats were used as controls for the polycystic ovaries. The injection of LH greatly increased the secretion of 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnan-20-one within 1 h in normal ovaries, but the response of polycystic ovaries was low, suggesting low 5α-reductase activity in the cystic ovary. The polycystic ovaries exhibited a marked increase in the secretion of estrogens in response to LH, whereas normal ovaries showed no significant change. These results suggest that low 5α-reductase activity may be causally related to the high level of estrogen secretion in polycystic ovaries of androgen-sterilized rats

  15. Independent occurence of gastric tumor and intestinal metaplasia by x-irradiation

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Ito, Akihiro

    1986-01-01

    The selective occurence of gastric tumors and intestinal metaplasias in the stomach by X-irradiation were described both in mice and rats. The appearance of both lesions was greatly influenced by animal's strains in both species and also by the sex in rats. A few gastric tumors were observed in the animals given a high does with spilt into low doses of X-irradiation. The adequate dose for gastric tumorigenesis may be around 20 Gy in mice and 15 Gy in rats. A good relationship between X-ray dose and incidence of gastric tumor was observed in ICR mice. Frequency of intestinal metaplasia by X-irradiation was much higher in rats compared to that in mice. X-ray dose requested for moderate and induction of intestinal metaplasia was decreased with a dose which was induced erosion and gastric tumor. It has been empirically clarified that an elevation of pH value in the gastric juice is one of the principal factors responsible for the development of intestinal metaplasia in the gastric mucosa among the conditions thus for introduced. In this article, we have introduced the relevant examples about intestinal metaplasia without carcinogenic insult, and the relationship between gastric tumor and intestinal metaplasia were described. The intestinal metaplasia was not always observed within or adjacent to neoplastic gastric glands. A combined treatment of X-ray and MNNG was not effective for gastric tumor and frequency of intestinal metaplasia was inversely related to the incidence of gastric tumors. In conclusion, occurrence of gastric tumor and intestinal metaplasia may be independent, and intestinal metaplasia might not be a prerequite for the occurrence of gastric tumor. (author)

  16. Cytotoxic effect of x-irradiation of mouse tumor cells in the presence of Korean ginseng extract

    International Nuclear Information System (INIS)

    Kwon, Hyoung Cheol; Kim, Jin Ki; Kim, Jung Soo; Choi, Dong Seong

    2000-01-01

    We already reported the results that aqueous extract of Korean ginseng roots showed a marked cytotoxicity. In this study, we investigated whether combined ginseng product with X-irradiation increase the cytotoxicity of tumor cells than X-irradiation or not. Fifty gram of Korean ginseng powder mixed with 1 L of distilled water was extracted with reflux flask under condition of 100 .deg. C for 5 hrs. This aqueous ginseng extract was filtered, centrifuged and then was freezed under condition of -90 .deg. C for 16-18 hrs. The freezing extract was dried with freeze drier, and then diluted. X-irradiation was given to tumor cells by 6 MeV linear accelerator. The cytotoxicity of ginseng in vitro was evaluated from its ability to reduce the clonogenecity of fibrosarcoma (FSa ll) cells. In X-irradiation alone group, each 2, 4, 6 and 8 Gy was given to tumor cells. In X-irradiation with ginseng group, 0.2 mg/mL or ginseng extract was exposed to tumor cells for 1 hour before X-irradiation. The yield for 50 g of ginseng extract which was treated with freezing drier was 3.13 g(6.3%). Cytotoxicity in vitro was measured as survival fraction which was judged from the curve, at ginseng concentration of 0.001, 0.01, 0.1 and 1 mg/ml were 0.89±0.04, 0.86±0.06, 0.73±0.01 and 0.09±0.02, respectively. Survival fraction at X-irradiation alone of 2, 4, 6 and 8 Gy were 0.81±0.07, 0.42±0.08, 0.15±0.02, 0.03±0.01, respectively. But, survival fraction in combined group of X-irradiation and ginseng (0.2mg/mL) at each same radiation dose were 0.28±0.01, 0.18±0.03, 0.08±0.02, 0.006±0.002, respectively (p<0.05). The yield for ginseng extract which was treated with freezing drier was 6.3%. Cytotoxicity of Fsa II in combined ginseng with X-irradiation group was increased than that at X-irradiation alone group, and its enhancing effect seemed to be added

  17. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  18. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G 2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G 2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H 2 O 2 , or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G 2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  19. Late division kinetics in relation to modification of protein synthesis in mouse eggs blocked in the G2 phase after X-irradiation; and comment

    International Nuclear Information System (INIS)

    Grinfeld, S.; Gilles, J.; Jacquet, P.; Baugnet-Mahieu, L.; Rowley, R.

    1987-01-01

    Mouse zygotes (BALB/c blocked in the G 2 phase of the first cell cycle after X-irradiation were allowed to develop in culture medium. Delayed cleavage occurred at the same time in embryos exposed to 1 or 2 Gy and late division coincided with the second division in controls. Two dimensional electrophoresis showed that blocked irradiated embryos underwent the same modifications in protein synthesis as control embryos of the same age, except during first mitosis, for three polypeptide sets of 30, 35 and 45 kilodaltons molecular weight. The most remarkable difference between them was the appearance in cleaving controls of three spots at 35 kilodaltons that were absent in blocked irradiated embryos. It is assumed that blocked embryos 'missed' some signal necessary for cell division, but remained ready to cleave when a second signal occurred. Eggs from the BALB/c strain were particularly susceptible to this effect of X-irradiation but it was also found in eggs from other strains, irradiated with much higher doses. The accompanying comment by Rowley discusses the point of interruption of the control mechanism and the nature of the lesions involved. (author)

  20. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    International Nuclear Information System (INIS)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-01-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia

  1. Effect of local x-irradiation on mice reproduction in two successive generations

    International Nuclear Information System (INIS)

    Strel'nikova, N.K.; Lisenkova, L.N.

    1978-01-01

    For an experimental assessment of the biologic effectiveness of a single exposure to local irradiation exposure in simulating the conditions of exposure in X ray studies, an experiment was carried out on white mice. Mice of two successive generations were exposed to local X irradiation in the eye region. The radiation was found to bring about changes in the reproductive function (such as sterility, reduced litter size and fertility of females); these changes being dose-dependent in a nonlinear manner. The biologic effect of irradiation was greater in the second-generation mice

  2. Alteration in adenylate cyclase response to aminergic stimulation following neonatal x-irradiation

    International Nuclear Information System (INIS)

    Chronister, R.B.; Palmer, G.C.; Gerbrandt, L.

    1980-01-01

    X-irradiation of the rat neonatal hippocampus produces severe alterations in the architectonic features of the mature hippocampus. The most prominent alteration is a marked depletion of the granule cells of the dentate gyrus, with a subsequent realignment of CA 4 cells. The present data also show that norepinephrine (NE), dopamine and histamine stimulation of adenylate cyclase activity is severely attenuated in the hippocampi of irradiated animals. This failure suggests that the NE fibers of irradiated subjects, although normal in content of NE, are not functional in some of their NE-effector actions

  3. The effect of x-irradiation on the development of Fasciola gigantica (cobbold, 1885) in goats

    International Nuclear Information System (INIS)

    Ravi Chandra

    1976-01-01

    The effect of varying doses (1 kr, 3 kr, 5 kr) of x-irradiation on the development of Fasciola gigantica, the common liver fluke of livestock in India has been investigated in goat kids with a view to develop a radiation attenuated vaccine against the pathogen. The growth and development of the flukes recovered from animals infected with irradiated metacercarie is found to be retarded. Metacecariae exposed to 3 kr can develop further, but number of flukes recovered from animals infected with metacecariae exposed to 5 kr is considerably less than the one from animals infected with non-irradiated metacercariae. (M.G.B.)

  4. Effect of x-irradiation on succinate dehydrogenase activity in mouse Mus booduga

    International Nuclear Information System (INIS)

    Rajarami Reddy, G.; Pavan Kumar, T.; Vijayalakshmi, S.; Sasira Babu, K.

    1979-01-01

    Succinate dehydrogenase (SDH) activity in brain and liver of lethally X-irradiated Mus booduga exhibited increase (7 to 11 percent) during early (2 hrs) hours and a gradual fall reaching the normal level by 5th day of post-irradiation period. Enzyme substrate affinity, though it dropped during first three days, was highest by 5th day. But in sartorius muscle, both enzyme level and its affinity to substrate had decreased. It is suggested that brain and liver are more radioresistant than sartorius muscle. (auth.)

  5. Culture methods of allograft musculoskeletal tissue samples in Australian bacteriology laboratories.

    Science.gov (United States)

    Varettas, Kerry

    2013-12-01

    Samples of allograft musculoskeletal tissue are cultured by bacteriology laboratories to determine the presence of bacteria and fungi. In Australia, this testing is performed by 6 TGA-licensed clinical bacteriology laboratories with samples received from 10 tissue banks. Culture methods of swab and tissue samples employ a combination of solid agar and/or broth media to enhance micro-organism growth and maximise recovery. All six Australian laboratories receive Amies transport swabs and, except for one laboratory, a corresponding biopsy sample for testing. Three of the 6 laboratories culture at least one allograft sample directly onto solid agar. Only one laboratory did not use a broth culture for any sample received. An international literature review found that a similar combination of musculoskeletal tissue samples were cultured onto solid agar and/or broth media. Although variations of allograft musculoskeletal tissue samples, culture media and methods are used in Australian and international bacteriology laboratories, validation studies and method evaluations have challenged and supported their use in recovering fungi and aerobic and anaerobic bacteria.

  6. The basic design and requirement for plant tissue culture laboratory in MINT

    International Nuclear Information System (INIS)

    Azraf Azman; Rosli Darmawan; Rusli Ibrahim; Mohd Nazir Basiran; Azhar Mohamad; Mohamed Najli Mohamed Yasin; Shuhaimi Shamsuddin

    2005-01-01

    The production of multiple species plantlets involves a relatively complex process and it is a highly specialized operation. Tissue culture technology is rapidly becoming a commercialized method for propagating new cultivars, rare species and difficult-to-propagate plant. Not only are skills and knowledge essential but the laboratory itself also plays an important role to ensure the successful growth of the plantlets. To produce quality plantlets, plant tissue culture laboratories should fulfill the basic requirements. The laboratory should have proper building and layout which comprise of media preparation and washing room, sterilization or autoclave room, transfer room and culture or growth room. The scope of this paper is to compare these fundamental requirements with the plant tissue culture laboratory in MINT. All the basic needs and differences will be discussed and the proposal for corrective actions will be presented. (Author)

  7. TCUP: A novel hAT transposon active in maize tissue culture

    Directory of Open Access Journals (Sweden)

    Alan eSmith

    2012-01-01

    Full Text Available Transposable elements are capable of inducing heritable de novo genetic variation. The sequences capable of reactivation, and environmental factors that induce mobilization, remain poorly defined even in well-studied genomes such as maize. We treated maize tissue culture with the demethylating agent 5-aza-2-deoxcytidine and examined long-term tissue culture lines to discover silenced transposable elements that have the potential to induce heritable genetic variation. Through these screens we have identified a novel low copy number hAT transposon, Tissue Culture Up-Regulated (TCUP, which is transcribed at high levels in long-term maize Black Mexican Sweet (BMS tissue culture and up-regulated in response to treatment with 5-aza-2-deoxycytidine. Analysis of the TIGR Maize Gene Index revealed that this element is the most frequently represented EST from the BMS cell culture library and is not represented in other tissue libraries, which is the basis for its name. A full-length sequence was assembled in inbred B73 that contains the putative functional motifs required for autonomous movement of a hAT transposon. Transposon display detected movement of TCUP in two long-term tissue cultured cell lines of the genotype Hi-II AxB and BMS. This research implicates TCUP as a transposon that is capable of reactivation and which may also be particularly sensitive to the stress of the tissue culture environment. Our findings are consistent with the hypothesis that epigenetic alterations potentiate genomic responses to stress during clonal propagation of plants.

  8. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  10. Fabrication of a thermoresponsive cell culture dish: a key technology for cell sheet tissue engineering

    Directory of Open Access Journals (Sweden)

    Jun Kobayashi and Teruo Okano

    2010-01-01

    Full Text Available This article reviews the properties and characterization of an intelligent thermoresponsive surface, which is a key technology for cell sheet-based tissue engineering. Intelligent thermoresponsive surfaces grafted with poly(N-isopropylacrylamide exhibit hydrophilic/hydrophobic alteration in response to temperature change. Cultured cells are harvested on thermoresponsive cell culture dishes by decreasing the temperature without the use of digestive enzymes or chelating agents. Our group has developed cell sheet-based tissue engineering for therapeutic uses with single layer or multilayered cell sheets, which were recovered from the thermoresponsive cell culture dish. Using surface derivation techniques, we developed a new generation of thermoresponsive cell culture dishes to improve culture conditions. We also designed a new methodology for constructing well-defined organs using microfabrication techniques.

  11. Effect of induced mutagenesis in rice tissue culture

    International Nuclear Information System (INIS)

    Maddumage, R.

    1994-01-01

    The influence of chemical mutagens and ionising radiation on growth, regenerative capacity of rice callus culture and the effect o9f mutagens on frequency and spectrum of mutant regenerants, derived from calli and determination of approximate semi-lethal dose of each mutagen on rice calli was studied. Intact mature de-husked grains and pieces of primordial particles of four varieties were used as explants in the experiment. Organogenesis was induced using MS media supplemented with agar. After thirty days calluses were subjected to varying concentrations/dosage of mutagens. The effect of mutagens on growth of callus was stimulative in low concentration/doses at short exposure, but in higher concentration/doses at longer exposure it was oppressive. In x-radiation treatment all the studied doses showed only stimulative effect on growth. The effect of mutagenic treatment on regenerative capacity was negative. No specificity was found even between two chemical mutagens of their action on studied characters

  12. Ontogenetic changes in the ultrastructure of rat hepatocyte organelles after prenatal x irradiation

    International Nuclear Information System (INIS)

    Chedid, A.; Nair, V.

    1975-01-01

    The effects of prenatal x irradiation on the development of hepatocyte organelles have been studied in Sprague-Dawley rats. Pregnant rats received 50 R to the pelvic region on the 13th gestation day (g.d.). Animals were sacrificed on g.d.'s 15 and 20, day of birth, and 5th postnatal day. The fetal and neonatal livers were obtained and processed for electron-microscopic examination. The most striking discernible change after irradiation involves the appearance of cytoplasmic ''polyribosomal aggregates'' in the hepatocyte specimens of 15th and 20th g.d.'s. In the control rat, smooth endoplasmic reticulum (SER) appears for the first time on 20th g.d., while no SER could be detected in the hepatocytes from the irradiated animals at this period nor on day of birth. In the irradiated animals, SER was observed on the 5th postnatal day. Our results are consistent with the hypothesis that lipid peroxidation membrane alteration, delayed appearance of SER, and ''polyribosomal aggregation'' may be sequentially linked events after prenatal x irradiation. (U.S.)

  13. Post-X-irradiation effects on petunia pollen germinating in vitro and in vivo

    International Nuclear Information System (INIS)

    Gilissen, L.J.W.

    1978-01-01

    The germination of Petunia hybrida L. pollen grains in germination medium, containing 10% sucrose and 0.01 % H 3 BO 3 , was linearly related to relative humidity (RH): being minimal at 0 % RH and maximal at 100 % RH. The low germination at 0 % RH was completely restored after transfer to 100 % RH. Germination in medium decreased with increasing X-ray exposures between O and 400 kR. This decrease was caused by pollen rupture. No in vitro germination occurred at exposures of 400 kR and more. The radiosensitivity of pollen in vitro was minimal at 80 % RH. Transfer of pollen to the stigma post-X-irradiation resulted in resistance to much higher exposures of irradiation (<750 kR). The differences in radiosensitivity of the pollen germinated in vitro and in vivo are due possibly to the differences in composition of the germination medium and the stigmatic exudate. Pollen tube growth of irradiated pollen after compatible or incompatible pollination at first showed retarded then normal tube growth. A conclusion is that X-irradiation of pollen cannot influence the characteristics of pollen tube growth after compatible or incompatible pollination. (author)

  14. Adaptive response of the chicken embryo to low doses of x-irradiation

    International Nuclear Information System (INIS)

    Tempel, K.; Schleifer, S.

    1995-01-01

    Chicken embryos were x-irradiated in ovo with 5-30 cGy (=priming dose) at the 13th-15th day of development. After 3-48 h, brain- and liver-cell suspensions were x-irradiated in vitro with (challenge) doses of 4-32 Gy. Significantly less radiation damage was observed when the radiation response was measured by scheduled DNA synthesis, nucleoid sedimentation and viscosity of alkaline cell lysates 12-36 h after the priming exposure. In vivo, pre-irradiation with 10 cGy enhanced regeneration as evidenced by the DNA content of chicken embryo brain and liver 24 h following a challenge dose of 4 Gy. From nucleoid sedimentation analyses in brain and liver cells immediately after irradiation with 16 Gy and after a 30-min repair period in the presence of aphidicolin, dideoxythymidine and 3-aminobenzamide or in the absence of these DNA repair inhibitors, it is concluded that a reduction of the initial radiation damage is the dominant mechanism of the ''radio-adaptive'' response of the chicken embryo. Sedimentation of nucleoids from ethidium bromide (EB) (0.75-400 μg/ml)-treated cells suggests a higher tendency of ''radio-adapted'' cells to undergo positive DNA supercoiling in the presence of high EB concentrations. (orig.)

  15. BCR-ABL fusion genes are inducible by X-irradiation in vitro

    International Nuclear Information System (INIS)

    Ito, Takashi; Seyama, Toshio; Mizuno, Terumi; Hayashi, Tomonori; Nakamura, Nori; Akiyama, Mitoshi; Dohi, Kiyohiko.

    1992-01-01

    The Philadelphia chromosome consists of a reciprocal translocation between the ABL oncogene at chromosome 9q34 and the BCR gene at chromosome 22q resulting in the expression of chimeric BCR-ABL mRNAs specific to chronic myelogenous leukemia (CML). The presence of the fusion genes can be detected with high specificity and sensitivity by means of reverse transcription and polymerase chain reaction. Using this assay, it was possible to detect BCR-ABL fusion genes induced among HL60 cells after 100 Gy of X-irradiation in vitro. A total of five fusion gene transcripts were obtained. These fusion genes contained not only CML-specific BCR-ABL rearrangements, but also other forms of BCR-ABL fusions. These latter genes had junctions of BCR exon 4/ABL exon 2 intervened by a segment of DNA of unknown origin, BCR exon 5/ABL exon 2, and BCR exon 4/ABL exon 2. The results appear to be the first evidence for the induction of the BCR-ABL fusion gene by X-irradiation. In terms of leukemogenesis, it is suggested that only those cells bearing certain CML-related BCR-ABL fusion genes are positively selected by virtue of a growth advantage in vivo. (author)

  16. Vaccination against bovine schistosomiasis japonica with highly X-irradiated schistosomula

    International Nuclear Information System (INIS)

    Hsue, S.Y.; Hsue, H.F.; Xu, S.T.; Shi, F.H.; He, Y.X.; Clarke, W.R.; Johnson, S.C.

    1983-01-01

    Cercariae of the Chinese mainland strain of Schistosoma japonicum were used. Eighteen cattle, divided into six groups of three each, were immunized with schistosomula transformed from cercariae exposed to three different doses of X-irradiation (24, 36, and 48 kR). The immunization was given either once, twice, or thrice, and the number of immunizing schistosomula was 10,000 or more in each immunization. The immunized cattle were challenged with 500 normal cercariae. Five native cattle were similarly infected with normal cercariae as controls. All cattle were killed 32-33 days after challenge or infection, and the worms were obtained by perfusion. The mean worm reduction in the 18 experimental animals varied from 42.1 to 96.0%. The mean percent worm reduction of the six experimental groups varied from 54.8 to 87.1. The reduction was greater with increasing numbers of immunizations, and was higher in the groups immunized with schistosomula exposed to 36 kR than in those exposed to 24 or 48 kR. Statistical analyses showed that all immunized groups yielded significantly fewer worms than controls. However, the three doses of X-irradiation (24, 36, and 48 kR) had no significant effect for a fixed number of immunizations (1, 2, or 3). The means for both two and three immunizations were significantly different from the mean for one immunization, although they were not significantly different from each other

  17. Expression of transforming and mutational phenotypes in golden hamster embryo cells after X-irradiation

    International Nuclear Information System (INIS)

    Watanabe, Masami; Suzuki, Keiji

    1989-01-01

    It is well known that the transforming phenotypes gradually express during subculturing after treatment of chemical carcinogens. However we have a few information about radiation-carcinogenesis. In this study, we investigated that the dynamics of expression of transforming phenotypes in X-ray induced transformants of golden hamster embryo (GHE) cells. GHE cells expressed several transforming phenotypes after X-irradiation. Although morphological change was a transit phenotype expressed soon after X-irradiation, the only progeny of them expressed the other transforming phenotypes, such as anchorage-independent growth, immortality and tumorigenicity, during extensive subculturing in GHE cells. No transformants showed activation of any oncogenic genes by DNA transfection assay using NIH 3T3 cells. Numerical chromosome changes, however, may affect neoplastic progression and trisomy of chromosome 3 may play an important role in tumorigenicity. We also compared proteins of normal and transformed GHE cells with SDS-PAGE. Protein band with MW of approximately 240 Kd were absent in transformed GHE cells. Thus, chromosome number and the expression of cellular proteins may be altered in radiation induced transformed cells. More detail studies are undergoing. (author)

  18. Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: identifying genes associated with callogenesis and embryogenesis.

    Science.gov (United States)

    Low, Eng-Ti L; Alias, Halimah; Boon, Soo-Heong; Shariff, Elyana M; Tan, Chi-Yee A; Ooi, Leslie Cl; Cheah, Suan-Choo; Raha, Abdul-Rahim; Wan, Kiew-Lian; Singh, Rajinder

    2008-05-29

    Oil palm (Elaeis guineensis Jacq.) is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes. A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs). The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames. This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However, in order to confirm whether these genes are suitable as

  19. Oil palm (Elaeis guineensis Jacq. tissue culture ESTs: Identifying genes associated with callogenesis and embryogenesis

    Directory of Open Access Journals (Sweden)

    Ooi Leslie CL

    2008-05-01

    Full Text Available Abstract Background Oil palm (Elaeis guineensis Jacq. is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes. Results A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs. The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames. Conclusion This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However

  20. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. I I . - X- irradiation effects and influence of hyperthermia on the radiosensitivity; Termo-radiosensibilidad del precursor hematopoyetico que origina las series granulocitica y macrofaga de raton. II. - Efectos producidos por la radiacion X e influencia de la hipertermia sobre la radiosensibilidad celular

    Energy Technology Data Exchange (ETDEWEB)

    Bueren, J. A.; Nieto, M.

    1983-07-01

    The effects of the X-irradiation on the viability of the granulocyte-macrophage precursors, has been determined by means of the agar diffusion chamber culture technique. The results show the high radiosensitivity of these cells, with survival parameter similar to those previously reported in the literature about different granulocyte-macrophage precursors. When a hyperthermic treatment is performed prior to the X-irradiation, a radiosensitization phenomenon is observed due to the synergism existent between hyperthermia and X rays on the lethality of the precursors. (Authors) 37 refs.

  1. Project on production of mutants by irradiation of in vitro cultured tissues of coconut and banana and their mass propagation by the tissue culture technique

    International Nuclear Information System (INIS)

    Guzman, E.V. de

    1975-01-01

    Fruit pulp tissue, ovary segments with or without ovules and sections from shoot tips of banana were used for studies on growth stimulating or morphogenetic effects of irradiation. Irradiation at 0.1-1.0 kR tended to induce faster callus growth in the otherwise slow-growing cultures. The physical condition and composition of the culture media especially with respect to growth regulators were studied, as were techniques to overcome discoloration of explants, the best choice of plant tissue for explant, and radiation effects on growth and morphogenesis. Due to the difficulty of callus induction with coconut, only the effects of irradiation on embryos cultured in vitro were studied. They were irradiated at various stages of development, i.e. during the early and final stage of liquid culture, and several days after transfer to a solid medium. Adverse effects of irradiation became evident only during the subsequent growth in solid, during the latter stage of which morphological changes were observed. Whereas irradiation of the liquid as well as solid media up to 50 kR had no adverse effect; survival and development became adversely affected at a dose of 1 kR

  2. Tissue culture system using a PANDA ring resonator and wavelength router for hydroponic plant.

    Science.gov (United States)

    Kamoldilok, Surachart; Suwanpayak, Nathaporn; Suttirak, Saisudawan; Yupapin, Preecha P

    2012-06-01

    A novel system of nanofluidics trapping and delivery, which is known as a tissue culture system is proposed. By using the intense optical pulse(i.e., a soliton pulse) and a system constructed by a liquid core waveguide, the optical vortices (gradient optical fields/wells) can be generated, where the trapping tools in the same way as the optical tweezers in the PANDA ring resonator can be formed. By controlling the suitable parameters, the intense optical vortices can be generated within the PANDA ring resonator, in which the nanofluidics can be trapped and moved (transported) dynamically within the Tissue culture system(a wavelength router), which can be used for tissue culture and delivery in the hydroponic plant system.

  3. Plants regenerated from tissue culture contain stable epigenome changes in rice.

    Science.gov (United States)

    Stroud, Hume; Ding, Bo; Simon, Stacey A; Feng, Suhua; Bellizzi, Maria; Pellegrini, Matteo; Wang, Guo-Liang; Meyers, Blake C; Jacobsen, Steven E

    2013-03-19

    Most transgenic crops are produced through tissue culture. The impact of utilizing such methods on the plant epigenome is poorly understood. Here we generated whole-genome, single-nucleotide resolution maps of DNA methylation in several regenerated rice lines. We found that all tested regenerated plants had significant losses of methylation compared to non-regenerated plants. Loss of methylation was largely stable across generations, and certain sites in the genome were particularly susceptible to loss of methylation. Loss of methylation at promoters was associated with deregulated expression of protein-coding genes. Analyses of callus and untransformed plants regenerated from callus indicated that loss of methylation is stochastically induced at the tissue culture step. These changes in methylation may explain a component of somaclonal variation, a phenomenon in which plants derived from tissue culture manifest phenotypic variability. DOI:http://dx.doi.org/10.7554/eLife.00354.001.

  4. The response of human nasal and bronchial organotypic tissue cultures to repeated whole cigarette smoke exposure.

    Science.gov (United States)

    Talikka, Marja; Kostadinova, Radina; Xiang, Yang; Mathis, Carole; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Frentzel, Stefan; Merg, Celine; Geertz, Marcel; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    Exposure to cigarette smoke (CS) is linked to the development of respiratory diseases, and there is a need to understand the mechanisms whereby CS causes damage. Although animal models have provided valuable insights into smoking-related respiratory tract damage, modern toxicity testing calls for reliable in vitro models as alternatives for animal experimentation. We report on a repeated whole mainstream CS exposure of nasal and bronchial organotypic tissue cultures that mimic the morphological, physiological, and molecular attributes of the human respiratory tract. Despite the similar cellular staining and cytokine secretion in both tissue types, the transcriptomic analyses in the context of biological network models identified similar and diverse biological processes that were impacted by CS-exposed nasal and bronchial cultures. Our results demonstrate that nasal and bronchial tissue cultures are appropriate in vitro models for the assessment of CS-induced adverse effects in the respiratory system and promising alternative to animal experimentation. © The Author(s) 2014.

  5. Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants.

    Science.gov (United States)

    Díaz Lantada, Andrés; Pareja Sánchez, Beatriz; Gómez Murillo, Cristina; Urbieta Sotillo, Javier

    2013-09-01

    Tissue engineering is a rapidly evolving field in which the complexity of biomaterials and biostructures, with typically non-Euclidean or fractal-like geometries, has to be adequately taken into account for the promotion of enhanced and even personalized diagnostic and therapeutic solutions. This study covers the main applications of fractals in the field of tissue engineering, including their advantages for modeling biological processes and cell-culture procedures, but specially focusing on their benefits for describing the complex geometries and structures of biomaterials (both natural and synthetic), many of which have potential uses for the development of cell culture microsystems, scaffolds for tissue repair and implants for tissue repair in general. We also explore the main supporting design, simulation and manufacturing technologies, as well as the most remarkable difficulties and limitations linked to the generalized use of fractals in engineering design, and also detail some current solution proposals and future directions.

  6. Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize.

    Science.gov (United States)

    Stelpflug, Scott C; Eichten, Steven R; Hermanson, Peter J; Springer, Nathan M; Kaeppler, Shawn M

    2014-09-01

    Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states. Copyright © 2014 by the Genetics Society of America.

  7. Usefulness of fibroblast culture for testing of cattle tissues polluted with heavy metals

    International Nuclear Information System (INIS)

    Weglarz, L.; Drozdz, M.Wa.; Wardas, M.; Kula, B.; Pawlaczyk-Szpilowa, M.

    1990-01-01

    Cattle tissues (liver, kidney, brain, and lung) that had been polluted with heavy metals were tested for their ability to alter fibroblast culture growth, cellular protein and DNA content, and fibroblast DNA synthesis. At 72 hr of incubation a significant increase in cellular DNA and [14C]thymidine incorporation was noted in the primary cultures as well as in the subcultures compared to controls. Fibroblast cultures also displayed growth inhibition and reduction in protein content. The measurement of basic biochemical parameters of the fibroblast culture may represent a sensitive means of assessing rapidly the activity of heavy metals deposited in the tissues of cattle as a result of their grazing on polluted soil

  8. Current status and future prospects for cultured limbal tissue transplants in Australia and New Zealand.

    Science.gov (United States)

    Harkin, Damien G; Apel, Andrew J; Di Girolamo, Nick; Watson, Stephanie; Brown, Karl; Daniell, Mark D; McGhee, J Jane; McGhee, Charles N J

    2013-04-01

    Cultured limbal tissue transplants have become widely used over the last decade as a treatment for limbal stem cell deficiency (LSCD). While the number of patients afflicted with LSCD in Australia and New Zealand is considered to be relatively low, the impact of this disease on quality of life is so severe that the potential efficacy of cultured transplants has necessitated investigation. We presently review the basic biology and experimental strategies associated with the use of cultured limbal tissue transplants in Australia and New Zealand. In doing so, we aim to encourage informed discussion on the issues required to advance the use of cultured limbal transplants in Australia and New Zealand. Moreover, we propose that a collaborative network could be established to maintain access to the technology in conjunction with a number of other existing and emerging treatments for eye diseases. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  9. Identification of Stevioside Using Tissue Culture-Derived Stevia (Stevia rebaudiana) Leaves

    Science.gov (United States)

    Karim, Md. Ziaul; Uesugi, Daisuke; Nakayama, Noriyuki; Hossain, M. Monzur; Ishihara, Kohji; Hamada, Hiroki

    2015-01-01

    Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for identification of stevioside from tissue culture-derived stevia leaf. Stevioside in the sample was identified using HPLC by measuring the retention time. The percentage of stevioside content in the leaf samples was found to be 9.6%. This identification method can be used for commercial production and industrialization of stevia through in vitro culture across the world. PMID:28008268

  10. Reactivation of UV- and γ-irradiated herpes virus in UV- and X-irradiated CV-1 cells

    International Nuclear Information System (INIS)

    Takimoto, K.; Niwa, O.; Sugahara, T.

