WorldWideScience

Sample records for tissue culture development

  1. The plant tissue culture

    International Nuclear Information System (INIS)

    Crocomo, O.J.; Sharp, W.R.

    1973-01-01

    Progress in the field of plant tissue culture at the Plant Biochemistry Sector, Centro de Energia na Agricultura (CENA), Piracicaba, S.P., Brazil, pertains to the simplification of development in 'Phaseolus vulgaris' by dividing the organism into its component organs, tissues, and cells and the maintenance of these components on defined culture media 'in vitro'. This achievement has set the stage for probing the basis for the stability of the differentiated states and/or the reentry of mature differentiated cells into the mitotic cell cycle and their subsequent redifferentiation. Data from such studies at the cytological and biochemical level have been invaluable in the elucidation of the control mechanisms responsible for expression of the cellular phenotype. Unlimited possibilities exist for the application of tissue culture in the vegetative propagation of 'Phaseolus' and other important cultivars in providing genocopies or a large scale and/or readily obtaining plantlets from haploid cell lines or from protoplast (wall-less cells) hybridization products following genetic manipulation. These tools are being applied in this laboratory for the development and selection of high protein synthesizing 'Phaseolus' cultivars

  2. Progress in planta transformation without tissue culture

    International Nuclear Information System (INIS)

    Gu Yunhong; Chinese Academy of Sciences, Hefei; Qin Guangyong; Huo Yuping; Yu Zengliang

    2004-01-01

    With the development of planta genetic engineering, more emphases have been laid on convenient and high efficient genetic transformation methods. And transformation without tissue culture is a prospective direction of it. In this paper, traditional transformation methods and the methods of non-tissue culture were summarized. With the exploration and application of Arabidopsis transformation mechanism, with the use of ion beam-mediated transformation invented by Chinese scientists and the development of other transformation methods, transformation methods without tissue culture and planta genetic engineering could be improved rapidly. (authors)

  3. Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    Tissue culture technology is used for the production of doubled haploids, cryopreservation, propagating new plant varieties, conserving rare and endangered plants, difficult-to-propagate plants, and to produce secondary metabolites and transgenic plants. The production of high quality planting material of crop plants and fruit trees, propagated from vegetative parts, has created new opportunities in global trading, benefited growers, farmers, and nursery owners, and improved rural employment. However, there are still major opportunities to produce and distribute high quality planting material, e.g. crops like banana, date palm, cassava, pineapple, plantain, potato, sugarcane, sweet potato, yams, ornamentals, fruit and forest trees. The main advantage of tissue culture technology lies in the production of high quality and uniform planting material that can be multiplied on a year-round basis under disease-free conditions anywhere irrespective of the season and weather. However, the technology is capital, labor and energy intensive. Although, labor is cheap in many developing countries, the resources of trained personnel and equipment are often not readily available. In addition, energy, particularly electricity, and clean water are costly. The energy requirements for tissue culture technology depend on day temperature, day-length and relative humidity, and they have to be controlled during the process of propagation. Individual plant species also differ in their growth requirements. Hence, it is necessary to have low cost options for weaning, hardening of micropropagated plants and finally growing them in the field. This publication describes options for reducing costs to establish and operate tissue culture facilities and primarily focus on plant micropropagation. It includes papers on the basics of tissue culture technology, low cost options for the design of laboratories, use of culture media and containers, energy and labor saving, integration and adoption of

  4. Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-02-01

    Tissue culture technology is used for the production of doubled haploids, cryopreservation, propagating new plant varieties, conserving rare and endangered plants, difficult-to-propagate plants, and to produce secondary metabolites and transgenic plants. The production of high quality planting material of crop plants and fruit trees, propagated from vegetative parts, has created new opportunities in global trading, benefited growers, farmers, and nursery owners, and improved rural employment. However, there are still major opportunities to produce and distribute high quality planting material, e.g. crops like banana, date palm, cassava, pineapple, plantain, potato, sugarcane, sweet potato, yams, ornamentals, fruit and forest trees. The main advantage of tissue culture technology lies in the production of high quality and uniform planting material that can be multiplied on a year-round basis under disease-free conditions anywhere irrespective of the season and weather. However, the technology is capital, labor and energy intensive. Although, labor is cheap in many developing countries, the resources of trained personnel and equipment are often not readily available. In addition, energy, particularly electricity, and clean water are costly. The energy requirements for tissue culture technology depend on day temperature, day-length and relative humidity, and they have to be controlled during the process of propagation. Individual plant species also differ in their growth requirements. Hence, it is necessary to have low cost options for weaning, hardening of micropropagated plants and finally growing them in the field. This publication describes options for reducing costs to establish and operate tissue culture facilities and primarily focus on plant micropropagation. It includes papers on the basics of tissue culture technology, low cost options for the design of laboratories, use of culture media and containers, energy and labor saving, integration and adoption of

  5. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    Plant tissue culture is a technique of culturing plant cells, tissues and organs on ... working methods (Box 2) and discovery of the need for B vita- mins and auxins for ... Kotte (Germany) reported some success with growing isolated root tips.

  6. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  7. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  8. Variations on metabolic activities of legume tissues through radiation in tissue culture

    International Nuclear Information System (INIS)

    Batra, Amla

    1977-01-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content. (author)

  9. Variations on metabolic activities of legume tissues through radiation in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Batra, A [Rajasthan Univ., Jaipur (India). Dept. of Botany

    1977-12-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content.

  10. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture...

  11. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    Science.gov (United States)

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  12. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Study on tissue culture for Gelidium seedling

    Science.gov (United States)

    Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin

    1996-06-01

    As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.

  14. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...... with mass production. The last part of this thesis also includes perspectives on how to expand the latest designed device to facilitate culturing of tissue and co-culturing of cells....

  15. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  17. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  18. Joint use of developed collagen-containing complexes and cell cultures in creating new tissue equivalents

    Directory of Open Access Journals (Sweden)

    K. V. Kulakova

    2016-01-01

    Full Text Available The purpose of the study is to assess the possibility of applying the integrated module as the basis of a celltissue equivalent for treatment of wounds of skin and soft tissues. In the frame of the set task the following problems were being solved: research of the spatial structure and architectonics of the surface of the developed base collagen-containing materials and their biocompatibility with cell cultures.Materials and methods. The study of a material which is a two-layer complex film, consisting of collagen and polysaccharide components was carried out. The collagen was separated from the dermis and was then impregnated with particulate demineralized bone matrix (DCM according to the original methodology. For the purposes of the study the dehydrated material was created in the form of a film. Electron microscopic examination of surfaces was performed on scanning electron microscope JEOL JSM-IT300LV in high vacuum and at low values of probe current (< 0,1 nА. Studies to assess the viability of the cells cultivated on films of collagen material (tested for cytotoxicity and the adhesive capacity were performed in vitro using strains of diploid human fibroblasts 4–6 passage. The culture condition was visually assessed using an inverted Leica microscope DM IL (Carl Zeiss, Austria, equipped with a computerizes program of control of culture growth (Leica IM 1000.Results. The data obtained in the study of the surface structure of the developed complex module showed that it seems to be promising as a basic component of the cellular-tissue system with its large number of structural formations for fixation of the cells and a well-organized barrier layer capable of vapor - permeability. Experiments in vitro confirmed the absence of toxicity of the material being studied in relation to the culture of dermal human fibroblasts, suggesting the possibility of creation on its basis of cell-tissue complex and further experimental studies in vivo

  19. Laboratory Workflow Analysis of Culture of Periprosthetic Tissues in Blood Culture Bottles.

    Science.gov (United States)

    Peel, Trisha N; Sedarski, John A; Dylla, Brenda L; Shannon, Samantha K; Amirahmadi, Fazlollaah; Hughes, John G; Cheng, Allen C; Patel, Robin

    2017-09-01

    Culture of periprosthetic tissue specimens in blood culture bottles is more sensitive than conventional techniques, but the impact on laboratory workflow has yet to be addressed. Herein, we examined the impact of culture of periprosthetic tissues in blood culture bottles on laboratory workflow and cost. The workflow was process mapped, decision tree models were constructed using probabilities of positive and negative cultures drawn from our published study (T. N. Peel, B. L. Dylla, J. G. Hughes, D. T. Lynch, K. E. Greenwood-Quaintance, A. C. Cheng, J. N. Mandrekar, and R. Patel, mBio 7:e01776-15, 2016, https://doi.org/10.1128/mBio.01776-15), and the processing times and resource costs from the laboratory staff time viewpoint were used to compare periprosthetic tissues culture processes using conventional techniques with culture in blood culture bottles. Sensitivity analysis was performed using various rates of positive cultures. Annualized labor savings were estimated based on salary costs from the U.S. Labor Bureau for Laboratory staff. The model demonstrated a 60.1% reduction in mean total staff time with the adoption of tissue inoculation into blood culture bottles compared to conventional techniques (mean ± standard deviation, 30.7 ± 27.6 versus 77.0 ± 35.3 h per month, respectively; P < 0.001). The estimated annualized labor cost savings of culture using blood culture bottles was $10,876.83 (±$337.16). Sensitivity analysis was performed using various rates of culture positivity (5 to 50%). Culture in blood culture bottles was cost-effective, based on the estimated labor cost savings of $2,132.71 for each percent increase in test accuracy. In conclusion, culture of periprosthetic tissue in blood culture bottles is not only more accurate than but is also cost-saving compared to conventional culture methods. Copyright © 2017 American Society for Microbiology.

  20. The role of activated charcoal in plant tissue culture.

    Science.gov (United States)

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  1. Frozen and fresh ovarian tissue require different culture media to promote in vitro development of bovine preantral follicles.

    Science.gov (United States)

    Castro, Simone Vieira; Carvalho, Adeline Andrade; Silva, Cleidson Manoel Gomes; Santos, Francielli Weber; Campello, Cláudio Cabral; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2014-10-01

    The aim of this study was to evaluate the efficiency of different media in the in vitro culture of bovine preantral follicles that were used either fresh or following slow freezing treatment. Frozen and fresh noncultured or cultured ovarian fragments were processed for histological, viability, and cell proliferation analyses. For cryopreservation, a solution containing 1.5 M ethylene glycol was frozen in a programmable biological freezer. After thawing, a portion of the samples was destined for frozen controls. The remainder were cultured in vitro for 5 days in three media: α-MEM, McCoy, or M199. Samples from these culture media were collected on days 1 and 5 for quantification of reactive oxygen species (ROS) and for hormonal assays. In fresh-cultured tissues, the percentage of morphologically normal follicles was significantly higher when cultured in M199 compared to that in the other media. In frozen-cultured tissues, McCoy medium was significantly superior to the other media, and was the only treatment that helped in maintaining the viability similar to fresh and frozen controls. Upon quantification of the nucleolus organizer region, we observed greater proliferation of granulosa cells in the frozen-cultured tissues with McCoy medium, and lesser proliferation in fresh-cultured tissues only with α-MEM. In frozen-cultured tissues, ROS levels were highest at day 1 and progressively reduced during culture, independent of the media used. In conclusion, under the conditions used in this study, the M199 and McCoy media are recommended for the culture of follicles derived from fresh and frozen ovarian tissues, respectively.

  2. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    Science.gov (United States)

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  3. Culture of three-dimensional tissue model and its application in bystander-effect research

    International Nuclear Information System (INIS)

    Wu Ruqun; Xu An; Wu Lijun; Hu Burong

    2012-01-01

    Compared with the cultured monolayer (2D) cells, three-dimensional (3D) tissue could be more similar to the environment in vivo including the physical support, chemical factors, cell-cell and cell-matrix interaction and so on. With the development of three-dimensional cell culture techniques (TDCC), 3D tissue is widely used in the areas of bystander effect research. This review focuses on introducing the TDCC method and its application in bystander-effect research. First, the development process of 3D tissue culture method was introduced. Secondly, the induction of radiation induced bystander effects both in 2D cell and 3D tissue and its mechanisms were reviewed. Finally, because heavy ion (carbon ion beam) has been developed as a useful tool to cure solid cancer, and the 3D tissue model is an ideal material to study the damages on body after being irradiated and to understand the underlying mechanisms, future study about heavy ion radiation inducing bystander effect in 3D tissue was discussed. (authors)

  4. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  5. Smallholder adoption and economic impacts of tissue culture ...

    African Journals Online (AJOL)

    This study was conducted with an objective of determining the correlates of adoption of tissue culture banana technology and its impacts on household incomes in Kenya. The results show that while some households have opted not to adopt tissue culture banana biotechnology, almost all the adopters are growing tissue ...

  6. Walnut tissue culture: research and field applications

    Science.gov (United States)

    2004-01-01

    Vitrotech Biotecnologia Vegetal began researching propagating Juglans regia (English walnut) and various Juglans hybrids by tissue culture in 1993 and has operated on a commercial scale since 1996. Since this time, more than one and a half million walnuts of different species have been propagated and field planted. Tissue cultured...

  7. Biotransformations with plant tissue cultures.

    Science.gov (United States)

    Carew, D P; Bainbridge, T

    1976-01-01

    Suspension cultures of Catharanthus roseus, Apocynum cannabinum and Conium maculatum were examined for their capacity to transform aniline, anisole, acetanilide, benzoic acid and coumarin. None of the cultures transformed acetanilide but each produced acetanilide when fed aniline. All three cultures converted benzoic acid to its para-hydroxy derivative. Coumarin was selectively hydroxylated at the 7-position by Catharanthus and Conium and anisole was O-demethylated only by older Catharanthus tissue.

  8. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  9. Application of Hanging Drop Technique for Kidney Tissue Culture.

    Science.gov (United States)

    Wang, Shaohui; Wang, Ximing; Boone, Jasmine; Wie, Jin; Yip, Kay-Pong; Zhang, Jie; Wang, Lei; Liu, Ruisheng

    2017-01-01

    The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Application of Hanging Drop Technique for Kidney Tissue Culture

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    2017-05-01

    Full Text Available Background/Aims: The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. Methods: In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. Results: The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. Conclusions: We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli.

  11. Tissue culture of ornamental cacti

    Directory of Open Access Journals (Sweden)

    Eugenio Pérez-Molphe-Balch

    2015-12-01

    Full Text Available Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family.

  12. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    Energy Technology Data Exchange (ETDEWEB)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  13. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    Science.gov (United States)

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display. © 2015 Wiley Periodicals, Inc.

  14. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    Science.gov (United States)

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  15. Bridging the gap between cell culture and live tissue

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-11-01

    Full Text Available Traditional in vitro two-dimensional (2-D culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011. In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease. It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues. In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature.

  16. Research progress in plant mutation by combining ion beam irradiations and tissue culture

    International Nuclear Information System (INIS)

    Zhou Linbin; Li Wenjian; Qu Ying; Li Ping

    2007-01-01

    About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)

  17. Culture-Independent Identification of Mycobacterium avium Subspecies paratuberculosis in Ovine Tissues: Comparison with Bacterial Culture and Histopathological Lesions

    Directory of Open Access Journals (Sweden)

    Kamal R. Acharya

    2017-12-01

    Full Text Available Johne’s disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP. Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38. Likewise, almost all tissue culture (61/64 or histopathology (52/58 positives were detected with good to moderate agreement (Cohen’s kappa statistic and no significant difference to the reference tests (McNemar’s Chi-square test. Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07. Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption.

  18. Developing a Plant Culture Medium Composed of Vinasse Originating from Haematococcus Pluvialis Culture

    International Nuclear Information System (INIS)

    Gollo, A. L.; Silva, A. L. L. D.; Lima, K. K. D. D.; Camara, M. C.; Rodrigues, C.; Vandenberghe, L. P. D. S.; Soccol, V. T.; Soccol, C. R.; Biasi, L. A.

    2016-01-01

    The mineral nutrients in vinasse provide support for algal and plant growth. Algal culture releases organic compounds into its liquid culture medium. These organic and inorganic substances can be useful for formulating a plant tissue culture medium, because tissue culture medium is composed of organic and inorganic components. Therefore, the aims of this study were to develop a plant culture medium by using the vinasse that is employed for Haematococcus pluvialis culture (algal filtrate); to investigate the possible beneficial effects of the biocompounds in the micropropagation of Nidularium procerum (Bromeliaceae), to evaluate quercetin content, total phenolics content in vinasse and to evaluate the cytotoxicity of the media by performing a bioassay with Artemia salina. The vinasse that originated from H. pluvialis culture can be used to formulate plant tissue culture at a 3% dilution, and its mineral nutrients can support In vitro plant growth, but some nutrients must be supplemented to enhance its efficiency. An efficient micropropagation protocol was developed for N. procerum. The micropropagated plants were suitable for transfer to the field (they were acclimatized). This culture medium provides a way to reuse wastewater, gives a rational alternative to vinasse disposal and adds value to what is currently considered to be an undesirable residue. Moreover, this process can reduce the production costs of clonal seedlings and/or bioactive compounds in biofactories. There was no apparent biostimulatory effect by the algal filtrate on morphogenesis; however, it did increase quercetin production. The H. pluvialis culture that was grown in the vinasse decreased the cytotoxicity and phenolic compound contents, which prevented explant tissue necrosis and represented a treatment for this residue for safer disposal in the environment. (author)

  19. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  20. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  1. Project on production of mutants by irradiation of in vitro cultured tissues of coconut and banana and their mass propagation by the tissue culture technique

    International Nuclear Information System (INIS)

    Guzman, E.V. de

    1975-01-01

    Fruit pulp tissue, ovary segments with or without ovules and sections from shoot tips of banana were used for studies on growth stimulating or morphogenetic effects of irradiation. Irradiation at 0.1-1.0 kR tended to induce faster callus growth in the otherwise slow-growing cultures. The physical condition and composition of the culture media especially with respect to growth regulators were studied, as were techniques to overcome discoloration of explants, the best choice of plant tissue for explant, and radiation effects on growth and morphogenesis. Due to the difficulty of callus induction with coconut, only the effects of irradiation on embryos cultured in vitro were studied. They were irradiated at various stages of development, i.e. during the early and final stage of liquid culture, and several days after transfer to a solid medium. Adverse effects of irradiation became evident only during the subsequent growth in solid, during the latter stage of which morphological changes were observed. Whereas irradiation of the liquid as well as solid media up to 50 kR had no adverse effect; survival and development became adversely affected at a dose of 1 kR

  2. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  3. [Chromosome variability in the tissue culture of rare Gentiana species].

    Science.gov (United States)

    Tvardovs'ka, M O; Strashniuk, N M; Mel'nyk, V M; Adonin, V I; Kunakh, V A

    2008-01-01

    Cytogenetic analysis of plants and tissue culture of Gentiana lutea, G. punctata, G. acaulis has been carried out. Culturing in vitro was found to result in the changes of chromosome number in the calluses of the species involved. Species specificity for variation of the cultured cell genomes was shown. Contribution of the original plant genotypes to the cytogenetic structure of the tissue culture was established. Gentiana callus tissues (except for in vitro culture of G. punctata, derived from plant of Breskul'ska population) were found to exhibit modal class with the cells of diploid and nearly diploid chromosome sets.

  4. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  5. Gastric tissue biopsy and culture

    Science.gov (United States)

    ... symptoms may include: Loss of appetite or weight loss Nausea and vomiting Pain in the upper part of the belly Black stools Vomiting blood or coffee ground-like material A gastric tissue biopsy and culture can help detect: Cancer Infections, most commonly Helicobacter ...

  6. Mass spectrometric characterization of elements and molecules in cell cultures and tissues

    International Nuclear Information System (INIS)

    Arlinghaus, H.F.; Kriegeskotte, C.; Fartmann, M.; Wittig, A.; Sauerwein, W.; Lipinsky, D.

    2006-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (laser-SNMS) have been used to image and quantify targeted compounds, intrinsic elements and molecules with subcellular resolution in single cells of both cell cultures and tissues. Special preparation procedures for analyzing cell cultures and tissue materials were developed. Cancer cells type MeWo, incubated with boronated compounds, were sandwiched between two substrates, cryofixed, freeze-fractured and freeze-dried. Also, after injection with boronated compounds, different types of mouse tissues were extracted, prepared on a special specimen carrier and plunged with high velocity into LN 2 -cooled propane for cryofixation. After trimming, these tissue blocks were freeze-dried. The measurements of the K/Na ratio demonstrated that for both cell cultures and tissue materials the special preparation techniques used were appropriate for preserving the chemical and structural integrity of the living cell. The boron images show inter- and intracellular boron signals with different intensities. Molecular images show distinct features partly correlated with the cell structure. A comparison between laser-SNMS and ToF-SIMS showed that especially laser-SNMS is particularly well-suited for identifying specific cell structures and imaging ultratrace element concentrations in tissues

  7. Development of a vinasse culture medium for plant tissue culture

    International Nuclear Information System (INIS)

    Silva, A.L.L.D.; Gollo, L.

    2014-01-01

    Vinasse is the main pollutant (effluent) obtained from the distillation of sugarcane in the production of fuel alcohol. However, this residue is rich in nutrients that are required by plants. We developed a new culture medium using vinasse for the In vitro propagation of an orchid. The vinasse was treated (decanted and filtered), and the nutrients were determined and quantified. Different formulations using vinasse were tested for an In vitro culture. The vinasse dilutions demonstrated a good buffering effect. The ideal vinasse dilution for media formulation was 2.5%. The best KC formulations with vinasse were KCV1 and KCV5. Compared to KC medium, these formulations demonstrated similar results for In vitro multiplication, with the exception of protocorm-like body number, which was inferior in the vinasse formulations. Conversely, for In vitro elongation and rooting, these vinasse media were superior to KC medium. KC medium promotes a low rooting rate (8%) compared to 68 and 100% obtained by KCV1 and KCV5, respectively. Moreover, plantlets cultured on KC medium become protocorm-like body clusters, which impeded the acclimatization of these explants. Plantlets elongated and rooted on KCV1 and KCV5 were successfully acclimatized with a 91% survival rate for both KC vinasse formulations. This study shows the great potential of this technology as a rational alternative to vinasse disposal and adds value to what is currently considered a waste product. (author)

  8. Improved Diagnosis of Prosthetic Joint Infection by Culturing Periprosthetic Tissue Specimens in Blood Culture Bottles

    Directory of Open Access Journals (Sweden)

    Trisha N. Peel

    2016-01-01

    Full Text Available Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM in addition to applying the Infectious Diseases Society of America (IDSA criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014 at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32% met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively; this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003. The time to microorganism detection was shorter with BCBs than with standard media (P < 0.0001, with aerobic and anaerobic BCBs yielding positive results within a median of 21 and 23 h, respectively. Results of our study demonstrate that the semiautomated method of periprosthetic tissue culture in blood culture bottles is more sensitive than and as specific as agar and thioglycolate broth cultures and yields results faster.

  9. Tissue culture of three species of Laurencia complex

    Science.gov (United States)

    Shen, Songdong; Wu, Xunjian; Yan, Binlun; He, Lihong

    2010-05-01

    To establish a micropropagation system of three Laurencia complex species ( Laurencia okamurai, Laurencia tristicha, and Chondrophycus undulatus) by tissue culture techniques, we studied the regeneration characteristics and optimal culture conditions of axenic algal fragments cultured on solid medium and in liquid medium. Regeneration structures were observed and counted regularly under a reverse microscope to investigate the regeneration process, polarity and optimal illumination, and temperature and salinity levels. The results show that in most cultures of the three species, we obtained bud regeneration on solidified medium with 0.5% agar and in liquid medium. Rhizoid-like regeneration was filamentous and developed from the lower cut surface of fragments in L. okamurai, but was discoid and developed from the apical back side of bud regeneration in L. tristicha and C. undulatus. Regeneration polarity was localized to the apical part of algal fronds in all three species, and on fragments cut from the basal part of algae buds could develop from both the upper and the lower cut surfaces. Buds could develop from both the medullary and the cortical portions in L. okamurai and C. undulatus, while in L. tristicha, buds only emerged from the cortex. The optimal culture conditions for L. okamurai were 4 500 lx, 20°C and 35 (salinity); for C. undulatus, 4 500 lx, 20°C and 30; and for L. tristicha, 4 500 lx, 25°C and 30.

  10. Addressing the instability of DNA nanostructures in tissue culture.

    Science.gov (United States)

    Hahn, Jaeseung; Wickham, Shelley F J; Shih, William M; Perrault, Steven D

    2014-09-23

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable

  11. Versatile electrochemial sensor for tissue culturing and sample handling

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Al Atraktchi, Fatima Al-Zahraa

    2014-01-01

    Culturing of organtypic brain tissues is a routine procedure in neural research. The visual inspection of the medium is the only way of determining the state of the tissue. At the end of culturing, post-processing techniques such as HPLC can be used to measure the concentration of the secreted...

  12. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  13. Tissue engineering approaches to develop decellularized tendon matrices functionalized with progenitor cells cultured under undifferentiated and tenogenic conditions

    Directory of Open Access Journals (Sweden)

    Daniele D’Arrigo

    2017-11-01

    Full Text Available Tendon ruptures and retractions with an extensive tissue loss represent a major clinical problem and a great challenge in surgical reconstruction. Traditional approaches consist in autologous or allogeneic grafts, which still have some drawbacks. Hence, tissue engineering strategies aimed at developing functionalized tendon grafts. In this context, the use of xenogeneic tissues represents a promising perspective to obtain decellularized tendon grafts. This study is focused on the identification of suitable culture conditions for the generation of reseeded and functional decellularized constructs to be used as tendon grafts. Equine superficial digital flexor tendons were decellularized, reseeded with mesenchymal stem cells (MSCs from bone marrow and statically cultured in two different culture media to maintain undifferentiated cells (U-MSCs or to induce a terminal tenogenic differentiation (T-MSCs for 24 hours, 7 and 14 days. Cell viability, proliferation, morphology as well as matrix deposition and type I and III collagen production were assessed by means of histological, immunohistochemical and semi-quantitative analyses. Results showed that cell viability was not affected by any culture conditions and active proliferation was maintained 14 days after reseeding. However, seeded MSCs were not able to penetrate within the dense matrix of the decellularized tendons. Nevertheless, U-MSCs synthesized a greater amount of extracellular matrix rich in type I collagen compared to T-MSCs. In spite of the inability to deeply colonize the decellularized matrix in vitro, reseeding tendon matrices with U-MSCs could represent a suitable method for the functionalization of biological constructs, considering also any potential chemoattractant capability of the newly deposed extracellular matrix to recruit resident cells. This bioengineering approach can be exploited to produce functionalized tendon constructs for the substitution of large tendon defects.

  14. Culture methods of allograft musculoskeletal tissue samples in Australian bacteriology laboratories.

    Science.gov (United States)

    Varettas, Kerry

    2013-12-01

    Samples of allograft musculoskeletal tissue are cultured by bacteriology laboratories to determine the presence of bacteria and fungi. In Australia, this testing is performed by 6 TGA-licensed clinical bacteriology laboratories with samples received from 10 tissue banks. Culture methods of swab and tissue samples employ a combination of solid agar and/or broth media to enhance micro-organism growth and maximise recovery. All six Australian laboratories receive Amies transport swabs and, except for one laboratory, a corresponding biopsy sample for testing. Three of the 6 laboratories culture at least one allograft sample directly onto solid agar. Only one laboratory did not use a broth culture for any sample received. An international literature review found that a similar combination of musculoskeletal tissue samples were cultured onto solid agar and/or broth media. Although variations of allograft musculoskeletal tissue samples, culture media and methods are used in Australian and international bacteriology laboratories, validation studies and method evaluations have challenged and supported their use in recovering fungi and aerobic and anaerobic bacteria.

  15. Development of a 3D bone marrow adipose tissue model.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  16. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Science.gov (United States)

    Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2016-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082

  17. Revision washout decreases implant capsule tissue culture positivity: a multicenter study.

    Science.gov (United States)

    Henry, Gerard D; Carson, Culley C; Wilson, Steven K; Wiygul, Jeremy; Tornehl, Chris; Cleves, Mario A; Simmons, Caroline J; Donatucci, Craig F

    2008-01-01

    Positive cultures, visible biofilm and confocal micrography confirm bacterial presence on clinically uninfected inflatable penile prostheses at revision surgery. Salvage irrigation has been proved to rescue patients with clinically infected inflatable penile prostheses. Similar washout at revision for noninfectious reasons significantly lowers subsequent infection rates. We investigated a larger series of patients for positive culture rates and evaluated implant capsule tissue culture rates before and after revision washout. At 4 institutions a total of 148 patients with inflatable penile prostheses underwent revision surgery for noninfectious reasons between June 2001 and September 2005. Swab cultures of the fluid around the pump and visible biofilm were obtained. Also, in 65 patients a wedge of tissue from the capsule that forms around the pump was cultured. After implant removal revision washout of the implant spaces was performed and a second wedge of tissue was cultured. Of the 148 patients 97 (66%) had positive bacterial swab cultures of the fluid around the pump or biofilm. A total of 124 isolates were cultured. Of the 65 implant capsule tissue cultures obtained before washout 28 (43%) were positive for bacteria, while 16 (25%) obtained after revision washout were positive. Positive cultures and visible bacterial biofilm are present on clinically uninfected inflatable penile prostheses at revision surgery in most patients. Revision washout appears to decrease the bacterial load on implant capsule tissue at revision surgery of inflatable penile prostheses for noninfectious reasons.

  18. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... materials have been developed and tested for enhancing the differentiation of hiPSC-derived hepatocytes and fabricating biodegradable scaffolds for in-vivo tissue engineering applications. Along with various scaffolds fabrication methods we finally presented an optimized study of hepatic differentiation...... of hiPSC-derived DE cells cultured for 25 days in a 3D perfusion bioreactor system with an array of 16 small-scale tissue-bioreactors with integrated dual-pore pore scaffolds and flow rates. Hepatic differentiation and functionality of hiPSC-derived hepatocytes were successfully assessed and compared...

  19. TCUP: A novel hAT transposon active in maize tissue culture

    Directory of Open Access Journals (Sweden)

    Alan eSmith

    2012-01-01

    Full Text Available Transposable elements are capable of inducing heritable de novo genetic variation. The sequences capable of reactivation, and environmental factors that induce mobilization, remain poorly defined even in well-studied genomes such as maize. We treated maize tissue culture with the demethylating agent 5-aza-2-deoxcytidine and examined long-term tissue culture lines to discover silenced transposable elements that have the potential to induce heritable genetic variation. Through these screens we have identified a novel low copy number hAT transposon, Tissue Culture Up-Regulated (TCUP, which is transcribed at high levels in long-term maize Black Mexican Sweet (BMS tissue culture and up-regulated in response to treatment with 5-aza-2-deoxycytidine. Analysis of the TIGR Maize Gene Index revealed that this element is the most frequently represented EST from the BMS cell culture library and is not represented in other tissue libraries, which is the basis for its name. A full-length sequence was assembled in inbred B73 that contains the putative functional motifs required for autonomous movement of a hAT transposon. Transposon display detected movement of TCUP in two long-term tissue cultured cell lines of the genotype Hi-II AxB and BMS. This research implicates TCUP as a transposon that is capable of reactivation and which may also be particularly sensitive to the stress of the tissue culture environment. Our findings are consistent with the hypothesis that epigenetic alterations potentiate genomic responses to stress during clonal propagation of plants.

  20. The autologus graft of epithelial tissue culture

    Directory of Open Access Journals (Sweden)

    Minaee B

    1999-08-01

    Full Text Available With the intention of research about culture and autologus graft of epithelial tissue we used 4 french Albino Rabbits with an average age of 2 months. After reproduction on the support in EMEM (Eagle's Minimum Essential Medium we used this for graft after 4 weeks. This region which grafted total replaced. After fixation of this sample and passing them through various process, histological sections were prepared. These sections were stained with H & E and masson's trichrome and studied by light microscope. We succeeded in graft. We hope in the near future by using the method of epithelium tissue culture improving to treat burned patients.

  1. [Research progress of co-culture system for constructing vascularized tissue engineered bone].

    Science.gov (United States)

    Fu, Weili; Xiang, Zhou

    2014-02-01

    To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

  2. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2018-05-01

    Full Text Available Summary: Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by “self-condensation” culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation. : Takahashi et al. report on generating vascularized islet tissue from humans and mice. After transplantation, vascularized islets significantly improve survival of diabetic mice, demonstrating the quick normalization of blood glucose compared with conventional islet transplantation. Keywords: tissue engineering, tissue-based therapy, vascularization, islet transplantation, organoid

  3. Improved Diagnosis of Prosthetic Joint Infection by Culturing Periprosthetic Tissue Specimens in Blood Culture Bottles.

    Science.gov (United States)

    Peel, Trisha N; Dylla, Brenda L; Hughes, John G; Lynch, David T; Greenwood-Quaintance, Kerryl E; Cheng, Allen C; Mandrekar, Jayawant N; Patel, Robin

    2016-01-05

    Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs) is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM) in addition to applying the Infectious Diseases Society of America (IDSA) criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014) at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32%) met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively); this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003). The time to microorganism detection was shorter with BCBs than with standard media (P Prosthetic joint infections are a devastating complication of arthroplasty surgery. Despite this, current microbiological techniques to detect and diagnose infections are imperfect. This study examined a new approach to diagnosing infections, through the inoculation of tissue samples from around the prosthetic joint into blood culture bottles. This study demonstrated that, compared to current laboratory practices, this new technique increased the detection of infection. These findings are important for patient care to allow timely and accurate diagnosis of infection. Copyright © 2016 Peel et al.

  4. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles.

    Science.gov (United States)

    Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim

    2017-03-01

    The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of

  5. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    Science.gov (United States)

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  6. Tissue culture of surgically prepared temporalis fascia.

    Science.gov (United States)

    Walby, A P; Kerr, A G; Nevin, N C; Woods, G

    1982-10-01

    Temporalis fascia which is used to graft the tympanic membrane has been shown to be viable in tissue culture by a previous pilot study. This present study reports the effect on the viability of the fascia by scraping loose connective tissue from it and allowing it to dry. Pieces of fascia from 30 patients were each divided in 4 and prepared to give explants, fresh, fresh and scraped, dried, and dried and scraped. The fascia grew from 17 patients when cultured fresh, 5 when fresh and scraped, 1 when dried, and none when dried and scraped. These results are significantly different and show that the fascia is devitilized when prepared by the normal method for use in tympanoplasty.

  7. Distribution of phospholipase C isozymes in various rat tissues and cultured cells

    International Nuclear Information System (INIS)

    Suh, P.G.; Ryu, S.H.; Choi, W.C.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Monoclonal antibodies prepared against PLC-I or PLC-II enzyme did not cross-react with the other. Using a pair of antibodies which recognizes 2 different antigenic sites on the same molecule, radioimmunoassays were developed for the quantitation of PLC-I and PLC-II in homogenates of various tissues and cultured cells, prepared by homogenization in a 2 M KCl buffer. The contents of PLC enzymes were measured in 19 rat tissues, in human platelets and in 17 cultured cells. Results indicate that the concentration of PLC-I and PLC-II is very high in brain, PLC-I is localized mainly in brain and partly in seminal vesicles, PLC-II is found in most tissues and cells. PLC-I is highly localized even in brain: 5 different neuroblastoma did not contain PLC-I while 2 glioma and 1 astrocytoma contained significant amounts

  8. Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture.

    Science.gov (United States)

    Zottoli, Steven J; Seyfarth, Ernst-August

    2018-05-16

    The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.

  9. Establishment of primary keratinocyte culture from horse tissue biopsates

    Directory of Open Access Journals (Sweden)

    Jernej OGOREVC

    2015-12-01

    Full Text Available Primary cell lines established from skin tissue can be used in immunological, proteomic and genomic studies as in vitro skin models. The goal of our study was to establish a primary keratinocyte cell culture from tissue biopsates of two horses. The primary keratinocyte cell culture was obtained by mechanical and enzymatic dissociation and with explant culture method. The result was a heterogeneous primary culture comprised of keratinocytes and fibroblasts. To distinguish epithelial and mesenchymal cells immunofluorescent characterisation was performed, using antibodies against cytokeratin 14 and vimentin. We successfully at attained a primary cell line of keratinocytes, which could potentially be used to study equine skin diseases, as an animal model for human diseases, and for cosmetic and therapeutic product testing.

  10. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    Science.gov (United States)

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  11. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    Science.gov (United States)

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  12. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.

    Science.gov (United States)

    Fan, Changjiang; Wang, Dong-An

    2017-10-01

    Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.

  13. Ex vivo culture of patient tissue & examination of gene delivery.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    This video describes the use of patient tissue as an ex vivo model for the study of gene delivery. Fresh patient tissue obtained at the time of surgery is sliced and maintained in culture. The ex vivo model system allows for the physical delivery of genes into intact patient tissue and gene expression is analysed by bioluminescence imaging using the IVIS detection system. The bioluminescent detection system demonstrates rapid and accurate quantification of gene expression within individual slices without the need for tissue sacrifice. This slice tissue culture system may be used in a variety of tissue types including normal and malignant tissue and allows us to study the effects of the heterogeneous nature of intact tissue and the high degree of variability between individual patients. This model system could be used in certain situations as an alternative to animal models and as a complementary preclinical mode prior to entering clinical trial.

  14. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    Science.gov (United States)

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  15. Study on rapid propagation of Zanhuang Chinese jujube by tissue culture

    International Nuclear Information System (INIS)

    Li Yun; Wang Yu; Tian Yanting

    2002-01-01

    Zanhuang jujube is a very precious and rare variety of Chinese jujube. Its development was restricted by the under-developed propagate technique in history. The rapid propagation by tissue culture was studied and the optimum media were screened out. Through studying the condition of initial, proliferating, acclimatizing and rooting culture, 4 media, MS +6-BA 0.5 mg/L+IBA 0.1 mg/L, MS+6-BA 1.5 mg/L+IBA 0.1-0.2 mg/L, MS+KT 0.5 mg/L+NAA 0.2 mg/L and 1/2 MS+IBA 0.6 mg/L+NAA 0.2-0.3 mg/L were selected respectively

  16. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and equipment. 864.2240 Section 864.2240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products...