    1982-01-01

    Enhanced reactivation of UV- and γ-irradiated herpes virus was investigated by the plaque assay on CV-1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiated CV-1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for γ-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. Thus the UV- or X-irradiated CV-1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of γ-ray damaged ones. (author)

  11. Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells

    International Nuclear Information System (INIS)

    Shinomiya, Nariyoshi; Kuno, Yukie; Yamamoto, Fuyumi; Fukasawa, Masashi; Okumura, Atsushi; Uefuji, Megumi; Rokutanda, Makoto

    2000-01-01

    Purpose: Apoptosis is currently being evaluated for its importance as a pathway of radiation-induced cell death. However, the difference in the mechanisms between premitotic and postmitotic apoptosis following X-irradiation remains not well understood. We show here that the human monoblastoid cell line U937 can be induced to undergo these two different types of apoptosis. Methods and Materials: U937 cells were irradiated at a dose of 5 or 20 Gy, and the DNA fragmentation rate was measured by both flow cytometric analysis and gel electrophoresis. Activation of caspase-3 was detected by Western blot analysis and fluorogenic assay using acetyl-Asp-Glu-Val-Asp-7-amino-4-methyl-coumarin (Ac-DEVD-AMC). Detection of mitochondrial transmembrane potential (no. DELTAno. no. PSIno. ) was performed by using Rho123. Chasing of S-phase fraction following X-irradiation was performed after labeling with 5-bromo-2'-deoxyuridine (BrdU). Thymidine was used for synchronization of the cells. Inhibition of caspase-3 activity was achieved by Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO). Results: Time courses of the apoptotic rates, caspase activation, and no. DELTAno. no. PSIno. indicated that two different types of cell death were induced by the different X-ray doses. High-dose X-ray (20 Gy) induced a rapid and strong apoptosis, whereas low-dose X-ray (5 Gy) induced a slow and mild apoptosis. Cell-cycle analyses revealed that there was cell death before cell division in the former apoptosis but the cells must be dying after cell division in the latter apoptosis. By means of cell-cycle synchronization, the S-phase cells proved to be the most sensitive fraction to premitotic apoptosis, but an obvious difference in the susceptibility to cell death among the cell-cycle phases was not observed in postmitotic apoptosis. Ac-DEVD-CHO treatment effectively blocked caspase activity and premitotic apoptosis, but it failed to block postmitotic apoptosis. Conclusions: Irradiation of U937 cells at

  12. Multifunctional sensing membrane-based platform for tissue or cell culturing and monitoring

    DEFF Research Database (Denmark)

    2014-01-01

    The present application discloses a water-permeable sensor membrane comprising i) a first layer of a conductive material defining at least one electrode and having a thickness of 0.1-,000 [mu]m; ii) a second layer of a nanostructure material build on the first layer; and iii) a third, topmost......, layer of a conducting polymer material defining at least one electrode and having a thickness of 0.001-1.0 [mu]m. The application also discloses a tissue or cell culture sample monitoring assembly comprising a sensor assembly and a tissue sample or a cell culture sample arranged on top of the third...

  13. Structure and component alteration of rabbit Achilles tendon in tissue culture.

    Science.gov (United States)

    Hosaka, Yoshinao; Ueda, Hiromi; Yamasaki, Tadatsugu; Suzuki, Daisuke; Matsuda, Naoya; Takehana, Kazushige

    2005-12-01

    The aim of this study was to investigate alterations of cultured tendon tissues to determine whether tissue culture is a useful method for biological analyses of the tendon. Tendon tissues for tissue culture were isolated from Achilles tendons of rabbits. The tendon segments were placed one segment per well and incubated in growth medium consisting of Dullbecco's modified Eagle's medium supplemented with 5% fetal bovine serum at 37 degrees C in a humidified atmosphere with 5% CO(2) for various periods. The alignment of collagen fibrils was preserved for 48 h, but tendon structure has disintegrated at 96 h. Alcian blue staining and gelatine zymography revealed that proteoglycan markedly diminished and that matrix metalloproteinase (MMPs) activity was upregulated sharply at 72 and 96 h. The ratio of collagen fibrils with large diameter had increased and the mean diameter and mass average diameter value had reached maximum at 48 h. The values then decreased and mean diameters at 72 and 96 h were significantly different from that at 48 h. At 96 h, the ratio of collagen fibrils with small diameters had increased and collagen fibrils with large diameters had disappeared. These findings indicate that structural alteration is possible to be induced by disintegration of collagen fibrils and disappearance of glycosaminoglycans from extracellular matrix (ECM), subsequent of upregulation of MMPs activity. Although the study period is limited, the tissue culture method is available for investigating cell-ECM interaction in tendons.

  14. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    International Nuclear Information System (INIS)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B.

    1990-01-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients

  15. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. (Univ. of Maryland Dental School, Baltimore (USA))

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  16. Identification of Stevioside Using Tissue Culture-Derived Stevia (Stevia rebaudiana) Leaves

    OpenAIRE

    Karim, Md. Ziaul; Uesugi, Daisuke; Nakayama, Noriyuki; Hossain, M. Monzur; Ishihara, Kohji; Hamada, Hiroki

    2016-01-01

    Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for iden...

  17. Culture of three-dimensional tissue model and its application in bystander-effect research

    International Nuclear Information System (INIS)

    Wu Ruqun; Xu An; Wu Lijun; Hu Burong

    2012-01-01

    Compared with the cultured monolayer (2D) cells, three-dimensional (3D) tissue could be more similar to the environment in vivo including the physical support, chemical factors, cell-cell and cell-matrix interaction and so on. With the development of three-dimensional cell culture techniques (TDCC), 3D tissue is widely used in the areas of bystander effect research. This review focuses on introducing the TDCC method and its application in bystander-effect research. First, the development process of 3D tissue culture method was introduced. Secondly, the induction of radiation induced bystander effects both in 2D cell and 3D tissue and its mechanisms were reviewed. Finally, because heavy ion (carbon ion beam) has been developed as a useful tool to cure solid cancer, and the 3D tissue model is an ideal material to study the damages on body after being irradiated and to understand the underlying mechanisms, future study about heavy ion radiation inducing bystander effect in 3D tissue was discussed. (authors)

  18. Detection of genotoxicity in the marine environment: A preliminary feasibility study using primary mussel tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Cornet, Michel [UMR 5805 EPOC ' Environnements et Paleoenvironnements Oceaniques' , Universite Bordeaux 1, CNRS, Avenue des Facultes, 33405 Talence Cedex (France)]. E-mail: m.cornet@epoc.u-bordeaux1.fr

    2007-08-15

    The purpose of this study was to evaluate the feasibility and potential usefulness of primary cultures of somatic tissues from adult mussel by means of sister chromatid exchange induction (SCE). This research is an initial pilot study carried out with mussel mantle tissue using seawater artificially contaminated with cadmium and polluted seawater from the port of Arcachon. With regard to cadmium concentration, mean SCE numbers showed a progressive increase from 1.07 {+-} 0.18 per diploid cell in controls (i.e. cultures without contaminant) to 2.91 {+-} 0.42 per diploid cell for the highest concentration, 10{sup -4} M. With regard to the medium prepared with seawater from the port of Arcachon, the mean SCE number reached a value of 5.85 {+-} 0.85 per diploid cell. The analysis of SCEs induced by cadmium showed DNA responses even at the lowest concentration (i.e. 10{sup -7} M). The study demonstrates the feasibility of the sister chromatid exchange (SCE) approach based upon primary mussel tissue culture, for the genotoxicity testing of contaminated seawater. Highlights from this procedure are (1) the presence of an active cell proliferation, (2) the use whole-water samples, (3) the possibility of culturing without serum, (4) the absence of cell dissociation before culturing and (5) a cellular proliferation which can be obtained in cultures carried out in a medium containing seawater whose salinity is comprise between 28 and 35 per mille.

  19. Effects of ancestral x irradiation followed by random mating on body weight of rats

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1977-01-01

    Effects of nine generations of 450R per generation of ancestral spermatogonial x irradiation of inbred rats on body weight were examined. After six generations of random mating (avoiding inbreeding) following the termination of irradiation, descendants of irradiated males (R) were significantly lighter than their controls (C) at 3 and 6 weeks, but not at 10 weeks of age. However, differences in growth between R and C populations were small. Among-litter and within-litter variance estimates were generally larger in the R lines than in the C lines, suggesting that selection responses would be greater in R than in C lines. In conjunction with previous evidence--obtained during the irradiation phase of the experiment--this suggested that more rapid response to selection for 6-week body weight, in particular, might accrue in the R lines

  20. Cerebral malformation induced by prenatal X-irradiation: an autoradiographic and Golgi study

    International Nuclear Information System (INIS)

    Ferrer, I.; Xumetra, A.; Santamaria, J.

    1984-01-01

    Brain malformations are produced after X-irradiation at different post-conceptional ages in the rat. Malformed cortical patterns result from abnormal organisation and capricious orientation of the neurons, while a radical migratory pattern of neuroblasts outwards to the cerebral cortex is preserved in animals irradiated on the fourteenth, sixteenth or eighteenth days of gestation. Migratory disturbances are restricted to the large subcortical ectopic masses found in rats irradiated on the fourteenth gestational day and to pyramidal ectopic nodules in the hippocampus in rats irradiated on the sixteenth gestational day. Subcortical ectopic masses develop from ectopic germinal rosettes and are formed by several types of cortical neuron distributed in a stereotyped pattern. The presence of large numbers of intrinsic, afferent and efferent connections are indicative of integrative functions of the subcortical masses. (author)

  1. Cerebral malformation induced by prenatal X-irradiation: an autoradiographic and Golgi study

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, I.; Xumetra, A.; Santamaria, J. (Neuropatologia, Depto. Anatomia Patologica, C.S. ' Principes de Espana' , Hospitalet de Llobregat, Barcelona (Spain))

    1984-01-01

    Brain malformations are produced after X-irradiation at different post-conceptional ages in the rat. Malformed cortical patterns result from abnormal organisation and capricious orientation of the neurons, while a radical migratory pattern of neuroblasts outwards to the cerebral cortex is preserved in animals irradiated on the fourteenth, sixteenth or eighteenth days of gestation. Migratory disturbances are restricted to the large subcortical ectopic masses found in rats irradiated on the fourteenth gestational day and to pyramidal ectopic nodules in the hippocampus in rats irradiated on the sixteenth gestational day. Subcortical ectopic masses develop from ectopic germinal rosettes and are formed by several types of cortical neuron distributed in a stereotyped pattern. The presence of large numbers of intrinsic, afferent and efferent connections are indicative of integrative functions of the subcortical masses.

  2. Changes in lactate dehydrogenase and alkaline phosphatase in serum of mice after x-irradiation

    International Nuclear Information System (INIS)

    Takamori, Yasuhiko

    1974-01-01

    Changes in the activities of LDH and alkaline phosphatase in the serum of mice were investigated in detail from the 2nd day to the 30th day after whole-body X-irradiation of 400 R, a dose which produces 13%, 30-day-mortality. Serum LDH levels were significantly decreased during the first 6 days after irradiation, but subsequently returned to a normal range by the 14th day. Serum alkaline phosphatase levels were decreased to a minimum on the 12th day. They returned gradually to a level slightly below control level by the 22nd day. Serum LDH and alkaline phosphatase levels seem to be good indicators of radiation injury in mice during the 2-3 weeks after irradiation, even if they have been exposed to a sublethal dose. (auth.)

  3. The development of the cholinergic system in rat hippocampus following postnatal X-irradiation

    International Nuclear Information System (INIS)

    Ben-Barak, J.

    1981-01-01

    Postnatal X-irradiation of the rat hippocampus results in a marked reduction in the number of the postnatally developing granular neurons in the dentate gyrus and also caused a marked increase in the specific activity of acetylcholinesterase (AChE) and choline acetyltransferase (CAT) and a slight but consistent increase in the activity per whole hippocampus of AChE. The effect of irradiation on the granular neurons and on the cholinergic enzymes was found to be dose and age dependent. Drastic increase in specific enzymatic activities is also observed in the irradiated cerebellum whose granular neurons differentiate postnatally and to a lesser extent in the cerebral cortex in which cell formation is accomplished prior to birth. (Auth.)

  4. Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics

    Science.gov (United States)

    May, C. E.; Philipp, W. H.; Marsik, S. J.

    1974-01-01

    The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism.

  5. Infectivity and development of X-irradiated third-stage larvae of Angiostrongylus cantonensis in rats

    International Nuclear Information System (INIS)

    Fujiu, Yoshinori

    1989-01-01

    Angiostrongylus cantonensis third-stage larvae were exposed to less than 10Krad of X-radiation and then given orally to white rats to examine the effects of X-radiation on infectivity and development of the irradiated third-stage larvae and on fecundity of adults developing from the irradiated third-stage larvae. The deleterious effects of X-radiation were observed at relatively lower dosage in the above three parameters. A degree in susceptibility on X-radiation was shown to be radiation-dose-dependent. Comparing to the irradiation of larvae in vitro, the irradiation of larvae in snails caused less deleterious effects at the same dose of X-irradiation. Application of X-radiation to food hygiene was also discussed. (author)

  6. Responses of vibrissa-sensitive cortical neurons in normal and prenatally x-irradiated rat

    International Nuclear Information System (INIS)

    Ito, M.; Kawabata, M.; Shoji, R.

    1979-01-01

    Rats were irradiated by 200 R of x ray on day 17 of gestation through the body wall of the mother. When they underwent the following electrophysiological tests at the age of 3 to 4 month, the somatosensory cortex showed a lack of layers II, III, IV, and Va. Spike responses to quick whisker deflections were recorded from single cells in the somatosenory cortex of normal and prenatally x-irradiated rats. For the irradiated rats the response latency was prolonged when compared to the normal controls. Cortical laminar analysis of field potentials revealed that there was no difference in the latency of these potentials between the two groups, suggesting that vibrissal sensory signals reach the cortical level normally even in the irradiated rats. The prolonged latency of the irradiated cortical neuronal response could thus be ascribed to an abnormal intracortical delay, which was most likely associated with the failure of development of layer IV stellate cells in these preparations

  7. Influence of x-irradiation on pharyngeal induction in the Planarian, Dugesia japonica japonica

    International Nuclear Information System (INIS)

    Asai, Etsuo

    1980-01-01

    Pharyngeal formation was examined in cases where normal or X-irradiated head pieces were transplanted into the postpharyngeal region of normal or irradiated worms. Transplantation experiments were carried out in four different combinations of hosts and grafts: (1) normal host and graft (control), (2) normal host and irradiated graft, (3) irradiated host and normal graft, (4) irradiated host and graft. In the first experiment, well developed pharynges were formed in the areas both anterior and posterior to the graft on the 14th day after transplantation. In the second experiment, formation of new pharynges was delayed compared with that in the first group. In the third experiment, only one pharynx developed in the area posterior to each graft in most cases. In the last experiment, no new pharynx appeared at all. From these results, the influence of X-rays on factors participating in pharyngeal induction was discussed. (author)

  8. Alternative types of duodenal ulcer induced in mice by partial X irradiation of the thorax

    International Nuclear Information System (INIS)

    Michalowski, A.; Uehara, S.; Yin, W.B.; Burgin, J.; Silvester, J.A.

    1983-01-01

    The present study extends our earlier observations on gastrointestinal pathology in thorax-irradiated female CFLP mice. It shows that exposure of the lower mediastinum to single doses of 14-30 Gy X rays results in the formation of the proximal duodenal ulcer accompanied frequently by erosion of the antral gastric mucosa. X irradiation of the lateral thoracic fields is responsible for single ulcers in the proximity of duodenal papilla, often associated with a circumscribed area of degeneration of the fundic mucosa of the stomach. In view of the small amount of radiation received by the subdiaphragmatic parts of the alimentary tract, these gastro-duodenal lesions represent abscopal effects of thoracic irradiation

  9. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    International Nuclear Information System (INIS)

    Felker, F.C.

    1990-01-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced [ 14 C]sucrose uptake into kernels. [ 14 C]Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-[ 14 C]glucose was absorbed much more slowly than D-[ 14 C]glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium

  10. Rate of re-infection of tissue culture-derived Latin American and ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... Rate of re-infection of tissue culture-derived Latin. American and East and Southern African cassava genotypes by mosaic disease. E. B. Okorogri1, V. O. Adetimirin1, G. Ssemakula2*, B. Odu2 and A. G. O. Dixon2. 1Department of Agronomy, University of Ibadan, Oyo State, Nigeria. 2International Institute of ...

  11. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    Science.gov (United States)

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  12. Cost-effective nutrient sources for tissue culture of cassava (Manihot ...

    African Journals Online (AJOL)

    shawgi ali

    2012-08-16

    Aug 16, 2012 ... Key words: Tissue culture, cassava, nutrient sources, micropropagation, low cost medium, acclimatization. INTRODUCTION. Cassava ... This situation is exacerbated by lack of healthy planting materials. Farmers often ... a channel for transmission of systemic infections from one generation to other, leading.

  13. Efficient one-step tissue culture protocol for propagation of endemic ...

    African Journals Online (AJOL)

    Efficient one-step tissue culture protocol for propagation of endemic plant, Lilium martagon var. cattaniae Vis. M Skorić, S Živković, J Savić, B Šiler, A Sabovljević, S Todorović, D Grubišić ...

  14. Soil water requirements of tissue-cultured Dwarf Cavendish banana ( Musa spp. L)

    Science.gov (United States)

    Shongwe, V. D.; Tumber, R.; Masarirambi, M. T.; Mutukumira, A. N.

    The banana is one of the most important fruit crops in the world. In terms of consumption, the banana fruit is ranked high yet there has not been much research particularly in relation to water requirements for propagules produced by tissue culture. In recent years, tissue culture banana planting material has become increasingly important due to its vigorous growth and high yields. The objective of this study was to investigate optimum soil water requirements of tissue-cultured banana. Dwarf Cavendish tissue-cultured plantlets grown in pots in a greenhouse were subjected to four irrigation regimes at 100% ETm, 85% ETm, 65% ETm, and 40% ETm. Plant parameters measured were leaf number, plant height, pseudo-stem girth, leaf length, leaf width, leaf area, leaf area index, leaf index, leaf colour, and plant vigour. Soil water potential measurements were also made over a three-month period. Differences between irrigating at 100% ETm and 85% ETm were not significantly ( P plant height, and plant height, compared to 65% and 40% ETm treatments. Pseudo-stem girth was highest from the 100% ETm compared to the other treatments. Economic yields of banana may be obtained with irrigation regimes ranging between 100% ETm and 85% ETm.

  15. [Comparative study on alkaloids of tissue-culture seedling and wild plant of Dendrobium huoshanense ].

    Science.gov (United States)

    Chen, Nai-dong; Gao, Feng; Lin, Xin; Jin, Hui

    2014-06-01

    To compare the composition and content of alkaloid of Dendrobium huoshanense tissue-culture seedling and wild plant. A comparative evaluation on the quality was carried out by HPLC and TLC methods including the composition and the content of alkaloids. Remarkable variation existed in the two kinds of Dendrobium huoshanense. For the tissue-culture plant, only two alkaloids were checked out by both HPLC and TLC while four alkaloids were observed in the wild plant. The alkaloid content of tissue-culture seedling and wild plant was(0. 29 ± 0. 11)%o and(0. 43 ± 0. 15) %o,respectively. Distinguished difference is observed in both composition and content of alkaloids from the annual shoots of different provenances of Dendrobium huoshanense. It suggested that the quality of tissue-culture seedling of Dendrobium huoshanense might be inconsistent with the wild plant. Furthermore, the established alkaloids-knock-out HPLC method would provide a new research tool on quality control of Chinese medicinal materials which contain unknown alkaloids.

  16. Tissue culture-induced alteration in cytosine methylation in new rice ...

    African Journals Online (AJOL)

    Zizania DNA introgression could induce a large number of genetic and epigenetic changes of the new rice recombinant inbred lines genome. In this present study, we employed inter-simple sequence repeat (ISSR) to further study the genetic and epigenetic changes that are induced by tissue culture. Changes induced by ...

  17. Cost-effective nutrient sources for tissue culture of cassava ( Manihot ...

    African Journals Online (AJOL)

    Application of tissue culture technology is constrained by high costs making seedlings unaffordable. The objective of this study was to evaluate the possibility of using locally available fertilizers as alternative nutrient sources for cassava micropropagation. A Low Cost Medium (LCM) whereby the conventional sources of four ...

  18. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  19. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  20. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  1. Ex-vivo Potential of Cadaveric and Fresh Limbal Tissues to Regenerate Cultured Epithelium

    Directory of Open Access Journals (Sweden)

    Vemuganti Geeta

    2004-01-01

    Full Text Available Purpose: To evaluate and compare the ex-vivo growth potential and formation of cultured corneal epithelium from residual corneo-limbal rings obtained from the operating room after penetrating keratoplasty, and fresh limbal tissues from patients undergoing routine cataract surgery. Methods: With the approval of the Institutional Review Board and informed consent from patients, 1-2mm of limbal tissues from 15 patients and 31 tissues from the cadaveric limbal ring preserved in MK medium (16 tissues and Optisol (15 tissues were used for the study. Donor data included age, time lapse between death and collection, collection and preservation and preservation and culture. Tiny bits of the limbal tissue were explanted on the de-epithelialised human amniotic membrane prepared following standard guidelines, and cultured using Human Corneal Epithelial cell medium. Radial growth from the explant was observed and measured by phase contrast microscopy over 2-4 weeks. After adequate confluent growth, whole mount preparation of the membrane was made and stained with haematoxylin and eosin. Part of the membrane was fixed in formalin and processed for routine histologic examination. The sections were stained with haematoxylin and eosin. Results: Forty-six tissues were evaluated from 42 eyes (15 from patients, 31 from cadaveric eyes with a mean age of 55.3 years ± 21.23 years (range 18 years - 110 years. The growth pattern observed was similar in all the positive cases with clusters of cells budding from the explant over 24- 72 hours, and subsequent formation of a monolayer over the next 2-3 weeks. The stained whole mount preparation showed a radial growth of cells around explants with diameter ranging from 5 to 16mm. Histologic evaluation of the membrane confirmed the growth of 2-3 cell-layered epithelium over the amniotic membrane. Cultivated epithelium around explant cell cultures was observed in 100% (15/15 of limbal tissue obtained from patients, as against

  2. Tissue culture characteristics of maize (Zea mays L.) haploid coleoptile sections.

    Science.gov (United States)

    Jiang, L; Jing, G X; Li, X Y; Wang, X Q; Xing, Z; Deng, P K; Zhao, R G

    2015-12-08

    Doubled haploid (DH) technology, which is used for rapidly purifying genetic resources, is a key technology in modern maize breeding. The present study evaluated the tissue culture characteristics of maize haploid coleoptile sections, in order to provide a new way of haploid doubling. With 20 combinations of haploid coleoptile sections, obtained by hybridization within Reid, Tangsipingtou, and Term-tropical groups, as explants, we analyzed the induction and differentiation rate of callus, observed the number of root tip chromosomes in regenerated plants, and analyzed the pollen fertility. In addition, we used 47 SSR markers to analyze the genotypes of regenerated plants. The Reid and Tangsipingtou groups had significantly higher induction rates of haploid coleoptile callus compared to the Term-tropical group. Fifteen haploid plants were obtained which had 10 chromosomes in the root tips as assessed by I-KI staining. It was also noticed that the pollen of pollinated anthers were partially fertile. The haploid plants had genetic stability and showed no variation. The Reid and Tangsipingtou groups had good culture characteristics of haploid coleoptile sections, while the Term-tropical group had poor culture characteristics. Genotypes of haploid plants generated by tissue culture were evidenced to come from recombinant types of parents. Thus, this study established a tissue culture system of maize haploid coleoptile.

  3. Effect of adipose tissue processing procedures in culture result: a study preliminary

    Directory of Open Access Journals (Sweden)

    Jeanne A. Pawitan

    2011-02-01

    Full Text Available Background: There are various methods of processing adipose tissue before culture, depending on the adipose tissue samples. The aim of this study is to compare several modifications of culturing and sub-culturing procedures of adipose tissue to fit the condition in our laboratory.Method: This is a descriptive study that was done in the Immunology and Endocrinology Integrated Laboratory, University of Indonesia, from  October 2009 to April 2010. Three adipose tissue processing procedures, various amount of seeding and two subculture methods were compared in term of cell yield and time needed. In the first procedure, collagenase-1 digestion was done in 30minutes, cell seeding were 24,000 and 36,000 per flask; in the second procedure, collagenase-1 digestion was done in 60minutes, cell seeding were 24,000, 48,000, and 72,000 per flask; and in the third procedure, the adipose tissue remnants from the first  procedure were again digested for another 45 minutes, cell seeding were 74,000, and 148,000 per flask. Difference in subculture methods were the presence or absence of washing step.Result: Procedure 1 yielded the lowest amount of cell, and after culture, the cells grew very slow, and was contaminated before harvest of primary culture. Procedure-2 and -3 succeeded to yield primary cultures. Some of the cultures were contaminated, so that further subculture was not  applicable, and only one tissue processing procedure (procedure 2: 60 minute collagenase-1 digestion, without lysis buffer, cell seeding 48,000 and 72,000 could complete the three subcultures. Though some of the procedures could not be completed, final result could be concluded.Conclusion: In this preliminary study, 60 minute colagenase-1 digestion with intermittent shaking every 5 minutes and cell seeding around 50,000 or more, followed by subculture method without washing step gave the best result. (Med J Indones 2011; 20:15-9Keywords: collagenase-1, primary culture, subculture

  4. Design and validation of a biomechanical bioreactor for cartilage tissue culture.

    Science.gov (United States)

    Correia, V; Panadero, J A; Ribeiro, C; Sencadas, V; Rocha, J G; Gomez Ribelles, J L; Lanceros-Méndez, S

    2016-04-01

    Specific tissues, such as cartilage, undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation--amplitude and frequency--to three-dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.

  5. tissue culture

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... Spinach (Spinacia oleracea L.) is an important vegetable crop of which dioecy in nature has made cultivar improvement difficult using .... hormonal treatments at callous formation stage in all cultivars. Treatment. Means of callous ... hormones in the medium (Molvig and Rose, 1994), as shown in our present ...

  6. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children

    Directory of Open Access Journals (Sweden)

    Kumaria Rajni

    2011-07-01

    Full Text Available Abstract Background Human respiratory syncytial virus (HRSV is the most important virus causing lower respiratory infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of different RSV strains. Methods In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely hospitalized children, and without prior passage of the viruses in tissue culture. Results The analysis of nucleotide sequences suggested that vRNA length is a variable factor among primary strains, while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence variation (2-6.4%, while small hydrophobic protein and matrix genes were completely conserved across all clinical strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the HRSVA2 virus isolate in tissue culture, the HRSVA2 isolate and clinical strains formed similar virus structures such as virus filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures. Conclusion This is the first report to describe the complete genetic characterization of HRSV clinical strains that have been sequenced directly from clinical

  7. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    Science.gov (United States)

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  8. Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues.

    Directory of Open Access Journals (Sweden)

    Charissa de Bekker

    Full Text Available Fungal entomopathogens rely on cellular heterogeneity during the different stages of insect host infection. Their pathogenicity is exhibited through the secretion of secondary metabolites, which implies that the infection life history of this group of environmentally important fungi can be revealed using metabolomics. Here metabolomic analysis in combination with ex vivo insect tissue culturing shows that two generalist isolates of the genus Metarhizium and Beauveria, commonly used as biological pesticides, employ significantly different arrays of secondary metabolites during infectious and saprophytic growth. It also reveals that both fungi exhibit tissue specific strategies by a distinguishable metabolite secretion on the insect tissues tested in this study. In addition to showing the important heterogeneous nature of these two entomopathogens, this study also resulted in the discovery of several novel destruxins and beauverolides that have not been described before, most likely because previous surveys did not use insect tissues as a culturing system. While Beauveria secreted these cyclic depsipeptides when encountering live insect tissues, Metarhizium employed them primarily on dead tissue. This implies that, while these fungi employ comparable strategies when it comes to entomopathogenesis, there are most certainly significant differences at the molecular level that deserve to be studied.

  9. Assay of anticancer drugs in tissue culture: cell cultures of biopsies from human astrocytoma.

    Science.gov (United States)

    Morgan, D; Freshney, R I; Darling, J L; Thomas, D G; Celik, F

    1983-02-01

    A method has been developed for measuring the drug sensitivity of human gliomas in short-term culture, using scintillation counting or autofluorography. Cell cultures prepared from malignant astrocytomas were treated with anticancer drugs whilst in exponential growth in microtitration plates. After drug treatment and a recovery period, residual viability was measured by [3H] leucine incorporation followed by scintillation counting or by [35S] methionine incorporation and autofluorography in situ. In 5 glioma cell lines tested against 6 drugs, the microtitration method correlated well with monolayer cloning. Although replicate samples of the same tumour showed little variation in chemosensitivity, there was marked variation between the chemosensitivities of cultures derived from the tumours of different patients. However, as variability between replicates was apparent during drug exposure or shortly after, it is important to allow the assay to run as long as possible after drug removal. It is hoped that this assay may provide the basis of a method for the prediction of in vivo chemosensitivity or the screening of potential chemotherapeutic drugs.

  10. Persistence of chromatid damage after G2 phase X-irradiation in lymphoblastoid cells from Gardner's syndrome

    International Nuclear Information System (INIS)

    Takai, Setsuo; Price, F.M.; Sanford, K.K.; Tarone, R.E.; Parshad, Ram

    1990-01-01

    Previous reports showed that skin fibroblasts or peripheral blood lymphocytes from individuals with hereditary cancer or with a genetic disorder predisposing to cancer show an abnormally high frequency of chromatid damage after X-irradiation in G 2 phase. The reproducibility of this response suggested that it could provide the basis of an assay for genetic predisposition to cancer. The present blind study tested whether lymphoblastoid cell lines could also be used in this assay. Lymphoblastoid cell lines from patients with Gardner's syndrome (GS) were compared with those from clinically normal controls. In metaphase cells collected during the first 30 min after X-irradiation (58R), frequencies of chromatid breaks and gaps were similar in GS and normal cells. However, in metaphase cells collected from 0.5 to 1.5 h and 1.5 to 2.5 h after X-irradiation, the total unrepaired damage for each GS cell line was greater than that observed in any of the lines from clinically normal controls. The persistence of chromatid damage in the GS cells after X-irradiation suggests a deficiency or imbalance in the repair or processing of the radiation-induced DNA damage. The results show that lymphoblastoid cell lines in early passage can be used in this cytogenetic assay to identify members in a GS family who have the GS gene(s) or other individuals with a genetic predisposition to cancer. (author)

  11. Sedimentation of nucleoids from thymus and spleen cells of rats after X-irradiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Heinzelmann, R.

    1987-01-01

    The reaction to irradiation of thymocytes was tested immediately and 6 hours after whole body X-irradiation of rats with doses from 190 cGy up to 1520 cGy by nucleoid sedimentation. For comparison, examinations of thymus and spleen cells after X-irradiation in vitro were done. Preliminary analyses should find a possible coergism between X-rays on one side and hyperthermia and inhibitors of DNA-synthesis or DNA-repair (cytosinearabinoside, dideoxythymidine, 3-amino-benzamide, ethidiumbromide, and novobiocine) on the other side. From the results the following conclusions may be drawn: 1) With respect to the detection of in vivo effects of X-irradiation, the nucleoid sedimentation is less sensitive than biochemical methods. 2) Some hours after sublethal X-irradiation in vivo, free DNA and/or polydesoxyribonucleotides appear. At the same time cross-links can be detected in the chromatin fraction. 3) The reduction of the nucleoid sedimentation immediately after high doses of whole-body irradiation is the result of primary DNA lesions. The changes detectable some hours after are due to the secondary enzymatic changes, that are connected with the interphase death of thymocytes, and coincide with the present opinions about the irradiation induced apoptosis of cells. (orig./ECB) [de

  12. Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun.

    Science.gov (United States)

    O'Brien, John A; Lummis, Sarah C R

    2006-01-01

    Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h.

  13. The protective effects of vitamin E on microcephaly in rats X-irradiated in utero: DNA, lipid peroxide and confronting cisternae

    International Nuclear Information System (INIS)

    Tanaka, Harumi; Iwasaki, Setsuo; Inomata, Kenichirou; Nasu, Fumio; Nishimura, Shigeru

    1986-01-01

    Fetuses from rats given either water or 0.03% D,L-α-tocopherol acetate (vitamin E) as a drinking fluid and X-irradiated with 100 rad on gestational day 13 were examined on gestational day 21. Mean cerebral weight which was significantly reduced by the X-irradiation was increased by vitamin E supplementation but the level did not reach that in sham-irradiated controls. Administration of vitamin E caused an increase in DNA concentration which was significantly reduced by X-irradiation with water treatment. An increase in the mean level of lipid peroxide formation was observed in the water-treated, X-irradiated group in the sample at zero time but not in the vitamin E-treated, X-irradiated group. In the cytoplasm of fetal cerebral neurons from X-irradiated dams with vitamin E supplementation, confronting cisternae were frequently observed between two nuclear envelopes. Confronting cisternae may be considered as a repair mechanism of vitamin E against X-irradiated neuronal damage in the fetal cerebrum. This study provides evidence of the protection by vitamin E of neuronal development in X-irradiated fetuses, through its antioxidant properties, against attacks by free radicals and/or lipid peroxide. (orig.)