  17. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    Science.gov (United States)

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Migration assay on primary culture isolated from patient's primary breast cancer tissue

    Directory of Open Access Journals (Sweden)

    ED Yuliana

    2014-12-01

    Full Text Available Background: Migration is an essential component of breast cancer metastasis, which studyhas been concentrated on culture of established breast cancer cell lines that do not accuratelyrepresent the sophistication and heterogeneity of patient's breast cancer. An attempt toperform migration assay using Boyden Chamber Assay (BCA on primary culture originatingfrom patient's breast cancer tissue was developed to accommodate upcoming study of breastcancer migration in lndonesian patients.Methods: Pathologically proven primary breast cancer tissue samples were obtained fromCiptomangunkusumo Hospital during core (n=4 and incisional (n=3 biopsies of stage llAup to stage lllA breast cancer patients. Following biopsy, the breast cancer tissue samplesunderwent processings to isolate the cancer cells. These cancer cells were -then resuspendedwithin Dulbecco's modified Eagle's medium (DMEM ahd cultured in 12-well plate. The growthof primary culture were observed and compared between the core biopsy and the incisionalbiopsy specimens. Optimization of BCA method was later performed to investigate themigration of the breast cancer primary culture towards different experirnental conditions, whichwere control, Fetal Bovine Serum (FBS, and Stromal Derived Factor-l (SDF-1. Two differentnumber of breast cancer cells were tested for the optimization of the BCA, which were 1 x 105and3x105cells.Results: None of the culture performed on core biopsy specimens grew, while one out ofthree incisional biopsy specimens grew until confluence. The one primary culture that grewwas later assesed using BCA to assess its migration index towards different experimentalconditions. Using 1 x 10s breast cancer cells in the BCA , the result of the absorbance level ofmigrated cells showed that the migration towards SDF-1 (0.529 nearly doubled the migrationtowards controlmedium (0.239 and FBS (0.209. Meanwhile, the absorbance levelwas simiiarbetween the control medium (1.050, FBS (1 .103

  19. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  20. Propagation of Aquilaria malaccensis seedlings through tissue culture techniques

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Zaiton Ahmad; Mohd Rafaie Abdul Salam; Nurhayati Irwan; Affrida Abu Hassan; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis or karas is the principal source of gaharu resin, which is used in many cultures for incense, perfumes and traditional medicines. The species is mainly propagated conventionally through seeds, cuttings and graftings. Propagation by seeds is usually a reliable method for other forest species, but for karas, this technique is inadequate to meet the current demand of seedling supplies. This is principally due to its low seed viability, low germination rate, delayed rooting of seedlings, long life-cycle and rare seed production. Tissue culture has several advantages over conventional propagation, especially for obtaining large number of uniform and high-yielding plantlets or clones. This paper presents the current progress on mass-propagation of Aquilaria malaccensis seedlings through tissue culture technique at Nuclear Malaysia. (author)

  1. Organ and plantlet regeneration of Menyanthes trifoliata through tissue culture

    Directory of Open Access Journals (Sweden)

    Urszula Adamczyk-Rogozińska

    2014-01-01

    Full Text Available The conditions for the regeneration of plants through organogenesis from callus tissues of Menyanthes trifoliata are described. The shoot multiplication rate was affected by basal culture media, the type and concentration of cytokinin and subculture number. The best response was obtained when caulogenic calli were cultured on the modified Schenk and Hildebrandt medium (SH-M containing indole-3-acetic acid (IAA 0,5 mg/l and 6-benzyladenine (BA 1 mg/l or zeatin (2 mg/l. Under these conditions ca 7 shoots (mostly 1 cm or more in length per culture in the 5th and 6th passages could be developed. In older cultures (after 11-12 passages there was a trend for more numerous but shorter shoot formation. All regenerated shoots could be rooted on the SH-M medium supplemented with 0.5 mg/l IAA within 6 weeks; 80% of in vitro rooted plantlets survived their transfer to soil.

  2. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    International Nuclear Information System (INIS)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B.

    1990-01-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients

  3. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. (Univ. of Maryland Dental School, Baltimore (USA))

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  4. Low technology tissue culture materials for initiation and ...

    African Journals Online (AJOL)

    Low technology tissue culture materials for initiation and multiplication of banana plants. ... African Crop Science Journal ... locally available macronutrients, micronutrients, sugar, equipment and facility reduced the cost of consumable material

  5. Human meniscal proteoglycan metabolism in long-term tissue culture

    NARCIS (Netherlands)

    Verbruggen, G.; Verdonk, R.; Veys, E. M.; van Daele, P.; de Smet, P.; van den Abbeele, K.; Claus, B.; Baeten, D.

    1996-01-01

    For the purpose of human meniscal allografting, menisci have been maintained viable in in vitro culture. The influence of long-term tissue culture on the extracellular matrix metabolism of the meniscus has been studied. Fetal calf serum (FCS) was used as a supplement for the growth factors necessary

  6. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    International Nuclear Information System (INIS)

    Cifola, Ingrid; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A

    2011-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  7. Substituted Indoleacetic Acids Tested in Tissue Cultures

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1978-01-01

    Monochloro substituted IAA inhibited shoot induction in tobacco tissue cultures about as much as IAA. Dichloro substituted IAA inhibited shoot formation less. Other substituted IAA except 5-fluoro- and 5-bromoindole-3-acetic acid were less active than IAA. Callus growth was quite variable...

  8. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and components. 864.2220 Section 864.2220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture...

  9. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    Science.gov (United States)

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  10. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    Science.gov (United States)

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and

  11. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  12. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  13. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Directory of Open Access Journals (Sweden)

    Sunita Nayak

    Full Text Available The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  14. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues.

    Science.gov (United States)

    Cifola, Ingrid; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A

    2011-06-13

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  15. The basic design and requirement for plant tissue culture laboratory in MINT

    International Nuclear Information System (INIS)

    Azraf Azman; Rosli Darmawan; Rusli Ibrahim; Mohd Nazir Basiran; Azhar Mohamad; Mohamed Najli Mohamed Yasin; Shuhaimi Shamsuddin

    2005-01-01

    The production of multiple species plantlets involves a relatively complex process and it is a highly specialized operation. Tissue culture technology is rapidly becoming a commercialized method for propagating new cultivars, rare species and difficult-to-propagate plant. Not only are skills and knowledge essential but the laboratory itself also plays an important role to ensure the successful growth of the plantlets. To produce quality plantlets, plant tissue culture laboratories should fulfill the basic requirements. The laboratory should have proper building and layout which comprise of media preparation and washing room, sterilization or autoclave room, transfer room and culture or growth room. The scope of this paper is to compare these fundamental requirements with the plant tissue culture laboratory in MINT. All the basic needs and differences will be discussed and the proposal for corrective actions will be presented. (Author)

  16. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.

    Science.gov (United States)

    Eiraku, Mototsugu; Sasai, Yoshiki

    2011-12-15

    Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.

  17. Structure and component alteration of rabbit Achilles tendon in tissue culture.

    Science.gov (United States)

    Hosaka, Yoshinao; Ueda, Hiromi; Yamasaki, Tadatsugu; Suzuki, Daisuke; Matsuda, Naoya; Takehana, Kazushige

    2005-12-01

    The aim of this study was to investigate alterations of cultured tendon tissues to determine whether tissue culture is a useful method for biological analyses of the tendon. Tendon tissues for tissue culture were isolated from Achilles tendons of rabbits. The tendon segments were placed one segment per well and incubated in growth medium consisting of Dullbecco's modified Eagle's medium supplemented with 5% fetal bovine serum at 37 degrees C in a humidified atmosphere with 5% CO(2) for various periods. The alignment of collagen fibrils was preserved for 48 h, but tendon structure has disintegrated at 96 h. Alcian blue staining and gelatine zymography revealed that proteoglycan markedly diminished and that matrix metalloproteinase (MMPs) activity was upregulated sharply at 72 and 96 h. The ratio of collagen fibrils with large diameter had increased and the mean diameter and mass average diameter value had reached maximum at 48 h. The values then decreased and mean diameters at 72 and 96 h were significantly different from that at 48 h. At 96 h, the ratio of collagen fibrils with small diameters had increased and collagen fibrils with large diameters had disappeared. These findings indicate that structural alteration is possible to be induced by disintegration of collagen fibrils and disappearance of glycosaminoglycans from extracellular matrix (ECM), subsequent of upregulation of MMPs activity. Although the study period is limited, the tissue culture method is available for investigating cell-ECM interaction in tendons.

  18. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    Science.gov (United States)

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    Science.gov (United States)

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  20. Development of an ex vivo cellular model of rheumatoid arthritis: critical role of CD14-positive monocyte/macrophages in the development of pannus tissue.

    Science.gov (United States)

    Nozaki, Toshiko; Takahashi, Kyoko; Ishii, Osamu; Endo, Sachio; Hioki, Kyoji; Mori, Toshihito; Kikukawa, Tadahiro; Boumpas, Dimitrios T; Ozaki, Shoichi; Yamada, Hidehiro

    2007-09-01

    To establish an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue (ST). Inflammatory cells that infiltrated pannus tissue from patients with rheumatoid arthritis (RA) were collected without enzyme digestion, and designated as ST-derived inflammatory cells. Single-cell suspensions of ST-derived inflammatory cells were cultured in medium alone. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. ST-derived inflammatory cells were transferred into the joints of immunodeficient mice to explore whether these cells could develop pannus. CD14 and CD2 cells were depleted by negative selection. Culture of ST-derived inflammatory cells from 92 of 111 patients with RA resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks. Ex vivo tissue contained fibroblasts, macrophages, T cells, and tartrate-resistant acid phosphatase-positive multinucleated cells. On calcium phosphate-coated slides, ST-derived inflammatory cell cultures showed numerous resorption pits. ST-derived inflammatory cell cultures continuously produced matrix metalloproteinase 9 and proinflammatory cytokines associated with osteoclastogenesis, such as tumor necrosis factor alpha, interleukin-8, and macrophage colony-stimulating factor. More importantly, transferring ST-derived inflammatory cells into the joints of immunodeficient mice resulted in the development of pannus tissue and erosive joint lesions. Both in vitro development and in vivo development of pannus tissue by ST-derived inflammatory cells were inhibited by depleting CD14-positive, but not CD2-positive, cells from ST-derived inflammatory cells. These findings suggest that overgrowth of inflammatory cells from human rheumatoid synovium simulates the development of pannus. This may prove informative in the screening of potential antirheumatic drugs.

  1. Smallholder adoption and economic impacts of tissue culture ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... ISSN 1684–5315 © 2009 Academic Journals. Full Length ... Key words: Biotechnology, adoption, tissue culture bananas, Kenya. INTRODUCTION ... Recent studies about the agronomic and economic impacts of biotech- ..... accused scientist for 'playing God', others have supported biotechnologies.

  2. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    Science.gov (United States)

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  3. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.

    Science.gov (United States)

    Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine

    2017-01-01

    During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.

  4. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  5. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  6. Identification of Stevioside Using Tissue Culture-Derived Stevia (Stevia rebaudiana) Leaves

    Science.gov (United States)

    Karim, Md. Ziaul; Uesugi, Daisuke; Nakayama, Noriyuki; Hossain, M. Monzur; Ishihara, Kohji; Hamada, Hiroki

    2015-01-01

    Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for identification of stevioside from tissue culture-derived stevia leaf. Stevioside in the sample was identified using HPLC by measuring the retention time. The percentage of stevioside content in the leaf samples was found to be 9.6%. This identification method can be used for commercial production and industrialization of stevia through in vitro culture across the world. PMID:28008268

  7. Tissue culture and micropropagation for forest biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Mason, E.; Maine, F.W.

    1984-09-01

    An increase in forest production will be necessary in the future when wood becomes a major renewable source of energy and chemicals along with its traditional role of fibre source. This increase could eventually by achieved be proper selection and breeding of trees. Clonal forestry by vegetative propagation of cuttings is becoming a viable alternative to a seedling-based forestry with many advantages, and cutting could be used to quickly propagate large numbers of clones of control-pollinated seedlings. Most forest trees are propagated sexually and seed orchards were started in the US and Canada in the last 40-50 years for breeding purposes. Forests could ultimately be established with improved seedlings instead of from seed with unknown genetic potential, or by natural regeneration. Micropropagation is the term used to refer to the propagation of plants raised by tissue culture methods rather than from seeds or cuttings. Many clonal plantlets could be regenerated asexually in the laboratory and eventually transplanted to permanent sites. In addition the technology could be developed to produce new variants from somatic cells. Tissue culture is a technique which may be useful for plant propagation where conventional methods are inadequate or unsuitable. However, traditional studies of field planting observed over long periods of time would still be necessary. This document has the object of informing those who may wish to know more about these techniques in relation to practical application, and require a general overview rather than experimental details, which are given in an annotated bilbiography. 274 refs., 2 figs., 1 tab.

  8. Banana Musa tissue culture plants enhanced by endophytic fungi

    African Journals Online (AJOL)

    Mo

    Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic .... While working in the laminar flow cabinet, sterile filter papers were placed in ..... University of Bonn, Bonn, Germany. Niere, B., 2001.

  9. HYPOLIPIDEMIC EFFECT OF ARGLABIN IN HEPATOMA TISSUE CULTURE

    Directory of Open Access Journals (Sweden)

    A. V. Ratkin

    2015-01-01

    Full Text Available Objective. Investigation of hypolipidemic effect of sesquiterpene γ-lactone Arglabin in hepatoma tissue culture (HTC.Materials and methods. In this study we’ve evaluated the effect of sesquiterpene γ-lactone Arglabin and gemfibrozil (reference drug on the lipid content in the hepatoma tissue culture (HTC which were incubated with a fat emulsion “Lipofundin” by fluorescent method with vital dye Nile Red. The cell viability was investigated using the MTT-test and staining by Trypan blue.Results. Cultivation of cell cultures of rat’s hepatoma cell line HTC with Arglabin and gemfibrozil in concentrations from 10 to 50 μmol and from 0.25 to 0.5 mmol, respectively, had no cytotoxic effect. HTC cell viability did not change compared with the corresponding rate in the control culture. Experimental hyperlipidemia in hepatoma culture was induced by the addition in the incubation medium of fat emulsion “Lipofundin” in a final concentration of 0.05 %. The fluorescence intensity of Nile Red in the cells was increased 4-fold (p < 0.05, which indicates a significant accumulation of lipids in the cytosol of cells. In these steady-state Arglabin and gemfibrozil at concentrations 75–100 μM and 0.25–1.0 mM, respectively, reduced the content of lipid in cells. Conclusion. In the model of hyperlipidemia induced by lipofundin, sesquiterpene γ-lactone Arglabin prevents the accumulation of lipids in the HTC cell line, as evidenced by a decrease in Nile Red fluorescence. However hypolipidemic effect of Arglabin is associated with cytotoxic effects, which is typical for anticancer drugs.

  10. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review.

    Science.gov (United States)

    Nguyen, Quang Thien; Bandupriya, H D Dharshani; López-Villalobos, Arturo; Sisunandar, S; Foale, Mike; Adkins, Steve W

    2015-11-01

    The present review discusses not only advances in coconut tissue culture and associated biotechnological interventions but also future research directions toward the resilience of this important palm crop. Coconut (Cocos nucifera L.) is commonly known as the 'tree of life'. Every component of the palm can be used to produce items of value and many can be converted into industrial products. Coconut cultivation faces a number of acute problems that reduce its productivity and competitiveness. These problems include various biotic and abiotic challenges as well as an unstable market for its traditional oil-based products. Around 10 million small-holder farmers cultivate coconut palms worldwide on c. 12 million hectares of land, and many more people own a few coconut palms that contribute to their livelihoods. Inefficiency in the production of seedlings for replanting remains an issue; however, tissue culture and other biotechnological interventions are expected to provide pragmatic solutions. Over the past 60 years, much research has been directed towards developing and improving protocols for (i) embryo culture; (ii) clonal propagation via somatic embryogenesis; (iii) homozygote production via anther culture; (iv) germplasm conservation via cryopreservation; and (v) genetic transformation. Recently other advances have revealed possible new ways to improve these protocols. Although effective embryo culture and cryopreservation are now possible, the limited frequency of conversion of somatic embryos to ex vitro seedlings still prevents the large-scale clonal propagation of coconut. This review illustrates how our knowledge of tissue culture and associated biotechnological interventions in coconut has so far developed. Further improvement of protocols and their application to a wider range of germplasm will continue to open up new horizons for the collection, conservation, breeding and productivity of coconut.

  11. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Science.gov (United States)

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  12. [Comparative study on alkaloids of tissue-culture seedling and wild plant of Dendrobium huoshanense ].

    Science.gov (United States)

    Chen, Nai-dong; Gao, Feng; Lin, Xin; Jin, Hui

    2014-06-01

    To compare the composition and content of alkaloid of Dendrobium huoshanense tissue-culture seedling and wild plant. A comparative evaluation on the quality was carried out by HPLC and TLC methods including the composition and the content of alkaloids. Remarkable variation existed in the two kinds of Dendrobium huoshanense. For the tissue-culture plant, only two alkaloids were checked out by both HPLC and TLC while four alkaloids were observed in the wild plant. The alkaloid content of tissue-culture seedling and wild plant was(0. 29 ± 0. 11)%o and(0. 43 ± 0. 15) %o,respectively. Distinguished difference is observed in both composition and content of alkaloids from the annual shoots of different provenances of Dendrobium huoshanense. It suggested that the quality of tissue-culture seedling of Dendrobium huoshanense might be inconsistent with the wild plant. Furthermore, the established alkaloids-knock-out HPLC method would provide a new research tool on quality control of Chinese medicinal materials which contain unknown alkaloids.

  13. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    International Nuclear Information System (INIS)

    Felker, F.C.

    1990-01-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced [ 14 C]sucrose uptake into kernels. [ 14 C]Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-[ 14 C]glucose was absorbed much more slowly than D-[ 14 C]glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium

  14. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

    Science.gov (United States)

    Matthysse, A G; Wyman, P M; Holmes, K V

    1978-11-01

    Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains.

  15. Influence of postmortem time on the outcome of blood cultures among cadaveric tissue donors.

    Science.gov (United States)

    Saegeman, V; Verhaegen, J; Lismont, D; Verduyckt, B; De Rijdt, T; Ectors, N

    2009-02-01

    Tissue banks provide tissues of human cadaver donors for transplantation. The maximal time limit for tissue retrieval has been set at 24 h postmortem. This study aimed at evaluating the evidence for this limit from a microbiological point of view. The delay of growth in postmortem blood cultures, the identification of the species isolated and clinical/environmental factors were investigated among 100 potential tissue donors. No significant difference was found in the rate of donors with grown blood cultures within (25/65=38%) compared with after (24/65=37%) 24 h of death. Coagulase-negative staphylococci and gastro-intestinal microorganisms were isolated within and after 24 h of death. Two factors--antimicrobial therapy and "delay before body cooling"--were significantly inversely related with donors' blood culture results. From a microbiological point of view, there is no evidence for avoiding tissue retrieval among donors after 24 h of death.

  16. IN VITRO PROPAGATION OF DENDROBIUM AND PHALAENOPSIS THROUGH TISSUE CULTURE FOR CONSERVATION

    Directory of Open Access Journals (Sweden)

    Lita Soetopo

    2012-06-01

    Full Text Available The studies were focused on developing an efficient and effective propagation protocol for orchid species from genera Dendrobioum and Phalaenopsis through tissue culture. The Materials used were explants from adventive shoot tip, floral stalk buds and PLBs derived from seeds. The results indicated growth and development of adventive shoot tip explants of Dendrobium: a high survival percentage for explant with green color was shown by D. racianum, followed by D. laxiflorum, D. pseudo-conantum, D. strebloceras, D. lineale, and D. veratrifolium. However, plantlets regeneration occurred only on D. pseudoconantum, and D. strebloceras. Explant regeneration from seed derived protocorm-like bodies on D. spectabile occurred 40 days after inoculation transfer and subculture. High survival percentage of explant from floral stalk shoot was shown by P. amabilis. There were several plantlets surviving in acclimatisation. Explant regeneration from seed derived from protocorm-like bodies on P. hieroglypha occurred 40 days after inoculation and subculture. It was suggested that for ex situ conservation on certain species of Dendrobium and Phalaenopsis in the category of rare germplasms, tissue culture could be applied effectively and efficiently by using explant from adventive shoot tip, floral stalk buds and seed derived protocorm-like body explant for vegetative seed multiplication.

  17. Development and evaluation of a removable tissue-engineered muscle with artificial tendons.

    Science.gov (United States)

    Nakamura, Tomohiro; Takagi, Shunya; Kamon, Takafumi; Yamasaki, Ken-Ichi; Fujisato, Toshia

    2017-02-01

    Tissue-engineered skeletal muscles were potentially useful as physiological and biochemical in vitro models. Currently, most of the similar models were constructed without tendons. In this study, we aimed to develop a simple, highly versatile tissue-engineered muscle with artificial tendons, and to evaluate the contractile, histological and molecular dynamics during differentiation. C2C12 cells were embedded in a cold type-І collagen gel and placed between two artificial tendons on a silicone sheet. The construct shrank and tightly attached to the artificial tendons with differentiation, finally detaching from the silicone sheet within 1 week of culture onset. We successfully developed a tissue-engineered skeletal muscle with two artificial tendons from C2C12 myoblasts embedded in type-І collagen gel. The isometric twitch contractile force (TCF) significantly increased during differentiation. Time to Peak Tension (TPT) and Half-Relaxation Time (1/2RT) were significantly shortened during differentiation. Myogenic regulatory factors were maximally expressed at 2 weeks, and subsequently decreased at 3 weeks of culture. Histological analysis indicated that myotube formation increased markedly from 2 weeks and well-ordered sarcomere structures were observed on the surface of the 3D engineered muscle at 3 weeks of culture. These results suggested that robust muscle structure occurred by 3 weeks in the tissue-engineered skeletal muscle. Moreover, during the developmental process, the artificial tendons might contribute to well-ordered sarcomere formation. Our results indicated that this simple culture system could be used to evaluate the effects of various pharmacological and mechanical cues on muscle contractility in a variety of research areas. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Identification of Stevioside Using Tissue Culture-Derived Stevia () Leaves

    OpenAIRE

    Ziaul Karim Md.; Daisuke Uesugi; Noriyuki Nakayama; M. Monzur Hossain; Kohji Ishihara; Hiroki Hamada

    2015-01-01

    Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for iden...

  19. Usefulness of fibroblast culture for testing of cattle tissues polluted with heavy metals

    International Nuclear Information System (INIS)

    Weglarz, L.; Drozdz, M.Wa.; Wardas, M.; Kula, B.; Pawlaczyk-Szpilowa, M.

    1990-01-01

    Cattle tissues (liver, kidney, brain, and lung) that had been polluted with heavy metals were tested for their ability to alter fibroblast culture growth, cellular protein and DNA content, and fibroblast DNA synthesis. At 72 hr of incubation a significant increase in cellular DNA and [14C]thymidine incorporation was noted in the primary cultures as well as in the subcultures compared to controls. Fibroblast cultures also displayed growth inhibition and reduction in protein content. The measurement of basic biochemical parameters of the fibroblast culture may represent a sensitive means of assessing rapidly the activity of heavy metals deposited in the tissues of cattle as a result of their grazing on polluted soil

  20. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight

    Science.gov (United States)

    Spooner, B. S.; Hardman, P.; Paulsen, A.

    1994-01-01

    Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.

  1. Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.

  2. Toxicity and oxidative stress of canine mesenchymal stromal cells from adipose tissue in different culture passages

    Directory of Open Access Journals (Sweden)

    Arícia Gomes Sprada

    2015-12-01

    Full Text Available Abstract: Stem cells in regenerative therapy have received attention from researchers in recent decades. The culture of these cells allows studies about their behavior and metabolism. Thus, cell culture is the basis for cell therapy and tissue engineering researches. A major concern regarding the use of cultivated stem cell in human or veterinary clinical routine is the risk of carcinogenesis. Cellular activities require a balanced redox state. However, when there is an imbalance in this state, oxidative stress occurs. Oxidative stress contributes to cytotoxicity, which may result in cell death or genomic alterations, favoring the development of cancer cells. The aim of this study was to determine whether there are differences in the behavior of cultured mesenchymal stem cells from canine adipose tissue according to its site of collection (omentum and subcutaneous evaluating the rate of proliferation, viability, level of oxidative stress and cytotoxicity over six passages. For this experiment, two samples of adipose tissue from subcutaneous and omentum where taken from a female dog corpse, 13 years old, Pitbull. The results showed greater levels of oxidative stress in the first and last passages of both groups, favoring cytotoxicity and cell death.

  3. Monitoring Dynamic Interactions between Breast Cancer Cells and Human Bone Tissue in a Co-Culture Model

    Science.gov (United States)

    Contag, Christopher H.; Lie, Wen-Rong; Bammer, Marie C.; Hardy, Jonathan W.; Schmidt, Tobi L.; Maloney, William J.; King, Bonnie L.

    2015-01-01

    Purpose Bone is a preferential site of breast cancer metastasis and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue. Procedures Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell division and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX® immunoassays. Results BLI demonstrated increased MDA-MB-231-fLuc proliferation (pbones, and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc colonization of bone, and MILLIPLEX® profiles of culture supernatants suggested breast/bone crosstalk. Conclusions Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays. PMID:24008275

  4. Air exposure induced characteristics of dry eye in conjunctival tissue culture.

    Directory of Open Access Journals (Sweden)

    Hui Lin

    Full Text Available There are several animal models illustrating dry eye pathophysiology. Current study would like to establish an ex vivo tissue culture model for characterizing dry eye. Human conjunctival explants were cultured under airlift or submerged conditions for up to 2 weeks, and only airlifted conjunctival cultures underwent increased epithelial stratification. Starting on day 4, the suprabasal cells displayed decreased K19 expression whereas K10 keratin became evident in airlift group. Pax6 nuclear expression attenuated already at 2 days, while its perinuclear and cytoplasmic expression gradually increased. MUC5AC and MUC19 expression dramatically decreased whereas the full thickness MUC4 and MUC16 expression pattern disappeared soon after initiating the airlift condition. Real time PCR showed K16, K10 and MUC16 gene up-regulated while K19, MUC5AC, MUC19 and MUC4 down-regulated on day 8 and day 14. On day 2 was the appearance of apoptotic epithelial and stromal cells appeared. The Wnt signaling pathway was transiently activated from day 2 to day 10. The inflammatory mediators IL-1β, TNF-α, and MMP-9 were detected in the conditioned media after 6 to 8 days. In conclusion, airlifted conjunctival tissue cultures demonstrated Wnt signaling pathway activation, coupled with squamous metaplasia, mucin pattern alteration, apoptosis and upregulation of proinflammatory cytokine expression. These changes mimic the pathohistological alterations described in dry eye. This correspondence suggests that insight into the pathophysiology of dry eye may be aided through the use of airlifted conjunctival tissue cultures.

  5. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  6. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  8. Selection of seed lots of Pinus taeda L. for tissue culture

    Directory of Open Access Journals (Sweden)

    Diego Pascoal Golle

    2014-06-01

    Full Text Available The aim of this work was to identify the fungi genera associated with three Pinus taeda L. seed lots and to assess the sanitary and physiological quality of these lots for use as selection criteria for tissue culture and evaluate the in vitro establishment of explants from seminal origin in different nutritive media. It was possible to discriminate the lots on the sanitary and physiological quality, as well as to establish in vitro plants of Pinus taeda from cotyledonary nodes obtained from aseptic seed germination of a selected lot by the sanitary and physiological quality higher. The nutritive media MS, ½ MS and WPM were equally suitable for this purpose. For the sanitary analysis the fungal genera Fusarium, Penicillium and Trichoderma were those of the highest sensitivity. For the physiological evaluation were important the variables: abnormal seedlings, strong normal seedlings; length, fresh and dry weight of strong normal seedlings. The analyzes were favorable to choose lots of seeds for in vitro culture and all culture media were adequate for the establishment of this species in tissue culture.

  9. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747. Keywords: Mesenchymal stromal cells, Mesenchymal stem cells, Pericytes, Microarrays

  10. [18S-25S rDNA variation in tissue culture of some Gentiana L. species].

    Science.gov (United States)

    Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A

    2007-01-01

    18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.

  11. Developing Cultural Awareness

    Directory of Open Access Journals (Sweden)

    İsmail Fırat Altay

    2005-04-01

    Full Text Available This paper aims at emphasizing the issue of teaching of culture in foreign languageteaching. In this respect, the reasons of teaching culture in foreign language classes arefocused on initially. So, the justifications of teaching culture are considered and explainedand by the help of a dialogue. Right after this, ways of developing cultural awareness is takeninto account. At this step, types of courses to develop cultural awareness are dealt with.Developing cultural awareness in class is another aspect to handle. Besides, ways ofdeveloping cultural awareness outside the class are worked on. Whether there are dangers ofusing culture in foreign language class is explained in dangers and problems part. In theconclusion, ideas of the writer on the subject as final remarks are clarified.

  12. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  13. Pre-irradiation of tissue culture flasks leads to diminished stem and progenitor cell production in long-term bone marrow cultures

    International Nuclear Information System (INIS)

    Rooney, P.; Wright, E.G.

    1993-01-01

    Empty plastic tissue culture flasks were exposed to X-irradiation doses of 0.3-10.0 Gy, prior to the establishment of long-term bone marrow cultures. During the course of a 10 week culture period, all irradiated plastic flasks exhibited a dramatic decrease in the number of both haemopoietic stem cells and myeloid progenitor cells, in the non-adherent layer, when compared with controls. This decrease was not due to a decrease in the number of non-adherent cells produced. Histological examination of non-adherent cells showed an increase in mature granulocytic cells with few blast cells. Morphologically, the adherent layers of irradiated flasks demonstrated a delay in appearance or absence of fat cell production. X-irradiation of glass tissue culture flasks had no deleterious effect. (author)

  14. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  15. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  16. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  17. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    Science.gov (United States)

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  18. Developing cultural sensitivity

    DEFF Research Database (Denmark)

    Ruddock, Heidi; Turner, deSalle

    2007-01-01

    . Background. Many countries are becoming culturally diverse, but healthcare systems and nursing education often remain mono-cultural and focused on the norms and needs of the majority culture. To meet the needs of all members of multicultural societies, nurses need to develop cultural sensitivity......Title. Developing cultural sensitivity: nursing students’ experiences of a study abroad programme Aim. This paper is a report of a study to explore whether having an international learning experience as part of a nursing education programme promoted cultural sensitivity in nursing students...... and incorporate this into caregiving. Method. A Gadamerian hermeneutic phenomenological approach was adopted. Data were collected in 2004 by using in-depth conversational interviews and analysed using the Turner method. Findings. Developing cultural sensitivity involves a complex interplay between becoming...

  19. Effects of Apollo 12 lunar material on lipid levels of tobacco tissue and slash pine cultures

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Investigations of the lipid components of pine tissues (Pinus elloitii) are discussed, emphasizing fatty acids and steroids. The response by slash pine tissue cultures to growth in contact with Apollo lunar soil, earth basalt, and Iowa soil is studied. Tissue cultures of tobacco grown for 12 weeks in contact with lunar material from Apollo 12 flight contained 21 to 35 percent more total pigment than control tissues. No differences were noted in the fresh or dry weight of the experimental and control samples.

  20. Chemical evaluation of strawberry plants produced by tissue culturing of gamma irradiated seedlings

    International Nuclear Information System (INIS)

    Maraei, R.W.

    2007-01-01

    studies were conducted to evaluate the influence of gamma irradiation as a supplementary factor precedes tissue culture application on strawberry seedlings (c.v.Rosa Linda). the strawberry seedling were irradiated using 8 doses of co 60 gamma rays 50.75.100.125 ,150,250, 350 and 500 gray. tissue culture technique was applied on irradiated and unirradiated strawberry seedling. different characteristics of plantlets, plant and fruit of strawberry produced from the double treatment (irradiation followed by tissue culture) were studied as well as the early, total and exportable fruit yields. data indicated that, low radiation doses 50,75 and 100 gray increased all morphological and chemical characteristics of the plantlets, plant and fruit of strawberry, whereas radiation doses higher than 100 gray decreased them significantly. moreover 350 and gray were lethal doses. radiation dose 50 gray increased the survival percentage and the length of plantlets by 1.5% and 50% respectively more than the unirradiated treatment in all multiplication stages

  1. Studies on the reaction in tissue culture of tomato genotypes under biotic stress

    Directory of Open Access Journals (Sweden)

    Ewa Hanus-Fajerska

    2014-01-01

    Full Text Available Plant regeneration in vitro from virus-infected somatic tomato (Lycopersicon sp. tissue was performed. Regeneration experiments were started after the determination of virus presence, using enzyme-linked immunosorbent assay, in leaves used as a source of explants. Leaf explants infected with selected strains of tomato mosaic Tobamovirus or cucumber mosaic Cucumovirus respectively, were cultured on a standarised MS agar medium to induce adventitious shoots, which were afterwards excised, rooted in vitro and cultured to plants. Explants were also screened for their ability to produce callus. Diverse effects of viral infection, ranging from stimulation to inhibition of callus formation and of morphogenesis rate, were observed. The health condition of the tissue proved to affect regeneration potential of Lycopersicon esculentum, whereas wild accesions did not react in that case so distinctly. In cultivated tomato was encountered the decline in competence to reproduce shoots adventitiously in infected tissue. There was also relationship between donor plant health condition and adventitious root formation in regenerated shoots. Experiments with short-term cultures of L. esculenum reveled also that a certain number of shoots regenerated from diseased tissue can be virus-free.

  2. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

    Directory of Open Access Journals (Sweden)

    Jennifer J. Warnock

    2014-04-01

    Full Text Available Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM formation of equine fibroblast-like synoviocytes (FLS cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA sponges and polyglycolic acid (PGA scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA in dynamic culture conditions.Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Masson’s Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM production via dimethylmethylene blue (sulfated glycosaminoglycan assay and hydroxyproline (collagen assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay.Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 µg per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA

  3. IN VITRO INOCULATION OF ASPARAGUS OFFICINALIS TISSUE CULTURE SHOOTS WITH FUSARIUM PROLIFERA TUM

    Directory of Open Access Journals (Sweden)

    A.K.MoHD OMAR

    1999-01-01

    Full Text Available Artificially inoculated asparagus tissue culture plantlets with a virulent fungus, Fusarium proliferatum showed signs of infection as early as 4 days after inoculat ion. Macroscopic observations revealed presence of early symptoms such as necrotic lesions at the affected area and light microscopic examinations clearly revealed the post-penetration events that took place including the destruction of surrounding cells. However, little is known of the hyphal activity or advancement on the host's surface at the initial stage after inoculation. Scanning electron microscopic examination clearly revealed the hyphal advancement on the surface and the mode of entrance into the host tissues beneath. Four days after inoculation, the fungi proceeded to spread out from the inoculation point onto the host surface which eventually developed into a sparse network of both aerial and non-aerial hyphae. Non-aerial hyphae form a network of mycelium that adheres to the surface and it's movement appeared to be oriented towards the stomata. Hyphal penetration occurs more often through the stomata, natural openings or wounds. In some cases, the hyphae crossed over the stomatal opening w ithout entering the host tissues. At places where the cuticle layer is absent or not well developed the hyphae successfully grew in between the epidermal cells into the tissues beneath.

  4. Apollo 12 lunar material - Effects on lipid levels of tobacco tissue cultures.

    Science.gov (United States)

    Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.

    1972-01-01

    Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 per cent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.

  5. Co-culture with infrapatellar fat pad differentially stimulates proteoglycan synthesis and accumulation in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Bendernagel, Monica F; Levenston, Marc E

    2017-09-01

    Although osteoarthritis is widely viewed as a disease of the whole joint, relatively few studies have focused on interactions among joint tissues in joint homeostasis and degeneration. In particular, few studies have examined the effects of the infrapatellar fat pad (IFP) on cartilaginous tissues. The aim of this study was to test the hypothesis that co-culture with healthy IFP would induce degradation of cartilage and meniscus tissues. Bovine articular cartilage, meniscus, and IFP were cultured isolated or as cartilage-fat or meniscus-fat co-cultures for up to 14 days. Conditioned media were assayed for sulfated glycosaminoglycan (sGAG) content, nitrite content, and matrix metalloproteinase (MMP) activity, and explants were assayed for sGAG and DNA contents. Co-cultures exhibited increased cumulative sGAG release and sGAG release rates for both cartilage and meniscus, and the cartilage (but not meniscus) exhibited a substantial synergistic effect of co-culture (sGAG release in co-culture was significantly greater than the summed release from isolated cartilage and fat). Fat co-culture did not significantly alter the sGAG content of either cartilage or meniscus explants, indicating that IFP co-culture stimulated net sGAG production by cartilage. Nitrite release was increased relative to isolated tissue controls in co-cultured meniscus, but not the cartilage, with no synergistic effect of co-culture. Interestingly, MMP-2 production was decreased by co-culture for both cartilage and meniscus. This study demonstrates that healthy IFP may modulate joint homeostasis by stimulating sGAG production in cartilage. Counter to our hypothesis, healthy IFP did not promote degradation of either cartilage or meniscus tissues.

  6. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue.

    Science.gov (United States)

    Qadan, Maha A; Piuzzi, Nicolas S; Boehm, Cynthia; Bova, Wesley; Moos, Malcolm; Midura, Ronald J; Hascall, Vincent C; Malcuit, Christopher; Muschler, George F

    2018-03-01

    Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (P CTP ) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. Mean [Cell], [CTP] and P CTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm 2 ; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences

  7. A mathematical model for fluid shear-sensitive 3D tissue construct development.

    Science.gov (United States)

    Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai

    2013-01-01

    This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

  8. Glioma tissue obtained by modern ultrasonic aspiration with a simple sterile suction trap for primary cell culture and pathological evaluation.

    Science.gov (United States)

    Schroeteler, Juliane; Reeker, Ralf; Suero Molina, Eric; Brokinkel, Benjamin; Holling, Markus; Grauer, Oliver M; Senner, Volker; Stummer, Walter; Ewelt, Christian

    2014-01-01

    Ultrasonic aspiration is widely used in the resection of brain tumors. Nevertheless, tumor tissue fragments obtained by ultrasonic aspiration are usually discarded. In this study, we demonstrate that these fragments are possible sources of material for histopathological study and tissue culture and compare their microscopic features and viability in tissue culture of cavitron ultrasonic surgical aspirator tissue fragments. Brain tumor tissue collected by ultrasonic aspiration (CUSA EXcel®; Integra Radionics Inc.) in a simple sterile suction trap during resection was processed for primary cell culture. Cell viability and immunohistological markers were measured by the WST-1 test, microscopy and immunofluorescent evaluation. Six gliomas are presented to demonstrate that these tissue fragments show good preservation of histological detail and tissue viability in culture. Utilization of this material may facilitate pathological interpretation by providing a more representative sample of tumor histology as well as an adequate and sterile biosource of material for tissue culture studies.