  14. Studies on the reaction in tissue culture of tomato genotypes under biotic stress

    Directory of Open Access Journals (Sweden)

    Ewa Hanus-Fajerska

    2014-01-01

    Full Text Available Plant regeneration in vitro from virus-infected somatic tomato (Lycopersicon sp. tissue was performed. Regeneration experiments were started after the determination of virus presence, using enzyme-linked immunosorbent assay, in leaves used as a source of explants. Leaf explants infected with selected strains of tomato mosaic Tobamovirus or cucumber mosaic Cucumovirus respectively, were cultured on a standarised MS agar medium to induce adventitious shoots, which were afterwards excised, rooted in vitro and cultured to plants. Explants were also screened for their ability to produce callus. Diverse effects of viral infection, ranging from stimulation to inhibition of callus formation and of morphogenesis rate, were observed. The health condition of the tissue proved to affect regeneration potential of Lycopersicon esculentum, whereas wild accesions did not react in that case so distinctly. In cultivated tomato was encountered the decline in competence to reproduce shoots adventitiously in infected tissue. There was also relationship between donor plant health condition and adventitious root formation in regenerated shoots. Experiments with short-term cultures of L. esculenum reveled also that a certain number of shoots regenerated from diseased tissue can be virus-free.

  15. RPE in perfusion tissue culture and its response to laser application. Preliminary report.

    Science.gov (United States)

    Framme, Carsten; Kobuch, Karin; Eckert, Elfriede; Monzer, Jan; Roider, Johann

    2002-01-01

    To study the effects of conventional laser application on the retinal pigment epithelium (RPE) in a perfusion tissue culture model of porcine retinal pigment epithelium without overlying neurosensory retina. RPE with underlying choroid was prepared from enucleated porcine eyes and fixed in a holding ring (Minusheet). Specimens were then placed in two-compartment tissue culture containers (MinuCell & Minutissue, Bad Abbach, Germany) and were cultured during continuous perfusion with culture medium at both sides of the entire specimen, the upper RPE and the lower choroid (12 specimens out of 6 eyes). Cultures were kept for 1, 3, 7 and 14 days and were examined histologically. Laser treatment was performed on each tissue ring by application of 3 x 3 laser burns one day after culture began (argon ion laser, wavelength: 514 nm, pulse duration: 100 ms; spot size: 200 microm) using different energy levels (400-1,000 mW); (16 specimens out of 8 eyes). During laser treatment a marked lightening of the RPE with centrifugal spreading was observed. Using higher levels of energy, a contraction of the RPE towards the center of the laser spot was noticed. One day after laser photocoagulation histology revealed destruction of RPE; within 3-7 days of culture, migration and proliferation of neighboring cells was observed in several lesions. After 7 days the initial defect of the irradiated area was covered with dome shaped RPE cells and after 14 days multilayered RPE cells were showing ongoing proliferation. However, there were also cases without proliferation after laser treatment. The non-treated, continuously perfused RPE showed regular appearance in histological sections: during the first 7 days of culture, light microscopy revealed a normal matrix with a well-differentiated RPE monolayer. Subsequently proliferation even without treatment was observed and after 14 days the RPE became multilayered. It was possible to study the early healing response to the effect of laser

  16. Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation.

    Science.gov (United States)

    Wagner, Doris; Wellmer, Frank; Dilks, Kieran; William, Dilusha; Smith, Michael R; Kumar, Prakash P; Riechmann, José Luis; Greenland, Andrew J; Meyerowitz, Elliot M

    2004-07-01

    We have developed a versatile floral induction system that is based on ectopic overexpression of the transcription factor LEAFY (LFY) in callus. During shoot regeneration, flowers or floral organs are formed directly from root explants without prior formation of rosette leaves. Morphological and reporter gene analyses show that leaf-like structures are converted to floral organs in response to LFY activity. Thus, increased levels of LFY activity are sufficient to bypass normal vegetative development and to direct formation of flowers in tissue culture. We found that about half of the cultured cells respond to inducible LFY activity with a rapid upregulation of the known direct target gene of LFY, APETALA1 (AP1). This dramatic increase in the number of LFY-responsive cells compared to whole plants suggested that the tissue culture system could greatly facilitate the analysis of LFY-dependent gene regulation by genomic approaches. To test this, we monitored the gene expression changes that occur in tissue culture after activation of LFY using a flower-specific cDNA microarray. Induction of known LFY target genes was readily detected in these experiments. In addition, several other genes were identified that had not been implicated in signaling downstream of LFY before. Thus, the floral induction system is suitable for the detection of low abundance transcripts whose expression is controlled in an LFY-dependent manner.

  17. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747. Keywords: Mesenchymal stromal cells, Mesenchymal stem cells, Pericytes, Microarrays

  18. [Effect of activated charcoal on rooting in tissue culture seedling of Begonia fimbristipula on Dinghushan Mountain].

    Science.gov (United States)

    Chen, Xiong-wei; Shao, Ling; Liang, Lian; Pan, Zhen-tao

    2012-09-01

    To study the effect of different plant growth substance and activated charcoal on rooting in culture seedling of Begonia fimbristpula on Dinghushan mountain. Tissue culture single factor experiment method was used. NAA 0. 3 mg/L + IBA 0. 2 mg/L preferably induction adventitious bud clump with corm to take rooting, but the number of adventitious root were less, short and small, callow shoot more germination. 300 mg/L activated carbon obviously increased radicate quality and inhibited fine buds point differentiation, root number up to 15.5 institia, root length range was 2.0-5.1 cm, root system developed. Tissue culture seedlings were higher, corn and leaf were good quality, strong growth. Took root of seedling cultivation with bulb for bush in the form of scattered bud planted to peat soil: perlite (3:1) mixed in matrix, after the transplant survival rate reached 100%, plant form seedlings fast, grew exuberant. MS with sucrose 30 g/L + NAA 0.3 mg/L + IBA 0.2 mg/L + activated carbon 300 mg/L + carrageenan 7.0 g/L as the tissue culture seedling of Begonia fimbristipula radicate system, is rapid propagation and preserve local unique plant in an effective way.

  19. SIS with tissue-cultured allogenic cartilages patch tracheoplasty in a rabbit model for tracheal defect.

    Science.gov (United States)

    Zhang, Longfang; Liu, Zhi; Cui, Pengcheng; Zhao, Daqing; Chen, Wenxian

    2007-06-01

    In the rabbit model, small intestinal submucosa (SIS) compounded with tissue-cultured allogenic cartilages appeared to be an efficacious method for the patch repair of partial circumferential tracheal defects instead of autologous grafts. SIS appears to be a safe and promising means of facilitating neovascularization and tissue regeneration. The long-term use of SIS and tissue-cultured allogenic cartilages warrants further investigation. Tracheal defect reparation remains a challenging surgical problem that can require reconstruction using autologous grafts or artificial stents. This study was performed to evaluate the efficacy of SIS, a biocompatible, acellular matrix, compounded with different tissue-cultured allogenic cartilages, in the repair of a critical-size tracheal defect. A full-thickness defect (4 x 8 mm) was created in tracheal rings four to six in adult rabbits. A piece of 8-ply SIS sandwiched in thyroid cartilage, auricular cartilage, or without cartilage, respectively (designated experiment 1, 2, or 3, respectively), was sutured to the edges of the defect with interrupted 4-0 polypropylene sutures. In control animals, the defect was closed with lamina praetrachealis. All animals were followed until signs of dyspnea became apparent or for 4 or 12 weeks. After follow-up and euthanasia, the trachea was harvested and prepared for histologic evaluation using conventional techniques. All animals tolerated the procedure well but two animals in group 1 (n=5), three in group 2 (n=5), and one in group 3 (n=5) had stridor after operation and expired within 1 month. Histologically, neovascularization of the patch was noted with moderate inflammation. The surface of the SIS patch was covered with a lining of ciliated epithelial cells. The tissue-cultured allogenic cartilages degraded to some extent.

  20. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    Science.gov (United States)

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  1. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo.

    Science.gov (United States)

    Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E

    2014-01-01

    Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.

  2. Advanced cell culture technology for generation of in vivo-like tissue models

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-06-01

    Full Text Available Human tissues are mostly composed of different cell types, that are often highly organised in relation to each other. Often cells are arranged in distinct layers that enable signalling and cell-to-cell interactions. Here we describe the application of scaffold-based technology, that can be used to create advanced organotypic 3D models of various tissue types that more closely resemble in vivo-like conditions (Knight et al., 2011. The scaffold comprises a highly porous polystyrene material, engineered into a 200 micron thick membrane that is presented in various ways including multi-welled plates and well inserts, for use with conventional culture plasticware and medium perfusion systems. This technology has been applied to generate numerous unique types of co-culture model. For example: 1 a full thickness human skin construct comprising dermal fibroblasts and keratinocytes, raised to the air-liquid interface to induce cornification of the upper layers (Fig.1 (Hill et al., 2015; 2 a neuron-glial co-culture to enable the study of neurite outgrowth interacting with astroglial cells to model and investigate the glial scar found in spinal cord injury (Clarke et al., 2016; 3 formation of a sub-mucosa consisting of a polarised simple epithelium, layer of ECM proteins simulating the basement membrane, and underlying stromal tissues (e.g. intestinal mucosa. These organotypic models demonstrate the versatility of scaffold membranes and the creation of advanced in vivo-like tissue models. Creating a layered arrangement more closely simulates the true anatomy and organisation of cells within many tissue types. The addition of different cell types in a temporal and spatial fashion can be used to study inter-cellular relationships and create more physiologically relevant in vivo-like cell-based assays. Methods that are relatively straightforward to use and that recreate the organised structure of real tissues will become valuable research tools for use in

  3. Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture

    Science.gov (United States)

    Sun, Hao; Merrill, Daniel; An, Ran; Turek, John; Matei, Daniela; Nolte, David D.

    2017-01-01

    Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications.

  4. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. Methods Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144 and their expression was quantified using flow cytometry analysis. Results Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. Conclusion To our knowledge, this is the first report of

  5. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review.

    Science.gov (United States)

    Nguyen, Quang Thien; Bandupriya, H D Dharshani; López-Villalobos, Arturo; Sisunandar, S; Foale, Mike; Adkins, Steve W

    2015-11-01

    The present review discusses not only advances in coconut tissue culture and associated biotechnological interventions but also future research directions toward the resilience of this important palm crop. Coconut (Cocos nucifera L.) is commonly known as the 'tree of life'. Every component of the palm can be used to produce items of value and many can be converted into industrial products. Coconut cultivation faces a number of acute problems that reduce its productivity and competitiveness. These problems include various biotic and abiotic challenges as well as an unstable market for its traditional oil-based products. Around 10 million small-holder farmers cultivate coconut palms worldwide on c. 12 million hectares of land, and many more people own a few coconut palms that contribute to their livelihoods. Inefficiency in the production of seedlings for replanting remains an issue; however, tissue culture and other biotechnological interventions are expected to provide pragmatic solutions. Over the past 60 years, much research has been directed towards developing and improving protocols for (i) embryo culture; (ii) clonal propagation via somatic embryogenesis; (iii) homozygote production via anther culture; (iv) germplasm conservation via cryopreservation; and (v) genetic transformation. Recently other advances have revealed possible new ways to improve these protocols. Although effective embryo culture and cryopreservation are now possible, the limited frequency of conversion of somatic embryos to ex vitro seedlings still prevents the large-scale clonal propagation of coconut. This review illustrates how our knowledge of tissue culture and associated biotechnological interventions in coconut has so far developed. Further improvement of protocols and their application to a wider range of germplasm will continue to open up new horizons for the collection, conservation, breeding and productivity of coconut.

  6. Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-02-01

    Tissue culture technology is used for the production of doubled haploids, cryopreservation, propagating new plant varieties, conserving rare and endangered plants, difficult-to-propagate plants, and to produce secondary metabolites and transgenic plants. The production of high quality planting material of crop plants and fruit trees, propagated from vegetative parts, has created new opportunities in global trading, benefited growers, farmers, and nursery owners, and improved rural employment. However, there are still major opportunities to produce and distribute high quality planting material, e.g. crops like banana, date palm, cassava, pineapple, plantain, potato, sugarcane, sweet potato, yams, ornamentals, fruit and forest trees. The main advantage of tissue culture technology lies in the production of high quality and uniform planting material that can be multiplied on a year-round basis under disease-free conditions anywhere irrespective of the season and weather. However, the technology is capital, labor and energy intensive. Although, labor is cheap in many developing countries, the resources of trained personnel and equipment are often not readily available. In addition, energy, particularly electricity, and clean water are costly. The energy requirements for tissue culture technology depend on day temperature, day-length and relative humidity, and they have to be controlled during the process of propagation. Individual plant species also differ in their growth requirements. Hence, it is necessary to have low cost options for weaning, hardening of micropropagated plants and finally growing them in the field. This publication describes options for reducing costs to establish and operate tissue culture facilities and primarily focus on plant micropropagation. It includes papers on the basics of tissue culture technology, low cost options for the design of laboratories, use of culture media and containers, energy and labor saving, integration and adoption of

  7. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    Directory of Open Access Journals (Sweden)

    Wenjuan eGao

    2012-08-01

    Full Text Available Abstract: As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures.

  8. Plant tissue culture--an opportunity for the production of nutraceuticals.

    Science.gov (United States)

    Lucchesini, Mariella; Mensuali-Sodi, Anna

    2010-01-01

    This chapter provides a short discussion about the opportunity to cultivate in vitro plant tissue of species which synthesize secondary metabolites of nutraceutical interest. The introduction of species of particular interest in cultivation and domestication, can be an alternative to the harvest of wild species. In vitro culture techniques are a useful tool to improve production and marketing nutraceutical species which allows to make a rapid clonal propagation of plants selected for their active principles. The techniques of tissue culture are described in detail. In particular, it is underlined the necessity to clone selected plants and produce true-type plants when standardized plant products are the main goal. This can be reached by conventional micropropagation protocols culturing plants in vitro through the five culture phases. Another approach consists in applying unconventional systems in the last phase of in vitro culture which permit to develop autotrophy of the explants. Autotrophic growth improves the quality of the multiplied shoots and facilitates the acclimatization of the plantlets.

  9. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  10. [Extraction and analysis of chemical components of essential oil in Thymus vulgaris of tissue culture].

    Science.gov (United States)

    Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang

    2011-10-01

    To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.

  11. Estimates of genetic parameters of body weight in descendants of x-irradiated rat spermatogonia

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1977-01-01

    Effects of nine generations of 450 R per generation of ancestral spermatogonial x irradiation of inbred rats on genetic parameters of body weight at 3, 6 and 10 weeks of age and of weight gains between these periods were studied. Covariances among relatives were estimated by mixed model and regression techniques in randomly selected lines with (R) and without (C) radiation history. Analyses of the data were based on five linear genetic models combining additive direct, additive indirect (maternal), dominance and environmental effects. Parameters in these models were estimated by generalized least-squares. A model including direct and indirect genetic effects fit more closely to the data in both R and C lines. Overdominance of induced mutations did not seem to be present. Ancestral irradiation increased maternal additive genetic variances of body weights and gains but not direct genetic variances. Theoretically, due to a negative direct-maternal genetic correlation, within full-sib family selection would be ineffective in increasing body weight at six weeks in both R and C lines. However, progress from mass selection would be expected to be faster in the R lines

  12. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  13. Parahaploidy of the 'arrhenotokous' predator, Metaseiulus occidentalis (Acarina: Phytoseiidae) demonstrated by X-irradiation of males

    International Nuclear Information System (INIS)

    Hoy, M.A.

    1979-01-01

    Most predatory mites of the family Phytoseiidae are considered, on karyological evidence, to reproduce by arrhenotoky. The haploid males are reported to have three or four and the diploid females six or eight chromosomes, respectively, according to the species. Evidence is presented which supports the hypothesis that males of Metaseiulus occidentalis (Nesbitt) develop frcm diploid (fertilized) eggs. Unirradiated virgin females mated with males exposed to X-irradiation rates of 13.5, 16.2, 40, 60 and 80 Krads yielded: reduced numbers of F 1 eggs; reduced numbers of F 1 adult sons; no daughters; and sterile F 1 sons. These data, coupled with the fact that M. occidentalis females never deposit eggs unless they have mated, provide strong evidence that males are diploid during at least the initial stages of embryogenesis. Since earlier cytological evidence indicates that adult males are haploid, loss and/or heterochromatization of half of the chromosomes must occur in males. Parahaploidy, not arrhenotoky, is thus the genetic system in M. occidentalis. (Auth.)

  14. Cellular damage after total or partial x-irradiation of the rat lens epithelium

    International Nuclear Information System (INIS)

    Miller, R.C.

    1976-01-01

    The response of cells to a wound stimulus was used to study the effects of X-irradiation on cells of the rat lens epithelium. Either the entire lens or just the nasal half of the lens of the right eye of Holtzman rats was irradiated with 1000 rads of X-rays (250 kVp, 30 mA, filter = 1 mm Al + 1 / 4 mm Cu, HVL = 1 mm Cu). At various times after irradiation (1, 7, or 28 days in whole-irradiated lenses and 1, 4, 7, or 14 days in half-irradiated lenses) the lenses were wounded with a sharpened Hamilton microliter syringe. Samples of epithelia were obtained every 2 hours from 14 to 44 hours after wounding. Two hours before a scheduled sacrifice time, 5 μCi of tritiated thymidine ( 3 H-TdR) were topicaly applied to each eye. Two hours later, the animals were killed and their eyes enucleated. Then autoradiographs of whole mounts of the lens epithelia were prepared. The epithelial cells were then counted to determine DNA synthesis activity ( 3 H-TdR cell labeling), mitotic activity, and mitotic abnormalities

  15. Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal x irradiation

    International Nuclear Information System (INIS)

    Woodward, D.J.; Hoffer, B.J.; Altman, J.

    1974-01-01

    Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x irradiation applied during the first two weeks of postnatal life. Purkinje neurons in these rats, studied when adults, exhibited sustained spiking activity in Halothane anesthetized preparations. Mean firing rates were 35 to 40/sec, no different from normal. Spontaneous bursts presumed to be generated by climbing fiber synaptic activity differed from normal by often consisting of full sized spikes rather than characteristic inactivation responses. Intracellularly observed correlates of bursts consisted of epsp's of several discretely different amplitudes appearing independently in time. Stimulation of white matter revealed evidence for, a) graded synaptic excitation of Purkinje cells indicating more than one converging excitatory synapse, and b) inhibitory actions on Purkinje cells either through a few remaining inhibitory interneurons or through Purkinje cell recurrent collaterals. Iontophoretic drug application studies showed normal chemosensitivity of the Purkinje cell membrane, i.e., excitation by flutamate and inhibition by gamma-amino butyric acid, serotonin, norepinephrine, and 3'5' cyclic AMP. These studies indicate considerable autonomy of Purkinje cell ontogenesis in the absence of normal interneuronal input. A unique synaptic relation only rarely found in normal cerebellum is the innervation of single Purkinje cells by more than one climbing fiber. (U.S.)

  16. Effects of neonatal thymic exposure to high doses of X-irradiation

    International Nuclear Information System (INIS)

    Bains, G.S.; Sundaram, K.

    1979-01-01

    The thymic region of neonatal Swiss mice was exposed to doses varying from 1000 R to 2000 R of X-irradiation. The animals did not show any signs of wasting syndrome up to 6 months after irradiation. At this time hyperplasia of the thymus with an associated lymphocytosis was evident in irradiated animals. Antibody production to sheep red blood cells (SRBC) was not affected. However, at 12 months post-irradiation the animals showed signs of wasting disease with a progressive increase in their numbers at 18 and 24 months of age. The percentage incidence of animals with wasting disease was dose dependent. At this stage in the majority of the animals with the disease the thymus showed varying degrees of atrophy along with splenomegaly. There were no significant differences in the number of lymphocytes but the number of granulocytes showed a substantial increase. This was more evident in animals exposed to 2000 R to the thymic region. Though one observed a lowered ability to form antibodies to bovine serum albumin (BSA) with advancing age, the thymic irradiation did not affect the immune response to BSA even in animals manifesting wasting disease. An interesting observation has been the development of a severe loss of muscle power and tone in the hind limbs in a large majority of animals. (author)

  17. Early postnatal x-irradiation of the hippocampus and discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.; Altman, J.

    1981-01-01

    Rats with X-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task difficulty) and reversal (moderate task difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that rats with hippocampal damage are inattentive due to hyperactivity

  18. Effects of early postnatal X-irradiation of the hippocampus on discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.

    1980-01-01

    Rats with x-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure, but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task-difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task-difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task-difficulty) and reversal (moderate task-difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that hippocampal-damaged rats are inattentive due to hyperactivity

  19. Go/no-go discriminated avoidance learning in prenatally x-irradiated rats

    International Nuclear Information System (INIS)

    Tamaki, Y.; Inouye, M.

    1988-01-01

    Male Fischer344 rats were exposed to x-irradiation at a dose of 200 rad on Day 17 of gestation. Irradiated and control rats were tested at 10-13 weeks of age with the paradigm of go/no-go (active-passive) discriminated avoidance conditioning for three consecutive daily sessions. During the first conditioning session, they learned only active avoidance responses to two different warning signals. During the second and third sessions, they learned active and passive avoidance responses: in response to one warning signal, rats were required to make an active response to avoid a shock, but not to run in response to the other signal in order to avoid a shock. Prenatally irradiated rats made more active avoidance responses to both warning signals than controls (first session). In the early training phase of the go/no-go task, irradiated rats performed significantly higher active and lower passive avoidance responses than controls. Irradiated rats established a strong tendency to respond actively to the no-go signal, but eventually learned to respond to it

  20. Electron spin resonance of x-irradiated single crystals of dicyclohexyldiazene 1,2-dioxide

    International Nuclear Information System (INIS)

    Fujii, Yoshihisa; Kurita, Yukio; Kashiwagi, Michio; Nakada, Hideki.

    1982-01-01

    ESR studies of X-irradiated single crystals of dicyclohexyldiazene 1,2-dioxide, (C 6 H 11 NO) 2 , revealed the generation of the stably trapped radicals C 6 H 11 N(O)N'H''(O')C 6 H 11 . The principal elements of the g value were found to be 2.0030, 2.0060, and 2.0086. The principal elements of the hyperfine couplingconstants were found to be 3.88, 1.53, and 1.38 mT for N, and 1.53, 1.41, and 1.14 mT for H''. The direction cosines of these principal elements, when compared with those of the bonds in the parent molecule, indicate that the radical is formed by addition of a hydrogen atom to the N=N' double bond without causing a large change in the molecular framework. The spin dendities for this radical were calculated to be 0.041 and 0.47 in the 2s and 2p orbitals of the atom N, respectively. (author)

  1. Changes in activities of adaptive liver enzymes in rats after non-lethal x-irradiation

    International Nuclear Information System (INIS)

    Toropila, M.; Ahlersova, E.; Ahlers, I.; Benova, K.

    1998-01-01

    The effect of a single dose of whole-body X-irradiation of 2.39 Gy (250 R) on the activities of selected adaptive rat liver enzymes and blood serum corticosterone concentrations was followed for a period of 28 days. Rats of Wistar strain SPF breeding (VELAZ Prague) were used. Both irradiated and control animals were fed in pairs with the same amount of feed as was consumed by irradiated animals in the pilot experiment. The feed intake of irradiated animals decreased significantly until the fourth day. During the rest of the experimental period no significant differences were recorded in feed intake between the experimental and control groups. The activity of tyrosine aminotransferase (TAT) in the liver of irradiated animals increased, with the exception of the initial period. Similar changes were recorded in the activity of tryptophane-2-3 dioxygenase (TO). A significant increase on the third day and a significant decrease from the seventh day after irradiation was recorded in the activity of aspartate aminotransferase (AST). Similar changes were observed with alanine aminotransferase (ALT). It is necessary to stress that the activity of this enzyme decreased also on the first day after irradiation. Until the third day there was a marked increase of serum corticosterone in the irradiated animals. The results point not only towards significant changes to the parameters observed, caused by a non-lethal irradiation dose, but also towards the importance of the nutritional regime, so-called paired feeding

  2. Brightness discrimination learning in a Skinner box in prenatally X-irradiated rats

    International Nuclear Information System (INIS)

    Tamaki, Y.; Inouye, M.

    1976-01-01

    Male MP 1 albino rats were exposed to x-irradiation in utero at a single dose of 200 R on day 17 of gestation. The light-dark discrimination training in a Skinner box was continued until the animals attained a learning criterion of 0.80 correct response ratio for 3 consecutive days. Although during the unreinforced baseline sessions the total number of bar pressings in the irradiated animals was superior to that in the controls, performance between the control and the irradiated animals did not differ significantly in (a) the number of training days required to attain the learning criterion, (b) the total number of days on which the animals produced a correct response ratio more than 0.80, and (c) the number of consecutive days during which the correct response ratio was more than 0.75. The results obtained suggest that the irradiated animals were able to discriminate in brightness cues as well, or nearly as well, as the controls. The cortical-subcortical system mediating brightness discrimination in the irradiated animals is discussed. (author)

  3. ESR of phosphite radicals trapped in x-irradiated single crystals of o-phosphorylethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Fouse, G.W.; Bernhard, W.A.

    1979-02-15

    Two different species of phosphite radicals are trapped at 300 K in x-irradiated single crystals of o-phosphorylethanolamine, H/sub 3/N/sup +/CH/sub 2/CH/sub 2/OPO/sub 3/H/sup -/. One radical, resulting from cleavage of the P--OH bond, is characterized by eigenvalues of 2173 +- 16 MHz, 1733 +- 19 MHz, and 1713 +- 19 MHz, and 2.0065 +- 0.0004, 2.0045 +- 0.0004, and 2.0038 +- 0.0004, for the hyperfine coupling tensor and g tensor, respectively. The other radical, produced by cleavage of the P--OCH/sub 2/CH/sub 2/NH/sup +//sub 3/ bond, has corresponding eigenvalues of 2131 +- 15 MHz, 1710 +- 15 MHz, and 1689 +- 13 MHz, and 2.0054 +- 0.0004, 2.0052 +- 0.0004, and 2.0044 +- 0.0004. Both radical species are present in approximately equal concentrations in the crystal, suggesting that both the P--OH and P--OCH/sub 2/CH/sub 2/NH/sup +//sub 3/ bonds are equally susceptable to electron dissociative capture, the assumed mechanism for radical formation.

  4. Growth hormone and somatomedin effects on calcification following X-irradiation, glucocorticoid treatment or fasting

    International Nuclear Information System (INIS)

    Dearden, L.C.; Mosier, H.D. Jr.

    1986-01-01

    Growth hormone (GH) is thought to activate the liver to produce a peptide called somatomedin (SM) and this substance putatively stimulates linear growth in long bones by its action on cartilagenous epiphyseal plates. These actions include stimulating chondrocytes to synthesize the carbohydrate and protein components of proteoglycan and of collagen, enhancing the synthesis of ribo and desoxyribonucleic acids, and possibly to increase cell division. In GH deficiencies there is a narrowing of the epiphyseal growth plate and cartilage calcification is enhanced concurrent with proteoglycan and collagen alterations in the extracellular matrix. Calcium and phosphate ions accumulate in mitochondria followed by their release as the calcification zone is approached, and matrix vesicles, which possess the chemical machinery necessary to induce the format0344of apatite crystals within them, increase. Therefore, if GH and/or SM levels are altered, there should be corresponding alterations in growth or in cartilage calcification. In the present study we have investigated rats after head X-irradiation, fasting, and corticosteroid treatment, and all of these treatments reduce GH and SM. (Auth.)

  5. Formation of Stomach Tissue by Organoid Culture Using Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Noguchi, Taka-Aki K; Kurisaki, Akira

    2017-01-01

    In this chapter, we describe a method for the induction of stomach organoids from mouse embryonic stem (ES) cells. We used an embryoid body-based differentiation method to induce gastric primordial epithelium covered with mesenchyme and further differentiate it in Matrigel by 3D culture. The differentiated organoid contains both corpus- and antrum-specific mature gastric tissue cells. This protocol may be useful for a variety of studies in developmental biology and disease modeling of the stomach.

  6. Relation of arginine-lysine antagonism to herpes simplex growth in tissue culture.

    Science.gov (United States)

    Griffith, R S; DeLong, D C; Nelson, J D

    1981-01-01

    In the studies conducted, arginine deficiency suppressed herpes simplex virus replication in tissue culture. Lysine, an analog of arginine, as an antimetabolite, antagonized the viral growth-promoting action of arginine. The in vitro data may be the basis for the observation that patients prone to herpetic lesions and other related viral infections, particularly during periods of stress, should abstain from arginine excess and may also require supplemental lysine in their diet.

  7. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures

    Science.gov (United States)

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-01

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha.

  8. Stimulatory effect of serum from diabetic patients on insulin release from mouse pancreatic islets maintained in tissue culture

    DEFF Research Database (Denmark)

    Eff, C; Deckert, T; Andersson, A

    1981-01-01

    Islets of Langerhans from NMRI-mice were kept for one week in tissue culture in medium supplemented with human serum obtained from either normal healthy subjects or newly diagnosed juvenile diabetic patients before insulin treatment. Islets cultured in diabetic serum released more insulin than...... islets cultured in normal serum, whether tissue culture medium 199 with 5.5-8.3 mmol/l glucose and 10% serum, or culture medium RPMI 1640 with 11 mmol/l glucose and 0.5% serum were used. Islets kept for one week in culture with diabetic serum did not show any decrease in DNA content or glucose induced...... insulin secretion and biosynthesis. It is concluded that serum from newly diagnosed insulin-dependent diabetic patients stimulates insulin release from isolated mouse islets kept in tissue culture. The underlying mechanism is unknown....

  9. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    Science.gov (United States)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  10. Tissue culture methods for the clonal propagation and genetic improvement of Spanish red cedar (Cedrela odorata).

    Science.gov (United States)

    Peña-Ramírez, Yuri; Juárez-Gómez, Juan; González-Rodríguez, José Antonio; Robert, Manuel L

    2012-01-01

    The choice of a method to culture red cedar tissues depends on the final objectives pursued. If homogeneous clonal material is required for experimental purposes, the easiest way is to generate the lines through adventitious shoot induction from seedlings germinated from seeds. If the objective is to generate high yielding material for plantation purposes, the choice will be the same method but starting from mature vegetative tissues from selected elite plants. Most of the process are the same, but the initial steps are less efficient and much more elaborate. If the purpose is to generate lines with new genetic characteristics through somaclonal variation, mutagenesis, or genetic transformation, somatic embryogenesis will be required. No single method in its present form is suitable for all purposes. Eventually, the efficient production of somatic embryos from rejuvenated shoots collected from mature selected plants is the ideal way to culture this species, but for the time being we have to choose one or the other. In this chapter, we present a grafting procedure to rejuvenate and maintain mother plants in the greenhouse and the in vitro culture systems we have developed for the production of Cedrela odorata propagules using explants from both young seedlings and mature tissues from selected old trees. Using a modified TY17 medium and the BioMINT(®) temporary immersion system, we obtained high multiplication and ex vitro transplantation rates for efficient large-scale propagation of this species.

  11. Comparison of tumour age response to radiation for cells derived from tissue culture or solid tumours

    International Nuclear Information System (INIS)

    Keng, P.C.; Siemann, D.W.; Rochester Univ., NY; Rochester Univ., NY; Wheeler, K.T.