  9. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    Science.gov (United States)

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  10. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    Science.gov (United States)

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  11. Culture and Development

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    2006-01-01

    textabstractDiscourses on culture and development vary according to their conceptions of culture and of development and according to their standpoint. The ‘culture and development’ problematic has typically: (1) arisen from a conception of ‘culture’ as a relatively fixed, homogeneous set of mental

  12. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture.

    Science.gov (United States)

    Maeda, Eijiro; Nakagaki, Masashi; Ichikawa, Katsuhisa; Nagayama, Kazuaki; Matsumoto, Takeo

    2017-06-01

    Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3-4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen fibers parallel to

  13. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture

    Directory of Open Access Journals (Sweden)

    Eijiro Maeda

    2017-06-01

    Full Text Available Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3–4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen

  14. Tissue culture of black pepper (piper nigrum l.) in Pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Naz, S.; Nazir, H.; Shinwari, Z.K.

    2011-01-01

    Black pepper (Piper nigrum L.) the 'King of Spices' is a universal table condiment. It is extensively used in Pakistani cuisines and herbal medicines and imported in bulk from neighboring countries. The black pepper vine is generally cultivated by seed because other vegetative propagation methods are slow and time consuming. Therefore the tissue culture technique is considered more efficient and reliable method for rapid and mass propagation of this economically important plant. The present study was initiated to develop protocol for micro-propagation of black pepper vine. The stem, leaf and shoot tip explants from mature vine were cultured on MS medium supplemented with different concentrations of plant growth regulators (2,4-D, BA, IBA). Best callus was produced on MS medium with 1.5 mg/l BA by shoot tip explant. Shoot regeneration was excellent on MS medium with 0.5 mg/l BA. The plantlets formed were rooted best on 1.5 mg/l IBA. The rooted plants were transplanted in soil medium and acclimatized in growth room. The plants raised were test planted under the local conditions of Hattar. (author)

  15. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  16. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    Science.gov (United States)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  17. Prevention of pink-pigmented methylotrophic bacteria (Methylohacterium mesophilicum) contamination of plant tissue cultures.

    Science.gov (United States)

    Chanprame, S; Todd, J J; Widholm, J M

    1996-12-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) have been found on the surfaces of leaves of most plants tested. We found PPFMs on the leaf surfaces of all 40 plants (38 species) tested and on soybean pods by pressing onto AMS medium with methanol as the sole carbon source. The abundance ranged from 0.5 colony forming unit (cfu) /cm(2) to 69.4 cfu/cm(2) on the leaf surfaces. PPFMs were found in homogenized leaf tissues of only 4 of the species after surface disinfestation with 1.05% sodium hypochlorite and were rarely found in cultures initiated from surface disinfested Datura innoxia leaves or inside surface disinfested soybean pods. Of 20 antibiotics tested for PPFM growth inhibition, rifampicin was the most effective and of seven others which also inhibited PPFM growth, cefotaxime should be the most useful due to the expected low plant cell toxicity. These antibiotics could be used in concert with common surface sterilization procedures to prevent the introduction or to eliminate PPFM bacteria in tissue cultures. Thus, while PPFMs are present on the surfaces of most plant tissues, surface disinfestation alone can effectively remove them so that uncontaminated tissue cultures can be initiated in most cases.

  18. Long-term culture of human liver tissue with advanced hepatic functions.

    Science.gov (United States)

    Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S

    2017-06-02

    A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.

  19. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  20. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  1. Finite element study of scaffold architecture design and culture conditions for tissue engineering.

    Science.gov (United States)

    Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien

    2009-10-01

    Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

  2. Micropropagation of Pear Rootstock (Pyrus Communis) by using tissue culture technique and gamma irradiation

    International Nuclear Information System (INIS)

    El-Sharnouby, M.E.; ESSAM, E.R.; Ayoub, S.

    2006-01-01

    New growing shoots from healthy pear rootstock (Pyrus communis) trees were taken and sterilized 3 times in dipping water. Explants were subjected to antioxidant treatment, different media, different additives and different BAP and NAA concentrations. The obtained results showed that Murashig-Skoog (MS) supplemented with 1 mg/l BA was better than Gamborg medium. Adding antioxidant solution and adenine sulphate to the culture medium was preferred for maximizing explants development. Exposing the explants to gamma irradiation at different doses decreased tissue culture parameters with increasing gamma doses. However, the low dose of gamma rays (1 Krad) significantly increased the number of shoots than other gamma treatments. Adding of BAP at 2 mg/l to the culture medium increased number and length of shoots. However, addition of 1 mg/l NAA to the rooting medium led to increase the root formation

  3. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array.

    Science.gov (United States)

    Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu

    2017-06-29

    Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.

  4. A Method to Preclude Moisture Condensation in Plated Tissue Cultures

    Science.gov (United States)

    Alex M. Diner

    1992-01-01

    Excessive condensate normally accumulates in in vitro-illuminated petri dishes containing plant tissue cultures, causing avariety of problems. A dark-colored rubber net-mesh placed over the petri dishes prevented such condensation, even when charcoal-supplemented media are used under high light intensity in a growth chamber.

  5. Cost-effective nutrient sources for tissue culture of cassava ( Manihot ...

    African Journals Online (AJOL)

    Application of tissue culture technology is constrained by high costs making seedlings unaffordable. The objective of this study was to evaluate the possibility of using locally available fertilizers as alternative nutrient sources for cassava micropropagation. A Low Cost Medium (LCM) whereby the conventional sources of four ...

  6. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold.

    Science.gov (United States)

    O'Leary, Cian; Cavanagh, Brenton; Unger, Ronald E; Kirkpatrick, C James; O'Dea, Shirley; O'Brien, Fergal J; Cryan, Sally-Ann

    2016-04-01

    Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with delamination occurring at stresses of 12-15 kPa. Crosslinked scaffolds had a compressive modulus of 1.9 kPa and mean pore diameters of 70 μm and 80 μm, depending on the freezing temperature. Histological analysis showed that the Calu-3 bronchial epithelial cell line attached and grew on CHyA-B with adoption of an epithelial monolayer on the film layer. Immunofluorescence and qRT-PCR studies demonstrated that the CHyA-B scaffolds facilitated Calu-3 cell differentiation, with enhanced mucin expression, increased ciliation and the formation of intercellular tight junctions. Co-culture of Calu-3 cells with Wi38 lung fibroblasts was achieved on the scaffold to create a submucosal tissue analogue of the upper respiratory tract, validating CHyA-B as a platform to support co-culture and cellular organisation reminiscent of in vivo tissue architecture. In summary, this study has demonstrated that CHyA-B is a promising tool for the development of novel 3D tracheobronchial co-culture in vitro models with the potential to unravel new pathways in drug discovery and drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  8. The effect of plant growth regulators on optimization of tissue culture ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... ISSN 1684–5315 © 2010 Academic Journals ... tissue culture system in Malaysian upland rice ... Scientists believe that using new cultivars which have potential ..... providing the financial support and to Firouzeh Ashjazadeh ...

  9. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  10. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  11. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    International Nuclear Information System (INIS)

    Silva Meirelles, Lindolfo da; Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre

    2016-01-01

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  12. Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon.

    Science.gov (United States)

    Sogutmaz Ozdemir, Bahar; Budak, Hikmet

    2018-01-01

    Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.

  13. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.

    Science.gov (United States)

    Reda, A; Hou, M; Winton, T R; Chapin, R E; Söder, O; Stukenborg, J-B

    2016-09-01

    Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in

  14. Tissue culture-induced alteration in cytosine methylation in new rice ...

    African Journals Online (AJOL)

    Zizania DNA introgression could induce a large number of genetic and epigenetic changes of the new rice recombinant inbred lines genome. In this present study, we employed inter-simple sequence repeat (ISSR) to further study the genetic and epigenetic changes that are induced by tissue culture. Changes induced by ...

  15. Royal Jelly Prevents Osteoporosis in Rats: Beneficial Effects in Ovariectomy Model and in Bone Tissue Culture Model

    Directory of Open Access Journals (Sweden)

    Saburo Hidaka

    2006-01-01

    Full Text Available Royal jelly (RJ has been used worldwide for many years as medical products, health foods and cosmetics. Since RJ contains testosterone and has steroid hormone-type activities, we hypothesized that it may have beneficial effects on osteoporosis. We used both an ovariectomized rat model and a tissue culture model. Rats were divided into eight groups as follows: sham-operated (Sham, ovariectomized (OVX, OVX given 0.5% (w/w raw RJ, OVX given 2.0% (w/w RJ, OVX given 0.5% (w/w protease-treated RJ (pRJ, OVX given 2.0% (w/w pRJ, OVX given 17β-estradiol and OVX given its vehicle, respectively. The Ovariectomy decreased tibial bone mineral density (BMD by 24%. Administration of 17β-estradiol to OVX rats recovered the tibial BMD decrease by 100%. Administration of 2.0% (w/w RJ and 0.5–2.0% (w/w pRJ to OVX rats recovered it by 85% or more. These results indicate that both RJ and pRJ are almost as effective as 17β-estradiol in preventing the development of bone loss induced by ovariectomy in rats. In tissue culture models, both RJ and pRJ increased calcium contents in femoral-diaphyseal and femoral-metaphyseal tissue cultures obtained from normal male rats. However, in a mouse marrow culture model, they neither inhibited the parathyroid hormone (PTH-induced calcium loss nor affected the formation of osteoclast-like cells induced by PTH in mouse marrow culture system. Therefore, our results suggest that both RJ and pRJ may prevent osteoporosis by enhancing intestinal calcium absorption, but not by directly antagonizing the action of PTH.

  16. Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading.

    Science.gov (United States)

    Wu, Yabin; Stoddart, Martin J; Wuertz-Kozak, Karin; Grad, Sibylle; Alini, Mauro; Ferguson, Stephen J

    2017-08-01

    Articular cartilage plays an essential role in joint lubrication and impact absorption. Through this, the mechanical signals are coupled to the tissue's physiological response. Healthy synovial fluid has been shown to reduce and homogenize the shear stress acting on the cartilage surfaces due to its unique shear-thinning viscosity. As cartilage tissues are sensitive to mechanical changes in articulation, it was hypothesized that replacing the traditional culture medium with a healthy non-Newtonian lubricant could enhance tissue development in a cartilage engineering model, where joint-kinematic-mimicking mechanical loading is applied. Different amounts of hyaluronic acid were added to the culture medium to replicate the viscosities of synovial fluid at different health states. Hyaluronic acid supplementation, especially at a physiologically healthy concentration (2.0 mg ml -1 ), promoted a better preservation of chondrocyte phenotype. The ratio of collagen II to collagen I mRNA was 4.5 times that of the control group, implying better tissue development (however, with no significant difference of measured collagen II content), with a good retention of collagen II and proteoglycan in the mechanically active region. Simulating synovial fluid properties by hyaluronic acid supplementation created a favourable mechanical environment for mechanically loaded constructs. These findings may help in understanding the influence of joint articulation on tissue homeostasis, and moreover, improve methods for functional cartilage tissue engineering. © 2017 The Author(s).

  17. Cells in human postmortem brain tissue slices remain alive for several weeks in culture

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Hermens, Wim T. J. M. C.; Dijkhuizen, PaulaA; ter Brake, Olivier; Baker, Robert E.; Salehi, Ahmad; Sluiter, Arja A.; Kok, Marloes J. M.; Muller, Linda J.; Verhaagen, Joost; Swaab, Dick F.

    2002-01-01

    Animal models for human neurological and psychiatric diseases only partially mimic the underlying pathogenic processes. Therefore, we investigated the potential use of cultured postmortem brain tissue from adult neurological patients and controls. The present study shows that human brain tissue

  18. Citrus tissue culture employing vegetative explants.

    Science.gov (United States)

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  19. Effect of gamma-radiation on callus initiation and oraganogenesis in the tissue culture of Nicotiana tabaccum L

    International Nuclear Information System (INIS)

    Shin, S. H.; Kim, J. G.; Song, H. S.

    2004-01-01

    It is generally agreed that ionizing radiations stimulate cell division, growth and development in various organisms including animals and plants. Differentiating tissues are the most sensitive to radiation. The present experiment was carried out to investigate the effects of ionizing radiation on callus initiation and organogenesis from the stem in the culture of Nicotiana tabaccum L. cv. When the stem segments were cultured on a Murashige and Skoog (MS) medium with 2 mg/L kinetin, with 1 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), with 2 mg/L kinetin and 1 mg/L 2,4-D, the shoots and callus were differentiated 14 days after cultivation. Callus was especially formed on the MS medium with 2,4-D and/or kinetin and the formation was promoted by 1 Gy and 5 Gy of gamma radiation. The formation of the shoot clusters on the MS medium with 2 mg/L kinetin were prominent in the 5 Gy-irradiated groups. It is concluded that that gamma radiation enhanced the callus initiation and organogenesis in the tissue culture of Nicotiana tabaccum L

  20. Advanced cell culture technology for generation of in vivo-like tissue models

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-06-01

    Full Text Available Human tissues are mostly composed of different cell types, that are often highly organised in relation to each other. Often cells are arranged in distinct layers that enable signalling and cell-to-cell interactions. Here we describe the application of scaffold-based technology, that can be used to create advanced organotypic 3D models of various tissue types that more closely resemble in vivo-like conditions (Knight et al., 2011. The scaffold comprises a highly porous polystyrene material, engineered into a 200 micron thick membrane that is presented in various ways including multi-welled plates and well inserts, for use with conventional culture plasticware and medium perfusion systems. This technology has been applied to generate numerous unique types of co-culture model. For example: 1 a full thickness human skin construct comprising dermal fibroblasts and keratinocytes, raised to the air-liquid interface to induce cornification of the upper layers (Fig.1 (Hill et al., 2015; 2 a neuron-glial co-culture to enable the study of neurite outgrowth interacting with astroglial cells to model and investigate the glial scar found in spinal cord injury (Clarke et al., 2016; 3 formation of a sub-mucosa consisting of a polarised simple epithelium, layer of ECM proteins simulating the basement membrane, and underlying stromal tissues (e.g. intestinal mucosa. These organotypic models demonstrate the versatility of scaffold membranes and the creation of advanced in vivo-like tissue models. Creating a layered arrangement more closely simulates the true anatomy and organisation of cells within many tissue types. The addition of different cell types in a temporal and spatial fashion can be used to study inter-cellular relationships and create more physiologically relevant in vivo-like cell-based assays. Methods that are relatively straightforward to use and that recreate the organised structure of real tissues will become valuable research tools for use in

  1. Canine osteosarcoma karyotypes from an original tumor, its metastasis, and tumor cells in tissue culture

    International Nuclear Information System (INIS)

    Taylor, N.; Shifrine, M.; Wolf, H.G.; Trommershausen-Smith, A.

    1975-01-01

    Radiation-induced osteosarcoma, its metastasis, and cells grown in tissue culture were karyotyped. Both hypodiploid and hyperdiploid stem lines were observed. The hypodiploid line contained 45-55 chromosomes with 10 to 15 abnormal metacentric and submetacentric chromosomes and one subtelocentric marker. The hyperdiploid line contained 90 to 105 chromosomes with 20 to 30 abnormal metacentric and submetacentric chromosomes with two subtelocentric markers. Karyotypic analysis can be used to monitor osteosarcomas maintained in tissue culture

  2. DEVELOPMENT OF PRIMARY CELL CULTURE FROM TAIL EPIDERMAL TISSUE OF KOI CARP (Cyprinus carpio koi

    Directory of Open Access Journals (Sweden)

    Lila Gardenia

    2014-06-01

    Full Text Available Primary cell culture from tail epidermal tissue of koi carp (Cyprinus carpio koi was developed. Cells were grown in Leibovits-15 medium supplemented with 20% fetal bovine serum and antibiotics (Penicillin/Streptomycin and Kanamycin. Cell growth was observed in a range of incubation temperature (17oC±2oC, 22oC±2oC, 27oC±2oC, and 32oC±2oC in order to determine the optimum temperature. The cells were able to grow at a range of temperature between 17oC to 32oC with optimal growth at 22oC. Primary cells infected with koi herpes virus produced typical cytopathic effects characterized by severe vacuolation and deformation of nuclei, which is consistent with those of previous reports. Artificial injection experiment by using supernatant koi herpes virus SKBM-1 isolate revealed that it could cause 90% mortality in infected fish within two weeks. PCR test with Sph I-5 specific primers carried out with DNA template from supernatant virus, pellet cell, and gills of infected fish showed positive results in all samples (molecular weight of DNA target 290 bp. The cells were found to be susceptible to koi herpes virus and can be used for virus propagation.

  3. Tissue culture of osteogenic sarcoma in rats, induced by radioactive phosphorus P-32 and the effect of the anti-cancerous agents on these tumor cells under tissue culture

    International Nuclear Information System (INIS)

    Osaka, Shunzo

    1976-01-01

    Small pieces of osteogenic sarcoma, induced into albino rats of the C.F. Wistar strain by injection of radioactive phosphorus 32 P, were cultured in mixtures of Eagle's minimum essential medium and 20% calf serum. The tumor cells cultured in this way were transplanted into the subcutaneous tissue or the intraabdominal cavity to healthy albino rats. The effect of the anticancerous agents was evaluated by the decrease of nucleic acid composition in these cultured tumor cells. As anti-cancerous agents, cyclophosphamide (CPA), mitomycin C(MMC), and 5-fluorouracil(5-FU) were put into contact with the tumor cells in cultures for two hours under the following dilutions: CPA; 10 -6 , 10 -5 , 10 -4 g/ml. MMC; 2 x 10 -8 , 2 x 10 -7 , 2 x 10 -6 g/ml. 5-FU; 2 x 10 -6 , 2 x 10 -5 , 2 x 10 -4 g/ml. The results are as follows: Three of the seven osteogenic sarcomas in rats were successfully cultured, one of them through more than eighteen generations. After about five hundred thousand cultured cells had been transplanted into the subcutaneous tissues or abdominal cavities of rats, tumors grew in all of them. The histological findings of the tumors in the second generation were quite similar to those of the original tumor. The same process was repeated three times and the tumor showed histogical findings similar to those of the original ones. The capability of nucleic acid synthesis in these cells was decreased at twenty fours after CPA contact and at forty eight hours after MMC. (J.P.N.)

  4. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children

    Directory of Open Access Journals (Sweden)

    Kumaria Rajni

    2011-07-01

    Full Text Available Abstract Background Human respiratory syncytial virus (HRSV is the most important virus causing lower respiratory infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of different RSV strains. Methods In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely hospitalized children, and without prior passage of the viruses in tissue culture. Results The analysis of nucleotide sequences suggested that vRNA length is a variable factor among primary strains, while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence variation (2-6.4%, while small hydrophobic protein and matrix genes were completely conserved across all clinical strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the HRSVA2 virus isolate in tissue culture, the HRSVA2 isolate and clinical strains formed similar virus structures such as virus filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures. Conclusion This is the first report to describe the complete genetic characterization of HRSV clinical strains that have been sequenced directly from clinical

  5. Diagnostic utility of melanin production by fungi: Study on tissue sections and culture smears with Masson-Fontana stain

    Directory of Open Access Journals (Sweden)

    Challa Sundaram

    2014-01-01

    Full Text Available Background: Dematiaceous fungi appear brown in tissue section due to melanin in their cell walls. When the brown color is not seen on routine H and E and culture is not available, differentiation of dematiaceous fungi from other fungi is difficult on morphology alone. Aims and Objective: To study if melanin production by dematiaceous fungi can help differentiate them from other types of fungi. Materials and Methods: Fifty tissue sections of various fungal infections and 13 smears from cultures of different species of fungi were stained with Masson Fontana stain to assess melanin production. The tissue sections included biopsies from 26 culture-proven fungi and 24 biopsies of filamentous fungi diagnosed on morphology alone with no culture confirmation. Results: All culture-proven dematiaceous fungi and Zygomycetes showed strong positivity in sections and culture smears. Aspergillus sp showed variable positivity and intensity. Cryptococcus neoformans showed strong positivity in tissue sections and culture smears. Tissue sections of septate filamentous fungi (9/15, Zygomycetes (4/5, and fungi with both hyphal and yeast morphology (4/4 showed positivity for melanin. The septate filamentous fungi negative for melanin were from biopsy samples of fungal sinusitis including both allergic and invasive fungal sinusitis and colonizing fungal balls. Conclusion: Melanin is produced by both dematiaceous and non-dematiaceous fungi. Masson-Fontana stain cannot reliably differentiate dematiaceous fungi from other filamentous fungi like Aspergillus sp; however, absence of melanin in the hyphae may be used to rule out dematiaceous fungi from other filamentous fungi. In the differential diagnosis of yeast fungi, Cryptococcus sp can be differentiated from Candida sp by Masson-Fontana stain in tissue sections.

  6. Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: An in-vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Chuah, Yon Jin [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Lee, Wu Chean [University Hospital Conventry & Warwickshire NHS Trust, Clifford Bridge Road, West Midlands CV2, 2DX (United Kingdom); Wong, Hee Kit [Department of Orthopedic Surgery, National University Health System, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228 (Singapore); Kang, Yuejun, E-mail: yuejun.kang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Hee, Hwan Tak, E-mail: HTHee@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Pinnacle Spine & Scoliosis Centre, 3 Mount Elizabeth, Mount Elizabeth Medical Centre, #04-07, Singapore 228510 (Singapore); School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637459 (Singapore)

    2015-02-01

    Prior research has investigated the immediate response after application of tensile strain on annulus fibrosus (AF) cells for the past decade. Although mechanical strain can produce either catabolic or anabolic consequences to the cell monolayer, little is known on how to translate these findings into further tissue engineering applications. Till to date, the application and effect of tensile pre-strained cells to construct a three-dimensional (3D) AF tissue remains unknown. This study aims to investigate the effect of tensile pre-strained exposure of 1 to 24 h on the development of AF pellet culture for 3 weeks. Equibiaxial cyclic tensile strain was applied on AF monolayer cells over a period of 24 h, which was subsequently developed into a cell pellet. Investigation on cellular proliferation, phenotypic gene expression, and histological changes revealed that tensile pre-strain for 24 h had significant and lasting effect on the AF tissue development, with enhanced cell proliferation, and up-regulation of collagen type I, II, and aggrecan expression. Our results demonstrated the regenerative ability of AF cell pellets subjected to 24 h tensile pre-straining. Knowledge on the effects of tensile pre-strain exposure is necessary to optimize AF development for tissue reconstruction. Moreover, the tensile pre-strained cells may further be utilized in either cell therapy to treat mild disc degeneration disease, or the development of a disc construct for total disc replacement. - Highlights: • Establishment of tensile pre-strained cell line population for annulus development. • Tensile strain limits collagen gene expression declination in monolayer culture. • Tensile pre-strained cells up-regulate their matrix protein in 3D pellet culture.

  7. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  8. Tobacco clones derived from tissue culture with supersensitivity to ozone

    International Nuclear Information System (INIS)

    Sun, E.J.; Kang, H.W.

    2003-01-01

    New tobacco clones supersensitive to ozone were obtained from tissue culture. - At least two supersensitive tobacco somaclones were obtained from tissue culture (TC) , when this approach was used to asexually propagate Bel-W3 tobacco indicator plants. These somaclones can detect as low as 30 ppb ozone for a 4-h exposure duration both within CSTR exposure chambers and in ambient air. Comparison of the injury index and their coefficient of variance showed that the TC plantlets usually have more uniform performance in response to ozone in addition to their higher sensitivity. A quick regeneration procedure was established to preserve the supersensitive germplasm immediately when it was found. The TC plantlets will flower and produce seed similar to seed-grown tobacco. The TC approach proved to be a better propagation system for valuable indicator plant species. The mechanism that causes the variation and the possible difference in their genome from seed-grown tobacco is still unknown. Further studies are needed in the future to determine if factors in the TC system may be responsible for the sensitivity difference

  9. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  10. Treatment of chronic desquamative gingivitis using tissue-engineered human cultured gingival epithelial sheets: a case report.

    Science.gov (United States)

    Okuda, Kazuhiro; Momose, Manabu; Murata, Masashi; Saito, Yoshinori; lnoie, Masukazu; Shinohara, Chikara; Wolff, Larry F; Yoshie, Hiromasa

    2004-04-01

    Human cultured gingival epithelial sheets were used as an autologous grafting material for regenerating gingival tissue in the maxillary left and mandibular right quadrants of a patient with chronic desquamative gingivitis. Six months post-surgery in both treated areas, there were gains in keratinized gingiva and no signs of gingival inflammation compared to presurgery. In the maxillary left quadrant, preoperative histopathologic findings revealed the epithelium was separated from the connective tissue and inflammatory cells were extensive. After grafting with the gingival epithelial sheets, inflammatory cells were decreased and separation between epithelium and connective tissue was not observed. The human cultured gingival epithelial sheets fabricated using tissue engineering technology showed significant promise for gingival augmentation in periodontal therapy.

  11. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. Methods Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144 and their expression was quantified using flow cytometry analysis. Results Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. Conclusion To our knowledge, this is the first report of

  12. Solid tissue culture for cytogenetic analysis: a collaborative survey for the Association of Clinical Cytogeneticists.

    Science.gov (United States)

    Rodgers, C S; Creasy, M R; Fitchett, M; Maliszewska, C T; Pratt, N R; Waters, J J

    1996-01-01

    AIMS: To survey the diagnostic service provided by UK laboratories for the culture of solid tissue samples (excluding tumours) and in particular to examine the variation in culture success rates and the problems of maternal cell overgrowth. METHODS: Twenty seven laboratories took part in a collaborative survey during 1992. Each laboratory submitted data on up to a maximum of 60 consecutive specimens (n = 1361) over a six month period. RESULTS: Skin specimens, the largest category received (n = 520), were the most problematic (51% success rate). Culture success rates were significantly lower (43%) when skin specimens (n = 140) were transported dry to the laboratory. Success rates for skin specimens also varied, depending on the origin of the specimen, from 18% for intra-uterine deaths (IUD) (n = 94) to 85% for neonatal deaths (n = 33) and 83% for live patients (n = 54). Culture of selected extra-fetal tissues from IUD, stillbirths and following elective termination of pregnancy (TOP) gave comparable success rates to those achieved for skin samples from neonatal deaths and live births. Skewed sex ratios, female > male, were identified for products of conception (POC) (n = 298) and placental biopsy specimens (n = 97). CONCLUSIONS: By appropriate selection, transport and processing of tissues, and in particular by avoiding relying solely on skin samples from IUD, stillbirths and TOP, an increase in culture success rates for solid tissue samples submitted for cytogenetic analysis could be achieved. The high risk of maternal cell contamination from POC and placental biopsy specimens was also identified in this survey. PMID:8881913

  13. Study of the agroindustrial alterations induced by the irradiated tissue culture in sugar cane, variety NA 56-79

    International Nuclear Information System (INIS)

    Figueiredo Junior, O.

    1991-01-01

    The use of plant tissue culture and the application of gamma radiation as mutation inducing agents, in the sugar cane plant, variety NA 5679, are studied. The variation in the contents of brix, pol, fiber, purity, extraction, phosphorus, nitrogen, reducing sugars as well as the morphological characteristics are analysed. The 'callus' obtained by the tissue culture were irradiated with 20, 40, and 60 Gy doses. The statistical analysis indicated that the method of tissue culture may, eventually, increase the contents of the technological parameters and the dosages of gamma radiation were not efficient for such purpose. (M.A.C.)

  14. Heritability of regeneration in tissue cultures of sweet potato (Ipomoea batatas L.).

    Science.gov (United States)

    Templeton-Somers, K M; Collins, W W

    1986-03-01

    A population of open-pollinated progeny from 12 parents, and the 12 parents, was surveyed for in vitro growth and regeneration characteristics. Four different tissue culture procedures involving different media and the use of different explants to initiate the cultures were used. Petiole explants from young leaves were used as explants for initiation of callus cultures. These were evaluated for callus growth rate, friability, and callus color and texture, before transferring to each of three different regeneration media for evaluation of morphogenetic potential. Small shoot tips also were used to initiate callus cultures, which were evaluated for the same growth characteristics and transferred to growth-regulator free regeneration media. Regeneration occurred through root or shoot regeneration or through embryogenesis. Tissue culture treatment effects, as well as genotypic effects, were highly significant in determining: the types of callus produced, callus growth rates, color and texture on the two types of media used for the second and third subcultures. The family x treatment interaction was generally not statistically significant, affecting only callus color. Estimates of narrow sense heritability for callus growth rate in both the second and third subcultures were high enough (0.35 and 0.63, respectively) for the evaluation of parental lines for selection procedures. These characteristics were also the only early culture callus traits that were consistently correlated with later morphogenesis of the cultures. They were negatively correlated with root or shoot regeneration. The occurence of somatic embryogenesis was not correlated with early callus growth characteristics. Genetic and treatment effects were highly significant in the evaluation of morphogenetic potential, through root or shoot regeneration, or through embryogenesis. Regeneration of all types was of low frequency for all procedures, expressed in ≦ 11% of the cultures of the total population.

  15. Optimization of an Efficient Non-Tissue Culture Transformation Method for Brassica Juncea

    International Nuclear Information System (INIS)

    Naeem, I.; Munir, I.; Iqbal, A.; Ullah, F.

    2016-01-01

    The major hurdles in successful in vitro transformation of Brassica juncea through standard tissue culture (STC) method are: culture contamination, somaclonal variations, and lack of expertise. Moreover, the current STC method is time consuming and needs continuous electricity. In the present study, the in planta transformation method through floral dip with or without vacuum infiltration was optimized for successful transformation of B. juncea. The B. juncea CV RAYA Anmol was used for transformation through Agrobacterium tumefaciens strain GV3101 harboring the binary vector plasmid pBinGlyBar4-EADcT. Based on the resistance reaction to the herbicide Basta, 20 and 40 resistant seedlings were obtained from 2000 seed germinated from the plants transformed through floral dip and vacuum infiltration methods, respectively. The PCR analyses further confirmed the presence of transgene in 3 floral dipped plants without vacuum infiltration and 17 floral dipped plants with vacuum infiltration, giving the transformation frequencies of 1.5*10/sup -3/ and 8.5*10/sup -3/, respectively. This method, which avoids tissue culture, will reduce the somaclonal variation accompanying prolonged culture of cells in a dedifferentiated state, will facilitate functional genomics and improvement of Brassica juncea with novel desirable traits while reducing time and expense. (author)

  16. Effect of radiation and other cytotoxic agents on the growth of cells cultured from normal and tumor tissues from the female genital tract

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.B.; Bonnar, J.

    1990-01-01

    A technique is presented which allows the response of human gynecological tissue to radiation and cytotoxic drugs to be assessed using a tissue culture explant system. The technique is simple to use and gives results in line with those obtained for human tissues by more complex culture methods. Data are presented showing how the explant technique developed by the group for other tissues can be adapted to yield acceptable results for normal tissue response to radiation. The potential of the technique for use in predictive testing of individual tumor response is then assessed in five cases of gynecological malignancy. It is clear that variations in sensitivity to different radio- and chemotherapy agents and combinations can be detected. The results obtained require clinical validation and it is hoped that this will come over the next few years from evaluation of patient response to treatment using individually optimized, rather than empirical therapy

  17. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  18. Discrimination and similarity evaluation of tissue-cultured and wild Dendrobium species using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Chen, Nai-dong; Chen, Han; Li, Jun; Sang, Mang-mang; Ding, Shen; Yu, Hao

    2015-04-01

    The FTIR method was applied to evaluate the similarity of tissue-cultured and wild Dendrobium huoshanense C.Z. Tang et S.J. Cheng, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw and discriminate different Dendrobium species, especially D. huoshanense and its main goldbrick Dendrobium henanense J.L. Lu et L.X. Gao. Despite the general pattern of the IR spectra, different intensities, shapes and peak positions were found in the IR spectra of these samples, especially in the range of 1800-600 cm-1, which could be used to discriminate them. The methanol, aqueous extracting procedure and the second derivative transformation obviously enlarged the tiny spectral differences among these samples. The similarity evaluation based on the IR spectra and the second derivative IR spectrum revealed that the similarity of the methanol extracts between tissue-cultured and wild Dendrobiums might be lower than that between different Dendrobium species. The similarities of the powders and aqueous extracts between tissue-cultured and wild Dendrobiums were higher than those between different Dendrobium species. The further principal component analysis showed that the first three components explained 99.7%, 87.7% and 85.1% of data variance for powder, methanol extract and aqueous extract, respectively, demonstrating a good discrimination between samples. Our research suggested that the variations of secondary metabolites between different origins of the investigated Dendrobiums might be higher than what we had supposed. Tissue culture techniques were widely used in the conversation of rare and endangered medicinal amedica, however, our study suggested that the chemical constituents of tissue-cultured plants might be quite different from their wild correspondences.

  19. Co-cultures and cell sheet engineering as relevant tools to improve the outcome of bone tissue engineering strategies

    OpenAIRE

    Pirraco, Rogério

    2011-01-01

    Taking into consideration the complex biology of bone tissue it is quite clear that the understanding of the cellular interactions that regulate the homeostasis and regeneration of this remarkable tissue is essential for a successful Tissue Engineering strategy. The in vitro study of these cellular interactions relies on co-culture systems, a tremendously useful methodology where two or more cell types are cultured at the same time. Such strategy increases the complexity of typ...

  20. Analytical and diagnostic performance of a qPCR assay for Ichthyophonus spp. compared to the tissue culture 'gold standard'.

    Science.gov (United States)

    Lowe, Vanessa C; Hershberger, Paul K; Friedman, Carolyn S

    2018-06-04

    Parasites of the genus Ichthyophonus infect many fish species and have a non-uniform distribution within host tissues. Due in part to this uneven distribution, the comparative sensitivity and accuracy of using molecular-based detection methods versus culture to estimate parasite prevalence is under debate. We evaluated the analytical and diagnostic performance of an existing qPCR assay in comparison to the 'gold standard' culture method using Pacific herring Clupea pallasii with known exposure history. We determined that the assay is suitable for use in this host, and diagnostic specificity was consistently high (>98%) in both heart and liver tissues. Diagnostic sensitivity could not be fully assessed due to low infection rates, but our results suggest that qPCR is not as sensitive as culture under all circumstances. Diagnostic sensitivity of qPCR relative to culture is likely affected by the amount of sample processed. The prevalence values estimated by the 2 methods were not significantly different when sample amounts were equal (heart tissue), but when the assayed sample amounts were unequal (liver tissue), the culture method detected a significantly higher prevalence of the parasite than qPCR. Further, culture of liver also detected significantly more Ichthyophonus infections than culture of heart, suggesting that the density and distribution of parasites in tissues also plays a role in assay sensitivity. This sensitivity issue would be most problematic for fish with light infections. Although qPCR does not detect the presence of a live organism, DNA-based pathogen detection methods provide the opportunity for alternate testing strategies when culture is not possible.

  1. Development and characterization of cell culture systems from Puntius (Tor) chelynoides (McClelland).

    Science.gov (United States)

    Goswami, M; Sharma, B S; Tripathi, A K; Yadav, Kamalendra; Bahuguna, S N; Nagpure, N S; Lakra, W S; Jena, J K

    2012-05-25

    Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Changes in adipose tissue stromal-vascular cells in primary culture due to porcine sera

    International Nuclear Information System (INIS)

    Jewell, D.E.; Hausman, G.J.

    1986-01-01

    This study was conducted to determine the response of rat stromal-vascular cells to pig sea. Sera were collected from unselected contemporary (lean) and high backfat thickness selected (obese) pigs. Sera from obese pigs were collected either by exsanguination or cannulation. sera from lean pigs during the growing phase (45 kg) and the fattening phase (100-110 kg) were collected. Stromal-vascular cells derived rom rat inguinal tissue were cultured on either 25 cm 2 flasks, collagen-coated coverslips or petri dishes. Cell proliferation was measured by [ 3 H]-thymidine incorporation during the fourth day of culture. Coverslip cultures were used for histochemical analysis. Petri dish cultures were used for analysis of Sn-glycerol-3-phosphate dehydrogenase (GPDH) activity. All cells were plated for 24 hours in media containing 10 fetal bovine sera. Test media contained 2.5, 5.0, 10.0% sera. Sera from obese pigs increased GPDH activity and fat cell production when compared to the lean controls. The increased concentration of sera increased esterase activity and lipid as measured with oil red O. The sera from obese pigs collected at slaughter stimulated more fat cell production than obese sera collected by cannulation. These studies show there are adipogenic factors in obese pigs sera which promote fat cell development in primary cell culture

  3. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    Directory of Open Access Journals (Sweden)

    Wenjuan eGao

    2012-08-01

    Full Text Available Abstract: As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures.

  4. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    Science.gov (United States)

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  5. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  6. Development of a 3D co-culture model using human stem ...

    Science.gov (United States)

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelves, and is regulated by the growth factors EGF and TGFβ, and others, although the complete regulatory mechanism is not understood. Three dimensional (3D) organotypic models allow us to mimic the native architecture of human tissue to facilitate the study of tissue dynamics and their responses to developmental toxicants. Our goal was to develop and characterize a spheroidal model of palatal fusion to investigate the mechanisms regulating fusion with exposure to growth factors and chemicals in the ToxCast program known to disrupt this event. We present a spheroidal model using human umbilical-derived mesenchymal stem cells (hMSC) spheroid cores cultured for 13 days and then coated with MaxGel™ basement membrane and a layer of human progenitor epithelial keratinocytes (hPEK) (hMSC+hPEK spheroids). We characterized the growth, differentiation, proliferation and fusion activity of the model. Spheroid diameter was dependent on hMSC seeding density, size of the seeding wells, time in culture, and type of medium. hMSC spheroid growth was enhanced with osteogenic differentiation medium. Alkaline phosphatase activity in the hMSC spheroid, indicating osteogenic differentiation, increased in inte

  7. Engineered Muscle Actuators: Cells and Tissues

    National Research Council Canada - National Science Library

    Dennis, Robert G; Herr, Hugh; Parker, Kevin K; Larkin, Lisa; Arruda, Ellen; Baar, Keith

    2007-01-01

    .... Our primary objectives were to engineer living skeletal muscle actuators in culture using integrated bioreactors to guide tissue development and to maintain tissue contractility, to achieve 50...

  8. Culture Environment-Induced Pluripotency of SACK-Expanded Tissue Stem Cells

    Directory of Open Access Journals (Sweden)

    Jean-François Paré

    2011-01-01

    Full Text Available Previous efforts to improve the efficiency of cellular reprogramming for the generation of induced pluripotent stem cells (iPSCs have focused mainly on transcription factors and small molecule combinations. Here, we report the results of our focus instead on the phenotype of the cells targeted for reprogramming. We find that adult mouse pancreatic tissue stem cells derived by the method of suppression of asymmetric cell kinetics (SACK acquire increased potency simply by culture under conditions for the production and maintenance of pluripotent stem cells. Moreover, supplementation with the SACK agent xanthine, which promotes symmetric self-renewal, significantly increases the efficiency and degree of acquisition of pluripotency properties. In transplantation analyses, clonal reprogrammed pancreatic stem cells produce slow-growing tumors with tissue derivative of all three embryonic germ layers. This acquisition of pluripotency, without transduction with exogenous transcription factors, supports the concept that tissue stem cells are predisposed to cellular reprogramming, particularly when symmetrically self-renewing.

  9. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  10. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  11. Autoradiographic demonstration of unscheduled DNA synthesis in oral tissues treated with chemical carcinogens in short-term organ culture

    International Nuclear Information System (INIS)

    Ide, F.; Umemura, S.; Ishikawa, T.; Takayama, S.

    1981-01-01

    A system in which oral tissues of inbred F344 adult rats and Syrian golden hamster embryos were used in combination with autoradiography was developed for measurement of unscheduled DNA synthesis (UDS). For this, oral mucosa, submandibular gland, tooth germ and mandible in short-term organ cultures were treated with 4-nitroquinoline l-oxide or N-methyl-N-nitrosourea plus (methyl- 3 H)thymidine. Significant numbers of silver grains, indicating UDS, were detected over the nuclei of cells of all these tissues except rat salivary gland after treatment with carcinogens. This autoradiographic method is suitable for detection of UDS in oral tissues in conditions mimicking those in vivo. Results obtained in this study indicated a potential use of this system for studies on the mechanism of carcinogenesis at a cellular level comparable to in vivo carcinogenesis studies on oral tissues. (author)

  12. Current status and future prospects for cultured limbal tissue transplants in Australia and New Zealand.

    Science.gov (United States)

    Harkin, Damien G; Apel, Andrew J; Di Girolamo, Nick; Watson, Stephanie; Brown, Karl; Daniell, Mark D; McGhee, J Jane; McGhee, Charles N J

    2013-04-01

    Cultured limbal tissue transplants have become widely used over the last decade as a treatment for limbal stem cell deficiency (LSCD). While the number of patients afflicted with LSCD in Australia and New Zealand is considered to be relatively low, the impact of this disease on quality of life is so severe that the potential efficacy of cultured transplants has necessitated investigation. We presently review the basic biology and experimental strategies associated with the use of cultured limbal tissue transplants in Australia and New Zealand. In doing so, we aim to encourage informed discussion on the issues required to advance the use of cultured limbal transplants in Australia and New Zealand. Moreover, we propose that a collaborative network could be established to maintain access to the technology in conjunction with a number of other existing and emerging treatments for eye diseases. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  13. Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development

    Science.gov (United States)

    Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark

    2005-01-01

    Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.

  14. COMPARISON OF CULTURE OF SYNOVIAL FLUID, PERIPROSTHETIC TISSUE AND PROSTHESIS SONICATE FOR THE DIAGNOSIS OF KNEE PROSTHESIS INFECTION

    Directory of Open Access Journals (Sweden)

    Andrej Trampuž

    2003-03-01

    Full Text Available Background. Synovial fluid and periprosthetic tissue specimens are the standard specimens cultured for the diagnosis of prosthetic joint infection (PJI. We hypothesize that ultrasonication of the explanted prosthesis may improve diagnosis of PJI by dislodging biofilm bacteria from the prosthesis surface and improve the sensitivity and specificity of diagnosis of PJI.Methods. Included were patients undergoing knee prosthesis exchange for septic or biomechanical failure and have not received antimicrobial therapy in the last 2 weeks prior specimen collection. Cultures of synovial fluid and periprosthetic tissue specimens were performed per the usual clinical practice. Additionally, explanted joint components were sonicated for 5 minutes at frequency 40 kHz in sterile Ringer’s solution; aliquots of 0.5 ml sonicate were plated onto five aerobic and five anaerobic blood agar plates, and incubated at 37 °C and examined for the next seven days. The number and identity of each colony morphology was recorded.Results. 35 patients undergoing knee replacement have been studied (24 for aseptic biomechanical failure and 11 for suspected PJI. In patients with PJI, coagulase-negative staphylococci (7 cases, Corynebacterium spp. (2 cases, Staphylococcus aureus (1 case, and viridans group streptococcus (1 case were recovered. Culture sensitivity and specificity were for synovial fluid 88% and 100%, for periprosthetic tissue 83% and 81%, and for explant sonicate 91% and 100%, respectively. In sonicate cultures higher numbers of microorganisms than in periprosthetic tissue cultures were consistently detected.Conclusions. Using synovial fluid, periprosthetic tissue, and explant sonicate cultures, 12%, 17% and 9% of PJI were missed, respectively. Explant sonicate cultures were the most sensitive with respect to the diagnosis of PJI, indicating that explant ultrasonication may improve bacterial recovery. In sonicate cultures, infecting organisms were detected in

  15. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. I. Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available An influence of hydroxyurea (HU on the growth, DNA and RNA contents and protein synthesis in the tobacco tumour tissue culture was studied in comparison with a homologous callus tissue. In conformity with expectations considerable decrease of DNA level in both tissues is a primary effect of HU activity. This results in the growth inhibition and in the secondary metabolic effects; these effects depend not only on the concentration of inhibitor but also on the age of tissue. In spite of some common features the character of these changes shows a distinct differentiation depending on the tissue type. TMs points to specific modifications of the biochemical regulation of growth in a tumour.

  16. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    Science.gov (United States)

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  17. Aplicações da cultura de tecidos em plantas medicinais Applications of tissue culture in medicinal plants

    Directory of Open Access Journals (Sweden)

    T.P. Morais

    2012-01-01

    Full Text Available Esta revisão tem por objetivo levantar dados de literatura sobre o histórico e a situação atual das técnicas de cultura de tecidos em plantas medicinais. Para tanto, foi realizada uma revisão de publicações do período de 1976 a 2009. A cultura de tecidos é muito utilizada em pesquisas envolvendo plantas medicinais, com destaque para a técnica de micropropagação. A aplicação das técnicas de cultura de tecidos em plantas medicinais tem como perspectivas a obtenção de germoplasma competitivo e adaptado a diversos métodos de cultivo, escolha de novas espécies que servirão como fonte de compostos biologicamente ativos e aprimoramento da produção de fitofármacos, a fim de assegurar exploração sustentável destas espécies.The aim of this literature review is to conduct a survey concerning the history and current situation of tissue culture techniques in medicinal plants. Therefore, a review was done considering the period from 1976 to 2009. Tissue culture is widely applied in medicinal plants researches, especially micropropagation. The perspectives of tissue culture techniques in medicinal plants are related to the development of competitive germoplasm adapted to diverse methods of cultivation, the election of new species that will serve as source of biological active composts, and the improvement of phytochemicals production, in order to assure sustainable exploration of these species.

  18. Development of self in culture

    DEFF Research Database (Denmark)

    Human beings are inherently cultural beings – growing up in an environment that is steeped in culture and developing our self-construal accordingly. The new psychology book series Self in culture in mind (SICIM) gathers current research perspectives on this issue. This first volume, Development...... and in different cultural settings, while concurrently illustrating the diversity of empirical methods that are appropriate for studying culture-mind-mediation....

  19. Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues.

    Directory of Open Access Journals (Sweden)

    Charissa de Bekker

    Full Text Available Fungal entomopathogens rely on cellular heterogeneity during the different stages of insect host infection. Their pathogenicity is exhibited through the secretion of secondary metabolites, which implies that the infection life history of this group of environmentally important fungi can be revealed using metabolomics. Here metabolomic analysis in combination with ex vivo insect tissue culturing shows that two generalist isolates of the genus Metarhizium and Beauveria, commonly used as biological pesticides, employ significantly different arrays of secondary metabolites during infectious and saprophytic growth. It also reveals that both fungi exhibit tissue specific strategies by a distinguishable metabolite secretion on the insect tissues tested in this study. In addition to showing the important heterogeneous nature of these two entomopathogens, this study also resulted in the discovery of several novel destruxins and beauverolides that have not been described before, most likely because previous surveys did not use insect tissues as a culturing system. While Beauveria secreted these cyclic depsipeptides when encountering live insect tissues, Metarhizium employed them primarily on dead tissue. This implies that, while these fungi employ comparable strategies when it comes to entomopathogenesis, there are most certainly significant differences at the molecular level that deserve to be studied.

  20. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  1. Micropropagation and maintenance of phytoplasmas in tissue culture.

    Science.gov (United States)

    Bertaccini, Assunta; Paltrinieri, Samanta; Martini, Marta; Tedeschi, Mara; Contaldo, Nicoletta

    2013-01-01

    Maintenance of phytoplasma strains in tissue culture is achievable for all strains transmitted to periwinkle (Catharanthus roseus), and also for other naturally infected plant host species. Shoots of 1-3 cm length are grown in a solid medium containing Murashige and Skoog (MS) micro- and macroelements and 0.12 mg/L benzylaminopurine. The continued presence of phytoplasmas in infected shoots of periwinkle that have been maintained in micropropagation for up to 20 years can be shown by diagnostic methods such as nested PCR tests using the 16S rDNA gene (see Chapters 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,and 26 for phytoplasma diagnostic methods).

  2. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack [KAERI, Daejeon (Korea, Republic of)

    2010-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H{sub 2}O{sub 2} in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  3. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack

    2010-02-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H 2 O 2 in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  4. Isolation of Lysosomes from Mammalian Tissues and Cultured Cells.

    Science.gov (United States)

    Aguado, Carmen; Pérez-Jiménez, Eva; Lahuerta, Marcos; Knecht, Erwin

    2016-01-01

    Lysosomes participate within the cells in the degradation of organelles, macromolecules, and a wide variety of substrates. In any study on specific roles of lysosomes, both under physiological and pathological conditions, it is advisable to include methods that allow their reproducible and reliable isolation. However, purification of lysosomes is a difficult task, particularly in the case of cultured cells. This is mainly because of the heterogeneity of these organelles, along with their low number and high fragility. Also, isolation methods, while disrupting plasma membranes, have to preserve the integrity of lysosomes, as the breakdown of their membranes releases enzymes that could damage all cell organelles, including themselves. The protocols described below have been routinely used in our laboratory for the specific isolation of lysosomes from rat liver, NIH/3T3, and other cultured cells, but can be adapted to other mammalian tissues or cell lines.

  5. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral...... numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after......Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7...

  7. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.

    Science.gov (United States)

    Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin

    2015-02-01

    Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo.

    Science.gov (United States)

    Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E

    2014-01-01

    Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.

  9. Cultural pathways through universal development.

    Science.gov (United States)

    Greenfield, Patricia M; Keller, Heidi; Fuligni, Andrew; Maynard, Ashley

    2003-01-01

    We focus our review on three universal tasks of human development: relationship formation, knowledge acquisition, and the balance between autonomy and relatedness at adolescence. We present evidence that each task can be addressed through two deeply different cultural pathways through development: the pathways of independence and interdependence. Whereas core theories in developmental psychology are universalistic in their intentions, they in fact presuppose the independent pathway of development. Because the independent pathway is therefore well-known in psychology, we focus a large part of our review on empirically documenting the alternative, interdependent pathway for each developmental task. We also present three theoretical approaches to culture and development: the ecocultural, the sociohistorical, and the cultural values approach. We argue that an understanding of cultural pathways through human development requires all three approaches. We review evidence linking values (cultural values approach), ecological conditions (ecocultural approach), and socialization practices (sociohistorical approach) to cultural pathways through universal developmental tasks.

  10. In vitro long-term development of cultured inner ear stem cells of newborn rat.

    Science.gov (United States)

    Carricondo, Francisco; Iglesias, Mari Cruz; Rodríguez, Fernando; Poch-Broto, Joaquin; Gil-Loyzaga, Pablo

    2010-10-01

    The adult mammalian auditory receptor lacks any ability to repair and/or regenerate after injury. However, the late developing cochlea still contains some stem-cell-like elements that might be used to regenerate damaged neurons and/or cells of the organ of Corti. Before their use in any application, stem cell numbers need to be amplified because they are usually rare in late developing and adult tissues. The numerous re-explant cultures required for the progressive amplification process can result in a spontaneous differentiation process. This aspect has been implicated in the tumorigenicity of stem cells when transplanted into a tissue. The aim of this study has been to determine whether cochlear stem cells can proliferate and differentiate spontaneously in long-term cultures without the addition of any factor that might influence these processes. Cochlear stem cells, which express nestin protein, were cultured in monolayers and fed with DMEM containing 5% FBS. They quickly organized themselves into typical spheres exhibiting a high proliferation rate, self-renewal property, and differentiation ability. Secondary cultures of these stem cell spheres spontaneously differentiated into neuroectodermal-like cells. The expression of nestin, glial-fibrillary-acidic protein, vimentin, and neurofilaments was evaluated to identify early differentiation. Nestin expression appeared in primary and secondary cultures. Other markers were also identified in differentiating cells. Further research might demonstrate the spontaneous differentiation of cochlear stem cells and their teratogenic probability when they are used for transplantation.

  11. Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures.

    Science.gov (United States)

    Frankowski, Harald; Gu, Yu-Huan; Heo, Ji Hoe; Milner, Richard; Del Zoppo, Gregory J

    2012-01-01

    Glia synthesize, package, and secrete several species of matrix proteases, including the gelatinases (pro-)MMP-2 and (pro-)MMP-9. In appropriate settings (e.g., experimental ischemia), these MMPs can be assayed from cerebral tissues or from astrocytes and microglia in culture by enzymatic substrate-dependent assays and by gelatin-based zymography. We describe the methodologies for the sensitive quantitative development of the inactive and active forms of both MMP-2 and MMP-9 from tissues and cells, by means of lysis of the collagen substrate in collagen-impregnated gel electropheresis by the zymogen and active gelatinases. These methodologies are a refinement of those used commonly, with instructions to increase sensitivity. Serious and often overlooked issues regarding sources of sample contamination and elements confounding the MMP band development and their interpretation are discussed.

  12. Influence of Cryopreservation Solution on the In Vitro Culture of Skin Tissues Derived from Collared Peccary (Pecari tajacu Linnaeus, 1758).

    Science.gov (United States)

    Borges, Alana A; Lira, Gabriela P O; Nascimento, Lucas E; Queiroz Neta, Luiza B; Santos, Maria V O; Oliveira, Moacir F; Silva, Alexandre R; Pereira, Alexsandra F

    2018-04-01

    Skin vitrification is a promising and alternative tool for the conservation of biodiversity, especially for wild mammals, such as collared peccaries. Several factors can affect the success of this procedure, such as the cryoprotectant solution used. Therefore, this study was carried out to compare the efficiency of various vitrification solutions for recovery of viable cells after in vitro culture of cryopreserved skin tissues derived from the collared peccary, aiming to study the application in biobanking, where cellular use is not immediately required. Then, Dulbecco's modified Eagle's medium (DMEM) composed of 2.2 g/L sodium bicarbonate and 10% fetal bovine serum (FBS) was supplemented with 3.0 M ethylene glycol (EG) or 3.0 M dimethyl sulfoxide (DMSO) or 1.5 M EG plus 1.5 M DMSO with or without sucrose (SUC; 0.25 M) to produce six solutions for solid-surface vitrification. After warming, skin tissues were cultured in vitro and recovered cells were analyzed for morphology, adhesion, subconfluence, and proliferative activity for developing the growth curve and determining the population doubling time (PDT), and viability by Trypan Blue. The vitrification did not alter the ability of the tissues to adhere to the culture dish, as well as the day of all explants with cell growth, subconfluence samples, subconfluence total time, and PDT (p > 0.05). Moreover, independent of the cryoprotectant solution used, the vitrification altered the day of all attached explants (p  0.05). Additionally, for viability after the third passage, only the EG-SUC group maintained the cell quality (88.3%), when compared with the nonvitrified (97.8%, p > 0.05). In conclusion, DMEM with 10% FBS, 3.0 M EG, and 0.25 M sucrose was the most efficient solution for vitrifying collared peccary skin tissues, leading to the in vitro culture of viable cells.

  13. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  14. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics

    NARCIS (Netherlands)

    Baert, Yoni; Braye, Aude; Struijk, Robin B.; van Pelt, Ans M. M.; Goossens, Ellen

    2015-01-01

    To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. Experimental basic science study. Reproductive biology laboratory. Testicular tissue with normal spermatogenesis was obtained from six donors. None. Detection and comparison of

  15. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  16. Altered Loyalties of Neuronal Markers in Cultured Slices of Resected Human Brain Tissue

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baayen, Johannes C.; Speijer, Dave; Idema, Sander; Swaab, Dick F.

    2016-01-01

    Organotypic cultures from normal neocortical tissue obtained at epilepsy surgery show a severe injury response. This response involves both neuronal degeneration and the proliferation of reactive cells. A salient feature of the reactive cells is the co-expression of microglial and astrocytic

  17. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  18. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues.

    Science.gov (United States)

    Fortier, Guillaume Marceau; Gauvin, Robert; Proulx, Maryse; Vallée, Maud; Fradette, Julie

    2013-04-01

    Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.

  19. The application of cell cultures, body fluids and tissues in oncoproteomics

    Directory of Open Access Journals (Sweden)

    Kamila Duś-Szachniewicz

    2014-11-01

    Full Text Available Mass spectrometry (MS-based proteomics is a rapidly developing technology for the large scale analysis of proteins, their interactions and subcellular localization. In recent years proteomics has attracted much attention in medicine. Since a single biomarker might not have sufficient sensitivity and specificity in clinical practice, the identification of biomarker panels that comprise several proteins would improve the detection and clinical management of cancer patients. Additionally, the characteristics of protein profiles of most severe human malignancies certainly contribute to the understanding of the biology of cancer and fill the gap in our knowledge of carcinogenesis. This knowledge also is likely to result in the discovery of novel potential cancer markers and targets for molecular therapeutics. It is believed that the novel biomarkers will help in the development of personalized therapy tailored to the individual patient and will thereby reduce the mortality rate from cancer. In this review, the use of different types of human clinical samples (cell cultures, tissues and body fluids in oncoproteomics is explained and the latest advances in mass spectrometry-based proteomics biomarker discovery are discussed.

  20. Sensitivity of Pigment Content of Banana and Orchid Tissue Culture Exposed to Extremely Low Frequency Electromagnetic Fiel

    OpenAIRE

    Prihatini, Riry; Saleh, Norihan Mohamad

    2016-01-01

    Natural exposure of extremely low frequency electromagnetic field (ELF-EMF) occurs in the environment and acts as one of the abiotic factors that affect the growth and development of organisms. This study was conducted to determine the effect of ELF-EMF on the tissue cultured banana and slipper orchid chlorophyll content as one of the indicators in measuring plant photosynthetic capacity. Four days old banana (Musa sp. cv. Berangan) corm and seven days old slipper orchid (Paphiopedilum rothsc...

  1. Socioemotional Development in Cultural Context

    Science.gov (United States)

    Chen, Xinyin, Ed.; Rubin, Kenneth H., Ed.

    2011-01-01

    Filling a significant gap in the literature, this book examines the impact of culture on the social behaviors, emotions, and relationships of children around the world. It also explores cultural differences in what is seen as adaptive or maladaptive development. Eminent scholars discuss major theoretical perspectives on culture and development and…

  2. Potato transformation and potato cyst nematode infection on potato plantlets in tissue culture

    Science.gov (United States)

    These two protocols describe the methods for generating transgenic potato plants and for evaluating potato cyst nematode (Globodera rostochiensis and G. pallida) infection on potato plantlets in tissue culture. These methods are useful tools that can be used in the study of the interactions between ...

  3. Career development in cross-cultural environment

    OpenAIRE

    Balčiūnaitienė, Asta; Barvydienė, Violeta; Petkevičiūtė, Nijolė

    2013-01-01

    The aim of this paper is to discuss the peculiarities of career development and cultural competence in crosscultural environment. The idea of career development in a cross-cultural environment is usually linked to personal, communication skills, social and cultural issues. Understanding of the concept of peculiarities of career development and cross-cultural communication competence is of crucial significance in a multicultural environment. The main factors of career development in cross-cult...

  4. Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors.

    Science.gov (United States)

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Matsuzaka, Satoshi; Yamagishi, Chie; Kobayashi, Kohei

    2010-05-01

    Tissue-engineered cartilage may be expected to serve as an alternative to autologous chondrocyte transplantation treatment. Several methods for producing cartilaginous tissue have been reported. In this study, we describe the production of scaffold-free stiff cartilaginous tissue of pig and human, using allogeneic serum and growth factors. The tissue was formed in a mold using chondrocytes recovered from alginate bead culture and maintained in a medium with transforming growth factor-beta and several other additives. In the case of porcine tissue, the tear strength of the tissue and the contents of proteoglycan (PG) and collagen per unit of DNA increased dose-dependently with transforming growth factor-beta. The length of culture was significantly and positively correlated with thickness, tear strength, and PG and collagen contents. Tear strength showed positive high correlations with both PG and collagen contents. A positive correlation was also seen between PG content and collagen content. Similar results were obtained with human cartilaginous tissue formed from chondrocytes expanded in monolayer culture. Further, an in vivo pilot study using pig articular cartilage defect model demonstrated that the cartilaginous tissue was well integrated with surrounding tissue at 13 weeks after the implantation. In conclusion, we successfully produced implantable scaffold-free stiff cartilaginous tissue, which characterized high PG and collagen contents.

  5. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  6. Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering.

    Science.gov (United States)

    Paim, Ágata; Tessaro, Isabel C; Cardozo, Nilo S M; Pranke, Patricia

    2018-03-05

    Tissue engineering is a multidisciplinary field of research in which the cells, biomaterials, and processes can be optimized to develop a tissue substitute. Three-dimensional (3D) architectural features from electrospun scaffolds, such as porosity, tortuosity, fiber diameter, pore size, and interconnectivity have a great impact on cell behavior. Regarding tissue development in vitro, culture conditions such as pH, osmolality, temperature, nutrient, and metabolite concentrations dictate cell viability inside the constructs. The effect of different electrospun scaffold properties, bioreactor designs, mesenchymal stem cell culture parameters, and seeding techniques on cell behavior can be studied individually or combined with phenomenological modeling techniques. This work reviews the main culture and scaffold factors that affect tissue development in vitro regarding the culture of cells inside 3D matrices. The mathematical modeling of the relationship between these factors and cell behavior inside 3D constructs has also been critically reviewed, focusing on mesenchymal stem cell culture in electrospun scaffolds.

  7. Cell structure and proliferative activity of organ cultures of normal embryonic lung tissue of mice resistant (C57BL) and predisposed (A) to lung tumors

    International Nuclear Information System (INIS)

    Kolesnichenko, T.S.; Gor'kova, T.G.

    1985-01-01

    Local factors such as proliferative activity and the numerical ratio between epithelial and mesenchymal cells, and also the character of interaction between the tissue components in ontogeny may play an important role in the realization of sensitivity of mice of a particular line to the development of lung tumors. These characteristics of lung tissue in mice of lines A and C57BL are investigated under normal conditions and during induced carcinogenesis. Results are given of a comparative study of the relative numbers of epithelial and mesenchymal cells in organ cultures of embryonic lungs. 3 H-thymidine was added to the cultures on the 14th day of the experiment in a concentration of 1 microCi/m1 medium. An autoradiographic study of the cultures was performed

  8. Development of Three-Dimensional Multicellular Tissue-Like Constructs for Mutational Analysis Using Macroporous Microcarriers

    Science.gov (United States)

    Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.

    2002-01-01

    A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2

  9. Morphological, biochemical and genetic influence of mutagen treatments on medicinal plant tissue cultures

    International Nuclear Information System (INIS)

    Onisei, T.; Toth, E.; Tesio, B.; Floria, F.

    1994-01-01

    Gamma rays and/or alkylant agents have been applied on callus tissue, young regenerants and cell suspension in order to establish their effect on morphogenesis, regeneration ability and biosynthetic potential. Growth dynamics, morpho-anatomic variables, secondary metabolite production, cell cytogenetics, enzyme specific activities, isoperoxidase and isoesterase patterns were analyzed in relation to the morphogenetic response of Atropa belladonna, Datura innoxia, Lavandula angustifolia, Chamomilla recutita, Digitalis lanata and Vinca minor tissue cultures. The effects of gamma-ray doses varied from one species to another; 10 to 20 Gy were generally able to stimulate growth and plant regeneration (via organogenesis and somatic embryogenesis), while 10 to 50 Gy enhanced secondary metabolite biosynthesis both in callus and cell suspension culture. Semnificative increase of secondary metabolite production was obtained when treatments with EMS (0.1-0.2%) have been applied to young regenerants. Many differences in biological features and biochemical behaviour were registered 20 days and one year, respectively, after treatment. (author)

  10. The release of bystander factor(s) from tissue explant cultures of rainbow trout (Onchorhynchus mykiss) after exposure to gamma radiation.

    Science.gov (United States)

    O'Dowd, Colm; Mothersill, Carmel E; Cairns, Michael T; Austin, Brian; McClean, Brendan; Lyng, Fiona M; Murphy, James E J

    2006-10-01

    The bystander response has been documented in cell lines and cell cultures derived from aquatic species over the past several years. However, little work has been undertaken to identify a similar bystander response in tissue explant cultures from fish. In this study, indirect effects of ionizing gamma radiation on tissue explant cultures of fish were investigated. Tissue explants in culture were exposed to 0.5 Gy and 5 Gy gamma radiation from a 60Co teletherapy unit. A bystander response in Epithelioma papulosum cyprini (EPC) cells exposed to gamma-irradiated tissue conditioned medium from rainbow trout explants was investigated, and the effects on cell survival were quantified by the clonogenic survival assay. Dichlorofluorescein and rhodamine 123 fluorescent dyes were used to identify alterations in reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), respectively. Results indicate a different response for the three tissue types investigated. Clonogenic assay results vary from a decrease in cell survival (gill) to no effect (skin) to a stimulatory effect (spleen). Results from fluorescence assays of ROS and MMP show similarities to clonogenic assay results. This study identifies a useful model for further studies relating to the bystander effect in aquatic organisms in vivo and ex vivo.

  11. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application

    Directory of Open Access Journals (Sweden)

    Vibha Pandey

    2017-08-01

    Full Text Available Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc. or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.

  12. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices.

    OpenAIRE

    Christensen, G D; Simpson, W A; Younger, J J; Baddour, L M; Barrett, F F; Melton, D M; Beachey, E H

    1985-01-01

    The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through ...

  13. [Effects of endophytic fungi from Dendrobium officinale on host growth and components metabolism of tissue culture seedlings].

    Science.gov (United States)

    Zhu, Bo; Liu, Jing-Jing; Si, Jin-Ping; Qin, Lu-Ping; Han, Ting; Zhao, Li; Wu, Ling-Shang

    2016-05-01

    The paper aims to study the effects of endophytic fungi from D. officinale cultivated on living trees on growth and components metabolism of tissue culture seedlings. Morphological characteristics and agronomic characters of tissue culture seedlings infected and uninfected by endophytic fungus were observed and measured. Polysaccharides and alcohol-soluble extracts contents were determined by phenol-sulfuric acid method and hot-dipmethod, respectively. Monosacchride composition of polysaccharides and alcohol-soluble extracts components were analyzed by pre-column derivatives HPLC and HPLC method, respectively. It showed that effects of turning to purple of stem nodes could be changed by endophytic fungus. Besides, the endophytic fungus could affect the contents and constitutions of polysaccharides and alcohol-soluble extracts. The strains tested, expect DO34, could promote growth and polysaccharides content of tissue culture seedlings. The strains tested, expect DO12, could promote the accumulation of mannose. Furthermore, DO18, DO19 and DO120 could increase alcohol-soluble extracts. On the basis, four superior strains were selected for mechanism research between endophytic fungus and their hosts and microbiology engineering. Copyright© by the Chinese Pharmaceutical Association.

  14. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  15. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. II. Helianthus annuus

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available The dynamics of growth and changes in nucleic acid and protein contents in sunflower calluses and tumours cultured in hydroxyurea (HU containing media were examined. HU-induced changes in healthy tissues ran in parallel always in the same direction, in tumourous ones however an uncoupling between DNA synthesis and tissue growth on one hand and RNA and protein synthesis on the other took place. A detailed analysis of the results allows to suppose that the specific activity of HU on tumourous tissue could be an index of: 1 quantitative disturbances in its genes function (2 degree of the lass of sensitivity to the factors of regulation.

  16. Organ In Vitro Culture: What Have We Learned about Early Kidney Development?

    Directory of Open Access Journals (Sweden)

    Aleksandra Rak-Raszewska

    2015-01-01

    Full Text Available When Clifford Grobstein set out to study the inductive interaction between tissues in the developing embryo, he developed a method that remained important for the study of renal development until now. From the late 1950s on, in vitro cultivation of the metanephric kidney became a standard method. It provided an artificial environment that served as an open platform to study organogenesis. This review provides an introduction to the technique of organ culture, describes how the Grobstein assay and its variants have been used to study aspects of mesenchymal induction, and describes the search for natural and chemical inducers of the metanephric mesenchyme. The review also focuses on renal development, starting with ectopic budding of the ureteric bud, ureteric bud branching, and the generation of the nephron and presents the search for stem cells and renal progenitor cells that contribute to specific structures and tissues during renal development. It also presents the current use of Grobstein assay and its modifications in regenerative medicine and tissue engineering today. Together, this review highlights the importance of ex vivo kidney studies as a way to acquire new knowledge, which in the future can and will be implemented for developmental biology and regenerative medicine applications.

  17. Assessment of three types of spaceflight hardware for tissue culture studies: Comparison of skeletal tissue growth and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Klement, B.J. [Space Medicine and Life Sciences Research Center Department of Anatomy Morehouse School of Medicine 720 Westview Dr. SW Atlanta, Georgia30310-1495 (United States); Spooner, B.S. [NASA Specialized Center of Research and Training Division of Biology Ackert Hall Kansas State University Manhattan, Kansas66506 (United States)

    1997-01-01

    Three different types of spaceflight hardware, the BioProcessing Module (BPM), the Materials Dispersion Apparatus (MDA), and the Fluid Processing Apparatus (FPA), were assessed for their ability to support pre-metatarsal growth and differentiation in experiments conducted on five space shuttle flights. BPM-cultured pre-metatarsal tissue showed no difference in flight and ground control lengths. Flight and ground controls cultured in the MDA grew 135 {mu}m and 141 {mu}m, respectively, in an 11 day experiment. Only five control rods and three flight rods mineralized. In another MDA experiment, pre-metatarsals were cultured at 4{degree}C (277K) or 20{degree}C (293K) for the 16 day mission, then cultured an additional 16 days in laboratory dishes at 37{degree}C (310K). The 20{degree}C (293K) cultures died post-flight. The 4{degree}C (277K) flight pre-metatarsals grew 417 {mu}m more than the 4{degree}C (277K) ground controls post-flight. In 5 and 6 day experiments done in FPAs, flight rods grew longer than ground control rods. In a 14 day experiment, ground control and flight rods also expanded in length, but there was no difference between them. The pre-metatarsals cultured in the FPAs did not mineralize, or terminally differentiate. These experiments demonstrate, that while supporting pre-metatarsal growth in length, the three types of hardware are not suitable to support routine differentiation. {copyright} {ital 1997 American Institute of Physics.}

  18. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    Science.gov (United States)

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  19. Microbial Biofilms and Breast Tissue Expanders

    Directory of Open Access Journals (Sweden)

    Melissa J. Karau

    2013-01-01

    Full Text Available We previously developed and validated a vortexing-sonication technique for detection of biofilm bacteria on the surface of explanted prosthetic joints. Herein, we evaluated this technique for diagnosis of infected breast tissue expanders and used it to assess colonization of breast tissue expanders. From April 2008 to December 2011, we studied 328 breast tissue expanders at Mayo Clinic, Rochester, MN, USA. Of seven clinically infected breast tissue expanders, six (85.7% had positive cultures, one of which grew Propionibacterium species. Fifty-two of 321 breast tissue expanders (16.2%, 95% CI, 12.3–20.7% without clinical evidence of infection also had positive cultures, 45 growing Propionibacterium species and ten coagulase-negative staphylococci. While vortexing-sonication can detect clinically infected breast tissue expanders, 16 percent of breast tissue expanders appear to be asymptomatically colonized with normal skin flora, most commonly, Propionibacterium species.

  20. Development of safety culture - A Chinese traditional cultural perspective

    International Nuclear Information System (INIS)

    Zhou Weihong . E-mail zhouwh@lanps.com

    2002-01-01

    Living in a social community, the culture of an enterprise is certainly under the influence of that society. Safety culture of nuclear utilities is the core of the enterprise culture. As a formal expression as defined in INSAG 3 and 4 by IAEA, it as a matter of fact originated from the summing up of the experiences of western nuclear industry, particularly after such epoch-making accidents of Three Miles Island and Chernobyl. In view of the geographical culture theory, whether or not this conception of western industrial culture will be absorbed and assimilated by Chinese Nuclear Industry is a challenging issue. This is because, on the one hand, Nuclear Power is comparatively speaking a newly developing industry in China and, on the other hand, China has enjoyed an uninterrupted history of traditional culture over five thousand years. In other words, whether the new and alien values will conflict with or be constructively assimilated by our traditional mindset is a critical question to be answered in any development program of safety culture. (author)

  1. Primary chondrocytes enhance cartilage tissue formation upon co-culture with expanded chondrocytes, dermal fibroblasts, 3T3 feeder cells and embryonic stem cells

    NARCIS (Netherlands)

    Hendriks, J.A.A.; Miclea, Razvan L.; Schotel, Roka; de Bruijn, Ewart; Moroni, Lorenzo; Karperien, Hermanus Bernardus Johannes; Riesle, J.U.; van Blitterswijk, Clemens

    2010-01-01

    Co-culture models have been increasingly used in tissue engineering applications to understand cell–cell interactions and consequently improve regenerative medicine strategies. Aiming at further elucidating cartilage tissue formation, we co-cultured bovine primary chondrocytes (BPCs) with human

  2. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  3. [Extraction and analysis of chemical components of essential oil in Thymus vulgaris of tissue culture].

    Science.gov (United States)

    Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang

    2011-10-01

    To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.

  4. Comparison of tumour age response to radiation for cells derived from tissue culture or solid tumours

    International Nuclear Information System (INIS)

    Keng, P.C.; Siemann, D.W.; Rochester Univ., NY; Rochester Univ., NY; Wheeler, K.T.

    1984-01-01

    Direct comparison of the cell age response of 9L and KHT tumour cells derived either from tissue culture or solid tumours was achieved. Cells from dissociated KHT and 9L tumours (the latter implanted either subcutaneously or intracerebrally) and cells from tissue culture were separated into homogenous sized populations by centrifugal elutriation. In both tumour models these homogeneous sized populations correspond to populations enriched at different stages of the cell cycle. The survival of these elutriated cell populations was measured after a single dose of Cs-137 gamma rays. For cells isolated from 9L solid tumours, there was little variation in radiosensitivity throughout the cell cycle; however, a very small but significant increase in resistance was found in late G 1 cells. This lack of a large variation in radiosensitivity through the cell cycle for 9L cells from solid tumours also was seen in 9L cells growing in monolayer tissue culture. When similar experiments were performed using the KHT sarcoma tumour model, the results showed that KHT cells in vitro exhibited a fairly conventional increase in radioresistance in both mid G 1 and late S. However, the cell age response of KHT cells from solid tumours was different; particularly in the late S and G 2 + M phases. (author)

  5. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues

    Science.gov (United States)

    Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi

    2016-01-01

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791

  6. Allelopathy of small everlasting (Antennaria microphylla) : Phytotoxicity to leafy spurge (Euphorbia esula) in tissue culture.

    Science.gov (United States)

    Hogan, M E; Manners, G D

    1990-03-01

    Media and media extracts from callus cultures of small everlasting (Antennaria microphylla) inhibited leafy spurge (Euphorbia esula L.) callus tissue and suspension culture growth (50 and 70% of control, respectively) and were phytotoxic in lettuce and leafy spurge root elongation bioassays (64 and 77% of control, respectively). Hydroquinone, a phytotoxic compound previously isolated from small everlasting, was also biosynthesized by callus and suspension cultures of this species. Exogenously supplied hydroquinone (0.5 mM) was toxic to leafy spurge suspension culture cells and was only partially biotransformed to its nontoxic water-soluble monoglucoside, arbutin, by these cells. This report confirms the chronic involvement of hydroquinone in the allelopathic interaction between small everlasting and leafy spurge.

  7. Culture and Rural Development

    OpenAIRE

    Wüpper, David Johannes

    2016-01-01

    History is an important determinant of current economic development. One reason is cultural learning, which includes imitating behaviors from ancestors in order to save individual learning costs. Amongst anthropologists, there is widespread agreement that it is cultural learning that makes humans so adaptive in comparison to other species, which imitate less or worse. Nevertheless, culture also makes humans less adaptive than economists assume for the homo economicus (because humans imitate m...

  8. Communism, Culture, and Financial Development

    OpenAIRE

    Klein, Alina F.; Klein, Rudolf F.

    2017-01-01

    This paper analyzes the relationship between culture and financial development in Europe, with culture defined as informal constraints on human interactions. We assert that various national characteristics such as people’s trust and trustworthiness, and the level of control they feel they have over their lives can modify transaction costs, which in turn leads to different levels of financial development. Furthermore, we consider communism as an exogenous shock to the cultural values existent ...