    1984-01-01

    Direct comparison of the cell age response of 9L and KHT tumour cells derived either from tissue culture or solid tumours was achieved. Cells from dissociated KHT and 9L tumours (the latter implanted either subcutaneously or intracerebrally) and cells from tissue culture were separated into homogenous sized populations by centrifugal elutriation. In both tumour models these homogeneous sized populations correspond to populations enriched at different stages of the cell cycle. The survival of these elutriated cell populations was measured after a single dose of Cs-137 gamma rays. For cells isolated from 9L solid tumours, there was little variation in radiosensitivity throughout the cell cycle; however, a very small but significant increase in resistance was found in late G 1 cells. This lack of a large variation in radiosensitivity through the cell cycle for 9L cells from solid tumours also was seen in 9L cells growing in monolayer tissue culture. When similar experiments were performed using the KHT sarcoma tumour model, the results showed that KHT cells in vitro exhibited a fairly conventional increase in radioresistance in both mid G 1 and late S. However, the cell age response of KHT cells from solid tumours was different; particularly in the late S and G 2 + M phases. (author)

  12. Toxicity and oxidative stress of canine mesenchymal stromal cells from adipose tissue in different culture passages

    Directory of Open Access Journals (Sweden)

    Arícia Gomes Sprada

    2015-12-01

    Full Text Available Abstract: Stem cells in regenerative therapy have received attention from researchers in recent decades. The culture of these cells allows studies about their behavior and metabolism. Thus, cell culture is the basis for cell therapy and tissue engineering researches. A major concern regarding the use of cultivated stem cell in human or veterinary clinical routine is the risk of carcinogenesis. Cellular activities require a balanced redox state. However, when there is an imbalance in this state, oxidative stress occurs. Oxidative stress contributes to cytotoxicity, which may result in cell death or genomic alterations, favoring the development of cancer cells. The aim of this study was to determine whether there are differences in the behavior of cultured mesenchymal stem cells from canine adipose tissue according to its site of collection (omentum and subcutaneous evaluating the rate of proliferation, viability, level of oxidative stress and cytotoxicity over six passages. For this experiment, two samples of adipose tissue from subcutaneous and omentum where taken from a female dog corpse, 13 years old, Pitbull. The results showed greater levels of oxidative stress in the first and last passages of both groups, favoring cytotoxicity and cell death.

  13. Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon.

    Science.gov (United States)

    Sogutmaz Ozdemir, Bahar; Budak, Hikmet

    2018-01-01

    Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.

  14. Air exposure induced characteristics of dry eye in conjunctival tissue culture.

    Directory of Open Access Journals (Sweden)

    Hui Lin

    Full Text Available There are several animal models illustrating dry eye pathophysiology. Current study would like to establish an ex vivo tissue culture model for characterizing dry eye. Human conjunctival explants were cultured under airlift or submerged conditions for up to 2 weeks, and only airlifted conjunctival cultures underwent increased epithelial stratification. Starting on day 4, the suprabasal cells displayed decreased K19 expression whereas K10 keratin became evident in airlift group. Pax6 nuclear expression attenuated already at 2 days, while its perinuclear and cytoplasmic expression gradually increased. MUC5AC and MUC19 expression dramatically decreased whereas the full thickness MUC4 and MUC16 expression pattern disappeared soon after initiating the airlift condition. Real time PCR showed K16, K10 and MUC16 gene up-regulated while K19, MUC5AC, MUC19 and MUC4 down-regulated on day 8 and day 14. On day 2 was the appearance of apoptotic epithelial and stromal cells appeared. The Wnt signaling pathway was transiently activated from day 2 to day 10. The inflammatory mediators IL-1β, TNF-α, and MMP-9 were detected in the conditioned media after 6 to 8 days. In conclusion, airlifted conjunctival tissue cultures demonstrated Wnt signaling pathway activation, coupled with squamous metaplasia, mucin pattern alteration, apoptosis and upregulation of proinflammatory cytokine expression. These changes mimic the pathohistological alterations described in dry eye. This correspondence suggests that insight into the pathophysiology of dry eye may be aided through the use of airlifted conjunctival tissue cultures.

  15. Effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation

    International Nuclear Information System (INIS)

    Ju Guizhi; Yan Fengqin; Fu Shibo; Shen Bo; Sun Shilong; Yang Ying; Li Pengwu

    2008-01-01

    Objective: To investigate the effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation. Methods: Construction of RNAi p21 plasmid of pSileneer3.1-H1 neo-p21 was performed. Lipofectamine transfection assay was used to transfer the p21siBNA into EL-4 cells. Fluorescent staining and flow cytometry (FCM) analysis were employed for measurement of protein expression. Fluorescent staining of propidium iodide (PI) and FCM were used for measurement of potyploid cells. Results: In dose-effect experiment it was found that the expression of P21 protein of EL-4 cells increased significantly 24 h after X- irradiation with different doses compared with sham-inadiated control. In time course experiment it was found that the expression of P21 protein of EL-4 cells increased significantly at 8 h to 72 h after 4.0 Gy X-irradiation compared with sham-irradiated control. The results showed that the number of polyploid cells in EL-4 cells was not changed markedly after X-irradiation with doses of 0.5-6.0 Gy. After RNA interference with p21 gene, the expression of P21 protein of EL-4 cells decreased significantly 24 h and 48 h after 4.0 Gy X-irradiation in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. And at the same time, the number of polyploid cells in EL-4 cells was increased significantly in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. Conclusions: Uncoupling could be induced by X-irradiation in EL-4 cells following BNAi p21 gene, suggesting that P21 protein may play an important role in uncoupling induced by X-rays. (authors)

  16. Similarity between the effects of carbon-ion irradiation and X-irradiation on the development of rat brain

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Murata, Yoshiharu; Takahashi, Sentaro; Kubota, Yoshihisa

    2000-01-01

    The effects of carbon-ion irradiation and X-irradiation on the development of rat brain were compared. Twenty pregnant rats were injected with bromodeoxyuridine (BrdU) at 9 pm on day 18 pregnancy and divided into five groups. Three hours after injection (day 19.0) one group was exposed to 290 MeV/u carbon-ion radiation by a single dose of 1.5 Gy. Other groups were exposed to X-radiation by 1.5, 2.0 or 2.5 Gy, or sham-treated, respectively. Fetuses were removed from one dam in each group 8 h after exposure and examined histologically. Extensive cell death was observed in the brain mantle from the irradiated groups. The cell death after 1.5 Gy carbon-ion irradiation was remarkably more extensive than that after 1.5 Gy X-irradiation, but comparable to that after 2.0 Gy or 2.5 Gy X-irradiation. The remaining rats were allowed to give birth and the offspring were sacrificed at 6 weeks of age. All of the irradiated offspring manifested microcephaly. The size of the brain mantle exposed to 1.5 Gy carbon-ion radiation was significantly smaller than that exposed to 1.5 Gy X-radiation and larger than that exposed to 2.5 Gy X-radiation. A histological examination of the cerebral cortex revealed that cortical layers II-IV were malformed. The defect by 1.5 Gy carbon-ion irradiation was more severe than that by the same dose of X-irradiation. Although the BrdU-incorporated neurons were greatly reduced in number in all irradiated groups, these cells reached the superficial area of the cortex. These findings indicated that the effects of both carbon-ion irradiation and X-irradiation on the development of rat brain are similar in character, and the effect of 1.5 Gy carbon-ion irradiation compares to that of 2.0-2.5 Gy X-irradiation. (author)

  17. Culture Environment-Induced Pluripotency of SACK-Expanded Tissue Stem Cells

    Directory of Open Access Journals (Sweden)

    Jean-François Paré

    2011-01-01

    Full Text Available Previous efforts to improve the efficiency of cellular reprogramming for the generation of induced pluripotent stem cells (iPSCs have focused mainly on transcription factors and small molecule combinations. Here, we report the results of our focus instead on the phenotype of the cells targeted for reprogramming. We find that adult mouse pancreatic tissue stem cells derived by the method of suppression of asymmetric cell kinetics (SACK acquire increased potency simply by culture under conditions for the production and maintenance of pluripotent stem cells. Moreover, supplementation with the SACK agent xanthine, which promotes symmetric self-renewal, significantly increases the efficiency and degree of acquisition of pluripotency properties. In transplantation analyses, clonal reprogrammed pancreatic stem cells produce slow-growing tumors with tissue derivative of all three embryonic germ layers. This acquisition of pluripotency, without transduction with exogenous transcription factors, supports the concept that tissue stem cells are predisposed to cellular reprogramming, particularly when symmetrically self-renewing.

  18. Neurite outgrowth in cultured mouse pelvic ganglia - Effects of neurotrophins and bladder tissue.

    Science.gov (United States)

    Ekman, Mari; Zhu, Baoyi; Swärd, Karl; Uvelius, Bengt

    2017-07-01

    Neurotrophic factors regulate survival and growth of neurons. The urinary bladder is innervated via both sympathetic and parasympathetic neurons located in the major pelvic ganglion. The aim of the present study was to characterize the effects of the neurotrophins nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) on the sprouting rate of sympathetic and parasympathetic neurites from the female mouse ganglion. The pelvic ganglion was dissected out and attached to a petri dish and cultured in vitro. All three factors (BDNF, NT-3 and NGF) stimulated neurite outgrowth of both sympathetic and parasympathetic neurites although BDNF and NT-3 had a higher stimulatory effect on parasympathetic ganglion cells. The neurotrophin receptors TrkA, TrkB and TrkC were all expressed in neurons of the ganglia. Co-culture of ganglia with urinary bladder tissue, but not diaphragm tissue, increased the sprouting rate of neurites. Active forms of BDNF and NT-3 were detected in urinary bladder tissue using western blotting whereas tissue from the diaphragm expressed NGF. Neurite outgrowth from the pelvic ganglion was inhibited by a TrkB receptor antagonist. We therefore suggest that the urinary bladder releases trophic factors, including BDNF and NT-3, which regulate neurite outgrowth via activation of neuronal Trk-receptors. These findings could influence future strategies for developing pharmaceuticals to improve re-innervation due to bladder pathologies. Copyright © 2017. Published by Elsevier B.V.

  19. An evolutionary view of plant tissue culture: somaclonal variation and selection.

    Science.gov (United States)

    Wang, Qin-Mei; Wang, Li

    2012-09-01

    Plants regenerated from in vitro cultures possess an array of genetic and epigenetic changes. This phenomenon is known as 'somaclonal variation' and the frequency of somaclonal variation (SV) is usually elevated far beyond that expected in nature. Initially, the relationship between time in culture and detected SV was found to support the widespread belief that SV accumulates with culture age. However, a few studies indicated that older cultures yielded regenerants with less SV. What leads to this seemed contradiction? In this article, we have proposed a novel in vitro callus selection hypothesis, differentiation bottleneck (D-bottleneck) and dedifferentiation bottleneck (Dd-bottleneck), which consider natural selection theory to be fit for cell population in vitro. The results of multiplication races between the cells with the true-to-type phenotype and the deleterious cells determine the increase/decrease of SV frequencies in calli or regenerants as in vitro culture time goes on. The possibility of interpreting the complex situation of time-related SV by the evolutionary theory is discussed in this paper. In addition, the SV threshold, space-determined hypothesis and D-bottleneck are proposed to interpret the loss of the regenerability through a long period of plant tissue culture (PTC).

  20. Impact assessment of repeated exposure of organotypic 3D bronchial and nasal tissue culture models to whole cigarette smoke.

    Science.gov (United States)

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C

    2015-02-12

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers.

  1. Selection of seed lots of Pinus taeda L. for tissue culture

    Directory of Open Access Journals (Sweden)

    Diego Pascoal Golle

    2014-06-01

    Full Text Available The aim of this work was to identify the fungi genera associated with three Pinus taeda L. seed lots and to assess the sanitary and physiological quality of these lots for use as selection criteria for tissue culture and evaluate the in vitro establishment of explants from seminal origin in different nutritive media. It was possible to discriminate the lots on the sanitary and physiological quality, as well as to establish in vitro plants of Pinus taeda from cotyledonary nodes obtained from aseptic seed germination of a selected lot by the sanitary and physiological quality higher. The nutritive media MS, ½ MS and WPM were equally suitable for this purpose. For the sanitary analysis the fungal genera Fusarium, Penicillium and Trichoderma were those of the highest sensitivity. For the physiological evaluation were important the variables: abnormal seedlings, strong normal seedlings; length, fresh and dry weight of strong normal seedlings. The analyzes were favorable to choose lots of seeds for in vitro culture and all culture media were adequate for the establishment of this species in tissue culture.

  2. Optimization of an Efficient Non-Tissue Culture Transformation Method for Brassica Juncea

    International Nuclear Information System (INIS)

    Naeem, I.; Munir, I.; Iqbal, A.; Ullah, F.

    2016-01-01

    The major hurdles in successful in vitro transformation of Brassica juncea through standard tissue culture (STC) method are: culture contamination, somaclonal variations, and lack of expertise. Moreover, the current STC method is time consuming and needs continuous electricity. In the present study, the in planta transformation method through floral dip with or without vacuum infiltration was optimized for successful transformation of B. juncea. The B. juncea CV RAYA Anmol was used for transformation through Agrobacterium tumefaciens strain GV3101 harboring the binary vector plasmid pBinGlyBar4-EADcT. Based on the resistance reaction to the herbicide Basta, 20 and 40 resistant seedlings were obtained from 2000 seed germinated from the plants transformed through floral dip and vacuum infiltration methods, respectively. The PCR analyses further confirmed the presence of transgene in 3 floral dipped plants without vacuum infiltration and 17 floral dipped plants with vacuum infiltration, giving the transformation frequencies of 1.5*10/sup -3/ and 8.5*10/sup -3/, respectively. This method, which avoids tissue culture, will reduce the somaclonal variation accompanying prolonged culture of cells in a dedifferentiated state, will facilitate functional genomics and improvement of Brassica juncea with novel desirable traits while reducing time and expense. (author)

  3. The structure of tissue on cell culture-extracted thyroglobulin is independent of its iodine content.

    Science.gov (United States)

    Delain, E; Aouani, A; Vignal, A; Couture-Tosi, E; Hovsépian, S; Fayet, G

    1987-02-01

    The major protein synthesized in vitro by the ovine thyroid cell line OVNIS 6H is the prothyroid hormone thyroglobulin. Purified from serum-free cell culture media using sucrose gradient centrifugation, the thyroglobulin dimer was analysed for iodine content and observed by electron microscopy. In their usual medium, the OVNIS 6H cells produce a very poorly iodinated thyroglobulin containing 0.05 I atom per molecule. When cultured with methimazole or propylthiouracil, two inhibitors of iodide organification, less than 0.007 I atom/molecules was found. These molecules purified from cell cultures were compared to those purified from ovine thyroid tissue containing 26 I atoms/mol. Despite large differences in iodine content, the three preparations all consist of 19 S thyroglobulin dimers with the classical ovoidal shape. The variability in size measurements remains in a 2% range for all thyroglobulin types. Consequently, no real significant variation can be found between the highly iodinated thyroglobulin isolated from tissue, and the poorly or non-iodinated thyroglobulins isolated from cells cultured with or without methimazole or propylthiouracil.

  4. Insights into the multifaceted application of microscopic techniques in plant tissue culture systems.

    Science.gov (United States)

    Moyo, Mack; Aremu, Adeyemi O; Van Staden, Johannes

    2015-10-01

    Microscopic techniques remain an integral tool which has allowed for the better understanding and manipulation of in vitro plant culture systems. The recent advancements will inevitably help to unlock the long-standing mysteries of fundamental biological mechanisms of plant cells. Beyond the classical applications in micropropagation aimed at the conservation of endangered and elite commercial genotypes, plant cell, tissue and organ cultures have become a platform for elucidating a myriad of fundamental physiological and developmental processes. In conjunction with microscopic techniques, in vitro culture technology has been at the centre of important breakthroughs in plant growth and development. Applications of microscopy and plant tissue culture have included elucidation of growth and development processes, detection of in vitro-induced physiological disorders as well as subcellular localization using fluorescent protein probes. Light and electron microscopy have been widely used in confirming the bipolarity of somatic embryos during somatic embryogenesis. The technique highlights basic anatomical, structural and histological evidence for in vitro-induced physiological disorders during plant growth and development. In this review, we discuss some significant biological insights in plant growth and development, breakthroughs and limitations of various microscopic applications and the exciting possibilities offered by emergent in vivo live imaging and fluorescent protein engineering technologies.

  5. Removal of viruses from Lebanese fig varieties using tissue culture and thermotherapy

    Directory of Open Access Journals (Sweden)

    Lamis CHALAK

    2015-12-01

    Full Text Available Two Lebanese fig accessions of local varieties (Biadi and Aswad, infected by Fig leaf mottle-associated virus 1 (FLMaV-1, Fig leaf mottle-associated virus 2 (FLMaV-2 and Fig mosaic virus (FMV, were subjected to tissue culture and thermotherapy for producing virus-free plant material. The virus status of all progeny explants was assayed by RT-PCR using viruses-specific primers. The shoot tip culture technique was reliable for elimination of from 60 to 100% of fig viruses. However, stem cutting culture coupled with thermotherapy was the most effective for shoot regeneration (40% of reactive explants, while elimination of the three viruses was possible even though with lower rates of removal (from zero to 81% were achieved. This study has indicated that FLMaV-2 is more susceptible to thermotherapy than FLMaV-1 and FMV.

  6. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    Science.gov (United States)

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated

  7. Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea.

    Science.gov (United States)

    Kenta, Tanaka; Edwards, Jessica E M; Butlin, Roger K; Burke, Terry; Quick, W Paul; Urwin, Peter; Davey, Matthew P

    2016-12-07

    While genotype-environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates-a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and "somaclonal" variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for F v /F m , F v '/F m ', and Φ PSII , representing maximum efficiency of photosynthesis for dark- and light-adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on F v /F m , F v '/F m ', and Φ PSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype-environment interaction related to adaptively-relevant phenotypes, such

  8. Effects of caffeine on protein phosphorylation and cell cycle progression in X-irradiated two-cell mouse embryos

    International Nuclear Information System (INIS)

    Jung, Th.; Streffer, C.

    1992-01-01

    To understand the mechanism of the caffeine-induced uncoupling of mitosis and the cellular reactions to DNA-damaging agents, the authors studied the effects of caffeine treatment on cell cycle progression and protein phosphorylation in two-cell mouse embryos after X-irradiation. Caffeine alone had no effect on timing of and changes in phosphorylation associated with the embryonic cell cycle. In combination with X-rays, caffeine was able to override the radiation induced G 2 block and restored normal timing of these phosphorylation changes after X-irradiation. New additional changes in protein phosphorylation appeared after the combined treatment. Isobutyl-methylxanthine (IBMX), a substance chemically related to caffeine but a more specific inhibitor of the phosphodiesterase that breaks down cyclic AMP, reduced radiation induced G 2 block from 4 to 5 h to about 1 h and restored the cell cycle associated changes in protein phosphorylation. (author)

  9. Trisomy No. 15 in murine thymomas induced by chemical carcinogens, x-irradiation, and an endogenous murine leukemia virus

    International Nuclear Information System (INIS)

    Chan, F.P.H.; Ball, J.K.; Sergovich, F.R.

    1979-01-01

    Chromosome banding techniques were used to examine the karyotype of tumor cells from thymic lymphomas induced by three different carcinogens (x-irradiation, polycyclic aromatic hydrocarbons, and an endogenous leukemogenic virus) after injection into neonatal mice of 2 different inbred mouse strains (CFW/D and C57BL/Ka). A total of 89 tumors were studied, and of these 85.4% were characterized by a modal chromosome number of 41. The additional chromosome was the result of a specific abnormality identified as trisomy of chromosome No. 15. The results obtained were independent of the carcinogenic agents and the strain of mouse used. Of the 13 tumors found to have a normal chromosome complement, 4 were induced by x-irradiation and the remaining 9 by the chemical carcinogens. All 15 virus-induced tumors analyzed had a modal chromosome number of 41

  10. Migration inhibition of immune mouse spleen cells by serum from x-irradiated tumor-bearing mice

    International Nuclear Information System (INIS)

    Moroson, H.

    1978-01-01

    Tumor-specific antigens of the chemically induced MC 429 mouse fibrosarcoma were detected in a 3 M KCl extract of tumor by the inhibition of migration of specifically immune spleen cells. Using this assay with serum from tumor-bearing mice no tumor antigen was detected in serum of mice bearing small tumors, unless the tumor was exposed to local x irradiation (3000 R) 1 day prior to collection of serum. It was concluded that local x irradiation of tumor caused increased concentration of tumor antigen in the serum. When the tumor was allowed to grow extremely large, with necrosis, then host serum did cause migration inhibition of both nonimmune and immune spleen cells. This migration-inhibition effect was not associated with tumor antigen, but with a nonspecific serum factor

  11. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.

    Science.gov (United States)

    Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin

    2015-02-01

    Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Protein and Glycoprotein Patterns Related to Morphogenesis in Mammillaria gracillis Pfeiff. Tissue Culture

    Directory of Open Access Journals (Sweden)

    Biljana Balen

    2002-01-01

    Full Text Available As plants with Crassulacean Acid Metabolism (CAM, cacti are highly affected by artificial environmental conditions in tissue culture. Plants of Mammillaria gracillis Pfeiff. (Cactaceae propagated in vitro produced callus spontaneously. This habituated callus regenerated normal and hyperhydric shoots without the addition of growth regulators. In order to compare habituated callus with the tumorous one, cactus cells were transformed with two strains of Agrobacterium tumefaciens: the wild strain B6S3 (tumour line TW and the rooty mutant GV3101 (tumour line TR. Gene expression in cactus plants, habituated callus, regenerated shoots and two tumour lines was analysed at the level of cellular and extracellular protein and glycoprotein profiles. Proteins were separated by SDS-polyacrylamide gel electrophoresis and 2-D PAGE electrophoresis and silver stained. Concavalin A-peroxidase staining detected glycoproteins with D-manose in their glycan component on protein blots. Developmentally specific protein patterns of Mammillaria gracillis tissue lines were detected. The 2-D PAGE electrophoresis revealed some tissue specific protein groups. The cellular glycoprotein of 42 kDa detected by ConA was highly expressed in undifferentiated tissues (habituated callus, TW and TR tumours and in hyperhydric regenerants. Tumours produced extracellular proteins of 33, 23 and 22 kDa. The N glycosylation of cellular and extracellular proteins was related to specific developmental stage of cactus tissue.

  13. The effect of the timing of prenatal exposure to x-irradiation on Purkinje cell numbers in rat cerebellum

    International Nuclear Information System (INIS)

    Miki, T.; Satriotomo, I.; Matsumoto, Y.; Kuma, H.; Takeuchi, Y.; Gu

    2003-01-01

    Full text: Prenatal exposure of the developing brain to X-irradiation is known to cause various deleterious consequences. We have examined the effects of prenatal X-irradiation on the development of the cerebellum. Wistar rats were exposed to 1.5 Gy X-irradiation either on the 14, 15 or 16th day of gestation (E14, E15, E16). Sham-irradiated animals were used as controls. At seven postnatal weeks of age, male rats were deeply anesthetized and killed by intracardiac perfusion with 2.5 % glutaraldehyde in 0.1 M phosphate buffer. The unbiased stereological procedure known as the fractionator method was used to estimate the total number of Purkinje cells in the cerebellum. Body and cerebellar weights from E14 and E15, but not E16 irradiated rats showed significant deficits compared to control animals. Rats irradiated on E16 and control rats had about 285,100 - 304,800 Purkinje cells in the cerebellum. There was no significant difference between these values. However, E14 and E15 irradiated animals had about 117,500 and 196,300 Purkinje cells, respectively. These estimates were significantly different from those observed in both control and E16 irradiated rats. Given that the phase of division of Purkinje cell progenitors is mainly between E14-E15 and the phase of differentiation and migration is between E16-E20, it is concluded that the vulnerable period of the Purkinje cells to X-irradiation closely overlaps the phase of division of progenitors

  14. Levels of glutamate, aspartate, GABA, and taurine in different regions of the cerebellum after x-irradiation-induced neuronal loss

    International Nuclear Information System (INIS)

    Rea, M.A.; McBride, W.J.; Rohde, B.H.

    1981-01-01

    The levels of glutamate (Glu), aspartate (Asp), gamma-amino-n-butyric acid (GABA), and taurine (Tau) were determined in the cortex, molecular layer, and deep nuclei of cerebella of adult rats exposed to X-irradiation at 12-15 days following birth (to prevent the acquisition of late-forming granule cells; 12-15x group) and 8-15 days following birth (to prevent the acquisition of granule and stellate cells; 8-15x group). Also, the levels of the four amino acids were measured in the crude synaptosomal fraction (P2) isolated from the whole cerebella of the control, 12-15x, and 8-15x groups. The level of Glu was significantly decreased by (1) 6-20% in the cerebellar cortex; (2) 15-20% in the molecular layer; and (3) 25-50% in the P2 fraction of the X-irradiated groups relative to control values. The content of Glu in the deep nuclei was not changed by X-irradiation treatment. Regional levels of Asp were unchanged by X-irradiation, while its level in P2 decreased by 15-30% after treatment. The levels of GABA and Tau in the molecular layer, deep nuclei, or P2 were not changed in the experimental groups. However, there was a 15% increase in the levels of GABA and Tau in the cerebellar cortex of the 8-15x group relative to control values. The data support the proposed role of glutamate as the excitatory transmitter released from the cerebellar granule cells but are inconclusive regarding a transmitter role for either Tau or GABA from cerebellar stellate cells

  15. Destruction and regeneration of seminiferous tubules after local x-irradiation of testes of the adult rats

    International Nuclear Information System (INIS)

    Kurnosova, T.R.; Rajtsina, S.S.

    1987-01-01

    It was established that the local X-irradiation (1000 R) of testes of the adult rats results in a total destruction of seminiferous tubules. The restitution of the organ structure proceeds via formation of new seminiferous tubules in which spermatogenic epithelium later develops. Rete testis and germ cells preserved in its epithelium from embryogenesis are a source of regeneration material. The results obtained favour the suggestion about the dynamic structure of mammalian testis

  16. Study of the agroindustrial alterations induced by the irradiated tissue culture in sugar cane, variety NA 56-79

    International Nuclear Information System (INIS)

    Figueiredo Junior, O.

    1991-01-01

    The use of plant tissue culture and the application of gamma radiation as mutation inducing agents, in the sugar cane plant, variety NA 5679, are studied. The variation in the contents of brix, pol, fiber, purity, extraction, phosphorus, nitrogen, reducing sugars as well as the morphological characteristics are analysed. The 'callus' obtained by the tissue culture were irradiated with 20, 40, and 60 Gy doses. The statistical analysis indicated that the method of tissue culture may, eventually, increase the contents of the technological parameters and the dosages of gamma radiation were not efficient for such purpose. (M.A.C.)

  17. Shielding of the abdominal region during X-irradiation: Effect on haemopoietic stem cells

    International Nuclear Information System (INIS)

    Vavrova, J.; Petyrek, P.

    1984-01-01

    The shielding of the abdominal region during X-irradiation is important for two reasons: 1) it prevents the development of the gastrointestinal syndrome following higher radiation doses; 2) it prevents the development of the lethal form of the bone marrow syndrome by shielding a portion of the spinal column bone marrow and the spleen. The dose reduction factor in partial irradiated mice compared to whole-body irradiated mice was 2.6. 15 mins after irradiation with the dose of 10 Gy, the number of spleen colony-forming cells (CFU-S) decreased in the femoral bone marrow of both the group receiving whole-body irradiation and the group having the abdominal region shielded. This decrease persisted in both groups for five hours after irradiation. 48 hours after whole-body irradiation, the number of CFU-S in the femoral bone marrow of the unshielded animals decreased almost to zero values. In shielded group, a statistically significant increase in the number of CFU-S in the femur was observed at 48 hours. At 120 hours, the number of CFU-S in so irradiated mice was at the level of the unirradiated group. In the spleen a great decrease in the number of CFU-S was caused by whole-body irradiation of mice as early as 15 mins after irradiation and the low-levels were recorded until the death of animals. In the shielded group, a statistically signifjcant decrease in the number of CFU-S was observed 15 mins after irradiation, which may have been due to the abscopal effect of irradiation. After a transient recovery 2 hours after irradiation, a significant decrease in the number of CFU-S in the spleens was observed in the subsequent interval from five to 120 hours after irradiation. (author)

  18. Interplay of thymus and bone marrow regeneration in x-irradiated mice

    International Nuclear Information System (INIS)

    Hiesche, K.-D.

    1975-01-01

    aim of the prepresent investigation was to study the modifying effects of bone marrow cells on regeneration, after X-irradiation, of thymus and bone marrow cell populations. Data are presented which indicate that the cellular composition of the thymus and, in particular, the frequency of the stem cells in the organ at the time of radiation exposure determines thymic regeneration for about two weeks after irradiation. After this period, regeneration depends on new precursors from the bone marrow which have previously seeded the thymus. In contrast to the thymus, cellular restoration of the bone marrow is already initially dependent on the number of protected or transplanted marrow cells. Two phases in the recovery of thymic PHA-reactivity after irradiation were observed: one initial phase which is independent on the number of the available bone marrow cells, and a subsequent phase during which PHA-reactivity is slightly increased in mice irradiated with partly protected bone marrow in comparison to in total body irradiated animals. During the entire observation period, PHA-reactivity remains at a low level not exeeding 50 % of that in untreated mice. In contrast the thymus is fully repopulated with regard to the number of nonreactive cells. Alternative pathways of thymocyte development within the thymus are discussed. Bone marrow X cells were shown to be as sensitive to in vitro treatment with a specific H-2 antiserum as were lymphocytes from normal bone marrow. This finding was teken to indicate that the X cells represent a particular lymphoid cell type. A xenogeneic rabbit-anti-mouse embryo antiserum was more toxic to pre-irradiated bone marrow, with high proportion of X cells, than to bone marrow from untreated mice, using in vitro cytotoxicity test. A possible embryonic character of the X cells is discussed. (author)

  19. Changes in adipose tissue stromal-vascular cells in primary culture due to porcine sera

    International Nuclear Information System (INIS)

    Jewell, D.E.; Hausman, G.J.

    1986-01-01

    This study was conducted to determine the response of rat stromal-vascular cells to pig sea. Sera were collected from unselected contemporary (lean) and high backfat thickness selected (obese) pigs. Sera from obese pigs were collected either by exsanguination or cannulation. sera from lean pigs during the growing phase (45 kg) and the fattening phase (100-110 kg) were collected. Stromal-vascular cells derived rom rat inguinal tissue were cultured on either 25 cm 2 flasks, collagen-coated coverslips or petri dishes. Cell proliferation was measured by [ 3 H]-thymidine incorporation during the fourth day of culture. Coverslip cultures were used for histochemical analysis. Petri dish cultures were used for analysis of Sn-glycerol-3-phosphate dehydrogenase (GPDH) activity. All cells were plated for 24 hours in media containing 10 fetal bovine sera. Test media contained 2.5, 5.0, 10.0% sera. Sera from obese pigs increased GPDH activity and fat cell production when compared to the lean controls. The increased concentration of sera increased esterase activity and lipid as measured with oil red O. The sera from obese pigs collected at slaughter stimulated more fat cell production than obese sera collected by cannulation. These studies show there are adipogenic factors in obese pigs sera which promote fat cell development in primary cell culture

  20. Chemical And Physiological Studies On Drought Stress Tolerance Of Irradiated Communis Pear Using Tissue Culture

    International Nuclear Information System (INIS)

    Zaied, N.S.; Ragab, E.A.

    2007-01-01

    The rooted in vitro irradiated pear rootstocks (Pyrus communis) were subjected to drought stress by using different concentrations of mannitol (20, 40, 60, 80 and 100 gm/l), polyethylene glycol (PEG) at concentrations 2, 4, 6, 8 and 10 % to culture medium and also agar at concentrations 6, 8, 10, 12 and 14 gm/l to study their effects on tissue culture and chemical analysis and their tolerance to drought stress. The obtained results showed that the number of shoots, shoot length and number of leaves were higher at 20 and 40 gm/l mannitol. Increasing mannitol concentration enhanced the increase of chlorophyll b, reducing sugars, total indoles and total phenols up to the highest level at 100 gm/l. Adding PEG at concentration 2% to the culture medium encouraged significant increases in the number of shoots and number of leaves and increase chlorophyll a, and non-reducing sugars as well as significant decrease in number of shoots, shoots length, number of leaves, root length and number of roots with increasing agar concentrations to the culture medium. However, decreasing agar concentration in the culture medium induced increase in chlorophyll A and non-reducing sugar

  1. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid....... (3) X-irradiation and fasting seem to have opposite effects on fatty-acid synthesis. X-irradiation counteracts the drop in total synthesis and the relatively enhanced synthesis of palmitoleic acid induced by fasting. The relative enhancement of palmitic-acid synthesis mentioned under (2) stands...