  9. Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture

    Directory of Open Access Journals (Sweden)

    Jyoti Kumar

    2015-09-01

    Full Text Available Aim: This study was aimed to detect Mannheimia haemolytica in lung tissues of sheep and from a bacterial culture. Introduction: M. haemolytica is one of the most important and well-established etiological agents of pneumonia in sheep and other ruminants throughout the world. Accurate diagnosis of M. haemolytica primarily relies on bacteriological examination, biochemical characteristics and, biotyping and serotyping of the isolates. In an effort to facilitate rapid M. haemolytica detection, polymerase chain reaction assay targeting Pasteurella haemolytica serotype-1 specific antigens (PHSSA, Rpt2 and 12S ribosomal RNA (rRNA genes were used to detect M. haemolytica directly from lung tissues and from bacterial culture. Materials and Methods: A total of 12 archived lung tissues from sheep that died of pneumonia on an organized farm were used. A multiplex polymerase chain reaction (mPCR based on two-amplicons targeted PHSSA and Rpt2 genes of M. haemolytica were used for identification of M. haemolytica isolates in culture from the lung samples. All the 12 lung tissue samples were tested for the presence M. haemolytica by PHSSA and Rpt2 genes based PCR and its confirmation by sequencing of the amplicons. Results: All the 12 lung tissue samples tested for the presence of PHSSA and Rpt2 genes of M. haemolytica by mPCR were found to be positive. Amplification of 12S rRNA gene fragment as internal amplification control was obtained with each mPCR reaction performed from DNA extracted directly from lung tissue samples. All the M. haemolytica were also positive for mPCR. No amplified DNA bands were observed for negative control reactions. All the three nucleotide sequences were deposited in NCBI GenBank (Accession No. KJ534629, KJ534630 and KJ534631. Sequencing of the amplified products revealed the identity of 99-100%, with published sequence of PHSSA and Rpt2 genes of M. haemolytica available in the NCBI database. Sheep specific mitochondrial 12S r

  10. An in vitro evaluation of various biomaterials for the development of a tissue-engineered lacrimal gland

    Science.gov (United States)

    Selvam, Shivaram

    The most common cause of ocular morbidity in developed countries is dry eye, many cases of which are due to lacrimal insufficiency. It has been established that lacrimal insufficiency results from processes caused by both immune-related and non-immune related events such as Sjogren's syndrome, Stevens-Johnson syndrome, chemical and thermal injuries and ocular cicatricial pemphigoid. Patients with these conditions would benefit from repair of their damaged lacrimal tissue by the creation of a replacement for the lacrimal gland. The new field of tissue engineering built on the interface between principles and methods of the life sciences with those of engineering to develop biocompatible materials has created the possibility for repairing or replacing damaged tissues. This thesis explores the use of tissue engineering principles for the development of a tissue-engineered lacrimal gland. This thesis also contributes to the development of a novel model for addressing lacrimal gland physiology and epithelial fluid transport. The first part of the research work focused on the evaluation of morphological and physiological properties of purified lacrimal gland acinar cells (pLGACs) cultured on various biopolymers: silicone, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), and poly-L-lactic acid (PLLA) in the presence and absence of an extracellular matrix, MatrigelRTM. Results indicated that PLLA demonstrated the best support expression of acinar cell-like morphology. The second part demonstrated the ex vivo reconstitution of an electrophysiologically functional lacrimal gland tissue on porous polyester membrane scaffolds. Results showed that pLGACs were capable of establishing continuous epithelial monolayers that generate active ionic fluxes consistent with current models for Na +-dependent Cl-- secretion. The third part outlined the fabrication of porous PLLA membranes, the optimal biomaterial for culturing lacrimal epithelial cells. Microporous PLLA

  11. Cultural development and environment: a necessity to achieve sustainable development

    International Nuclear Information System (INIS)

    Azhari, A.

    2003-01-01

    This paper stresses on the important role of cultural development and protection of environment as the main pillars of sustainable development. one of the article's goals to make link among culture, protection of environment and sustainable development. according to the article, part of our commitment to sustainable development is to keep balance among different dimensions of development (cultural/ economic/ political/ social) considering environmental ethics

  12. A Cost-Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multilayered Multiculture Tubular Tissue Models.

    Science.gov (United States)

    Loy, Caroline; Pezzoli, Daniele; Candiani, Gabriele; Mantovani, Diego

    2018-01-01

    The development of tubular engineered tissues is a challenging research area aiming to provide tissue substitutes but also in vitro models to test drugs, medical devices, and even to study physiological and pathological processes. In this work, the design, fabrication, and validation of an original cost-effective tubular multilayered-tissue culture system (TMCS) are reported. By exploiting cellularized collagen gel as scaffold, a simple moulding technique and an endothelialization step on a rotating system, TMCS allowed to easily prepare in 48 h, trilayered arterial wall models with finely organized cellular composition and to mature them for 2 weeks without any need of manipulation. Multilayered constructs incorporating different combinations of vascular cells are compared in terms of cell organization and viscoelastic mechanical properties demonstrating that cells always progressively aligned parallel to the longitudinal direction. Also, fibroblast compacted less the collagen matrix and appeared crucial in term of maturation/deposition of elastic extracellular matrix. Preliminary studies under shear stress stimulation upon connection with a flow bioreactor are successfully conducted without damaging the endothelial monolayer. Altogether, the TMCS herein developed, thanks to its versatility and multiple functionalities, holds great promise for vascular tissue engineering applications, but also for other tubular tissues such as trachea or oesophagus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Zhengqi Chang

    Full Text Available To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hUCMSCs represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton's jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15-20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF not only made full use of the Wharton's jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.

  14. Dynamic 3D culture promotes spontaneous embryonic stem cell differentiation in vitro.

    Science.gov (United States)

    Gerlach, Jörg C; Hout, Mariah; Edsbagge, Josefina; Björquist, Petter; Lübberstedt, Marc; Miki, Toshio; Stachelscheid, Harald; Schmelzer, Eva; Schatten, Gerald; Zeilinger, Katrin

    2010-02-01

    Spontaneous in vitro differentiation of mouse embryonic stem cells (mESC) is promoted by a dynamic, three-dimensional (3D), tissue-density perfusion technique with continuous medium perfusion and exchange in a novel four-compartment, interwoven capillary bioreactor. We compared ectodermal, endodermal, and mesodermal immunoreactive tissue structures formed by mESC at culture day 10 with mouse fetal tissue development at gestational day E9.5. The results show that the bioreactor cultures more closely resemble mouse fetal tissue development at gestational day E9.5 than control mESC cultured in Petri dishes.

  15. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  16. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H 2 O 2 removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities

  17. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  18. Proteomic analysis reveals the mechanisms of Mycena dendrobii promoting transplantation survival and growth of tissue culture seedlings of Dendrobium officinale.

    Science.gov (United States)

    Xu, X B; Ma, X Y; Lei, H H; Song, H M; Ying, Q C; Xu, M J; Liu, S B; Wang, H Z

    2015-06-01

    Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums. © 2015 The Society for Applied Microbiology.

  19. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    Science.gov (United States)

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2018-01-01

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value <0.05). Furthermore, healing of epithelial defects is enabled in the bioreactor, characterized by re-epithelialization and initiated stromal regeneration. Based on the obtained results, an easy-to-use 3D-printed bioreactor composed of only two parts was derived to translate the technology from the laboratory to the eye banks. This optimized bioreactor facilitates noninvasive microscopic monitoring. The improved storage conditions ameliorate the quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Establishment and long-term culture of the cell lines derived from gonad tissues of Siberian sturgeon (Acipenser baerii

    Directory of Open Access Journals (Sweden)

    Jun Hyung Ryu

    2016-06-01

    Full Text Available Abstract To culture germline stem cells in vitro, establishment of the cell lines that can be used as the feeder cells is a prerequisite. In this study, we tried to establish gonad-derived cell lines in Siberian sturgeon (Acipenser baerii. Five 1-year-old A. baerii were used as a donor of gonad tissues, and gonad-dissociated cells were cultured in vitro. Subsequently, determination of growth conditions, long-term culture, characterization, and cryopreservation of the cell lines were also conducted. Five gonad-derived cell lines were stably established and cultured continuously over at least the 73th passage and 402 culture days under the media containing 20 % fetal bovine serum at 28 °C. All cell lines consisted of two main cell types based on morphology even if the ratio of the two cell types was different depending on cell lines. Despite long-term culture, all cell lines maintained diploid DNA contents and expression of several genes that are known to express in the A. baerii gonad. After freezing and thawing of the cell lines, post-thaw cell viabilities between 57.6 and 92.9 % depending on cell lines were indentified, suggesting that stable cryopreservation is possible. The results and the cell lines established in this study will contribute to the development of an in vitro system for A. baerii germline stem cell culture.

  1. Picroside I and Picroside II from Tissue Cultures of Picrorhiza kurroa

    Science.gov (United States)

    Ganeshkumar, Yamjala; Ramarao, Ajmera; Veeresham, Ciddi

    2017-01-01

    Background: Picrorhiza kurroa (PK) belongs to Scrophulariaceae family and is a representative endemic, medicinal herb, widely distributed throughout the higher altitudes of alpine Himalayas from west to east, between 3000 and 4500 m above mean sea level. Objective: The objective of the present study is to assess the production of picroside I and picroside II from tissue cultures of PK. Materials and Methods: Auxiliary shoot tips of PK were incubated in Murashige and Skoog medium supplemented with indole-3-butyric acid and kinetin phytohormones. The callus produced was collected at different time intervals and was processed for extraction of picroside I and picroside II followed by thin layer chromatography and high-performance liquid chromatography HPLC analysis. Results: The maximum growth index was found to be 5.109 ± 0.159 at 16-week-old callus culture. The estimation of picroside-I and picroside-II was carried out by (HPLC) analysis; quantity of secondary metabolite found to be 16.37 ± 0.0007 mg/g for PK-I and 6.34 ± 0.0012 mg/g for PK-II. Conclusion: This is the first attempt to produce the Picroside-I and II in large amount by the tissue culture technique. It can be observed that the method of callus culture can be used in production of secondary metabolites Picroside-I and II from PK SUMMARY Picrorhiza kurroa is a high value medicinal herb due to rich source of hepatoprotective metabolites, Picroside-I and Picroside-II. The medicinal importance of P. kurroa is due to its pharmacological properties like hepatoprotective, antioxidant (particularly in liver), antiallergic and antiasthamatic, anticancer activity particularly in liver and immunomodulatory. Shoot apices which were produced a good response was inoculated on selected medium i.e., on MS medium containing 2, 4 D (mg/l) + KN (1mg/l) for induction of callus. The initiation of callus was observed after 4weeks and it was light green and fragile Maximum growth was observed with 3% w/v of sucrose

  2. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Science.gov (United States)

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  3. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  4. Production of mutants by irradiation of in vitro-cultured tissues of coconut and banana and their mass propagation by the tissue culture technique

    International Nuclear Information System (INIS)

    Guzman, E.V. de; Rosario, A.G. del; Pagcaliwagan, P.C.

    1982-01-01

    Regeneration of buds/shoots as well as plantlets was induced from banana shoot tip explants cultured in highly modified Murashige and Skoog's medium supplemented with coconut water and benzyladenine. Initially shoot regeneration was sparse, but on further subculture became profuse. Gamma irradiation at low dosage (1.0 kR) was stimulating to explant growth and bud formation with the two types of explants used. With Bungulan stimulation was observed even at 2.5 kR. Several morphological aberrations were exhibited by shoots of 'irradiated' in vitro plants growing in potted soil. A highly and continuously proliferating tissue strain has been isolated from a subculture which was ultimately derived from an irradiated explant. Its continued proliferation is dependent on an external supply of coconut water and benzyladenine. In vitro-produced plants have been established under field conditions. The 'irradiated' plants are comparable with, and some seem to be better than, the unirradiated controls with respect to height, girth, sucker production and number of hands and fingers per bunch. Higher doses of irradiation are required to produce an adverse effect on growth of coconut embryos during the liquid culture than when growing in solid medium. (author)

  5. Hormonal effect on polyphenol accumulation in Cassia tissues cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shah, R R; Subbaiah, K V; Mehta, A R

    1976-06-01

    Effects of auxin and kinetin on growth and production of phenolic compounds in cultured Cassia fistula L. tissues were examined. Initiation of polyphenols was largely determined by the auxin concentration in the medium. Growth of the cells in relation to accumulation of polyphenols was studied at different auxin and kinetin concentrations. The accumulation of phenolic materials was essentially restricted to the most rapid phase of the growth cycle. Progressive changes in the pattern of peroxidase activity were followed and their relationship with polyphenol synthesis is examined.

  6. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.).

    Science.gov (United States)

    Akello, Juliet; Dubois, Thomas; Gold, Clifford S; Coyne, Daniel; Nakavuma, Jessica; Paparu, Pamela

    2007-09-01

    Beauveria bassiana is considered a virulent pathogen against the banana weevil Cosmopolites sordidus. However, current field application techniques for effective control against this pest remain a limitation and an alternative method for effective field application needs to be investigated. Three screenhouse experiments were conducted to determine the ability of B. bassiana to form an endophytic relationship with tissue culture banana (Musa spp.) plants and to evaluate the plants for possible harmful effects resulting from this relationship. Three Ugandan strains of B. bassiana (G41, S204 and WA) were applied by dipping the roots and rhizome in a conidial suspension, by injecting a conidial suspension into the plant rhizome and by growing the plants in sterile soil mixed with B. bassiana-colonized rice substrate. Four weeks after inoculation, plant growth parameters were determined and plant tissue colonization assessed through re-isolation of B. bassiana. All B. bassiana strains were able to colonize banana plant roots, rhizomes and pseudostem bases. Dipping plants in a conidial suspension achieved the highest colonization with no negative effect on plant growth or survival. Beauveria bassiana strain G41 was the best colonizer (up to 68%, 79% and 41% in roots, rhizome and pseudostem base, respectively) when plants were dipped. This study demonstrated that, depending on strain and inoculation method, B. bassiana can form an endophytic relationship with tissue culture banana plants, causing no harmful effects and might provide an alternative method for biological control of C. sordidus.

  7. Genetic and anatomical analysis of normal and abnormal flowers of date palm cultivar barhy derived from offshoot and tissue culture

    International Nuclear Information System (INIS)

    Shair, O.H.

    2016-01-01

    Random Amplified Polymorphic DNA (RAPD) analysis between 6 normal flower producing offshoot derived and 6 abnormal multiple carpel, flower producing tissue culture (TC) derived trees of cultivar (cv.) Barhy, was performed with the objective to check genetic variation if any at DNA level. DNA samples were extracted from pollinated and un-pollinated flowers from both sets of plants. Amplified RAPD products were clearly detected with 30 primers used in this experiment but only 3 gave a few polymorphic bands which shows low level of genetic variation among the offshoot and TC derived plants. Cluster analysis by the unweighted paired group method of arithmetic means (UPGMA) showed close genomic similarity among the 12 DNA samples with the range of 0.486-0.904 Nei and Li's coefficient in the similarity matrix. The average similarity among the 12 DNA samples was more than 50%. Floral abnormalities in TC derived plants were also studied microscopically. Abnormalities like more than three carpel development, abnormal ovule development and deformities of style and stigma were observed. The results show that the composition and the abnormalities of flowers in TC derived plants of cultivar Barhy may be attributed to epigenetic changes that takes place at different stages of tissue culture and not due to major changes at DNA level. (author)

  8. GROWTH AND ROOTING SYSTEM OF ACACIA MANGIUM OBTAINED BY TISSUE CULTURE

    Directory of Open Access Journals (Sweden)

    SUPRIYANTO

    1991-01-01

    Full Text Available Since 1980/1981, the government of Indonesia through the Ministry of Forestry has started to reforest logged-over, alang-alang, unproductive areas and to convert them to Forest Industry Plantation. The target is 300 000 ha per year. It means, 750 million seedlings should be provided per year (planting distance 2 m x 2 m. The tree species to be planted in forest industry plantation should have shorter life cycle (8 - 10 years, good stem-form, good rooting system, and should be fast growing. Acacia mangium has been selected as one of the important tree species for forest industry plantation due to its growth, quality of fiber wood (pulp and paper industry and rooting system (produce a lot of secondary root and nitrogen fixater (Soebardjo 1986. The reforestation of logged-over Dipterocarp forests in Malaysia with A. mangium has also been considered (Appanah and Weinland 1989. Generally, reforestation with A. mangium is done with seedlings obtained by seed germination. A. mangium produce a lot of seeds but its production is still limited by the season, while the conventional method of vegetative propagation through cuttings gave very low percentage of rooted-cuttings (1% (Umboh and Syamsul Yani 1989. The micropropagation of A. mangium through tissue culture is a promising method. The production of A. mangium plantlets through that method has been done at the Forest Genetic Laboratory, Tropical Forest Biology, SEAMEO BIOTROP (Situmorang 1988, Umboh 1988, Umboh et al. 1989, 1990. These rooted-plantlets (plantlings were first put in the green house (acclimatization before planting in the field. Field tests of some agricultural plants have been done but information on forest trees species is still lacking because the production of plantlings through tissue culture is still limited as there are still problems of their rooting. In fact, the progress of reproducing woody plants by tissue culture has been much slower than with herbaceous plants. The major

  9. Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants.

    Science.gov (United States)

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2014-12-01

    Plantlets under in vitro conditions transferred to ex vivo conditions are exposed to biotic and abiotic stresses. Furthermore, in vitro regenerated plants are typically frail and sometimes difficult to handle subsequently increasing their risk to damage and disease; hence acclimatization of these plantlets is the most important step in tissue culture techniques. An experiment was conducted under in vitro conditions to study the effects of shaking duration (twice daily at 6:00 a.m. and 9:00 p.m. for 2, 4, 8, and 16 min at 250 rpm for 14 days) on Sansevieria trifasciata L. as a model plant. Results showed that shaking improved handling, total plant height, and leaf characteristics of the model plant. Forty-eight hours after 14 days of shaking treatments with increasing shaking time, leaf length decreased but proline content of leaf increased. However, 6 months after starting the experiment different results were observed. In explants that received 16 min of shaking treatment, leaf length and area and photosynthesis rate were increased compared with control plantlets. Six months after starting the experiment, control plantlets had 12.5 % mortality; however, no mortality was observed in other treated explants. The results demonstrated that shaking improved the explants' root length and number and as a simple, cost-effective, and non-chemical novel approach may be substituted for other prevalent acclimatization techniques used for tissue culture regenerated plantlets. Further studies with sensitive plants are needed to establish this hypothesis.

  10. Cultural Tourism – a Model for Economic Development

    Directory of Open Access Journals (Sweden)

    Mihaela-Carmen MUNTEAN

    2012-11-01

    Full Text Available Tourism is a complex activity whose development is manifested in a fast pace, which in the last period determined it to become one of the most spectacular phenomena of recent decades, with important economic effects and particularly, social and human effects. This form of cultural tourism is identified as an engine for development and promotion of local cultural identities, offering neighboring communities an opportunity to preservation of cultural heritage as a resource for socio-economic local development. Thus, cultural tourism is the boundary between culture and tourism industry, its development influencing each other. Cultural tourism is a form of economic development based on cultural resources, contributing to national economic development.

  11. Screening Test of Greenhouse Seeding Exercise Matrix for Tissue Culture Seeding of Dendrobium Officinale Kimura et Migo

    Directory of Open Access Journals (Sweden)

    Zhou Yuan

    2015-01-01

    Full Text Available The Dendrobium officinale Kimura et Migo has a high demand on planting matrix, while its tissue culture seeding has much more demands on planting matrix. To find out a seeding exercise matrix to enhance the survival rate of tissue culture seeding of Dendrobium officinale Kimura et Migo more efficiently, this article carries out a screening test of greenhouse seeding exercise matrix material for tissue culture seeding of Dendrobium officinale Kimura et Migo. The test adopts full random test design, mainly for screening test of five matrix materials, namely pine bark, camphor tree bark, fern root, peanut shell and longan bark. Compare the impact of prepared seeding exercise matrix on the survival rate and growth trend (including plant height, growth rate and bud growth rate. The test result shows that: The seeding exercise matrix prepared by fern root is the most efficient, and the survival rate, plant height, growth rate and bud growth rate have achieved 100%, 4.5cm, 43.67% and 54.33% respectively. The main reason may be that the seeding exercise matrix C prepared by fern root is fairly loose and has a great water permeability, which is conducive to the growth of Dendrobium officinale Kimura et Migo.

  12. Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone.

    NARCIS (Netherlands)

    Sedelaar, J.P.M.; Isaacs, J.T.

    2009-01-01

    BACKGROUND: Human prostate cancer cells are routinely maintained in media supplemented with 10% Fetal Calf Serum (FCS) to provide androgen. In the present study, total and free testosterone levels in 10%FCS supplemented tissue culture media were determined and compared to levels in intact and

  13. Environmental regulation of valvulogenesis:implications for tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Kluin, J.; Sluijter, J.P.G.; Herwerden, van L.A.; Bouten, C.V.C.

    2011-01-01

    Ongoing research efforts aim at improving the creation of tissue-engineered heart valves for in vivo systemic application. Hence, in vitro studies concentrate on optimising culture protocols incorporating biological as well as biophysical stimuli for tissue development. Important lessons can be

  14. Applying the Cultural Approach to Cognitive Development

    Science.gov (United States)

    Gauvain, Mary; Beebe, Heidi; Zhao, Shuheng

    2011-01-01

    Cognitive development is a cultural process. More experienced cultural members and the practices, institutions, and artifacts of the culture provide support and guidance for children as they develop knowledge and thinking skills. In this article, the authors describe the value that is added to our understanding of cognitive development when…

  15. An in vitro 3D bone metastasis model by using a human bone tissue culture and human sex-related cancer cells.

    Science.gov (United States)

    Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena

    2016-11-22

    One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes.

  16. Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163.

    Science.gov (United States)

    Podolich, O; Laschevskyy, V; Ovcharenko, L; Kozyrovska, N; Pirttilä, A M

    2009-03-01

    To induce growth of endophytic bacteria residing in an unculturable state in tissues of in vitro-grown potato plantlets. To isolate and identify the induced bacteria and to localize the strains in tissues of in vitro-grown potato plantlets. The inoculation of in vitro-grown potato plants with Pseudomonas fluorescens IMBG163 led to induction of another bacterium, a pink-pigmented facultative methylotroph that was identified as Methylobacterium sp. using phylogenetic 16S rDNA approach. Two molecular methods were used for localizing methylobacteria in potato plantlets: PCR and in situ hybridization (ISH/FISH). A PCR product specific for the Methylobacterium genus was found in DNA isolated from the surface-sterilized plantlet leaves. Presence of Methylobacterium rRNA was detected by ISH/FISH in leaves and stems of inoculated as well as axenic potato plantlets although the bacterium cannot be isolated from the axenic plants. Methylobacterium sp. resides in unculturable state within tissues of in vitro-grown potato plants and becomes culturable after inoculation with P. fluorescens IMBG163. In order to develop endophytic biofertilizers and biocontrol agents, a detailed knowledge of the life-style of endophytes is essential. To our knowledge, this is the first report on increase of the culturability of endophytes in response to inoculation by nonpathogenic bacteria.

  17. Cell number, tissue thickness and protein content as measures for development and variability in cultured neocortex explants

    NARCIS (Netherlands)

    de Jong, B. M.; Ruijter, J. M.

    1989-01-01

    The development of neuronal number, explant thickness and amount of protein was studied in several series of rat neocortex explants, cultured up to 21 days in vitro (DIV). In contrast to the dimensions of the explant, which rapidly stabilized, the amount of protein showed a prolonged increase with

  18. Fusarium growth on culture media made of tissue juice from irradiated and unirradiated potato tubers

    International Nuclear Information System (INIS)

    Taczanowski, M.

    1994-01-01

    Fusarium Sulphureum Schlecht is one of the tuber pathogens causing potato storage disease knowing as dry rot. Because irradiation can disturb the tissue defence mechanism against the pathogen, it was decided to carry out experiments on influence of the treatment on subsequent tuber tissue reaction to a maceration process. The maceration as a physical stress was a substitute for the pathogen activity. Tubers of two potato varieties were tested: Mila -a resistant variety to Fusarium and Atol - susceptible one. Tubers of both varieties were irradiated with a dose of 105 kGy. Unirradiated tubers were taken as a control. A day after irradiation the cortex tissue was macerated using an ordinary rasper and the resulted tissue pulp was strained through medical gauze to obtain crude juice. The juice was clarified by centrifugation and then added to dissolved PDA. The volume ratio of juice to PDA was 1:1. The prepared media were dispensed into Petri dishes. Small pieces of the Fusarium culture were put on the surface of the medium at the centre of each Petri dish. Subsequent growth of the fungus was assessed by measurement of culture diameters every 24 hours. Linear functions of the Fusarium growth were obtained for Mila control and Atol control. In the case of Mila, the Fusarium found more favourable conditions for its growth in the presence of juice from irradiated tubers than from the control ones. Making the same comparison for Atol, no difference was detected. (author)

  19. Hypoxia preferentially destroys GABAergic neurons in developing rat neocortex explants in culture

    NARCIS (Netherlands)

    Romijn, H. J.; Ruijter, J. M.; Wolters, P. S.

    1988-01-01

    The hypothesis that hypoxic ischemia before or during the human birth process preferentially destroys GABAergic nerve cells, particularly in the neocortex, was tested in a tissue culture model system. To that end, rat neocortex explants dissected from 6-day-old rat pups and cultured to a

  20. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    Science.gov (United States)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  2. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    Science.gov (United States)

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.

  3. Strategies on process engineering of chondrocyte culture for cartilage tissue regeneration.

    Science.gov (United States)

    Mallick, Sarada Prasanna; Rastogi, Amit; Tripathi, Satyavrat; Srivastava, Pradeep

    2017-04-01

    The current work is an attempt to study the strategies for cartilage tissue regeneration using porous scaffold in wavy walled airlift bioreactor (ALBR). Novel chitosan, poly (L-lactide) and hyaluronic acid based composite scaffold were prepared. The scaffolds were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N-hydroxysuccinimide and chondroitin sulfate to obtain interconnected 3D microstructure showing excellent biocompatibility, higher cellular differentiation and increased stability. The surface morphology and porosity of the scaffolds were analyzed using scanning electron microscopy (SEM) and mercury intrusion porosimeter and optimized for chondrocyte regeneration. The study shows that the scaffolds were highly porous with pore size ranging from 48 to 180 µm and the porosities in the range 80-92%. Swelling and in vitro degradation studies were performed for the composite scaffolds; by increasing the chitosan: HA ratio in the composite scaffolds, the swelling property increases and stabilizes after 24 h. There was controlled degradation of composite scaffolds for 4 weeks. The uniform chondrocyte distribution in the scaffold using various growth modes in the shake flask and ALBR was studied by glycosaminoglycans (GAG) quantification, MTT assay and mixing time evaluation. The cell culture studies demonstrated that efficient designing of ALBR increases the cartilage regeneration as compared to using a shake flask. The free chondrocyte microscopy and cell attachment were performed by inverted microscope and SEM, and from the study it was confirmed that the cells uniformly attached to the scaffold. This study focuses on optimizing strategies for the culture of chondrocyte using suitable scaffold for improved cartilage tissue regeneration.

  4. The Role of MicroRNAs in Natural Tissue Development and Application in Regenerative Medicine

    DEFF Research Database (Denmark)

    Andersen, Morten Østergaard; Dillschneider, Philipp; Kjems, Jørgen

    2013-01-01

    to specifically target tissue engineering and repair, either in culture or in association with implanted cells and/or implants. We will here summarise these methods providing examples from present literature. Based on previous results, we will also predict more advanced technologies that may deliver mi......Many cellular functions rely on the coordinated expression and repression of a large number of messenger RNAs; these are tightly controlled in part by microRNAs (miRNAs) at the posttranscriptional level. The number of characterised miRNAs that are involved in tissue development and repair...... will revolutionise regenerative medicine. This chapter will introduce miRNA biology and their role in controlling pluripotency, stem cell differentiation, proliferation, senescence, survival, inflammation and angiogenesis. There are several strategies by which miRNA-modulating technologies can be used...

  5. Effects of CO 2 concentration and moisture content of sugar-free media on the tissue-cultured plantlets in a large growth chamber

    Science.gov (United States)

    Qu, Y. H.; Lin, C.; Zhou, W.; Li, Y.; Chen, B.; Chen, G. Q.

    2009-01-01

    The dynamic fluctuations of CO 2 concentration in the tissue culture growth chamber after transplantation of petunia, chrysanthemum and tomato plantlets were recorded with a real-time control system to determine the critical CO 2 concentration levels of 35 μl l -1 at which CO 2 enrichment is needed. The experimental data showed that the tissue-cultured plantlets of petunia, chrysanthemum and tomato had the same CO 2 concentration dynamics. The results indicated that CO 2 enrichment was proper on the second day after transplantation. Petunia plantlets were used to conduct experiments under PPFD of 80 μmol m -2 s -1, and CO 2 concentrations of 350 ± 50 μl l -1, 650 ± 50 μl l -1 and 950 ± 50 μl l -1 as well as medium moisture contents of 60%, 70% and 80%, with the result that plantlets grew better under CO 2 concentration of 650 ± 50 μl l -1 than under the other two concentrations with all the different media water contents. Three media water contents under the same CO 2 concentration produced plantlets with the same quality. The impacts of CO 2 concentrations on plantlets are more important than those of the media water contents. Sugar-free tissue culture, as compared with the conventional culture, showed that CO 2 enrichment to 350 ± 50 μl l -1 can promote the growth of the cultured plantlets. Sugar-free tissue culture produced healthy plantlets with thick roots, almost equivalent to the common plantlets.

  6. Studies in tissue culture of some indigenous rice (Oryza glaberrima Steud.) accessions in Ghana

    International Nuclear Information System (INIS)

    Diawuoh, R.G.

    2011-01-01

    A study was conducted with the aim of developing separate protocols for callus induction and plant regeneration from different parts of three O. glaberrima accessions indigenous to Ghana. The three O. glaberrima accessions, Guame, N/4 and SARI 1 were assessed for their callus induction and plant regeneration ability from leaf segments, mature dehusked seeds and anthers on different concentrations of plant growth regulators, incorporated into Murashige and Skoog, (1962) (MS) basal medium. For leaf segments, callus was induced on MS supplemented with (0-10) mg/l 2,4-D. Callus induction frequency was significantly (p≤0.05) different among accessions, as well as among the 2,4-dichlorophenoxyacetic acid (2,4-D) levels tested. Highest callus induction frequency was exhibited at a concentration of 6 mg/l 2,4-D for all accessions tested. Callus obtained was sub-cultured on regeneration medium consisting of MS supplemented with (1:0-5) mg.l NAA:BAP. Plant regeneration was nil. Instead, prolific root formation was observed. For mature dehusked seeds, callus induction medium consisted of MS supplemented with (0-6) mg/l 2,4-D. All tested accessions exhibited highest callus frequency at 4 mg/l 2,4-D. Similarly callus induction frequency was significantly (p≤0.05) different among accessions, as well as among concentrations of 2,4-D tested. Calli obtained were sub-cultured on MS medium supplemented with (0-2.5) mg/l 6-benzylaminopurine (BAP) and exhibited the highest regeneration frequency on medium containing 2.0 mg/l BAP. However, callus induced on a concentration of 3 mg/l 2,4-D and sub-cultured on a concentration of 2 mg/l BAP gave the best response n terms of shoot proliferation, growth and root development and therefore were considered to be the optimum concentrations for callus induction and plant regeneration respectively. Plantlet regeneration was achieved only in accession N/4 while Guame and SARI 1 exhibited poor regeneration response. Among the three rice

  7. Transformation and mass hyperplasia technique of the garden plant (lily) by radiation and so forth. Mass hyperplasia of the lily using tissue culture

    International Nuclear Information System (INIS)

    Shigematsu, Koji; Hamada, Yutaka

    1997-01-01

    For an aim of more uniform child bulb production and good quality kind conservation using tissue culture of the lily, some hyperplasia from organs over ground of the lily were tried. In particular, optimum culture media with higher hyperplasia rate of the child bulb, redifferentiation due to difference among kinds of the lilies, and difference of hyperplasia of the child bulbs were investigated. As a result, it was found that pollution due to various germs attached to used materials often occurs, that efficiency obtainable for initial child bulb by redifferentiation from the organs was low at 20%, and that pollution due to various germs was often found at 25degC of cultivation temperature, which was inferior to that at 20degC. And, when conducting mass hyperplasia of the lily using tissue culture, an optimum culture medium of formation and hyperplasia of child bulb could be obtained for its each kind. As a result of conducting some investigations on configuration of the lily nourished from its child bulb and flowered by the tissue culture, it was also found that cultured bulb had the same character as its parent bulb had. (G.K.)

  8. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  9. Comparing culture and molecular methods for the identification of microorganisms involved in necrotizing soft tissue infections

    DEFF Research Database (Denmark)

    Rudkjøbing, Vibeke Børsholt; Thomsen, Trine Rolighed; Xu, Yijuan

    2016-01-01

    BACKGROUND: Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of tissue, which often leads to septic shock and organ failure. The gold...... to culture. Although the molecular methods generally gave concordant results, our results indicate that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods. Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also...... that clinicians should be prepared to diagnose and treat any combination of microbial pathogens. Some of the tested molecular methods offer a faster turnaround time combined with a high specificity, which makes supplemental use of such methods attractive for identification of microorganisms, especially...

  10. Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve.

    Science.gov (United States)

    Huang, Lanfeng; Li, Rui; Liu, Wanguo; Dai, Jin; Du, Zhenwu; Wang, Xiaonan; Ma, Jianchao; Zhao, Jinsong

    2014-07-15

    Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, but cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhesion stage. Moreover, seeded cells were distributed throughout the material.

  11. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  12. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in-vitro culture in cryopreservation studies.

    Science.gov (United States)

    Anil, Siji; Rawson, David; Zhang, Tiantian

    2018-05-29

    Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Safety culture development at Daya Bay NPP

    International Nuclear Information System (INIS)

    Zhang Shanming

    2001-01-01

    From view on Organization Behavior theory, the concept, development and affecting factors of safety culture are introduced. The focuses are on the establishment, development and management practice for safety culture at Daya Bay NPP. A strong safety culture, also demonstrated, has contributed greatly to improving performance at Daya Bay

  14. Cultural-Based Development in the USA

    NARCIS (Netherlands)

    Tubadji, A.; Osoba, B.J.; Nijkamp, P.

    2015-01-01

    This paper explores the link between culture and regional development in USA counties by explicitly including an arts variable in an attitudes-driven culture-based development (CBD) production function. The main aims of the research are (1) to revisit the standard CBD model in order to examine

  15. Protein and Glycoprotein Patterns Related to Morphogenesis in Mammillaria gracillis Pfeiff. Tissue Culture

    Directory of Open Access Journals (Sweden)

    Biljana Balen

    2002-01-01

    Full Text Available As plants with Crassulacean Acid Metabolism (CAM, cacti are highly affected by artificial environmental conditions in tissue culture. Plants of Mammillaria gracillis Pfeiff. (Cactaceae propagated in vitro produced callus spontaneously. This habituated callus regenerated normal and hyperhydric shoots without the addition of growth regulators. In order to compare habituated callus with the tumorous one, cactus cells were transformed with two strains of Agrobacterium tumefaciens: the wild strain B6S3 (tumour line TW and the rooty mutant GV3101 (tumour line TR. Gene expression in cactus plants, habituated callus, regenerated shoots and two tumour lines was analysed at the level of cellular and extracellular protein and glycoprotein profiles. Proteins were separated by SDS-polyacrylamide gel electrophoresis and 2-D PAGE electrophoresis and silver stained. Concavalin A-peroxidase staining detected glycoproteins with D-manose in their glycan component on protein blots. Developmentally specific protein patterns of Mammillaria gracillis tissue lines were detected. The 2-D PAGE electrophoresis revealed some tissue specific protein groups. The cellular glycoprotein of 42 kDa detected by ConA was highly expressed in undifferentiated tissues (habituated callus, TW and TR tumours and in hyperhydric regenerants. Tumours produced extracellular proteins of 33, 23 and 22 kDa. The N glycosylation of cellular and extracellular proteins was related to specific developmental stage of cactus tissue.

  16. Culture and Development : An Analytical Framework

    NARCIS (Netherlands)

    Francois, P.; Zabojnik, J.

    2001-01-01

    This paper develops a framework which analyzes how a population's culture affects the decisions of rational profit maximizing firms, while simultaneously exploring how the actions of these firms in turn affect the population's culture.By endogenizing culture as well as the more usual economic

  17. A comparative study of three tissue-cultured Dendrobium species and their wild correspondences by headspace gas chromatography-mass spectrometry combined with chemometric methods.

    Science.gov (United States)

    Chen, Nai-Dong; You, Tao; Li, Jun; Bai, Li-Tao; Hao, Jing-Wen; Xu, Xiao-Yuan

    2016-10-01

    Plant tissue culture technique is widely used in the conservation and utilization of rare and endangered medicinal plants and it is crucial for tissue culture stocks to obtain the ability to produce similar bioactive components as their wild correspondences. In this paper, a headspace gas chromatography-mass spectrometry method combined with chemometric methods was applied to analyze and evaluate the volatile compounds in tissue-cultured and wild Dendrobium huoshanense Cheng and Tang, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw. In total, 63 volatile compounds were separated, with 53 being identified from the three Dendrobium spp. Different provenances of Dendrobiums had characteristic chemicals and showed remarkable quantity discrepancy of common compositions. The similarity evaluation disclosed that the accumulation of volatile compounds in Dendrobium samples might be affected by their provenance. Principal component analysis showed that the first three components explained 85.9% of data variance, demonstrating a good discrimination between samples. Gas chromatography-mass spectrometry techniques, combined with chemometrics, might be an effective strategy for identifying the species and their provenance, especially in the assessment of tissue-cultured Dendrobium quality for use in raw herbal medicines. Copyright © 2016. Published by Elsevier B.V.

  18. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene.

    Science.gov (United States)

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik; Hjortø, Gertrud Malene

    2012-04-01

    In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre-adsorption of bovine serum albumin (BSA) does not decrease the adsorption of HIS-tagged proteins onto TCPS. Our findings identify a potential problem in using HIS-tagged signalling molecule in assays with cells cultured on TCPS, since the concentration of the molecule in solution might be affected and this could critically influence the assay outcome. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  20. Selective enhancement of scopadulcic acid B production in the cultured tissues of Scoparia dulcis by methyl jasmonate.

    Science.gov (United States)

    Nkembo, Kasidimoko Marguerite; Lee, Jung-Bum; Hayashi, Toshimitsu

    2005-07-01

    The effects of methyl jasmonate (MeJA) on isoprenoid production were evaluated in cultured tissues of Scoparia dulcis. It was found that MeJA suppressed the accumulation of chlorophylls, carotenoids, phytol and beta-sitosterol in the tissues. MeJA, however, remarkably enhanced the production of scopadulcic acid B (SDB), with 10 microM being optimal observed concentration for stimulation of SDB production. The maximum concentration of SDB was observed 6 d after MeJA treatment.

  1. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research

    International Nuclear Information System (INIS)

    Minuth, Will W; Strehl, Raimund

    2007-01-01

    Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container. (topical review)

  2. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Minuth, Will W [Department of Molecular and Cellular Anatomy, University of Regensburg, D-93053 Regensburg, University Street 31 (Germany); Strehl, Raimund [Cellartis AB, S-41346 Goeteborg, Arvid Wallgrens Backe 20 (Sweden)

    2007-06-01

    Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container. (topical review)

  3. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli, N. M. S.; Groen, N.; Steg, H.; Unadkat, H.; de Boer, J.; van Blitterswijk, C. A.; Wessling, M.; Stamatialis, D.

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  4. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Groen, N.; Steg, H.; Unadkat, H.V.; de Boer, Jan; van Blitterswijk, Clemens; Wessling, Matthias; Stamatialis, Dimitrios

    2014-01-01

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  5. Organisational culture and influence on developing athletes

    DEFF Research Database (Denmark)

    Henriksen, Kristoffer; Storm, Louise Kamuk; Larsen, Carsten Hvid

    2018-01-01

    athlete development; (3) that such an organisational culture can, and must, be deliberately developed and maintained by the coach and management through cultural leadership; and (4) that a key task of the sport psychology practitioner is to make the coach conscious of his role as a culture leader and thus......In this chapter we will argue: (a) that a preoccupation with individual talented athletes should be supplemented with an understanding of the environment in which they develop; (b) that a strong and coherent organisational culture of a youth club or team is a, if not the, key factor in successful...

  6. Polyamine patterns in haploid and diploid tobacco tissues and in vitro cultures

    Directory of Open Access Journals (Sweden)

    Sílvia Bicudo Carone

    2010-04-01

    Full Text Available The aim of this work was to determine PAs levels in pith tissues and callus cultures from haploid and diploid tobacco plants, explanted from the apical and basal regions of the stem. These explants were cultured in an RM-64 medium supplied with IAA and kinetin, under light or in the dark, during successive subcultures. PAs levels followed a basipetal decrease in diploid and an increase in haploid, pith tissues. A similar pattern of total PAs (free + conjugated was observed for the callus of diploid and haploid plants maintained in the light, and for the haploid callus in the dark, whereas the diploid callus in the dark showed a constant increase in total PAs levels until the end of culture. The PA increase in the diploid callus in the dark was related to free Put levels increase. The ploidy status of the plants could express different PA gradients together with the plant pith and in vitro callus cultures.O objetivo deste trabalho foi determinar os níveis de PAs em tecidos de medula e cultura de calos de plantas haplóides e diplóides de tabaco, obtidas da região apical e basal do caule. Estes explantes foram cultivados em meio RM-64 suplementado com AIA e cinetina, na luz e no escuro, durante vários subcultivos. Nos tecidos medulares, os níveis de PAs apresentam um decréscimo basípeto em diplóides e um aumento em haplóides.Um padrão similar nos níveis de PAs totais (livres+ conjugadas foi observado em calos haplóides e diplóides mantidos na luz, e haplóides no escuro, enquanto os diplóides cultivados no escuro mostraram um aumento constante até o final do cultivo. O aumento no conteúdo de PAs nos calos diplóides no escuro, foi devido ao aumento do conteúdo de Put livre. Foi observado que a ploidia da planta pode expressar diferentes gradientes de PA ao longo do tecido medular e nas culturas de calos in vitro.

  7. New Product Development, R&D, and Culture

    DEFF Research Database (Denmark)

    Brem, Alexander; Kürzdörfer, Tamara

    2016-01-01

    Recent developments in the global economy indicate that new product development (NPD) activities are not limited to any single country; rather, they have spread across nations and cultures. This study aims to increase the understanding of NPD through an intercultural analysis by comparing...... innovation processes in Germany and China. Our study relates NPD and Hofstede's cultural dimensions by identifying culture-based patterns of similarities and differences between German and Chinese practices related to strategic, organisational, and operational factors. The research subjects are five...... international companies with research and development sites of the same business section in Germany and China. The findings reveal both culture-dependent and culture-independent factors. Most of the strategic and organisational factors in the two countries are relatively similar because of site...

  8. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  9. Quality Culture Development in the Industrial Enterprise

    Directory of Open Access Journals (Sweden)

    Renata Baravska

    2016-04-01

    Full Text Available This article examines the theoretical viewpoint of quality culture, its formation in industrial plants. Here is discussed cultural ap-proach to quality. It is determined that quality based on a cultural perspective is implemented not only by using tools and methods, but it is the result of cultural factors – exactly the company's values and practices. The values that affect a successful quality culture's integration into entire company's activity are overviewed. This article presents the study of key factors influencing the quality culture's development and it is proposed a conceptual model. The conclusions of performed empirical studies confirm that leadership and company's culture are of paramount im-portance and are the main success factors in developing of the quality culture in the company. The connection between leader-ship and empowerment certifies that each company itself is re-sponsible for the formation of the quality culture.

  10. Primary cilia and coordination of signaling pathways in heart development and tissue Homeostasis

    DEFF Research Database (Denmark)

    Clement, Christian Alexandro

    of primary cilia in coordinating Hh signaling in human pancreatic development and postnatal tissue homeostasis. In cultures of human pancreatic duct adenocarcinoma cell lines PANC-1 and CFPAC-1, Ptc in addition to Gli2 and Smo localize to primary cilia. These findings are consistent with the idea...... that the primary cilium continues to coordinate Hh signaling in cells derived from the mature pancreas. The fact that the Hh signaling pathway is active in the CFPAC-1 and PANC-1 cell lines without Hh stimulation suggests that ciliary Hh signaling plays a potential role in tumorigenesis. In conclusion, this thesis...

  11. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    Science.gov (United States)

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  12. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  13. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    Science.gov (United States)

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection. Copyright © 2014 John Wiley

  14. Selection of suitable prodrug candidates for in vivo studies via in vitro studies; the correlation of prodrug stability in between cell culture homogenates and human tissue homogenates.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-01-01

    To determine the correlations/discrepancies of drug stabilities between in the homogenates of human culture cells and of human tissues. Amino acid/dipeptide monoester prodrugs of floxuridine were chosen as the model drugs. The stabilities (half-lives) of floxuridine prodrugs in human tissues (pancreas, liver, and small intestine) homogenates were obtained and compared with ones in cell culture homogenates (AcPC-1, Capan-2, and Caco-2 cells) as well as human liver microsomes. The correlations of prodrug stability in human small bowel tissue homogenate vs. Caco-2 cell homogenate, human liver tissue homogenate vs. human liver microsomes, and human pancreatic tissue homogenate vs. pancreatic cell, AsPC-1 and Capan-2, homogenates were examined. The stabilities of floxuridine prodrugs in human small bowel homogenate exhibited the great correlation to ones in Caco-2 cell homogenate (slope = 1.0-1.3, r2 = 0.79-0.98). The stability of those prodrugs in human pancreas tissue homogenate also exhibited the good correlations to ones in AsPC-1 and Capan-2 cells homogenates (slope = 0.5-0.8, r2 = 0.58-0.79). However, the correlations of prodrug stabilities between in human liver tissue homogenates and in human liver microsomes were weaker than others (slope = 1.3-1.9, r2 = 0.07-0.24). The correlations of drug stabilities in cultured cell homogenates and in human tissue homogenates were compared. Those results exhibited wide range of correlations between in cell homogenate and in human tissue homogenate (r2 = 0.07 - 0.98). Those in vitro studies in cell homogenates would be good tools to predict drug stabilities in vivo and to select drug candidates for further developments. In the series of experiments, 5'-O-D-valyl-floxuridine and 5'-O-L-phenylalanyl-L-tyrosyl-floxuridine would be selected as candidates of oral drug targeting delivery for cancer chemotherapy due to their relatively good stabilities compared to other tested prodrugs.

  15. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    Science.gov (United States)

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  16. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    OpenAIRE

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  17. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  18. International Business Students’ Cross-Cultural Competence Development

    Directory of Open Access Journals (Sweden)

    Natalie S. Mikhaylov

    2014-12-01

    Full Text Available This study explores the role of educational programs in promoting students’ cross-cultural competence (CCC development in international business education. Using constructivist grounded theory methodology (GTM, a comparative analysis of four extensive case studies was conducted within four schools, all of which offer international management education in English for local and international students. This study examines institutional contributions to an environment that supports students’ CCC development. A typology model consisting of four educational approaches to students’ CCC development is presented based on student experiences. The study provides recommendations regarding the steps that higher educational institutions (HEIs can take to promote educational environments that support cross-cultural exchange, cultural knowledge creation, and individual and organizational cross-cultural competence development.

  19. Clonal multiplication of Cymbidiums through tissue culture of the shoot meristem

    Energy Technology Data Exchange (ETDEWEB)

    Wimber, Donald E.

    1963-09-01

    The propagation of clonal varieties of some orchids is at times exasperatingly slow and occasionally an almost futile effort. Clonal multiplication is generally confined to dlvidlng mature plants and to starting plants from pseudobulbs. There is, of course, the specialized technique for obtaining Phalaenopsis plantlets from the aseptic culture of inflorescence nodes, but this is basically the same thing as propagating plants from pseudobulbs. In certain cases it is highly desirable to rapidly multiply certain clones of orchids. Awarded varieties could thereby be dispersed with great rapidity where now it may take decades for some clones to became fairly common. Commercial flower production would be very much enhanced if certain desirable clones could be multiplied ad infinitum within a short time. Orchid flower production could then be placed more on a par with many of the other cut flowers and the clonal peculiarities of some fo the current hybrids could be pampered instead of ignored. This paper describes a tissue culture method for the rapid propagation of Cymbidium clones.

  20. Radiation transformation in differentiated human cells in culture

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.; Moriarty, M.; Malone, J.; Byrne, P.; Hennessy, T.

    1986-01-01

    A tissue culture technique is described for human thyroid tissue as an approach to studying mechanisms of human radiation carcinogenesis. Normal human tissue obtained from surgery is treated in one of two ways, depending upon size of specimen. Large pieces are completely digested in trypsin/ collagenase solution to a single cell suspension. Small pieces of tissue are plated as explants following partial digestion in trypsin/collagenase solution. Following irradiation of the primary differentiated monolayers (normally 10 days after plating), the development of transformed characteristics is monitored in the subsequent subcultures. A very high level of morphological and functional differentiation is apparent in the primary cultures. Over a period of approx. 6 months, the irradiated surviving cells continue to grow in culture, unlike the unirradiated controls which senesce after 2-3 subcultures. (UK)

  1. Rose (Rosa hybrida L.) tissue culture mutagenesis for new mutants generation

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Rusli Ibrahim

    2004-01-01

    Tissue culture technique can be used to obtain complete regeneration of plant cells from shoots, rots, flowers, axillary buds and other parts of the plant. In this study, axillary buds from stem cuttings of Cutting Red, Christine Dior and Mini Rose varieties were used as the stating explants. Murashige and Skoog (1962) media supplemented with 6-Benzylaminopurine (BAP, at 4.44 - 8.88μM/l), Napthaleneacetic acid (NAA at 0.54μM/l),, nad 3% sucrose were used for plantlet initiation and regeneration. Cultured axillary buds were exposed to gamma ray (0.250 Gy/s) at 0, 15, 25, 35, 45, 55, 65 and 75 Gy for radiosensitivity test. From the dose respond curve, LD 5 0 the value for cutting red variety was 25 Gy, Christion Dior 30 Gy and Mini Rose 38 Gy, yet 22% of Mini Rose samples survived at 65 Gy and another 10% at 70 Gy. Screening of M3 plants of irradiated cultured shoots, 2 colour variations were obtained at 40 Gy for Cutting Red variety, while 3 colour variations for Mini Rose at 20 Gy. When 6 varieties of Fragrance Rose were irradiated at 40 Gy, 1 colour variation was obtained from 99 screened plants. This study suggests that the dose range of 20 to 45 can be considered for rose mutagenesis study to produce mutants. (Author)

  2. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments.

    Science.gov (United States)

    Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru

    2014-09-01

    This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Development of a Cytocompatible Scaffold from Pig Immature Testicular Tissue Allowing Human Sertoli Cell Attachment, Proliferation and Functionality

    Directory of Open Access Journals (Sweden)

    Maxime Vermeulen

    2018-01-01

    Full Text Available Cryopreservation of immature testicular tissue before chemo/radiotherapy is the only option to preserve fertility of cancer-affected prepubertal boys. To avoid reintroduction of malignant cells, development of a transplantable scaffold by decellularization of pig immature testicular tissue (ITT able to support decontaminated testicular cells could be an option for fertility restoration in these patients. We, therefore, compared decellularization protocols to produce a cytocompatible scaffold. Fragments of ITT from 15 piglets were decellularized using three protocols: sodium dodecyl sulfate (SDS-Triton (ST, Triton-SDS-Triton (TST and trypsin 0.05%/ethylenediaminetetraacetic acid (EDTA 0.02%-Triton (TET with varying detergent concentrations. All protocols were able to lower DNA levels. Collagen retention was demonstrated in all groups except ST 1%, and a significant decrease in glycosaminoglycans was observed in the TST 1% and TET 1% groups. When Sertoli cells (SCs were cultured with decellularized tissue, no signs of cytotoxicity were detected. A higher SC proliferation rate and greater stem cell factor secretion were observed than with SCs cultured without scaffold. ST 0.01% and TET 3% conditions offered the best compromise in terms of DNA elimination and extracellular matrix (ECM preservation, while ensuring good attachment, proliferation and functionality of human SCs. This study demonstrates the potential of using decellularized pig ITT for human testicular tissue engineering purposes.

  4. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  5. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle.

    Science.gov (United States)

    West, Adrian R; Zaman, Nishat; Cole, Darren J; Walker, Matthew J; Legant, Wesley R; Boudou, Thomas; Chen, Christopher S; Favreau, John T; Gaudette, Glenn R; Cowley, Elizabeth A; Maksym, Geoffrey N

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.

  6. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2011-04-01

    To evaluate the viability and proliferative activity of human urothelial cells (HUCs) cultured on tissue-engineered extracellular matrix scaffolds and to assess the potential of extracellular matrixes to support the growth of HUCs in their expected in vivo urine environment.

  7. Obtaining unique large kernel rice using chemical mutagenesis in tissue culture

    International Nuclear Information System (INIS)

    Alyoshin, N.E.; Avakyan, E.R.; Alyoshin, E.P.

    2001-01-01

    Full text: Lines with improved characters have been received by chemical mutagenesis in rice tissue culture. The japonica rice (Oryza sativa L.) varieties 'Krasnodarskii 424', 'Dubovskii 129', 'Slavyanetz', 'Liman', 'Lomello', 'VNIIR 2471' were used for mutation induction. Nnitrozo-N-methylurea (MNH) has been used as a mutagen. Two approaches were applied: 1. Development mutants by mutagenic treatment of seeds 2. Development regenerants from somatic tissue culture. In the first case, dry seeds with removed covering glumes have been treated with a solution of NMH (exposure 24 hours, tested concentrations 0.05%; 0.1%; 0.2%). After treatment seeds have been rinsed and planted into the soil in vessels. The effect of mutagen was very much genotype dependant. The highest frequency of mutants were observed in the following concentrations of MNH: for variety VNIIR 2471 - 0.05-0.1%, for variety Slavyanetz - 0.1%; for Lomello - 0.2%; for Linman - 0.05% and 0.2%. The mutant N 95, which has been selected from variety Liman after treatment with 0.2% concentration of mutagen, had the following improved characters: vegetation period 103 days (110 days for the parent variety); plant height 93.2 cm (98.2 cm - parent variety); length of the main panicle 17.2 cm; 1000 grain mass 44.9 g (39.2 g - parent variety). Mutant line N 101 selected from the same variety Liman after treatment with 0.05% concentration of mutagen mutated also in many characters: vegetation period 103 days; plant height 106 cm; 1000 grain mass was 47.0 g. In the second experiment, a somatic callus of the 2nd passage from varieties Kransnodarskii 424, Dubovskii 129, Slavyanetz, Liman were treated with the solution of mutagen NMH (concentration: 0.05%; 0.1%; 0.2% + 0.1% PABA by 40 minutes at Certomat shaking machine (100 rev./min). The treated callus has been cultivated at MS regeneration media (4 mg 2.4 D + 20 mg /l of sucrose) and MS intermediate media (non-hormonal + PABA) to obtain regenerants. Plant

  8. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of tissue bank

    Directory of Open Access Journals (Sweden)

    R P Narayan

    2012-01-01

    Full Text Available The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole.

  10. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    Science.gov (United States)

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  11. Estimation of the in vitro eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust by using reconstituted human corneal epithelium tissue cultures

    DEFF Research Database (Denmark)

    Cao, Yi; Arenholt-Bindslev, Dorthe; Kjærgaard, Søren K

    2015-01-01

    CONTEXT: Eye irritation is a common complaint in indoor environment, but the causes have still not been identified among the multiple exposures in house environments. To identify the potential environmental factors responsible for eye irritation and study the possible mechanisms, an in vitro model...... AND CONCLUSION: LPS and dust showed in vitro eye irritating and inflammatory potential, and cytokines/chemokines like IL-1β and IL-8 may be involved in the mechanisms of eye irritation. The HCE tissue culture may be used as an in vitro model to study environmental exposure induced eye irritation and inflammation....... for eye irritation is suggested. MATERIALS AND METHODS: In this study, reconstituted human corneal epithelium (HCE) tissue cultures were used to study the eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust. HCE tissue cultures were exposed to a range of concentrations of LPS...

  12. Creating Interactions between Tissue-Engineered Skeletal Muscle and the Peripheral Nervous System.

    Science.gov (United States)

    Smith, Alec S T; Passey, Samantha L; Martin, Neil R W; Player, Darren J; Mudera, Vivek; Greensmith, Linda; Lewis, Mark P

    2016-01-01

    Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. In the case of skeletal muscle, the development of such a culture model, integrating multiple relevant cell types within a biomimetic scaffold, would be of significant benefit for investigations into the development, functional performance, and pathophysiology of skeletal muscle tissue. Although some work has been published regarding the behaviour of in vitro muscle models co-cultured with organotypic slices of CNS tissue or with stem cell-derived neurospheres, little investigation has so far been made regarding the potential to maintain isolated motor neurons within a 3D biomimetic skeletal muscle culture platform. Here, we review the current state of the art for engineering neuromuscular contacts in vitro and provide original data detailing the development of a 3D collagen-based model for the co-culture of primary muscle cells and motor neurons. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Quantitative RT-PCR results indicate that motor neuron presence has a positive effect on myotube maturation, suggesting neural incorporation influences muscle development and maturation in vitro. The importance of this work is discussed in relation to other published neuromuscular co-culture platforms along with possible future directions for the field. © 2016 S. Karger AG, Basel.

  13. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    Directory of Open Access Journals (Sweden)

    Wu K

    2013-05-01

    Full Text Available Kaimin Wu,1,* Jie Xu,2,* Mengyuan Liu,1 Wen Song,1 Jun Yan,1 Shan Gao,3 Lingzhou Zhao,2 Yumei Zhang1 1Department of Prosthetic Dentistry, 2Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3The Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; School of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China*Both authors contributed equally to this workAbstract: MicroRNA (miRNA regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes on a tissue culture plate. The lipoplexes can be immobilized on a tissue culture plate with an intact pseudospherical structure and lyophilization without any lyoprotectant. In this study, reverse transfection resulted in highly efficient cellular uptake of miRNA and enabled significant manipulation of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing osteogenic differentiation, as indicated by enhanced osteogenesis-related gene expression, amount of alkaline phosphatase present, production of collagen, and matrix mineralization. Overall

  14. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    Science.gov (United States)

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kořínek R.

    2017-02-01

    Full Text Available The paper describes the visualization of the cells (ESEs and mucilage (ECMSN in an embryogenic tissue via magnetic resonance imaging (MRI relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  16. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  17. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxi...

  18. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing

    NARCIS (Netherlands)

    Claase, M.B.; Grijpma, Dirk W.; Mendes, S.C.; Mendes, Sandra C.; de Bruijn, Joost Dick; Feijen, Jan

    2003-01-01

    The preparation, characterization, and in vitro bone marrow cell culturing on porous PEOT/PBT copolymer scaffolds are described. These scaffolds are meant for use in bone tissue engineering. Previous research has shown that PEOT/PBT copolymers showed in vivo degradation, calcification, and bone

  19. Culture and Development: A Systematic Relationship.

    Science.gov (United States)

    Keller, Heidi

    2017-09-01

    This article argues that the relationships between culture and development are differential and systematic. Therefore the presentation of the Western middle-class developmental pathway in textbooks as universal is grossly neglecting the reality and the psychologies of the majority of the world' s population. First, the conception of culture as the representation of environmental conditions is presented. The level of formal education acts as organizer of social milieus that define different learning environments for children. Mainly two developmental pathways are portrayed: the Western middle-class trajectory and the traditional farmer childhood. Different developmental principles are highlighted, demonstrating systematic cultural differences in the development of a conception of the self: developmental dynamics as exemplified in early mother infant interactions, the timing of developmental milestones emphasizing cultural precocities in motor development and self-recognition, developmental gestalts in different attachment relationships and precursors and consequences demonstrating that different, sometimes contradictory behavioral patterns have the same developmental consequences with the examples of empathy development and autobiographical memory. It is argued that evaluating the development in one pathway with the principles and standards of the other is unscientific and unethical. The recognition of different developmental pathways is a necessity for basic science and a moral obligation for the applied fields.

  20. Development of emotions as organized by culture

    OpenAIRE

    Trommsdorff, Gisela

    2006-01-01

    Emotions can be seen as both biologically prepared and socio-culturally shaped. Evidence on cultural differences in manifestations of emotion abound; however, the role of culture in emotion development has not yet been systematically studied and integrated in a theory on the socialization of emotions. Emotion development includes the understanding of emotions and their meaning, appraisal of emotion-evoking situations, knowledge of appropriate emotion expression, and regulation of emotions. Em...

  1. Chemical And Physiological Studies On Drought Stress Tolerance Of Irradiated Communis Pear Using Tissue Culture

    International Nuclear Information System (INIS)

    Zaied, N.S.; Ragab, E.A.

    2007-01-01

    The rooted in vitro irradiated pear rootstocks (Pyrus communis) were subjected to drought stress by using different concentrations of mannitol (20, 40, 60, 80 and 100 gm/l), polyethylene glycol (PEG) at concentrations 2, 4, 6, 8 and 10 % to culture medium and also agar at concentrations 6, 8, 10, 12 and 14 gm/l to study their effects on tissue culture and chemical analysis and their tolerance to drought stress. The obtained results showed that the number of shoots, shoot length and number of leaves were higher at 20 and 40 gm/l mannitol. Increasing mannitol concentration enhanced the increase of chlorophyll b, reducing sugars, total indoles and total phenols up to the highest level at 100 gm/l. Adding PEG at concentration 2% to the culture medium encouraged significant increases in the number of shoots and number of leaves and increase chlorophyll a, and non-reducing sugars as well as significant decrease in number of shoots, shoots length, number of leaves, root length and number of roots with increasing agar concentrations to the culture medium. However, decreasing agar concentration in the culture medium induced increase in chlorophyll A and non-reducing sugar

  2. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik

    2012-01-01

    and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre......In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without...... a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole...

  3. Development of Safety Culture Indicators for HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Lee, Kye-Hong

    2007-01-01

    Safety culture is more important than a technical matter for the management of nuclear facilities. Some of the accidents that have occurred recently in nuclear plants are important as a social problem besides a technical problem. That's why the management of nuclear plants has been focused on the safety culture to improve confidence of nuclear facilities. As for a safety culture, there are difficulties in that a tangible result does not come out clearly in spite of an effort for a long time. Some IAEA guides and reports about a safety culture and its evaluation method for nuclear power plants (NPP) were published after the Chernobyl accident. Until now there is no tool to evaluate a safety culture of for research reactors. HANARO developed its own safety culture indicators based on the IAEA's documents. The purpose of the development of the safety culture indicators is to evaluate and enhance the safety attitude in HANARO

  4. Physical culture beyond the conditions of soviet totalitarian culture development (1920-s.

    Directory of Open Access Journals (Sweden)

    Tymoshenko Y.O.

    2011-12-01

    Full Text Available It is considered the state and development of physical culture and sports in the USSR the interwar years. Found a place of physical culture in the formation of Soviet totalitarianism. The study used mainly archival documents. It focuses on the paradigmatic orientation of physical education, in fact - for her militarnost. It substantiates the idea that physical culture in the study period served not so much a sport or recreational functions as ideological. It is noted that the sports policy of the Communist Party is granted the benefit of multisport events. It is proved that a decisive role in the development of physical culture and sports areas in the USSR played amateur men.

  5. Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Janse, Arnout; Merema, M.T.; Groothuis, Geny M. M.; Verpoorte, Elisabeth

    2012-01-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision cut

  6. The use of tissue culture techniques to detect irradiated vegetables

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Sharabi, N.E.; Nabulsi, I

    2001-01-01

    the ability of two tissue culture methods, callus and vegetable growth induction, to detect irradiated vegetables was evaluated. Potato tubers, carrot roots, garlic cloves and onion bulbs were subjected to various gamma radiation doses (0, 25, 100, 150, 250, 500, 750, and 1000 Gy). Irradiated vegetables were cultured in vitro and in vivo (pots). Gamma irradiation significantly reduced callus-forming ability especially in carrot and potato where no callus was observed in doses higher than 50 Gy. Length of shoots and roots growing from irradiated garlic and onion explants was considerably reduced starting from the 25 Gy dose. No roots were formed on garlic explants at any irradiation dose. Garlic leaves growing from irradiated explants were spotted with purple to brown spots. The intensity of these spots increased as gamma ray dosage increased. In the pot experiment, potato plant appeared in the control only. On the contrary, a complete sprouting of garlic and onion was seen in all irradiation treatments. It was not possible to distinguish between the various irradiation treatments and the control 3 days after planting in pots. The two in vitro techniques, tested in our study, may effectively be used to detect irradiated vegetables and estimate the range of doses used. The callus formation method is more useful for potato and carrot, since regeneration of shoots in vitro from these two plants takes along time, making this method unpractical. The other technique is very useful in the case of onion and garlic since it is rapid. The two techniques can be used with most of the vegetables that can be cultured in vitro. (Author)

  7. Advanced tissue culture used by Twyfords to build up jojoba clones

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Twyford Plant Laboratories Ltd. in the UK, using their own advanced methods of plant tissue culture, have built up a bank of 30 different male and female clones of jojoba, the arid land crop whose seeds produced a liquid wax which - amongst other uses - can be substituted for sperm whale oil. The technique involves growing microscopic parts of a parent plant on a medium containing all the necessary growth hormones, salts, vitamins and other nutrients. Growth takes place under artificial light in an all-electric controlled, air-conditioned environment. No other method is so successful for rapidly multiplying plants, particularly those that do not breed true from seed. These include most fruits and some flowers and vegetables.

  8. Plant regeneration from petiole segments of some species in tissue culture

    Directory of Open Access Journals (Sweden)

    Krystyna Klimaszewska

    2013-12-01

    Full Text Available The regeneration ability of 21 plant species belonging to 14 families was tested. The method of tissue culture in vitro was applied, on basic MS medium with an addition of growth regulators from the auxin and cytokinin groups. From among the investigated plant groups Peperomia scandens and Caladium × hortulanum were capable of plant regeneration, Passiilora coerulea regenerated shoots, Hedera helix, Begonia glabra, Coleus blumei, Fuchsia hybrida, Passiflora suberosa and Peperomia eburnea formed callus and roots, Kalanchoe blossfeldiana, Pelargonium grandiflorum, P. peltatum, P. radula, Coleus shirensis and Magnolia soulangeana produced callus, Philodendron scandens, Rhododendron smirnovii, Hibiscus rosa-sinensis, Coprosma baueri, Cestrum purpureum and Solanum rantonnetii did not exhibit any regeneration reactions.

  9. INVESTIGATION OF HYPOLIPIDEMIC EFFECT OF SESQUITERPENE Γ-LACTONE AHILLIN IN HEPATOMA TISSUE CULTURE (HTC CELLS

    Directory of Open Access Journals (Sweden)

    V. V. Ivanov

    2014-01-01

    Full Text Available Objective. Investigation of hypolipidemic effect of sesquiterpene γ-lactone ahillin in hepatoma tissue culture (HTC cells.Material and methods. In this study we’ve evaluated the effect of γ-lactone sesquiterpene aсhillin and gemfibrozil (comparator drug on the lipid content in the hepatoma tissue culture (HTC cell which were incubated with a fat emulsion lipofundin by fluorescent method with vital dye Nile Redand staining the cells with the dye Oil Red O. The cell viability was investigated using the MTT-test and staining with Trypan blue.Results. Cultivation cells HTC with aсhillin and gemfibrozilat concentrations ranging from 0.5 to1.5 mM and from0.25 mM to0.5 mM, respectively, resulted in dose-dependent decrease of the fluorescence’s intensity Nile Red. It reflects a decrease in lipid content in the cells. At these concentrations the drugs didn’t have cytotoxic effect and the cell viability didn’t change compared to the control culture.An experimental hyperlipidemia in the hepatoma culture cells was induced by adding to the incubation medium a fat emulsion lipofundin at a final concentration 0.05%. The intensity of fluorescence Nile Red in the cells was increased 4 fold (p < 0.05. This result suggests the significant accumulation of lipids in the cell’s cytosol and confirmed by microscopy after staining neutral lipids with the dye Oil Red O. Under these conditions aсhillin and gemfibrozil reduced lipid content in cells and hadthe effect at concentrations of0.5 mM and0.25 mM respectively.Conclusion. In the lipofundin-mediated model of hyperlipidemia the sesquiterpene lactone aсhillin prevents the lipid accumulation in cells. It confirms by decrease of fluorescence Nile Red and reduction lipid drops which were stained with Oil Red O in cytosol. To establish the molecular targets of aсhillin’saction on lipid metabolism in cell culture HTC we need to investigate a gene expression of key enzymes of lipid metabolism.

  10. Effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts

    International Nuclear Information System (INIS)

    Sentissi, J.M.; Ramberg, K.; O'Donnell, T.F. Jr.; Connolly, R.J.; Callow, A.D.

    1986-01-01

    Vascular grafts lined with endothelial cells (EC) grown to confluence in culture before implantation may provide a thromboresistant flow surface. Growth of EC on and their adherence to currently available prosthetic materials under conditions of flow are two impediments remaining in the development of such a graft. To address these problems, 22 polytetrafluoroethylene grafts (PTFE) (5 cm by 4 mm inside diameter) were pretreated with collagen and fibronectin, seeded with 2 to 3 X 10(6) bovine aortic EC per graft, and placed in tissue culture (seeded grafts). Twenty-two grafts pretreated with collagen and fibronectin alone served as controls. After 2 weeks morphologic studies revealed that 20/22 seeded grafts were lined with a confluent endothelial layer. Indium 111-oxine was then used to label the EC-seeded grafts. After exposure to either low (25 ml/min) or high (200 ml/min) flow rates for 60 minutes in an in vitro circuit, examination of the luminal surface of the graft by light microscopy and scanning electron microscopy revealed minimal loss of EC. These findings were corroborated by radionuclide scans that showed an insignificant loss of the EC-associated indium label during exposure to flow (7% low flow, 11% high flow). Pretreatment of PTFE grafts with collagen and fibronectin thus promotes both attachment and adherence of EC even under flow conditions

  11. Culture and Development Ethics: Needs, Women and Western Theories

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    1996-01-01

    markdownabstractAbstract Can development ethics avoid presuming that European cultures have universal validity and yet also avoid treating every distinct culture as sacrosanct and beyond criticism? While work on "culture and development" valuably stresses the importance of cultural difference and

  12. Legal perspectives on the role of culture in sustainable development ...

    African Journals Online (AJOL)

    ... and sub-regionally to depict how issues of culture have been infiltrating the sustainable development discourse and to distil some of the substantive benchmarks for good cultural governance. Keywords: sustainable development; role of culture in sustainable development; culture; definition of culture; environmental law; ...

  13. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells.

    Science.gov (United States)

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne

    2014-01-01

    The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM

  14. In vitro flowering in embryogenic cultures of Kinnow mandarin ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-08-17

    Aug 17, 2006 ... Embryogenic cultures of Kinnow mandarin (C. nobilis Lour × C. deliciosa Tenora) were raised from unfertilized ovules ... development of efficient plant tissue culture procedures for in vitro ..... epiphytic orchid. Plant Physiol.

  15. Safety culture assessment developed by JANTI

    International Nuclear Information System (INIS)

    Hamada, Jun

    2009-01-01

    Japan's JCO accident in September 1999 provided a real-life example of what can happen when insufficient attention is paid to safety culture. This accident brought to light the importance of safety culture and reinforced the movement to foster a safety culture. Despite this, accidents and inappropriate conduct have continued to occur. Therefore, there is a strong demand to instill a safety culture throughout the nuclear power industry. In this context, Japan's nuclear power regulator, the Nuclear and Industrial Safety Agency (NISA), decided to include in its safety inspections assessments of the safety culture found in power utilities' routine safety operations to get signs of deterioration in the organizational climate. In 2007, NISA constructed guidelines for their inspectors to carry out these assessments. At the same time, utilities have embarked on their own independent safety culture initiatives, such as revising their technical specifications and building effective PDCA cycle to promote safety culture. In concert with these developments, JANTI has also instituted safety culture assessments. (author)

  16. Culture, Spirituality, and Economic Development: Opening a ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 janv. 1995 ... Security, sustainability, and stability often depend on a system of values that has taken centuries to develop within a specific society. Current development strategies, however, tend to ignore, often underestimate, and sometimes undermine cultural values or the cultural environment, which are essential to ...

  17. Pairing experimentation and computational modelling to understand the role of tissue inducer cells in the development of lymphoid organs

    Directory of Open Access Journals (Sweden)

    Kieran eAlden

    2012-07-01

    Full Text Available The use of genetic tools, imaging technologies and ex vivo culture systems has provided significant insights into the role of tissue inducer cells and associated signalling pathways in the formation and function of lymphoid organs. Despite advances in experimental technologies, the molecular and cellular process orchestrating the formation of a complex 3-dimensional tissue is difficult to dissect using current approaches. Therefore, a robust set of simulation tools have been developed to model the processes involved in lymphoid tissue development. Specifically the role of different tissue inducer cell populations in the dynamic formation of Peyer's Patches has been examined. Utilising approaches from critical systems engineering an unbiased model of lymphoid tissue inducer cell function has been developed, that permits the development of emerging behaviours that are statistically not different from that observed in vivo. These results provide the confidence to utilise statistical methods to explore how the simulator predicts cellular behaviour and outcomes under different physiological conditions. Such methods, known as sensitivity analysis techniques, can provide insight into when a component part of the system (such as a particular cell type, adhesion molecule, or chemokine begins to have an influence on observed behaviour, and quantifies the effect a component part has on the end result: the formation of lymphoid tissue. Through use of such a principled approach in the design, calibration, and analysis of a computer simulation, a robust in silico tool can be developed which can both further the understanding of a biological system being explored, and act as a tool for the generation of hypotheses which can be tested utilising experimental approaches.

  18. Assessing progress in the development of safety culture

    International Nuclear Information System (INIS)

    Rotaru, I.; Ghita, S.; Biro, L.

    2002-01-01

    This paper is focussed on the organizational culture and learning processes required for the implementation of all aspects of safety culture. There is no prescriptive formula for improving safety culture. However, some common characteristics and practices are emerging that can be adopted by organizations in order to make progress. The paper refers to some approaches that have been successful in a number of countries. The experience of the international nuclear industry in the development and improvement of safety culture could be extended and found useful in other nuclear activities, irrespective of scale. The examples given of specific practice cover a wide range of activities including analysis of events, the regulatory approach on safety culture, employee participation and safety performance measures. Many of these practices may be relevant to smaller organizations and could contribute to improving safety culture, whatever the size of the organization. The most effective approach is to pursue a range of practices that can be mutually supportive in the development of a progressive safety culture, supported by professional standards, organizational and management commitment. Some guidance is also given on the assessment of safety culture and on the detection of a weakening safety culture. Few suggestions for accelerating the safety culture development and improvement process are also provided. (author)

  19. Detection of Bacteria by Fluorescence in Situ Hybridization in Culture-Negative Soft Tissue Filler Lesions

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2009-01-01

    BACKGROUND Adverse reactions to polyacrylamide gel occur as swellings or nodules, and controversy exists whether these are due to bacterial infection or an autoimmune reaction to the filler. OBJECTIVES Biopsies from culture-negative long-lasting nodules after injection with different types...... of polyacrylamide gel were examined with a combination of Gram stain and fluorescence in situ hybridization. RESULTS Bacteria were detected in biopsies from seven of eight patients. They inhabited gel and intervening tissue and tended to lie in aggregates. CONCLUSION This study supports the assumption...... that infection with bacteria in aggregates causes culture-negative late adverse reactions to polyacrylamide gel, suggesting a biofilm environment. The authors have indicated no significant interest with commercial supporters....

  20. Design of biomimetic cellular scaffolds for co-culture system and their application

    Science.gov (United States)

    Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun

    2017-01-01

    The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell–cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment. PMID:29081966

  1. [Variability of nuclear 18S-25S rDNA of Gentiana lutea L. in nature and in tissue culture in vitro].

    Science.gov (United States)

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2004-01-01

    18S-25S rDNA sequence in genomes of G. lutea plants from different natural populations and from tissue culture has been studied with blot-hybridization method. It was shown that ribosomal repeats are represented by the variants which differ for their size and for the presence of additional HindIII restriction site. Genome of individual plant usually possesses several variants of DNA repeats. Interpopulation variability according to their quantitative ratio and to the presence of some of them has been shown. Modifications of the range of rDNA repeats not exceeding intraspecific variability were observed in callus tissues in comparison with the plants of initial population. Non-randomness of genome modifications in the course of cell adaptation to in vitro conditions makes it possible to some extent to forecast these modifications in tissue culture.