  2. Effect of whole body X-irradiation on the NP-SH level of blood in rabbits

    International Nuclear Information System (INIS)

    Suh, Soo Jhi; Woo, Won Hyung

    1972-01-01

    In hope to elucidate possible changes in blood NP-SH levels when X-irradiation is made in single or fractionate dose, a whole body X-irradiation was done to rabbits either in single dose of 900 r or in fractionated dose of 300 r per day for three days. The NP-SH was measured at 1, 3, 5, 24 and 48 post-irradiation hours, and the results were compared with the normal value of the blood NP-SH. The results obtained are as follows: 1. The normal value of blood NP-SH in the rabbit was 2.11 ± 0.40 μmol/ml. 2. In the single X-irradiation group, the blood NP-SH decreased most prominently at five hours after-irradiation, and a tendency of recovery to the normal level was observed thereafter. 3. In the fractionated group, the blood NP-SH levels were higher, than in the single irradiation group throughout the experiment, and the levels were also higher than the normal in general

  3. Effects of whole body x-irradiation and cyclophosphamide treatment on induction of macrophage tumoricidal function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.M.; Pavlidis, N.A.; Chirigos, M.A.; Weiss, J.F.

    1978-07-01

    The influence of whole-body x irradiation (200 to 800 R) and subcutaneous cyclophosphamide (CY) treatment (150 to 500 mg/kg) was studied on the ability of adjuvants to induce cytotoxic macrophages in vivo. Surprisingly, radiation or CY therapy alone produced growth inhibitory macrophages whose function peaked within 2 days after treatment. When adjuvants such as Bacillus Calmette Guerin (BCG), pyran copolymer, or glucan were administered ip within 2 hr after sublethal (600 R) x irradiation, adjuvant-induced cytotoxic function was depressed but not ablated. In addition, when noninduced peritoneal macrophages were obtained 6 days after lethal (800 R) x irradiation, their ability to be activated in vitro by lymphokine or fibroblast-derived interferon preparations was only slightly depressed at all concentrations of inducer tested. When BCG, pyran, or glucan was administered ip concurrently with sc CY treatment, only the ability of BCG to activate macrophages was markedly reduced, indicating separate mechanisms for the induction of tumoricidal macrophages. A better understanding of the interaction of chemotherapeutic and/or radiation regimens with adjuvants which affect macrophage function may be instrumental to rationalized immunotherapy protocols.

  4. Effects of whole body x-irradiation and cyclophosphamide treatment on induction of macrophage tumoricidal function in mice

    International Nuclear Information System (INIS)

    Schultz, R.M.; Pavlidis, N.A.; Chirigos, M.A.; Weiss, J.F.

    1978-01-01

    The influence of whole-body x irradiation (200 to 800 R) and subcutaneous cyclophosphamide (CY) treatment (150 to 500 mg/kg) was studied on the ability of adjuvants to induce cytotoxic macrophages in vivo. Surprisingly, radiation or CY therapy alone produced growth inhibitory macrophages whose function peaked within 2 days after treatment. When adjuvants such as Bacillus Calmette Guerin (BCG), pyran copolymer, or glucan were administered ip within 2 hr after sublethal (600 R) x irradiation, adjuvant-induced cytotoxic function was depressed but not ablated. In addition, when noninduced peritoneal macrophages were obtained 6 days after lethal (800 R) x irradiation, their ability to be activated in vitro by lymphokine or fibroblast-derived interferon preparations was only slightly depressed at all concentrations of inducer tested. When BCG, pyran, or glucan was administered ip concurrently with sc CY treatment, only the ability of BCG to activate macrophages was markedly reduced, indicating separate mechanisms for the induction of tumoricidal macrophages. A better understanding of the interaction of chemotherapeutic and/or radiation regimens with adjuvants which affect macrophage function may be instrumental to rationalized immunotherapy protocols

  5. Frozen and fresh ovarian tissue require different culture media to promote in vitro development of bovine preantral follicles.

    Science.gov (United States)

    Castro, Simone Vieira; Carvalho, Adeline Andrade; Silva, Cleidson Manoel Gomes; Santos, Francielli Weber; Campello, Cláudio Cabral; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2014-10-01

    The aim of this study was to evaluate the efficiency of different media in the in vitro culture of bovine preantral follicles that were used either fresh or following slow freezing treatment. Frozen and fresh noncultured or cultured ovarian fragments were processed for histological, viability, and cell proliferation analyses. For cryopreservation, a solution containing 1.5 M ethylene glycol was frozen in a programmable biological freezer. After thawing, a portion of the samples was destined for frozen controls. The remainder were cultured in vitro for 5 days in three media: α-MEM, McCoy, or M199. Samples from these culture media were collected on days 1 and 5 for quantification of reactive oxygen species (ROS) and for hormonal assays. In fresh-cultured tissues, the percentage of morphologically normal follicles was significantly higher when cultured in M199 compared to that in the other media. In frozen-cultured tissues, McCoy medium was significantly superior to the other media, and was the only treatment that helped in maintaining the viability similar to fresh and frozen controls. Upon quantification of the nucleolus organizer region, we observed greater proliferation of granulosa cells in the frozen-cultured tissues with McCoy medium, and lesser proliferation in fresh-cultured tissues only with α-MEM. In frozen-cultured tissues, ROS levels were highest at day 1 and progressively reduced during culture, independent of the media used. In conclusion, under the conditions used in this study, the M199 and McCoy media are recommended for the culture of follicles derived from fresh and frozen ovarian tissues, respectively.

  6. Improved tissue culture conditions for the emerging C4model Panicum hallii.

    Science.gov (United States)

    Grant, Joshua N; Burris, Jason N; Stewart, C Neal; Lenaghan, Scott C

    2017-04-27

    Panicum hallii Vasey (Hall's panicgrass) is a compact, perennial C 4 grass in the family Poaceae, which has potential to enable bioenergy research for switchgrass (Panicum virgatum L.). Unlike P. hallii, switchgrass has a large genome, allopolyploidy, self-incompatibility, a long life cycle, and large stature-all suboptimal traits for rapid genetics research. Herein we improved tissue culture methodologies for two inbred P. hallii populations: FIL2 and HAL2, to enable further development of P. hallii as a model C 4 plant. The optimal seed-derived callus induction medium was determined to be Murashige and Skoog (MS) medium supplemented with 40 mg L -1 L-cysteine, 300 mg L -1 L-proline, 3% sucrose, 1 g L -1 casein hydrolysate, 3 mg L -1 2,4-dichlorophenoxyacetic acid (2,4-D), and 45 μg L -1 6-benzylaminopurine (BAP), which resulted in callus induction of 51 ± 29% for FIL2 and 81 ± 19% for HAL2. The optimal inflorescence-derived callus induction was observed on MP medium (MS medium supplemented with 2 g L -1 L-proline, 3% maltose, 5 mg L -1 2,4-D, and 500 μg L -1 BAP), resulting in callus induction of 100 ± 0.0% for FIL2 and 84 ± 2.4% for HAL2. Shoot regeneration rates of 11.5 ± 0.8 shoots/gram for FIL2 and 11.3 ± 0.6 shoots/gram for HAL2 were achieved using seed-induced callus, whereas shoot regeneration rates of 26.2 ± 2.6 shoots/gram for FIL2 and 29.3 ± 3.6 shoots/gram for HAL2 were achieved from inflorescence-induced callus. Further, cell suspension cultures of P. hallii were established from seed-derived callus, providing faster generation of callus tissue compared with culture using solidified media (1.41-fold increase for FIL2 and 3.00-fold increase for HAL2). Aside from abbreviated tissue culture times from callus induction to plant regeneration for HAL2, we noted no apparent differences between FIL2 and HAL2 populations in tissue culture performance. For both populations, the cell suspension cultures

  7. Enhancing plant regeneration in tissue culture: a molecular approach through manipulation of cytokinin sensitivity.

    Science.gov (United States)

    Hill, Kristine; Schaller, G Eric

    2013-10-01

    Micropropagation is used for commercial purposes worldwide, but the capacity to undergo somatic organogenesis and plant regeneration varies greatly among species. The plant hormones auxin and cytokinin are critical for plant regeneration in tissue culture, with cytokinin playing an instrumental role in shoot organogenesis. Type-B response regulators govern the transcriptional output in response to cytokinin and are required for plant regeneration. In our paper published in Plant Physiology, we explored the functional redundancy among the 11 type-B Arabidopsis response regulators (ARRs). Interestingly, we discovered that the enhanced expression of one family member, ARR10, induced hypersensitivity to cytokinin in multiple assays, including callus greening and shoot induction of explants. Here we 1) discuss the hormone dependence for in vitro plant regeneration, 2) how manipulation of the cytokinin response has been used to enhance plant regeneration, and 3) the potential of the ARR10 transgene as a tool to increase the regeneration capacity of agriculturally important crop plants. The efficacy of ARR10 for enhancing plant regeneration likely arises from its ability to transcriptionally regulate key cytokinin responsive genes combined with an enhanced protein stability of ARR10 compared with other type-B ARRs. By increasing the capacity of key tissues and cell types to respond to cytokinin, ARR10, or other type-B response regulators with similar properties, could be used as a tool to combat the recalcitrance of some crop species to tissue culture techniques.

  8. Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.].

    Science.gov (United States)

    Krishna, Gaurav; Reddy, P Sairam; Ramteke, P W; Bhattacharya, P S

    2010-10-01

    Pigeon pea [Cajanus cajan (L.) Millsp.] (Family: Fabaceae) is an important legume crop cultivated across 50 countries in Asia, Africa, and the Americas; and ranks fifth in area among pulses after soybean, common bean, peanut, and chickpea. It is consumed as a major source of protein (21%) to the human population in many developing countries. In India, it is the second important food legume contributing to 80% of the global production. Several biotic and abiotic stresses are posing a big threat to its production and productivity. Attempts to address these problems through conventional breeding methods have met with partial success. This paper reviews the chronological progress made in tissue culture through organogenesis and somatic embryogenesis, including the influence of factors such as genotypes, explant sources, and culture media including the supplementation of plant growth regulators. Comprehensive lists of morphogenetic pathways involved in in vitro regeneration through organogenesis and somatic embryogenesis using different explant tissues of diverse pigeon pea genotypes are presented. Similarly, the establishment of protocols for the production of transgenics via particle bombardment and Agrobacterium-mediated transformation using different explant tissues, Agrobacterium strains, Ti plasmids, and plant selectable markers, as well as their interactions on transformation efficiency have been discussed. Future research thrusts on the use of different promoters and stacking of genes for various biotic and abiotic stresses in pigeon pea are suggested.

  9. Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture

    Directory of Open Access Journals (Sweden)

    Jyoti Kumar

    2015-09-01

    Full Text Available Aim: This study was aimed to detect Mannheimia haemolytica in lung tissues of sheep and from a bacterial culture. Introduction: M. haemolytica is one of the most important and well-established etiological agents of pneumonia in sheep and other ruminants throughout the world. Accurate diagnosis of M. haemolytica primarily relies on bacteriological examination, biochemical characteristics and, biotyping and serotyping of the isolates. In an effort to facilitate rapid M. haemolytica detection, polymerase chain reaction assay targeting Pasteurella haemolytica serotype-1 specific antigens (PHSSA, Rpt2 and 12S ribosomal RNA (rRNA genes were used to detect M. haemolytica directly from lung tissues and from bacterial culture. Materials and Methods: A total of 12 archived lung tissues from sheep that died of pneumonia on an organized farm were used. A multiplex polymerase chain reaction (mPCR based on two-amplicons targeted PHSSA and Rpt2 genes of M. haemolytica were used for identification of M. haemolytica isolates in culture from the lung samples. All the 12 lung tissue samples were tested for the presence M. haemolytica by PHSSA and Rpt2 genes based PCR and its confirmation by sequencing of the amplicons. Results: All the 12 lung tissue samples tested for the presence of PHSSA and Rpt2 genes of M. haemolytica by mPCR were found to be positive. Amplification of 12S rRNA gene fragment as internal amplification control was obtained with each mPCR reaction performed from DNA extracted directly from lung tissue samples. All the M. haemolytica were also positive for mPCR. No amplified DNA bands were observed for negative control reactions. All the three nucleotide sequences were deposited in NCBI GenBank (Accession No. KJ534629, KJ534630 and KJ534631. Sequencing of the amplified products revealed the identity of 99-100%, with published sequence of PHSSA and Rpt2 genes of M. haemolytica available in the NCBI database. Sheep specific mitochondrial 12S r

  10. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    Science.gov (United States)

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    Science.gov (United States)

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  12. Detection, isolation, and preliminary characterization of bacteria contaminating plant tissue cultures

    Directory of Open Access Journals (Sweden)

    Monika Kałużna

    2014-01-01

    Full Text Available In order to limit the contamination problem in plant tissue cultures experiments on selection of media suitable for detection and isolation of bacteria contaminating plant tissue explants, and preliminary characterization of isolates were made. In the first experiment aiming at detection of bacteria in plant explants four strains representing genera most often occurring at our survey of plant tissue cultures, and earlier isolated and identified (Bacillus, Methylobacterium, Pseudomonas and Xanthomonas were streaked on five bacteriological media (NA, King B, K, R2A and 523 and on the medium used for plant culture initiation – ½ MS with milk albumin (IM. All strains grew on all media but on K and IM at the slowest rate and on 523 medium at the fastest. The IM medium proved to be useful for immediate bacteria detection at the initial stage of culture. In the second experiment, aiming at characterization of isolates on the basis of colony growth and morphology 14 strains (Agrobacterium, Bacillus, Curtobacterium, Flavobacterium, Lactobacillus, Methylobacterium – 2 strains Mycobacterium, Paenibacillus, Plantibacterium, Pseudomonas, Stenotrophomonas, Xanthomonas, and species Serratia marcescens were streaked on five microbiological media: KB, NBY, YDC, YNA and YPGA. All strains grew on all those media but at different rates. The only exception was the strain of Lactobacillus spp., which did not grow on King B medium. This medium allowed the detection of such characteristic traits as fluorescence (Pseudomonas and secretion of inclusions (Stenotrophomonas. The third experiment was focussed on assessment of the sensitivity of detection of specific bacteria in pure cultures and in plant tis- sue cultures using standard PCR and BIO-PCR techniques with genus specific primers and 2 methods of DNA isolation. Results showed that the use of Genomic Mini kit enabled an increase of the sensitivity by 100 times as compared to extraction of DNA by boiling

  13. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.

    Science.gov (United States)

    Reda, A; Hou, M; Winton, T R; Chapin, R E; Söder, O; Stukenborg, J-B

    2016-09-01

    Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in

  14. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains

    International Nuclear Information System (INIS)

    Jacquet, P.; Buset, J.; Neefs, M.; Vankerkom, J.; Benotmane, M.A.; Derradji, H.; Hildebrandt, G.; Baatout, S.

    2010-01-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4 Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2 Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects

  15. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P., E-mail: pjacquet@sckcen.be [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Buset, J.; Neefs, M. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Vankerkom, J. [Division of Environmental Research, VITO, Boeretang 200, B-2400 Mol (Belgium); Benotmane, M.A.; Derradji, H. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Hildebrandt, G. [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, D-04103 Leipzig (Germany); Department of Radiotherapy, University of Rostock, Suedring 75, D-18059 Rostock (Germany); Baatout, S. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-05-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4 Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2 Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects

  16. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    Science.gov (United States)

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection. Copyright © 2014 John Wiley

  17. [Action spectra of anthocyanin synthesis in tissue cultures and seedlings of Haplopappus gracilis].

    Science.gov (United States)

    Lackmann, I

    1971-09-01

    The biosynthesis of anthocyanin in tissue cultures and intact seedlings of Haplopappus gracilis is a light-dependent reaction which can be induced by blue light only. Anthocyanin appeared in all organs of the seedling.Wounding of the plant led to an increase in the content of anthocyanin due to increased anthocyanin synthesis in the cotyledons.The action spectra of anthocyanin formation in tissue cultures and intact seedlings have two peaks, one at 438 nm and the other at 372 nm. The limit of activity in the direction of longer wavelengths lies between 474 and 493 nm. Red light of short and long wavelength is ineffective in the induction of pigment synthesis. The photoreceptor of the light reaction is supposed to be a yellow pigment (flavoprotein or carotinoid). In contrast to the intact plants, isolated cotyledons and wounded seedlings are able to form anthocyanin not only in the blue region but also during irradiation with red light of high intensity. The action spectrum of anthocyanin synthesis in the isolated cotyledons has a marked maximum at about 440 nm and a second one at about 660 nm. A little activity can be observed throughout the visible spectrum. The pigment synthesis induced by red light can be completely suppressed by DCMU, an inhibitor of photosynthesis. This indicates that in the case of the activity in the red light caused by wounding chlorophyll serves as photoreceptor.The anthocyanin synthesis in tissue cultures and seedlings could not be influenced by low energy radiation in the red or in the far red region, even after induction of anthocyanin synthesis by blue light of high intensity. Therefore it seems that the phytochrome system is not involved in anthocyanin synthesis in Haplopappus gracilis.

  18. IN VITRO INOCULATION OF ASPARAGUS OFFICINALIS TISSUE CULTURE SHOOTS WITH FUSARIUM PROLIFERA TUM

    Directory of Open Access Journals (Sweden)

    A.K.MoHD OMAR

    1999-01-01

    Full Text Available Artificially inoculated asparagus tissue culture plantlets with a virulent fungus, Fusarium proliferatum showed signs of infection as early as 4 days after inoculat ion. Macroscopic observations revealed presence of early symptoms such as necrotic lesions at the affected area and light microscopic examinations clearly revealed the post-penetration events that took place including the destruction of surrounding cells. However, little is known of the hyphal activity or advancement on the host's surface at the initial stage after inoculation. Scanning electron microscopic examination clearly revealed the hyphal advancement on the surface and the mode of entrance into the host tissues beneath. Four days after inoculation, the fungi proceeded to spread out from the inoculation point onto the host surface which eventually developed into a sparse network of both aerial and non-aerial hyphae. Non-aerial hyphae form a network of mycelium that adheres to the surface and it's movement appeared to be oriented towards the stomata. Hyphal penetration occurs more often through the stomata, natural openings or wounds. In some cases, the hyphae crossed over the stomatal opening w ithout entering the host tissues. At places where the cuticle layer is absent or not well developed the hyphae successfully grew in between the epidermal cells into the tissues beneath.

  19. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes

    Science.gov (United States)

    Frampton, J. P.; Hynd, M. R.; Williams, J. C.; Shuler, M. L.; Shain, W.

    2007-12-01

    One limitation to the use of neuroprosthestic devices for chronic application, in the treatment of disease, is the reactive cell responses that occur surrounding the device after insertion. These cell and tissue responses result in increases in device impedance and failure of the device to interact with target populations of neurons. However, few tools are available to assess which components of the reactive response contribute most to changes in tissue impedance. An in vitro culture system has been developed that is capable of assessing individual components of the reactive response. The system utilizes alginate cell encapsulation to construct three-dimensional architectures that approach the cell densities found in rat cortex. The system was constructed around neuroNexus acute probes with on-board circuitry capable of monitoring the electrical properties of the surrounding tissue. This study demonstrates the utility of the system by demonstrating that differences in cell density within the three-dimensional alginate constructs result in differences in resistance and capacitance as measured by electrochemical impedance spectroscopy. We propose that this system can be used to model components of the reactive responses in brain tissue, and that the measurements recorded in vitro are comparable to measurements recorded in vivo.

  20. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia.

    Science.gov (United States)

    Podstolski, Andrzej; Havkin-Frenkel, Daphna; Malinowski, Jacek; Blount, Jack W; Kourteva, Galina; Dixon, Richard A

    2002-11-01

    Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.

  1. Effect of interferon on the development of Trypanosoma cruzi in tissue culture "Vero" cells

    Directory of Open Access Journals (Sweden)

    R. R. Golgher

    1980-01-01

    Full Text Available Results are presented on the effects of interferon on the intracellular stages of T. cruzi in tissue culture "Vero" cells. Interferon was obtained by infecting monolayers of human amniotic cells with inactivated Newcastle disease virus. Interferon has not affected the cell infection by T. cruzi culture infective stages and neither has it prevented the transformation of amastigote into trypomastigote stages.Interferon obtido através da infecção de células amnióticas humanas por vírus inativado da doença de Newcastle foi incapaz de influir sobre a infectividade de formas de cultura do T. cruzi para células "Vero" de cultura de tecido. A transformação amastigota-tripomastigota também não foi afetada pelo interferon.

  2. Study on rapid propagation of Zanhuang Chinese jujube by tissue culture

    International Nuclear Information System (INIS)

    Li Yun; Wang Yu; Tian Yanting

    2002-01-01

    Zanhuang jujube is a very precious and rare variety of Chinese jujube. Its development was restricted by the under-developed propagate technique in history. The rapid propagation by tissue culture was studied and the optimum media were screened out. Through studying the condition of initial, proliferating, acclimatizing and rooting culture, 4 media, MS +6-BA 0.5 mg/L+IBA 0.1 mg/L, MS+6-BA 1.5 mg/L+IBA 0.1-0.2 mg/L, MS+KT 0.5 mg/L+NAA 0.2 mg/L and 1/2 MS+IBA 0.6 mg/L+NAA 0.2-0.3 mg/L were selected respectively

  3. Target detect system in 3D using vision apply on plant reproduction by tissue culture

    Science.gov (United States)

    Vazquez Rueda, Martin G.; Hahn, Federico

    2001-03-01

    This paper presents the preliminary results for a system in tree dimension that use a system vision to manipulate plants in a tissue culture process. The system is able to estimate the position of the plant in the work area, first calculate the position and send information to the mechanical system, and recalculate the position again, and if it is necessary, repositioning the mechanical system, using an neural system to improve the location of the plant. The system use only the system vision to sense the position and control loop using a neural system to detect the target and positioning the mechanical system, the results are compared with an open loop system.

  4. Improving tolerance to Fusarium oxysporum f. sp. melonis in melon using tissue culture and mutation techniques

    International Nuclear Information System (INIS)

    Kantoglu, Y.; Secer, E.; Tutluer, I.; Kunter, B.; Peskircioglu, H.; Sagel, Z.; Erzurum, K.

    2010-01-01

    Fusarium wilt is a vascular disease of the Cucurbitaceae family, especially in muskmelon (Cucumis melo L.), caused by the soil fungus Fusarium oxysporum f. sp. melonis (FOM). This pathogen persists in the soil for extended periods of time, and the only effective control is the use of resistant cultivars. During the last three decades, tissue culture techniques have been utilised in crop improvement to generate changes in the genetic material of plants via in vitro somaclonal variations (by organogenesis or somatic embryogenesis) and induced mutagenesis. More recently, researchers have been using in vitro techniques to investigate the effects of fungal culture filtrates or toxins on susceptible and resistant genotypes of different plant species or cultivars to assess disease resistance. This method is effectively used for cucumber and melon. There are various in vitro culture techniques that can be used for cucumber (Malepszy, 1988). In this chapter, we show a method for mass-selection of melon mutants resistant to Fusarium wilt. In vitro selection of resistant cells, from both irradiated and non- irradiated explants, is performed using culture filtrates of different FOM races. This research could lead to the development of new melon cultivars resistant to Fusarium wilt. (author)

  5. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  6. Ultra high content image analysis and phenotype profiling of 3D cultured micro-tissues.

    Directory of Open Access Journals (Sweden)

    Zi Di

    Full Text Available In many situations, 3D cell cultures mimic the natural organization of tissues more closely than 2D cultures. Conventional methods for phenotyping such 3D cultures use either single or multiple simple parameters based on morphology and fluorescence staining intensity. However, due to their simplicity many details are not taken into account which limits system-level study of phenotype characteristics. Here, we have developed a new image analysis platform to automatically profile 3D cell phenotypes with 598 parameters including morphology, topology, and texture parameters such as wavelet and image moments. As proof of concept, we analyzed mouse breast cancer cells (4T1 cells in a 384-well plate format following exposure to a diverse set of compounds at different concentrations. The result showed concentration dependent phenotypic trajectories for different biologically active compounds that could be used to classify compounds based on their biological target. To demonstrate the wider applicability of our method, we analyzed the phenotypes of a collection of 44 human breast cancer cell lines cultured in 3D and showed that our method correctly distinguished basal-A, basal-B, luminal and ERBB2+ cell lines in a supervised nearest neighbor classification method.

  7. Improvement of potato tolerance to salinity using tissue culture techniques and irradiation with in vitro selection

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2005-06-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma doses 25, 30, and 35 Gy.Growing shoots were cut and re-cultured every 2 weeks until the 4th generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3000 plantlets from the three cultivars were subjected to selection pressure. MV 4 explants were cultured on MS medium supplemented with the NaCl in varying concentrations ranging between 50 to 200 mM. Surviving plantlets were propagated and re-cultured on a similar medium to insure their tolerance to salinity. Tolerant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later subjected to another selection pressure, by irrigating them using water containing NaCl in concentrations ranging between 50-250 mM in addition to controls irrigated with normal water. Cultivar Spunta produced the highest number of tolerant plants. Four plants of Spunta appeared to be tolerant to salinity whereas only one plant from Diamant and was tolerant and no plants from cultivar Draga were tolerant. Mutant plants varied in number of produced minitubers from 8 - 14. Also, weight of these minitubers varied from less than 1 to 31 grams. (author)

  8. Low-level x-irradiation of the brain during development morphological, physiological, and behavioral consequences. Final report, September 1, 1976--August 31, 1977

    International Nuclear Information System (INIS)

    Altman, J.

    1977-01-01

    Morphological research was continued in the following areas: glial recovery patterns in the rat corpus callosum after x-irradiation during infancy; the prenatal development of the deep nuclei and cortex of the cerebellum; the prenatal development of the inferior olive, pontine gray and the precerebellar reticular nuclei; and the postnatal development of the olfactory bulb. In these studies autoradiography and x-irradiation were among the experimental techniques utilized. The behavioral studies, all of which are still in progress, are concerned with the effects of different schedules of postnatal x-irradiation of the cerebellum, and the effects of x-irradiation of the olfactory bulb. A list is included of 14 publications that report results in detail

  9. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.

    Science.gov (United States)

    Miura, Takashi; Yokokawa, Ryuji

    2016-08-01

    Organ culture systems are used to elucidate the mechanisms of pattern formation in developmental biology. Various organ culture techniques have been used, but the lack of microcirculation in such cultures impedes the long-term maintenance of larger tissues. Recent advances in microfluidic devices now enable us to utilize self-organized perfusable capillary networks in organ cultures. In this review, we will overview past approaches to organ culture and current technical advances in microfluidic devices, and discuss possible applications of microfluidics towards the study of developmental biology. © 2016 Japanese Society of Developmental Biologists.

  10. X irradiation combined with TNF alpha-related apoptosis-inducing ligand (TRAIL) reduces hypoxic regions of human gastric adenocarcinoma xenografts in SCID mice

    International Nuclear Information System (INIS)

    Takahashi, Momoko; Yasui, Hironobu; Ogura, Aki; Asanuma, Taketoshi; Inanami, Osamu; Kubota, Nobuo; Tsujitani, Michihiko; Kuwabara, Mikinori

    2008-01-01

    Our previous study showed that X irradiation induced the expression of death receptor DR5 on the cell surface in tumor cell lines under not only normoxia but also hypoxia. X irradiation combined with TNF α-related apoptosis-inducing ligand (TRAIL), which is the ligand of DR5, induced apoptosis in vitro (Takahashi et al., (2007) Journal of Radiation Research, 48: 461-468). In this report, we examined the in vivo antitumor efficacy of X irradiation combined with TRAIL treatment in tumor xenograft models derived from human gastric adenocarcinoma MKN45 and MKN28 cells in severe combined immunodeficiency (SCID) mice. X irradiation combined with TRAIL synergistically suppressed the tumor growth rates in the xenograft models derived from MKN45 and MKN28 cells, which have wild type Tp53 and mutated Tp53, respectively, indicating that the antitumor effects occurred in a Tp53-independent manner. Histological analysis showed that the combination of X irradiation and TRAIL induced caspase-3-dependent apoptotic cell death. Moreover, the immunohistochemical detection of hypoxic regions using the hypoxic marker pimonidazole revealed that caspase-3-dependent apoptosis occurred in the hypoxic regions in the tumors. These results indicated that X irradiation combined with TRAIL may be a useful treatment to reduce tumor growth in not only normoxic but also hypoxic regions. (author)

  11. Production of virus-free orchid Cymbidium aloifolium (L. Sw. by various tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Shreeti Pradhan

    2016-10-01

    Full Text Available Orchids are affected by many viruses resulting in poor growth, yield and quality, and an overall decline in population. Cymbidium mosaic virus (CymMV is one of the common orchid viruses found in Cymbidium species but it infects different orchid genera. In this study Cymbidium aloifolium was propagated in vitro using MS medium at different strength (1.0, ½, and ¼ with or without 0.5 mg/l BAP (6-benzylaminopurine and 0.5 mg/l NAA (Naphthalene acetic acid. To provide disease-free planting material, source plant for in vitro propagation needs to be screened for pathogenic viruses. In the present study, in vivo-grown source (mother plants and tissue culture-derived plants of C. aloifolium were tested for CymMV virus using Double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA. All the tissue cultured plants were found to be 100% virus-free whereas the in vivo grown source plants were highly affected by CymMV virus (83.33%. The virus-free in vitro plantlets were multiplied in large scale and then acclimatized on earthen pot containing a mixture of cocopeat, litter and clay in the ratio of 3:2:1. Eighty five percent of acclimatized plantlets survived making this method an efficient mass production system for high quality virus-free C. aloifolium for commercial floriculture and germplasm preservation.

  12. Finite element study of scaffold architecture design and culture conditions for tissue engineering.

    Science.gov (United States)

    Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien

    2009-10-01

    Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

  13. Pleurotus Spent Mushroom Compost as Green Supplementary Nutrient in Tissue Culture

    Directory of Open Access Journals (Sweden)

    Tay Chia Chay

    2016-01-01

    Full Text Available This study investigates the effect of Pleurotus spent mushroom compost as green supplementary nutrient in tissue culture. Different concentration of Pleurotus spent mushroom compost in powder (SMC and activated carbon (SMCAC were added into Murashige and Skoog media (MS with 0.1 mg/L 6-benzylaminopurine (BAP. The shoot regeneration of Clinacantus nutans plant such as number of shoots, number of leaves and length of leaves were recorded for four weeks. Collected data was analyzed using one way analysis of variance (ANOVA and Tukey test through the SPSS Statistics 21 software. The 0.1 g/L SMC recorded the highest leaves numbers. Meanwhile, 0.2 g/L SMC showed highest performance in length of shoot. The SMCAC showed a negative response in number of leaves and shoot as well as length of shoot. In summary, the SMC showed significant performance in number of leave and shoot length but less effective on number of shoot. In contradictory, the SMCAC reported poor performance in shoot regeneration but contribute in absorption of nutrient from environment and storage of the nutrient asfunction of biochar. Therefore, the SMC has a high potential as a green supplementary nutrient for tissue culture. The application of this material has contributes into the green technology via convert waste to product, which is in-line with zero waste concept.

  14. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    Science.gov (United States)

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  15. Optimized FISH methods for visualizing RNA localization properties in Drosophila and human tissues and cultured cells.

    Science.gov (United States)

    Diot, Cédric; Chin, Ashley; Lécuyer, Eric

    2017-08-15

    Eukaryotic gene expression is orchestrated by a large number of regulatory steps to modulate the synthesis, maturation and fate of various families of protein-coding and non-coding RNA molecules. Defining the subcellular localization properties of an RNA molecule is thus of considerable importance for gleaning its function(s) and for elucidating post-transcriptional gene regulation pathways. For decades, fluorescent In Situ hybridization (FISH) has constituted the gold-standard technique for assessing RNA expression and distribution properties in cultured cells, tissue specimens, and whole mount organisms. Recently, several attempts aimed at advancing multiplex RNA-FISH experiments have been published. However, these procedures are both financially demanding and technically challenging, while their full potential remains unexploited. Here we describe an optimized RNA-FISH method employing the Tyramide Signal Amplification system that robustly enhances resolution and sensitivity needed for exploring RNA localization in Drosophila embryos, tissues and commonly cultured human and insect cell lines. Methodological details and key parameters are outlined for high-throughput analyses conducted in 96-well plate format. Copyright © 2017. Published by Elsevier Inc.