  2. Mass micropropagation of pineapple tissue culture using bioreactor technology

    International Nuclear Information System (INIS)

    Irwan Syafri; Amir Hamzah Harun; Rusli Ibrahim

    2005-01-01

    Pineapple (ananas comosus) is the most important fruit in terms of revenue earner in this country. The export of the canned pineapple is about 2 million standard cases annually valued at RM 60 million, while the export of fresh pineapple is about 40,000 tonnes worth about RM 10 million. The industry for canning is however, an ailing industry with production on the decline since the 70s. Scaling up the pineapple propagation using in vitro methods seems to be possible solutions for the lack of planting material. Temporary immersion system (TIS) has been described by Teisson and Alvard (1995) for plant tissue culture propagation. This system, also known as RITA, has been successfully used with embryogenic tissues of banana (Alvard et al 1993), coffee (Berthouly 1991), rubber (Etienne et al 1993) and sugarcane (Lorenzo et al 1998). In this study, the system has been set up with a potential capacity of 3 manifolds with 10 RITA each, to multiply meristem explants at different immersion periods. The system was compared with the conventional micropropagation system on solid medium. Both systems were treated with MS media containing 2.5 mg/l BAP and 0.1 NAA. In TIS the shoots were able to multiplied faster in comparison with solid media. The multiplication rates were increased up to 1:3 to 1:5 compared to normal propagation on solid media. The results show that TIS not only increase the propagation rates of pineapple but could also be adapted to reduce implementation costs to establish low-cost propagation systems. (Author)

  3. Informational and Cultural Situation in Developing Countries.

    Science.gov (United States)

    Nadirova, Goulnar

    Cultural development of modern countries in the East, including the Republic of Kazakhstan, is a complicated and contradictory process, where common cultural ways were shaped differently and specifically in the countries. Common historical fate has influenced this development and given these countries some common problems, but there is some…

  4. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  5. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.

    Science.gov (United States)

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2011-03-01

    Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  6. Culture and Local Development: the Interaction of Cultural Heritage and Creative Industries

    Directory of Open Access Journals (Sweden)

    Valery Gordin

    2011-10-01

    Full Text Available The aim of the study is to examine the various forms of interaction between cultural heritage and creative industries to support the development of various types of cultural clusters in St. Petersburg. The study was based on a model, which provides several types of partnership cultural heritage (CH could have with the creative industries (CI: CH as a “decoration” for the CI, as “content”, as a “brand”, as the creator of the needs. Authors’ classification of cultural clusters in St. Petersburg is described, including clusters of cultural heritage, ethnic cultural clusters, the mass-cultural (consumer-oriented cultural clusters, art - incubators. One of the main findings is the low willingness of many public cultural institutions to have any form of interaction with the creative industries. The second group of findings concerned the ability to attract creative industries to provide services for residents of St. Petersburg in cooperation with public institutions of culture

  7. Developing cultural intelligence: assessing the effect of the Ecotonos cultural simulation game for international business students

    NARCIS (Netherlands)

    Bücker, J.J.L.E.; Korzilius, H.P.L.M.

    2015-01-01

    In this study, we test the strength of a cross-cultural simulation game, Ecotonos, in the development of cultural intelligence (CQ) and self-efficacy amongst business students. Cross-cultural training is perceived as an important tool to help develop cross-cultural competence in international

  8. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach.

    Science.gov (United States)

    Mridula, Meenu R; Nair, Ashalatha S; Kumar, K Satheesh

    2018-02-01

    In this paper, we compared the efficacy of observation based modeling approach using a genetic algorithm with the regular statistical analysis as an alternative methodology in plant research. Preliminary experimental data on in vitro rooting was taken for this study with an aim to understand the effect of charcoal and naphthalene acetic acid (NAA) on successful rooting and also to optimize the two variables for maximum result. Observation-based modelling, as well as traditional approach, could identify NAA as a critical factor in rooting of the plantlets under the experimental conditions employed. Symbolic regression analysis using the software deployed here optimised the treatments studied and was successful in identifying the complex non-linear interaction among the variables, with minimalistic preliminary data. The presence of charcoal in the culture medium has a significant impact on root generation by reducing basal callus mass formation. Such an approach is advantageous for establishing in vitro culture protocols as these models will have significant potential for saving time and expenditure in plant tissue culture laboratories, and it further reduces the need for specialised background.

  9. Cultural heritage and sustainable development in SUIT

    DEFF Research Database (Denmark)

    Algreen-Ussing, Gregers; Hassler, Uta; Kohler, Niklaus

    2002-01-01

    The position paper is composed of 18 thesis, which are presented in four groups: Cultural Heritage, Momuments and Public Space, Active Conservation and Sustainable Development.......The position paper is composed of 18 thesis, which are presented in four groups: Cultural Heritage, Momuments and Public Space, Active Conservation and Sustainable Development....

  10. Culture of insect tissues

    International Nuclear Information System (INIS)

    Cestari, A.N.; Simoes, L.C.G.

    1978-01-01

    Several aspects are discussed related to the behavior of politenic chromosomes from Rhyncosciara salivary glands kept in culture during different periods of time, without interference of insect hormones. Nucleic acid-and protein synthesis in isolated nuclei and chromosomes are also investigated. Autoradiographic techniques and radioactive precursors for nucleic acids and proteins are used in the research. (M.A.) [pt

  11. Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long

    2004-01-01

    The objective of the present study was to develop a rapid HPLC method for simultaneous separation and quantitation of dansylated amino acids and common polyamines in the same matrix for analyzing forest tree tissues and cell cultures. The major modifications incorporated into this method as compared to previously published HPLC methods for separation of only dansyl...

  12. Development of Safety Culture Assessment Strategy for Korean NPP

    International Nuclear Information System (INIS)

    Park, Jung Hwan; Kim, Jong Hyun

    2014-01-01

    This paper aims at developing the requirements for a method to evaluate the operational safety culture, evaluating currently available methods based on the requirements, and suggesting a method to evaluate and improve the operational safety culture for Korean nuclear power plants. This paper reviews the widely-used methods to assess safety culture for NPPs and their basis. Then, this paper develops the requirements for the method to evaluate operational safety culture for Korean NPPs. Based on these requirements, Korean Safety Culture Indicators (KSCI) and evaluation measures are also suggested. Finally this paper proposes the guidelines to develop improvements to safety culture from the evaluation results

  13. Development of Safety Culture Assessment Strategy for Korean NPP

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hwan; Kim, Jong Hyun [KEPCO, Ulsan (Korea, Republic of)

    2014-08-15

    This paper aims at developing the requirements for a method to evaluate the operational safety culture, evaluating currently available methods based on the requirements, and suggesting a method to evaluate and improve the operational safety culture for Korean nuclear power plants. This paper reviews the widely-used methods to assess safety culture for NPPs and their basis. Then, this paper develops the requirements for the method to evaluate operational safety culture for Korean NPPs. Based on these requirements, Korean Safety Culture Indicators (KSCI) and evaluation measures are also suggested. Finally this paper proposes the guidelines to develop improvements to safety culture from the evaluation results.

  14. Cultural Challenges in Developing E-Learning Content

    Directory of Open Access Journals (Sweden)

    Marianne Amir Azer

    2011-03-01

    Full Text Available Education is an important component of any nation’s development process. Society has been credited with creating technology, but technology is simultaneously creating society. One of the key benefits of such technology creation includes learning and curriculum development, which is otherwise referred to as e-leaning, and more appropriately referred to as global e-learning. Global e-learning raises some implications, which include communication, culture, and technology, that must be addressed before successful implementation and outcome can occur. In this paper, we discuss cultural related issues such as culture influence on e-learning and the dimensions of cultural variability. In addition, we present the main challenges to provide e-learning opportunities. Finally, a case study for facing the cultural challenges is presented; this will be followed by concluding remarks at the end of this paper.

  15. SENSITIVITY OF PIGMENT CONTENT OF BANANA AND ORCHID TISSUE CULTURE EXPOSED TO EXTREMELY LOW FREQUENCY ELECTROMAGNETIC FIEL

    Directory of Open Access Journals (Sweden)

    Riry Prihatini

    2017-01-01

    Full Text Available Natural exposure of extremely low frequency electromagnetic field (ELF-EMF occurs in the environment and acts as one of the abiotic factors that affect the growth and development of organisms. This study was conducted to determine the effect of ELF-EMF on the tissue cultured banana and slipper orchid chlorophyll content as one of the indicators in measuring plant photosynthetic capacity. Four days old banana (Musa sp. cv. Berangan corm and seven days old slipper orchid (Paphiopedilum rothschildianum cultures were exposed to 6 and 12 mT ELF-EMF generated by controllable ELF-EMF built up machine for 0.5, 1, 2 and 4 hours. After exposure, the banana and orchid cultures were incubated at 25° C for 8 and 16 weeks, respectively. The results showed that the ELF-EMF exposure had different effects on banana and slipper orchid cultures though both plant species belong to monocotyledon. The highest increase in chlorophyll content on banana was resulted by the high intensity and long duration of ELF-EMF exposure (12 mT for 4 hours, whereas on slipper orchid the modest and short duration of ELF-EMF exposure produced the most excessive chlorophyll content. Different ELF-EMF exposures (12 mT for 4 hours and 6 mT for 30 minutes had potential to be applied on each plant to improve in vitro plant (banana and slipper orchid, respectively growth. The increased chlorophyll and carotene/xanthophyll content on banana indicated that the banana was more tolerant to ELF-EMF exposure compared to slipper orchid. 

  16. Developing safety culture in nuclear power engineering

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    2000-01-01

    The new issue (no. 11) of the IAEA publications series Safety Reports, devoted to the safety culture in nuclear engineering Safety culture development in the nuclear activities. Practical recommendations to achieve success, is analyzed. A number of recommendations of international experts is presented and basic general indicators of satisfactory and insufficient safety culture in the nuclear engineering are indicated. It is shown that the safety culture has two foundations: human behavior and high quality of the control system. The necessity of creating the confidence by the management at all levels of the enterprise, development of individual initiative and responsibility of the workers, which make it possible to realize the structural hierarchic system, including technical, human and organizational constituents, is noted. Three stages are traced in the process of introducing the safety culture. At the first stage the require,emts of scientific-technical documentation and provisions of the governmental, regional and control organs are fulfilled. At the second stage the management of the organization accepts the safety as an important direction in its activities. At the third stage the organization accomplishes its work, proceeding from the position of constant safety improvement. The general model of the safety culture development is considered [ru

  17. Production of virus-free orchid Cymbidium aloifolium (L.) Sw. by various tissue culture techniques.

    Science.gov (United States)

    Pradhan, Shreeti; Regmi, Tripti; Ranjit, Mukunda; Pant, Bijaya

    2016-10-01

    Orchids are affected by many viruses resulting in poor growth, yield and quality, and an overall decline in population. Cymbidium mosaic virus (CymMV) is one of the common orchid viruses found in Cymbidium species but it infects different orchid genera. In this study Cymbidium aloifolium was propagated in vitro using MS medium at different strength (1.0, ½, and ¼) with or without 0.5 mg/l BAP (6-benzylaminopurine) and 0.5 mg/l NAA (Naphthalene acetic acid). To provide disease-free planting material, source plant for in vitro propagation needs to be screened for pathogenic viruses. In the present study, in vivo -grown source (mother) plants and tissue culture-derived plants of C. aloifolium were tested for CymMV virus using Double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA). All the tissue cultured plants were found to be 100% virus-free whereas the in vivo grown source plants were highly affected by CymMV virus (83.33%). The virus-free in vitro plantlets were multiplied in large scale and then acclimatized on earthen pot containing a mixture of cocopeat, litter and clay in the ratio of 3:2:1. Eighty five percent of acclimatized plantlets survived making this method an efficient mass production system for high quality virus-free C. aloifolium for commercial floriculture and germplasm preservation.

  18. Production of virus-free orchid Cymbidium aloifolium (L. Sw. by various tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Shreeti Pradhan

    2016-10-01

    Full Text Available Orchids are affected by many viruses resulting in poor growth, yield and quality, and an overall decline in population. Cymbidium mosaic virus (CymMV is one of the common orchid viruses found in Cymbidium species but it infects different orchid genera. In this study Cymbidium aloifolium was propagated in vitro using MS medium at different strength (1.0, ½, and ¼ with or without 0.5 mg/l BAP (6-benzylaminopurine and 0.5 mg/l NAA (Naphthalene acetic acid. To provide disease-free planting material, source plant for in vitro propagation needs to be screened for pathogenic viruses. In the present study, in vivo-grown source (mother plants and tissue culture-derived plants of C. aloifolium were tested for CymMV virus using Double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA. All the tissue cultured plants were found to be 100% virus-free whereas the in vivo grown source plants were highly affected by CymMV virus (83.33%. The virus-free in vitro plantlets were multiplied in large scale and then acclimatized on earthen pot containing a mixture of cocopeat, litter and clay in the ratio of 3:2:1. Eighty five percent of acclimatized plantlets survived making this method an efficient mass production system for high quality virus-free C. aloifolium for commercial floriculture and germplasm preservation. Keywords: Biological sciences, Plant biology

  19. Culturated rat cerebral cortex explants and their application in the study of SPECT scan radiopharaceuticals

    International Nuclear Information System (INIS)

    Jong, B.M. de.

    1989-01-01

    In this thesis mechanics that result in the distinct localization of radiopharmaceuticals within the brain have been investigated. In order to 'get more insight' in uptake and binding of radiopharmaceuticals bu brain tissue, use has been made of the tissue culture technique. Tissue culture privides the opportunity of doing experiments with brain tissue under stable conditions, in the absence of a blood-brain barrier, and without interference by cerebral blood flow. The present thesis is presented in two sections. The first part focusses on longterm culture of 'organotypic' cerebral neocortex tissue, obtained from neonatal rat brain and explanted into a chemically defined medium. Procedures were developed which enabled culturing of this tissue without the occurence of central necrosis and with the preservation of a characteristic histiotypic organization. Morphological characteristics of the cultures were described and measured at various ages in vitro. In the second part, the cultures were used to study mechanisms that might contribute to the tissue uptake of radiopharmaceuticals which are in clinical use for SPECT brain imaging. (author). 369 refs.; 50 figs.; 13 tabs

  20. Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture

    DEFF Research Database (Denmark)

    Yin, H L; Kristensen, S G; Jiang, H

    2016-01-01

    during long-term culture has received only little attention. STUDY DESIGN, SIZE, DURATION: Two to ten human pre-antral follicles were encapsulated together within an alginate bead and cultured with or without ovarian interstitial tissue for either 7 days or >30 days. Follicles were cultured in either 20...... interregional project ReproHigh are thanked for having funded this study; and the Key Program of Medical Science and Technology Innovation of Nanjing Military Area Command in China (14ZX06; 11Z010). They had no role in the study design, collection and analysis of data, data interpretation or in writing...

  1. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  2. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation

    Directory of Open Access Journals (Sweden)

    EL Smith

    2013-09-01

    Full Text Available Scientific research and progress, particularly in the drug discovery and regenerative medicine fields, is typically dependent on suitable animal models to develop new and improved clinical therapies for injuries and diseases. In vivo model systems are frequently utilised, but these models are expensive, highly complex and pose a number of ethical considerations leading to the development and use of a number of alternative ex vivo model systems. The ex vivo embryonic chick long bone and limb bud models have been utilised in the scientific research field as a model to understand skeletal development for over eighty years. The rapid development of avian skeletal tissues, coupled with the ease of experimental manipulation, availability of genome sequence and the presence of multiple cell and tissue types has seen such model systems gain significant research interest in the last few years in the tissue engineering field. The models have been explored both as systems for understanding the developmental bone niche and as potential testing tools for tissue engineering strategies for bone repair and regeneration. This review details the evolution of the chick limb organ culture system and presents recent innovative developments and emerging techniques and technologies applied to these models that are aiding our understanding of skeletal developmental and regenerative medicine research and application.

  3. Culture and Local Development: the Interaction of Cultural Heritage and Creative Industries

    OpenAIRE

    Valery Gordin; Marina Matetskaya

    2011-01-01

    The aim of the study is to examine the various forms of interaction between cultural heritage and creative industries to support the development of various types of cultural clusters in St. Petersburg. The study was based on a model, which provides several types of partnership cultural heritage (CH) could have with the creative industries (CI): CH as a “decoration” for the CI, as “content”, as a “brand”, as the creator of the needs. Authors’ classification of cultural clusters in St. Petersbu...

  4. Nuclear morphology, polyploidy, and chromatin elimination in tissue culture of Allium fistulosum L.

    Directory of Open Access Journals (Sweden)

    Andrzej Joachimiak

    2011-01-01

    Full Text Available The morphology of cell nuclei in callus obtained from root-tip meristems of Allium fistulosum L. (Monocotyledoneae, Alliaceae was analysed. The most interesting phenomena observed in long-term callus culture were the different mechanisms of cell polyploidization, enlargement of telomeric segments of heterochromatin, and extensive chromatin elimination, associated with instability of nuclei size and DNA content. Protruding heterochromatin "spikes" were observed on the surface of some di- and polyploid nuclei. The presence of these spikes was connected with the formation of small heterochromatic micronuclei frequently found in the cytoplasm. It is suggested that these micronuclei are produced by direct elimination of heterochromatin from the interphase nuclei. Polyploid cells accumulated with each successive cell collection. The ploidy level attained by highly polyploid cells was 15C-220C. The shape of the nuclei and heterochromatin distribution suggest that polyploid nuclei in A. fistulosum tissue culture are produced by endoreduplication and by restitution cycles.

  5. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  6. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia.

    Science.gov (United States)

    Podstolski, Andrzej; Havkin-Frenkel, Daphna; Malinowski, Jacek; Blount, Jack W; Kourteva, Galina; Dixon, Richard A

    2002-11-01

    Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.

  7. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    Science.gov (United States)

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Is culture a determinant of financial development?

    OpenAIRE

    Dutta, Nabamita; Mukherjee, Deepraj

    2011-01-01

    The paper investigates the missing link in the literature – whether informal institutions, or what is known as culture, can affect the level of financial development for a country? Our hypothesis stresses that the cultural dimensions of a country can have an impact on its financial set up. We consider multiple dimensions of culture, identified in the literature by Tabellini, to test our hypothesis. As culture evolve in the form of greater trust, control and other traits, individuals’ attitude...

  9. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Eigėlienė, Natalija; Härkönen, Pirkko; Erkkola, Risto

    2006-01-01

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E 2 or MPA or with E 2 +MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E 2 -treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E 2 +MPA to multilayered but organised epithelium. The proliferative response to E 2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E 2 +MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E 2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  11. A general native-state method for determination of proliferation capacity of human normal and tumor tissues in vitro

    International Nuclear Information System (INIS)

    Hoffman, R.M.; Connors, K.M.; Meerson-Monosov, A.Z.; Herrera, H.; Price, J.H.

    1989-01-01

    An important need in cancer research and treatment is a physiological means in vitro by which to assess the proliferation capacity of human tumors and corresponding normal tissue for comparison. The authors have recently developed a native-state, three-dimensional, gel-supported primary culture system that allows every type of human cancer to grow in vitro at more than 90% frequency, with maintenance of tissue architecture, tumor-stromal interaction, and differentiated functions. Here they demonstrate that the native-state culture system allows proliferation indices to be determined for all solid cancer types explanted directly from surgery into long-term culture. Normal tissues also proliferate readily in this system. The degree of resolution of measurement of cell proliferation by histological autoradiography within the cultured tissues is greatly enhanced with the use of epi-illumination polarization microscopy. The histological status of the cultured tissues can be assessed simultaneously with the proliferation status. Carcinomas generally have areas of high epithelial proliferation with quiescent stromal cells. Sarcomas have high proliferation of cells of mesenchymal organ. Normal tissues can also proliferate at high rates. An image analysis system has been developed to automate proliferation determination. The high-resolution physiological means described here to measure the proliferation capacity of tissues will be important in further understanding of the deregulation of cell proliferation in cancer as well as in cancer prognosis and treatment

  12. Quantitative and informatics tools for studying the effect of low dose radiation on tissue and cell culture

    International Nuclear Information System (INIS)

    Parvin, B.; Yang, Q.; Fontenay, G.; Barcellos-Hoff, M.H.

    2003-01-01

    Full text: The challenge of the post-genomic era is functional genomics, i.e., understanding how the genome is expressed to produce myriad cell phenotypes. To use genomic information to understand the biology of complex organisms, one must understand the dynamics of phenotype generation and maintenance. A phenotype is the result of selective expression of the genome. In order to define cell 'phenomes,' one would track the kinetics and quantities of multiple constituent proteins, their cellular context and morphological features in large populations. Our aim is to extend the development of the BioSig imaging bioinformatics system for understanding how ionizing radiation alters tissue homeostasis and responses in cell culture experiments. Given several thousand antibodies and reagents for differentiating cell-specific protein components, biological heterogeneity, and other variables that affect cellular responses, there is a clear requirements for managing images and information about these images. Our focus is on the development of (1) quantitative methods for protein expression either in tissue or cell culture studies, (2) a adequate data model that couples quantitative results with the experimental variables, and (3) browsing and visualization tools that enable exploration of large scale image data in feature space in the context of biological heterogeneity. The framework provides the basis for studying the effect of low-dose radiation on the cellular microenvironment, inter-cell communication, and the underlying mechanisms. In turn, this information can then be used to more accurately predict more complex multicellular biological responses following exposure to different types of inhibitors. The BioSig informatics approach to microscopy and quantitative image analysis has been used to build a more detailed picture of the signaling that occurs between cells, as a result of an exogenous stimulus such as radiation, or as a consequence of endogenous programs leading

  13. Generation of stomach tissue from mouse embryonic stem cells.

    Science.gov (United States)

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  14. Analyses of Tissue Culture Adaptation of Human Herpesvirus-6A by Whole Genome Deep Sequencing Redefines the Reference Sequence and Identifies Virus Entry Complex Changes.

    Science.gov (United States)

    Tweedy, Joshua G; Escriva, Eric; Topf, Maya; Gompels, Ursula A

    2017-12-31

    Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally "cloned" by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis.

  15. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears.

    Science.gov (United States)

    Bochyńska, A I; Van Tienen, T G; Hannink, G; Buma, P; Grijpma, D W

    2016-03-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study, a series of amphiphilic copolymers based on polyethylene glycol, trimethylene carbonate and citric acid were synthesized and subsequently end-functionalized with hexamethylene diisocyanate to form reactive adhesive materials. The shear adhesive strength of the networks to bovine meniscus tissue measured in a lap-shear adhesion test ranged between 20 and 80 kPa, which was better than for fibrin glue (10 kPa). The elastic modulus of the networks depended on composition and was in the same range as that of human meniscus. Cell compatibility was assessed using Alamar Blue staining after incubation of the bovine meniscus cells with different concentrations of the glues for 7 days. Cell viability was not affected after adding up to 3mg of the adhesive/mL of medium. The proposed materials are suitable candidates to be used as resorbable tissue adhesives for meniscus repair. They have excellent mechanical and adhesive properties that can be adjusted by varying the composition of the copolymers. Meniscal tears often occur and current treatment strategies do not bring fully satisfactory results. Use of biodegradable tissue adhesives would be an interesting option, but currently available adhesives are not suited due to toxicity or poor mechanical properties. Here, we describe the development of novel biodegradable, hyper-branched, adhesive copolymers. These adhesives cure upon contact with water forming flexible networks. Their adhesion to bovine meniscus tissue was significantly better than that of clinically used fibrin glue. The tensile properties of the cured networks were in the same range of values of the human meniscus. When physiologically relevant amounts were added to

  16. A Simplified Method for Three-Dimensional (3-D Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice.

    Directory of Open Access Journals (Sweden)

    Carolyn M Higuchi

    Full Text Available In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART. Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture. We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-, A (Membrane/activin+, M (Matrigel/activin-, and M+A (Matrigel/activin+. We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A. Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM and in vitro fertilization (IVF. Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A than with those grown in membrane culture (C, A. In particular, activin A treatment further improved 3-D culture (M+A success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian

  17. Introgression of genetic material from Zea mays ssp. Mexicana into cultivated maize was facilitated by tissue culture

    International Nuclear Information System (INIS)

    Wang, L.; Gu, X.; Qu, M.; Luan, J.; Zhang, J.

    2012-01-01

    Zea mays ssp. mexicana, a wild relative of cultivated maize (Z. mays ssp. mays), is a useful gene resource for maize breeding. In this study, two populations were generated by conventional breeding scheme (population I) or tissue culture regime (population II), respectively, to introgress genetic material of Z. mays ssp. mexicana into maize. Karyotype analysis showed that the arm ratios of 10 pairs of chromosomes in parent maize Ye515 and derivative lines from 2 different populations with 26% and 38% chromosome variation frequencies, respectively. Alien chromatin was detected in the root tip cells of progeny plants through genomic in situ hybridization (GISH). There were 3.3 chromosomes carrying alien chromatin on average in population I and 6.5 in population II. The hybridization signals were located mainly at the terminal or sub terminal regions of the chromosomes and the sizes were notably variant among lines. Based on those results, it is concluded that the introgression of genetic material from Z. mays ssp. mexicana into cultivated maize was facilitated by tissue culture, and subsequently some excellent materials for maize breeding were created. (author)

  18. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering.

    Science.gov (United States)

    El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T

    2003-03-01

    The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal

  19. Developing Students' Cultural Awareness in College English Teaching

    Institute of Scientific and Technical Information of China (English)

    刘利

    2009-01-01

    The importance of cultural awareness in college English teaching has been noted by the author because it can help the students bridge the cultural differences between mother tongue and target language. Cultural essence of China and English-speaking countries is analyzed and some methods of developing college students' cultural awareness are introduced in this paper.

  20. Flowering of Woody Bamboo in Tissue Culture Systems

    Directory of Open Access Journals (Sweden)

    Jin-Ling Yuan

    2017-09-01

    Full Text Available Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.

  1. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    Science.gov (United States)

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  2. Studies on salt and drought tolerance of lavender using tissue culture and gamma rays

    International Nuclear Information System (INIS)

    Essam, K.E.; El-Sharnoby, M.E.

    2005-01-01

    The present study was carried out to investigate the propagation and chemical composition of Lavandula spica using different cytokinins (BA, Ki and 2ip) on MS medium,, besides medium strength. Also, GA3 concentrations, auxin types, gamma irradiation (0, 2, 4, 6 and 8 Krad), different concentrations of mannitol (10, 20, 40, 80 and 100 mg/l) as well as different salinity concentrations of CaCl 2 or NaCl or both at levels 250, 500, 750 and 1000 ppm were used in the study. Maximum proliferation parameter was produced on MS medium supplemented with 1 mg/l BA than other cytokinin types. Growing the explant of Lavandula. spica on MS medium, containing 3 mg/l BA, gave the highest proliferation, growth and greening parameters. However, using MS medium at half strength supplemented with 3 mg/l BA resulted in significant increase in both shoot elongation and greening parameters as compared with the other medium strengths, while 4 mg/l GA induced the best shoot elongation. Adding 1 mg/l IBA enhanced rooting and also the obtained results showed that increasing gamma irradiation decreased growth and proliferation parameters. Moreover, increasing drought stress induced an adverse effect on tissue culture parameter while some chemical analysis parameters were increased to maximum degree of their tolerance to drought stress. Also, using different salinity treatment by NaCl, CaCl 2 and their combinations showed adverse effects on tissue culture parameters chemical composition

  3. The Role of Cultural Activities in Community Development

    Directory of Open Access Journals (Sweden)

    Baiba Tjarve

    2016-01-01

    Full Text Available Culture has a critical role in transforming localities into more attractive places to work and invest. Cultural activities and facilities significantly affect the development of the physical environment of cities. But what does it all mean for the local residents of the neighbourhoods? How do they feel or participate in cultural activities organized for them? The overall aim of this study has been to evaluate participation effect on the development of Riga’s neighbourhoods during the year of The European Capital of Culture. During the research, the authors have used the mixed research methodology. The qualitative analysis of the Riga 2014 programme has been done based on the qualitative interviews with the artistic team, project managers and entrepreneurs from Riga’s neighbourhoods; besides, a detailed analysis of Riga 2014 programme events has been performed. The main findings show that cultural life in the neighbourhoods is among the most important factors determining the satisfaction with life by the neighbourhoods’ inhabitants. Personalities, not infrastructure have a crucial importance in the development of neighbourhood cultural life. Cultural activities in neighbourhood should be carried out in close cooperation with the stakeholders from different sectors. This can bring to sustainable and long‑term effects.

  4. Students’ Socio-cultural Competence Development, Using English and Russian Phraseological Units

    Directory of Open Access Journals (Sweden)

    Umit I. Kopzhasarova

    2013-01-01

    Full Text Available The article deals with the problem of socio-cultural competence development on the basis of using English and Russian phraseological units. The authors specify the essence of the socio-cultural competence, define socio-cultural component of foreign language teaching. The authors justify their viewpoint that phraseological units, being the most valuable source of cultural information, exposing background knowledge and culture specific vocabulary, are the effective means of socio-cultural competence development. The set of exercises on socio-cultural competence development on the material of English and Russian phraseological units, developed by authors, include language and speech tasks; tasks based on project and creative research activity methods, which are the basis of development of the main socio-cultural skills that are necessary in intercultural communication

  5. Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.

    Science.gov (United States)

    Gnedeva, Ksenia; Hudspeth, A J; Segil, Neil

    2018-06-01

    The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.

  6. Reflective journaling and development of cultural humility in students.

    Science.gov (United States)

    Schuessler, Jenny B; Wilder, Barbara; Byrd, Linda W

    2012-01-01

    Cultural humility requires self-evaluation and the awareness that one's own culture is not the only or best one. Teaching health care providers to become culturally humble includes the development of critical thinking skills and the ability to reflect on practice. Journaling as a teaching strategy helps students develop these skills. This article describes the use of reflective journaling as students progressed through four semesters of a community clinical experience. This qualitative, descriptive study was based on the principles of naturalistic inquiry with person-centered written reflections.Two hundred journal entries from 50 students were reviewed, and II themes were identified. Cultural humility cannot be learned merely in the classroom with traditional teaching methods. Reflection on experiences over time leads to the development of cultural humility.

  7. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    Science.gov (United States)

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  8. Development of a mechanical testing and loading system for trabecular bone studies for long term culture

    Directory of Open Access Journals (Sweden)

    DB Jones

    2003-03-01

    Full Text Available A highly accurate (�3% mechanical loading and measurement system combined with a trabecular bone diffusion culture-loading chamber has been developed, which provides the ability to study trabecular bone (and possibly cartilage under controlled culture and loading conditions over long periods of time. The loading device has been designed to work in two main modes, either to apply a specific compressive strain to a trabecular bone cylinder or to apply a specific force and measure the resulting deformation. Presently, precisely machined bone cylinders can be loaded at frequencies between 0.1 Hz to 50 Hz and amplitudes over 7,000�e. The system allows accurate measurement of many mechanical properties of the tissue in real time, including visco-elastic properties. This paper describes the technical components, reproducibility, precision, and the calibration procedures of the loading system. Data on long term culture and mechanical responses to different loading patterns will be published separately.

  9. Human natural killer cell development in secondary lymphoid tissues

    Science.gov (United States)

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  10. Tissue culture of adult larch as a tool for breeding purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, D.; Kretzschmar, U. [Federal Research Centre of Forestry and Forest Products, Waldsieversdorf (Germany). Inst. for Forest Tree Biology

    1995-12-31

    Aimed at the identical reproduction of genotypes which are considered superior different methods were tested to establish and to propagate tissue cultures from old larch trees (L. decidua, L. kaempferi, L. sukaczewii, L. gmelinii, L. eurolepis). Serial subcultures without phytohormones (shoot tip propagation) led to the establishment of clone lines. After ten subcultures propagation velocity, shoot morphology and rooting behavior were similar to juvenile plant material. Serial subcultures which included a cytokinin induction led to the formation of adventitious shoot clusters (adventitious bud propagation). Adventitious shoots derived from male flowers of one L. kaempferi clone could be propagated via shoot tip propagation. Micrografting of meristems in vitro resulted in a regained rooting capacity of green cuttings from micrografts. Combining these in vitro techniques offers now the possibility to propagate selected mature larch trees for different breeding purposes. 23 refs, 5 figs, 2 tabs

  11. Cloning crops in a CELSS via tissue culture: Prospects and problems

    Science.gov (United States)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  12. Tissue culture of adult larch as a tool for breeding purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, D; Kretzschmar, U [Federal Research Centre of Forestry and Forest Products, Waldsieversdorf (Germany). Inst. for Forest Tree Biology

    1996-12-31

    Aimed at the identical reproduction of genotypes which are considered superior different methods were tested to establish and to propagate tissue cultures from old larch trees (L. decidua, L. kaempferi, L. sukaczewii, L. gmelinii, L. eurolepis). Serial subcultures without phytohormones (shoot tip propagation) led to the establishment of clone lines. After ten subcultures propagation velocity, shoot morphology and rooting behavior were similar to juvenile plant material. Serial subcultures which included a cytokinin induction led to the formation of adventitious shoot clusters (adventitious bud propagation). Adventitious shoots derived from male flowers of one L. kaempferi clone could be propagated via shoot tip propagation. Micrografting of meristems in vitro resulted in a regained rooting capacity of green cuttings from micrografts. Combining these in vitro techniques offers now the possibility to propagate selected mature larch trees for different breeding purposes. 23 refs, 5 figs, 2 tabs

  13. Four and a half domain 2 (FHL2) scaffolding protein is a marker of connective tissues of developing digits and regulates fibrogenic differentiation of limb mesodermal progenitors.

    Science.gov (United States)

    Lorda-Diez, C I; Montero, J A; Sanchez-Fernandez, C; Garcia-Porrero, J A; Chimal-Monroy, J; Hurle, J M

    2018-04-01

    Four and a half LIM domain 2 (FHL2) is a multifunctional scaffolding protein of well-known function regulating cell signalling cascades and gene transcription in cancer tissues. However, its function in embryonic systems is poorly characterized. Here, we show that Fhl2 is involved in the differentiation of connective tissues of developing limb autopod. We show that Fhl2 exhibits spatially restricted and temporally dynamic expression around the tendons of developing digits, interphalangeal joint capsules, and fibrous peridigital tissue. Immunolabelling analysis of the skeletal progenitors identified a predominant, but not exclusive, cytoplasmic distribution of FHL2 being associated with focal adhesions and actin cytoskeleton. In the course of chondrogenic differentiation of cultures of limb skeletal progenitors, the expression of Fhl2 is down-regulated. Furthermore, cultures of skeletal progenitors overexpressing Fhl2 take on a predominant fibrogenic appearance. Both gain-of-function and loss-of-function experiments in the micromass culture assays revealed a positive transcriptional influence of Fhl2 in the expression of fibrogenic markers including Scleraxis, Tenomodulin, Tenascin C, βig-h3, and Tgif1. We further show that the expression of Fhl2 is positively regulated by profibrogenic signals including Tgfβ2, all-trans-retinoic acid, and canonical Wnt signalling molecules and negatively regulated by prochondrogenic factors of the bone morphogenetic protein family. Expression of Fhl2 is also regulated negatively in immobilized limbs, but this influence appears to be mediated by other connective tissue markers, such as Tgfβs and Scleraxis. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  15. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  16. Constructing Failure: Leonard Hayflick, Biomedicine, and the Problems with Tissue Culture.

    Science.gov (United States)

    Park, Hyung Wook

    2016-07-01

    By examining the use of tissue culture in post-war American biomedicine, this paper investigates how scientists experience and manage failure. I study how Leonard Hayflick forged his new definition of failure and ways of managing it by refuting Alexis Carrel's definition of failure alongside his theory of the immortality of cultured cells. Unlike Carrel, Hayflick claimed that every vertebrate somatic cell should eventually die, unless it transformed into a tumour cell. This claim defined cell death, which had been a problem leading to a laboratory failure, as a normal phenomenon. On the other hand, permanent life, which had been considered a normal cellular characteristic, became a major factor causing scientific failure, since it implied malignant transformation that scientists hoped to control. Hayflick then asserted that his cell strains and method would partly enable scientists to manage this factor-especially that occurred through viral infection-alongside other causes of failure in routine tasks, including bacterial contamination. I argue that the growing biomedical enterprise fostered this work of Hayflick's, which had repercussions in both his career and the uses of cells in diverse investigations. His redefinition of failure in the age of biomedicine resulted in the broad dissemination of his cells, medium, and method as well as his long struggle with the National Institutes of Health (NIH), which caused his temporarily failed career.

  17. Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies.

    Science.gov (United States)

    Peticone, Carlotta; De Silva Thompson, David; Owens, Gareth J; Kim, Hae-Won; Micheletti, Martina; Knowles, Jonathan C; Wall, Ivan

    2017-09-01

    The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts. Furthemore, doping with cobalt appears to mimic hypoxic conditions that have a key role in promoting angiogenesis. This characteristic could be exploited to meet the clinical requirement of producing vascularized units of bone tissue. In the current study, the human osteosarcoma cell line MG-63 was cultured on phosphate glass microspheres doped with 5% mol titanium dioxide and different concentrations of cobalt oxide (0%, 2% and 5% mol), under static and dynamic conditions (150 and 300 rpm on an orbital shaker). Cell proliferation and the formation of aggregates of cells and microspheres were observed over a period of two weeks in all glass compositions, thus confirming the biocompatibility of the substrate and the suitability of this system for the formation of compact micro-units of tissue. At the concentrations tested, cobalt was not found to be cytotoxic and did not alter cell metabolism. On the other hand, the dynamic environment played a key role, with moderate agitation having a positive effect on cell proliferation while higher agitation resulting in impaired cell growth. Finally, in static culture assays, the capacity of cobalt doping to induce vascular endothelial growth factor (VEGF) upregulation by osteoblastic cells was observed, but was not found to increase linearly with cobalt oxide content. In conclusion, Ti-Co phosphate glasses were found to support osteoblastic cell growth and aggregate formation that is a necessary precursor to tissue

  18. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented....... The positive effect of continuous flow of growth medium, and thus stability of the glucose concentration and waste removal, is simulated and compared to the effect of stagnant medium that is most often used in tissue culturing. Furthermore, placement of the tissue slices in the developed device was studied...... by numerical simulations in order to optimize the nutrient distribution. The device was tested by culturing transverse hippocampal slices from 7 days old NMRI mice for a duration of 14 days. The slices were inspected visually and the slices cultured in the fluidic system appeared to have preserved...