  16. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  17. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    Science.gov (United States)

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Soors, Els; Buset, Jasmine; Chiriotti, Sabina; Tabury, Kevin; Gregoire, Vincent; Baatout, Sarah

    2015-01-01

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. PMID:25190155

  18. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application

    Directory of Open Access Journals (Sweden)

    Vibha Pandey

    2017-08-01

    Full Text Available Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc. or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.

  19. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application

    Science.gov (United States)

    Pandey, Vibha; Ansari, Waquar Akhter; Misra, Pratibha; Atri, Neelam

    2017-01-01

    Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number) of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc.) or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race. PMID:28848589

  20. Cytogenetic studies on stevia rebaudiana produced by tissue culture and affected by gamma rays and drought

    International Nuclear Information System (INIS)

    Awad, A.S.A

    2009-01-01

    The present investigation was under taken to carry out in the laboratories of the Natural Products Department, National Center for Radiation Research and Technology, Atomic Energy authority, Nasr city, Cairo, Egypt, to study the effect of gamma radiation doses, osmostress and the combined effects between them on tissue culture, some biochemical analysis and molecular genetic marker in stevia rebaudiana bertoni. The results obtained were: Tissue culture 1- micropropagation media: stevia rebaudiana plantlets cultured on MS medium hormones free for micropropagation.Hormones such as BAP and NAA with different concentrations induced callus formation and give slight growth.Study the effect of gamma radiation, osmostress and the combined effects between them : 1)The effect of gamma radiation on buds survival: Gamma radiation doses (10, 20 and 30 Gy) induced decreasing in bud survival percentage with increasing radiation dose in stevia rebaudiana. The dose 30 Gy was induced 60% mortality.2) Study the effect of gamma radiation on some biochemical analysis: Gamma radiation doses induced increase in the total carbohydrate with doses (20 and 30 Gy) but decreased with dose 10 Gy. Proline contents increased in plantlets with increasing doses . The total protein was increased with doses (10 and 20 Gy), but the dose 30 Gy induced decrease in total protein. Gamma radiation doses induced decreasing in total DNA while, the nucleic acid RNA increased.3) The effect of osmostress on buds survival: The concentrations (40000,50000,60000,70000 and 80000 ppm) from sucrose or sorbitol decreased the bud survival and shoot length in stevia plantlets with increasing sucrose or sorbitol levels. 4) The effect of osmostress on some biochemical analysis: Sucrose and sorbitol concentrations (40000,50000,60000,70000 and 80000 ppm) caused decrease in total carbohydrate.

  1. Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage

    Directory of Open Access Journals (Sweden)

    Sharadindu Shil

    2017-01-01

    Full Text Available Aim: Squamous cell carcinoma or SCC of horn in bovines (bovine horn core carcinoma frequently observed in Bos indicus affecting almost 1% of cattle population. Freshly isolated primary epithelial cells may be closely related to the malignant epithelial cells of the tumor. Comparison of gene expression in between horn’s SCC tissue and its early passage primary culture using next generation sequencing was the aim of this study. Materials and Methods: Whole transcriptome sequencing of horn’s SCC tissue and its early passage cells using Ion Torrent PGM were done. Comparative expression and analysis of different genes and pathways related to cancer and biological processes associated with malignancy, proliferating capacity, differentiation, apoptosis, senescence, adhesion, cohesion, migration, invasion, angiogenesis, and metabolic pathways were identified. Results: Up-regulated genes in SCC of horn’s early passage cells were involved in transporter activity, catalytic activity, nucleic acid binding transcription factor activity, biogenesis, cellular processes, biological regulation and localization and the down-regulated genes mainly were involved in focal adhesion, extracellular matrix receptor interaction and spliceosome activity. Conclusion: The experiment revealed similar transcriptomic nature of horn’s SCC tissue and its early passage cells.

  2. Repopulation of lymph nodes of dogs after 1200 R whole-body x-irradiation and intravenous administration of mononuclear blood leukocytes

    International Nuclear Information System (INIS)

    Nelson, B.; Calvo, W.; Fliedner, T.M.; Herbst, E.; Bruch, C.; Schnappauf, H.P.; Flad, H.D.

    1976-01-01

    Fresh and cryopreserved autologous or allogeneic mononuclear blood cells (MBCs) intravenously injected in 1200 R total-body x-irradiated dogs repopulated lymph nodes within 10 days after transfusion. Several parameters of the lymphopoietic regeneration were correlated with the number of cells transfused and with the number of colony-forming units contained in the cell suspension when they were cultured in agar (CFU/sub c/). Values within the normal or close to normal range were reached in the mesenteric nodes of most of the animals transfused with 10 x 10 9 MBC or more. These values were obtained when 5 x 10 5 CFU/sub c/ or more were transfused. Axillary nodes showed lower values than mesenteric nodes. They were mostly under the normal range but well over those of the irradiated controls. Frozen and thawed MBCs seem to be as effective as fresh cells for lymphopoietic restoration. The mesenteric nodes of dogs transfused with allogeneic MBCs showed higher cellularity and larger cortical-paracortical areas than those of dogs transfused with approximately the same number of autologous cells. The repopulation of lymph nodes parallels that of the marrow

  3. The repopulation of lymph nodes of dogs after 1200 R whole-body x-irradiation and intravenous administration of mononuclear blood leukocytes.

    Science.gov (United States)

    Nelson, B; Calvo, W; Fliedner, T M; Herbst, E; Bruch, C; Schnappauf, H P; Flad, H D

    1976-08-01

    Fresh and cryopreserved autologous or allogeneic mononuclear blood cells (MBCs) intravenously injected in 1200 R total-body x-irradiated dogs repopulated lymph nodes within 10 days after tranfusion. Several parameters of the lymphopoietic regeneration were correlated with the number of cells transfused and with the number of colony-forming units contained in the cell suspension when they were cultured in agar (CFUc). Values within the normal or close to normal range were reached in the mesenteric nodes of most of the animals transfused with 10 X 10(9) MBC or more. These values were obtained when 5 X 10(5) CFUc or more were transfused. Axillary nodes showed lower values than mesenteric nodes. They were mostly under the normal range but well over those of the irradiated controls. Frozen and thawed MBCs seem to be as effective as fresh cells for lymphopoietic restoration. The mesenteric nodes of dogs transfused with allogeneic MBCs showed higher cellularity and larger cortical-paracortical areas than those of dogs tranfused with approximately the same number of autologous cells. The repopulation of lymph nodes parallels that of the marrow.

  4. Picroside I and Picroside II from Tissue Cultures of Picrorhiza kurroa

    Science.gov (United States)

    Ganeshkumar, Yamjala; Ramarao, Ajmera; Veeresham, Ciddi

    2017-01-01

    Background: Picrorhiza kurroa (PK) belongs to Scrophulariaceae family and is a representative endemic, medicinal herb, widely distributed throughout the higher altitudes of alpine Himalayas from west to east, between 3000 and 4500 m above mean sea level. Objective: The objective of the present study is to assess the production of picroside I and picroside II from tissue cultures of PK. Materials and Methods: Auxiliary shoot tips of PK were incubated in Murashige and Skoog medium supplemented with indole-3-butyric acid and kinetin phytohormones. The callus produced was collected at different time intervals and was processed for extraction of picroside I and picroside II followed by thin layer chromatography and high-performance liquid chromatography HPLC analysis. Results: The maximum growth index was found to be 5.109 ± 0.159 at 16-week-old callus culture. The estimation of picroside-I and picroside-II was carried out by (HPLC) analysis; quantity of secondary metabolite found to be 16.37 ± 0.0007 mg/g for PK-I and 6.34 ± 0.0012 mg/g for PK-II. Conclusion: This is the first attempt to produce the Picroside-I and II in large amount by the tissue culture technique. It can be observed that the method of callus culture can be used in production of secondary metabolites Picroside-I and II from PK SUMMARY Picrorhiza kurroa is a high value medicinal herb due to rich source of hepatoprotective metabolites, Picroside-I and Picroside-II. The medicinal importance of P. kurroa is due to its pharmacological properties like hepatoprotective, antioxidant (particularly in liver), antiallergic and antiasthamatic, anticancer activity particularly in liver and immunomodulatory. Shoot apices which were produced a good response was inoculated on selected medium i.e., on MS medium containing 2, 4 D (mg/l) + KN (1mg/l) for induction of callus. The initiation of callus was observed after 4weeks and it was light green and fragile Maximum growth was observed with 3% w/v of sucrose

  5. The use of tissue culture techniques with irradiation to improve potato resistance to late blight

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M.I.E.

    2004-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) resistance to late blight disease caused by Phytophthora infestans. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma ray doses 25, 30, and 35 Gy. Growing shoots were cut and re-cultured every 2 weeks until the 4 t h generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3000 plantlets from the three cultivars were subjected to selection pressure using co-culture technique. MV 4 explants were incubated in jars, containing MS medium, with mycelia of P. infestans. Surviving plantlets were propagated and re-incubated with the pathogen for three consecutive generations. Resistant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later inoculated, at the adult stage, with sporangial suspension. Cultivar Draga produced the highest number of resistant plants. Ten plants of Draga appeared to be resistant to late blight whereas only one plant from each of the other 2 cultivars was resistant. Mutant plants varied in number of produced minitubers from 13 to 70, Also, weight of these minitubers varied from less than 1 to 35 grams. Selected mutant lines will undergo further testing under field conditions for P. infestans resistance and other agronomic characteristics. (author)

  6. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach.

    Science.gov (United States)

    Mridula, Meenu R; Nair, Ashalatha S; Kumar, K Satheesh

    2018-02-01

    In this paper, we compared the efficacy of observation based modeling approach using a genetic algorithm with the regular statistical analysis as an alternative methodology in plant research. Preliminary experimental data on in vitro rooting was taken for this study with an aim to understand the effect of charcoal and naphthalene acetic acid (NAA) on successful rooting and also to optimize the two variables for maximum result. Observation-based modelling, as well as traditional approach, could identify NAA as a critical factor in rooting of the plantlets under the experimental conditions employed. Symbolic regression analysis using the software deployed here optimised the treatments studied and was successful in identifying the complex non-linear interaction among the variables, with minimalistic preliminary data. The presence of charcoal in the culture medium has a significant impact on root generation by reducing basal callus mass formation. Such an approach is advantageous for establishing in vitro culture protocols as these models will have significant potential for saving time and expenditure in plant tissue culture laboratories, and it further reduces the need for specialised background.

  7. Rose (Rosa hybrida L.) tissue culture mutagenesis for new mutants generation

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Rusli Ibrahim

    2004-01-01

    Tissue culture technique can be used to obtain complete regeneration of plant cells from shoots, rots, flowers, axillary buds and other parts of the plant. In this study, axillary buds from stem cuttings of Cutting Red, Christine Dior and Mini Rose varieties were used as the stating explants. Murashige and Skoog (1962) media supplemented with 6-Benzylaminopurine (BAP, at 4.44 - 8.88μM/l), Napthaleneacetic acid (NAA at 0.54μM/l),, nad 3% sucrose were used for plantlet initiation and regeneration. Cultured axillary buds were exposed to gamma ray (0.250 Gy/s) at 0, 15, 25, 35, 45, 55, 65 and 75 Gy for radiosensitivity test. From the dose respond curve, LD 5 0 the value for cutting red variety was 25 Gy, Christion Dior 30 Gy and Mini Rose 38 Gy, yet 22% of Mini Rose samples survived at 65 Gy and another 10% at 70 Gy. Screening of M3 plants of irradiated cultured shoots, 2 colour variations were obtained at 40 Gy for Cutting Red variety, while 3 colour variations for Mini Rose at 20 Gy. When 6 varieties of Fragrance Rose were irradiated at 40 Gy, 1 colour variation was obtained from 99 screened plants. This study suggests that the dose range of 20 to 45 can be considered for rose mutagenesis study to produce mutants. (Author)

  8. Graft of autologous fibroblasts in gingival tissue in vivo after culture in vitro. Preliminary study on rats.

    Science.gov (United States)

    Simain-Sato, F; Lahmouzi, J; Heinen, E; Defresne, M P; De Pauw-Gillet, M C; Grisar, T; Legros, J J; Legrand, R

    1999-08-01

    Several grafting techniques and guided tissue regeneration techniques (GTR) have been well-developed in periodontal surgery. However, these techniques could induce pain and side effects, such as a gingival recession during the healing period following the therapy. The graft of a small autologous connective tissue, using non-invasive surgical techniques could yield several benefits for the patients. Our preliminary study explores the feasibility of collecting healthy gingival tissues, culturing them in vitro to amplify rat gingival fibroblasts (RGF) and inoculating the obtained cells into autologous rat gingival tissues in vivo. Gingival tissues samples were cultured as explants as described by Freshney et al. and Adolphe. Confluent cells surrounding explants were detached after 7 d of culture from Petri dishes using 0.05% trypsin and designated "first transferred cells" (T1). At the third passage (T3), cells cultured as monolayer were either examined under microscopy--phase contrast, scanning, or transmission electron--or numerated after trypan blue exclusion test. Autologous RGF labelled with fluorochrome were inoculated at the vestibular and palatine site of gingival tissue close to the superior incisors. In this preliminary study, 12 Wistar rats were used; for each, 2 biopsies were dissected and fixed for phase contrast or fluorescence microscopy. On d 1, 3 and 7 after injection in rat gingival tissues, fluorochrome-labelled cells could be detected in all these.

  9. Rapid decrease in brain enkephalin content after low-dose whole-body X-irradiation of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, Yukihisa (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.); Ogawa, Norio; Mori, Akitane

    1992-03-01

    Methionine-eckephalin (ME) contents in the hypothalamus and other rat brain structures were measured immediately after 10 or 20 cGy whole-body X-irradiation. The ME contents of homogenates of the striatum, hypothalamus, midbrain + thalamus, hindbrain and pituitary were assayed radioimmunologically with {sup 125}I. The contents of all the structure, except the pituitary, decreased significantly after 20 cGy irradiation. The reduction in the hypothalamus was transient, ME content gradually recovering with time. These results suggest that the central nervous system of mammals is one of the most radiosensitive organs as judged by changes in stress-induced mediators such as ME. (author).

  10. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  11. Radioprotective properties of some heterocyclic nitrogenous compounds against changes in hemoglobin concentration and hematocrit value in x-irradiated mice

    International Nuclear Information System (INIS)

    Rousdhy, H.; Pierotti, T.; Polverelli, M.

    1969-01-01

    Radioprotective properties of imidazole and benzimidazole have been proved in previous works. In this study, authors try to demonstrate radioprotective action of these compounds in comparison with cysteamine upon the hematopoietic system after lethal X-irradiation. Results show: no drastic variations of hematologic constants (hemoglobin concentration and hematocrit value) after intraperitoneal injection of radioprotective compounds apart certain apparent reactions with the heterocyclic compounds; the better radioprotective action of benzimidazole. Twenty five days after irradiation, hemoglobin concentration and hematocrit of radio protected mice return to normal values. (author) [fr

  12. GROWTH AND ROOTING SYSTEM OF ACACIA MANGIUM OBTAINED BY TISSUE CULTURE

    Directory of Open Access Journals (Sweden)

    SUPRIYANTO

    1991-01-01

    Full Text Available Since 1980/1981, the government of Indonesia through the Ministry of Forestry has started to reforest logged-over, alang-alang, unproductive areas and to convert them to Forest Industry Plantation. The target is 300 000 ha per year. It means, 750 million seedlings should be provided per year (planting distance 2 m x 2 m. The tree species to be planted in forest industry plantation should have shorter life cycle (8 - 10 years, good stem-form, good rooting system, and should be fast growing. Acacia mangium has been selected as one of the important tree species for forest industry plantation due to its growth, quality of fiber wood (pulp and paper industry and rooting system (produce a lot of secondary root and nitrogen fixater (Soebardjo 1986. The reforestation of logged-over Dipterocarp forests in Malaysia with A. mangium has also been considered (Appanah and Weinland 1989. Generally, reforestation with A. mangium is done with seedlings obtained by seed germination. A. mangium produce a lot of seeds but its production is still limited by the season, while the conventional method of vegetative propagation through cuttings gave very low percentage of rooted-cuttings (1% (Umboh and Syamsul Yani 1989. The micropropagation of A. mangium through tissue culture is a promising method. The production of A. mangium plantlets through that method has been done at the Forest Genetic Laboratory, Tropical Forest Biology, SEAMEO BIOTROP (Situmorang 1988, Umboh 1988, Umboh et al. 1989, 1990. These rooted-plantlets (plantlings were first put in the green house (acclimatization before planting in the field. Field tests of some agricultural plants have been done but information on forest trees species is still lacking because the production of plantlings through tissue culture is still limited as there are still problems of their rooting. In fact, the progress of reproducing woody plants by tissue culture has been much slower than with herbaceous plants. The major

  13. Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro.

    Directory of Open Access Journals (Sweden)

    Satoru Moritoh

    Full Text Available BACKGROUND: Organotypic tissue culture of adult rodent retina with an acute gene transfer that enables the efficient introduction of variable transgenes would greatly facilitate studies into retinas of adult rodents as animal models. However, it has been a difficult challenge to culture adult rodent retina. The purpose of this present study was to develop organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We established an interphase organotypic tissue culture for adult rat retinas (>P35 of age which was optimized from that used for adult rabbit retinas. We implemented three optimizations: a greater volume of Ames' medium (>26 mL per retina, a higher speed (constant 55 rpm of agitation by rotary shaker, and a greater concentration (10% of horse serum in the medium. We also successfully applied this method to adult mouse retina (>P35 of age. The organotypic tissue culture allowed us to keep adult rodent retina morphologically and structurally intact for at least 4 days. However, mouse retinas showed less viability after 4-day culture. Electrophysiologically, ganglion cells in cultured rat retina were able to generate action potentials, but exhibited less reliable light responses. After transfection of EGFP plasmids by particle-mediated acute gene transfer, we observed EGFP-expressing retinal ganglion cells as early as 1 day of culture. We also introduced polarized-targeting fusion proteins such as PSD95-GFP and melanopsin-EYFP (hOPN4-EYFP into rat retinal ganglion cells. These fusion proteins were successfully transferred into appropriate locations on individual retinal neurons. CONCLUSIONS/SIGNIFICANCE: This organotypic culture method is largely applicable to rat retinas, but it can be also applied to mouse retinas with a caveat regarding cell viability. This method is quite flexible for use in acute gene transfection in adult rodent retina, replacing

  14. A fluid dynamics approach to bioreactor design for cell and tissue culture.

    Science.gov (United States)

    Dusting, Jonathan; Sheridan, John; Hourigan, Kerry

    2006-08-20

    The problem of controlling cylindrical tank bioreactor conditions for cell and tissue culture purposes has been considered from a flow dynamics perspective. Simple laminar flows in the vortex breakdown region are proposed as being a suitable alternative to turbulent spinner flask flows and horizontally oriented rotational flows. Vortex breakdown flows have been measured using three-dimensional Stereoscopic particle image velocimetry, and non-dimensionalized velocity and stress distributions are presented. Regions of locally high principal stress occur in the vicinity of the impeller and the lower sidewall. Topological changes in the vortex breakdown region caused by an increase in Reynolds number are reflected in a redistribution of the peak stress regions. The inclusion of submerged scaffold models adds complexity to the flow, although vortex breakdown may still occur. Relatively large stresses occur along the edge of disks jutting into the boundary of the vortex breakdown region. Copyright 2006 Wiley Periodicals, Inc.

  15. Advanced tissue culture used by Twyfords to build up jojoba clones

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Twyford Plant Laboratories Ltd. in the UK, using their own advanced methods of plant tissue culture, have built up a bank of 30 different male and female clones of jojoba, the arid land crop whose seeds produced a liquid wax which - amongst other uses - can be substituted for sperm whale oil. The technique involves growing microscopic parts of a parent plant on a medium containing all the necessary growth hormones, salts, vitamins and other nutrients. Growth takes place under artificial light in an all-electric controlled, air-conditioned environment. No other method is so successful for rapidly multiplying plants, particularly those that do not breed true from seed. These include most fruits and some flowers and vegetables.

  16. DEVELOPMENT OF PRIMARY CELL CULTURE FROM TAIL EPIDERMAL TISSUE OF KOI CARP (Cyprinus carpio koi)

    OpenAIRE

    Lila Gardenia; Isti Koesharyani

    2014-01-01

    Primary cell culture from tail epidermal tissue of koi carp (Cyprinus carpio koi) was developed. Cells were grown in Leibovits-15 medium supplemented with 20% fetal bovine serum and antibiotics (Penicillin/Streptomycin and Kanamycin). Cell growth was observed in a range of incubation temperature (17oC±2oC, 22oC±2oC, 27oC±2oC, and 32oC±2oC) in order to determine the optimum temperature. The cells were able to grow at a range of temperature between 17oC to 32oC with optimal growth at 22oC. Prim...

  17. Plant regeneration from petiole segments of some species in tissue culture

    Directory of Open Access Journals (Sweden)

    Krystyna Klimaszewska

    2013-12-01

    Full Text Available The regeneration ability of 21 plant species belonging to 14 families was tested. The method of tissue culture in vitro was applied, on basic MS medium with an addition of growth regulators from the auxin and cytokinin groups. From among the investigated plant groups Peperomia scandens and Caladium × hortulanum were capable of plant regeneration, Passiilora coerulea regenerated shoots, Hedera helix, Begonia glabra, Coleus blumei, Fuchsia hybrida, Passiflora suberosa and Peperomia eburnea formed callus and roots, Kalanchoe blossfeldiana, Pelargonium grandiflorum, P. peltatum, P. radula, Coleus shirensis and Magnolia soulangeana produced callus, Philodendron scandens, Rhododendron smirnovii, Hibiscus rosa-sinensis, Coprosma baueri, Cestrum purpureum and Solanum rantonnetii did not exhibit any regeneration reactions.

  18. [Solubility of metal components into tissue culture medium from dental amalgams (author's transl)].

    Science.gov (United States)

    Kawahara, H; Yamada, T; Nakamura, M; Tomoda, T; Kobayashi, H; Saijo, A; Kawata, Y; Hikari, S

    1981-10-01

    Solubility of metal components into tissue culture medium, YLH, from various dental amalgams including high copper, conventional and copper amalgam was measured with atomic absorption spectrometry. The results obtained were as follows.: 1. Mercury solubility was found much in all the dental amalgams after one day extraction. This was followed by gradual increase in solubility in the high copper amalgams until after seven days. On the otherhand, initial high solubility was maintained in conventional and copper amalgams through the whole experimental period. 2. Higher solubility of silver and copper was recorded in the high copper amalgams. 3. Zinc was only found in Dispersalloy and copper amalgam. 4. Tin was unable to be measured in all the amalgams examined. It was considered that the present results could shed a light on the mechanism for cytotoxicity yielding of the dental amalgams.

  19. Tissue culture of adult larch as a tool for breeding purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, D.; Kretzschmar, U. [Federal Research Centre of Forestry and Forest Products, Waldsieversdorf (Germany). Inst. for Forest Tree Biology

    1995-12-31

    Aimed at the identical reproduction of genotypes which are considered superior different methods were tested to establish and to propagate tissue cultures from old larch trees (L. decidua, L. kaempferi, L. sukaczewii, L. gmelinii, L. eurolepis). Serial subcultures without phytohormones (shoot tip propagation) led to the establishment of clone lines. After ten subcultures propagation velocity, shoot morphology and rooting behavior were similar to juvenile plant material. Serial subcultures which included a cytokinin induction led to the formation of adventitious shoot clusters (adventitious bud propagation). Adventitious shoots derived from male flowers of one L. kaempferi clone could be propagated via shoot tip propagation. Micrografting of meristems in vitro resulted in a regained rooting capacity of green cuttings from micrografts. Combining these in vitro techniques offers now the possibility to propagate selected mature larch trees for different breeding purposes. 23 refs, 5 figs, 2 tabs

  20. Diagnostic utility of melanin production by fungi: Study on tissue sections and culture smears with Masson-Fontana stain

    Directory of Open Access Journals (Sweden)

    Challa Sundaram

    2014-01-01

    Full Text Available Background: Dematiaceous fungi appear brown in tissue section due to melanin in their cell walls. When the brown color is not seen on routine H and E and culture is not available, differentiation of dematiaceous fungi from other fungi is difficult on morphology alone. Aims and Objective: To study if melanin production by dematiaceous fungi can help differentiate them from other types of fungi. Materials and Methods: Fifty tissue sections of various fungal infections and 13 smears from cultures of different species of fungi were stained with Masson Fontana stain to assess melanin production. The tissue sections included biopsies from 26 culture-proven fungi and 24 biopsies of filamentous fungi diagnosed on morphology alone with no culture confirmation. Results: All culture-proven dematiaceous fungi and Zygomycetes showed strong positivity in sections and culture smears. Aspergillus sp showed variable positivity and intensity. Cryptococcus neoformans showed strong positivity in tissue sections and culture smears. Tissue sections of septate filamentous fungi (9/15, Zygomycetes (4/5, and fungi with both hyphal and yeast morphology (4/4 showed positivity for melanin. The septate filamentous fungi negative for melanin were from biopsy samples of fungal sinusitis including both allergic and invasive fungal sinusitis and colonizing fungal balls. Conclusion: Melanin is produced by both dematiaceous and non-dematiaceous fungi. Masson-Fontana stain cannot reliably differentiate dematiaceous fungi from other filamentous fungi like Aspergillus sp; however, absence of melanin in the hyphae may be used to rule out dematiaceous fungi from other filamentous fungi. In the differential diagnosis of yeast fungi, Cryptococcus sp can be differentiated from Candida sp by Masson-Fontana stain in tissue sections.

  1. Histology, histochemistry and SEM are useful tools to study regeneration processes in plant tissue culture

    Directory of Open Access Journals (Sweden)

    Piotr Żabicki

    2013-04-01

    Full Text Available Tissue cultures in vitroare used for the multiplication of plants via direct and indirect (via callus regeneration. This approach is commonly applied in the protection of endangered species by the introduction of regenerated in vitro plantlets to botanical gardens and to the nature (so called ex situ plant conservation. In vitroconditions, especially the supplementation of tissue culture media with plant growth regulators, cause a somaclonal variation, resulting in genetic differences among regenerated plants. To analyze callus structure, including cell shapes and sizes, cell differentiation (e.g. the presence of xylem vessels and regeneration processes (organogenesis, somatic embryogenesis, the histological, histochemical and SEM techniques are applied. In this study, to obtain regeneration of plants in culture conditions, we have used three Viola species (V. epipsilaLedeb., V. stagnina Kit. and V. uliginosaBesser, indicated to be critically endangered according to Polish Red Book of Plants (Kazmierczakowa & Zarzycki 2001 and two genotypes of a model plant Arabidopsis thaliana(L. Heynh. (Columbia-0 and an insertional cdkg ;2mutant line. An Arabidopsis homozygous cdkg ;2 knock-out originated from a T 3 generation of T-DNA insertional line SALK_090262 (Alonso et al. 2003 and has been selected from a subsequent T 4 generation based on PCR analysis using primers complementary to flanking positions of full-length cDNA of CDKG;2gene product (a clone isolated by Seki et al. 2002. The aims of the study were: 1 to select the most convenient method to obtain regenerated Violaplants with maternal genotype i.e., via direct organogenesis or somatic embryogenesis; 2 to determine the effect of mutation in CDKG;2 gene on the explant response to in vitroconditions, including callus proliferation and regeneration. In three Viola species organogenesis was induced on MS (Murashige and Skoog basal medium supplied with thidiazuron (TDZ in concentrations 0.5 mg

  2. Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture.

    Science.gov (United States)

    Lutz, Kerry A; Martin, Carla; Khairzada, Sahar; Maliga, Pal

    2015-10-01

    We describe a steroid-inducible BABY BOOM system that improves plant regeneration in Arabidopsis leaf cultures and yields fertile plants. Regeneration of Arabidopsis thaliana plants for extended periods of time in tissue culture may result in sterile plants. We report here a novel approach for A. thaliana regeneration using a regulated system to induce embryogenic cultures from leaf tissue. The system is based on BABY BOOM (BBM), a transcription factor that turns on genes involved in embryogenesis. We transformed the nucleus of A. thaliana plants with BBM:GR, a gene in which the BBM coding region is fused with the glucocorticoid receptor (GR) steroid-binding domain. In the absence of the synthetic steroid dexamethasone (DEX), the BBM:GR fusion protein is localized in the cytoplasm. Only when DEX is included in the culture medium does the BBM transcription factor enter the nucleus and turn on genes involved in embryogenesis. BBM:GR plant lines show prolific shoot regeneration from leaf pieces on media containing DEX. Removal of DEX from the culture media allowed for flowering and seed formation. Therefore, use of BBM:GR leaf tissue for regeneration of plants for extended periods of time in tissue culture will facilitate the recovery of fertile plants.

  3. Studies on the use of gamma irradiation and tissue culture in improving brassica napus

    International Nuclear Information System (INIS)

    Khedr, E.K.A.

    2012-01-01

    The objectives of this study were to:1- Studying the effect of different doses of gamma rays on some growth and yield component traits of three Brassica napus cultivars (Serow6, Serow4 and Pactol) during four consecutive generations aiming to create new genotypes characterized with high yielding traits. 2- Studying the effect of different doses of gamma rays on in vitro biotechnology technique (tissue culture) used in improving Brassica napus. Seeds of three Brassica napus cultivars were irradiated with different gamma ray doses then sown for four consecutive seasons. Data were collected and recorded to clarify the effect gamma irradiation on some yield component traits which were days to flowering , plant height, number of main branches per plant, number of secondary branches per plant, number of pods per plant, number of seeds per pod, weight of 1000-seed, weight of grain yield/plant and oil content of seeds). Results showed that high doses of gamma radiation had enhanced all of the studied traits for each of the three tested cultivars (except the plant height trait for Serow6 and Pactol cultivars). Seven new mutant lines were selected for their superiority in one or more of the studied yield component traits. Regarding the effect of gamma rays on tissue culture techniques, the applied gamma radiation doses did not affect the percentage of seed germination of the three studied cultivars, whereas the percentage of callus induction decreased by increasing the dose of gamma rays for each of the three cultivars and in both types of explants (hypocotyl and cotyledons) used in this experiment.

  4. Standard Operating Procedure (SOP) for Rapid and Efficient Production of Stevia Tissue Culture Seedlings

    International Nuclear Information System (INIS)

    Norazlina Noordin; Peng, C.S.; Rusli Ibrahim

    2015-01-01

    Stevia rebaudiana Bertoni is a non-caloric natural sweetener which is 300 times sweeter than cane sugar. Extracts from stevia leaves has vast application in food and beverages based industries, can be added to tea and coffee, cooked or baked goods, processed foods and confectionary goods. Recently, stevia attained awareness owing to its natural, non-caloric sweetness by diet/ health conscious and diabetic persons (Arpita et al., 2011). This natural sweetener has high commercial value in global market, it was estimated that global market value for stevia is be around USD11 billion by year 2015. Although stevia is being largely popularized in Malaysia and other countries but large-scale propagation procedures for the continuous supply of planting materials in commercial plantation has yet to be established, optimized and standardized. Furthermore, propagation through stevia seeds is often very difficult due to self-incompatibility which results in sterile seeds (Sakaguchi et al., 1982). Tissue culture is the only rapid process for the mass propagation of stevia and there have been few reports of in vitro growth of stevia (Miyagaya et al., 1986) and in vitro micropropagation from shoot tip and leaf (Uddin et al., 2006). Hence, study was carried out to establish a suitable protocol for in vitro propagation of S. rebaudiana Bertoni that can be further up-scaled for mass propagation of stevia seedlings. The established Standard Operating Procedure (SOP) will ensure rapid and efficient production of stevia tissue culture seedlings for continuous supply of planting materials for commercial stevia plantations in Malaysia. Preparation of growth medium, multiplication of shoots, rooting of plant lets and hardening of ex-vitro rooted plant lets is discussed in this paper. (author)

  5. Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants.