  19. Assessing progress in the development of safety culture

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Ghita, Sorin

    1999-01-01

    visible prescriptive formula for developing a strong safety culture. However, a prerequisite is genuine and consistent commitment by the top management of an organization to improving safety . Providing this commitment exists, the best recommendation is to due something tangible and visible to improve safety, preferably involving employees from the outset. The choice of practices for developing an improved safety culture should take account of the existing national and organizational culture in order to ensure effective implementation. The importance of the learning process has been emphasized. A mechanism is necessary to ensure that international experience of practices to develop a strong safety culture is shared on a regular and frequent basis. The maintenance and improvement of a safety culture is a process of continuous evolution. Indicators are available to assess positive progress in this evolution and to detect a weakening safety culture. (authors)

  20. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  1. Developing safety culture-rocket science or common sense?

    International Nuclear Information System (INIS)

    Mahn, J.A.

    1998-01-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science

  2. Developing safety culture-rocket science or common sense?

    Energy Technology Data Exchange (ETDEWEB)

    Mahn, J.A.

    1998-08-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science.

  3. Regional food culture and development.

    Science.gov (United States)

    Wahlqvist, Mark L; Lee, Meei-Shyuan

    2007-01-01

    Food culture is most influenced by the locality of its origin, which will have been one of food acquisition and processing by various means. It is generally agreed, and is the basis of much United Nations, especially Food and Agriculture Organisation strategic development policy, that successful agriculture, horticulture and aquaculture along with fishing, underpin economically viable and healthy communities with their various food cultures. We also know that this must be in tandem with maternal literacy and operational health care systems. These elements are best represented on a regional basis. There is a growing consumer interest in knowing where one's food comes from as a measure of "food integrity". However, food production alone can be a precarious business and relate to a lesser or greater extent to local food culture and to trade, which may be complementary or at-odds with each other. Likewise, the local food culture may have its strengths and weaknesses as far as its ability to meet nutritional and health needs is concerned. Local food production may be restricted because of geographical or socio-economic conditions which preclude food diversity, although this may be compensated for by trade. Where food adequacy and diversity is compromised, and soils poor, various macronutrient, micronutrient (from animals and plants) and phytonutrient (nutritionally-advantageous food component from plants) deficiencies may be in evidence. These food system problems may be intertwined with food culture--for example, "rice-based and water-soluble vitamin poor"; "few animal-derived foods like meat, fish, eggs and milk with associated low calcium, vitamin D, Vitamin B12 and long chain n-3 fatty acid intakes"; "low fruit and vegetable intake with limited carotenoids and other phytonutrients". Geo-satellite surveillance and mapping as identifying such "hot spots": for regional food problems, as well as hot spots where most of the world's biodiversity is found (1.4 % of land on

  4. Design and development of a cross-cultural disposition inventory

    Science.gov (United States)

    Davies, Randall; Zaugg, Holt; Tateishi, Isaku

    2015-01-01

    Advances in technology have increased the likelihood that engineers will have to work in a global, culturally diverse setting. Many schools of engineering are currently revising their curricula to help students to develop cultural competence. However, our ability to measure cultural dispositions can be a challenge. The purpose of this project was to develop and test an instrument that measures the various aspects of cultural disposition. The results of the validation process verified that the hypothesised model adequately represented the data. The refined instrument produced a four-factor model for the overall construct. The validation process for the instrument verified the existence of specific subcomponents that form the overall cultural disposition construct. There also seems to be a hierarchical relationship within the subcomponents of cultural disposition. Additional research is needed to explore which aspects of cultural disposition affect an individual's ability to work effectively in a culturally diverse engineering team.

  5. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review.

    Science.gov (United States)

    Tatullo, Marco; Marrelli, Massimo; Falisi, Giovanni; Rastelli, Claudio; Palmieri, Francesca; Gargari, Marco; Zavan, Barbara; Paduano, Francesco; Benagiano, Vincenzo

    2016-03-01

    Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments. © The Author(s) 2015.

  6. Influence of hydroxyurea on nucleic acids content and 3H-uridine incorporation in callus and tumorous tobacco tissues cultured in vitro

    Directory of Open Access Journals (Sweden)

    A. Bielecka

    2015-01-01

    Full Text Available In callus and tumor tissues of Nicotiana tabacum cultured for 39 days in media supplemented with various concentrations of hydroxyurea (1.3 x 10-4 M - 1.3 x 10-3 M a decrease of DNA content (ca. 24 per cent in callus tissue and ca. 23 per cent in tumour tissue and a decrease of RNA content (over 10 per cent and ca. 9 per cent in callus and tumour tissue, respectively was observed. The autoradiographic method showed that a long-lasting action of this com-pound inhibits RNA synthesis. A stronger inhibitory influence of hydroxyurea upon incorporation of 3H-uridine from the incubation medium was revealed.

  7. Developing cultural competences.

    Directory of Open Access Journals (Sweden)

    Vanessa Bachofer

    2009-05-01

    Full Text Available This contribution deals with a topic of intercultural management as a source of competitive advantages whose significance together with the development of the international trade becomes more important. Firms that expand into foreign markets must adapt themselves to different cultures to be able to communicate effectively with the local background and to achieve the best possible results. This entry is based on the methodology of action research and includes the analysis of the intercultural context of the company Skanska Property CZ

  8. Developing Students' Cultural Intelligence through an Experiential Learning Activity: A Cross-Cultural Consumer Behavior Interview

    Science.gov (United States)

    Kurpis, Lada Helen; Hunter, James

    2017-01-01

    Business schools can increase their competitiveness by offering students intercultural skills development opportunities integrated into the traditional curricula. This article makes a contribution by proposing an approach to developing students' cultural intelligence that is based on the cultural intelligence (CQ) model, experiential learning…

  9. A puzzle assembly strategy for fabrication of large engineered cartilage tissue constructs.

    Science.gov (United States)

    Nover, Adam B; Jones, Brian K; Yu, William T; Donovan, Daniel S; Podolnick, Jeremy D; Cook, James L; Ateshian, Gerard A; Hung, Clark T

    2016-03-21

    Engineering of large articular cartilage tissue constructs remains a challenge as tissue growth is limited by nutrient diffusion. Here, a novel strategy is investigated, generating large constructs through the assembly of individually cultured, interlocking, smaller puzzle-shaped subunits. These constructs can be engineered consistently with more desirable mechanical and biochemical properties than larger constructs (~4-fold greater Young׳s modulus). A failure testing technique was developed to evaluate the physiologic functionality of constructs, which were cultured as individual subunits for 28 days, then assembled and cultured for an additional 21-35 days. Assembled puzzle constructs withstood large deformations (40-50% compressive strain) prior to failure. Their ability to withstand physiologic loads may be enhanced by increases in subunit strength and assembled culture time. A nude mouse model was utilized to show biocompatibility and fusion of assembled puzzle pieces in vivo. Overall, the technique offers a novel, effective approach to scaling up engineered tissues and may be combined with other techniques and/or applied to the engineering of other tissues. Future studies will aim to optimize this system in an effort to engineer and integrate robust subunits to fill large defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Developing a reading culture in Nigerian society: Issues and ...

    African Journals Online (AJOL)

    Developing a reading culture in Nigerian society: Issues and Remedies. ... Development of reading culture is faced with the challenges of language interference, poor funding of education and poor economy. ... AJOL African Journals Online.

  11. Comparison of multiple assays for detecting human antibodies directed against antigens on normal and malignant tissue culture cells

    International Nuclear Information System (INIS)

    Rosenberg, S.A.; Schwarz, S.; Anding, H.; Hyatt, C.; Williams, G.M.; Johns Hopkins Univ., Baltimore, Md.

    1977-01-01

    Four separate assays of human antibody reactivity to four separate normal and malignant human tissue culture cells lines from two patients have been evaluated using a single highly-reactive allogeneic serum. The visual end-point cytolysis assay and the chromium-51 release assay were equally sensitive in measuring complement mediated antibody cytotoxicity and both were far more sensitive than a trypan blue dye exclusion assay. The assay of antibody reactivity by hemadsorption technique was about 10 times more sensitive than any of the cytotoxicity assays. This latter assay measures only IgG antibody however. These assays showed that cell lines from different patients may differ greatly in 'reactivity' to an allogeneic serum and emphasized the importance of utilizing tumor and normal cells from the same patient when using tissue culture cells to search for tumor specific reactivity. These observations emphasize the importance of utilizing multiple assays against paired normal and malignant cells from the same patient to be certain of the specificity and magnitude of the measured antibody

  12. Improvement of potato tolerance to salinity using tissue culture techniques and irradiation with in vitro selection

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2006-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma doses 25, 30, and 35 Gy. Mutants were isolated to get rid of chimeral tissues and subsequently propagated for in vitro and pot selection pressure. Cultivar Sponta produced the highest number of tolerant plants (4) and only one plant was obtained from Diamant. (authors)

  13. Variation in tissue outcome of ovine and human engineered heart valve constructs : relevance for tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.; Driessen - Mol, A.; Grootzwagers, L.G.M.; Soekhradj - Soechit, R.S.; Riem Vis, P.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    AIM: Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and

  14. Studies on the use of gamma irradiation and tissue culture in improving brassica napus

    International Nuclear Information System (INIS)

    Khedr, E.K.A.

    2012-01-01

    The objectives of this study were to:1- Studying the effect of different doses of gamma rays on some growth and yield component traits of three Brassica napus cultivars (Serow6, Serow4 and Pactol) during four consecutive generations aiming to create new genotypes characterized with high yielding traits. 2- Studying the effect of different doses of gamma rays on in vitro biotechnology technique (tissue culture) used in improving Brassica napus. Seeds of three Brassica napus cultivars were irradiated with different gamma ray doses then sown for four consecutive seasons. Data were collected and recorded to clarify the effect gamma irradiation on some yield component traits which were days to flowering , plant height, number of main branches per plant, number of secondary branches per plant, number of pods per plant, number of seeds per pod, weight of 1000-seed, weight of grain yield/plant and oil content of seeds). Results showed that high doses of gamma radiation had enhanced all of the studied traits for each of the three tested cultivars (except the plant height trait for Serow6 and Pactol cultivars). Seven new mutant lines were selected for their superiority in one or more of the studied yield component traits. Regarding the effect of gamma rays on tissue culture techniques, the applied gamma radiation doses did not affect the percentage of seed germination of the three studied cultivars, whereas the percentage of callus induction decreased by increasing the dose of gamma rays for each of the three cultivars and in both types of explants (hypocotyl and cotyledons) used in this experiment.

  15. Developing Cultural Competence: Student and Alumni Perspectives

    Science.gov (United States)

    Petrovich, Anne; Lowe, Mitzi

    2005-01-01

    One of the areas of increased importance to social work pedagogy is the development of culturally competent practice skills. In focus groups, first and second year students, and recent alumni reflected on their growing awareness and competence concerning cultural diversity. Meaningful patterns emerged emphasizing the importance of psychologically…

  16. Influence of ionizing radiation on synthesis and molecular heterogeneity of catalase in tissue culture of Rauwolfia serpentina

    International Nuclear Information System (INIS)

    Komov, V.P.; Bespalova, E.V.; Strelkova, M.A.

    1998-01-01

    Changes in activity and molecular heterogeneity of catalase in tissue culture of Rauwolfia serpentina following irradiation in early growth period at the doses of 8 and 50 Gy has been studied. Ionizing radiation accelerate the synthesis and degradation rates of catalase and total protein. A comparative study of changes in enzyme and protein turnover during growth on irradiated and non-irradiated medium has been made [ru

  17. Considerations on a concept of nuclear security culture and its development

    International Nuclear Information System (INIS)

    Miyamoto, Naoki

    2013-01-01

    In March 2012, domestic regulations regarding physical protection measures of nuclear facilities were amended to strengthen those measures. By these amendments, nuclear operators were requested to stipulate their corporate system to develop nuclear security culture on their physical protection plans, and therefore, attention has been drawn on a concept of nuclear security culture and its development. In the light of these situations, this presentation will consider the concept of nuclear security culture and its development. Firstly, focusing attention on 'culture', a concept of 'corporate culture' which is emphasized in corporate management will be analyzed. Then, with reference to 'safety culture', elements that seems to correspond to the concept of nuclear security culture will be extracted. Secondly, particularizing a 'corporate system to develop nuclear security culture', by reviewing a notion of 'Corporate Social Responsibility (CSR)' which attracts lots of attention recent years in terms of corporate sustainable development, results of examination regarding commitment structure of corporate chief executive and corporate risk management framework, which are considered to be efficient for the development of nuclear security culture, will be reported. (author)

  18. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  19. Safety culture development in nuclear electric plc

    International Nuclear Information System (INIS)

    Gibson, G.P.; Low, M.B.J.

    1995-01-01

    Nuclear Electric plc (NE) has always given the highest priority to safety. However, past emphasis has been directed towards ensuring safety thorough engineering design and hazard control procedures. Whilst the company did achieve high safety standards, particularly with respect to accidents, it was recognized that further improvements could be obtained. Analysis of the safety performance across a wide range of industries showed that the key to improving safety performance lay in developing a strong safety culture within the company. Over the last five years, NE has made great strides to improve its safety culture. This has resulted in a considerable improvement in its measured safety performance indicators, such as the number of incidents at international nuclear event scale (INES) rating 1, the number of lost time accidents and the collective radiation dose. However, despite this success, the company is committed to further improvement and a means by which this process becomes self-sustaining. In this way the company will achieve its prime goal, to ''ensure the safety of people, plant and the environment''. The paper provides an overview of the development of safety culture in NE since its formation in November 1989. It describes the research and international developments that have influenced the company's understanding of safety culture, the key initiatives that the company has undertaken to enhance its safety culture and the future initiatives being considered to ensure continual improvement. (author). 5 refs, 2 figs, 2 tabs

  20. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  1. Development and Tissue Origins of the Mammalian Cranial Base

    Science.gov (United States)

    Iseki, S.; Bamforth, S. D.; Olsen, B. R.; Morriss-Kay, G. M.

    2008-01-01

    The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the “New Head”. PMID:18680740

  2. Appendix A: The components of the culture media.

    Science.gov (United States)

    Loyola-Vargas, Víctor M

    2012-01-01

    The success in the technology and application of plant tissue culture is greatly influenced by the nature of the culture medium used. A better understanding of the nutritional requirements of cultured cells and tissues can help to choose the most appropriate culture medium for the explant used. It is also important to pay attention to a number of inaccuracies and errors which have appeared in several widely used plant tissue culture basal medium formulations.

  3. a Cultural Landscape Information System Developed with Open Source Tools

    Science.gov (United States)

    Chudyk, C.; Müller, H.; Uhler, M.; Würriehausen, F.

    2013-07-01

    Since 2010, the state of Rhineland-Palatinate in Germany has developed a cultural landscape information system as a process to secure and further enrich aggregate data about its cultural assets. In an open dialogue between governing authorities and citizens, the intention of the project is an active cooperation of public and private actors. A cultural landscape information system called KuLIS was designed as a web platform, combining semantic wiki software with a geographic information system. Based on data sets from public administrations, the information about cultural assets can be extended and enhanced by interested participants. The developed infrastructure facilitates local information accumulation through a crowdsourcing approach. This capability offers new possibilities for e-governance and open data developments. The collaborative approach allows governing authorities to manage and supervise official data, while public participation enables affordable information acquisition. Gathered cultural heritage information can provide incentives for touristic valorisation of communities or concepts for strengthening regional identification. It can also influence political decisions in defining significant cultural regions worth of protecting from industrial influences. The presented cultural landscape information allows citizens to influence the statewide development of cultural landscapes in a democratic way.

  4. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue.

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R; Ingram, Marylou; Imam, S Ashraf

    2011-12-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue.

  5. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.

    Science.gov (United States)

    Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E

    2010-08-09

    Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system

  6. Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants

    Directory of Open Access Journals (Sweden)

    Dan Yinghui

    2010-08-01

    Full Text Available Abstract Background Impatiens (Impatiens walleriana is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. Results In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892 bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. Conclusion We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained

  7. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue.

    Science.gov (United States)

    Babur, Betul Kul; Futrega, Kathryn; Lott, William B; Klein, Travis Jacob; Cooper-White, Justin; Doran, Michael Robert

    2015-09-01

    Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8-14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.

  8. Universality of clone dynamics during tissue development

    Science.gov (United States)

    Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.

    2018-05-01

    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

  9. Cultural Core Competencies: Perceptions of 4-H Youth Development Professionals

    Directory of Open Access Journals (Sweden)

    Janet E. Fox

    2015-10-01

    Full Text Available As society grows increasingly diverse, it is critical that youth development professionals are equipped with cultural core competencies. This descriptive study gauged the perceived level of cultural competence among 4-H Youth Development professionals from a Southern state in the United States. Based on the 4-H Professional Research, Knowledge, and Competency (PRKC Model (Stone & Rennekamp, 2004, youth development professionals rated their cultural competence (equity, access, and opportunity in eight core competency areas. Based on a five-point Likert scale ranging from 0 = No knowledge to 4 = Expert, youth development professionals evaluated their cultural competence ranging from 0.66 to 4.00. According to an interpretive scale, most youth development professionals rated their competence as intermediate. Participants reported the skills of active listening and an open attitude as areas in which they felt most competent. Areas of least competence were community outreach policies and procedures. No significant relationships existed between the demographic variables of gender, degree earned, and field of study when compared to perceived cultural competence. The findings will be used to detect deficiencies and create opportunities for professional training and development experiences in supporting the cultural competence and growth of youth professionals.

  10. Culture in Development

    OpenAIRE

    Shankha Chakraborty; Jon C. Thompson; Etienne B. Yehoue

    2015-01-01

    An anti-capitalist cultural bias, through directed within-family human capital transmission, adversely affects the supply of entrepreneurial talent and risk-taking. This limits economic progress if aggregate productivity is low. When productivity is high, economic incentives can overcome cultural inertia. Though the income level depends on culture, the growth rate in this case does not.

  11. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  12. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  13. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  14. Tissue engineered tumor models.

    Science.gov (United States)

    Ingram, M; Techy, G B; Ward, B R; Imam, S A; Atkinson, R; Ho, H; Taylor, C R

    2010-08-01

    Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.

  15. Living Diversity: Developing a Typology of Consumer Cultural Orientations in Culturally Diverse Marketplaces

    DEFF Research Database (Denmark)

    Kipnis, Eva; Emontspool, Julie; Broderick, Amanda J.

    2012-01-01

    -cultural orientations and use these orientations as informants of their consumption choices. Our findings suggest that the study of consumption implications of cultural diversity should be extended beyond mainstream/migrant differentiation which loses its significance in today’s globalized world...... framework for ethnic consumption and subsequently apply it in an empirical study. The findings indicate that through differential deployment of local, global and foreign cultures affinities for identity negotiation, mainstream and migrant consumers alike can develop or maintain uni-, bi- and multi...

  16. Development of Cultural Construction and Constitutional Revolution in Iran

    Directory of Open Access Journals (Sweden)

    Bijan Rabiee

    2017-10-01

    Full Text Available The subject of this article is the development of the cultural construction and the emergence of the Constitutional Revolution in Iran. This study, by examining the cultural structure of the Qajar era of the Naser-al-Din Shah period wants to investigate the cause of the Constitutional Revolution. The findings of this research, which have been collected by historical-analytical method, indicate that the pattern of development in the Qajar era is consistent with the pattern of unbalanced development. In this sense, by starting educational, political and military reforms in the Qajar era specially Nasser-al-Din Shah, gradually the cultural structure apart from the traditional political structure. This development provided the basis for the emergence of new intellectuals and elites with new political ideas in the field of governance methods. However, the attenuation of political structure and the backwardness of political development from cultural development faced with some obstacles. Political system instead of creating a development along with gradual cultural development and consolidating its position through the persuasion of the community, in fact to maintain integrity in the social system was resorted to force and preferred force and compulsion to persuasion. The kind of reaction and opposition of the political power structure against the modern intellectual movement, which contained new political demands in the area of governance and freedom, led to the weakness and, finally, the collapse of the Qajar political system and the constitutional revolution.

  17. Pre-Service Teacher Cultural Identity Development

    Science.gov (United States)

    Cunningham, Maurella Louise

    2013-01-01

    The main purpose of this study is to conduct exploratory qualitative research to investigate how PSTs and practicing teachers experience cultural and racial identity development or changes in identity. Rather than examine the "what" or contributors to identity development, I will explore the "how" or processes of identity…

  18. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    Science.gov (United States)

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  19. Education as a tool for cultural regeneration and development in ...

    African Journals Online (AJOL)

    The Federal Republic of Nigeria has acknowledged and therefore encapsulated the importance of cultural regeneration to national development when it spelt out in its National Policy on Education (NPE) one of its objectives of education as to develop and promote the Nigerian culture in the context of the world's cultural ...

  20. Development of an algorithm for quantifying extremity biological tissue

    International Nuclear Information System (INIS)

    Pavan, Ana L.M.; Miranda, Jose R.A.; Pina, Diana R. de

    2013-01-01

    The computerized radiology (CR) has become the most widely used device for image acquisition and production, since its introduction in the 80s. The detection and early diagnosis, obtained via CR, are important for the successful treatment of diseases such as arthritis, metabolic bone diseases, tumors, infections and fractures. However, the standards used for optimization of these images are based on international protocols. Therefore, it is necessary to compose radiographic techniques for CR system that provides a secure medical diagnosis, with doses as low as reasonably achievable. To this end, the aim of this work is to develop a quantifier algorithm of tissue, allowing the construction of a homogeneous end used phantom to compose such techniques. It was developed a database of computed tomography images of hand and wrist of adult patients. Using the Matlab ® software, was developed a computational algorithm able to quantify the average thickness of soft tissue and bones present in the anatomical region under study, as well as the corresponding thickness in simulators materials (aluminium and lucite). This was possible through the application of mask and Gaussian removal technique of histograms. As a result, was obtained an average thickness of soft tissue of 18,97 mm and bone tissue of 6,15 mm, and their equivalents in materials simulators of 23,87 mm of acrylic and 1,07mm of aluminum. The results obtained agreed with the medium thickness of biological tissues of a patient's hand pattern, enabling the construction of an homogeneous phantom

  1. Comparative in silico profiling of epigenetic modifiers in human tissues.

    Science.gov (United States)

    Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-04-06

    The technology of tissue differentiation from human pluripotent stem cells has attracted attention as a useful resource for regenerative medicine, disease modeling and drug development. Recent studies have suggested various key factors and specific culture methods to improve the successful tissue differentiation and efficient generation of human induced pluripotent stem cells. Among these methods, epigenetic regulation and epigenetic signatures are regarded as an important hurdle to overcome during reprogramming and differentiation. Thus, in this study, we developed an in silico epigenetic panel and performed a comparative analysis of epigenetic modifiers in the RNA-seq results of 32 human tissues. We demonstrated that an in silico epigenetic panel can identify epigenetic modifiers in order to overcome epigenetic barriers to tissue-specific differentiation.

  2. Reduction of /sup 51/Cr-permeability of tissue culture cells by infection with herpes simplex virus type 1

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Habermehl, K.O.; Diefenthal, W.; Hampl, H.

    1979-01-01

    Infection of different strains of tissue culture cells with herpes simplex virus type 1(HSV-1) resulted in a reduced /sup 51/Cr-permeability. A stability of the cellular membrane to Triton X-100, toxic sera and HSV-specific complement-mediated immune-cytolysis could be observed simultaneously. The results differed with respect to the cell strain used in the experiments.

  3. Effect of x-ray irradiation on maize inbred line B73 tissue cultures and regenerated plants

    International Nuclear Information System (INIS)

    Wang, A.S.; Cheng, D.S.K.; Milcic, J.B.; Yang, T.C.

    1988-01-01

    In order to enhance variation induced by the tissue culture process and to obtain agronomically desirable mutants, friable embryogenic tissue cultures of maize (Zea mays L.) inbred line B73 were x-ray irradiated with 11 doses [0-8.4 kilorads (kR)]. Reductions in callus growth rate and embryogenic callus formation occurred with increasing x-ray doses 20 d and 3 months after irradiation. Callus irradiated with 0.8 kR showed a significant increase in growth rate and a 20% increase in embryogenic callus 9 months after irradiation. A total of 230 R 0 plants were regenerated for evaluation. Pollen fertility and seed set of R 0 plants decreased with increasing x-ray dosage. Days to anthesis and plant height of R 0 plants varied among x-ray treatments but were generally reduced with higher dosages. The number of chromosomal aberrations increased with x-ray dosage. The R 1 seeds taken from R 0 plants were also grown and tested for mutant segregation. Plants regenerated from irradiated calli had a two- to 10-fold increase in mutations over plants regenerated from unirradiated control callus. Germination frequency of seeds from R 0 plants decreased with increasing x-ray dosage. Although chlorophyll mutants were most frequently observed, a number of vigorous plants with earlier anthesis date were also recovered

  4. High levels of stable p53 protein and the expression of c-myc in cultured human epithelial tissue after cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.B.; Harney, J.; Hennessy, T.P.

    1994-01-01

    When explants of human uroepithelium or esophageal epithelium are exposed to acute doses of radiation (cobalt-60), the cells which grow out to form the primary cultures show a number of abnormal features. These include the development of characteristic nonsenescent foci. These foci have previously been shown to be c-myc positive and to have an abnormal, tumor-like ultrastructure. Expression of c-myc and the level of stable p53 proteins have now been examined in these cultures 2 weeks after irradiation. Both proteins occurred in dividing cells at the growing edge of the explant and in the foci. The expression of c-myc appeared to be correlated with growth. As expected, variation between individual cultures of normal human cells was noted in the expression of stable p53 protein. Most control uroepithelial cell cultures were negative, but a small cohort showed a wide range of values. The control cultures from the esophageal tissues had high expression of p53, and this decreased marginally after irradiation. Cells positive for p53 were always in cycle and were usually positive for c-myc as well. It would appear from these results that the expression of c-myc and the stable form of the p53 protein occur in irradiated primary cultures of normal human cells both in foci which also express a number of abnormalities and in open-quotes edgeclose quotes cells which are dividing. Cultures of unirradiated cells from esophagus and a small number of uroepithelial samples had high levels of p53. Possible reasons for this are discussed. 33 refs., 2 figs., 3 tabs

  5. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    Science.gov (United States)

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  6. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. THE FORMATION AND DEVELOPMENT OF CORPORATE CULTURE OF THE MEDICAL ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    O. L. Zadvornaya

    2016-01-01

    Full Text Available The article is devoted to the problem of formation and development of corporate culture as the main factor of the successful functioning of medical organization in terms of optimization of activity of the health system. Discusses the importance and main directions of development of corporate culture for personal and organizational development. The authors identified features of the corporate culture of healthcare organizations, the approaches, showing the sequence and contents of the main practical activities on the formation, maintenance and development of corporate culture. Emphasized the need for further research and introduction of corporate culture and cultural values in health care organizations. Purpose/ objectives: to Study and evaluate the corporate culture of healthcare organizations to improve institutional management and increase of efficiency activity of medical organizations. Materials and methods: For data collection methods were used: direct observation, interviews, questionnaires. In conducting this study used data from official sources, a literature review, a systematic approach, comparative analysis, historical, sociological, statistical research methods. The results of the study indicate the need for concept development, tools implementation and development of corporate culture in the practice of the medical organizations.Conclusions/Significance: Corporate culture – the system of collectively shared values, symbols, beliefs, standards of behaviour employees of the organization that contributes to the originality and uniqueness of the activities of medical organizations that promote the identification of employees with the organization; Corporate culture is formed with the influence of factors external and internal environment of the organization, solving problems, external adaptation  and internal integration in the environment; Generated and promoted by the corporate culture is an important management tool, creates

  8. Standard Operating Procedure (SOP) for Rapid and Efficient Production of Stevia Tissue Culture Seedlings

    International Nuclear Information System (INIS)

    Norazlina Noordin; Peng, C.S.; Rusli Ibrahim

    2015-01-01

    Stevia rebaudiana Bertoni is a non-caloric natural sweetener which is 300 times sweeter than cane sugar. Extracts from stevia leaves has vast application in food and beverages based industries, can be added to tea and coffee, cooked or baked goods, processed foods and confectionary goods. Recently, stevia attained awareness owing to its natural, non-caloric sweetness by diet/ health conscious and diabetic persons (Arpita et al., 2011). This natural sweetener has high commercial value in global market, it was estimated that global market value for stevia is be around USD11 billion by year 2015. Although stevia is being largely popularized in Malaysia and other countries but large-scale propagation procedures for the continuous supply of planting materials in commercial plantation has yet to be established, optimized and standardized. Furthermore, propagation through stevia seeds is often very difficult due to self-incompatibility which results in sterile seeds (Sakaguchi et al., 1982). Tissue culture is the only rapid process for the mass propagation of stevia and there have been few reports of in vitro growth of stevia (Miyagaya et al., 1986) and in vitro micropropagation from shoot tip and leaf (Uddin et al., 2006). Hence, study was carried out to establish a suitable protocol for in vitro propagation of S. rebaudiana Bertoni that can be further up-scaled for mass propagation of stevia seedlings. The established Standard Operating Procedure (SOP) will ensure rapid and efficient production of stevia tissue culture seedlings for continuous supply of planting materials for commercial stevia plantations in Malaysia. Preparation of growth medium, multiplication of shoots, rooting of plant lets and hardening of ex-vitro rooted plant lets is discussed in this paper. (author)

  9. Inhibition of collagen production in scleroderma fibroblast cultures by a connective tissue glycoprotein extracted from normal dermis

    International Nuclear Information System (INIS)

    Maquart, F.X.; Bellon, G.; Cornillet-Stoupy, J.; Randoux, A.; Triller, R.; Kalis, B.; Borel, J.P.

    1985-01-01

    It was shown in a previous paper that a connective tissue glycoprotein (CTGP) extracted from normal rabbit dermis was able to inhibit total protein and collagen syntheses by normal dermis fibroblast cultures. In the present study, the effects of CTGP on scleroderma fibroblasts were investigated. [ 14 C]Proline incorporation into total proteins of the supernatant was not significantly different from that found in controls. By contrast, the amount of collagen, expressed as percentage of total secreted protein, was far higher in scleroderma cultures than in normal ones (14.4% +/- 6.0% vs 4.6% +/- 0.9%). Addition of CTGP to the medium induced a concentration-dependent inhibition of [ 14 C]proline incorporation into proteins from both control and scleroderma cells. In control cultures, no significant decrease of the percentage of collagen was observed, but over 60 micrograms/ml, both cytotoxic effects and inhibition of protein synthesis occurred. In scleroderma cultures, the inhibition was twice as effective on collagen as on noncollagen protein synthesis. The inhibition of collagen secretion was not related either to changes in collagen hydroxylation or to the intracellular catabolism of newly synthesized procollagen

  10. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Cytogenetic studies on stevia rebaudiana produced by tissue culture and affected by gamma rays and drought

    International Nuclear Information System (INIS)

    Awad, A.S.A

    2009-01-01

    The present investigation was under taken to carry out in the laboratories of the Natural Products Department, National Center for Radiation Research and Technology, Atomic Energy authority, Nasr city, Cairo, Egypt, to study the effect of gamma radiation doses, osmostress and the combined effects between them on tissue culture, some biochemical analysis and molecular genetic marker in stevia rebaudiana bertoni. The results obtained were: Tissue culture 1- micropropagation media: stevia rebaudiana plantlets cultured on MS medium hormones free for micropropagation.Hormones such as BAP and NAA with different concentrations induced callus formation and give slight growth.Study the effect of gamma radiation, osmostress and the combined effects between them : 1)The effect of gamma radiation on buds survival: Gamma radiation doses (10, 20 and 30 Gy) induced decreasing in bud survival percentage with increasing radiation dose in stevia rebaudiana. The dose 30 Gy was induced 60% mortality.2) Study the effect of gamma radiation on some biochemical analysis: Gamma radiation doses induced increase in the total carbohydrate with doses (20 and 30 Gy) but decreased with dose 10 Gy. Proline contents increased in plantlets with increasing doses . The total protein was increased with doses (10 and 20 Gy), but the dose 30 Gy induced decrease in total protein. Gamma radiation doses induced decreasing in total DNA while, the nucleic acid RNA increased.3) The effect of osmostress on buds survival: The concentrations (40000,50000,60000,70000 and 80000 ppm) from sucrose or sorbitol decreased the bud survival and shoot length in stevia plantlets with increasing sucrose or sorbitol levels. 4) The effect of osmostress on some biochemical analysis: Sucrose and sorbitol concentrations (40000,50000,60000,70000 and 80000 ppm) caused decrease in total carbohydrate.

  12. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  13. Physical culture as a phenomenon of the development of socio-cultural competence of future teachers of physical education

    Directory of Open Access Journals (Sweden)

    I.V. Ivanii

    2014-04-01

    Full Text Available Purpose : to substantiate the phenomenon of formation of physical culture of the individual in terms of theoretical and methodological approaches to the development of socio-cultural competence of future teachers. Material : 22 literary sources analyzed on the issue of formation of physical culture of the individual. Used cultural studies, axiological and competence approach. Results : define the concept of socio-cultural competence of the teacher of physical education. Competence is considered as an integrative motivational tumor - activity sphere of the individual. It determines the focus of an expert on the formation of spiritual values and is the foundation for its further self-development. Disclosed structure sociocultural competence of the teacher in the unity components: cognitive, motivational-value, behavioral. For each component defined system of spiritual values. The system covers the socio- psychological, mental and cultural values of physical culture. Conclusions : the sociocultural competence of the teacher of physical education meaningful and functionally related to the values of the physical culture of the individual. Spiritual, value the personality of the teacher - is the foundation for all of the components of socio-cultural competence. This competence provides social and cultural development of the individual.

  14. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  15. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis

    Science.gov (United States)

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...

  16. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  17. In-vitro formation of the blood-testis barrier during long-term organotypic culture of human prepubertal tissue: comparison with a large cohort of pre/peripubertal boys.

    Science.gov (United States)

    de Michele, F; Poels, J; Giudice, M G; De Smedt, F; Ambroise, J; Vermeulen, M; Gruson, D; Wyns, C

    2018-03-12

    cultured testicular tissue from three prepubertal boys who underwent a biopsy for fertility preservation was performed. Immunostaining was evaluated at culture days 0, 1, 3, 10, 16, 27, 32, 53, 64 and 139 for two different types of culture media. Immunohistochemical control sections showed progressive maturation of Sertoli cells, as shown by the decrease in AMH expression, with increasing age (p ≤ 0.01) and the AMH expression was negatively correlated with the expression of connexin 43 and claudin 11 (p ≤ 0.01 for both proteins). AR (Androgen receptor) expression increased with age (p ≤ 0.01) and was significantly correlated with the expression of connexin 43 (p = 0.002) and claudin 11 (p = 0.03). A statistical correlation was also found between the reduction of AMH expression and both the advancement of Tanner stages (p ≤ 0.01) and the differentiation of germ cells (p ≤ 0.01). Furthermore, positive correlations between BTB formation (using connexin 43 and claudin 11 expression) and age (p ≤ 0.01 for both the proteins), higher Tanner stages (p ≤ 0.001 and p ≤ 0.01 for connexin 43 and claudin 11, respectively), and presence of more advanced germ cells (p ≤ 0.001 for both proteins) were observed. In the subanalysis on organotypic cultured ITT, where a significant decrease in AMH expression as a marker of SC maturation was already reported, we showed the onset of expression of connexin 43 at day 16 (p ≤ 0.001) and a constant expression of claudin 11 from day 0 to day 139, for all three patients, without differences between the two types of culture media. N/A. Accessibility of prepubertal human testicular tissue is a major limiting factor to the analysis of cultured tissue samples from a wide number of patients, as would be needed to assess the in-vitro development of the BTB according to the age. The impossibility of performing longitudinal studies on in-vivo BTB formation in the same patient prevents a comparison of the time needed

  18. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  19. Enhancement of keratinocyte performance in the production of tissue-engineered skin using a low-calcium medium.

    Science.gov (United States)

    Hernon, Catherine A; Harrison, Caroline A; Thornton, Daniel J A; MacNeil, Sheila

    2007-01-01

    The success of laboratory-expanded autologous keratinocytes for the treatment of severe burn injuries is often compromised by their lack of dermal remnants and failure to establish a secure dermo-epidermal junction on the wound bed. We have developed a tissue-engineered skin substitute for in vivo use, based on a sterilized donor human dermis seeded with autologous keratinocytes and fibroblasts. However, culture rates are currently too slow for clinical use in acute burns. Our aim in this study was to increase the rate of production of tissue-engineered skin. Two approaches were explored: one using a commercial low-calcium media and the other supplementing well-established media for keratinocyte culture with the calcium-chelating agent ethylene glutamine tetra-acetic acid (EGTA). Using commercial low-calcium media for both the initial cell culture and subsequent culture of tissue-engineered skin did not produce tissue suitable for clinical use. However, it was possible to enhance the initial proliferation of keratinocytes and to increase their horizontal migration in tissue-engineered skin by supplementing established culture medium with 0.04 mM EGTA without sacrificing epidermal attachment and differentiation. Enhancement of keratinocyte migration with EGTA was also maximal in the absence of fibroblasts or basement membrane.

  20. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds?

    Science.gov (United States)

    Zöller, Nadja; Valesky, Eva; Butting, Manuel; Hofmann, Matthias; Kippenberger, Stefan; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland

    2014-01-01

    The treatment regime of non-healing or slowly healing wounds is constantly improving. One aspect is surgical defect coverage whereby mesh grafts and keratinocyte suspension are applied. Tissue-cultured skin autografts may be an alternative for the treatment of full-thickness wounds and wounds that cover large areas of the body surface. Autologous epidermal and dermal cells were isolated, expanded in vitro and seeded on collagen-elastin scaffolds. The developed autograft was immunohistochemically characterized and subsequently transplanted onto a facial chronic ulceration of a 71-year-old patient with vulnerable atrophic skin. Characterization of the skin equivalent revealed comparability to healthy human skin due to the epidermal strata, differentiation and proliferation markers. Within 138 days, the skin structure at the transplantation site closely correlated with the adjacent undisturbed skin. The present study demonstrates the comparability of the developed organotypic skin equivalent to healthy human skin and the versatility for clinical applications.