    Science.gov (United States)

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2014-12-01

    Plantlets under in vitro conditions transferred to ex vivo conditions are exposed to biotic and abiotic stresses. Furthermore, in vitro regenerated plants are typically frail and sometimes difficult to handle subsequently increasing their risk to damage and disease; hence acclimatization of these plantlets is the most important step in tissue culture techniques. An experiment was conducted under in vitro conditions to study the effects of shaking duration (twice daily at 6:00 a.m. and 9:00 p.m. for 2, 4, 8, and 16 min at 250 rpm for 14 days) on Sansevieria trifasciata L. as a model plant. Results showed that shaking improved handling, total plant height, and leaf characteristics of the model plant. Forty-eight hours after 14 days of shaking treatments with increasing shaking time, leaf length decreased but proline content of leaf increased. However, 6 months after starting the experiment different results were observed. In explants that received 16 min of shaking treatment, leaf length and area and photosynthesis rate were increased compared with control plantlets. Six months after starting the experiment, control plantlets had 12.5 % mortality; however, no mortality was observed in other treated explants. The results demonstrated that shaking improved the explants' root length and number and as a simple, cost-effective, and non-chemical novel approach may be substituted for other prevalent acclimatization techniques used for tissue culture regenerated plantlets. Further studies with sensitive plants are needed to establish this hypothesis.

  6. COMPARISON OF CULTURE OF SYNOVIAL FLUID, PERIPROSTHETIC TISSUE AND PROSTHESIS SONICATE FOR THE DIAGNOSIS OF KNEE PROSTHESIS INFECTION

    Directory of Open Access Journals (Sweden)

    Andrej Trampuž

    2003-03-01

    Full Text Available Background. Synovial fluid and periprosthetic tissue specimens are the standard specimens cultured for the diagnosis of prosthetic joint infection (PJI. We hypothesize that ultrasonication of the explanted prosthesis may improve diagnosis of PJI by dislodging biofilm bacteria from the prosthesis surface and improve the sensitivity and specificity of diagnosis of PJI.Methods. Included were patients undergoing knee prosthesis exchange for septic or biomechanical failure and have not received antimicrobial therapy in the last 2 weeks prior specimen collection. Cultures of synovial fluid and periprosthetic tissue specimens were performed per the usual clinical practice. Additionally, explanted joint components were sonicated for 5 minutes at frequency 40 kHz in sterile Ringer’s solution; aliquots of 0.5 ml sonicate were plated onto five aerobic and five anaerobic blood agar plates, and incubated at 37 °C and examined for the next seven days. The number and identity of each colony morphology was recorded.Results. 35 patients undergoing knee replacement have been studied (24 for aseptic biomechanical failure and 11 for suspected PJI. In patients with PJI, coagulase-negative staphylococci (7 cases, Corynebacterium spp. (2 cases, Staphylococcus aureus (1 case, and viridans group streptococcus (1 case were recovered. Culture sensitivity and specificity were for synovial fluid 88% and 100%, for periprosthetic tissue 83% and 81%, and for explant sonicate 91% and 100%, respectively. In sonicate cultures higher numbers of microorganisms than in periprosthetic tissue cultures were consistently detected.Conclusions. Using synovial fluid, periprosthetic tissue, and explant sonicate cultures, 12%, 17% and 9% of PJI were missed, respectively. Explant sonicate cultures were the most sensitive with respect to the diagnosis of PJI, indicating that explant ultrasonication may improve bacterial recovery. In sonicate cultures, infecting organisms were detected in

  7. Characterization of the multiple drug resistance phenotype expressed by tumour cells following in vitro exposure to fractionated X-irradiation

    International Nuclear Information System (INIS)

    Hill, B.T.; McClean, S.; Hosking, L.; Shellard, S.; Dempke, W.; Whelan, R.

    1992-01-01

    The major clinical problem of the emergence of drug resistant tumor cell populations is recognized in patients previously treated with antitumor drugs and with radiotherapy. It is proposed that, although radiation-induced vascular fibrosis may limit drug delivery to the tumor, exposure to radiation may 'induce' or 'select for' drug resistance. This hypothesis was examined by establishing in vitro model systems to investigate the resistance phenotype of tumor cells following exposure to X-rays. Characteristically tumor cells surviving exposure to a series of fractions of X-irradiation are shown to have consistently expressed resistance to multiple drugs, including the Vinca alkaloids and the epipodophyllotoxins. Currently this research is aimed at determining whether distinctive resistance mechanisms operate depending on whether resistance results following drug or X-ray exposure. Initial results indicate that whilst some common mechanisms operate, drug resistant tumor cells identified following exposure to X-irradiation appear to exhibit a novel multidrug resistance phenotype. (author). 13 refs., 1 tab

  8. Effect of ethyl methanesulphonate and X-irradiation on the spermatocyte chromosomes of the grasshopper, Gesonula punctifrons

    International Nuclear Information System (INIS)

    Ghosh, Mita; Majumdar, K.C.; Duttagupta, A.K.

    1977-01-01

    Present investigation was performed to find out the effect of ethyl methanesulfonate (EMS) and X-irradiation on the meiotic cells of the grasshopper Gesonula punctifrons. Adult male grasshoppers were administered EMS (intraperitoneal injection) with one of the following concentration : 0.05%, 0.05% + 0.05%, 0.1%, 0.2%. Only 0.002 ml of required concentration were injected/animal and irradiated with 200R of X-ray in one acute dose/animal as per experimental schedule. Controls were injected with distilled water with a quantity 0.002 ml/animal. Treated and control animals were sacrificed 24 hours and 48 hours after treatment and the dividing spermatocytes were analysed for chromosomal aberrations. It was shown that EMS had stage spcificity as compared to the 200R of X-ray on the production of chromosome aberrations. Combined treatment of X-ray and EMS showed an additive effect compared to the individual effect of X-irradiation or EMS. (author)

  9. The effect of X-irradiation on Na-K ATPase and cation distribution in rabbit lens

    International Nuclear Information System (INIS)

    Matsuda, H.; Giblin, F.J.; Reddy, V.N.

    1982-01-01

    The Na-K ATPase activity of rabbit lens was measured at various times after exposure to a single dose of 2000 rads of X-ray and was compared with that in contralateral control eyes. A decrease in enzyme activity in both whole lens and in isolated capsule-epithelium was first observed 3 to 4 weeks after irradiation and became increasingly marked at 7.5 weeks after X-ray. These findings are consistent with our earlier observations that active transport of cations is reduced in these lenses and support the view that loss of membrane ATPase is responsible for the impairment of the cation pump in X-irradiated lenses. Despite a significant loss of the enzyme, X-irradiated lenses were able to maintain near normal levels of total cations (Na+ + K+), thus accounting for their normal hydration. The results of the changes in lens Na+ and K+ levels revealed that between 4 and 7.5 weeks after X-ray, the gain in Na+ was compensated by an equivalent loss of K+. A breakdown of this relationship of 1:1 exchange of Na+ for K+ is accompanied by a disproportionate increase in Na+ and water

  10. Effects of X-irradiation and thymectomy on the immune response of the marine teleost, Sebastiscus marmoratus

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1986-01-01

    Effects of X-irradiation and thymectomy on the immune response of the rock fish, S. marmoratus were studied. Animals were thymectomized and irradiated at the dose of 2000 R. In non-thymectomized and irradiated fish, injected with SRBC one week after irradiation, antibody production was completely suppressed and they required twice the time for rejection of scales allografted three days after irradiation. On the other hand, fish which were irradiated four days after thymectomy and injected one week after irradiation, showed a fairly high level of antibody, although, in the allograft rejection, no significant difference was observed when compared to the irradiated fish. Furthermore, animals thymectomized, irradiated and autoimplanted showed higher production of antibody when immunized three months after irradiation compared to matched controls. In the same manner, in the allograft rejection, a slight restoration was found in fish reconstituted with a non-irradiated thymus. From these results, it is considered that, as in mammals, the adult thymus of fish plays an important role in recovery from the damage to the immune system caused by irradiation. Furthermore, a combination of X-irradiation and thymectomy suggests that suppressor T-cells which are resistant to X-rays exist in the fish thymus

  11. Shear and mixing effects on cells in agitated microcarrier tissue culture reactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1987-01-01

    Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from: (1) direct interaction between microcarriers and turbulent eddies; (2) collisions between microcarriers in turbulent flow; and (3) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Impeller collisions occur when beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture reactors are discussed.

  12. Effect of radiation-degraded chitosan on growth promotion of flower plant in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Le Quang; Ha, Vo Thi Thu; Hai, Le; Hien, Nguyen Quoc [Vietnam Atomic Energy Commission, Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Radiation is a useful tool for degradation of polysaccharides, such as starch, carrageenan, alginate and chitin/chitosan. The viscosity molecular weight (Mw) of chitosan with 80% degree of deacetylation was reduced to 1.5 x 10{sup 5} by irradiation of 50kGy in solid phase. The solution of 10% of chitosan with Mw ca. 15 x 10{sup 5} was then irradiated at doses ranging 10-250kGy for further degradation and the products were supplemented into cultural media for testing of plant growth promotion effect. The results indicated that irradiated chitosan showed a strong growth-promotion effect on the increase of the length of shoot, the length of root and fresh biomass for flower plants namely Limonium latifolium, Eustoma grandiflorum and Chrysanthemum morifolium in tissue culture. The growth-promotion effect was obtained by the treatments with 50ppm of chitosan irradiated at the doses of 75-100kGy in 10% solution. The suitable concentrations of chitosan irradiated at 100kGy are ca. 100ppm for C. morifolium, 30ppm for E. grandiflorum and 40ppm for L. latifolium. In addition, our study also indicated that the survival ratio of transferred flower plantlets treated with irradiated chitosan was improved after acclimatizing for 30 days in the greenhouse. Accordingly, it is concluded that degraded chitosan obtained by radiation degradation technique is effective as a plant growth promoter as well as irradiated alginate. (author)

  13. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    2015-10-01

    Full Text Available NMDA receptors (NMDARs play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM but not high (50 μM concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-AP. Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and RAP, a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

  14. Neoteric trends in tissue culture-mediated biotechnology of Indian ipecac [Tylophora indica (Burm. f.) Merrill].

    Science.gov (United States)

    Gantait, Saikat; Kundu, Suprabuddha

    2017-07-01

    Tylophora indica (Burm. f.) Merrill, an ethno-pharmacologically important perennial climber of Asclepiadaceae, is commonly known as Antamul or Indian ipecac. It is essentially accredited for its medicinal properties owing to its wide range of alkaloids in the form of bioactive secondary metabolites, such as tylophorine, tylophorinine, and tylophorinidine. Accelerated mass propagation of Tylophora is challenging because of its reduced seed germination frequency that consequently headed the pursuit for efficient protocols on in vitro propagation for the large-scale regeneration, conservation as well as sustainable supply of quality propagules. Ample tissue culture-mediated biotechnological investigations have been carried out on this medicinal plant till date and several micropropagation protocols have been standardized as well. The present review compares between several typical methods as well as factors, involving on direct and indirect organogenesis of Tylophora along with various up-to-date and modified techniques such as somatic embryogenesis, protoplast culture, synthetic seed production, genetic transformation, and in vitro interventions for the secondary metabolite production that have been reported in last two decades. This compilation will allow assessing the achievements and trends of Tylophora research so far, as well as will advance the research more rapidly, since many aspects, basic and applied, have yet to be explored.

  15. Clonal multiplication of Cymbidiums through tissue culture of the shoot meristem

    Energy Technology Data Exchange (ETDEWEB)

    Wimber, Donald E.

    1963-09-01

    The propagation of clonal varieties of some orchids is at times exasperatingly slow and occasionally an almost futile effort. Clonal multiplication is generally confined to dlvidlng mature plants and to starting plants from pseudobulbs. There is, of course, the specialized technique for obtaining Phalaenopsis plantlets from the aseptic culture of inflorescence nodes, but this is basically the same thing as propagating plants from pseudobulbs. In certain cases it is highly desirable to rapidly multiply certain clones of orchids. Awarded varieties could thereby be dispersed with great rapidity where now it may take decades for some clones to became fairly common. Commercial flower production would be very much enhanced if certain desirable clones could be multiplied ad infinitum within a short time. Orchid flower production could then be placed more on a par with many of the other cut flowers and the clonal peculiarities of some fo the current hybrids could be pampered instead of ignored. This paper describes a tissue culture method for the rapid propagation of Cymbidium clones.

  16. Plant tissue culture of fast-growing trees for phytoremediation research.

    Science.gov (United States)

    Couselo, José Luis; Corredoira, Elena; Vieitez, Ana M; Ballester, Antonio

    2012-01-01

    The ability of plants to remove pollutants from the environment is currently used in a simple and low-cost cleaning technology known as phytoremediation. Unfortunately, little is known about the metabolic pathways involved in the transformation of xenobiotic compounds and the ability of certain plants to tolerate, detoxify, and store high concentrations of heavy metals. Plant cell and tissue culture is considered an important tool for fundamental studies that provide information about the plant-contaminant relationships, help to predict plant responses to environmental contaminants, and improve the design of plants with enhanced characteristics for phytoremediation. Callus, cell suspensions, hairy roots, and shoot multiplication cultures are used to study the interactions between plants and pollutants under aseptic conditions. Many plant species have an inherent ability to accumulate/metabolize a variety of pollutants, but they normally produce little biomass. However, fast-growing trees are excellent candidates for phytoremediation because of their rapid growth, extensive root system, and high water uptake. This chapter outlines the in vitro plant production of both somaclonal variants and transgenic plants of Populus spp. that exhibit high tolerance to heavy metals.

  17. Development of a refined tenocyte differentiation culture technique for tendon tissue engineering.

    Science.gov (United States)

    Qiu, Yiwei; Wang, Xiao; Zhang, Yaonan; Rout, Raj; Carr, Andrew J; Zhu, Liwei; Xia, Zhidao; Sabokbar, Afsie

    2013-01-01

    We have established that human tenocytes can differentiate in the absence of exogenous fetal bovine serum (FBS) but in the presence of insulin-like growth factor-1 (IGF-1) and transforming growth factor-β3 (TGF-β3). The extent of tenocyte differentiation was assessed by examining cell survival, collagen synthesis, cell morphology and expression of tenocyte differentiation markers such as scleraxis (Scx), tenomodulin (Tnmd), collagen type I (Col-I) and decorin (Dcn). Our results indicate that 50 ng/ml IGF-1 and 10 ng/ml TGF-β3 (in the absence of FBS) were capable of maintaining in vitro human tenocyte survival in 14-day cultures. The extent of collagen synthesis and messenger ribonucleic acid expression of Scx, Tnmd, Col-I and Dcn were significantly upregulated in response to IGF-1 and TGF-β3. These findings have shown for the first time that human tenocytes can be maintained in long-term culture, in serum-free conditions, making this approach a suitable one for the purpose of tendon tissue engineering. Copyright © 2012 S. Karger AG, Basel.

  18. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  19. [Investigations on the relation between differentiation and the composition of soluble protein of tissue cultures and leaves of daucus carota].

    Science.gov (United States)

    Neumann, K H; Pauler, B

    1969-12-01

    The correlations between differentiation, the amino acid composition of total protein and of soluble protein, and the disc electrophoretic distribution of soluble protein of carrot tissue cultures and of carrot plants (leaves) were studied. In spite of pronounced and characteristic changes in the electrophoretic distribution of the components of soluble protein in various developmental stages of both bioassays, no significant differences in the amino acid composition of protein were observed. With progressive development of whole carrot plants and of carrot tissue cultures, the number of protein bands on disc electropherogramms increased.

  20. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  1. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture.

    Directory of Open Access Journals (Sweden)

    Andrew Maxwell Phineas Jones

    Full Text Available Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL, thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP, a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies.

  2. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture.

    Science.gov (United States)

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies.

  3. The induction of chromosomal aberrations by X irradiation during S-phase in cultured diploid Syrian hamster fibroblasts

    International Nuclear Information System (INIS)

    Savage, J.R.K.; Bhunya, S.P.

    1980-01-01

    The induction of chromosomal aberrations by 4.0 Gy of 250 kV X-rays in cell throughout S-phase has been investigated in untransformed diploid Syrian hamster fibroblasts. Using a method of subdividing S into catologically defined stages (on the basis of replication band patterns displayed after brome-deoxyuridine incorporation) it is shown that: (1) This dose does not perturb, measurable, the intracellular programme of synthesis at the chromosome band level, so that the cell classification criteria remain valid after radiation. (2) Mitotic delay and perturbation appears to be less for cells in very early S, but there is no evidence of a massive cell mixing of S cells. (3) S-phase is, in general, much less sensitive to aberration induction at all sub-phases than G 2 . (4) Both chromosome and chromatid-type aberrations are found in pre- S and S cells, but chromatid-types predominate in the latter at all sub-phases. (5) The frequency of chromatid-types, especially interchanges falls in eraly. (orig.)

  4. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    Science.gov (United States)

    Kořínek, R.; Mikulka, J.; Hřib, J.; Hudec, J.; Havel, L.; Bartušek, K.

    2017-02-01

    The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  5. [Regulating role of various amino acids in development of apoptosis in organotypic culture of the nervous and lymphoid tissue].

    Science.gov (United States)

    Chalisova, N I; Pennijainen, V A; Haase, G

    2002-05-01

    The effect of aminoacids L-arginin, L-lysine, L-asparagin was investigated in organotypic tissue culture of brain cortex and spleen of 1-day old rats. The aminoacids in concentrations 0.05 and 0.1 ng/ml are active, inducing a less intensive growth zone as compared to the control, excluding the effect of asparagin on lymphoid tissue. Method of fluorescent staining shows a negative correlation between growth zone size and apoptotic cell number. The nerve and lymphoid tissue express apoptosis in response to aminoacids.

  6. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue.

    Science.gov (United States)

    da Silva Meirelles, Lindolfo; de Deus Wagatsuma, Virgínia Mara; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre; Silva, Wilson Araújo; Kashima, Simone; Covas, Dimas Tadeu

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression.VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR.CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues.24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  8. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Science.gov (United States)

    Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A; Luján, Juan A; Ordovás, José M; Garaulet, Marta

    2012-01-01

    to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2)) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  9. Oxygen tension and formation of cervical-like tissue in two-dimensional and three-dimensional culture.

    Science.gov (United States)

    House, Michael; Daniel, Jennifer; Elstad, Kirigin; Socrate, Simona; Kaplan, David L

    2012-03-01

    Cervical dysfunction contributes to a significant number of preterm births and is a common cause of morbidity and mortality in newborn infants. Cervical dysfunction is related to weakened load bearing properties of the collagen-rich cervical stroma. However, the mechanisms responsible for cervical collagen changes during pregnancy are not well defined. It is known that blood flow and oxygen tension significantly increase in reproductive tissues during pregnancy. To examine the effect of oxygen tension, a key mediator of tissue homeostasis, on the formation of cervical-like tissue in vitro, we grew primary human cervical cells in both two-dimensional (2D) and three-dimensional (3D) culture systems at 5% and 20% oxygen. Immunofluorescence studies revealed a stable fibroblast phenotype across six passages in all subjects studied (n=5). In 2D culture for 2 weeks, 20% oxygen was associated with significantly increased collagen gene expression (p<0.01), increased tissue wet weight (p<0.01), and increased collagen concentration (p=0.046). 3D cultures could be followed for significantly longer time frames than 2D cultures (12 weeks vs. 2 weeks). In contrast to 2D cultures, 20% oxygen in 3D cultures was associated with decreased collagen concentration (p<0.01) and unchanged collagen gene expression, which is similar to cervical collagen changes seen during pregnancy. We infer that 3D culture is more relevant for studying cervical collagen changes in vitro. The data suggest that increased oxygen tension may be related to significant cervical collagen changes seen in pregnancy.

  10. A 3D epithelial-mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-β1 treatment.

    Science.gov (United States)

    Ishikawa, Shinkichi; Ishimori, Kanae; Ito, Shigeaki

    2017-11-22

    The collagen gel contraction assay measures gel size to assess the contraction of cells embedded in collagen gel matrices. Using the assay with lung fibroblasts is useful in studying the lung tissue remodeling process in wound healing and disease development. However, the involvement of bronchial epithelial cells in this process should also be investigated. We applied a layer of mucociliary differentiated bronchial epithelial cells onto collagen gel matrices with lung fibroblasts. This co-culture model enables direct contact between epithelial and mesenchymal cells. We stimulated the culture with transforming growth factor (TGF) β1 as an inducer of tissue remodeling for 21 days, and measured gel size, histological changes, and expression of factors related to extracellular matrix homeostasis. TGF-β1 exerted a concentration-dependent effect on collagen gel contraction and on contractile myofibroblasts in the mesenchymal collagen layer. TGF-β1 also induced expression of the mesenchymal marker vimentin in the basal layer of the epithelium, suggesting the induction of epithelial-mesenchymal transition. In addition, the expression of various genes encoding extracellular matrix proteins was upregulated. Fibrotic tenascin-C accumulated in the sub-epithelial region of the co-culture model. Our findings indicate that TGF-β1 can affect both epithelial and mesenchymal cells, and induce gel contraction and structural changes. Our novel in vitro co-culture model will be a useful tool for investigating the roles of epithelial cells, fibroblasts, and their interactions in the airway remodeling process.

  11. Investigation of the in vitro culture process for skeletal-tissue-engineered constructs using computational fluid dynamics and experimental methods.

    Science.gov (United States)

    Hossain, Md Shakhawath; Chen, X B; Bergstrom, D J

    2012-12-01

    The in vitro culture process via bioreactors is critical to create tissue-engineered constructs (TECs) to repair or replace the damaged tissues/organs in various engineered applications. In the past, the TEC culture process was typically treated as a black box and performed on the basis of trial and error. Recently, computational fluid dynamics (CFD) has demonstrated its potential to analyze the fluid flow inside and around the TECs, therefore, being able to provide insight into the culture process, such as information on the velocity field and shear stress distribution that can significantly affect such cellular activities as cell viability and proliferation during the culture process. This paper briefly reviews the CFD and experimental methods used to investigate the in vitro culture process of skeletal-type TECs in bioreactors, where mechanical deformation of the TEC can be ignored. Specifically, this paper presents CFD modeling approaches for the analysis of the velocity and shear stress fields, mass transfer, and cell growth during the culture process and also describes various particle image velocimetry (PIV) based experimental methods to measure the velocity and shear stress in the in vitro culture process. Some key issues and challenges are also identified and discussed along with recommendations for future research.

  12. Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

    International Nuclear Information System (INIS)

    Saw, Yu-Ting; Thompson, David; Vasiliou, Vasilis; Berkowitz, Ross S; Ng, Shu-Wing; Yang, Junzheng; Ng, Shu-Kay; Liu, Shubai; Singh, Surendra; Singh, Margit; Welch, William R; Tsuda, Hiroshi; Fong, Wing-Ping

    2012-01-01

    Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to

  13. Direct long-term effect of hydrocortisone on insulin and glucagon release from mouse pancreatic islets in tissue culture

    DEFF Research Database (Denmark)

    Brunstedt, J; Nielsen, Jens Høiriis

    1981-01-01

    The effects of glucocorticoids on the pancreatic endocrine function was studied in isolated mouse pancreatic islets maintained in tissue culture for 1 to 3 weeks. Following culture for 2 week without corticoid supplement acute experiments with hydrocortisone showed no significant effect...... on the glucose-induced insulin release at 10(-8) to 10(-5) mol/l hydrocortisone. When, however, the islets were cultured in the presence of hydrocortisone, there was an increased insulin release to the medium in a dose-dependent manner, with the maximal effect at 10(-7) mol/l hydrocortisone. The release...... of glucagon to the medium was not affected to the same degree, but showed a slight inhibition at increasing concentrations of hydrocortisone. Short-term experiments after the culture period showed that islets cultured for 3 weeks in the presence of 10(-7) to 10(-5) mol/l hydrocortisone had an enhanced insulin...

  14. A high frequency of induction of chromosome aberrations in the bone marrow cells of LEC strain rats by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okui, Toyo (Hokkaido Inst. of Public Health, Sapporo (Japan)); Hayashi, Masanobu; Watanabe, Tomomasa; Namioka, Shigeo (Dept. of Lab. Animal Science, Hokkaido Univ., Sapporo (Japan)); Endoh, Daiji; Sato, Fumiaki (Dept. of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido Univ., Sapporo (Japan)); Kasai, Noriyuki (Inst. for Animal Experimentation, Hokkaido Univ., Sapporo (Japan))

    1994-08-01

    LEC strain rats, which have been known to develop hereditarily spontaneous fulminant hepatitis 4 to 5 months after birth, are highly sensitive to whole-body X-irradiation when compared to WKAH strain rats. The present results showed that the frequencies of all types of chromosome aberrations induced by X-irradiation in the bone marrow cells of LEC rats were approximately 2- to 3-fold higher than those of WKAH rats, though no significant difference was observed in the frequency of spontaneous chromosome aberrations between LEC and WKAH rats.

  15. Cytoenzymology and 3H-thymidine uptake of retro-ocular connective tissue cultures in experimental endocrino-exophthalmos.

    Science.gov (United States)

    Vaida, E; Petrescu, R; Ghinea, E; Stefaneanu, L

    1976-01-01

    The in vitro retro-ocular connective tissue cultures from guinea pigs with endocrine exophthalmos were studied before and after retro-ocular treatment with cortisol and hyaluronidase. Both cortisol and hyaluronidase inhibited the cell proliferation, the cytoenzymic activities of oxydoreductases, the 3H-thymidine uptake, the number of mitoses and the protein content of cultivated cells.

  16. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2011-04-01

    To evaluate the viability and proliferative activity of human urothelial cells (HUCs) cultured on tissue-engineered extracellular matrix scaffolds and to assess the potential of extracellular matrixes to support the growth of HUCs in their expected in vivo urine environment.

  17. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...

  18. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues.

    Science.gov (United States)

    Macgregor, Dana R; Deak, Karen I; Ingram, Paul A; Malamy, Jocelyn E

    2008-10-01

    This article presents a detailed model for the regulation of lateral root formation in Arabidopsis thaliana seedlings grown in culture. We demonstrate that direct contact between the aerial tissues and sucrose in the growth media is necessary and sufficient to promote emergence of lateral root primordia from the parent root. Mild osmotic stress is perceived by the root, which then sends an abscisic acid-dependent signal that causes a decrease in the permeability of aerial tissues; this reduces uptake of sucrose from the culture media, which leads to a repression of lateral root formation. Osmotic repression of lateral root formation in culture can be overcome by mutations that cause the cuticle of a plant's aerial tissues to become more permeable. Indeed, we report here that the previously described lateral root development2 mutant overcomes osmotic repression of lateral root formation because of a point mutation in Long Chain Acyl-CoA Synthetase2, a gene essential for cutin biosynthesis. Together, our findings (1) impact the interpretation of experiments that use Arabidopsis grown in culture to study root system architecture; (2) identify sucrose as an unexpected regulator of lateral root formation; (3) demonstrate mechanisms by which roots communicate information to aerial tissues and receive information in turn; and (4) provide insights into the regulatory pathways that allow plants to be developmentally plastic while preserving the essential balance between aboveground and belowground organs.

  19. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  20. Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Janse, Arnout; Merema, M.T.; Groothuis, Geny M. M.; Verpoorte, Elisabeth

    2012-01-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision cut

  1. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing

    NARCIS (Netherlands)

    Claase, M.B.; Grijpma, Dirk W.; Mendes, S.C.; Mendes, Sandra C.; de Bruijn, Joost Dick; Feijen, Jan

    2003-01-01

    The preparation, characterization, and in vitro bone marrow cell culturing on porous PEOT/PBT copolymer scaffolds are described. These scaffolds are meant for use in bone tissue engineering. Previous research has shown that PEOT/PBT copolymers showed in vivo degradation, calcification, and bone

  2. Effect of experimental immune atrophic gastritis on the induction of gastric carcinoma by x-irradiation in ICR mice

    International Nuclear Information System (INIS)

    Hirose, Fumio; Watanabe, Hiromitsu; Takeichi, Nobuo; Naito, Yukiko; Inoue, Shozo

    1976-01-01

    Divided doses of 6,000 or 8,000 rad of x-ray were given to the gastric region of ICR/JCL female mice with immune atrophic gastritis produced by the injection with allogenic stomach antigen. The carcinogenic effect of x-rays for inducing gastric carcinoma was significantly increased by this method. Two points can be presented as its reason. First, the pyloric gland mucosa regenerating from injuries by immunization was exposed to the divided doses of x-rays. Second, the marked requirement of gastrin secretion attributable to severe injuries of parietal cell mass by immunization and local x-irradiation acted as a promoting factor on the induction of gastric carcinoma by x-ray for a long time through the trophic effects on the pyloric gland. (auth.)

  3. The contribution of late-generated neurons to the callosal projection in rat: a study with prenatal x-irradiation

    International Nuclear Information System (INIS)

    Jensen, K.F.; Altman, J.

    1982-01-01

    Studies utilizing horseradish peroxidase tracing methods have suggested that there are species differences in the relative contribution of the different neocortical layers to the callosal projection. The present investigation utilized x-irradiation at different gestational ages to eliminate the late-generated neurons in the rat neocortex. The caudorostral gradient of reduction in the neuronal population of the supragranular layers is closely correlated with the gradient of reduction in the size of the corpus callosum. Furthermore, the callosal projection is absent in anteroposterior cortical segments in which the development of the supragranular layers was prevented without a reduction of the number of neurons in the infragranular layers of the neocortex. These results indicate that late-generated neurons residing primarily in the supragranular layers are essential for the formation of the corpus callosum

  4. Axo-somatic synapses in the normal and X-irradiated dendate gyrus; factors affecting the density of afferent innervation

    International Nuclear Information System (INIS)

    Lee, K.S.; Gerbrandt, L.; Lynch, G.

    1982-01-01

    The density of synaptic input to the somata of dentate gyrus granule cells was examined utilizing quantitative electron microscopic techniques. In control (non-irradiated) material, greater numbers of axo-somatic synapses were observed in the superficial, earlier-generated cells as compared to the deep, later-generated cells. We further studied the X-irradiated dentate gyrus, in which the majority of granule cells were destroyed during postnatal genesis. The surviving cells displayed a density of innervation on their somata which exceeded that observed in either layer of the control material. These data are discussed in terms of the possible contribution of afferent-target cell interactions to the regulation of the density of synaptic innervation. (Auth.)

  5. Hypothyroidism after x irradiation to the neck: three case reports and a brief review of the literature

    International Nuclear Information System (INIS)

    Adler, R.A.; Corrigan, D.F.; Wartofsky, L.

    1976-01-01

    Three patients who developed hypothyroidism after x irradiation to the neck are presented. The first two cases demonstrate that patients can develop clinical and chemical hypothyroidism after a very short interval following radiotherapy. Hypothyroidism developed in the first patient in the absence of surgical manipulation of the neck, or a large iodine load 4 months after receiving 6800 rad of x-ray therapy to his neck for carcinoma of the larynx. The second patient developed hypothyroidism approximately 6 months after his radiotherapy for carcinoma of the esophagus. Both of these patients demonstrated high titers of serum antithyroid antibodies. A third patient with Hodgkin's disease did not manifest clinical symptoms and signs of hypothyroidism until 6 years after radiation therapy. These cases demonstrate the variability of onset of hypothyroidism after radiotherapy and emphasize the need for careful evaluation of thyroid function before and after neck irradiation

  6. Inhibitory effect of progesterone on cervical tissue formation in a three-dimensional culture system with human cervical fibroblasts.

    Science.gov (United States)

    House, Michael; Tadesse-Telila, Serkalem; Norwitz, Errol R; Socrate, Simona; Kaplan, David L

    2014-01-01

    Progesterone supplementation is recommended to prevent preterm birth in women with a short cervix, but the mechanism is unclear. We hypothesize that progesterone acts by altering the composition of the cervical extracellular matrix (ECM). We tested this hypothesis using human cervical fibroblasts in both two-dimensional (2D) and three-dimensional (3D) cultures. For 2D culture, cells were seeded in 6-well plates and cultured with media supplemented with estradiol (10(-8) M), progesterone (10(-7) or 10(-6) M), and vehicle. For 3D culture, the cells were cultured on a porous silk protein scaffold system. Progesterone and estrogen receptors were documented by immunohistochemistry and Western blot analysis. In both 2D and 3D cultures, decreased collagen synthesis was seen with increased progesterone concentration. Three-dimensional cultures could be maintained significantly longer than 2D cultures, and the morphology of 3D cultures appeared similar to native cervical tissue. Thus, further studies were performed in 3D culture. To determine the effect of progesterone concentration, the 3D scaffolds were cultured with estradiol (10(-8) M) and five conditions: vehicle; 10(-9), 10(-8), or 10(-7) M progesterone; or 10(-7) M progesterone plus 10(-6) M mifepristone. The highest progesterone concentration correlated with the least amount of collagen synthesis. Collagen synthesis progressively increased as progesterone concentration decreased. This effect was partially antagonized by mifepristone, suggesting the mechanism is mediated by the progesterone receptor. This hormonally responsive 3D culture system supports the hypothesis that progesterone has a direct effect on remodeling cervical ECM during pregnancy. The 3D culture system could be useful for studying the mechanism of progesterone effects on the cervix.

  7. Inhibitory Effect of Progesterone on Cervical Tissue Formation in a Three-Dimensional Culture System with Human Cervical Fibroblasts1

    Science.gov (United States)

    House, Michael; Tadesse-Telila, Serkalem; Norwitz, Errol R.; Socrate, Simona; Kaplan, David L.

    2013-01-01

    ABSTRACT Progesterone supplementation is recommended to prevent preterm birth in women with a short cervix, but the mechanism is unclear. We hypothesize that progesterone acts by altering the composition of the cervical extracellular matrix (ECM). We tested this hypothesis using human cervical fibroblasts in both two-dimensional (2D) and three-dimensional (3D) cultures. For 2D culture, cells were seeded in 6-well plates and cultured with media supplemented with estradiol (10−8 M), progesterone (10−7 or 10−6 M), and vehicle. For 3D culture, the cells were cultured on a porous silk protein scaffold system. Progesterone and estrogen receptors were documented by immunohistochemistry and Western blot analysis. In both 2D and 3D cultures, decreased collagen synthesis was seen with increased progesterone concentration. Three-dimensional cultures could be maintained significantly longer than 2D cultures, and the morphology of 3D cultures appeared similar to native cervical tissue. Thus, further studies were performed in 3D culture. To determine the effect of progesterone concentration, the 3D scaffolds were cultured with estradiol (10−8 M) and five conditions: vehicle; 10−9, 10−8, or 10−7 M progesterone; or 10−7 M progesterone plus 10−6 M mifepristone. The highest progesterone concentration correlated with the least amount of collagen synthesis. Collagen synthesis progressively increased as progesterone concentration decreased. This effect was partially antagonized by mifepristone, suggesting the mechanism is mediated by the progesterone receptor. This hormonally responsive 3D culture system supports the hypothesis that progesterone has a direct effect on remodeling cervical ECM during pregnancy. The 3D culture system could be useful for studying the mechanism of progesterone effects on the cervix. PMID:24285720

  8. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  9. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm

  10. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  11. Fruit and seed characteristics of diploid seedless watermelon (citrullus lanatas) cultivars produced by soft-X-irradiated pollen

    International Nuclear Information System (INIS)

    Sugiyama, Keita; Morishita, Masami

    2000-01-01

    We compared the differences in number of seeds, size of normal and empty seeds, and fruit quality of seedless fruit induced by soft- X- irradiated pollen to determine which cultivars are best suited for breeding and producing high quality seedless watermelon. Two wild types, eleven Japanese, one Chinese, and three American watermelon cultivars were studied. We also observed the effect of soft- X- rays on pollen germination and elongation of the pollen tube. The germination rates of pollen treated with 1000 to 2000 Gy of soft-X-ray were almost the same as those of the control, whereas the rate was significantly reduced at 3000 Gy. Soft-X- irradiated pollen germinated on a stigma, and the pollen tube elongated in the embryo sac. Watermelon fruit pollinated with pollen irradiated with 800 Gy of soft-X-ray had no normal seeds but only empty ones. To delineate the varietal differences by the number of empty seeds and seed size in seedless fruit, wild types, Japanese, Chinese, and American watermelon cultivars were investigated. The number and size of empty seeds varied among cultivars. A low correlation (r=0.272) existed between the total number of seeds in the control fruit and the number of empty seeds in the seedless fruit. Whereas, a high correlation (seed length: r=0.943, P<0.001, seed width: r=0.883, P < 0.001) was found between the size of normal seeds in control fruit and empty seeds in seedless fruit. Diploid seedless fruit was similar to control fruit in size, shape, color, rind thickness, sugar content, and days from pollination to maturity. (author)

  12. Fruit and seed characteristics of diploid seedless watermelon (citrullus lanatas) cultivars produced by soft-X-irradiated pollen

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Keita; Morishita, Masami [National Research Insti. of Vegetables, Ornamental Plants and Tea, Fukuoka (Japan). Kurume Branch

    2000-11-01

    We compared the differences in number of seeds, size of normal and empty seeds, and fruit quality of seedless fruit induced by soft- X- irradiated pollen to determine which cultivars are best suited for breeding and producing high quality seedless watermelon. Two wild types, eleven Japanese, one Chinese, and three American watermelon cultivars were studied. We also observed the effect of soft- X- rays on pollen germination and elongation of the pollen tube. The germination rates of pollen treated with 1000 to 2000 Gy of soft-X-ray were almost the same as those of the control, whereas the rate was significantly reduced at 3000 Gy. Soft-X- irradiated pollen germinated on a stigma, and the pollen tube elongated in the embryo sac. Watermelon fruit pollinated with pollen irradiated with 800 Gy of soft-X-ray had no normal seeds but only empty ones. To delineate the varietal differences by the number of empty seeds and seed size in seedless fruit, wild types, Japanese, Chinese, and American watermelon cultivars were investigated. The number and size of empty seeds varied among cultivars. A low correlation (r=0.272) existed between the total number of seeds in the control fruit and the number of empty seeds in the seedless fruit. Whereas, a high correlation (seed length: r=0.943, P<0.001, seed width: r=0.883, P < 0.001) was found between the size of normal seeds in control fruit and empty seeds in seedless fruit. Diploid seedless fruit was similar to control fruit in size, shape, color, rind thickness, sugar content, and days from pollination to maturity. (author)

  13. Comparison of regeneration potentials in tissue cultures of primitive and cultivated tomato species (Lycopersicon sp.

    Directory of Open Access Journals (Sweden)

    M. Lech

    2014-01-01

    Full Text Available Regeneration capacities of two tomato cultivars: Potentat and Rutgers, and of three accessions of wild tomato species: Lycopersicon peruvianum PI 128650, L. peruvianum var. dentatum PI 128655 and L. glandulosum were studied using an universal medium suitable for regeneration of those plants from leaf pieces in tissue culture. Fragments of leaf blades were taken from plants raised in greenhouse conditions and placed on a modified MS medium containing 0.3 mg/l IAA and 3.0 mg/l BAP solidified with 1% agar. The explants were transferred every 4-5 weeks on fresh medium of the same composition. It was shown that all the three primitive tomato species revealed much higher multiplication coefficients than the two cultivars. Appropriate values were: 11 - for L. glandulosum, 8 - for L. peruvianum, 7 - for L. peruvianum var. dentatum, 4 - for L. esculentum cv. Potentat and 2 - cv. Rutgers. Completely regenerated plants were obtained from all the tested species, but organogenesis occurred almost two weeks earlier in wild tomatoes than in the culitivated varieties of L. esculentum.

  14. The application of cell cultures, body fluids and tissues in oncoproteomics

    Directory of Open Access Journals (Sweden)

    Kamila Duś-Szachniewicz

    2014-11-01

    Full Text Available Mass spectrometry (MS-based proteomics is a rapidly developing technology for the large scale analysis of proteins, their interactions and subcellular localization. In recent years proteomics has attracted much attention in medicine. Since a single biomarker might not have sufficient sensitivity and specificity in clinical practice, the identification of biomarker panels that comprise several proteins would improve the detection and clinical management of cancer patients. Additionally, the characteristics of protein profiles of most severe human malignancies certainly contribute to the understanding of the biology of cancer and fill the gap in our knowledge of carcinogenesis. This knowledge also is likely to result in the discovery of novel potential cancer markers and targets for molecular therapeutics. It is believed that the novel biomarkers will help in the development of personalized therapy tailored to the individual patient and will thereby reduce the mortality rate from cancer. In this review, the use of different types of human clinical samples (cell cultures, tissues and body fluids in oncoproteomics is explained and the latest advances in mass spectrometry-based proteomics biomarker discovery are discussed.

  15. DEVELOPMENT OF PRIMARY CELL CULTURE FROM TAIL EPIDERMAL TISSUE OF KOI CARP (Cyprinus carpio koi

    Directory of Open Access Journals (Sweden)

    Lila Gardenia

    2014-06-01

    Full Text Available Primary cell culture from tail epidermal tissue of koi carp (Cyprinus carpio koi was developed. Cells were grown in Leibovits-15 medium supplemented with 20% fetal bovine serum and antibiotics (Penicillin/Streptomycin and Kanamycin. Cell growth was observed in a range of incubation temperature (17oC±2oC, 22oC±2oC, 27oC±2oC, and 32oC±2oC in order to determine the optimum temperature. The cells were able to grow at a range of temperature between 17oC to 32oC with optimal growth at 22oC. Primary cells infected with koi herpes virus produced typical cytopathic effects characterized by severe vacuolation and deformation of nuclei, which is consistent with those of previous reports. Artificial injection experiment by using supernatant koi herpes virus SKBM-1 isolate revealed that it could cause 90% mortality in infected fish within two weeks. PCR test with Sph I-5 specific primers carried out with DNA template from supernatant virus, pellet cell, and gills of infected fish showed positive results in all samples (molecular weight of DNA target 290 bp. The cells were found to be susceptible to koi herpes virus and can be used for virus propagation.

  16. Genetic uniformity of sungkai (Peronema canescens Jack regenerated from tissue culture

    Directory of Open Access Journals (Sweden)

    MARIA IMELDA

    2007-01-01

    Full Text Available Sungkai or jati sebrang (Peronema canescens Jack is one of the industrial timber estate species native to Indonesia, which is commonly chosen for reforestation and as raw materials for the furniture and handicraft industry. In order to provide this planting material in large and sustainable quantities, a technique for in vitro propagation of sungkai through adventitious shoot proliferation is needed and has been successfully developed at the Research Centre for Biotechnology, LIPI. Since tissue culture method is prone to genetic variations, it is important to assess the genetic uniformity of sungkai planting materials derived from this in vitro method at an early stage. In this research, early detection of genetic uniformity was done by morphological observation of the regenerant plants and RAPD analysis using 4 primers namely OPB 5, OPB 9, OPH 11 and OPH 19. Morphological test showed differences in leaf shape, stem diameter and plant height among plantlets originating from Kalbar, Kaltim, Jambi and Cibinong. However, RAPD analysis with PCR showed that all planting materials were genetically uniform among those originating from the same or different places.

  17. Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications.

    Science.gov (United States)

    Ogita, Shinjiro

    2015-05-01

    Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.

  18. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration.

    Science.gov (United States)

    Emmert, Maximilian Y; Hitchcock, Robert W; Hoerstrup, Simon P

    2014-04-01

    Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Tissue culture and regeneration of an antimalarial plant, Artemisia sieberi Besser

    Directory of Open Access Journals (Sweden)

    A. Sharafi

    2014-10-01

    Full Text Available WHO recommends artemisinin-based combination therapies (ACTs as the most effective choice to treat malaria. For developing transgenic plants with high accumulation of artemisinin (by introducing genes encoding enzymes which regulate the biosynthetic pathway of artemisinin, an efficient protocol for tissue culture and plant regeneration is necessary. In the present study, leaf explants of Artemisia sieberi were cultivated in Murashige & Skoog based medium supplemented by combination of different plant growth regulators including 6-benzyl-aminopurine (BA, α-naphthalene-acetic acid (NAA, indole-3-acetic acid (IAA, picloram (Pic and 2,4-dichlorophenoxyacetic acid (2,4-D. The highest frequency of shoot induction was obtained on MS medium supplemented with 2 mg/L BA plus 0.05 mg/L NAA (95% regeneration and MS medium supplemented with 2 mg/L BA plus 0.5 mg/L IAA (85% regeneration. Rooting was obtained on MS medium supplemented with 0.05 mg/L NAA. The present study has revealed a simple, reliable, rapid and high efficient regeneration system for A. sieberi Besser as a source of artemisinin in short period via adventitious shoot induction procedure.

  20. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    Science.gov (United States)

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  1. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM......-mediated transfer of the gene for human glial cell line-derived neurotrophic factor (GDNF) to embryonic (E27/28) porcine VM tissue kept as organotypic explant cultures. Treatment of the developing VM with two mitogens, basic fibroblast growth factor and epidermal growth factor, prior to transfection significantly...... increased transfection yields. Expression of human GDNF via an episomal vector could be detected by in situ hybridization and by the measuring of GDNF protein secreted into the culture medium. When compared to mock-transfected controls, VM tissue expressing recombinant GDNF contained significantly higher...

  2. Discrimination and similarity evaluation of tissue-cultured and wild Dendrobium species using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Chen, Nai-dong; Chen, Han; Li, Jun; Sang, Mang-mang; Ding, Shen; Yu, Hao

    2015-04-01

    The FTIR method was applied to evaluate the similarity of tissue-cultured and wild Dendrobium huoshanense C.Z. Tang et S.J. Cheng, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw and discriminate different Dendrobium species, especially D. huoshanense and its main goldbrick Dendrobium henanense J.L. Lu et L.X. Gao. Despite the general pattern of the IR spectra, different intensities, shapes and peak positions were found in the IR spectra of these samples, especially in the range of 1800-600 cm-1, which could be used to discriminate them. The methanol, aqueous extracting procedure and the second derivative transformation obviously enlarged the tiny spectral differences among these samples. The similarity evaluation based on the IR spectra and the second derivative IR spectrum revealed that the similarity of the methanol extracts between tissue-cultured and wild Dendrobiums might be lower than that between different Dendrobium species. The similarities of the powders and aqueous extracts between tissue-cultured and wild Dendrobiums were higher than those between different Dendrobium species. The further principal component analysis showed that the first three components explained 99.7%, 87.7% and 85.1% of data variance for powder, methanol extract and aqueous extract, respectively, demonstrating a good discrimination between samples. Our research suggested that the variations of secondary metabolites between different origins of the investigated Dendrobiums might be higher than what we had supposed. Tissue culture techniques were widely used in the conversation of rare and endangered medicinal amedica, however, our study suggested that the chemical constituents of tissue-cultured plants might be quite different from their wild correspondences.

  3. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Science.gov (United States)

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  4. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Directory of Open Access Journals (Sweden)

    Sunita Nayak

    Full Text Available The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  5. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    Science.gov (United States)

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  6. Development and progression of karyotypic variability in melanoma K1735 following X-irradiation

    International Nuclear Information System (INIS)

    Wolman, S.R.; McMorrow, L.E.; Fidler, I.J.; Talmadge, J.E.

    1985-01-01

    Chromosomal aberrations are often assumed to be deleterious to cells. However, the authors have found that many metastases are populated by cells with chromosomal recombinants induced by radiation of the original tumor population. The tumor, K-1735-M2, was already capable of metastasis so that the recombinant chromosomes were not necessary for this property of the tumor. Stable recombinants, like other aberrant forms, could be disadvantageous or, alternatively, could confer selective advantage to some tumor cells. The authors investigated these possibilities by irradiating the parental tumor line and examining the formation and persistence of chromosomal markers in cell culture and in s.c. tumors. The karyotype of the K-1735-M2 parental tumor is composed entirely of telocentric chromosomes, and recombinant forms are relatively easy to recognize. Unstable forms of chromosome damage were lost rapidly. The frequency of stable recombinants after two weeks in culture was higher than that in tumors growing in primary inoculation sites. In contrast, secondary (spontaneous metastatic) foci showed a far greater frequency of chromosomal markers, suggesting a positive association between markers and acquisition of properties benefiting growth and metastasis

  7. Condensed tannins in the tissue culture of sainfoin (Onobrychis viciifolia Scop.) and birdsfoot trefoil (Lotus corniculatus L.).

    Science.gov (United States)

    Lees, G L

    1986-08-01

    Two forage legumes, birdsfoot trefoil (Lotus corniculatus L.) and sainfoin (Onobrychis viciifolia Scop.), containing condensed tannins in their leaves and stems were used as source material to study condensed tannins in tissue culture. More protoplasts were isolated from mesophyll tissue of a low tannin-containing strain of birdsfoot trefoil than from a high tannin-containing strain, but more tannin-filled protoplasts were observed in the latter. Growth rates of leaf explant-derived callus tissue were greater for the high-tannin than for the low-tannin strain. In sainfoin, callus cultures from leaf explants produced numerous tannin-filled cells by 21 days. Explants from sainfoin cotyledons and roots, tissues which normally do not contain tannins, also formed callus with tannin-filled cells in 21 days but in almost every case, a cytokinin was required for tannin formation to occur. The occurrence of tannin-filled cells in callus from root and cotyledon explants was variable and genotype specific. These results show that endogenous tannins can affect protoplast isolation and possibly callus growth in birds-foot trefoil, and that the formation of condensed tannins in sainfoin callus culture can be influenced by a growth regulator.

  8. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications.

    Science.gov (United States)

    Neelakandan, Anjanasree K; Wang, Kan

    2012-04-01

    In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation. © Springer-Verlag 2011

  9. The effects of gamma irradiation on the growth and cytology of carrot (Dacus Carota L.) tissue culture

    International Nuclear Information System (INIS)

    Al-Safady, B.; Simon, P.W.

    1992-01-01

    Carrot (Dacus Carota L.) tissue suspension cultures were subjected to 0.5-40 krad of gamma irradiation. Callus fresh weight was significantly increased and dry weight slightly increased by low doses (0.5 and 1 krad). Cells size increased at all doses. Cell number and colony-forming ability decreased. There was a negative correlation between radiation dose and mitotic index, and a positive correlation between dose and mitotic abnormalities (multipolar separations, lagging chromosomes, and bridges). Frequency of prophase was increased, and ana phase and telophase were reduced. Tissue culture conditions increased the incidence of aneuploidy and polyploidy in comparison to carrot root tips. Aneuploidy in tissue cultures was decreased and polyploidy was increased by gamma irradiation. Gamma irradiation stimulated shoot formation at 1 krad, and inhibited shoot formation at high doses (20-40 krads). The frequency of abnormal plants (albinos, and plants with no roots or deformation of leaves) regenerated from carrot cell cultures was increased by gamma irradiation. (authors). 30 refs., 3 figs

  10. Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve.

    Science.gov (United States)

    Huang, Lanfeng; Li, Rui; Liu, Wanguo; Dai, Jin; Du, Zhenwu; Wang, Xiaonan; Ma, Jianchao; Zhao, Jinsong

    2014-07-15

    Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, but cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhesion stage. Moreover, seeded cells were distributed throughout the material.

  11. Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis.

    Science.gov (United States)

    Senthil, Kalaiselvi; Jayakodi, Murukarthick; Thirugnanasambantham, Pankajavalli; Lee, Sang Choon; Duraisamy, Pradeepa; Purushotham, Preethi M; Rajasekaran, Kalaiselvi; Nancy Charles, Shobana; Mariam Roy, Irene; Nagappan, Arul Kumar; Kim, Gon Sup; Lee, Yun Sun; Natesan, Senthil; Min, Tae-Sun; Yang, Tae Jin

    2015-01-22

    The production of metabolites via in vitro culture is promoted by the availability of fully defined metabolic pathways. Withanolides, the major bioactive phytochemicals of Withania somnifera, have been well studied for their pharmacological activities. However, only a few attempts have been made to identify key candidate genes involved in withanolide biosynthesis. Understanding the steps involved in withanolide biosynthesis is essential for metabolic engineering of this plant to increase withanolide production. Transcriptome sequencing was performed on in vitro adventitious root and leaf tissues using the Illumina platform. We obtained a total of 177,156 assembled transcripts with an average unigene length of 1,033 bp. About 13% of the transcripts were unique to in vitro adventitious roots but no unique transcripts were observed in in vitro-grown leaves. A putative withanolide biosynthetic pathway was deduced by mapping the assembled transcripts to the KEGG database, and the expression of candidate withanolide biosynthesis genes -were validated by qRT PCR. The accumulation pattern of withaferin A and withanolide A varied according to the type of tissue and the culture period. Further, we demonstrated that in vitro leaf extracts exhibit anticancer activity against human gastric adenocarcinoma cell lines at sub G1 phase. We report here a validated large-scale transcriptome data set and the potential biological activity of in vitro cultures of W. somnifera. This study provides important information to enhance tissue-specific expression and accumulation of secondary metabolites, paving the way for industrialization of in vitro cultures of W. somnifera.

  12. GENETIC VARIABILITY OF CULTURED PLANT TISSUES UNDER NORMAL CONDITIONS AND UNDER STRESS

    Directory of Open Access Journals (Sweden)

    Dolgikh Yu.I.

    2012-08-01

    Full Text Available The genetic variability induced by in vitro conditions known as somaclonal variation is of practical interest due to its potential uses in plant breeding but, on the other hand, if clonal propagation or transformation is main goal, it becomes an unwelcome phenomenon. Thus, it is important to know frequency, the genomic distribution, the mechanisms and factors influencing somaclonal variation. We studied variability of PCR-based DNA markers of cultured tissues and regenerated plants of maize and bread wheat. The original A188 line of maize and the somaclones obtained were tested using 38 RAPD and 10 ISSR primers. None of the A188 plants showed variation in the RAPD and ISSR spectra for any of the primers used. However, the PCR spectra obtained from the somaclones demonstrated some variations, i.e., 22 RAPD primers and 6 ISSR primers differentiated at least one somaclonal variant from the progenitor line. Six SCAR markers were developed based on several RAPD and ISSR fragments. The inheritance of these SCAR markers was verified in the selfing progeny of each somaclone in the R1–R4 generations and in the hybrids, with A188 as the parental line in the F1 and F2 generations. These markers were sequenced and bioinformatic searches were performed to understand the molecular events that may underlie the variability observed in the somaclones. All changes were found in noncoding sequences and were induced by different molecular events, such as the insertion of long terminal repeat transposon, precise miniature inverted repeat transposable element (MITE excision, microdeletion, recombination, and a change in the pool of mitochondrial DNA. In two groups of independently produced somaclones, the same features (morphological, molecular were variable, which confirms the theory of ‘hot spots’ occurring in the genome. The presence of the same molecular markers in the somaclones and in different non-somaclonal maize variants suggests that in some cases

  13. Low-level x-irradiation of the brain during development: morphological, physiological, and behavioral consequences. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Altman, J.

    1975-01-01

    Progress is reported on studies on the effects of exposure to low-dose x radiation on the developing brain of rats. Brief summaries of results of morphological, physiological, and behavioral studies on rats exposed using various x-irradiation schedules are included. A list of papers published and submitted for publication during the period is included. (U.S.)

  14. Sequence-dependent toxicity and small bowel mucosal injury in neonatal mice treated with low doses of 5-azacytidine and X-irradiation at the late organogenesis stage

    International Nuclear Information System (INIS)

    Schmahl, W.

    1983-01-01

    A combined treatment of pregnant mice on day 12 of gestation with both azacytidine and X-irradiation in low doses induces sequence-dependent histological effects. These effects, in turn, induce different symptomatic signs if evaluated either prenatally or neonatally. In the azacytidine treatment/X-irradiation sequence the malformations of the fetal forebrain are predominant. Consequently, these dams show a high incidence in the stillbirth rate. Conversely, the X-irradiation/azacytidine treatment schedule leads only to a mild brain hypoplasia, and does not cause an increased stillbirth rate. In these offspring, however, a severe impairment of small bowel epithelial proliferation capacity was found. This is linked to an outstanding neonatal mortality within 48 h after birth. The pathogenesis of these sequence-dependent effects can be attributed to a selective vulnerability of cells in different stages of the generation cycle. This comprises a high degree of cytolethality affecting the S/G 2 -stage cells in azacytidine/X-irradiation treatment and the G 1 /S-stage cells in the reverse combinations (Schmahl 1979). The present observations show the validity of a teratological assay in providing a detailed analysis of the cell kinetic responses after combined noxious influences. (orig.)

  15. Effects of x-irradiation induced loss of cerebellar granule cells on the synaptosomal levels and the high affinity uptake of amino acids

    International Nuclear Information System (INIS)

    Rohde, B.H.; Rea, M.A.; Simon, J.R.; McBride, W.J.

    1979-01-01

    Crude synaptosomal (P 2 ) preparations were obtained from the cerebella of rats in which the granule cell population had been selectively reduced by X-irradiation treatment and from the cerebella of control animals. In the P 2 fraction form control cerebella, the level of glutamate was greater than any other of the 5 amino acids measured and was 2-fold higher than taurine. The content of taurine, GABA, glycine, and alanine were not changed by the X-irradiation treatment. The uptake of 1.0 micrometers-L-[ 3 H]glutamate and L-[ 3 H]aspartate was reduced approx 20% by X-irradiation treatment, whereas the uptake of 1.0 micrometers-[ 3 H]GABA and [ 3 H]taurine was unchanged. In a second study, the uptake of L-[ 3 H]glutamate, L-[ 3 H]aspartate and [ 3 H]GABA was measured using P 2 fractions obtained from the cerebella of rats in which the population of granule, stellate and basket cells had been reduced by X-irradiation treatment. The uptake of 1.0 micrometers-L-[ 3 H]glutamate, L-[ 3 H]aspartate and [ 3 H]GABA was significantly (P < 0.05) reduced to 57.68 and 59% respectively, of control values. The data are discussed in terms of glutamate being the excitatory neurotransmitter released from granule cells and GABA being the inhibitory neurotransmitter released from basket cells. (author)

  16. Excitatory synapse in the rat hippocampus in tissue culture and effects of aniracetam.

    Science.gov (United States)

    Ozawa, S; Iino, M; Abe, M

    1991-10-01

    Excitatory synaptic connections between rat hippocampal neurons were established in tissue culture. The electrophysiological and pharmacological properties of these synapses were studied with the use of the tight-seal whole-cell recording technique. The excitatory postsynaptic current (EPSC) in a dissociated CA1 neuron evoked by stimulation of an explant from the CA3/CA4 region of the hippocampus had two distinct components in Mg(2+)-free medium. The fast component was abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (2 microM), whereas the slow component was abolished by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate (D-APV) (50 microM). In solution containing 1 mM Mg2+, the peak amplitude of the fast component was almost linearly related to the membrane potential. In contrast, the conductance change underlying the slow component of the EPSC was voltage-dependent with a region of negative-slope conductance in the range of -80 to -20 mV. A nootropic drug, aniracetam, increased both the amplitude and duration of the fast component of the EPSC in a concentration-dependent manner in the range of 0.1-5 mM, whereas it had no potentiating effect on the slow component. Aniracetam (0.1-5 mM) similarly increased current responses of the postsynaptic neuron to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). Current responses to quisqualate and glutamate in the presence of D-APV were also potentiated by aniracetam. However, neither NMDA- nor kainate-induced current was potentiated by 1 mM aniracetam.

  17. Ontogenetically-regulated male sterility in tissue culture - induced and spontaneous sorghum mutants

    Directory of Open Access Journals (Sweden)

    Elkonin L.A.

    2003-01-01

    Full Text Available Variability of male fertility expression in the AS-1 line, a somaclonal variant obtained from tissue culture of CMS-plant, and in the progeny of revenant '124-1' obtained from fertile tiller, which developed on CMS-plant transferred from the field to the greenhouse, was investigated. Both revertants were characterized by similar expression of male fertility during plant ontogenesis: the panicle on the main tiller was almost completely sterile whereas formation of fertile pollen grains and seed set were observed on the panicles of the shoot tillers. A clear basipetal gradient of male fertility was manifested on all panicles: the base had significantly higher per cent of fertile pollen grains in comparison with the middle part, while in the top the anthers were either absent or had few sterile pollen grains. Such an ontogenetically-regulated restoration of male fertility was controlled by nuclear genes and could be transferred through the pollen in crosses with progenitor CMS-line. Growing of AS-1 plants in the growth chambers simultaneously under a long (16/8 and a short (12/12 daylength conditions demonstrated that differences of fertility level in different tillers was not caused by change of photoperiod during plant ontogenesis and functioning of photoperiod-sensitive fertility restoring gene. Whereas, the ontogenetically-regulated expression of male fertility in both revenants was temperature-dependent and was clearly manifested under relatively cool conditions during 2-week period before the beginning of anthesis of the first panicle (average daily temperature 21°C. The increase of the average daily temperature by 2-3 С resulted in sharp increase of male fertility level. Possibility of using AS-1 line in a new "two-line system" of hybrid seed production, which require only two lines (sterile mutant and fertility restorer, is discussed.

  18. DNA replication kinetics in x-irradiated Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Gerner, E.W.

    1977-08-01

    The kinetics of semiconservative DNA replication have been studied in both asynchronous and synchronized Chinese hamster ovary cells (CHO) irradiated with x-ray doses up to 3000 rad. Amounts of DNA replicated were determined by isopycnic gradient centrifugation of DNA from cells which were incubated after irradiation in medium containing 5-bromodeoxyuridine (50 ..mu..g/ml) and 5-fluorodeoxyuridine (0.1 ..mu..g/ml). The results confirm that cells irradiated in early G/sub 1/ phase experience a delay in their entry into S phase. This G/sub 1/ block is dose independent in the range from 300 to 3000 rad and is 0.5 to 0.7 hr in length. Cells at the G/sub 1//S boundary are insensitive to x-ray induced perturbations of bulk DNA synthetic rates when exposed to doses less than 1000 rad. At doses in excess of 1000 rad, these cells are inhibited from replicating their DNA for a time, but ultimately replicate near-control levels of their DNA. Cells irradiated in S phase again show no effects of x-ray doses below 1000 rad on their ability to replicate bulk DNA. After a 3000-rad exposure, however, the rate of DNA replication in these S-phase cells is markedly reduced compared to that of controls. Irradiation of asynchronous cells with doses from 150 to 3000 rad does reduce the rate of semiconservative DNA replication in these cultures in a dose-dependent manner. These results confirm that x-ray doses greater than 1000 rad reduce the rate of DNA synthesis in irradiated S-phase cells, thus prolonging the length of S phase. The combined data from asynchronous or synchronized cultures, irradiated with x-ray doses less than 1000 rad, indicate that at least a portion of the reduction in DNA replication rates in irradiated asynchronous CHO cultures is due to the x-ray induced G/sub 1/ block, which reduces the overall number of cells in S phase after irradiation.

  19. Cultured Human Epidermis Combined With Meshed Skin Autografts Accelerates Epithelialization and Granulation Tissue Formation in a Rat Model.

    Science.gov (United States)

    Sakamoto, Michiharu; Morimoto, Naoki; Inoie, Masukazu; Takahagi, Miki; Ogino, Shuichi; Jinno, Chizuru; Suzuki, Shigehiko

    2017-06-01

    As the take rate of cultured epidermal autografts in burn wound treatment is variable, widely expanded meshed auto skin grafts are often used in combination with cultured epidermal autograft to increase the take rate and achieve definitive wound coverage. However, a long time (3-4 weeks) required to prepare a cultured epidermis sheet is a disadvantage. Allogeneic cultured epidermis can be prepared in advance and cryopreserved to be used in combination with auto meshed skin grafts for treating third-degree burns. Nevertheless, the human cultured epidermis (hCE) has not been proved to accelerate wound healing after meshed skin grafting. Here, we investigated the effect of hCE on wound healing in a rat model of meshed skin grafting. Human cultured epidermis was prepared from human neonatal foreskin and assessed by the release of growth factors into the culture medium using enzyme-linked immunosorbent assay. Skin wounds were inflicted on male F344 rats and treated by the application of widely meshed (6:1 ratio) autogenous skin grafts with or without hCE (n = 8 rats per group). Wound area, neoepithelium length, granulation tissue formation, and neovascularization were evaluated on day 7 postgrafting. Human cultured epidermis secreted IL-1α, Basic fibroblast growth factor, platelet-derived growth factor-AA, TGF-α, TGF-β1, and vascular endothelial growth factor in vitro. In rats, hCE accelerated wound closure (P = 0.003), neoepithelium growth (P = 0.019), and granulation tissue formation (P = 0.043), and increased the number of capillaries (P = 0.0003) and gross neovascularization area (P = 0.008) compared with the control group. The application of hCE with meshed grafts promoted wound closure, possibly via secretion of growth factors critical for cell proliferation and migration, suggesting that hCE can enhance the healing effect of widely expanded skin autografts.

  20. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice