WorldWideScience

Sample records for tissue constructs corrects

  1. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...... nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122)....

  2. Cryopreservation of tissue engineered constructs for bone.

    Science.gov (United States)

    Kofron, Michelle D; Opsitnick, Natalie C; Attawia, Mohamed A; Laurencin, Cato T

    2003-11-01

    The large-scale clinical use of tissue engineered constructs will require provisions for its mass availability and accessibility. Therefore, it is imperative to understand the effects of low temperature (-196 degrees C) on the tissue engineered biological system. Initial studies used samples of the osteoblast-like cell line (SaOS-2) adhered to a two-dimensional poly(lactide-co-glycolide) thin film (2D-PLAGA) or a three-dimensional poly(lactide-co-glycolide) sintered microsphere matrix (3D-PLAGA) designed for bone tissue engineering. Experimental samples were tested for their ability to maintain cell viability, following low temperature banking for one week, in solutions of the penetrating cryoprotective agents, dimethylsulfoxide (DMSO), ethylene glycol, and glycerol. Results indicated the DMSO solution yielded the greatest percent cell survival for SaOS-2 cells adhered to both the 2D- and 3D-PLAGA scaffolds; therefore, DMSO was used to cryopreserve mineralizing primary rabbit osteoblasts cells adhered to 2D-PLAGA matrices for 35 days. Results indicated retention of the extracellular matrix architecture as no statistically significant difference in the pre- and post-thaw mineralized structures was measured. Percent cell viability of the mineralized constructs following low temperature storage was approximately 50%. These are the first studies to address the issue of preservation techniques for tissue engineered constructs. The ability to successfully cryopreserve mineralized tissue engineered matrices for bone may offer an unlimited and readily available source of bone-like materials for orthopaedic applications.

  3. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122).......Vascularization is recognized to be the biggest challenge for the fabrication of tissues and finally, organs in vitro. So far, several fabrication techniques have been proposed to create a perfusable vasculature within hydrogels, however, the vascularization and perfusion of hydrogels...... with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...

  4. Fabrication of myogenic engineered tissue constructs.

    Science.gov (United States)

    Pacak, Christina A; Cowan, Douglas B

    2009-05-01

    Despite the fact that electronic pacemakers are life-saving medical devices, their long-term performance in pediatric patients can be problematic owing to the restrictions imposed by a child's small size and their inevitable growth. Consequently, there is a genuine need for innovative therapies designed specifically for pediatric patients with cardiac rhythm disorders. We propose that a conductive biological alternative consisting of a collagen-based matrix containing autologously-derived cells could better adapt to growth, reduce the need for recurrent surgeries, and greatly improve the quality of life for these patients. In the present study, we describe a procedure for incorporating primary skeletal myoblast cell cultures within a hydrogel matrix to fashion a surgically-implantable tissue construct that will serve as an electrical conduit between the upper and lower chambers of the heart. Ultimately, we anticipate using this type of engineered tissue to restore atrioventricular electrical conduction in children with complete heart block. In view of that, we isolate myoblasts from the skeletal muscles of neonatal Lewis rats and plate them onto laminin-coated tissue culture dishes using a modified version of established protocols. After one to two days, cultured cells are collected and mixed with antibiotics, type 1 collagen, Matrigel, and NaHCO(3). The result is a viscous, uniform solution that can be cast into a mold of nearly any shape and size. For our tissue constructs, we employ type 1 collagen isolated from fetal lamb skin using standard procedures. Once the tissue has solidified at 37 degrees C, culture media is carefully added to the plate until the construct is submerged. The engineered tissue is then allowed to further condense through dehydration for 2 more days, at which point it is ready for in vitro assessment or surgical-implantation.

  5. Hierarchical Design of Tissue Regenerative Constructs.

    Science.gov (United States)

    Rose, Jonas C; De Laporte, Laura

    2018-03-01

    The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Toolchain to Produce Correct-by-Construction OCaml Programs

    OpenAIRE

    Filliâtre , Jean-Christophe; Gondelman , Léon; Paskevich , Andrei; Pereira , Mário; Melo De Sousa , Simão

    2018-01-01

    This paper presents a methodology to get correct-by-construction OCaml programs using the Why3 tool. First, a formal behavioral specification is given in the form of an OCaml module signature extended with type invariants and function contracts, in the spirit of JML. Second, an implementation is written in the programming language of Why3 and then verified with respect to the specification. Finally, an OCaml program is obtained by an automated translation. Our methodology is illustrated with ...

  7. Correction of accessory axillary breast tissue without visible scar.

    Science.gov (United States)

    Kim, Young Soo

    2004-01-01

    Various methods for correction of accessory axillary breast tissue have been proposed, including simple excision, diamond-shaped excision, a Y-V technique, and lipoplasty. We present an effective method for correction of a prominent axillary mound that combines lipoplasty with excision of accessory breast tissue along the axillary transverse line. Preoperative markings included an incision within the natural wrinkle line in the axillary fold, and demarcation of areas in which lipoplasty and excision were to be performed. After lipoplasty, deep dissection was performed to isolate and remove accessory breast tissue and excess fat tissue. A compression dressing was applied for 1 to 2 weeks postoperatively, and the patient was instructed to wear a sports bra for 1 to 2 months after removal of the dressing. We treated 7 patients using this procedure between October 1999 and March 2003. No major postoperative complications were detected and recurrence was not noted during the follow-up periods. Aesthetic results were satisfactory. We believe that a procedure that combines lipoplasty and excision provides numerous advantages as a surgical option in treating a prominent axillary mound. The main advantage is that the final scar is laid in the natural axillary fold, rendering scars less conspicuous and eliminating the need to remove excess skin. The one disadvantage was that elevation of the skin flap via small, remote incisions initially produced surgical difficulties, but these were overcome with experience.

  8. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli, N. M. S.; Groen, N.; Steg, H.; Unadkat, H.; de Boer, J.; van Blitterswijk, C. A.; Wessling, M.; Stamatialis, D.

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  9. Development of multilayer constructs for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Groen, N.; Steg, H.; Unadkat, H.V.; de Boer, Jan; van Blitterswijk, Clemens; Wessling, Matthias; Stamatialis, Dimitrios

    2014-01-01

    The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of

  10. Construction of retroviral recombinant containing human tissue ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... Recombinant retroviral vector containing human tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) gene was ..... heavy metal ions, the protein could be express in an .... involves adhesion, degradation and movement. To.

  11. Tissue engineered constructs: perspectives on clinical translation.

    Science.gov (United States)

    Lu, Lichun; Arbit, Harvey M; Herrick, James L; Segovis, Suzanne Glass; Maran, Avudaiappan; Yaszemski, Michael J

    2015-03-01

    In this article, a "bedside to bench and back" approach for developing tissue engineered medical products (TEMPs) for clinical applications is reviewed. The driving force behind this approach is unmet clinical needs. Preclinical research, both in vitro and in vivo using small and large animal models, will help find solutions to key research questions. In clinical research, ethical issues regarding the use of cells and tissues, their sources, donor consent, as well as clinical trials are important considerations. Regulatory issues, at both institutional and government levels, must be addressed prior to the translation of TEMPs to clinical practice. TEMPs are regulated as drugs, biologics, devices, or combination products by the U.S. Food and Drug Administration (FDA). Depending on the mode of regulation, applications for TEMP introduction must be filed with the FDA to demonstrate safety and effectiveness in premarket clinical studies, followed by 510(k) premarket clearance or premarket approval (for medical devices), biologics license application approval (for biologics), or new drug application approval (for drugs). A case study on nerve cuffs is presented to illustrate the regulatory process. Finally, perspectives on commercialization such as finding a company partner and funding issues, as well as physician culture change, are presented.

  12. Ready to Use Tissue Construct for Military Bone & Cartilage Trauma

    Science.gov (United States)

    2015-12-01

    scaffold by laying down small droplets of the liquid 90% poly-caprolactone (PCL) and 10% hydroxyapatite (HA) by weight using a 25 G needle. The resulting...Award Number: W81XWH-10-1-0933 TITLE: Ready to Use Tissue Construct for Military Bone & Cartilage Trauma PRINCIPAL INVESTIGATOR: Francis Y...TITLE AND SUBTITLE Ready to Use Tissue Construct for Military Bone & Cartilage Trauma 5a. CONTRACT NUMBER W81XWH-10-1-0933 5b. GRANT NUMBER

  13. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  14. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  15. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    Science.gov (United States)

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

  16. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  17. 3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures.

    Science.gov (United States)

    Luo, Yongxiang; Lin, Xin; Huang, Peng

    2018-04-24

    It is promising that artificial tissues/organs for clinical application can be produced via 3D bioprinting of living cells and biomaterials. The construction of microstructures biomimicking native tissues is crucially important to create artificial tissues with biological functions. For instance, the fabrication of vessel-like networks to supply cells with initial nutrient and oxygen, and the arrangement of multiple types of cells for creating lamellar/complex tissues through 3D bioprinting are widely reported. The current advances in 3D bioprinting of artificial tissues from the view of construction of biomimetic microstructures, especially the fabrication of lamellar, vascular, and complex structures are summarized. In the end, the conclusion and perspective of 3D bioprinting for clinical applications are elaborated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bioprinting of hybrid tissue constructs with tailorable mechanical properties

    International Nuclear Information System (INIS)

    Schuurman, W; Khristov, V; Pot, M W; Dhert, W J A; Malda, J; Van Weeren, P R

    2011-01-01

    Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels. (communication)

  19. Bioprinting of hybrid tissue constructs with tailorable mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schuurman, W; Khristov, V; Pot, M W; Dhert, W J A; Malda, J [Department of Orthopaedics, University Medical Center Utrecht (Netherlands); Van Weeren, P R, E-mail: j.malda@umcutrecht.nl [Faculty of Veterinary Sciences, Department of Equine Sciences, Utrecht University (Netherlands)

    2011-06-15

    Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels. (communication)

  20. 77 FR 23117 - Rigging Equipment for Material Handling Construction Standard; Correction and Technical Amendment

    Science.gov (United States)

    2012-04-18

    ... Equipment for Material Handling Construction Standard; Correction and Technical Amendment AGENCY... AND HEALTH REGULATIONS FOR CONSTRUCTION Subpart H--Materials Handling, Storage, Use, and Disposal 0 1... amendment. SUMMARY: OSHA is correcting its sling standard for construction titled ``Rigging Equipment for...

  1. Artificial urinary conduit construction using tissue engineering methods.

    Science.gov (United States)

    Kloskowski, Tomasz; Pokrywczyńska, Marta; Drewa, Tomasz

    2015-01-01

    Incontinent urinary diversion using an ileal conduit is the most popular method used by urologists after bladder cystectomy resulting from muscle invasive bladder cancer. The use of gastrointestinal tissue is related to a series of complications with the necessity of surgical procedure extension which increases the time of surgery. Regenerative medicine together with tissue engineering techniques gives hope for artificial urinary conduit construction de novo without affecting the ileum. In this review we analyzed history of urinary diversion together with current attempts in urinary conduit construction using tissue engineering methods. Based on literature and our own experience we presented future perspectives related to the artificial urinary conduit construction. A small number of papers in the field of tissue engineered urinary conduit construction indicates that this topic requires more attention. Three main factors can be distinguished to resolve this topic: proper scaffold construction along with proper regeneration of both the urothelium and smooth muscle layers. Artificial urinary conduit has a great chance to become the first commercially available product in urology constructed by regenerative medicine methods.

  2. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  3. Bioprinting scale-up tissue and organ constructs for transplantation.

    Science.gov (United States)

    Ozbolat, Ibrahim T

    2015-07-01

    Bioprinting is an emerging field that is having a revolutionary impact on the medical sciences. It offers great precision for the spatial placement of cells, proteins, genes, drugs, and biologically active particles to better guide tissue generation and formation. This emerging biotechnology appears to be promising for advancing tissue engineering toward functional tissue and organ fabrication for transplantation, drug testing, research investigations, and cancer or disease modeling, and has recently attracted growing interest worldwide among researchers and the general public. In this Opinion, I highlight possibilities for the bioprinting scale-up of functional tissue and organ constructs for transplantation and provide the reader with alternative approaches, their limitations, and promising directions for new research prospects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Correct-by-construction approaches for SoC design

    CERN Document Server

    Sinha, Roopak; Basu, Samik

    2013-01-01

    This book describes an approach for designing Systems-on-Chip such that the system meets precise mathematical requirements. The methodologies presented enable embedded systems designers to reuse intellectual property (IP) blocks from existing designs in an efficient, reliable manner, automatically generating correct SoCs from multiple, possibly mismatching, components.

  5. Additive manufacturing techniques for the production of tissue engineering constructs.

    Science.gov (United States)

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.

  6. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’Dea, R. D.

    2012-09-18

    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of

  7. Modeling Financial Liquidity Of Construction Companies Using Error Correction Mechanism

    Directory of Open Access Journals (Sweden)

    Tomasz Stryjewski

    2017-03-01

    Full Text Available Financial liquidity is one of the most important economic categories in the functioning of the company. There are many methods of assessment of the company in this field, ranging from ratio analysis, to advanced models of financial flows. In this paper was presented econometric model of financial income, which was used to analyze the liquidity of the three construction companies. This analysis was made on the background of methods indicator.

  8. Morphological changes in paraurethral area after introduction of tissue engineering construct on the basis of adipose tissue stromal cells.

    Science.gov (United States)

    Makarov, A V; Arutyunyan, I V; Bol'shakova, G B; Volkov, A V; Gol'dshtein, D V

    2009-10-01

    We studied morphological changes in the paraurethral area of Wistar rats after introduction of tissue engineering constructs on the basis of multipotent mesenchymal stem cells and gelatin sponge. The tissue engineering construct containing autologous culture of the stromal fraction of the adipose tissue was most effective. After introduction of this construct we observed more rapid degradation of the construct matrix and more intensive formation of collagen fibers.

  9. Correctness-by-construction and post-hoc verification : a marriage of convenience?

    NARCIS (Netherlands)

    Watson, B.W.; Kourie, D.G.; Schaefer, I.; Cleophas, L.G.W.A.; Margaria, T.; Steffen, B.

    2016-01-01

    Correctness-by-construction (CbC), traditionally based on weakest precondition semantics, and post-hoc verification (PhV) aspire to ensure functional correctness. We argue for a lightweight approach to CbC where lack of formal rigour increases productivity. In order to mitigate the risk of

  10. Overview on Techniques to Construct Tissue Arrays with Special Emphasis on Tissue Microarrays

    Science.gov (United States)

    Vogel, Ulrich

    2014-01-01

    With the advent of new histopathological staining techniques (histochemistry, immunohistochemistry, in situ hybridization) and the discovery of thousands of new genes, mRNA, and proteins by molecular biology, the need grew for a technique to compare many different cells or tissues on one slide in a cost effective manner and with the possibility to easily track the identity of each specimen: the tissue array (TA). Basically, a TA consists of at least two different specimens per slide. TAs differ in the kind of specimens, the number of specimens installed, the dimension of the specimens, the arrangement of the specimens, the embedding medium, the technique to prepare the specimens to be installed, and the technique to construct the TA itself. A TA can be constructed by arranging the tissue specimens in a mold and subsequently pouring the mold with the embedding medium of choice. In contrast, preformed so-called recipient blocks consisting of the embedding medium of choice have punched, drilled, or poured holes of different diameters and distances in which the cells or tissue biopsies will be deployed manually, semi-automatically, or automatically. The costs of constructing a TA differ from a few to thousands of Euros depending on the technique/equipment used. Remarkably high quality TAs can be also achieved by low cost techniques. PMID:27600339

  11. Deep Tissue Wavefront Estimation for Sensorless Aberration Correction

    Directory of Open Access Journals (Sweden)

    Ibrahimovic Emina

    2015-01-01

    Full Text Available The multiple light scattering in biological tissues limits the measurement depth for traditional wavefront sensor. The attenuated ballistic light and the background noise caused by the diffuse light give low signal to noise ratio for wavefront measurement. To overcome this issue, we introduced a wavefront estimation method based on a ray tracing algorithm to overcome this issue. With the knowledge of the refractive index of the medium, the wavefront is estimated by calculating optical path length of rays from the target inside of the samples. This method can provide not only the information of spherical aberration from the refractive-index mismatch between the medium and biological sample but also other aberrations caused by the irregular interface between them. Simulations based on different configurations are demonstrated in this paper.

  12. [Construction of injectable tissue engineered nucleus pulposus in vitro].

    Science.gov (United States)

    Tian, Huake; Wang, Jian; Chen, Chao; Liu, Jie; Zhou, Yue

    2009-02-01

    To investigate the feasibility of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium beta-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viability of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. The thermo-sensitive chitosan hydrogel was liquid at room temperature and solidified into gel at 37 degrees C (15 minutes) due to crosslinking reaction. Acridine orange-propidium iodide staining showed that the viability rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 +/- 0.064 and 0.832 +/- 0.052, respectively, showing more strengths of producing matrix than that of monolayer culture (0.528 +/- 0.039, 0.773 +/- 0.046) with a significant difference (P compound culture, and may be a potential NP cells carrier for tissue engineered NP.

  13. Scintigraphic measurements of gastric emptying corrected for differences in tissue attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, J.B.; Hoejgaard, L.; Uhrenholdt, A. (Copenhagen Univ. (Denmark). Hvidovre Hospital)

    1983-10-01

    In order to evaluate the importance of variations in tissue attenuation in scintigraphic measurements of gastric emptying, both in vivo and in vitro measurements of count rates from an encapsulated sup(99m)Tc dose were performed in different parts of the stomach. The obtained individual tissue correction factors were applied in the calculation of gastric emptying rates by gamma camera in healthy volunteers. The results showed that the anterior gamma camera scan without correction for differences in tissue attenuation underestimated the gastric emptying rate by 11% if the results were expressed as percentage meal emptied over 60 minutes.

  14. Improved correction for the tissue fraction effect in lung PET/CT imaging

    Science.gov (United States)

    Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris

    2015-09-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.

  15. Improved correction for the tissue fraction effect in lung PET/CT imaging

    International Nuclear Information System (INIS)

    Holman, Beverley F; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris; Maher, Toby M

    2015-01-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K 1 and K i along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34–80% in the best case and 29–96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted. (paper)

  16. Correction

    DEFF Research Database (Denmark)

    Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin

    2016-01-01

    [This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....

  17. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.

    Science.gov (United States)

    Yamamoto, Yasunori; Ito, Akira; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2011-01-01

    Skeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs. Histological studies revealed that elongated and multinucleated myotubes were observed within the tissue. Expression of muscle-specific markers, such as myogenin, myosin heavy chain and tropomyosin, were detected in the tissue constructs by western blot analysis. Further, creatine kinase activity increased during differentiation. In response to electric pulses, the artificial tissue constructs contracted to generate a physical force (the maximum twitch force, 33.2 μN [1.06 mN/mm2]). Rheobase and chronaxie of the tissue were determined as 4.45 V and 0.72 ms, respectively. These results indicate that the artificial skeletal muscle tissue constructs fabricated in this study were physiologically functional and the data obtained for the evaluation of their functional properties may provide useful information for future skeletal muscle tissue engineering studies.

  18. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Silva, J.M.; Georgi, Nicole; Costa, R.; Sher, P.; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; Mano, J.F.

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and

  19. Robust multi-site MR data processing: iterative optimization of bias correction, tissue classification, and registration.

    Science.gov (United States)

    Young Kim, Eun; Johnson, Hans J

    2013-01-01

    A robust multi-modal tool, for automated registration, bias correction, and tissue classification, has been implemented for large-scale heterogeneous multi-site longitudinal MR data analysis. This work focused on improving the an iterative optimization framework between bias-correction, registration, and tissue classification inspired from previous work. The primary contributions are robustness improvements from incorporation of following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate high-deformable registration, (3) use extended set of tissue definitions, and (4) use of multi-modal aware intensity-context priors. The benefits of these enhancements were investigated by a series of experiments with both simulated brain data set (BrainWeb) and by applying to highly-heterogeneous data from a 32 site imaging study with quality assessments through the expert visual inspection. The implementation of this tool is tailored for, but not limited to, large-scale data processing with great data variation with a flexible interface. In this paper, we describe enhancements to a joint registration, bias correction, and the tissue classification, that improve the generalizability and robustness for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was evaluated by using both simulated and simulated and human subject MRI images. With these enhancements, the results showed improved robustness for large-scale heterogeneous MRI processing.

  20. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  1. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs

    DEFF Research Database (Denmark)

    Pedde, R. Daniel; Mirani, Bahram; Navaei, Ali

    2017-01-01

    , outlines the use of common biomaterials and advanced hybrid scaffolds, and describes several design considerations including the structural, physical, biological, and economical parameters that are crucial for the fabrication of functional, complex, engineered tissues. Finally, the applications...... of these biofabrication strategies in neural, skin, connective, and muscle tissue engineering are explored.......The demand for organ transplantation and repair, coupled with a shortage of available donors, poses an urgent clinical need for the development of innovative treatment strategies for long-term repair and regeneration of injured or diseased tissues and organs. Bioengineering organs, by growing...

  2. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Dentini, Mariella

    2017-01-01

    3D bioprinting is an emerging field that can be described as a robotic additive biofabrication technology that has the potential to build tissues or organs. In general, bioprinting uses a computer-controlled printing device to accurately deposit cells and biomaterials into precise architectures with the goal of creating on demand organized multicellular tissue structures and eventually intra-organ vascular networks. The latter, in turn, will promote the host integration of the engineered tissue/organ in situ once implanted. Existing biofabrication techniques still lay behind this goal. Here, we describe a novel microfluidic printing head-integrated within a custom 3D bioprinter-that allows for the deposition of multimaterial and/or multicellular within a single scaffold by extruding simultaneously different bioinks or by rapidly switching between one bioink and another. The designed bioprinting method effectively moves toward the direction of creating viable tissues and organs for implantation in clinic and research in lab environments.

  3. Variation in tissue outcome of ovine and human engineered heart valve constructs : relevance for tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.; Driessen - Mol, A.; Grootzwagers, L.G.M.; Soekhradj - Soechit, R.S.; Riem Vis, P.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    AIM: Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and

  4. Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.

    Science.gov (United States)

    Bolst, David; Guatelli, Susanna; Tran, Linh T; Chartier, Lachlan; Lerch, Michael L F; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2017-03-21

    Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12 C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length [Formula: see text] to calculate the lineal energy was introduced as an alternative to the mean chord length [Formula: see text] because it was found that adopting Cauchy's formula for the [Formula: see text] was not appropriate for the radiation field typical of HIT as it is very directional. [Formula: see text] can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12 C ion beam can be adopted as [Formula: see text]. The tissue equivalence conversion method and [Formula: see text] were adopted to determine the RBE 10 , calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE 10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of

  5. Construct Validity of the MMPI-2-RF Triarchic Psychopathy Scales in Correctional and Collegiate Samples.

    Science.gov (United States)

    Kutchen, Taylor J; Wygant, Dustin B; Tylicki, Jessica L; Dieter, Amy M; Veltri, Carlo O C; Sellbom, Martin

    2017-01-01

    This study examined the MMPI-2-RF (Ben-Porath & Tellegen, 2008/2011) Triarchic Psychopathy scales recently developed by Sellbom et al. ( 2016 ) in 3 separate groups of male correctional inmates and 2 college samples. Participants were administered a diverse battery of psychopathy specific measures (e.g., Psychopathy Checklist-Revised [Hare, 2003 ], Psychopathic Personality Inventory-Revised [Lilienfeld & Widows, 2005 ], Triarchic Psychopathy Measure [Patrick, 2010 ]), omnibus personality and psychopathology measures such as the Personality Assessment Inventory (Morey, 2007 ) and Personality Inventory for DSM-5 (Krueger, Derringer, Markon, Watson, & Skodol, 2012 ), and narrow-band measures that capture conceptually relevant constructs. Our results generally evidenced strong support for the convergent and discriminant validity for the MMPI-2-RF Triarchic scales. Boldness was largely associated with measures of fearless dominance, social potency, and stress immunity. Meanness showed strong relationships with measures of callousness, aggression, externalizing tendencies, and poor interpersonal functioning. Disinhibition exhibited strong associations with poor impulse control, stimulus seeking, and general externalizing proclivities. Our results provide additional construct validation to both the triarchic model and MMPI-2-RF Triarchic scales. Given the widespread use of the MMPI-2-RF in correctional and forensic settings, our results have important implications for clinical assessment in these 2 areas, where psychopathy is a highly relevant construct.

  6. HU deviation in lung and bone tissues: Characterization and a corrective strategy.

    Science.gov (United States)

    Ai, Hua A; Meier, Joseph G; Wendt, Richard E

    2018-05-01

    In the era of precision medicine, quantitative applications of x-ray Computed Tomography (CT) are on the rise. These require accurate measurement of the CT number, also known as the Hounsfield Unit. In this study, we evaluated the effect of patient attenuation-induced beam hardening of the x-ray spectrum on the accuracy of the HU values and a strategy to correct for the resulting deviations in the measured HU values. A CIRS electron density phantom was scanned on a Siemens Biograph mCT Flow CT scanner and a GE Discovery 710 CT scanner using standard techniques that are employed in the clinic to assess the HU deviation caused by beam hardening in different tissue types. In addition, an anthropomorphic ATOM adult male upper torso phantom was scanned on the GE Discovery 710 scanner. Various amounts of Superflab bolus material were wrapped around the phantoms to simulate different patient sizes. The mean HU values that were measured in the phantoms were evaluated as a function of the water-equivalent area (A w ), a parameter that is described in the report of AAPM Task Group 220. A strategy by which to correct the HU values was developed and tested. The variation in the HU values in the anthropomorphic ATOM phantom under different simulated body sizes, both before and after correction, were compared, with a focus on the lung and bone tissues. Significant HU deviations that depended on the simulated patient size were observed. A positive correlation between HU and A w was observed for tissue types that have an HU of less than zero, while a negative correlation was observed for tissue types with HU values that are greater than zero. The magnitude of the difference increases as the underlying attenuation property deviates further away from that of water. In the electron density phantom study, the maximum observed HU differences between the measured and reference values in the cortical bone and lung materials were 426 and 94 HU, respectively. In the anthropomorphic phantom

  7. An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs.

    Science.gov (United States)

    Leferink, Anne M; Reis, Diogo Santos; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2018-04-11

    When tissue engineering strategies rely on the combination of three-dimensional (3D) polymeric or ceramic scaffolds with cells to culture implantable tissue constructs in vitro, it is desirable to monitor tissue growth and cell fate to be able to more rationally predict the quality and success of the construct upon implantation. Such a 3D construct is often referred to as a 'black-box' since the properties of the scaffolds material limit the applicability of most imaging modalities to assess important construct parameters. These parameters include the number of cells, the amount and type of tissue formed and the distribution of cells and tissue throughout the construct. Immunolabeling enables the spatial and temporal identification of multiple tissue types within one scaffold without the need to sacrifice the construct. In this report, we concisely review the applicability of antibodies (Abs) and their conjugation chemistries in tissue engineered constructs. With some preliminary experiments, we show an efficient conjugation strategy to couple extracellular matrix Abs to fluorophores. The conjugated probes proved to be effective in determining the presence of collagen type I and type II on electrospun and additive manufactured 3D scaffolds seeded with adult human bone marrow derived mesenchymal stromal cells. The conjugation chemistry applied in our proof of concept study is expected to be applicable in the coupling of any other fluorophore or particle to the Abs. This could ultimately lead to a library of probes to permit high-contrast imaging by several imaging modalities.

  8. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    Science.gov (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  9. Ballistic impacts on an anatomically correct synthetic skull with a surrogate skin/soft tissue layer.

    Science.gov (United States)

    Mahoney, Peter; Carr, Debra; Arm, Richard; Gibb, Iain; Hunt, Nicholas; Delaney, Russ J

    2018-03-01

    The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre- and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this.

  10. 2D beam hardening correction for micro-CT of immersed hard tissue

    Science.gov (United States)

    Davis, Graham; Mills, David

    2016-10-01

    Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.

  11. Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs.

    Science.gov (United States)

    Paxton, Jennifer Z; Wudebwe, Uchena N G; Wang, Anqi; Woods, Daniel; Grover, Liam M

    2012-08-01

    The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.

  12. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.

    NARCIS (Netherlands)

    Levato, Riccardo; Visser, Jetze; Planell, Josep a; Engel, Elisabeth; Malda, Jos|info:eu-repo/dai/nl/412461099; Mateos-Timoneda, Miguel a

    2014-01-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the

  13. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’ Dea, R. D.; Osborne, J. M.; El Haj, A. J.; Byrne, H. M.; Waters, S. L.

    2012-01-01

    of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a

  14. On a correct diet: exploration of the orthorexia construct from the essential nuclei of experimental discourse

    Directory of Open Access Journals (Sweden)

    Ginés Mateo-Martínez

    2017-06-01

    Full Text Available Abstract Objectives: To explore the experience lived by some women who are concerned with following a natural and organic diet. Method: The qualitative analysis of the discourse was done as a bricolage (thematic content analysis and phenomenological interpretative analysis, using different ad hoc techniques. Results: The subjective experience of women consists of a phenomenological field that defines their historicity: past, represented by the theme "Why did you choose to eat like this"; present, "An optimism recreated"; and imagined future, "Absence of disease as object of ideal consciousness". This phenomenological field evolves, in experience and discourse, as an intermittent dilation of the theme "The expansion of consciousness in the right appetite". Conclusions: The orthorexia construct and the correct appetite discourses should be explored in greater depth by the scientific community in order to investigate: social stigmatization of people concerned with healthy eating and, in an associated way, pathologization of condition.

  15. Correction

    CERN Multimedia

    2002-01-01

    Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.

  16. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  17. Correction

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.

  18. Correction

    CERN Multimedia

    2002-01-01

    The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.   The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.

  19. Correction

    Directory of Open Access Journals (Sweden)

    2014-01-01

    Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].

  20. A Lindenmayer system-based approach for the design of nutrient delivery networks in tissue constructs

    Energy Technology Data Exchange (ETDEWEB)

    Yasar, Ozlem; Starly, Binil [School of Industrial Engineering, University of Oklahoma, Norman, OK 73019 (United States); Lan, S-F [University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019 (United States)

    2009-12-15

    Large thick tissue constructs have reported limited success primarily due to the inability of cells to survive deep within the scaffold. Without access to adequate nutrients, cells placed deep within the tissue construct will die out, leading to non-uniform tissue regeneration. Currently, there is a necessity to design nutrient conduit networks within the tissue construct to enable cells to survive in the matrix. However, the design of complex networks within a tissue construct is challenging. In this paper, we present the Lindenmayer system, an elegant fractal-based language algorithm framework, to generate conduit networks in two- and three-dimensional architecture with several degrees of complexity. The conduit network maintains a parent-child relationship between each branch of the network. Several L-system parameters have been studied-branching angle, branch length, ratio of parent to child branch diameter, etc-to simulate several architectures under a given L-system notation. We have also presented a layered manufacturing-based UV-photopolymerization process using the Texas Instruments DLP(TM) system to fabricate the branched structures. This preliminary work showcases the applicability of L-system-based construct designs to drive scaffold fabrication systems.

  1. A Lindenmayer system-based approach for the design of nutrient delivery networks in tissue constructs

    International Nuclear Information System (INIS)

    Yasar, Ozlem; Starly, Binil; Lan, S-F

    2009-01-01

    Large thick tissue constructs have reported limited success primarily due to the inability of cells to survive deep within the scaffold. Without access to adequate nutrients, cells placed deep within the tissue construct will die out, leading to non-uniform tissue regeneration. Currently, there is a necessity to design nutrient conduit networks within the tissue construct to enable cells to survive in the matrix. However, the design of complex networks within a tissue construct is challenging. In this paper, we present the Lindenmayer system, an elegant fractal-based language algorithm framework, to generate conduit networks in two- and three-dimensional architecture with several degrees of complexity. The conduit network maintains a parent-child relationship between each branch of the network. Several L-system parameters have been studied-branching angle, branch length, ratio of parent to child branch diameter, etc-to simulate several architectures under a given L-system notation. We have also presented a layered manufacturing-based UV-photopolymerization process using the Texas Instruments DLP(TM) system to fabricate the branched structures. This preliminary work showcases the applicability of L-system-based construct designs to drive scaffold fabrication systems.

  2. [Research progress of co-culture system for constructing vascularized tissue engineered bone].

    Science.gov (United States)

    Fu, Weili; Xiang, Zhou

    2014-02-01

    To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

  3. A puzzle assembly strategy for fabrication of large engineered cartilage tissue constructs.

    Science.gov (United States)

    Nover, Adam B; Jones, Brian K; Yu, William T; Donovan, Daniel S; Podolnick, Jeremy D; Cook, James L; Ateshian, Gerard A; Hung, Clark T

    2016-03-21

    Engineering of large articular cartilage tissue constructs remains a challenge as tissue growth is limited by nutrient diffusion. Here, a novel strategy is investigated, generating large constructs through the assembly of individually cultured, interlocking, smaller puzzle-shaped subunits. These constructs can be engineered consistently with more desirable mechanical and biochemical properties than larger constructs (~4-fold greater Young׳s modulus). A failure testing technique was developed to evaluate the physiologic functionality of constructs, which were cultured as individual subunits for 28 days, then assembled and cultured for an additional 21-35 days. Assembled puzzle constructs withstood large deformations (40-50% compressive strain) prior to failure. Their ability to withstand physiologic loads may be enhanced by increases in subunit strength and assembled culture time. A nude mouse model was utilized to show biocompatibility and fusion of assembled puzzle pieces in vivo. Overall, the technique offers a novel, effective approach to scaling up engineered tissues and may be combined with other techniques and/or applied to the engineering of other tissues. Future studies will aim to optimize this system in an effort to engineer and integrate robust subunits to fill large defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huihui [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Othman, Shadi F [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Hong Liu [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Peptan, Ioana A [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Magin, Richard L [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States)

    2006-02-07

    Magnetic resonance microscopy (MRM) is used to monitor osteogenesis in tissue-engineered constructs. Measurements of the developing tissue's MR relaxation times (T{sub 1} and T{sub 2}), apparent diffusion coefficient (ADC) and elastic shear modulus were conducted over a 4-week growth period using an 11.74 T Bruker spectrometer with an imaging probe adapted for MR elastography (MRE). Both the relaxation times and the ADC show a statistically significant decrease after only one week of tissue development while the tissue stiffness increases progressively during the first two weeks of in vitro growth. The measured MR parameters are correlated with histologically monitored osteogenic tissue development. This study shows that MRM can provide quantitative data with which to characterize the growth and development of tissue-engineered bone.

  5. A new construction technique for tissue-engineered heart valves using the self-assembly method.

    Science.gov (United States)

    Tremblay, Catherine; Ruel, Jean; Bourget, Jean-Michel; Laterreur, Véronique; Vallières, Karine; Tondreau, Maxime Y; Lacroix, Dan; Germain, Lucie; Auger, François A

    2014-11-01

    Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.

  6. Constructing a Computer Model of the Human Eye Based on Tissue Slice Images

    OpenAIRE

    Dai, Peishan; Wang, Boliang; Bao, Chunbo; Ju, Ying

    2010-01-01

    Computer simulation of the biomechanical and biological heat transfer in ophthalmology greatly relies on having a reliable computer model of the human eye. This paper proposes a novel method on the construction of a geometric model of the human eye based on tissue slice images. Slice images were obtained from an in vitro Chinese human eye through an embryo specimen processing methods. A level set algorithm was used to extract contour points of eye tissues while a principle component analysi...

  7. The design and construction of an electrohydrodynamic cartesian robot for the preparation of tissue engineering constructs.

    Directory of Open Access Journals (Sweden)

    Shaikh Hafeez Hashimdeen

    Full Text Available In this work we bring together replicating rapid prototyping technology with electrohydrodynamic phenomena to develop a device with the ability to build structures in three-dimensions while simultaneously affording the user a degree of designing versatility and ease that is not seen in conventional computer numerically controlled machines. An attempt at reproducing an actual human ear using polycaprolactone was pursued to validate the hardware. Five different polycaprolactone solution concentrations between 7-15 wt% were used and printing was performed at applied voltages that ranged from 1 to 6 kV and at flow rates from 5 µl/min to 60 µl/min. The corresponding geometrical and aesthetic features of the printed constructs were studied to determine the effectiveness of the device. The 15 wt% concentration at 60 µl/min under an applied electric field of 6 kV was identified as the best operating parameters to work with.

  8. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends.

    Science.gov (United States)

    Oliveira, Sara M; Reis, Rui L; Mano, João F

    2015-11-01

    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  10. CORRECTION OF FAULTY LINES IN MUSCLE MODEL, TO BE USED IN 3D BUILDING NETWORK CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    I. R. Karas

    2012-07-01

    Full Text Available This paper describes the usage of MUSCLE (Multidirectional Scanning for Line Extraction Model for automatic generation of 3D networks in CityGML format (from raster floor plans. MUSCLE (Multidirectional Scanning for Line Extraction Model is a conversion method which was developed to vectorize the straight lines through the raster images including floor plans, maps for GIS, architectural drawings, and machine plans. The model allows user to define specific criteria which are crucial for acquiring the vectorization process. Unlike traditional vectorization process, this model generates straight lines based on a line thinning algorithm, without performing line following-chain coding and vector reduction stages. In this method the nearly vertical lines were obtained by scanning the images horizontally, while the nearly horizontal lines were obtained by scanning the images vertically. In a case where two or more consecutive lines are nearly horizontal or nearly vertical, raster data become unmanageable and the process generates wrongly vectorized lines. In this situation, to obtain the precise lines, the image with the wrongly vectorized lines is diagonally scanned. By using MUSCLE model, the network models are topologically structured in CityGML format. After the generation process, it is possible to perform 3D network analysis based on these models. Then, by using the software that was designed based on the generated models, a geodatabase of the models could be established. This paper presents the correction application in MUSCLE and explains 3D network construction in detail.

  11. Mechanical design and construction qualification program on ITER correction coils structures

    Energy Technology Data Exchange (ETDEWEB)

    Foussat, A., E-mail: arnaud.foussat@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Weiyue, Wu; Jing, Wei; Shuangsong, Du [Academy of Science Institute of Plasma Physics, PO 1126, Hefei, Anhui 230031 (China); Sgobba, S. [European Center for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Hongwei, Li [China International Nuclear Fusion Energy Program Execution Center, Ministry of Science and Technology, 15B Fuxing Rd., Beijing 100862 (China); Libeyre, Paul; Jong, Cornelis; Klofac, Kamil; Mitchell, Neil [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-04-01

    The ITER Magnet system consists of 4 main coils sub-systems, i.e. 18 toroidal field coils (TFC), a central solenoid (CS), 6 poloidal field coils (PF) and 3 sets of correction coils (CC). The ITER fusion project has selected the stainless steel 316LN as main material for the magnet structure. The CC contribute to reducing the range of magnetic error fields created by imperfections in the location and geometry of the other coils used to confine, heat, and shape the plasma. During plasma operation, a large number of loading condition scenarios have been considered and structural analysis performed on key items like Cable-In-Conduit Conductor and the coil case. The results obtained are used for both static and fatigue structural assessment defining the present baseline design. For the construction of the structural cases, welding techniques such as GTAW (Gas Tungsten Arc Welding) and techniques resulting in low distortion and shrinkage like EBW (Electron Beam Welding) or Laser Beam Welding (LBW) with filler metal wire have been selected. Those methods are considered for future qualifications to guarantee proper weld parameters and specified weld properties. In order to determine the strength and fracture toughness of 316LN stainless steel welds with respect to design criteria, some mechanical tests have been carried out at 7 K (or 77 K), and room temperature.

  12. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: Measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, Jeroen; Martens, D.E.; le Comte, EP; Kooy, F.K.; Tramper, J.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE cartilage polymer

  14. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, J.; Martens, D.E.; Paul le Comte, E.; Kooy, F.K.; Tramper, J.; Blitterswijk, van C.A.; Riesle, J.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE: cartilage polymer

  15. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs

    NARCIS (Netherlands)

    Malda, J.; Woodfield, T.B.F.; van der Vloodt, F.; Kooy, F.K.; Martens, D.E.; Tramper, J.C.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    Repair of articular cartilage defects using tissue engineered constructs composed of a scaffold and cultured autologous cells holds promise for future treatments. However, nutrient limitation (e.g. oxygen) has been suggested as a cause of the onset of chondrogenesis solely within the peripheral

  16. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs.

    Science.gov (United States)

    Alshehri, Awatef M; Wilson, Otto C; Dahal, Bishnu; Philip, John; Luo, Xiaolong; Raub, Christopher B

    2017-11-01

    Magnetic nanoparticles (MNPs) self-align and transduce magnetic force, two properties which lead to promising applications in cell and tissue engineering. However, the toxicity of MNPs to cells which uptake them is a major impediment to applications in engineered tissue constructs. To address this problem, MNPs were embedded in millimeter-scale alginate beads, coated with glutaraldehyde cross-linked chitosan, and loaded in acellular and MDA-MB-231 cancer cell-seeded collagen hydrogels, providing local micro-actuation under an external magnetic field. Brightfield microscopy was used to assess nanoparticle diffusion from the bead. Phase contrast microscopy and digital image correlation were used to track collagen matrix displacement and estimate intratissue strain under magnetic actuation. Coating the magnetic alginate beads with glutaraldehyde-chitosan prevents bulk diffusion of nanoparticles into the surrounding microenvironment. Further, the beads exert force on the surrounding collagen gel and cells, resulting in intratissue strains of 0-10% tunable with bead dimensions, collagen density, and distance from the bead. Cells seeded adjacent to the embedded beads are subjected to strain gradients without loss of cell viability over two days culture. This study describes a simple way to fabricate crosslinked magnetic alginate beads to load in a collagen tissue construct without direct exposure of the construct to nanoparticles. The findings are significant to in vitro studies of mechanobiology in enabling precise control over dynamic mechanical loading of tissue constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  18. Ready-to-Use Tissue Construct for Military Bone and Cartilage Trauma

    Science.gov (United States)

    2012-10-01

    physiologic hyaline cartilage - osseous transition in massive osteochondral defects in large animals. We will conduct functional outcome analysis, X...10-1-0933 TITLE: Ready-to-Use Tissue Construct for Military Bone and Cartilage Trauma PRINCIPAL INVESTIGATOR: Francis Y. Lee... Cartilage Trauma” addresses the current limitations in treating complex, high-energy musculoskeletal wounds incurred in active combat. High-energy

  19. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    Directory of Open Access Journals (Sweden)

    Letizia Ferroni

    2015-03-01

    Full Text Available Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D hyaluronan scaffold and human dental pulp stem cells (DPSCs to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  20. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue.

    Science.gov (United States)

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-03-02

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  1. [Construction of a capsular tissue-engineered ureteral stent seeded with autologous urothelial cells].

    Science.gov (United States)

    Tan, Haisong; Fu, Weijun; Li, Jianqiang; Wang, Zhongxin; Li, Gang; Ma, Xin; Dong, Jun; Gao, Jiangping; Wang, Xiaoxiong; Zhang, Xu

    2013-01-01

    To investigate the feasibility of constructing a capsular poly L-lactic acid (PLLA) ureteral stent seeded with autologous urothelial cells using tissue engineering methods. The capsular ureteral stent was constructed by subcutaneously embedding PLLA ureteral stent in the back of beagles for 3 weeks to induce the formation of connective tissue on the surfaces. After decellularization of the stent, the expanded autologous urothelial cells were seeded on the stent. The surface structure and cell adhesion of the stent were observed using HE staining, scanning electron microscope (SEM) and immunocytochemical staining. MTT assay was used to evaluate urothelial cell proliferation on the capsular PLLA ureteral stent and on circumferential small intestinal submucosa graft. HE staining and VIII factor immunohistochemistry revealed numerous capillaries in the connective tissue encapsulating the stent without obvious local inflammatory response. The results of SEM and immunocytochemical staining showed that the capsule contained rich collagenic fibers forming three-dimensional structures, and the seeded autologous urothelial cells could adhere and well aligned on the surface. MTT assay showed normal growth of the cells on the stent as compared with the cells grown on circumferential small intestinal submucosa graft. The capsular PLLA ureteral stent allows adhesion and proliferation of autologous urothelial cells and shows a potential in applications of constructing tissue-engineered ureter.

  2. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  3. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. A novel bioprinting method and system for forming hybrid tissue engineering constructs.

    Science.gov (United States)

    Shanjani, Y; Pan, C C; Elomaa, L; Yang, Y

    2015-12-18

    Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for structural and mechanical integrity and soft hydrogels for cell- and growth factor-loading have a tremendous potential to tissue regeneration under mechanical loading. However, despite excessive progress in the field, the current 3D bioprinting techniques and systems fall short in integration of such soft and rigid multifunctional components. Here we present a novel 3D hybrid bioprinting technology (Hybprinter) and its capability enabling integration of soft and rigid components for TECs. Hybprinter employs digital light processing-based stereolithography (DLP-SLA) and molten material extrusion techniques for soft and rigid materials, respectively. In this study, poly-ethylene glycol diacrylate (PEGDA) and poly-(ε-caprolactone) (PCL) were used as a model material for soft hydrogel and rigid scaffold, respectively. It was shown that geometrical accuracy, swelling ratio and mechanical properties of the hydrogel component can be tailored by DLP-SLA module. We have demonstrated the printability of variety of complex hybrid construct designs using Hybprinter technology and characterized the mechanical properties and functionality of such constructs. The compressive mechanical stiffness of a hybrid construct (90% hydrogel) was significantly higher than hydrogel itself (∼6 MPa versus 100 kPa). In addition, viability of cells incorporated within the bioprinted hybrid constructs was determined approximately 90%. Furthermore, a functionality of a hybrid construct composed of porous scaffold with an embedded hydrogel conduit was characterized for vascularized tissue engineering applications. High material diffusion and high cell viability in about 2.5 mm distance

  5. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers

    International Nuclear Information System (INIS)

    Levato, Riccardo; Planell, Josep A; Engel, Elisabeth; Visser, Jetze; Malda, Jos; Mateos-Timoneda, Miguel A

    2014-01-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the underlying subchondral bone. Challenges in fabricating functional grafts of clinically relevant size include the incorporation of cues to guide specific cell differentiation and the generation of sufficient cells, which is hard to obtain with conventional cell culture techniques. A novel strategy to address these demands is to combine bioprinting with microcarrier technology. This technology allows for the extensive expansion of cells, while they form multi-cellular aggregates, and their phenotype can be controlled. In this work, living constructs were fabricated via bioprinting of cell-laden microcarriers. Mesenchymal stromal cell (MSC)-laden polylactic acid microcarriers, obtained via static culture or spinner flask expansion, were encapsulated in gelatin methacrylamide-gellan gum bioinks, and the printability of the composite material was studied. This bioprinting approach allowed for the fabrication of constructs with high cell concentration and viability. Microcarrier encapsulation improved the compressive modulus of the hydrogel constructs, facilitated cell adhesion, and supported osteogenic differentiation and bone matrix deposition by MSCs. Bilayered osteochondral models were fabricated using microcarrier-laden bioink for the bone compartment. These findings underscore the potential of this new microcarrier-based biofabrication approach for bone and osteochondral constructs. (paper)

  6. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.

    Science.gov (United States)

    Levato, Riccardo; Visser, Jetze; Planell, Josep A; Engel, Elisabeth; Malda, Jos; Mateos-Timoneda, Miguel A

    2014-09-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the underlying subchondral bone. Challenges in fabricating functional grafts of clinically relevant size include the incorporation of cues to guide specific cell differentiation and the generation of sufficient cells, which is hard to obtain with conventional cell culture techniques. A novel strategy to address these demands is to combine bioprinting with microcarrier technology. This technology allows for the extensive expansion of cells, while they form multi-cellular aggregates, and their phenotype can be controlled. In this work, living constructs were fabricated via bioprinting of cell-laden microcarriers. Mesenchymal stromal cell (MSC)-laden polylactic acid microcarriers, obtained via static culture or spinner flask expansion, were encapsulated in gelatin methacrylamide-gellan gum bioinks, and the printability of the composite material was studied. This bioprinting approach allowed for the fabrication of constructs with high cell concentration and viability. Microcarrier encapsulation improved the compressive modulus of the hydrogel constructs, facilitated cell adhesion, and supported osteogenic differentiation and bone matrix deposition by MSCs. Bilayered osteochondral models were fabricated using microcarrier-laden bioink for the bone compartment. These findings underscore the potential of this new microcarrier-based biofabrication approach for bone and osteochondral constructs.

  7. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  8. Characterization of tissue-equivalent materials for use in construction of physical phantoms

    International Nuclear Information System (INIS)

    Souza, Edvan V. de; Oliveira, Alex C.H. de; Vieira, Jose W.; Lima, Fernando R.A.

    2013-01-01

    Phantoms are physical or computational models used to simulate the transport of ionizing radiation, their interactions with human body tissues and evaluate the deposition of energy. Depending on the application, you can build phantoms of various types and features. The physical phantoms are made of materials with behavior similar to human tissues exposed to ionizing radiation, the so-called tissue-equivalent materials. The characterization of various tissue-equivalent materials is important for the choice of materials to be used is appropriate, seeking a better cost-benefit ratio. The main objective of this work is to produce tables containing the main characteristics of tissue-equivalent materials. These tables were produced in Microsoft Office Excel. Among the main features of tissue-equivalent materials that were added to the tables, are density, chemical composition, physical state, chemical stability and solubility. The main importance of this work is to contribute to the construction of high-quality physical phantoms and avoid the waste of materials

  9. Crosstalk between Substrates and Rho-Associated Kinase Inhibitors in Cryopreservation of Tissue-Engineered Constructs

    Directory of Open Access Journals (Sweden)

    Arindam Bit

    2017-01-01

    Full Text Available It is documented that human mesenchymal stem cells (hMSCs can be differentiated into various types of cells to present a tool for tissue engineering and regenerative medicine. Thus, the preservation of stem cells is a crucial factor for their effective long-term storage that further facilitates their continuous supply and transportation for application in regenerative medicine. Cryopreservation is the most important, practicable, and the only established mechanism for long-term preservation of cells, tissues, and organs, and engineered tissues; thus, it is the key step for the improvement of tissue engineering. A significant portion of MSCs loses cellular viability while freeze-thawing, which represents an important technical limitation to achieving sufficient viable cell numbers for maximum efficacy. Several natural and synthetic materials are extensively used as substrates for tissue engineering constructs and cryopreservation because they promote cell attachment and proliferation. Rho-associated kinase (ROCK inhibitors can improve the physiological function and postthaw viability of cryopreserved MSCs. This review proposes a crosstalk between substrate topology and interaction of cells with ROCK inhibitors. It is shown that incorporation of ionic nanoparticles in the presence of an external electrical field improves the generation of ROCK inhibitors to safeguard cellular viability for the enhanced cryopreservation of engineered tissues.

  10. Constructing Tissue Microarrays: Protocols and Methods Considering Potential Advantages and Disadvantages for Downstream Use.

    Science.gov (United States)

    Bingle, Lynne; Fonseca, Felipe P; Farthing, Paula M

    2017-01-01

    Tissue microarrays were first constructed in the 1980s but were used by only a limited number of researchers for a considerable period of time. In the last 10 years there has been a dramatic increase in the number of publications describing the successful use of tissue microarrays in studies aimed at discovering and validating biomarkers. This, along with the increased availability of both manual and automated microarray builders on the market, has encouraged even greater use of this novel and powerful tool. This chapter describes the basic techniques required to build a tissue microarray using a manual method in order that the theory behind the practical steps can be fully explained. Guidance is given to ensure potential disadvantages of the technique are fully considered.

  11. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.

    Science.gov (United States)

    Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L

    2017-07-01

    Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.

  12. To Construction of Expendable Hydroelectric Power Station Characteristics and Their Timely Correction

    Directory of Open Access Journals (Sweden)

    V. Kh. Nasibov

    2006-01-01

    Full Text Available The paper provides a technique of analytical construction of expendable characteristics and characteristics of a relative gain of water charge at a hydroelectric power station. Planning method and regression analysis have been applied for the construction of these characteristics.

  13. A mathematical model for fluid shear-sensitive 3D tissue construct development.

    Science.gov (United States)

    Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai

    2013-01-01

    This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

  14. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Rong

    2010-03-01

    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  15. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    Science.gov (United States)

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  16. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics.

    Science.gov (United States)

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J

    2016-04-01

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Radioenzymatic assay for measurement of tissue concentrations of histamine: adaptation to correct for adherence of histamine to mechanical homogenizers

    International Nuclear Information System (INIS)

    Brown, J.K.; Frey, M.J.; Reed, B.R.; Leff, A.R.; Shields, R.; Gold, W.M.

    1984-01-01

    Because adherence of histamine to glass is well-known, we tested for its adherence to a mechanical homogenizer commonly used in the extraction of histamine from tissue samples. During 60 sec of homogenization, 15% to 17% of the histamine originally present in the samples ''disappeared,'' and the reason for the disappearance was reversible binding of histamine to the homogenizer. Adding trace amounts of [ 14 C]histamine to each sample before homogenization and measuring the disappearance of radioactivity during homogenization permitted correction for binding to the homogenizer. This technique for correction was validated by the measurement of endogenous concentrations of histamine in the tracheal posterior membranes of six dogs (range of mean concentrations: 0.63 to 1.51 ng/mg wet weight) followed by the measurement of known amounts of exogenous histamine added before homogenization to tracheal tissue samples from the same dogs. In the latter samples, 96 +/- 13% (mean +/- SEM) of the histamine added was measured by our technique. We conclude that binding of histamine to mechanical homogenizers may be an important cause of inaccuracy of the enzymatic assay for the measurement of histamine concentrations in tissue but that such binding may but that such binding may be easily corrected for

  18. Treatment of Ligament Constructs with Exercise-conditioned Serum: A Translational Tissue Engineering Model.

    Science.gov (United States)

    Lee-Barthel, Ann; Baar, Keith; West, Daniel W D

    2017-06-11

    In vitro experiments are essential to understand biological mechanisms; however, the gap between monolayer tissue culture and human physiology is large, and translation of findings is often poor. Thus, there is ample opportunity for alternative experimental approaches. Here we present an approach in which human cells are isolated from human anterior cruciate ligament tissue remnants, expanded in culture, and used to form engineered ligaments. Exercise alters the biochemical milieu in the blood such that the function of many tissues, organs and bodily processes are improved. In this experiment, ligament construct culture media was supplemented with experimental human serum that has been 'conditioned' by exercise. Thus the intervention is more biologically relevant since an experimental tissue is exposed to the full endogenous biochemical milieu, including binding proteins and adjunct compounds that may be altered in tandem with the activity of an unknown agent of interest. After treatment, engineered ligaments can be analyzed for mechanical function, collagen content, morphology, and cellular biochemistry. Overall, there are four major advantages versus traditional monolayer culture and animal models, of the physiological model of ligament tissue that is presented here. First, ligament constructs are three-dimensional, allowing for mechanical properties (i.e., function) such as ultimate tensile stress, maximal tensile load, and modulus, to be quantified. Second, the enthesis, the interface between boney and sinew elements, can be examined in detail and within functional context. Third, preparing media with post-exercise serum allows for the effects of the exercise-induced biochemical milieu, which is responsible for the wide range of health benefits of exercise, to be investigated in an unbiased manner. Finally, this experimental model advances scientific research in a humane and ethical manner by replacing the use of animals, a core mandate of the National

  19. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Science.gov (United States)

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  20. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  1. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.

    Science.gov (United States)

    Chung, C A; Lin, Tze-Hung; Chen, Shih-Di; Huang, Hsing-I

    2010-01-21

    Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.

  2. Proteomic profiling of tissue-engineered blood vessel walls constructed by adipose-derived stem cells.

    Science.gov (United States)

    Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei

    2013-02-01

    Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.

  3. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  4. [Rat tissues antioxidant status correction by peptide delta sleep during physiological aging of the organism].

    Science.gov (United States)

    Bondarenko, T I; Kutilin, D S; Mikhaleva, I I

    2014-01-01

    It is shown that exogenous delta-sleep inducing peptide increases glutathione antioxidant system level in rat tissues at different stages of ontogenesis, by subcutaneous injection to rats 2-24 months postnatal development in a dose of 100 mg/kg animal body weight by courses of 5 consecutive days per month, and this effect is especially marked in non-renewable postmitotic tissues.

  5. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  6. TransCom satellite intercomparison experiment: construction of a bias corrected atmospheric CO2 climatology

    NARCIS (Netherlands)

    Saito, R.; Houweling, S.; Patra, P. K.; Belikov, D.; Lokupitiya, R.; Niwa, Y.; Chevallier, F.; Saeki, T.; Maksyutov, S.

    2011-01-01

    A model-based three-dimensional (3-D) climatology of atmospheric CO2 concentrations has been constructed for the analysis of satellite observations, as a priori information in retrieval calculations, and for preliminary evaluation of remote sensing products. The locations of ground-based instruments

  7. Construction of secure and fast hash functions using nonbinary error-correcting codes

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Preneel, Bart

    2002-01-01

    constructions based on block ciphers such as the Data Encryption Standard (DES), where the key size is slightly smaller than the block size; IDEA, where the key size is twice the block size; Advanced Encryption Standard (AES), with a variable key size; and to MD4-like hash functions. Under reasonable...

  8. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  9. On The Construction of Models for Electrical Conduction in Biological Tissues

    International Nuclear Information System (INIS)

    Gomez-Aguilar, F.; Bernal-Alvarado, J.; Cordova-Fraga, T.; Rosales-Garcia, J.; Guia-Calderon, M.

    2010-01-01

    Applying RC circuit theory, a theoretical representation for the electrical conduction in a biological multilayer system was developed. In particular an equivalent circuit for the epidermis, dermis and the subcutaneous tissue was constructed. This model includes an equivalent circuit, inside the dermis, in order to model a small formation like tumor. This work shows the feasibility to apply superficial electrodes to detect subcutaneous abnormalities. The behavior of the model is shown in the form of a frequency response chart. The Bode and Nyquist plots are also obtained. This theoretical frame is proposed to be a general treatment to describe the bioelectrical transport in a three layer bioelectrical system.

  10. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  11. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Joana M Silva

    Full Text Available Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT and chondroitin sulphate (CS on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH. The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  12. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Science.gov (United States)

    Silva, Joana M; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L; Van Blitterswijk, Clemens A; Karperien, Marcel; Mano, João F

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  13. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.

    Science.gov (United States)

    Jeng, Lily; Hsu, Hu-Ping; Spector, Myron

    2013-10-01

    The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.

  14. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    Science.gov (United States)

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  15. The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot

    Directory of Open Access Journals (Sweden)

    Shonglun Su

    2017-01-01

    Full Text Available Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues.

  16. CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo

    Directory of Open Access Journals (Sweden)

    Marietta Herrmann

    2014-11-01

    We demonstrate that this population of cells, isolated in a clinically relevant manner and cultured with autologous growth factors readily promoted neovascularization in tissue engineered constructs in vivo enabling a potential translation into the clinic.

  17. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.

    Science.gov (United States)

    Dunphy, Siobhán E; Bratt, Jessica A J; Akram, Khondoker M; Forsyth, Nicholas R; El Haj, Alicia J

    2014-10-01

    In this study, collagen-elastin constructs were prepared with the aim of producing a material capable of mimicking the mechanical properties of a single alveolar wall. Collagen has been used in a wide range of tissue engineering applications; however, due to its low mechanical properties its use is limited to non load-bearing applications without further manipulation using methods such as cross-linking or mechanical compression. Here, it was hypothesised that the addition of soluble elastin to a collagen hydrogel could improve its mechanical properties. Hydrogels made from collagen only and collagen plus varying amounts elastin were prepared. Young׳s modulus of each membrane was measured using the combination of a non-destructive indentation and a theoretical model previously described. An increase in Young׳s modulus was observed with increasing concentration of elastin. The use of non-destructive indentation allowed for online monitoring of the elastic moduli of cell-seeded constructs over 8 days. The addition of lung fibroblasts into the membrane increased the stiffness of the hydrogels further and cell-seeded collagen hydrogels were found to have a stiffness equal to the theoretical value for a single alveolar wall (≈5kPa). Through provision of some of the native extracellular matrix components of the lung parenchyma these scaffolds may be able to provide an initial building block toward the regeneration of new functional lung tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    Science.gov (United States)

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-11-01

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.

    Science.gov (United States)

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-04-19

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.

  20. Daily online bony correction is required for prostate patients without fiducial markers or soft-tissue imaging.

    Science.gov (United States)

    Johnston, M L; Vial, P; Wiltshire, K L; Bell, L J; Blome, S; Kerestes, Z; Morgan, G W; O'Driscoll, D; Shakespeare, T P; Eade, T N

    2011-09-01

    To compare online position verification strategies with offline correction protocols for patients undergoing definitive prostate radiotherapy. We analysed 50 patients with implanted fiducial markers undergoing curative prostate radiation treatment, all of whom underwent daily kilovoltage imaging using an on-board imager. For each treatment, patients were set-up initially with skin tattoos and in-room lasers. Orthogonal on-board imager images were acquired and the couch shift to match both bony anatomy and the fiducial markers recorded. The set-up error using skin tattoos and offline bone correction was compared with online bone correction. The fiducial markers were used as the reference. Data from 1923 fractions were analysed. The systematic error was ≤1 mm for all protocols. The average random error was 2-3mm for online bony correction and 3-5mm for skin tattoos or offline-bone. Online-bone showed a significant improvement compared with offline-bone in the number of patients with >5mm set-up errors for >10% (P20% (Pmarkers or daily soft-tissue imaging. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Precision IORT - Image guided intraoperative radiation therapy (igIORT) using online treatment planning including tissue heterogeneity correction.

    Science.gov (United States)

    Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik

    2017-05-01

    To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.

    Science.gov (United States)

    Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae

    2017-09-01

    Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Correction to: Generation and characterization of tissue-type plasminogen activator transgenic rats.

    Science.gov (United States)

    Ito, Yusuke; Noguchi, Kengo; Morishima, Yoshiyuki; Yamaguchi, Kyoji

    2018-01-01

    In the original publication of the article, the sentence in "Result" section have been incorrectly published as: "Three lines of tPA Tg rats were generated and analyzed by Southern blotting to confirm the presence of the transgene in genomic DNA. When rat DNA was digested with EcoRI and hybridized to the tPA probe described in "Materials and methods", a 1.0 kb band was detected (Fig. 1a, b). One founder line was selected because of its high copy number (about ten copies) of tPA gene and itansgene) and 4.4 kb (endogenous gene) reding appearance, body weight, hematology, and systematization." The corrected sentence should read as: "Three lines of tPA Tg rats were generated and analyzed by Southern blotting to confirm the presence of the transgene in genomic DNA. When rat DNA was digested with EcoRI and hybridized to the tPA probe described in "Materials and methods", a 1.0 kb band was detected (Fig. 1a, b). One founder line was selected because of its high copy number (about ten copies) of tPA gene and its lack of detectable abnormal findings, including appearance, body weight, hematology, and systematization." The original article has been corrected.

  4. Immediate postoperative outcome of orthognathic surgical planning, and prediction of positional changes in hard and soft tissue, independently of the extent and direction of the surgical corrections required

    DEFF Research Database (Denmark)

    Donatsky, Ole; Bjørn-Jørgensen, Jens; Hermund, Niels Ulrich

    2011-01-01

    orthognathic correction using the computerised, cephalometric, orthognathic, surgical planning system (TIOPS). Preoperative cephalograms were analysed and treatment plans and prediction tracings produced by computerised interactive simulation. The planned changes were transferred to models and finally...... with the presently included soft tissue algorithms, the current study shows relatively high mean predictability of the immediately postoperative hard and soft tissue outcome, independent of the extent and direction of required orthognathic correction. Because of the relatively high individual variability, caution...

  5. PROSPECTS OF APPLICATION OF TISSUE-ENGINEERED PANCREATIC CONSTRUCTS IN THE TREATMENT OF TYPE 1 DIABETES

    Directory of Open Access Journals (Sweden)

    G. N. Skaletskaya

    2016-01-01

    Full Text Available Allotransplantation of pancreatic islets remains the most effective method of treatment of diabetes mellitus type 1 being capable under combination of favorable conditions (suffi cient number of isolated islets, effective combination of immunosuppressive drugs to reach the recipients’ insulin independence for several years. However, the overwhelming shortage of donor pancreas and limited post-transplantation islet survival do not allow increasing the number of such transplants and their effectiveness. This review presents a critical analysis of the work done by Russian and foreign authors onto creation of tissue-engineered pancreatic constructs that may lead to the resolution of the three main pancreatic islet transplantation issues: 1 lack of donor material; 2 necessity of immunosuppressive therapy; 3 limited survival and functional activity of the islet.

  6. Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs

    Science.gov (United States)

    Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.

    2016-03-01

    We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.

  7. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days.

    Science.gov (United States)

    Gui, Liqiong; Boyle, Michael J; Kamin, Yishai M; Huang, Angela H; Starcher, Barry C; Miller, Cheryl A; Vishnevetsky, Michael J; Niklason, Laura E

    2014-05-01

    Tissue-engineered small-diameter vascular grafts have been developed as a promising alternative to native veins or arteries for replacement therapy. However, there is still a crucial need to improve the current approaches to render the tissue-engineered blood vessels more favorable for clinical applications. A completely biological blood vessel (3-mm inner diameter) was constructed by culturing a 50:50 mixture of bovine smooth muscle cells (SMCs) with neonatal human dermal fibroblasts in fibrin gels. After 30 days of culture under pulsatile stretching, the engineered blood vessels demonstrated an average burst pressure of 913.3±150.1 mmHg (n=6), a suture retention (53.3±15.4 g) that is suitable for implantation, and a compliance (3.1%±2.5% per 100 mmHg) that is comparable to native vessels. These engineered grafts contained circumferentially aligned collagen fibers, microfibrils and elastic fibers, and differentiated SMCs, mimicking a native artery. These promising mechanical and biochemical properties were achieved in a very short culture time of 30 days, suggesting the potential of co-culturing SMCs with fibroblasts in fibrin gels to generate functional small-diameter vascular grafts for vascular reconstruction surgery.

  8. Development of Three-Dimensional Multicellular Tissue-Like Constructs for Mutational Analysis Using Macroporous Microcarriers

    Science.gov (United States)

    Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.

    2002-01-01

    A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2

  9. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs.

    Directory of Open Access Journals (Sweden)

    Maarten Sonnaert

    Full Text Available To progress the fields of tissue engineering (TE and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.

  10. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Cho, Dong-Woo; Kim, Jong Young

    2012-01-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed. (paper)

  11. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    Science.gov (United States)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  12. [Construction and evaluation of the tissue engineered nerve of bFGF-PLGA sustained release microspheres].

    Science.gov (United States)

    Wang, Guanglin; Lin, Wei; Gao, Weiqiang; Xiao, Yuhua; Dong, Changchao

    2008-12-01

    To study the outcomes of nerve defect repair with the tissue engineered nerve, which is composed of the complex of SCs, 30% ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable poly (D, L-lactic acid) (PDLLA) catheters. SCs were cultured and purified from the sciatic nerves of 1-day-old neonatal SD rats. The 1st passage cells were compounded with bFGF-PLGA sustained release microspheres and ECM gel, and then were injected into permeable PDLLA catheters with PLGA microfilaments inside. In this way, the tissue engineered nerve was constructed. Sixty SD rats were included. The model of 15-mm sciatic nerve defects was made, and then the rats were randomly divided into 5 groups, with 12 rats in each. In group A, autograft was adopted. In group B, the blank PDLLA catheters with PBS inside were used. In group C, PDLLA catheters, with PLGA microfilaments and 30% ECM gel inside, were used. In group D, PDLLA catheters, with PLGA microfilaments, SCs and 30% ECM gel inside, were used. In group E, the tissue engineered nerve was applied. After the operation, observation was made for general conditions of the rats. The sciatic function index (SFI) analysis was performed at 12, 16, 20 and 24 weeks after the operation, respectively. Electrophysiological detection and histological observation were performed at 12 and 24 weeks after the operation, respectively. All rats survived to the end of the experiment. At 12 and 16 weeks after the operation, group E was significantly different from group B in SFI (P fibers in group E were significantly differents from those in groups A, B and C (P fibers in group E were smaller than those in group A (P fibers in group E was significantly different from those in groups A, B, C (P fibers in group E were bigger than those in groups B and C (P < 0.05). The tissue engineered nerve with the complex of SCs, ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable PDLLA catheters promote

  13. Evaluation of dose calculation algorithms using the treatment planning system Xi O with tissue heterogeneity correction turned on

    International Nuclear Information System (INIS)

    Fairbanks, Leandro R.; Barbi, Gustavo L.; Silva, Wiliam T.; Reis, Eduardo G.F.; Borges, Leandro F.; Bertucci, Edenyse C.; Maciel, Marina F.; Amaral, Leonardo L.

    2011-01-01

    Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%.The convolution method shows better results for high density materials (difference ∼1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%). (author)

  14. Hypothyroidism after primary radiotherapy for head and neck squamous cell carcinoma: Normal tissue complication probability modeling with latent time correction

    International Nuclear Information System (INIS)

    Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren M.; Hegedüs, Laszlo; Overgaard, Jens; Johansen, Jørgen

    2013-01-01

    Background and purpose: To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors. Patients and methods: Patients with HNSCC receiving definitive radiotherapy with 66–68 Gy without surgery were followed up with serial post-treatment thyrotropin (TSH) assessment. HT was defined as TSH >4.0 mU/l. Data were analyzed with both a logistic and a mixture model (correcting for latency) to determine risk factors for HT and develop an NTCP model based on mean thyroid dose (MTD) and thyroid volume. Results: 203 patients were included. Median follow-up: 25.1 months. Five-year estimated risk of HT was 25.6%. In the mixture model, the only independent risk factors for HT were thyroid volume (cm 3 ) (OR = 0.75 [95% CI: 0.64–0.85], p 3 , respectively. Conclusions: Comparing the logistic and mixture models demonstrates the importance of latent-time correction in NTCP-modeling. Thyroid dose constraints in treatment planning should be individualized based on thyroid volume

  15. CRYOPRESERVATION STRATEGY FOR TISSUE ENGINEERING CONSTRUCTS CONSISTING OF HUMAN MESENHYMAL STEM CELLS AND HYDROGEL BIOMATERIALS.

    Science.gov (United States)

    Wu, Y; Wen, F; Gouk, S S; Lee, E H; Kuleshova, L

    2015-01-01

    The development of vitrification strategy for cell-biomaterial constructs, particularly biologically inspired nanoscale materials and hydrogels mimicking the in vivo environment is an active area. A cryopreservation strategy mimicking the in vivo environment for cell-hydrogel constructs may enhance cell proliferation and biological function. To demonstrate the efficacy of vitrification as a platform technology involving tissue engineering and human mesenchymal stem cells (hMSCs). Microcarriers made from alginate coated with chitosan and collagen are used. Conventional freezing and vitrification were compared. The vitrification strategy includes 10 min step-wise exposure to a vitrification solution (40% v/v EG, 0.6M sucrose) and immersion into liquid nitrogen. Confocal imaging of live/dead staining of hMSCs cultured on the surface of microcarriers demonstrated that vitrified cells had excellent appearance and prolonged spindle shape morphology. The proliferation ability of post-vitrified cells arbitrated to protein Ki-67 gene expression was not significantly different in comparison to untreated control, while that of post-freezing cells was almost lost. The ability of hMSCs cultured on the surface of microcarriers to proliferate has been not affected by vitrification and it was significantly better after vitrification than after conventional freezing during continuous culture. Collagen II related mRNA expression by 4 weeks post-vitrification and post-freezing showed that ability to differentiate into cartilage was sustained during vitrification and reduced during conventional freezing. No significant difference was found between control and vitrification groups only. Vitrification strategy coupled with advances in hMSC-expansion platform that completely preserves the ability of stem cells to proliferate and subsequently differentiate allows not only to reach a critical cell number, but also demonstrate prospects for effective utilization and transportation of cells

  16. Tissue microarray design and construction for scientific, industrial and diagnostic use

    Directory of Open Access Journals (Sweden)

    Daniela Pilla

    2012-01-01

    Full Text Available Context: In 2013 the high throughput technology known as Tissue Micro Array (TMA will be fifteen years old. Its elements (design, construction and analysis are intuitive and the core histopathology technique is unsophisticated, which may be a reason why has eluded a rigorous scientific scrutiny. The source of errors, particularly in specimen identification and how to control for it is unreported. Formal validation of the accuracy of segmenting (also known as de-arraying hundreds of samples, pairing with the sample data is lacking. Aims: We wanted to address these issues in order to bring the technique to recognized standards of quality in TMA use for research, diagnostics and industrial purposes. Results: We systematically addressed the sources of error and used barcode-driven data input throughout the whole process including matching the design with a TMA virtual image and segmenting that image back to individual cases, together with the associated data. In addition we demonstrate on mathematical grounds that a TMA design, when superimposed onto the corresponding whole slide image, validates on each and every sample the correspondence between the image and patient′s data. Conclusions: High throughput use of the TMA technology is a safe and efficient method for research, diagnosis and industrial use if all sources of errors are identified and addressed.

  17. An impedance method for spatial sensing of 3D cell constructs – towards applications in tissue engineering

    DEFF Research Database (Denmark)

    Canali, Chiara; Mazzoni, Chiara; Larsen, Layla Bashir

    2015-01-01

    ) cells were encapsulated in gelatin to form artificial 3D cell constructs and detected when placed in different positions inside large gelatin scaffolds. Taken together, these results open new perspectives for impedance-based sensing technologies for non-invasive monitoring in tissue engineering...

  18. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications

    Energy Technology Data Exchange (ETDEWEB)

    Tevlek, Atakan [Bioengineering Division, Institute of Science and Engineering, Hacettepe University, Ankara (Turkey); Hosseinian, Pezhman; Ogutcu, Cansel [Nanotechnology and Nanomedicine Division, Institute of Science and Engineering, Hacettepe University, Ankara (Turkey); Turk, Mustafa [Biology Department, Kirikkale University, Kirikkale (Turkey); Aydin, Halil Murat, E-mail: hmaydin@hacettepe.edu.tr [Environmental Engineering Department, Bioengineering Division, Centre for Bioengineering, Hacettepe University, Ankara (Turkey)

    2017-03-01

    This study aims to establish a facile protocol for the preparation of a bi-layered poly(glycerol-sebacate) (PGS)/β-tricalcium phosphate (β-TCP) construct and to investigate its potential for bone-soft tissue engineering applications. The layered structure was prepared by distributing the ceramic particles within a prepolymer synthesized in a microwave reactor followed by a cross-linking of the final construct in vacuum (< 10 mbar). The vacuum stage led to the separation of cross-linked elastomer (top) and ceramic (bottom) phases. Results showed that addition of β-TCP particles to the elastomer matrix after the polymerization led to an increase in compression strength (up to 14 ± 2.3 MPa). Tensile strength (σ), Young's modulus (E), and elongation at break (%) values were calculated as 0.29 ± 0.03 MPa and 0.21 ± 0.03; 0.38 ± 0.02 and 1.95 ± 0.4; and 240 ± 50% and 24 ± 2% for PGS and PGS/β-TCP bi-layered constructs, respectively. Morphology was characterized by using Scanning Electron Microscopy (SEM) and micro-computed tomography (μ-CT). Tomography data revealed an open porosity of 35% for the construct, mostly contributed from the ceramic phase since the elastomer side has no pore. Homogeneous β-TCP distribution within the elastomeric structure was observed. Cell culture studies confirmed biocompatibility with poor elastomer-side and good bone-side cell attachment. In a further study to investigate the osteogenic properties, the construct were loaded with BMP-2 and/or TGF-β1. The PGS/β-TCP bi-layered constructs with improved mechanical and biological properties have the potential to be used in bone-soft tissue interface applications where soft tissue penetration is a problem. - Highlights: • Biodegradable bi-layered constructs with elastomer and ceramic sides were prepared. • The constructs could be a promising material in guided bone regeneration. • Elastomer side of the construct acts as a barrier to prevent soft tissue ingrowth.

  19. Construction of a self-supporting tissue-equivalent dividing wall and operational characteristics of a coaxial double-cylindrical tissue-equivalent proportional counter

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1994-01-01

    An additional feature incorporated in a coaxial double-cylindrical tissue-equivalent proportional counter, is the presence of a common tissue-equivalent dividing wall between the inner and outer counters of thickness equivalent to the corresponding maximum range of protons at the energy of interest. By appropriate use of an anti-coincidence arrangement with the outer counter, the inner counter could be used to discriminate microdosimetric spectra of neutrons at the desired low energy range from those of the faster neutrons. The construction of an A-150 self-supporting tissue-equivalent dividing wall and an anti-coincidence unit are described. Some operational characteristic tests have been performed to determine the operation of the new microdosimeter. (author)

  20. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  1. Hybrid constructs for tridimensional correction of the thoracic spine in adolescent idiopathic scoliosis: a comparative analysis of universal clamps versus hooks.

    Science.gov (United States)

    Ilharreborde, Brice; Even, Julien; Lefevre, Yan; Fitoussi, Franck; Presedo, Ana; Penneçot, Georges-François; Mazda, Keyvan

    2010-02-01

    Retrospective study of prospectively collected data. Compare Universal Clamps (UCs) and hooks for the thoracic correction of adolescent idiopathic scoliosis (AIS). In scoliosis surgery, sagittal correction is as important as frontal correction due to the risk of junctional kyphosis. Compared to all-screw constructs, hybrid constructs with lumbar pedicle screws and thoracic hooks or sublaminar wires have been shown to achieve similar coronal correction while providing superior postoperative thoracic kyphosis. The authors used a novel sublaminar thoracic implant, the UC with improvements over sublaminar wires. Hybrid constructs using thoracic UCs were compared to those with thoracic hooks. This series involved 150 patients treated for AIS with hybrid constructs. A total of 75 consecutive patients operated from 2001 to 2003, who had thoracic hooks with in situ contouring, distraction, and compression (Group 1), were compared to 75 consecutive patients operated from 2004 to 2006, who had thoracic UCs with posteromedial translation (Group 2). All had intraoperative somatosensory/motor-evoked potential monitoring and at least 2-years follow-up. Except for follow-up (longer in Group 1), the 2 groups were similar before surgery. The UCs achieved better thoracic coronal correction (P motor-evoked potentials. UC reduced operative time by 20% (60 minutes; P < 0.001) and blood loss by 23% (250 mL; P < 0.001). Although both of these hybrid constructs efficaciously corrected the coronal and axial deformities in AIS, the results of the UC technique were superior to those achieved with hooks in all 3 planes, especially the sagittal plane. Moreover, the UC technique is straightforward and safe, reducing both operative duration and blood loss.

  2. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Science.gov (United States)

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  3. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  4. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells

    Directory of Open Access Journals (Sweden)

    W Ando

    2012-09-01

    Full Text Available The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  5. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells.

    Science.gov (United States)

    Ando, Wataru; Fujie, Hiromichi; Moriguchi, Yu; Nansai, Ryosuke; Shimomura, Kazunori; Hart, David A; Yoshikawa, Hideki; Nakamura, Norimasa

    2012-09-28

    The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC) derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  6. Changes of lipoperoxidation and antioxidant system in pariodontal tissues in experimental bronchial asthma under conditions of chronic periodonitis and correction of these changes with thiotriazoline

    Directory of Open Access Journals (Sweden)

    Mykhailo Reheda

    2018-04-01

    Full Text Available We have analyzed the results of the research of changes in indices of lipid peroxidation (conjugated dienes and malondialdehide and antioxidant (superoxide dismutase, catalase, ceruloplasmin systems in guinea pigs’ periodontal soft tissues in experimental bronchial asthma in the dynamics of asthma under conditions of chronic periodontitis and correction of these changes with thiotriazoline. The research was conducted on 50 male guinea pigs weighting 250-270 g, divided into 5 groups: I – intact guinea pigs (n=10, II – guinea pigs (n=10 with asthma under conditions of chronic periodontitis before correction (4th day, III - guinea pigs (n=10 with asthma under conditions of chronic periodontitis before correction (18th day, IV - guinea pigs (n=10 with asthma under conditions of chronic periodontitis before correction (25 th day, V - guinea pigs (n=10 with asthma under conditions of chronic periodontitis after correction (25th day. The results of experimental studies showed the significant increase of conjugated dienes and malondialdehide levels in animal’s periodontal soft tissues at all observed stages of asthma development under conditions of chronic periodontitis before the correction as compared with control group. Intensive synthesis of LPO’s products caused increase on 4th day with further decrease on 18th and 25th days of activity levels of superoxide dismutase, catalase and ceruloplasmin in animal’s periodontal soft tissues before the correction as compared with indices of the control group. After correction with thiotriazoline the the results showed decrease of indices of LPO and increase of activity levels of antioxidant enzymes.

  7. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs.

    Science.gov (United States)

    Lee, Whitaik David; Gawri, Rahul; Pilliar, Robert M; Stanford, William L; Kandel, Rita A

    2017-10-15

    Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this

  8. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  9. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    International Nuclear Information System (INIS)

    Wels, Michael; Hornegger, Joachim; Zheng Yefeng; Comaniciu, Dorin; Huber, Martin

    2011-01-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average

  10. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs.

    Science.gov (United States)

    Dikina, Anna D; Strobel, Hannah A; Lai, Bradley P; Rolle, Marsha W; Alsberg, Eben

    2015-06-01

    There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering

    Science.gov (United States)

    Zhu, Wei; Cui, Haitao; Boualam, Benchaa; Masood, Fahed; Flynn, Erin; Rao, Raj D.; Zhang, Zhi-Yong; Zhang, Lijie Grace

    2018-05-01

    Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting. In the present study, we utilize a tabletop stereolithography-based 3D bioprinter for a novel cell-laden cartilage tissue construct fabrication. Printable resin is composed of 10% gelatin methacrylate (GelMA) base, various concentrations of polyethylene glycol diacrylate (PEGDA), biocompatible photoinitiator, and transforming growth factor beta 1 (TGF-β1) embedded nanospheres fabricated via a core-shell electrospraying technique. We find that the addition of PEGDA into GelMA hydrogel greatly improves the printing resolution. Compressive testing shows that modulus of the bioprinted scaffolds proportionally increases with the concentrations of PEGDA, while swelling ratio decreases with the increase of PEGDA concentration. Confocal microscopy images illustrate that the cells and nanospheres are evenly distributed throughout the entire bioprinted construct. Cells grown on 5%/10% (PEGDA/GelMA) hydrogel present the highest cell viability and proliferation rate. The TGF-β1 embedded in nanospheres can keep a sustained release up to 21 d and improve chondrogenic differentiation of encapsulated MSCs. The cell-laden bioprinted cartilage constructs with TGF-β1-containing nanospheres is a promising strategy for cartilage regeneration.

  12. Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve.

    Science.gov (United States)

    Huang, Lanfeng; Li, Rui; Liu, Wanguo; Dai, Jin; Du, Zhenwu; Wang, Xiaonan; Ma, Jianchao; Zhao, Jinsong

    2014-07-15

    Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, but cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhesion stage. Moreover, seeded cells were distributed throughout the material.

  13. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  14. Mechanical evaluation of a tissue-engineered zone of calcification in a bone–hydrogel osteochondral construct

    Science.gov (United States)

    Hollenstein, Jérôme; Terrier, Alexandre; Cory, Esther; Chen, Albert C.; Sah, Robert L.; Pioletti, Dominique P.

    2016-01-01

    The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone–hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone–hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone–hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone–hydrogel interface and second, it reduces the stress at this interface. PMID:23706035

  15. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.

    Science.gov (United States)

    Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-11-01

    Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen

  16. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study.

    Science.gov (United States)

    Jayabalan, Prakash; Tan, Andrea R; Rahaman, Mohammed N; Bal, B Sonny; Hung, Clark T; Cook, James L

    2011-10-01

    Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts. (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement increase the collagen and glycosaminoglycan production and improve the mechanical properties in a tissue-engineered cartilage layer? In Study 1, bioactive glass samples (n = 4) were attached to a chondrocyte-seeded agarose layer to form an osteochondral construct, cultured for 6 weeks, and compared to controls. In Study 2, bioactive glass samples (n = 5) were cocultured with cell-seeded agarose for 6 weeks. The cell-seeded agarose layer was exposed to BG 13-93 either continuously or for the first or last 2 weeks in culture or had no exposure. Osteochondral constructs with a BG 13-93 base had improved glycosaminoglycan deposition but less collagen II content. Agarose scaffolds that had a temporal exposure to BG 13-93 within the culture medium had improved mechanical and biochemical properties compared to continuous or no exposure. When used as a subchondral substrate, BG 13-93 did not improve biochemical properties compared to controls. However, as a culture medium supplement, BG 13-93 improved the biochemical and mechanical properties of a tissue-engineered cartilage layer. BG 13-93 may not be suitable in osteochondral constructs but could have potential as a medium supplement for neocartilage formation.

  17. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  18. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Directory of Open Access Journals (Sweden)

    Sunita Nayak

    Full Text Available The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  19. Use of diphosphonates to correct disorders in calcium metabolism and mineral composition of bone tissue with 60-day hypokinesia in rats

    Science.gov (United States)

    Morukov, B. V.; Zaychik, V. YE.; Ivanov, V. M.; Orlov, O. I.

    1988-01-01

    Compounds of the diphosphonate group suppress bone resorption and bone tissue metabolism, from which it was assumed that they can be used for the prevention of osteoporosis and disorders of calcium homeostasis in humans during space flight. Two compounds of this group were used for preventive purposes in 60 day hypokinesia in rats. The results showed that diphosphonates have a marked effect on calcium metabolism and the condition of the bone tissues under conditions of long term hypokinesia: they reduce the content of ionized calcium in blood, delay the loss of calcium and phosphorus by the bone tissue, and to a considerable degree prevent reduction of bone density. This confirms the possibility of using compounds of this group for correcting and preventing changes of bone tissue and mineral metabolism during long term hypokinesia.

  20. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.

    Science.gov (United States)

    Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin

    2014-11-01

    Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

  1. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  2. Correction of Proofs in "Purely Infinite Simple C*-algebras Arising from Free Product Constructions'' and a Subsequent Paper

    DEFF Research Database (Denmark)

    Ara, Pere; Dykema, Kenneth J.; Rørdam, Mikael

    2013-01-01

    The proofs of Theorem 2.2 of K. J. Dykema and M. Rørdam, Purely infinite simple C∗-algebras arising from free product constructions}, Canad. J. Math. 50 (1998), 323--341 and of Theorem 3.1 of K. J. Dykema, Purely infinite simple C∗-algebras arising from free product constructions, II, Math. Scand...

  3. A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs.

    Science.gov (United States)

    Athirasala, Avathamsa; Lins, Fernanda; Tahayeri, Anthony; Hinds, Monica; Smith, Anthony J; Sedgley, Christine; Ferracane, Jack; Bertassoni, Luiz E

    2017-06-12

    The requirement for immediate vascularization of engineered dental pulp poses a major hurdle towards successful implementation of pulp regeneration as an effective therapeutic strategy for root canal therapy, especially in adult teeth. Here, we demonstrate a novel strategy to engineer pre-vascularized, cell-laden hydrogel pulp-like tissue constructs in full-length root canals for dental pulp regeneration. We utilized gelatin methacryloyl (GelMA) hydrogels with tunable physical and mechanical properties to determine the microenvironmental conditions (microstructure, degradation, swelling and elastic modulus) that enhanced viability, spreading and proliferation of encapsulated odontoblast-like cells (OD21), and the formation of endothelial monolayers by endothelial colony forming cells (ECFCs). GelMA hydrogels with higher polymer concentration (15% w/v) and stiffness enhanced OD21 cell viability, spreading and proliferation, as well as endothelial cell spreading and monolayer formation. We then fabricated pre-vascularized, full-length, dental pulp-like tissue constructs by dispensing OD21 cell-laden GelMA hydrogel prepolymer in root canals of extracted teeth and fabricating 500 µm channels throughout the root canals. ECFCs seeded into the microchannels successfully formed monolayers and underwent angiogenic sprouting within 7 days in culture. In summary, the proposed approach is a simple and effective strategy for engineering of pre-vascularized dental pulp constructs offering potentially beneficial translational outcomes.

  4. [Experimental study of tissue engineered cartilage construction using oriented scaffold combined with bone marrow mesenchymal stem cells in vivo].

    Science.gov (United States)

    Duan, Wei; Da, Hu; Wang, Wentao; Lü, Shangjun; Xiong, Zhuo; Liu, Jian

    2013-05-01

    To investigate the feasibility of fabricating an oriented scaffold combined with chondrogenic-induced bone marrow mesenchymal stem cells (BMSCs) for enhancement of the biomechanical property of tissue engineered cartilage in vivo. Temperature gradient-guided thermal-induced phase separation was used to fabricate an oriented cartilage extracellular matrix-derived scaffold composed of microtubules arranged in parallel in vertical section. No-oriented scaffold was fabricated by simple freeze-drying. Mechanical property of oriented and non-oriented scaffold was determined by measurement of compressive modulus. Oriented and non-oriented scaffolds were seeded with chondrogenic-induced BMSCs, which were obtained from the New Zealand white rabbits. Proliferation, morphological characteristics, and the distribution of the cells on the scaffolds were analyzed by MTT assay and scanning electron microscope. Then cell-scaffold composites were implanted subcutaneously in the dorsa of nude mice. At 2 and 4 weeks after implantation, the samples were harvested for evaluating biochemical, histological, and biomechanical properties. The compressive modulus of oriented scaffold was significantly higher than that of non-oriented scaffold (t=201.099, P=0.000). The cell proliferation on the oriented scaffold was significantly higher than that on the non-oriented scaffold from 3 to 9 days (P fibers with chondrocyte-like cells on the oriented-structure constructs. Total DNA, glycosaminoglycan (GAG), and collagen contents increased with time, and no significant difference was found between 2 groups (P > 0.05). The compressive modulus of the oriented tissue engineered cartilage was significantly higher than that of the non-oriented tissue engineered cartilage at 2 and 4 weeks after implantation (P < 0.05). Total DNA, GAG, collagen contents, and compressive modulus in the 2 tissue engineered cartilages were significantly lower than those in normal cartilage (P < 0.05). Oriented extracellular

  5. Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation.

    Science.gov (United States)

    Shakhssalim, Nasser; Dehghan, Mohammad Mehdi; Moghadasali, Reza; Soltani, Mohammad Hossein; Shabani, Iman; Soleimani, Masoud

    2012-01-01

    To investigate the feasibility and safety of using biocompatible, nanofibrous electrospun polycaprolactone (PCL) and combination of polylactic acid (PLLA) and PCL mats in a canine model. Plasma-treated electrospun unseeded mats were implanted in three dogs. The first dog was sacrificed after 3 months and the second and third ones after 4 months, and then, the graft was examined macroscopically with subsequent morphological and histochemical evaluation. Both films showed high levels of cell infiltration and tissue formation, but body response to PLLA/PCL mat in comparison to PCL mat was very low. All three implantation models showed the same light microscopic morphology, immunohistochemistry, and scanning electron microscopy results; nevertheless, only the PCL/PLLA model showed favorable clinical results. Based on these data, nanofibrous PLLA/PCL scaffolding could be a suitable material for the bladder tissue engineering; however, it deserves further investigations.

  6. 3D Printing of Tissue Engineered Constructs for in vitro Modeling of Disease Progression and Drug Screening

    Science.gov (United States)

    Vanderburgh, Joseph; Sterling, Julie A.

    2016-01-01

    2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D versus 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design (CAD) file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs (TECs) that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs. PMID:27169894

  7. Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Alexandre Kaempfen

    2015-06-01

    Full Text Available The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step or only after six weeks of subcutaneous “incubation” (2-step. After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed.

  8. Construction of tissue compensating filters for extended areas in Hodgkin-irradiation on the basis of moire topography

    International Nuclear Information System (INIS)

    Binder, W.; Cabaj, A.; Kaercher, K.H.; Windischbauer, G.; Tieraerztliche Hochschule, Vienna

    1977-01-01

    In order to obtain a homogeneous distribution of the dose over extended fields in radiotherapy of Hodgkin's disease, for an exact dose within the irradiated region it is necessary to consider the topography of the patient. The skin protective build-up effect due to the use of bolus materials would be lost with telecobalt irradiation, and therefore tissue compensating filters with a large surface are to be preferred. A simple method of making such filters by means of the moire topography is described. The way to obtain a compensation filter for extended areas is demonstrated by an example showing how to construct it from layered lead plates. (orig./HP) [de

  9. Gold internal standard correction for elemental imaging of soft tissue sections by LA-ICP-MS: element distribution in eye microstructures.

    Science.gov (United States)

    Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; González, Héctor; Alvarez, Lydia; Coca-Prados, Miguel; Sanz-Medel, Alfredo

    2013-04-01

    Laser ablation coupled to inductively coupled plasma mass spectrometry has been developed for the elemental imaging of Mg, Fe and Cu distribution in histological tissue sections of fixed eyes, embedded in paraffin, from human donors (cadavers). This work presents the development of a novel internal standard correction methodology based on the deposition of a homogeneous thin gold film on the tissue surface and the use of the (197)Au(+) signal as internal standard. Sample preparation (tissue section thickness) and laser conditions were carefully optimized, and internal normalisation using (197)Au(+) was compared with (13)C(+) correction for imaging applications. (24)Mg(+), (56)Fe(+) and (63)Cu(+) distributions were investigated in histological sections of the anterior segment of the eye (including the iris, ciliary body, cornea and trabecular meshwork) and were shown to be heterogeneously distributed along those tissue structures. Reproducibility was assessed by imaging different human eye sections from the same donor and from ten different eyes from adult normal donors, which showed that similar spatial maps were obtained and therefore demonstrate the analytical potential of using (197)Au(+) as internal standard. The proposed analytical approach could offer a robust tool with great practical interest for clinical studies, e.g. to investigate trace element distribution of metals and their alterations in ocular diseases.

  10. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink.

    Science.gov (United States)

    Colosi, Cristina; Shin, Su Ryon; Manoharan, Vijayan; Massa, Solange; Costantini, Marco; Barbetta, Andrea; Dokmeci, Mehmet Remzi; Dentini, Mariella; Khademhosseini, Ali

    2016-01-27

    A novel bioink and a dispensing technique for 3D tissue-engineering applications are presented. The technique incorporates a coaxial extrusion needle using a low-viscosity cell-laden bioink to produce highly defined 3D biostructures. The extrusion system is then coupled to a microfluidic device to control the bioink arrangement deposition, demonstrating the versatility of the bioprinting technique. This low-viscosity cell-responsive bioink promotes cell migration and alignment within each fiber organizing the encapsulated cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs.

    Science.gov (United States)

    Reinwald, Yvonne; Leonard, Katherine H L; Henstock, James R; Whiteley, Jonathan P; Osborne, James M; Waters, Sarah L; Levesque, Philippe; El Haj, Alicia J

    2015-01-01

    Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0-270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels.

  12. Use of Calcium and Alendronic Acid Preparations in Correction of Structural and Functional Disorders of Bone Tissue in Thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    O.B. Oliynyk

    2012-02-01

    Full Text Available Impact of calcium and alendronic acid preparations on disorders of structural and functional state of bone tissue in experimental animals at exogenic thyrotoxicosis was studied. It was defined that introduction of calcium preparations reduces bone mineral density loss in female rats with drug thyrotoxicosis, and combined use of calcium and alendronic acid prevents bone tissue loss regardless of thyrotoxicosis duration and presence of ovariectomy.

  13. Hypothyroidism after primary radiotherapy for head and neck squamous cell carcinoma: Normal tissue complication probability modeling with latent time correction

    DEFF Research Database (Denmark)

    Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren

    2013-01-01

    To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors.......To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors....

  14. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent.

    Science.gov (United States)

    Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin

    2016-10-22

    Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.

  15. [Preliminary study of constructing tissue-engineered cartilage with the endoskeletal scaffold of HDPE by bone marrow stromal cells].

    Science.gov (United States)

    Zhu, Lie; Jiang, Hua; Zhou, Guang-Dong; Wu, Yu-Jia; Luo, Xu-Song

    2008-09-01

    To explore the feasibility of using a nonreactive, permanent endoskeletal scaffold to create the prothesis in special shape which is covered with tissue-engineered cartilage. Porcine BMSCs and articular chondrocytes were isolated and expanded respectively in vitro. Porcine BMSC of passage 1 in the concentration of 10 x 10(7)/ml were seeded onto a cylinder-shaped PGA (1 mm in thickness)/Medpor (3mm in diameter and 5mm in highness) scaffold as the experimental group. After the cell-scaffold constructs were cultured for 5 days, the primary medium, high-glucose DMEM medium with 10% fetal bovine serum (FBS), was replaced by chondrogenically inductive medium for 4 weeks. BMSCs and chondrocytes of the same concentration were seeded respectively onto the scaffold as the negative control group and the positive control group. After cultured in vitro for 4 weeks, the cell-scaffolds construct were implanted into subcutaneous pockets on the back of nude mice. Four and eight weeks later, the formed cartilage prosthesis were harvested and then evaluated by gross view, histology, immunohistochemistry and glycosamino-glycan (GAG) content. Cells in all groups had fine adhesion to the scaffold and could secrete extracellular matrix. All specimens in experimental group and positive control group formed mature cartilage with collagen II expression.The mature catrtilage wraped HDPE compactly and grown into the gap of HDPE. Mature lacuna structures and metachromatic matrices were also observed in these specimens. GAG contents in experimental group were (5.13 +/- 0.32) mg/g (4 weeks), (5.37 +/- 0.12) mg/g (8 weeks). In contrast, specimens in BMSC group showed mainly fibrous tissue. It indicates that it is feasible to create special shaped tissue-engineering cartilage with the permanent internal support using BMSCs as seed cell.

  16. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m(sup 3)) (30 cubic yards[yd(sup 3)]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet[ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m(sup 3) (3000 yd(sup 3)) of construction-related debris

  17. Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materials and transplantation of a tissue-engineering construct.

    Science.gov (United States)

    Volkov, A V; Alekseeva, I S; Kulakov, A A; Gol'dshtein, D V; Shustrov, S A; Shuraev, A I; Arutyunyan, I V; Bukharova, T B; Rzhaninova, A A; Bol'shakova, G B; Grigor'yan, A S

    2010-10-01

    We performed a comparative study of reparative osteogenesis in rabbits with experimental critical defects of the parietal bones after implantation of commercial osteoinductive materials "Biomatrix", "Osteomatrix", "BioOss" in combination with platelet-rich plasma and transplantation of a tissue-engineering construct on the basis of autogenic multipotent stromal cells from the adipose tissue predifferentiated in osteogenic direction. It was found that experimental reparative osteogenesis is insufficiently stimulated by implantation materials and full-thickness trepanation holes were not completely closed. After transplantation of the studied tissue-engineering construct, the defect was filled with full-length bone regenerate (in the center of the regenerate and from the maternal bone) in contrast to control and reference groups, where the bone tissue was formed only on the side of the maternal bone. On day 120 after transplantation of the tissue-engineering construct, the percent of newly-formed bone tissue in the regenerate was 24% (the total percent of bone tissue in the regenerate was 39%), which attested to active incomplete regenerative process in contrast to control and reference groups. Thus, the study demonstrated effective regeneration of the critical defects of the parietal bones in rabbits 120 days after transplantation of the tissue-engineering construct in contrast to commercial osteoplastic materials for directed bone regeneration.

  18. NADH-fluorescence scattering correction for absolute concentration determination in a liquid tissue phantom using a novel multispectral magnetic-resonance-imaging-compatible needle probe

    Science.gov (United States)

    Braun, Frank; Schalk, Robert; Heintz, Annabell; Feike, Patrick; Firmowski, Sebastian; Beuermann, Thomas; Methner, Frank-Jürgen; Kränzlin, Bettina; Gretz, Norbert; Rädle, Matthias

    2017-07-01

    In this report, a quantitative nicotinamide adenine dinucleotide hydrate (NADH) fluorescence measurement algorithm in a liquid tissue phantom using a fiber-optic needle probe is presented. To determine the absolute concentrations of NADH in this phantom, the fluorescence emission spectra at 465 nm were corrected using diffuse reflectance spectroscopy between 600 nm and 940 nm. The patented autoclavable Nitinol needle probe enables the acquisition of multispectral backscattering measurements of ultraviolet, visible, near-infrared and fluorescence spectra. As a phantom, a suspension of calcium carbonate (Calcilit) and water with physiological NADH concentrations between 0 mmol l-1 and 2.0 mmol l-1 were used to mimic human tissue. The light scattering characteristics were adjusted to match the backscattering attributes of human skin by modifying the concentration of Calcilit. To correct the scattering effects caused by the matrices of the samples, an algorithm based on the backscattered remission spectrum was employed to compensate the influence of multiscattering on the optical pathway through the dispersed phase. The monitored backscattered visible light was used to correct the fluorescence spectra and thereby to determine the true NADH concentrations at unknown Calcilit concentrations. Despite the simplicity of the presented algorithm, the root-mean-square error of prediction (RMSEP) was 0.093 mmol l-1.

  19. Constructing Failure: Leonard Hayflick, Biomedicine, and the Problems with Tissue Culture.

    Science.gov (United States)

    Park, Hyung Wook

    2016-07-01

    By examining the use of tissue culture in post-war American biomedicine, this paper investigates how scientists experience and manage failure. I study how Leonard Hayflick forged his new definition of failure and ways of managing it by refuting Alexis Carrel's definition of failure alongside his theory of the immortality of cultured cells. Unlike Carrel, Hayflick claimed that every vertebrate somatic cell should eventually die, unless it transformed into a tumour cell. This claim defined cell death, which had been a problem leading to a laboratory failure, as a normal phenomenon. On the other hand, permanent life, which had been considered a normal cellular characteristic, became a major factor causing scientific failure, since it implied malignant transformation that scientists hoped to control. Hayflick then asserted that his cell strains and method would partly enable scientists to manage this factor-especially that occurred through viral infection-alongside other causes of failure in routine tasks, including bacterial contamination. I argue that the growing biomedical enterprise fostered this work of Hayflick's, which had repercussions in both his career and the uses of cells in diverse investigations. His redefinition of failure in the age of biomedicine resulted in the broad dissemination of his cells, medium, and method as well as his long struggle with the National Institutes of Health (NIH), which caused his temporarily failed career.

  20. From iPSC towards cardiac tissue-a road under construction.

    Science.gov (United States)

    Peischard, Stefan; Piccini, Ilaria; Strutz-Seebohm, Nathalie; Greber, Boris; Seebohm, Guiscard

    2017-10-01

    The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.

  1. Electromagnetic corrections to ππ scattering lengths: some lessons for the construction of effective hadronic field theories

    International Nuclear Information System (INIS)

    Maltman, K.

    1998-01-01

    Using the framework of effective chiral Lagrangians, we show that, in order to correctly implement electromagnetism (EM), as generated from the Standard Model, into effective hadronic theories (such as meson-exchange models) it is insufficient to consider only graphs in the low-energy effective theory containing explicit photon lines. The Standard Model requires the presence of contact interactions in the effective theory which are electromagnetic in origin, but which involve no photons in the effective theory. We illustrate the problems which can result from a ''standard'' EM subtraction: i.e., from assuming that removing all contributions in the effective theory generated by graphs with explicit photon lines fully removes EM effects, by considering the case of the s-wave ππ scattering lengths. In this case it is shown that such a subtraction procedure would lead to the incorrect conclusion that the strong interaction isospin-breaking contributions to these quantities were large when, in fact, they are known to vanish at leading order in m d -m u . The leading EM contact corrections for the channels employed in the extraction of the I=0,2 s-wave ππ scattering lengths from experiment are also evaluated. (orig.)

  2. Correction for tissue attenuation in radionuclide gastric emptying studies: a comparison of a lateral image method and a geometric mean method

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.J.; Chatterton, B.E. (Royal Adelaide Hospital (Australia)); Horowitz, M.; Shearman, D.J.C. (Adelaide Univ. (Australia). Dept. of Medicine)

    1984-08-01

    Variation in depth of radionuclide within the stomach may result in significant errors in the measurement of gastric emptying if no attempt is made to correct for gamma-ray attenuation by the patient's tissues. A method of attenuation correction, which uses a single posteriorly located scintillation camera and correction factors derived from a lateral image of the stomach, was compared with a two-camera geometric mean method, in phantom studies and in five volunteer subjects. A meal of 100 g of ground beef containing /sup 99/Tcsup(m)-chicken liver, and 150 ml of water was used in the in vivo studies. In all subjects the geometric mean data showed that solid food emptied in two phases: an initial lag period, followed by a linear emptying phase. Using the geometric mean data as a standard, the anterior camera overestimated the 50% emptying time (T/sub 50/) by an average of 15% (range 5-18) and the posterior camera underestimated this parameter by 15% (4-22). The posterior data, corrected for attenuation using the lateral image method, underestimated the T/sub 50/ by 2% (-7 to +7). The difference in the distances of the proximal and distal stomach from the posterior detector was large in all subjects (mean 5.7 cm, range 3.9-7.4).

  3. Construction and Development of a Cardiac Tissue-Specific and Hypoxia-Inducible Expression Vector

    Directory of Open Access Journals (Sweden)

    Shahrooz Ghaderi

    2018-03-01

    Full Text Available Purpose: Cardiovascular gene therapy is a sophisticated approach, thanks to the safety of vectors, stable transgene expression, delivery method, and different layers of the heart. To date, numerous expression vectors have been introduced in biotechnology and biopharmacy industries in relation to genetic manipulation. Despite the rapid growth of these modalities, they must be intelligently designed, addressing the cardiac-specific transgene expression and less side effects. Herein, we conducted a pilot project aiming to design a cardiac-specific hypoxia-inducible expression cassette. Methods: We explored a new approach to design an expression cassette containing cardiac specific enhancer, hypoxia response elements (HRE, cardiac specific promoter, internal ribosome entry site (IRES, and beta globin poly A sequence to elicit specific and inducible expression of the gene of interest. Enhanced green fluorescent protein (eGFP was sub-cloned by BglII and NotI into the cassette. The specificity and inducible expression of the cassette was determined in both mouse myoblast C2C12 and mammary glandular tumor 4T1 as ‘twin’ cells. eGFP expression was evaluated by immunofluorescence microscope and flow cytometry at 520 nm emission peak. Results: Our data revealed that the designed expression cassette provided tissue specific and hypoxia inducible (O2<1% transgene expression. Conclusion: It is suggested that cardiac-specific enhancer combined with cardiac-specific promoter are efficient for myoblast specific gene expression. As well, this is for the first time that HRE are derived from three well known hypoxia-regulated promoters. Therefore, there is no longer need to overlap PCR process for one repeated sequence just in one promoter.

  4. Correction of heterogeneities in the issue compositions in the construction plans optimized in radiotherapy using linear programming

    International Nuclear Information System (INIS)

    Viana, Rodrigo Sartorelo S.; Lima, Ernesto A.B.F.; Florentino, Helenice de Oliveira; Fonseca, Paulo Roberto da; Homem, Thiago Pedro Donadon

    2009-01-01

    Linear programming models are widely found in the literature addressing various aspects involved in the creation of optimized planning for radiotherapy. However, most mathematical formulations does not incorporate certain factors that are of extreme importance for the formulation of a real planning like the attenuation of the beam of radiation and heterogeneity in the composition of tissue irradiated. In this context are proposed in this paper some modifications in the formulation of a linear programming problem with the objective of making the simulation closer to the real planning for radiotherapy and thus enable a more reliable and comprehensive planning requirements. (author)

  5. Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct.

    Science.gov (United States)

    Arkudas, Andreas; Beier, Justus Patrick; Pryymachuk, Galyna; Hoereth, Tobias; Bleiziffer, Oliver; Polykandriotis, Elias; Hess, Andreas; Gulle, Heinz; Horch, Raymund E; Kneser, Ulrich

    2010-12-01

    We invented an automatic observer-independent quantitative method to analyze vascularization using micro-computed tomography (CT) along with three-dimensional (3D) reconstruction in a tissue engineering model. An arteriovenous loop was created in the medial thigh of 30 rats and was placed in a particulated porous hydroxyapatite and beta-tricalcium phosphate matrix, filled with fibrin (10 mg/mL fibrinogen and 2 IU/mL thrombin) without (group A) or with (group B) application of fibrin-gel-immobilized angiogenetic growth factors vascular endothelial growth factor (VEGF¹⁶⁵) and basic fibroblast growth factor (bFGF). The explantation intervals were 2, 4, and 8 weeks. Specimens were investigated by means of micro-CT followed by an automatic 3D analysis, which was correlated to histomorphometrical findings. In both groups, the arteriovenous loop led to generation of dense vascularized connective tissue with differentiated and functional vessels inside the matrix. Quantitative analysis of vascularization using micro-CT showed to be superior to histological analysis. The micro-CT analysis also allows the assessment of different other, more complex vascularization parameters within 3D constructs, demonstrating an early improvement of vascularization by application of fibrin-gel-immobilized VEGF¹⁶⁵ and bFGF. In this study quantitative analysis of vascularization using micro-CT along with 3D reconstruction and automatic analysis exhibit to be a powerful method superior to histological evaluation of cross sections.

  6. [Construction of forward and reverse subtracted cDNA libraries between muscle tissue of Meishan and Landrace pigs].

    Science.gov (United States)

    Xu, De-Quan; Zhang, Yi-Bing; Xiong, Yuan-Zhu; Gui, Jian-Fang; Jiang, Si-Wen; Su, Yu-Hong

    2003-07-01

    Using suppression subtractive hybridization (SSH) technique, forward and reverse subtracted cDNA libraries were constructed between Longissimus muscles from Meishan and Landrace pigs. A housekeeping gene, G3PDH, was used to estimate the efficiency of subtractive cDNA. In two cDNA libraries, G3PDH was subtracted very efficiently at appropriate 2(10) and 2(5) folds, respectively, indicating that some differentially expressed genes were also enriched at the same folds and the two subtractive cDNA libraries were very successful. A total of 709 and 673 positive clones were isolated from forward and reverse subtracted cDNA libraries, respectively. Analysis of PCR showed that most of all plasmids in the clones contained 150-750 bp inserts. The construction of subtractive cDNA libraries between muscle tissue from different pig breeds laid solid foundations for isolating and identifying the genes determining muscle growth and meat quality, which will be important to understand the mechanism of muscle growth, determination of meat quality and practice of molecular breeding.

  7. Construction of a preclinical multimodality phantom using tissue-mimicking materials for quality assurance in tumor size measurement.

    Science.gov (United States)

    Lee, Yongsook C; Fullerton, Gary D; Goins, Beth A

    2013-07-29

    World Health Organization (WHO) and the Response Evaluation Criteria in Solid Tumors (RECIST) working groups advocated standardized criteria for radiologic assessment of solid tumors in response to anti-tumor drug therapy in the 1980s and 1990s, respectively. WHO criteria measure solid tumors in two-dimensions, whereas RECIST measurements use only one-dimension which is considered to be more reproducible (1, 2, 3,4,5). These criteria have been widely used as the only imaging biomarker approved by the United States Food and Drug Administration (FDA) (6). In order to measure tumor response to anti-tumor drugs on images with accuracy, therefore, a robust quality assurance (QA) procedures and corresponding QA phantom are needed. To address this need, the authors constructed a preclinical multimodality (for ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI)) phantom using tissue-mimicking (TM) materials based on the limited number of target lesions required by RECIST by revising a Gammex US commercial phantom (7). The Appendix in Lee et al. demonstrates the procedures of phantom fabrication (7). In this article, all protocols are introduced in a step-by-step fashion beginning with procedures for preparing the silicone molds for casting tumor-simulating test objects in the phantom, followed by preparation of TM materials for multimodality imaging, and finally construction of the preclinical multimodality QA phantom. The primary purpose of this paper is to provide the protocols to allow anyone interested in independently constructing a phantom for their own projects. QA procedures for tumor size measurement, and RECIST, WHO and volume measurement results of test objects made at multiple institutions using this QA phantom are shown in detail in Lee et al. (8).

  8. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    Science.gov (United States)

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  9. SU-G-IeP1-06: Estimating Relative Tissue Density From Quantitative MR Images: A Novel Perspective for MRI-Only Heterogeneity Corrected Dose Calculation

    International Nuclear Information System (INIS)

    Soliman, A; Hashemi, M; Safigholi, H; Tchistiakova, E; Song, W

    2016-01-01

    Purpose: To explore the feasibility of extracting the relative density from quantitative MRI measurements as well as estimate a correlation between the extracted measures and CT Hounsfield units. Methods: MRI has the ability to separate water and fat signals, producing two separate images for each component. By performing appropriate corrections on the separated images, quantitative measurement of water and fat mass density can be estimated. This work aims to test this hypothesis on 1.5T.Peanut oil was used as fat-representative, while agar as water-representative. Gadolinium Chloride III and Sodium Chloride were added to the agar solution to adjust the relaxation times and the medium conductivity, respectively. Peanut oil was added to the agar solution with different percentages: 0%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. The phantom was scanned on 1.5T GE Optima 450W with the body coil using a multigradient echo sequences. Water/fat separation were performed while correcting for main field (B0) inhomogeneity and T_2* relaxation time. B1+ inhomogeneities were ignored. The phantom was subsequently scanned on a Philips Brilliance CT Big Bore. MR-corrected fat signal from all vials were normalized to 100% fat signal. CT Hounsfield values were then compared to those obtained from the normalized MR-corrected fat values as well as to the phantom for validation. Results: Good agreement were found between CT HU and the MR-extracted fat values (R"2 = 0.98). CT HU also showed excellent agreement with the prepared fat fractions (R"2=0.99). Vials with 70%, 80%, and 90% fat percentages showed inhomogeneous distributions, however their results were included for completion. Conclusion: Quantitative MRI water/fat imaging can be potentially used to extract the relative tissue density. Further in-vivo validation are required.

  10. SU-G-IeP1-06: Estimating Relative Tissue Density From Quantitative MR Images: A Novel Perspective for MRI-Only Heterogeneity Corrected Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A; Hashemi, M; Safigholi, H [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Tchistiakova, E [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: To explore the feasibility of extracting the relative density from quantitative MRI measurements as well as estimate a correlation between the extracted measures and CT Hounsfield units. Methods: MRI has the ability to separate water and fat signals, producing two separate images for each component. By performing appropriate corrections on the separated images, quantitative measurement of water and fat mass density can be estimated. This work aims to test this hypothesis on 1.5T.Peanut oil was used as fat-representative, while agar as water-representative. Gadolinium Chloride III and Sodium Chloride were added to the agar solution to adjust the relaxation times and the medium conductivity, respectively. Peanut oil was added to the agar solution with different percentages: 0%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. The phantom was scanned on 1.5T GE Optima 450W with the body coil using a multigradient echo sequences. Water/fat separation were performed while correcting for main field (B0) inhomogeneity and T{sub 2}* relaxation time. B1+ inhomogeneities were ignored. The phantom was subsequently scanned on a Philips Brilliance CT Big Bore. MR-corrected fat signal from all vials were normalized to 100% fat signal. CT Hounsfield values were then compared to those obtained from the normalized MR-corrected fat values as well as to the phantom for validation. Results: Good agreement were found between CT HU and the MR-extracted fat values (R{sup 2} = 0.98). CT HU also showed excellent agreement with the prepared fat fractions (R{sup 2}=0.99). Vials with 70%, 80%, and 90% fat percentages showed inhomogeneous distributions, however their results were included for completion. Conclusion: Quantitative MRI water/fat imaging can be potentially used to extract the relative tissue density. Further in-vivo validation are required.

  11. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Science.gov (United States)

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  12. Mimicking the micro-environment. Construction and evaluation of complex collagen-based scaffolds for tissue engineering

    NARCIS (Netherlands)

    Nillesen, S.T.M.

    2012-01-01

    The ultimate goal in tissue engineering is to create biomaterials that mimic normal tissue or are able to encourage cells cells to generate new functional tissue. For these biomaterials, it is important to use highly purified components in order to moderate the tissue response and to control the

  13. Surgical clips for position verification and correction of non-rigid breast tissue in simultaneously integrated boost (SIB) treatments

    International Nuclear Information System (INIS)

    Penninkhof, Joan; Quint, Sandra; Boer, Hans de; Mens, Jan Willem; Heijmen, Ben; Dirkx, Maarten

    2009-01-01

    be further reduced to about 1 mm by using an eNAL protocol instead. Conclusions: The relative positions of implanted surgical clips in the lumpectomy cavity after breast-conserving surgery remain stable during the course of radiotherapy treatment. Application of a NAL or eNAL set-up correction protocol based on surgical clips allows for adequate treatment of both the tumour bed and the whole breast with tight CTV-PTV margins

  14. Strain-induced collagen organization at the micro-level in fibrin-based engineered tissue constructs

    NARCIS (Netherlands)

    Jonge, de N.; Kanters, F.M.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    2013-01-01

    Full understanding of strain-induced collagen organization in complex tissue geometries to create tissues with predefined collagen architecture has not been achieved. This is mainly due to our limited knowledge of collagen remodeling in developing tissues. Here we investigate strain-induced collagen

  15. Safety, Efficacy, Predictability and Stability Indices of Photorefractive Keratectomy for Correction of Myopic Astigmatism with Plano-Scan and Tissue-Saving Algorithms

    Directory of Open Access Journals (Sweden)

    Mehrdad Mohammadpour

    2013-10-01

    Full Text Available Purpose: To assess the safety, efficacy and predictability of photorefractive keratectomy (PRK [Tissue-saving (TS versus Plano-scan (PS ablation algorithms] of Technolas 217z excimer laser for correction of myopic astigmatismMethods: In this retrospective study one hundred and seventy eyes of 85 patients (107 eyes (62.9% with PS and 63 eyes (37.1% with TS algorithm were included. TS algorithm was applied for those with central corneal thickness less than 500 µm or estimated residual stromal thickness less than 420 µm. Mitomycin C (MMC was applied for 120 eyes (70.6%; in case of an ablation depth more than 60 μm and/or astigmatic correction more than one diopter (D. Mean sphere, cylinder, spherical equivalent (SE refraction, uncorrected visual acuity (UCVA, best corrected visual acuity (BCVA were measured preoperatively, and 4 weeks,12 weeks and 24 weeks postoperatively.Results: One, three and six months postoperatively, 60%, 92.9%, 97.5% of eyes had UCVA of 20/20 or better, respectively. Mean preoperative and 1, 3, 6 months postoperative SE were -3.48±1.28 D (-1.00 to -8.75, -0.08±0.62D, -0.02±0.57 and -0.004± 0.29, respectively. And also, 87.6%, 94.1% and 100% were within ±1.0 D of emmetropia and 68.2, 75.3, 95% were within ±0.5 of emmetropia. The safety and efficacy indices were 0.99 and 0.99 at 12 weeks and 1.009 and 0.99 at 24 weeks, respectively. There was no clinically or statistically significant difference between the outcomes of PS or TS algorithms or between those with or without MMC in either group in terms of safety, efficacy, predictability or stability. Dividing the eyes with subjective SE≤4 D and SE≥4 D postoperatively, there was no significant difference between the predictability of the two groups. There was no intra- or postoperative complication.Conclusion: Outcomes of PRK for correction of myopic astigmatism showed great promise with both PS and TS algorithms.

  16. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Buckley, Conor T; Meyer, Eric G; Kelly, Daniel J

    2012-02-01

    Engineering cartilaginous tissue of a scale necessary to treat defects observed clinically is a well-documented challenge in the field of cartilage tissue engineering. The objective of this study was to determine how the composition and mechanical properties of cartilaginous tissues that are engineered by using bone marrow-derived mesenchymal stem cells (MSCs) depend on the scale of the construct. Porcine bone marrow-derived MSCs were encapsulated in agarose hydrogels, and constructs of different cylindrical geometries (Ø4×1.5 mm; Ø5×3 mm; Ø6×4.5 mm; Ø8×4.5 mm) were fabricated and maintained in a chemically defined serum-free medium supplemented with transforming growth factor-β3 for 42 days. Total sulfated glycosaminoglycan (sGAG) accumulation by day 42 increased from 0.14% w/w to 0.88% w/w as the construct geometry increased from Ø4×1.5 to Ø8×4.5 mm, with collagen accumulation increasing from 0.31% w/w to 1.62% w/w. This led to an increase in the dynamic modulus from 90.81 to 327.51 kPa as the engineered tissue increased in scale from Ø4×1.5 to Ø8×4.5 mm. By decreasing the external oxygen tension from 20% to 5%, it was possible to achieve these higher levels of mechanical functionality in the smaller engineered tissues. Constructs were then sectioned into smaller subregions to quantify the spatial accumulation of extracellular matrix components, and a model of oxygen diffusion and consumption was used to predict spatial gradients in oxygen concentration throughout the construct. sGAG accumulation was always highest in regions where oxygen concentration was predicted to be lowest. In addition, as the size of the engineered construct increased, different regions of the construct preferentially supported either sGAG or collagen accumulation, thus suggesting that gradients in regulatory factors other than oxygen were playing a role in determining levels of collagen synthesis. The identification of such factors and the means to control their

  17. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    Science.gov (United States)

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  18. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.

    LENUS (Irish Health Repository)

    Lyons, Frank G

    2010-12-01

    One of the key challenges in tissue engineering is to understand the host response to scaffolds and engineered constructs. We present a study in which two collagen-based scaffolds developed for bone repair: a collagen-glycosaminoglycan (CG) and biomimetic collagen-calcium phosphate (CCP) scaffold, are evaluated in rat cranial defects, both cell-free and when cultured with MSCs prior to implantation. The results demonstrate that both cell-free scaffolds showed excellent healing relative to the empty defect controls and somewhat surprisingly, to the tissue engineered (MSC-seeded) constructs. Immunological analysis of the healing response showed higher M1 macrophage activity in the cell-seeded scaffolds. However, when the M2 macrophage response was analysed, both groups (MSC-seeded and non-seeded scaffolds) showed significant activity of these cells which are associated with an immunomodulatory and tissue remodelling response. Interestingly, the location of this response was confined to the construct periphery, where a capsule had formed, in the MSC-seeded groups as opposed to areas of new bone formation in the non-seeded groups. This suggests that matrix deposited by MSCs during in vitro culture may adversely affect healing by acting as a barrier to macrophage-led remodelling when implanted in vivo. This study thus improves our understanding of host response in bone tissue engineering.

  19. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Tsukihara, Masayoshi [Division of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518 (Japan); Noto, Yoshiyuki [Department of Radiology, Niigata University Medical and Dental Hospital, Niigata 951-8520 (Japan); Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi, E-mail: masaito@clg.niigata-u.ac.jp [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  20. Correction of bone defects by tissue Engineering Corrección de defectos óseos en el área de Ingeniería tisular

    Directory of Open Access Journals (Sweden)

    Simón Yobanny Reyes López

    2013-01-01

    Full Text Available Currently, bone defects cases represent a major impact on health due to how often they oc­cur because of trauma, fractures, congenital or degenerative diseases. Now, bone implants to large volume are severely restricted because of the diffusion limitations in the interaction with the environment of the host for nutrients, gas exchange and waste disposal. That is why the correction of bone defects has become very important in the field of tissue engi­neering looking to improve clinical strategies for treatment. The purpose of this review is to provide an overview of the development of scaffolds for bone tissue regeneration, showing the progress made in the in vitro and in vivo in recent decadesHoy en día, los defectos óseos representan uno de los casos de mayor impacto en la salud debido a la frecuencia con que éstos ocurren a causa de traumatismos, fracturas, enferme­dades congénitas o degenerativas. En la actualidad, los implantes de tejido óseo de gran volumen se encuentran severamente restringidos a causa de las limitaciones de difusión en la interacción con el ambiente del huésped para los nutrientes, intercambio gaseoso y eliminación de desechos. Es por ello que la corrección de los defectos óseos ha cobrado gran importancia en el área de Ingeniería tisular buscando mejorar las estrategias clínicas para su tratamiento. El propósito de esta revisión es proporcionar un panorama general del desarrollo de andamios para la regeneración de tejido óseo, mostrando los avances logrados en los ensayos in vitro e in vivo en la última década.

  1. A regenerative biology view on artificial tissue construction and 3D bioprinting: what may we learn from natural regenerative phenomena?

    DEFF Research Database (Denmark)

    Lauridsen, Henrik

    2017-01-01

    The implications of the low tissue regenerative potential in humans are severe and widespread. Several of our major diseases are direct results of this deficiency that leaves us vulnerable to events of tissue damage. This is opposed to some animal groups, such as the urodele amphibians (salamanders...

  2. Decreased mechanical properties of heart valve tissue constructs cultured in platelet lysate as compared to fetal bovine serum

    NARCIS (Netherlands)

    Geemen, van D.; Riem Vis, P.W.; Soekhradj - Soechit, R.S.; Sluijter, J.P.G.; Liefde - van Beest, de M.; Kluin, J.; Bouten, C.V.C.

    2011-01-01

    In autologous heart valve tissue engineering, there is an ongoing search for alternatives of fetal bovine serum (FBS). Human platelet-lysate (PL) might be a promising substitute. In the present article, we aimed to examine the tissue formation, functionality, and mechanical properties of engineered

  3. [Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results].

    Science.gov (United States)

    Schwarz, M L R; Schneider-Wald, B; Krase, A; Richter, W; Reisig, G; Kreinest, M; Heute, S; Pott, P P; Brade, J; Schütte, A

    2012-10-01

    Values for the friction coefficient of articular cartilage are given in ranges of percentage and lower and are calculated as a quotient of the friction force and the perpendicular loading force acting on it. Thus, a sophisticated system has to be provided for analysing the friction coefficient under different conditions in particular when cartilage should be coupled as friction partner. It is possible to deep-freeze articular cartilage before measuring the friction coefficient as the procedure has no influence on the results. The presented tribological system was able to distinguish between altered and native cartilage. Furthermore, tissue engineered constructs for cartilage repair were differentiated from native cartilage probes by their friction coefficient. In conclusion a tribological equipment is presented to analyze the friction coefficient of articular cartilage, in vivo generated cartilage regenerates and in vitro tissue engineered constructs regarding their biomechanical properties for quality assessment.

  4. Characterization of tissue-equivalent materials for use in construction of physical phantoms; Caracterizacao de materiais tecido-equivalentes para uso em construcao de fantomas fisicos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edvan V. de, E-mail: edvanmsn@hotmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFFPE), Recife, PE (Brazil); Oliveira, Alex C.H. de, E-mail: oliveira_ach@yahoo.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Vieira, Jose W., E-mail: jose.wilson59@uol.com.br [Escola Politecnica de Pernambuco (UPE), Recife, PE (Brazil); Lima, Fernando R.A., E-mail: falima@cenen.gov.br [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Phantoms are physical or computational models used to simulate the transport of ionizing radiation, their interactions with human body tissues and evaluate the deposition of energy. Depending on the application, you can build phantoms of various types and features. The physical phantoms are made of materials with behavior similar to human tissues exposed to ionizing radiation, the so-called tissue-equivalent materials. The characterization of various tissue-equivalent materials is important for the choice of materials to be used is appropriate, seeking a better cost-benefit ratio. The main objective of this work is to produce tables containing the main characteristics of tissue-equivalent materials. These tables were produced in Microsoft Office Excel. Among the main features of tissue-equivalent materials that were added to the tables, are density, chemical composition, physical state, chemical stability and solubility. The main importance of this work is to contribute to the construction of high-quality physical phantoms and avoid the waste of materials.

  5. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    Science.gov (United States)

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging.

    Science.gov (United States)

    Yu, Jiao; Takanari, Keisuke; Hong, Yi; Lee, Kee-Won; Amoroso, Nicholas J; Wang, Yadong; Wagner, William R; Kim, Kang

    2013-04-01

    The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    Science.gov (United States)

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Design, construction and performance evaluation of the target tissue thickness measurement system in intraoperative radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Mohammad Reza, E-mail: myazdani@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Arabalibeik, Hossein, E-mail: arabalibeik@tums.ac.ir [Research Center for Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Akbari, Mohammad Esmaeil [Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-05-21

    Intraoperative electron radiation therapy (IOERT), which uses electron beams for irradiating the target directly during the surgery, has the advantage of delivering a homogeneous dose to a controlled layer of tissue. Since the dose falls off quickly below the target thickness, the underlying normal tissues are spared. In selecting the appropriate electron energy, the accuracy of the target tissue thickness measurement is critical. In contrast to other procedures applied in IOERT, the routine measurement method is considered to be completely traditional and approximate. In this work, a novel mechanism is proposed for measuring the target tissue thickness with an acceptable level of accuracy. An electronic system has been designed and manufactured with the capability of measuring the tissue thickness based on the recorded electron density under the target. The results indicated the possibility of thickness measurement with a maximum error of 2 mm for 91.35% of data. Aside from system limitation in estimating the thickness of 5 mm phantom, for 88.94% of data, maximum error is 1 mm.

  9. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    Science.gov (United States)

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Fact versus artifact: Avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs

    Directory of Open Access Journals (Sweden)

    CH Zheng

    2015-04-01

    Full Text Available The 1,9-dimethylmethylene blue (DMMB assay is widely used to quantify sulfated glycosaminoglycan (sGAG contents of engineered tissues, culture media, tissue samples and bodily fluids, but the assay is subject to interference from polyanions such as hyaluronic acid (HA, DNA and RNA. We examined whether specific combinations of dye pH and absorbance wavelength could minimize non-sGAG artifacts without compromising DMMB assay sensitivity. HA and DNA solutions generated substantial signal at pH 3 but not at pH 1.5. Reducing dye pH did not significantly alter sGAG measurements for normal cartilage and meniscus tissues, but eliminated anomalously high apparent sGAG contents for enzymatically isolated chondrocytes, adipose-derived stem cell (ADSC-agarose constructs and ADSC pellets. In a cartilage tissue-engineering case study, pH 3 dye indicated high apparent sGAG readings throughout culture in both basal and chondrogenic media, with a marked decline between day 14 and 21 for chondrogenic constructs. The pH 1.5 dye, however, indicated minimal sGAG accumulation in basal medium and stable sGAG content throughout culture in chondrogenic medium. As it is often difficult to know a priori whether all groups in a study will have sGAG contents high enough to overwhelm artifacts, we recommend modifying the standard DMMB assay to reduce the risk of spurious findings in tissue engineering and clinical research. Specifically, we recommend shifting to a pH 1.5 DMMB dye and basing quantification on the absorbance difference between 525 nm (µ peak and 595 nm (β peak to compensate for the moderate loss of sensitivity associated with reducing the dye pH.

  11. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury.

    Science.gov (United States)

    Dearth, Christopher L; Slivka, Peter F; Stewart, Scott A; Keane, Timothy J; Tay, Justin K; Londono, Ricardo; Goh, Qingnian; Pizza, Francis X; Badylak, Stephen F

    2016-02-01

    Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal

  12. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs

    NARCIS (Netherlands)

    Schulz, R.M.; Wüstneck, N.; Donkelaar, van C.C.; Shelton, J.C; Bader, A.

    2008-01-01

    Osteoarthritis is a severe socio-economical disease,for which a suitable treatment modality does not exist.Tissue engineering of cartilage transplants is the most promisingmethod to treat focal cartilage defects. However,current culturing procedures do not yet meet the requirementsfor clinical

  13. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.

    Science.gov (United States)

    Hu, Jin-Jia; Chao, Wei-Chih; Lee, Pei-Yuan; Huang, Chih-Hao

    2012-09-01

    Based on a postulate that the microstructure of a scaffold can influence that of the resulting tissue and hence its mechanical behavior, we fabricated a small-diameter tubular scaffold (∼3 mm inner diameter) that has a microstructure similar to the arterial media using a scaffold membrane approach. Scaffold membranes that contain randomly oriented, moderately aligned, or highly aligned fibers were fabricated by collecting electrospun poly([epsilon]-caprolactone) fibers on a grounded rotating drum at three different drum rotation speeds (250, 1000, and 1500 rpm). Membranes of each type were wrapped around a small-diameter mandrel to form the tubular scaffolds. Particularly, the tubular scaffolds with three different off-axis fiber angles (30, 45, and 60 degree) were formed using membranes that contain aligned fibers. These scaffolds were subjected to biaxial mechanical testing to examine the effects of fiber directions as well as the distribution of fiber orientations on their mechanical properties. The circumferential elastic modulus of the tubular scaffold was closely related to the fiber directions; the larger the off-axis fiber angle the greater the circumferential elastic modulus. The distribution of fiber orientations, on the other hand, manifested itself in the mechanical behavior via the Poisson effect. Similar to cell sheet-based vascular tissue engineering, tubular cell-seeded constructs were prepared by wrapping cell-seeded scaffold membranes, alleviating the difficulty associated with cell seeding in electrospun scaffolds. Histology of the construct illustrated that cells were aligned to the fiber directions in the construct, demonstrating the potential to control the microstructure of tissue-engineered vascular grafts using the electrospun scaffold membrane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Nanoscale Resolution 3D Printing with Pin-Modified Electrified Inkjets for Tailorable Nano/Macrohybrid Constructs for Tissue Engineering.

    Science.gov (United States)

    Kim, Jeong In; Kim, Cheol Sang

    2018-04-18

    Cells respond to their microenvironment, which is of a size comparable to that of the cells. The macroscale features of three-dimensional (3D) printing struts typically result in whole cell contact guidance (CCG). In contrast, at the nanoscale, where features are of a size similar to that of receptors of cells, the response of cells is more complex. The cell-nanotopography interaction involves nanoscale adhesion localized structures, which include cell adhesion-related particles that change in response to the clustering of integrin. For this reason, it is necessary to develop a technique for manufacturing tailorable nano/macrohybrid constructs capable of freely controlling the cellular activity. In this study, a hierarchical 3D nano- to microscale hybrid structure was fabricated by combinational processing of 3D printing and electrified inkjet spinning via pin motions. This method overcomes the disadvantages of conventional 3D printing, providing a novel combinatory technique for the fabrication of 3D hybrid constructs with excellent cell proliferation. Through a pin-modified electrified inkjet spinning, we have successfully fabricated customizable nano-/microscale hybrid constructs in a fibrous or mesh form, which can control the cell fate. We have conducted this study of cell-topography interactions from the fabrication approach to accelerate the development of next-generation 3D scaffolds.

  15. Construction of an efficient two-photon fluorescent probe for imaging nitroreductase in live cells and tissues

    Science.gov (United States)

    Zhou, Liyi; Gong, Liang; Hu, Shunqin

    2018-06-01

    Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500 μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH2, which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15 min, CM-NO2 displayed a 90-fold fluorescence enhancement at 505 nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760 nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO2 to image NTR in tissues was demonstrated.

  16. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    Science.gov (United States)

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  17. Facial soft-tissue asymmetry in three-dimensional cone-beam computed tomography images of children with surgically corrected unilateral clefts.

    Science.gov (United States)

    Starbuck, John Marlow; Ghoneima, Ahmed; Kula, Katherine

    2014-03-01

    Cleft lip with or without cleft palate (CL/P) is a relatively common craniofacial malformation involving bony and soft-tissue disruptions of the nasolabial and dentoalveolar regions. The combination of CL/P and subsequent craniofacial surgeries to close the cleft and improve appearance of the cutaneous upper lip and nose can cause scarring and muscle pull, possibly resulting in soft-tissue depth asymmetries across the face. We tested the hypothesis that tissue depths in children with unilateral CL/P exhibit differences in symmetry across the sides of the face. Twenty-eight tissue depths were measured on cone-beam computed tomography images of children with unilateral CL/P (n = 55), aged 7 to 17 years, using Dolphin software (version 11.5). Significant differences in tissue depth symmetry were found around the cutaneous upper lip and nose in patients with unilateral CL/P.

  18. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    International Nuclear Information System (INIS)

    Arca, Turkan; Genever, Paul; Proffitt, Joanne

    2011-01-01

    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  19. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Arca, Turkan; Genever, Paul [Department of Biology, University of York, York, YO10 5DD (United Kingdom); Proffitt, Joanne, E-mail: paul.genever@york.ac.uk [TSL Centre of Biologics, Covidien, Allerton Bywater, Castleford, WF10 2DB (United Kingdom)

    2011-04-15

    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  20. 3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells.

    Science.gov (United States)

    Matsusaki, Michiya; Hikimoto, Daichi; Nishiguchi, Akihiro; Kadowaki, Koji; Ohura, Kayoko; Imai, Teruko; Akashi, Mitsuru

    2015-02-13

    Caco-2, human colon carcinoma cell line, has been widely used as a model system for intestinal epithelial permeability because Caco-2 cells express tight-junctions, microvilli, and a number of enzymes and transporters characteristic of enterocytes. However, the functional differentiation and polarization of Caco-2 cells to express sufficient tight-junctions (a barrier) usually takes over 21 days in culture. This may be due to the cell culture environment, for example inflammation induced by plastic petri dishes. Three-dimensional (3D) sufficient cell microenvironments similar to in vivo natural conditions (proteins and cells), will promote rapid differentiation and higher functional expression of tight junctions. Herein we report for the first time an enhancement in tight-junction formation by 3D-cultures of Caco-2 cells on monolayered (1L) and eight layered (8L) normal human dermal fibroblasts (NHDF). Trans epithelial electric resistance (TEER) of Caco-2 cells was enhanced in the 3D-cultures, especially 8L-NHDF tissues, depending on culture times and only 10 days was enough to reach the same TEER value of Caco-2 monolayers after a 21 day incubation. Relative mRNA expression of tight-junction proteins of Caco-2 cells on 3D-cultures showed higher values than those in monolayer structures. Transporter gene expression patterns of Caco-2 cells on 3D-constructs were almost the same as those of Caco-2 monolayers, suggesting that there was no effect of 3D-cultures on transporter protein expression. The expression correlation between carboxylesterase 1 and 2 in 3D-cultures represented similar trends with human small intestines. The results of this study clearly represent a valuable application of 3D-Caco-2 tissues for pharmaceutical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  2. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  3. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  4. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  5. A comparison of proximal and distal Chevron osteotomy, both with lateral soft-tissue release, for moderate to severe hallux valgus in patients undergoing simultaneous bilateral correction: a prospective randomised controlled trial.

    Science.gov (United States)

    Lee, K B; Cho, N Y; Park, H W; Seon, J K; Lee, S H

    2015-02-01

    Moderate to severe hallux valgus is conventionally treated by proximal metatarsal osteotomy. Several recent studies have shown that the indications for distal metatarsal osteotomy with a distal soft-tissue procedure could be extended to include moderate to severe hallux valgus. The purpose of this prospective randomised controlled trial was to compare the outcome of proximal and distal Chevron osteotomy in patients undergoing simultaneous bilateral correction of moderate to severe hallux valgus. The original study cohort consisted of 50 female patients (100 feet). Of these, four (8 feet) were excluded for lack of adequate follow-up, leaving 46 female patients (92 feet) in the study. The mean age of the patients was 53.8 years (30.1 to 62.1) and the mean duration of follow-up 40.2 months (24.1 to 80.5). After randomisation, patients underwent a proximal Chevron osteotomy on one foot and a distal Chevron osteotomy on the other. At follow-up, the American Orthopedic Foot and Ankle Society (AOFAS) hallux metatarsophalangeal interphalangeal (MTP-IP) score, patient satisfaction, post-operative complications, hallux valgus angle, first-second intermetatarsal angle, and tibial sesamoid position were similar in each group. Both procedures gave similar good clinical and radiological outcomes. This study suggests that distal Chevron osteotomy with a distal soft-tissue procedure is as effective and reliable a means of correcting moderate to severe hallux valgus as proximal Chevron osteotomy with a distal soft-tissue procedure. ©2015 The British Editorial Society of Bone & Joint Surgery.

  6. Publisher Correction

    DEFF Research Database (Denmark)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M

    2018-01-01

    In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article.......In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article....

  7. Author Correction

    DEFF Research Database (Denmark)

    Grundle, D S; Löscher, C R; Krahmann, G

    2018-01-01

    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.......A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper....

  8. Construction of an Aptamer-SiRNA Chimera-Modified Tissue-Engineered Blood Vessel for Cell-Type-Specific Capture and Delivery.

    Science.gov (United States)

    Chen, Wen; Zeng, Wen; Sun, Jiansen; Yang, Mingcan; Li, Li; Zhou, Jingting; Wu, Yangxiao; Sun, Jun; Liu, Ge; Tang, Rui; Tan, Ju; Zhu, Chuhong

    2015-06-23

    The application of tissue-engineered blood vessels (TEBVs) is the main developmental direction of vascular replacement therapy. Due to few and/or dysfunctional endothelial progenitor cells (EPCs), it is difficult to successfully construct EPC capture TEBVs in diabetes. RNA has a potential application in cell protection and diabetes treatment, but poor specificity and low efficiency of RNA transfection in vivo limit the application of RNA. On the basis of an acellular vascular matrix, we propose an aptamer-siRNA chimera-modified TEBV that can maintain a satisfactory patency in diabetes. This TEBV consists of two parts, CD133-adenosine kinase (ADK) chimeras and a TEBV scaffold. Our results showed that CD133-ADK chimeras could selectively capture the CD133-positive cells in vivo, and then captured cells can internalize the bound chimeras to achieve RNA self-transfection. Subsequently, CD133-ADK chimeras were cut into ADK siRNA by a dicer, resulting in depletion of ADK. An ADK-deficient cell may act as a bioreactor that sustainably releases adenosine. To reduce nonspecific RNA transfection, we increased the proportion of HAuCl4 during the material preparation, through which the transfection capacity of polyethylenimine (PEI)/polyethylene glycol (PEG)-capped gold nanoparticles (PEI/PEG-AuNPs) was significantly decreased and the ability of TEBV to resist tensile and liquid shear stress was greatly enhanced. PEG and 2'-O-methyl modification was used to enhance the in vivo stability of RNA chimeras. At day 30 postgrafting, the patency rate of CD133-ADK chimera-modified TEBVs reached 90% in diabetic rats and good endothelialization was observed.

  9. Fresh and Frozen Tissue-Engineered Three-Dimensional Bone–Ligament–Bone Constructs for Sheep Anterior Cruciate Ligament Repair Following a 2-Year Implantation

    Directory of Open Access Journals (Sweden)

    Vasudevan Mahalingam

    2016-10-01

    Full Text Available njuries to the anterior cruciate ligament (ACL often require surgical reconstruction utilizing tendon grafts to restore knee function and stability. Some current graft options for ACL repair are associated with poor long-term outcomes. Our laboratory has fabricated tissue-engineered bone–ligament–bone (BLB constructs that demonstrate native ligament regeneration and advancement toward native ACL mechanical properties in a sheep ACL reconstruction model. Prior work has shown that freezing BLBs as a method of preservation resulted in similar outcomes compared with fresh BLBs after 6-month implantation. The purpose of this study was to evaluate the long-term efficacy of fresh and frozen BLBs. We hypothesized that both fresh and frozen BLBs would show continued regeneration of structural and functional properties toward those of native ACL after a 2-year implantation. Following removal of the native ACL, fresh (n = 2 and frozen (n = 2 BLBs were implanted arthroscopically. After 2 years of recovery, sheep were euthanized and both the experimental and contralateral hindlimbs were removed and radiographs were performed. Explanted knees were initially evaluated for joint laxity and were then further dissected for uniaxial tensile testing of the isolated ACL or BLB. Following mechanical testing, explanted contralateral ACL (C-ACL and BLBs were harvested for histology. Two years post-ACL reconstruction, fresh and frozen BLBs exhibited similar morphological and biomechanical properties as well as more advanced regeneration compared with our 6-month recovery study. These data indicate that an additional 1.5-year regeneration period allows the BLB to continue ligament regeneration in vivo. In addition, freezing the BLBs is a viable option for the preservation of the graft after fabrication.

  10. Evaluation of dose calculation algorithms using the treatment planning system XiO with tissue heterogeneity correction turned on; Validacao dos algoritmos de calculo de dose do sistema de planejamento XiO considerando as correcoes para heterogeneidade dos tecidos

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, L.R.; Barbi, G.L.; Silva, W.T. da; Reis, E.G.F. dos; Borges, L.F.; Bertucci, E.C.; Maciel, M.F.; Amaral, L.L. do, E-mail: lefairbanks@yahoo.com.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2010-07-01

    Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%; This is in accordance with the recommendation of several references.The convolution method shows better results for high density materials (difference {approx}1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%).

  11. Evaluation of dose calculation algorithms using the treatment planning system Xi O with tissue heterogeneity correction turned on; Validacao dos algoritmos de calculo de dose do sistema de planejamento Xi O considerando as correcoes para heterogeneidade dos tecidos

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, Leandro R.; Barbi, Gustavo L.; Silva, Wiliam T.; Reis, Eduardo G.F.; Borges, Leandro F.; Bertucci, Edenyse C.; Maciel, Marina F.; Amaral, Leonardo L., E-mail: lefairbanks@yahoo.com.b [Universidade de Sao Paulo (HCRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2011-07-01

    Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%.The convolution method shows better results for high density materials (difference {approx}1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%). (author)

  12. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.

    Science.gov (United States)

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah

    2015-08-01

    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (ptissue engineered cartilage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Publisher Correction

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Blaser, Martin J.; Thorsen, Jonathan

    2018-01-01

    The originally published version of this Article contained an incorrect version of Figure 3 that was introduced following peer review and inadvertently not corrected during the production process. Both versions contain the same set of abundance data, but the incorrect version has the children...

  14. Publisher Correction

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2018-01-01

    The original version of this Article contained an error in the spelling of the author Robert Häsler, which was incorrectly given as Robert Häesler. This has now been corrected in both the PDF and HTML versions of the Article....

  15. Correction to

    DEFF Research Database (Denmark)

    Roehle, Robert; Wieske, Viktoria; Schuetz, Georg M

    2018-01-01

    The original version of this article, published on 19 March 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The names of the authors Philipp A. Kaufmann, Ronny Ralf Buechel and Bernhard A. Herzog were presented incorrectly....

  16. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs.

    Science.gov (United States)

    Ikeda, Kazushi; Ito, Akira; Sato, Masanori; Kanno, Shota; Kawabe, Yoshinori; Kamihira, Masamichi

    2017-05-01

    Although skeletal muscle tissue engineering has been extensively studied, the physical forces produced by tissue-engineered skeletal muscles remain to be improved for potential clinical utility. In this study, we examined the effects of mild heat stimulation and supplementation of a l-ascorbic acid derivative, l-ascorbic acid 2-phosphate (AscP), on myoblast differentiation and physical force generation of tissue-engineered skeletal muscles. Compared with control cultures at 37°C, mouse C2C12 myoblast cells cultured at 39°C enhanced myotube diameter (skeletal muscle hypertrophy), whereas mild heat stimulation did not promote myotube formation (differentiation rate). Conversely, AscP supplementation resulted in an increased differentiation rate but did not induce skeletal muscle hypertrophy. Following combined treatment with mild heat stimulation and AscP supplementation, both skeletal muscle hypertrophy and differentiation rate were enhanced. Moreover, the active tension produced by the tissue-engineered skeletal muscles was improved following combined treatment. These findings indicate that tissue culture using mild heat stimulation and AscP supplementation is a promising approach to enhance the function of tissue-engineered skeletal muscles. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Preparation of Preproinsulin Gene Construct Containing the Metallothionein2A (pBINDMTChIns and Its Expression in NIH3T3 Cell Line and Muscle Tissue of Alloxan Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Piri

    2014-08-01

    Full Text Available Background Diabetes mellitus type 1, formerly called insulin-dependent diabetes, is one of the autoimmune diseases where insulin-producing cells are destroyed by autoimmune response via T cells. The new approaches in treatment of diabetes are using the stem cells, cell transplantation of islet β cell, gene transfer by virus based plasmids, and non-viral gene constructs. Objectives The purpose of this study was to construct glucose inducible insulin gene plasmid and use it in the muscle tissue of the rabbit. Materials and Methods To achieve this goal, the preproinsulin, metallothionein2A promoter and the response element to carbohydrate genes were cloned into pBIND plasmid by standard cloning methods, to construct pBINDMTChIns. The gene cloning products were confirmed by the polymerase chain reaction (PCR and restriction enzyme digestion template. The recombinant plasmid, containing the preproinsulin gene, was transferred into NIH3T3 cells and insulin gene expression was evaluated by reverse transcriptase PCR and western blotting techniques. Plasmid naked DNA containing the preproinsulin gene was injected into the rabbits’ thigh muscles, and its expression was confirmed by western blotting method. Results This study shows the prepared gene construct is inducible by glucose. Gene expression of preproinsulin was observed in muscle tissue of rabbits. Conclusions These finding indicated that research in diabetes mellitus gene therapy could be performed on larger animals.

  18. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ...

  19. Construction of a tissue microarray with two millimeters cores of endometrioid endometrial cancer: factors affecting the quality of the recipient block.

    Science.gov (United States)

    Gottwald, L; Sęk, P; Piekarski, J; Pasz-Walczak, G; Kubiak, R; Szwalski, J; Spych, M; Suzin, J; Tyliński, W; Topczewska-Tylinska, K; Jeziorski, A

    2012-11-01

    The tissue microarray (TMA) method currently is not used to render a primary diagnosis of cancer, but its scientific value has been proved in studies of various cancer types. TMA technology still is not used often for uterine tumors, however. We investigated the repeatability of histological diagnosis of endometrioid endometrial cancer (EEC) using conventional histology and TMA using 2 mm cores. We examined EEC tissues from 171 patients. Formalin fixed, paraffin embedded tissue donor blocks from EEC specimens were selected and examined histologically. Duplicate 2 mm tissue cores were inserted into a TMA recipient block. EEC tissues were examined as hematoxylin-eosin stained sections from the TMAs. EEC tissue was identified in the TMAs in 158 cases (92.4%) and not found in 13 cases (7.6%). On the TMA slides, both EEC positive cores were identified in 129 cases (75.4%), but only one core in 29 cases (17.0%). Among 342 biopsies of the donor blocks (each case in duplicate), EEC was found in 287 cases (83.9%) using the TMA: 124/146 (84.9%) with superficial infiltration, 153/178 (86.0%) with deep myometrial infiltration, and 10/18 (55.6%) without myometrial infiltration. We concluded that two 2 mm tissue cores from a biopsy of a donor block inserted into a TMA recipient block were sufficient to diagnose EEC in more than 90% of cases. EEC was identified in the TMAs with similar frequency with respect to superficial and deep myometrial infiltration. Cases without myometrial infiltration were identified less often.

  20. Food systems in correctional settings

    DEFF Research Database (Denmark)

    Smoyer, Amy; Kjær Minke, Linda

    management of food systems may improve outcomes for incarcerated people and help correctional administrators to maximize their health and safety. This report summarizes existing research on food systems in correctional settings and provides examples of food programmes in prison and remand facilities......Food is a central component of life in correctional institutions and plays a critical role in the physical and mental health of incarcerated people and the construction of prisoners' identities and relationships. An understanding of the role of food in correctional settings and the effective......, including a case study of food-related innovation in the Danish correctional system. It offers specific conclusions for policy-makers, administrators of correctional institutions and prison-food-service professionals, and makes proposals for future research....

  1. Electroweak corrections

    International Nuclear Information System (INIS)

    Beenakker, W.J.P.

    1989-01-01

    The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes

  2. Actividades para la corrección de la apraxia constructiva en pacientes con secuelas de enfermedad cerebro-vascular = Activities for the correction of constructive apraxia in patients with sequels of brain-vascular illness

    Directory of Open Access Journals (Sweden)

    Torres Aguilar, Maydane

    2008-09-01

    Full Text Available RESUMENObjetivo: Evaluar un sistema de actividades realizadas para la corrección y compensación de la apraxia constructiva después de la exploración neuropsicológica. Método: Con el propósito de evaluar este sistema de actividades, se realizó un estudio prospectivo experimental con 15 pacientes que permanecieron en el Centro Internacional de Investigaciones y Restauración Neurológica (CIREN durante un período de 54 días que recibieron tratamiento defectológico (Terapia Ocupacional diario. En consecuencia se aplicó una escala evaluativa pre y post-intervención terapéutica comparándose los resultados.Resultados: A través de la escala de puntaje aplicada se obtuvo un incremento de recuperación en cuanto a la realización de las actividades sin niveles de ayuda ni modelos previos de un 93,4% post-intervención, como promedio, en los pacientes analizados.Conclusiones: Se observó una mejor asociación entre la idea del movimiento y la ejecución motora así como entre la percepción visual y la acción apropiada, después de la intervención.SUMMARYA great number of patients with Encephalic Static Lesions suffer psychic and motor alterations that avoid him to develop it more usually possible in his social environment. One of the psychic alterations that are frequently presented is the constructive apraxia which can appear in different grades, depending among other factors, of the severity of the damage. This unchains difficulties that go from the less complex, as the reproduction of drawings until others of more complexity like daily basic activities. Objectives: Evaluate system of activities for correction and/or compensation the constructive apraxia after neuro-psychological exploration. Methods and Material: With the proposal to check the effectiveness of this system of activities we carry out a prospective and experimental study with 15 patients that were in CIREN (International Centre of Research and Neurological Restoration

  3. Attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Hosoba, Minoru

    1986-01-01

    Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)

  4. Comparison of the effects of streptokinase and tissue plasminogen activator on regional wall motion after first myocardial infarction: analysis by the centerline method with correction for area at risk.

    Science.gov (United States)

    Cross, D B; Ashton, N G; Norris, R M; White, H D

    1991-04-01

    In a trial of streptokinase versus recombinant tissue-type plasminogen activator (rt-PA) for a first myocardial infarction, 270 patients were randomized. Regional left ventricular function was assessed in 214 patients at 3 weeks. The infarct-related artery was the left anterior descending artery in 78 patients, the right coronary artery in 122 and a dominant left circumflex artery in 14. Analysis was by the centerline method with a novel correction for the area of myocardium at risk, whereby the search region was determined by the anatomic distribution of the infarct-related artery. Infarct-artery patency at 3 weeks was 73% in the streptokinase group and 71% in the rt-PA group. Global left ventricular function did not differ between the two groups. Mean chord motion (+/- SD) in the most hypokinetic half of the defined search region was similar in the streptokinase and rt-PA groups (-2.4 +/- 1.5 versus -2.3 +/- 1.3, p = 0.63). There were no differences in hyperkinesia of the noninfarct zone. Compared with conventional centerline analysis, regional wall motion in the defined area at risk was significantly more abnormal. The two methods correlated strongly, however (r = 0.99, p less than 0.0001), and both methods produced similar overall results. Patients with a patent infarct-related artery and those with an occluded artery at the time of catheterization had similar levels of global function (ejection fraction 58 +/- 12% versus 57 +/- 12%, p = 0.58).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs.

    Science.gov (United States)

    Di Corato, Riccardo; Gazeau, Florence; Le Visage, Catherine; Fayol, Delphine; Levitz, Pierre; Lux, François; Letourneur, Didier; Luciani, Nathalie; Tillement, Olivier; Wilhelm, Claire

    2013-09-24

    Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth. Two contrast agents, based on iron oxide and gadolinium oxide rigid nanoplatforms, were used to "tattoo" endothelial cells and stem cells, respectively, with no impact on cell functions, including their capacity for differentiation. The labeled cells' contrast properties were optimized for simultaneous MRI detection: endothelial cells and stem cells seeded together in a polysaccharide-based scaffold material for tissue engineering appeared respectively in black and white and could be tracked, at the cellular level, both in vitro and in vivo. In addition, endothelial cells labeled with iron oxide nanoparticles could be remotely manipulated by applying a magnetic field, allowing the creation of vessel substitutes with in-depth detection of individual cellular components.

  6. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    Science.gov (United States)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  7. Self-correcting quantum computers

    International Nuclear Information System (INIS)

    Bombin, H; Chhajlany, R W; Horodecki, M; Martin-Delgado, M A

    2013-01-01

    Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature. (paper)

  8. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs.

    Science.gov (United States)

    Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A

    2015-01-01

    A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.

  9. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Science.gov (United States)

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production. © 2013 Wiley Periodicals, Inc.

  10. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility.

    Science.gov (United States)

    Li, Chang-Qing; Huang, Bo; Luo, Gang; Zhang, Chuan-Zhi; Zhuang, Ying; Zhou, Yue

    2010-02-01

    To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)-chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA-CS scaffolds were evaluated. The results suggested CII/HyA-CS scaffolds have a highly porous structure (porosity: 94.8 +/- 1.5%), high water-binding capacity (79.2 +/- 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 +/- 1.8 and 58.1 +/- 2.6 degrees C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 +/- 3.4 and 63.5 +/- 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA-CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA-CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

  11. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more ... find out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment ...

  12. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs.

    Directory of Open Access Journals (Sweden)

    Renata G Rosa

    Full Text Available The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1 was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm. While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

  13. Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering

    Science.gov (United States)

    Kosztin, Ioan; Vunjak-Novakovic, Gordana; Forgacs, Gabor

    2012-10-01

    Tissue engineering is a rapidly evolving discipline that aims at building functional tissues to improve or replace damaged ones. To be successful in such an endeavor, ideally, the engineering of tissues should be based on the principles of developmental biology. Recent progress in developmental biology suggests that the formation of tissues from the composing cells is often guided by physical laws. Here a comprehensive computational-theoretical formalism is presented that is based on experimental input and incorporates biomechanical principles of developmental biology. The formalism is described and it is shown that it correctly reproduces and predicts the quantitative characteristics of the fundamental early developmental process of tissue fusion. Based on this finding, the formalism is then used toward the optimization of the fabrication of tubular multicellular constructs, such as a vascular graft, by bioprinting, a novel tissue engineering technology.

  14. Perimeter security for Minnesota correctional facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crist, D. [Minnesota Department of Corrections, St. Paul, MN (United States); Spencer, D.D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  15. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  16. Microgel Technology to Advance Modular Tissue Engineering

    NARCIS (Netherlands)

    Kamperman, Tom

    2018-01-01

    The field of tissue engineering aims to restore the function of damaged or missing tissues by combining cells and/or a supportive biomaterial scaffold into an engineered tissue construct. The construct’s design requirements are typically set by native tissues – the gold standard for tissue

  17. Surgical correction of postoperative astigmatism

    Directory of Open Access Journals (Sweden)

    Lindstrom Richard

    1990-01-01

    Full Text Available The photokeratoscope has increased the understanding of the aspheric nature of the cornea as well as a better understanding of normal corneal topography. This has significantly affected the development of newer and more predictable models of surgical astigmatic correction. Relaxing incisions effectively flatten the steeper meridian an equivalent amount as they steepen the flatter meridian. The net change in spherical equivalent is, therefore, negligible. Poor predictability is the major limitation of relaxing incisions. Wedge resection can correct large degrees of postkeratoplasty astigmatism, Resection of 0.10 mm of tissue results in approximately 2 diopters of astigmatic correction. Prolonged postoperative rehabilitation and induced irregular astigmatism are limitations of the procedure. Transverse incisions flatten the steeper meridian an equivalent amount as they steepen the flatter meridian. Semiradial incisions result in two times the amount of flattening in the meridian of the incision compared to the meridian 90 degrees away. Combination of transverse incisions with semiradial incisions describes the trapezoidal astigmatic keratotomy. This procedure may correct from 5.5 to 11.0 diopters dependent upon the age of the patient. The use of the surgical keratometer is helpful in assessing a proper endpoint during surgical correction of astigmatism.

  18. Growth Factor Stimulation Improves the Structure and Properties of Scaffold-Free Engineered Auricular Cartilage Constructs

    Science.gov (United States)

    Rosa, Renata G.; Joazeiro, Paulo P.; Bianco, Juares; Kunz, Manuela; Weber, Joanna F.; Waldman, Stephen D.

    2014-01-01

    The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation. PMID:25126941

  19. Construction management

    CERN Document Server

    Pellicer, Eugenio; Teixeira, José C; Moura, Helder P; Catalá, Joaquín

    2014-01-01

    The management of construction projects is a wide ranging and challenging discipline in an increasingly international industry, facing continual challenges and demands for improvements in safety, in quality and cost control, and in the avoidance of contractual disputes. Construction Management grew out of a Leonardo da Vinci project to develop a series of Common Learning Outcomes for European Managers in Construction. Financed by the European Union, the project aimed to develop a library of basic materials for developing construction management skills for use in a pan-European context. Focused exclusively on the management of the construction phase of a building project from the contractor's point of view, Construction Management covers the complete range of topics of which mastery is required by the construction management professional for the effective delivery of new construction projects. With the continued internationalisation of the construction industry, Construction Management will be required rea...

  20. ConStruct: Improved construction of RNA consensus structures

    Directory of Open Access Journals (Sweden)

    Steger Gerhard

    2008-04-01

    Full Text Available Abstract Background Aligning homologous non-coding RNAs (ncRNAs correctly in terms of sequence and structure is an unresolved problem, due to both mathematical complexity and imperfect scoring functions. High quality alignments, however, are a prerequisite for most consensus structure prediction approaches, homology searches, and tools for phylogeny inference. Automatically created ncRNA alignments often need manual corrections, yet this manual refinement is tedious and error-prone. Results We present an extended version of CONSTRUCT, a semi-automatic, graphical tool suitable for creating RNA alignments correct in terms of both consensus sequence and consensus structure. To this purpose CONSTRUCT combines sequence alignment, thermodynamic data and various measures of covariation. One important feature is that the user is guided during the alignment correction step by a consensus dotplot, which displays all thermodynamically optimal base pairs and the corresponding covariation. Once the initial alignment is corrected, optimal and suboptimal secondary structures as well as tertiary interaction can be predicted. We demonstrate CONSTRUCT's ability to guide the user in correcting an initial alignment, and show an example for optimal secondary consensus structure prediction on very hard to align SECIS elements. Moreover we use CONSTRUCT to predict tertiary interactions from sequences of the internal ribosome entry site of CrP-like viruses. In addition we show that alignments specifically designed for benchmarking can be easily be optimized using CONSTRUCT, although they share very little sequence identity. Conclusion CONSTRUCT's graphical interface allows for an easy alignment correction based on and guided by predicted and known structural constraints. It combines several algorithms for prediction of secondary consensus structure and even tertiary interactions. The CONSTRUCT package can be downloaded from the URL listed in the Availability and

  1. Document management in engineering construction

    International Nuclear Information System (INIS)

    Liao Bing

    2008-01-01

    Document management is one important part of systematic quality management, which is one of the key factors to ensure the construction quality. In the engineering construction, quality management and document management shall interwork all the time, to ensure the construction quality. Quality management ensures that the document is correctly generated and adopted, and thus the completeness, accuracy and systematicness of the document satisfy the filing requirements. Document management ensures that the document is correctly transferred during the construction, and various testimonies such as files and records are kept for the engineering construction and its quality management. This paper addresses the document management in the engineering construction based on the interwork of the quality management and document management. (author)

  2. NWS Corrections to Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Form B-14 is the National Weather Service form entitled 'Notice of Corrections to Weather Records.' The forms are used to make corrections to observations on forms...

  3. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ...

  4. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided here is not intended as a substitute ...

  5. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  6. Usability Constructs

    DEFF Research Database (Denmark)

    Hertzum, Morten; Clemmesen, Torkil; Hornbæk, Kasper Anders Søren

    2007-01-01

    Whereas research on usability predominantly employs universal definitions of the aspects that comprise usability, people experience their use of information systems through personal constructs. Based on 48 repertory-grid interviews, this study investigates how such personal constructs are affected...... use of constructs traditionally associated with usability (e.g., easy-to-use, intuitive, and liked). Further analysis of the data is ongoing...

  7. Iterative CT shading correction with no prior information

    Science.gov (United States)

    Wu, Pengwei; Sun, Xiaonan; Hu, Hongjie; Mao, Tingyu; Zhao, Wei; Sheng, Ke; Cheung, Alice A.; Niu, Tianye

    2015-11-01

    Shading artifacts in CT images are caused by scatter contamination, beam-hardening effect and other non-ideal imaging conditions. The purpose of this study is to propose a novel and general correction framework to eliminate low-frequency shading artifacts in CT images (e.g. cone-beam CT, low-kVp CT) without relying on prior information. The method is based on the general knowledge of the relatively uniform CT number distribution in one tissue component. The CT image is first segmented to construct a template image where each structure is filled with the same CT number of a specific tissue type. Then, by subtracting the ideal template from the CT image, the residual image from various error sources are generated. Since forward projection is an integration process, non-continuous shading artifacts in the image become continuous signals in a line integral. Thus, the residual image is forward projected and its line integral is low-pass filtered in order to estimate the error that causes shading artifacts. A compensation map is reconstructed from the filtered line integral error using a standard FDK algorithm and added back to the original image for shading correction. As the segmented image does not accurately depict a shaded CT image, the proposed scheme is iterated until the variation of the residual image is minimized. The proposed method is evaluated using cone-beam CT images of a Catphan©600 phantom and a pelvis patient, and low-kVp CT angiography images for carotid artery assessment. Compared with the CT image without correction, the proposed method reduces the overall CT number error from over 200 HU to be less than 30 HU and increases the spatial uniformity by a factor of 1.5. Low-contrast object is faithfully retained after the proposed correction. An effective iterative algorithm for shading correction in CT imaging is proposed that is only assisted by general anatomical information without relying on prior knowledge. The proposed method is thus practical

  8. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  9. Short preventive intervention in a group – a constructive use of cognitive dissonance in prevention for an increased risk group, using the example of the “Korekta” [Correction] program

    Directory of Open Access Journals (Sweden)

    Krzysztof A. Wojcieszek

    2011-12-01

    Full Text Available People socially maladjusted often drink alcohol-containing drinks in a problematic manner (risky, harmful or addictive. Thus there is continuous need for appropriate selective and dedicated prevention. One of such procedures, developed for the military, is the „Korekta” program. It is a therapeutic treatment here referred to as a „short preventive intervention within a group”, and its structure enables to circumvent the typical obstacles encountered during preventive work, such as the effects of cognitive dissonance and the resulting resistance from the ones being treated. The specific structure of the program is the reason why the participants have got a limited possibility to use unconstructive strategies aiming at releasing the tension (resulting from the cognitive dissonance caused by the confrontation between their lifestyle and their knowledge of potential losses caused by drinking alcohol. It brings them closer to changing their lifestyle (contemplation phase according to Prochaski model as a result of using constructive strategies of releasing the tension caused by the cognitive dissonance. Thanks to such solutions the program is highly accepted by the participants, what is shown in formative evaluation scores and what is a sort of a paradox of prevention. It is recommended to apply this tool systematically in the resocialization system.

  10. Soft Tissue Repair with Easy-Accessible Autologous Newborn Placenta or Umbilical Cord Blood in Severe Malformations: A Primary Evaluation

    Science.gov (United States)

    2017-01-01

    Disrupted organogenesis leads to permanent malformations that may require surgical correction. Autologous tissue grafts may be needed in severe lack of orthotopic tissue but include donor site morbidity. The placenta is commonly discarded after birth and has a therapeutic potential. The aim of this study was to determine if the amnion from placenta or plasma rich of growth factors (PRGF) with mononuclear cells (MNC) from umbilical cord blood (UCB), collected noninvasively, could be used as bio-constructs for autologous transplantation as an easy-accessible no cell culture-required method. Human amnion and PRGF gel were isolated and kept in culture for up to 21 days with or without small intestine submucosa (SIS). The cells in the constructs showed a robust phenotype without induced increased proliferation (Ki67) or apoptosis (caspase 3), but the constructs showed decreased integrity of the amnion-epithelial layer at the end of culture. Amnion-residing cells in the SIS constructs expressed CD73 or pan-cytokeratin, and cells in the PRGF-SIS constructs expressed CD45 and CD34. This study shows that amnion and UCB are potential sources for production of autologous grafts in the correction of congenital soft tissue defects. The constructs can be made promptly after birth with minimal handling or cell expansion needed. PMID:29403534

  11. Soft Tissue Repair with Easy-Accessible Autologous Newborn Placenta or Umbilical Cord Blood in Severe Malformations: A Primary Evaluation

    Directory of Open Access Journals (Sweden)

    Åsa Ekblad

    2017-01-01

    Full Text Available Disrupted organogenesis leads to permanent malformations that may require surgical correction. Autologous tissue grafts may be needed in severe lack of orthotopic tissue but include donor site morbidity. The placenta is commonly discarded after birth and has a therapeutic potential. The aim of this study was to determine if the amnion from placenta or plasma rich of growth factors (PRGF with mononuclear cells (MNC from umbilical cord blood (UCB, collected noninvasively, could be used as bio-constructs for autologous transplantation as an easy-accessible no cell culture-required method. Human amnion and PRGF gel were isolated and kept in culture for up to 21 days with or without small intestine submucosa (SIS. The cells in the constructs showed a robust phenotype without induced increased proliferation (Ki67 or apoptosis (caspase 3, but the constructs showed decreased integrity of the amnion-epithelial layer at the end of culture. Amnion-residing cells in the SIS constructs expressed CD73 or pan-cytokeratin, and cells in the PRGF-SIS constructs expressed CD45 and CD34. This study shows that amnion and UCB are potential sources for production of autologous grafts in the correction of congenital soft tissue defects. The constructs can be made promptly after birth with minimal handling or cell expansion needed.

  12. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  13. Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives.

    Science.gov (United States)

    Ravnic, Dino J; Leberfinger, Ashley N; Koduru, Srinivas V; Hospodiuk, Monika; Moncal, Kazim K; Datta, Pallab; Dey, Madhuri; Rizk, Elias; Ozbolat, Ibrahim T

    2017-07-01

    : Three-dimensional (3D) bioprinting is a revolutionary technology in building living tissues and organs with precise anatomic control and cellular composition. Despite the great progress in bioprinting research, there has yet to be any clinical translation due to current limitations in building human-scale constructs, which are vascularized and readily implantable. In this article, we review the current limitations and challenges in 3D bioprinting, including in situ techniques, which are one of several clinical translational models to facilitate the application of this technology from bench to bedside. A detailed discussion is made on the technical barriers in the fabrication of scalable constructs that are vascularized, autologous, functional, implantable, cost-effective, and ethically feasible. Clinical considerations for implantable bioprinted tissues are further expounded toward the correction of end-stage organ dysfunction and composite tissue deficits.

  14. Construction mathematics

    CERN Document Server

    Virdi, Surinder; Virdi, Narinder Kaur

    2014-01-01

    Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

  15. FFTF constructibility

    International Nuclear Information System (INIS)

    Weber, S.A.; Hulbert, D.I.

    1975-01-01

    The influence of the design criteria on the constructibility of the Fast Flux Test Facility is described. Specifically, the effects of requirements due to maintenance accessibility, inerting of cells, seismicity, codes, and standards are addressed. The design and construction techniques developed to minimize the impact of the design criteria on cost and schedule are presented with particular emphasis on the cleanliness and humidity controls imposed during construction of the sodium systems. (U.S.)

  16. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... tissues of the face, mouth and gums to improve function, appearance and oral health. Click here to ... tissues of the face, mouth and gums to improve function, appearance and oral health. Click here to ...

  17. Corrections to primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Dicus, D.A.; Kolb, E.W.; Gleeson, A.M.; Sudarshan, E.C.G.; Teplitz, V.L.; Turner, M.S.

    1982-01-01

    The changes in primordial nucleosynthesis resulting from small corrections to rates for weak processes that connect neutrons and protons are discussed. The weak rates are corrected by improved treatment of Coulomb and radiative corrections, and by inclusion of plasma effects. The calculations lead to a systematic decrease in the predicted 4 He abundance of about ΔY = 0.0025. The relative changes in other primoridal abundances are also 1 to 2%

  18. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  19. Construction Management.

    Science.gov (United States)

    Abbott, James F.

    This article provides a detailed discussion of a team approach to building that involves a construction manager, an architect, and a contractor. Bidding methods are outlined; the major components in construction management -- value engineering and fast track scheduling -- and the use of performance specifications are discussed. The construction…

  20. Construction fraud

    NARCIS (Netherlands)

    Graafland, J.J.; Liedekerke, L.; Dubbink, W.; van Liedekerke, L.; van Luijk, H.

    2011-01-01

    Due to the actions of a whistleblower The Netherlands was confronted with a massive case of construction fraud involving almost the entire construction sector. Price fixing, prior consulting, duplicate accounts, fictitious invoices and active corruption of civil servants were rampant practices. This

  1. Superstring construction

    CERN Document Server

    1989-01-01

    The book includes a selection of papers on the construction of superstring theories, mainly written during the years 1984-1987. It covers ten-dimensional supersymmetric and non-supersymmetric strings, four-dimensional heterotic strings and four-dimensional type-II strings. An introduction to more recent developments in conformal field theory in relation to string construction is provided.

  2. Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    Directory of Open Access Journals (Sweden)

    Thomas Jerry A

    2010-11-01

    Full Text Available Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations. Results The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures. Conclusion Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.

  3. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  4. Publisher Correction: Predicting unpredictability

    Science.gov (United States)

    Davis, Steven J.

    2018-06-01

    In this News & Views article originally published, the wrong graph was used for panel b of Fig. 1, and the numbers on the y axes of panels a and c were incorrect; the original and corrected Fig. 1 is shown below. This has now been corrected in all versions of the News & Views.

  5. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  6. Worldwide construction

    International Nuclear Information System (INIS)

    Williamson, M.

    1994-01-01

    The paper lists major construction projects in worldwide processing and pipelining, showing capacities, contractors, estimated costs, and time of construction. The lists are divided into refineries, petrochemical plants, sulfur recovery units, gas processing plants, pipelines, and related fuel facilities. This last classification includes cogeneration plants, coal liquefaction and gasification plants, biomass power plants, geothermal power plants, integrated coal gasification combined-cycle power plants, and a coal briquetting plant

  7. Construction history and construction management

    International Nuclear Information System (INIS)

    Agh, S.

    1999-01-01

    The process of pre-design and design preparation of the Mochovce NPP as well as the construction history of the plant is highlighted, including the financing aspect and problems arising from changes in the technological and other conditions of start-up of the reactor units. The results of international audits performed to improve the level of nuclear safety and implementation of the measures suggested are also described. The milestones of the whole construction process and start-up process, the control and quality system, and the methods of control and management of the complex construction project are outlined. (author)

  8. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Oral and maxillofacial surgeons surgically treat the soft tissues of the face, mouth ... involving skin, muscle, bone and cartilage finely attune the oral and maxillofacial ...

  9. Correction volumes and densities in Vitrea Program

    International Nuclear Information System (INIS)

    Abrantes, Marcos E.S.; Oliveira, A.H. de

    2014-01-01

    Introduction: with the increased use of 3D reconstruction techniques to assist in diagnosis, Vitrea® program is widely used. To use this program you need to know the correction values to generate the volumes and number of real CT human tissues. Objective: provide correction values for volumes and number of CT, read the Vitrea program, of the tissues generated by DICOM images from CT. Methodology: this study used a PMMA chest phantom to generate the DICOM images on a scanner. To check the calibration of the scanner was used Catphan phantom and compared the manufacturer of the values associated with its straight linearity. Results: the volume of PMMA phantom was of 11166.58 cm³ and CT number (123.5 ± 33.4) UH. For the volume found in Vitrea program, according to the structures of interest, were 11897.29 cm 3 , 10901.65 cm³, 16906.49 cm 3 and 11848.34 cm³ and corrections values are -6.14%, + 2.43% -6.94% -5.75% respectively for the tissues: lung, bone, soft and full. For the CT numbers found in this program were (97.60 ± 58.9) UH, (72.00 ± 176.00) UH, (143.20 ± 19.50) UH and (31.90 ± 239,10) UH and corrections of + 26.54%, + 71.53%, -13.64% and 387.15% respectively for tissues: lung, bone, soft and full. Conclusion: the procedure performed can be used in other 3D reconstruction programs and where there are tools to reading CT number, observing the necessary corrections

  10. Correction of Neonatal Hypovolemia

    Directory of Open Access Journals (Sweden)

    V. V. Moskalev

    2007-01-01

    Full Text Available Objective: to evaluate the efficiency of hydroxyethyl starch solution (6% refortane, Berlin-Chemie versus fresh frozen plasma used to correct neonatal hypovolemia.Materials and methods. In 12 neonatal infants with hypoco-agulation, hypovolemia was corrected with fresh frozen plasma (10 ml/kg body weight. In 13 neonates, it was corrected with 6% refortane infusion in a dose of 10 ml/kg. Doppler echocardiography was used to study central hemodynamic parameters and Doppler study was employed to examine regional blood flow in the anterior cerebral and renal arteries.Results. Infusion of 6% refortane and fresh frozen plasma at a rate of 10 ml/hour during an hour was found to normalize the parameters of central hemodynamics and regional blood flow.Conclusion. Comparative analysis of the findings suggests that 6% refortane is the drug of choice in correcting neonatal hypovolemia. Fresh frozen plasma should be infused in hemostatic disorders. 

  11. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... surgery. It is important to understand that your treatment, which will probably include orthodontics before and after ... to realistically estimate the time required for your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided ...

  12. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... misalignment of jaws and teeth. Surgery can improve chewing, speaking and breathing. While the patient's appearance may ... indicate the need for corrective jaw surgery: Difficulty chewing, or biting food Difficulty swallowing Chronic jaw or ...

  13. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... It can also invite bacteria that lead to gum disease. Click here to find out more. Who We ... It can also invite bacteria that lead to gum disease. Click here to find out more. Corrective Jaw ...

  14. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... is performed by an oral and maxillofacial surgeon (OMS) to correct a wide range of minor and ... when sleeping, including snoring) Your dentist, orthodontist and OMS will work together to determine whether you are ...

  15. 78 FR 9311 - Hazard Communication; Corrections and Technical Amendment

    Science.gov (United States)

    2013-02-08

    ....1044, Appendix Reference to ``Class IIIA combustible B. liquid'' is corrected to ``Category 4 flammable..., Fire prevention, Hazard communication, Hazardous substances, Occupational safety and health. 29 CFR... Asbestos, Construction industry, Fire prevention, Hazardous substances, Occupational safety and health...

  16. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  17. ICT: isotope correction toolbox.

    Science.gov (United States)

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Construction safety

    CERN Document Server

    Li, Rita Yi Man

    2013-01-01

    A close-to-ideal blend of suburb and city, speedy construction of towers of Babylon, the sparkling proportion of glass and steel buildings’ facade at night showcase the wisdom of humans. They also witness the footsteps, sweats and tears of architects and engineers. Unfortunately, these signatures of human civilizations are swathed in towering figures of construction accidents. Fretting about these on sites, different countries adopt different measures on sites. This book firstly sketches the construction accidents on sites, followed by a review on safety measures in some of the developing countries such as Bermuda, Egypt, Kuwait and China; as well as developed countries, for example, the United States, France and Singapore. It also highlights the enormous compensation costs with the courts’ experiences in the United Kingdom and Hong Kong.

  19. A Novel Nonlinear Parameter Estimation Method of Soft Tissues

    Directory of Open Access Journals (Sweden)

    Qianqian Tong

    2017-12-01

    Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.

  20. Constructing sanctions

    DEFF Research Database (Denmark)

    Jaeger, Mark Daniel

    2016-01-01

    such an effect. This paper explores sanctions conflicts as social constructs. It purports that rally-around-the-flag is all but one part of the discursive dimension of sanctions conflicts. Sanctions are intricately connected with the conflict setting they occur in. The study suggests a dialectical relation...... between how opponents perceive conflicts and the meaning of sanctions therein. This nexus of different constructions of sanctions moreover extends to “targeted” sanctions as well: As restrictive measures against Zimbabwe demonstrate, they are not the kind of minimally-invasive operations with clinical...

  1. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  2. Designing an Ergonomically Correct CNC Workstation on a Shoe String Budget.

    Science.gov (United States)

    Lightner, Stan

    2001-01-01

    Describes research to design and construct ergonomically correct work stations for Computer Numerical Control machine tools. By designing ergonomically correct work stations, industrial technology teachers help protect students from repetitive motion injuries. (Contains 12 references.) (JOW)

  3. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  4. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  5. Construction work

    CERN Multimedia

    2004-01-01

    Construction work on building 179 will start on the 16th February 2004 and continue until November 2004. The road between buildings 179 and 158 will temporarily become a one way street from Route Democrite towards building 7. The parking places between buildings 179 and 7 will become obsolete. The ISOLDE collaboration would like to apologize for any inconveniences.

  6. Mixed-Precision Spectral Deferred Correction: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  7. Multi-layer universal correction magnet

    International Nuclear Information System (INIS)

    Parzen, G.

    1981-08-01

    This paper presents an approach for constructing a universal correction magnet in which the return currents play an active role in determining the field. The return currents are not hidden by the iron shield. The coil is wound in many layers, instead of just one layer. Each layer has a particular symmetry, and generates a particular class of field multipoles such that the location of the return current for each independently excited current block is clear. Three layers may be sufficient in many cases. This approach is applied to the ISABELLE storage accelerator correction system

  8. Derivation of Batho's correction factor for heterogeneities

    International Nuclear Information System (INIS)

    Lulu, B.A.; Bjaerngard, B.E.

    1982-01-01

    Batho's correction factor for dose in a heterogeneous, layered medium is derived from the tissue--air ratio method (TARM). The reason why the Batho factor is superior to the TARM factor at low energy is ascribed to the fact that it accounts for the distribution of the scatter-generating matter along the centerline. The poor behavior of the Batho factor at high energies is explained as a consequence of the lack of electron equilibrium at appreciable depth below the surface. Key words: Batho factor, heterogeneity, inhomogeneity, tissue--air ratio method

  9. Tissue expansion for correction of baldness in aplasia cutis congenita

    NARCIS (Netherlands)

    Beekmans, S.J.A.; Don Griot, J.P.W.; Niessen, F.B.; Mulder, J.W.

    2009-01-01

    Aplasia cutis is a congenital absence of the skin, usually presenting on the scalp. In 20% of all cases, part of the skull is also absent. A residual area of baldness may still be present some years after surgical or conservative treatment. It is possible to excise the scarred hairless region and

  10. Lipid correction for carbon stable isotope analysis of fish tissue

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069–2077 DOI: 10.1002/rcm.7367. This dataset is associated...

  11. Corrective Jaw Surgery

    Medline Plus

    Full Text Available AAOMS - Oral and maxillofacial surgeons. The experts in face, mouth and jaw surgery.™ What We Do Who ... surgeons surgically treat the soft tissues of the face, mouth and gums to improve function, appearance and ...

  12. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Oral and maxillofacial surgeons. The experts in face, mouth and jaw surgery.™ What We Do Who We ... surgically treat the soft tissues of the face, mouth and gums to improve function, appearance and oral ...

  13. Robust Active Label Correction

    DEFF Research Database (Denmark)

    Kremer, Jan; Sha, Fei; Igel, Christian

    2018-01-01

    for the noisy data lead to different active label correction algorithms. If loss functions consider the label noise rates, these rates are estimated during learning, where importance weighting compensates for the sampling bias. We show empirically that viewing the true label as a latent variable and computing......Active label correction addresses the problem of learning from input data for which noisy labels are available (e.g., from imprecise measurements or crowd-sourcing) and each true label can be obtained at a significant cost (e.g., through additional measurements or human experts). To minimize......). To select labels for correction, we adopt the active learning strategy of maximizing the expected model change. We consider the change in regularized empirical risk functionals that use different pointwise loss functions for patterns with noisy and true labels, respectively. Different loss functions...

  14. Generalised Batho correction factor

    International Nuclear Information System (INIS)

    Siddon, R.L.

    1984-01-01

    There are various approximate algorithms available to calculate the radiation dose in the presence of a heterogeneous medium. The Webb and Fox product over layers formulation of the generalised Batho correction factor requires determination of the number of layers and the layer densities for each ray path. It has been shown that the Webb and Fox expression is inefficient for the heterogeneous medium which is expressed as regions of inhomogeneity rather than layers. The inefficiency of the layer formulation is identified as the repeated problem of determining for each ray path which inhomogeneity region corresponds to a particular layer. It has been shown that the formulation of the Batho correction factor as a product over inhomogeneity regions avoids that topological problem entirely. The formulation in terms of a product over regions simplifies the computer code and reduces the time required to calculate the Batho correction factor for the general heterogeneous medium. (U.K.)

  15. THE SECONDARY EXTINCTION CORRECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zachariasen, W. H.

    1963-03-15

    It is shown that Darwin's formula for the secondary extinction correction, which has been universally accepted and extensively used, contains an appreciable error in the x-ray diffraction case. The correct formula is derived. As a first order correction for secondary extinction, Darwin showed that one should use an effective absorption coefficient mu + gQ where an unpolarized incident beam is presumed. The new derivation shows that the effective absorption coefficient is mu + 2gQ(1 + cos/sup 4/2 theta )/(1 plus or minus cos/sup 2/2 theta )/s up 2/, which gives mu + gQ at theta =0 deg and theta = 90 deg , but mu + 2gQ at theta = 45 deg . Darwin's theory remains valid when applied to neutron diffraction. (auth)

  16. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bryant J. correction formula

    International Nuclear Information System (INIS)

    Tejera R, A.; Cortes P, A.; Becerril V, A.

    1990-03-01

    For the practical application of the method proposed by J. Bryant, the authors carried out a series of small corrections, related with the bottom, the dead time of the detectors and channels, with the resolution time of the coincidences, with the accidental coincidences, with the decay scheme and with the gamma efficiency of the beta detector beta and the beta efficiency beta of the gamma detector. The calculation of the correction formula is presented in the development of the present report, being presented 25 combinations of the probability of the first existent state at once of one disintegration and the second state at once of the following disintegration. (Author)

  18. Model Correction Factor Method

    DEFF Research Database (Denmark)

    Christensen, Claus; Randrup-Thomsen, Søren; Morsing Johannesen, Johannes

    1997-01-01

    The model correction factor method is proposed as an alternative to traditional polynomial based response surface techniques in structural reliability considering a computationally time consuming limit state procedure as a 'black box'. The class of polynomial functions is replaced by a limit...... of the model correction factor method, is that in simpler form not using gradient information on the original limit state function or only using this information once, a drastic reduction of the number of limit state evaluation is obtained together with good approximations on the reliability. Methods...

  19. Modelling Constructs

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2009-01-01

    , these notations have been extended in order to increase expressiveness and to be more competitive. This resulted in an increasing number of notations and formalisms for modelling business processes and in an increase of the different modelling constructs provided by modelling notations, which makes it difficult......There are many different notations and formalisms for modelling business processes and workflows. These notations and formalisms have been introduced with different purposes and objectives. Later, influenced by other notations, comparisons with other tools, or by standardization efforts...... to compare modelling notations and to make transformations between them. One of the reasons is that, in each notation, the new concepts are introduced in a different way by extending the already existing constructs. In this chapter, we go the opposite direction: We show that it is possible to add most...

  20. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  1. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  2. Text Induced Spelling Correction

    NARCIS (Netherlands)

    Reynaert, M.W.C.

    2004-01-01

    We present TISC, a language-independent and context-sensitive spelling checking and correction system designed to facilitate the automatic removal of non-word spelling errors in large corpora. Its lexicon is derived from a very large corpus of raw text, without supervision, and contains word

  3. Ballistic deficit correction

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.; Curien, D.

    1991-01-01

    The EUROGAM data-acquisition has to handle a large number of events/s. Typical in-beam experiments using heavy-ion fusion reactions assume the production of about 50 000 compound nuclei per second deexciting via particle and γ-ray emissions. The very powerful γ-ray detection of EUROGAM is expected to produce high-fold event rates as large as 10 4 events/s. Such high count rates introduce, in a common dead time mode, large dead times for the whole system associated with the processing of the pulse, its digitization and its readout (from the preamplifier pulse up to the readout of the information). In order to minimize the dead time the shaping time constant τ, usually about 3 μs for large volume Ge detectors has to be reduced. Smaller shaping times, however, will adversely affect the energy resolution due to ballistic deficit. One possible solution is to operate the linear amplifier, with a somewhat smaller shaping time constant (in the present case we choose τ = 1.5 μs), in combination with a ballistic deficit compensator. The ballistic deficit can be corrected in different ways using a Gated Integrator, a hardware correction or even a software correction. In this paper we present a comparative study of the software and hardware corrections as well as gated integration

  4. Correctness of concurrent processes

    NARCIS (Netherlands)

    E.R. Olderog (Ernst-Rüdiger)

    1989-01-01

    textabstractA new notion of correctness for concurrent processes is introduced and investigated. It is a relationship P sat S between process terms P built up from operators of CCS [Mi 80], CSP [Ho 85] and COSY [LTS 79] and logical formulas S specifying sets of finite communication sequences as in

  5. Error Correcting Codes -34 ...

    Indian Academy of Sciences (India)

    information and coding theory. A large scale relay computer had failed to deliver the expected results due to a hardware fault. Hamming, one of the active proponents of computer usage, was determined to find an efficient means by which computers could detect and correct their own faults. A mathematician by train-.

  6. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  7. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... their surgery, orthognathic surgery is performed to correct functional problems. Jaw Surgery can have a dramatic effect on many aspects of life. Following are some of the conditions that may ... front, or side Facial injury Birth defects Receding lower jaw and ...

  8. Error Correcting Codes

    Indian Academy of Sciences (India)

    successful consumer products of all time - the Compact Disc. (CD) digital audio .... We can make ... only 2 t additional parity check symbols are required, to be able to correct t .... display information (contah'ling music related data and a table.

  9. Error Correcting Codes

    Indian Academy of Sciences (India)

    Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.

  10. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  11. 10. Correctness of Programs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 4. Algorithms - Correctness of Programs. R K Shyamasundar. Series Article Volume 3 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.

  12. Leading quantum gravitational corrections to scalar QED

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two charged scalars. The result is discussed in relation to experimental verifications

  13. Detector correction in large container inspection systems

    CERN Document Server

    Kang Ke Jun; Chen Zhi Qiang

    2002-01-01

    In large container inspection systems, the image is constructed by parallel scanning with a one-dimensional detector array with a linac used as the X-ray source. The linear nonuniformity and nonlinearity of multiple detectors and the nonuniform intensity distribution of the X-ray sector beam result in horizontal striations in the scan image. This greatly impairs the image quality, so the image needs to be corrected. The correction parameters are determined experimentally by scaling the detector responses at multiple points with logarithm interpolation of the results. The horizontal striations are eliminated by modifying the original image data with the correction parameters. This method has proven to be effective and applicable in large container inspection systems

  14. Triple-Error-Correcting Codec ASIC

    Science.gov (United States)

    Jones, Robert E.; Segallis, Greg P.; Boyd, Robert

    1994-01-01

    Coder/decoder constructed on single integrated-circuit chip. Handles data in variety of formats at rates up to 300 Mbps, correcting up to 3 errors per data block of 256 to 512 bits. Helps reduce cost of transmitting data. Useful in many high-data-rate, bandwidth-limited communication systems such as; personal communication networks, cellular telephone networks, satellite communication systems, high-speed computing networks, broadcasting, and high-reliability data-communication links.

  15. Constructing Catalonia

    Directory of Open Access Journals (Sweden)

    Bill Philips

    2009-07-01

    Full Text Available Catalonia, in common with other nations, has long been concerned with the question of identity and difference. Its problematic relationship with Spain has led to an emphasis on differentiating itself from its larger neighbour (if we are to accept, as most Spaniards do not, that Catalonia is not Spain, a situation complicated by the loss of the Spanish colonies of Cuba and The Philippines in 1898, and the Spanish Civil War and subsequent dictatorship from 1936 to 1976. Beginning in the late nineteenth century, the construction of a Catalan identity followed a similar route to that taken by other European nations such as England, Ireland and, indeed, Spain, including an emphasis on rural values, activities and the countryside, and the conversion of specifically local traditions into national past times. It is only in the last ten years or so that this model of Catalan identity has been recognised for what it is – a model constructed and encouraged for and by specific nationalist political interests. Ironically, Catalonia’s identity abroad has also been constructed and manipulated for political purposes, but from quite a different perspective. Orwell’s /Homage to Catalonia/ (1938 narrates an extremely blinkered version of the Spanish Civil War which has achieved iconic status as a result of cold war politics. Subsequent portrayals of the Spanish Civil War – Valentine Cunningham’s /The Penguin Book of Spanish Civil War Verse/ (ed., Penguin, 1980, or Ken Loach’s 1995 film /Land and Freedom/ base their arguments unquestioningly on /Homage to Catalonia/, perpetuating a view of the nation’s recent history that is both reductive and inaccurate

  16. Layout Construction

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Palsberg, Jens; Schmidt, Erik Meineche

    We design a system for generating newspaper layout proposals. The input to the system consists of editorial information (text, pictures, etc) and style information (non-editorial information that specifies the aesthetic appearance of a layout). We consider the automation of layout construction...... to pose two main problems. One problem consists in optimizing the layout with respect to the constraints and preferences specified in the style information. Another problem consists in finding a representation of the style information that both supports its use in the combinatorial optimization...

  17. Nonsurgical management of soft tissue around the restorations of maxillary anterior implants: a clinical report

    Directory of Open Access Journals (Sweden)

    Seyedan K

    2010-01-01

    Full Text Available "nBackground and Aims: Soft tissue management with providing the esthetic for restoration of a single implant in the anterior maxilla is of great importance. Tissue training helps to develop a proper emergence profile and natural tooth appearance. The aim of this article was to report a nonsurgical management of undesirable contours of soft tissue around maxillary anterior implants to achieve an optimum appearance. "nMaterials and Methods: A 23-year-old female with congenital missing of maxillary lateral incisors, after completion of a fixed orthodontic treatment and gain enough space, received 2 dental implants. After second phase surgery and healing period, construction of the restorations was not possible through conventional method because of severe soft tissue collapse. In this case, soft tissue contours were corrected using a provisional restoration and then final restoration was made and delivered. "nConclusion: Tissue training with a provisional restoration helps to re-establish normal gingival tissue contours and interdental papillae around the restoration of maxillary anterior implants.

  18. Correction of refractive errors

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2005-10-01

    Full Text Available Background: Spectacles and contact lenses are the most frequently used, the safest and the cheapest way to correct refractive errors. The development of keratorefractive surgery has brought new opportunities for correction of refractive errors in patients who have the need to be less dependent of spectacles or contact lenses. Until recently, RK was the most commonly performed refractive procedure for nearsighted patients.Conclusions: The introduction of excimer laser in refractive surgery has given the new opportunities of remodelling the cornea. The laser energy can be delivered on the stromal surface like in PRK or deeper on the corneal stroma by means of lamellar surgery. In LASIK flap is created with microkeratome in LASEK with ethanol and in epi-LASIK the ultra thin flap is created mechanically.

  19. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  20. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  1. Computational tools for the construction of calibration curves for use in dose calculations in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Oliveira, Alex C.H.; Vieira, Jose W.; Escola Politecnica de Pernambuco , Recife, PE

    2011-01-01

    The realization of tissue inhomogeneity corrections in image-based treatment planning improves the accuracy of radiation dose calculations for patients undergoing external-beam radiotherapy. Before the tissue inhomogeneity correction can be applied, the relationship between the computed tomography (CT) numbers and density must be established. This relationship is typically established by a calibration curve empirically obtained from CT images of a phantom that has several inserts of tissue-equivalent materials, covering a wide range of densities. This calibration curve is scanner-dependent and allows the conversion of CT numbers in densities for use in dose calculations. This paper describes the implementation of computational tools necessary to construct calibration curves. These tools are used for reading and displaying of CT images in DICOM format, determination of the mean CT numbers (and their standard deviations) of each tissue-equivalent material and construction of calibration curves by fits with bilinear equations. All these tools have been implemented in the Microsoft Visual Studio 2010 in C≠ programming language. (author)

  2. Tissue equivalence in neutron dosimetry

    International Nuclear Information System (INIS)

    Nutton, D.H.; Harris, S.J.

    1980-01-01

    A brief review is presented of the essential features of neutron tissue equivalence for radiotherapy and gives the results of a computation of relative absorbed dose for 14 MeV neutrons, using various tissue models. It is concluded that for the Bragg-Gray equation for ionometric dosimetry it is not sufficient to define the value of W to high accuracy and that it is essential that, for dosimetric measurements to be applicable to real body tissue to an accuracy of better than several per cent, a correction to the total absorbed dose must be made according to the test and tissue atomic composition, although variations in patient anatomy and other radiotherapy parameters will often limit the benefits of such detailed dosimetry. (U.K.)

  3. The importance of fast neutron scattering cross sections for neutron dosimetry in soft tissues

    International Nuclear Information System (INIS)

    Jahr, R.; Brede, H.J.

    1979-05-01

    Tissue equivalent plastic materials are used for the construction of accurate neutron dosemeters. As compared to real tissue, in materials most of the oxygen content is replaced by carbon. In order to determine the dose to human tissue a kerma correction factor has to be used. It is shown that the uncertainty (corresponding to 1 delta) of the correction factor at E = 14.5 MeV amounts to at least 5.2%. An important contribution to the uncertainties results from the lack of experimental data of the 12 C(n, n' 3α), 16 O(n,n'p) and 16 O(n,n'α)-cross-sections. These data are to be calculated by subtracting all other cross sections from the total cross section of ( 16 O + n) and ( 12 C + n). It is shown that the uncertainties of the kerma correction factor can be considerably reduced by an accurate measurement of the scattering cross sections of carbon and oxygen. (orig.) [de

  4. Automatic Contextual Text Correction Using The Linguistic Habits Graph Lhg

    Directory of Open Access Journals (Sweden)

    Marcin Gadamer

    2009-01-01

    Full Text Available Automatic text correction is an essential problem of today text processors and editors. Thispaper introduces a novel algorithm for automation of contextual text correction using a LinguisticHabit Graph (LHG also introduced in this paper. A specialist internet crawler hasbeen constructed for searching through web sites in order to build a Linguistic Habit Graphafter text corpuses gathered in polish web sites. The achieved correction results on a basis ofthis algorithm using this LHG were compared with commercial programs which also enableto make text correction: Microsoft Word 2007, Open Office Writer 3.0 and search engineGoogle. The achieved results of text correction were much better than correction made bythese commercial tools.

  5. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  6. Multiple-energy tissue-cancellation applications of a digital beam attenuator to chest radiography

    International Nuclear Information System (INIS)

    Dobbins, J.T. III.

    1985-01-01

    The digitally-formed primary beam attenuator (DBA) spatially modulates the x-ray fluence incident upon the patient to selectively attenuate regions of interest. The DBA attenuating mask is constructed from CeO 2 powder by a modified printing technique and uses image information from an initial low-dose exposure. Two tissue-cancellation imaging techniques are investigated with the DBA: (1) energy-dependent information is used to form a beam attenuator that attenuates specific tissues in the primary x-ray beam for tissue-cancelled film radiography; (2) the beam attenuator is used to improve image signal-to-noise and scattered radiation properties in traditional energy-subtraction tissue-cancellation imaging with digital detectors. The tissue-cancellation techniques in the primary x-ray beam were capable of adequately removing either soft-tissue or bone from the final compensated film radiograph when using a phantom with well defined soft-tissue and bone sections. However, when tried on an anthropomorphic chest phantom the results were adequate for cancellation of large soft tissue structures, but unsatisfactory for cancellation of bony structures such as the ribs, because of the limited spatial frequency content of the attenuating mask. The second technique (with digital detectors) showed improved uniformity of image signal-to-noise and a two-fold increase in soft-tissue nodule contrast due to improved scattered radiation properties. The tissue-cancelled images contained residual image contributions from the presence of the attenuating mask, but this residual may be correctable by future algorithms

  7. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.

    Science.gov (United States)

    Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping

    2017-03-01

    Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L 0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.

  8. Metrics with vanishing quantum corrections

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Gibbons, G W; Pope, C N

    2008-01-01

    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor T μν (g αβ , ∂ τ g αβ , ∂ τ ∂ σ g αβ , ...,) constructed from sums of terms, the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called universal if, when evaluated on that Einstein metric, T μν is a multiple of the metric. A Ricci flat classical solution is called strongly universal if, when evaluated on that Ricci flat metric, T μν vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalization; Einstein metrics with holonomy Sim(n - 2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalized Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all four-dimensional Sim(2) Einstein metrics. We also discuss generalizations to higher dimensions

  9. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  10. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  11. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  12. Towards self-correcting quantum memories

    Science.gov (United States)

    Michnicki, Kamil

    This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real

  13. RCRA corrective action and closure

    International Nuclear Information System (INIS)

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators' interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE's permitted facilities and interim status facilities

  14. Rethinking political correctness.

    Science.gov (United States)

    Ely, Robin J; Meyerson, Debra E; Davidson, Martin N

    2006-09-01

    Legal and cultural changes over the past 40 years ushered unprecedented numbers of women and people of color into companies' professional ranks. Laws now protect these traditionally underrepresented groups from blatant forms of discrimination in hiring and promotion. Meanwhile, political correctness has reset the standards for civility and respect in people's day-to-day interactions. Despite this obvious progress, the authors' research has shown that political correctness is a double-edged sword. While it has helped many employees feel unlimited by their race, gender, or religion,the PC rule book can hinder people's ability to develop effective relationships across race, gender, and religious lines. Companies need to equip workers with skills--not rules--for building these relationships. The authors offer the following five principles for healthy resolution of the tensions that commonly arise over difference: Pause to short-circuit the emotion and reflect; connect with others, affirming the importance of relationships; question yourself to identify blind spots and discover what makes you defensive; get genuine support that helps you gain a broader perspective; and shift your mind-set from one that says, "You need to change," to one that asks, "What can I change?" When people treat their cultural differences--and related conflicts and tensions--as opportunities to gain a more accurate view of themselves, one another, and the situation, trust builds and relationships become stronger. Leaders should put aside the PC rule book and instead model and encourage risk taking in the service of building the organization's relational capacity. The benefits will reverberate through every dimension of the company's work.

  15. 3D bioprinting for vascularized tissue fabrication

    Science.gov (United States)

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  16. Stem Cells in Tissue Repair and Regeneration

    OpenAIRE

    Falanga, Vincent

    2012-01-01

    The field of tissue repair and wound healing has blossomed in the last 30 years. We have gone from recombinant growth factors, to living tissue engineering constructs, to stem cells. The task now is to pursue true regeneration, thus achieving full restoration of structures and their function.

  17. Corrective action decision document for the Roller Coaster Lagoons and North Disposal Trench (Corrective Action Unit Number 404)

    International Nuclear Information System (INIS)

    1997-01-01

    The North Disposal Trench, located north of the eastern most lagoon, was installed in 1963 to receive solid waste and construction debris from the Operation Roller Coaster man camp. Subsequent to Operation Roller Coaster, the trench continued to receive construction debris and range cleanup debris (including ordnance) from Sandia National Laboratories and other operators. A small hydrocarbon spill occurred during Voluntary Corrective Action (VCA) activities (VCA Spill Area) at an area associated with the North Disposal Trench Corrective Action Site (CAS). Remediation activities at this site were conducted in 1995. A corrective action investigation was conducted in September of 1996 following the Corrective Action Investigation Plan (CAIP); the detailed results of that investigation are presented in Appendix A. The Roller Coaster Lagoons and North Disposal Trench are located at the Tonopah Test Range (TTR), a part of the Nellis Air Force Range, which is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada, by air

  18. La construcción social de lo público como potencial regenerador en los tejidos desarticulados / The social construction of the public as a potential disarticulated tissue regenerator

    Directory of Open Access Journals (Sweden)

    Mariano Adrian Ferretti

    2014-09-01

    Full Text Available La expansión de la ciudad no debería ser el principal problema al momento de abordar el análisis de sus causas sino más bien el modo en que estas expansiones se producen en el territorio, es decir, los patrones físico espaciales y morfológicos del tejido en cuanto a la capacidad de ejercer de conectores entre los distintos fragmentos de ese crecimiento celular. El estudio cualitativo de la problemática que comporta la fractura de relaciones sociales y la ausencia de identificación y apropiación de los espacios comunitarios en los bordes de contacto entre tejidos desarticulados, compromete a las características de su forma física desde el análisis de la micro escala y permite un acercamiento a la comprensión de las realidades que intervienen en la construcción de lo público como condición necesaria para la legitimación de dichos espacios de contacto con el dominio de lo privado, de lo cerrado. The expansion of the city should not be the main problem when approaching the analysis of its causes but rather the way in which these expansions occur on the territory, namely, the physical spatial patterns and morphological urban fabric in terms of ability to act connectors between the different fragments of the cell growth. The qualitative study of the problem that involves the breaking of social relations and the lack of identification and appropriation of community spaces at the edges of contact between urban fabric disjointed, committed to the characteristics of their physical form from understanding the micro scale analysis and allows an approach to the understanding of the realities involved in the construction of the public as necessary to legitimize such spaces contacting the private domain of the closed condition.

  19. Estimation of anisotropy factor spectrum for determination of optical properties in biological tissues

    Science.gov (United States)

    Iwamoto, Misako; Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2017-07-01

    Spectroscopic setup for measuring anisotropy factor g spectrum of biological tissues was constructed. g of chicken liver tissue was lower than chicken breast tissue. High absorption of hemoglobin can have an influence on g spectrum.

  20. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.

    Science.gov (United States)

    Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J

    2012-07-01

    Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Surgical correction of gynecomastia in thin patients.

    Science.gov (United States)

    Cigna, Emanuele; Tarallo, Mauro; Fino, Pasquale; De Santo, Liliana; Scuderi, Nicolò

    2011-08-01

    Gynecomastia refers to a benign enlargement of the male breast. This article describes the authors' method of using power-assisted liposuction and gland removal through a subareolar incision for thin patients. Power-assisted liposuction is performed for removal of fatty breast tissue in the chest area to allow skin retraction. The subareolar incision is used to remove glandular tissue from a male subject considered to be within a normal weight range but who has bilateral grade 1 or 2 gynecomastia. Gynecomastia correction was successfully performed for all the patients. The average volume of aspirated fat breast was 100-200 ml on each side. Each breast had 5-80 g of breast tissue removed. At the 3-month, 6-month, and 1-year follow-up assessments, all the treated patients were satisfied with their aesthetic results. Liposuction has the advantages of reducing the fat tissue where necessary to allow skin retraction and of reducing the traces left by surgery. The combination of surgical excision and power-assisted lipoplasty also is a valid choice for the treatment of thin patients.

  2. A construction process model for implementing constructability in construction

    NARCIS (Netherlands)

    Langkemper, J.; Al-Jibouri, S.; Reymen, I.M.M.J.; Maas, G.J.; Gassel, van F.

    2003-01-01

    In construction, failure of design professionals to consider how a builder will implement the design can result in scheduling problems, cost escalation, delays and disputes during the construction process. The integration of construction knowledge and experience during planning and design is termed

  3. Automation of one-loop QCD corrections

    CERN Document Server

    Hirschi, Valentin; Frixione, Stefano; Garzelli, Maria Vittoria; Maltoni, Fabio; Pittau, Roberto

    2011-01-01

    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

  4. Correction to toporek (2014).

    Science.gov (United States)

    2015-01-01

    Reports an error in "Pedagogy of the privileged: Review of Deconstructing Privilege: Teaching and Learning as Allies in the Classroom" by Rebecca L. Toporek (Cultural Diversity and Ethnic Minority Psychology, 2014[Oct], Vol 20[4], 621-622). This article was originally published online incorrectly as a Brief Report. The article authored by Rebecca L. Toporek has been published correctly as a Book Review in the October 2014 print publication (Vol. 20, No. 4, pp. 621-622. http://dx.doi.org/10.1037/a0036529). (The following abstract of the original article appeared in record 2014-42484-006.) Reviews the book, Deconstructing Privilege: Teaching and Learning as Allies in the Classroom edited by Kim A. Case (2013). The purpose of this book is to provide a collection of resources for those teaching about privilege directly, much of this volume may be useful for expanding the context within which educators teach all aspects of psychology. Understanding the history and systems of psychology, clinical practice, research methods, assessment, and all the core areas of psychology could be enhanced by consideration of the structural framework through which psychology has developed and is maintained. The book presents a useful guide for educators, and in particular, those who teach about systems of oppression and privilege directly. For psychologists, this guide provides scholarship and concrete strategies for facilitating students' awareness of multiple dimensions of privilege across content areas. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  5. Radiation protection: A correction

    International Nuclear Information System (INIS)

    1972-01-01

    An error in translation inadvertently distorted the sense of a paragraph in the article entitled 'Ecological Aspects of Radiation Protection', by Dr. P. Recht, which appeared in the Bulletin, Volume 14, No. 2 earlier this year. In the English text the error appears on Page 28, second paragraph, which reads, as published: 'An instance familiar to radiation protection specialists, which has since come to be regarded as a classic illustration of this approach, is the accidental release at the Windscale nuclear centre in the north of England.' In the French original of this text no reference was made, or intended, to the accidental release which took place in 1957; the reference was to the study of the critical population group exposed to routine releases from the centre, as the footnote made clear. A more correct translation of the relevant sentence reads: 'A classic example of this approach, well-known to radiation protection specialists, is that of releases from the Windscale nuclear centre, in the north of England.' A second error appeared in the footnote already referred to. In all languages, the critical population group studied in respect of the Windscale releases is named as that of Cornwall; the reference should be, of course, to that part of the population of Wales who eat laver bread. (author)

  6. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  7. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  8. Necrotizing Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Sahil Aggarwal, BS

    2018-04-01

    Full Text Available History of present illness: A 71-year-old woman with a history of metastatic ovarian cancer presented with sudden onset, rapidly progressing painful rash in the genital region and lower abdominal wall. She was febrile to 103°F, heart rate was 114 beats per minute, and respiratory rate was 24 per minute. Her exam was notable for a toxic-appearing female with extensive areas of erythema, tenderness, and induration to her lower abdomen, intertriginous areas, and perineum with intermittent segments of crepitus without hemorrhagic bullae or skin breakdown. Significant findings: Computed tomography (CT of the abdominal and pelvis with intravenous (IV contrast revealed inflammatory changes, including gas and fluid collections within the ventral abdominal wall extending to the vulva, consistent with a necrotizing soft tissue infection. Discussion: Necrotizing fasciitis is a serious infection of the skin and soft tissues that requires an early diagnosis to reduce morbidity and mortality. Classified into several subtypes based on the type of microbial infection, necrotizing fasciitis can rapidly progress to septic shock or death if left untreated.1 Diagnosing necrotizing fasciitis requires a high index of suspicion based on patient risk factors, presentation, and exam findings. Definitive treatment involves prompt surgical exploration and debridement coupled with IV antibiotics.2,3 Clinical characteristics such as swelling, disproportionate pain, erythema, crepitus, and necrotic tissue should be a guide to further diagnostic tests.4 Unfortunately, lab values such as white blood cell count and lactate imaging studies have high sensitivity but low specificity, making the diagnosis of necrotizing fasciitis still largely a clinical one.4,5 CT is a reliable method to exclude the diagnosis of necrotizing soft tissue infections (sensitivity of 100%, but is only moderately reliable in correctly identifying such infections (specificity of 81%.5 Given the emergent

  9. Correction to Kane et al. (2016).

    Science.gov (United States)

    Kane, Michael J; Meier, Matt E; Smeekens, Bridget A; Gross, Georgina M; Chun, Charlotte A; Silvia, Paul J; Kwapil, Thomas R

    2016-12-01

    Reports an error in "Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy" by Michael J. Kane, Matt E. Meier, Bridget A. Smeekens, Georgina M. Gross, Charlotte A. Chun, Paul J. Silvia and Thomas R. Kwapil ( Journal of Experimental Psychology: General , 2016[Aug], Vol 145[8], 1017-1048). There were errors in Table 3 and Table 7 (these transcription errors were limited to descriptive statistics in the Tables and did not affect any inferential statistics). In Table 3, the ARRO-TUT and LETT-TUT variables had incorrect values for Mean [95% CI], SD, Skew, Kurtosis, and N. In Table 7, the same values (plus Min and Max) were incorrect for the SEM-SART variable. The correct values for these measures are presented in the correction (the values for Min and Max were correct as set in Table 3, but are repeated below for clarity). (The following abstract of the original article appeared in record 2016-29680-001.) A large correlational study took a latent-variable approach to the generality of executive control by testing the individual-differences structure of executive-attention capabilities and assessing their prediction of schizotypy, a multidimensional construct (with negative, positive, disorganized, and paranoid factors) conveying risk for schizophrenia. Although schizophrenia is convincingly linked to executive deficits, the schizotypy literature is equivocal. Subjects completed tasks of working memory capacity (WMC), attention restraint (inhibiting prepotent responses), and attention constraint (focusing visual attention amid distractors), the latter 2 in an effort to fractionate the "inhibition" construct. We also assessed mind-wandering propensity (via in-task thought probes) and coefficient of variation in response times (RT CoV) from several tasks as more novel indices of executive attention. WMC, attention restraint, attention constraint, mind wandering, and RT CoV were correlated but separable

  10. Human Periapical Cysts-Mesenchymal Stem Cells Cultured with Allogenic Human Serum are a “clinical-grade” construct alternative to bovine fetal serum and indicated in the regeneration of endo-periodontal tissues

    Directory of Open Access Journals (Sweden)

    Marco Tatullo

    2018-06-01

    Full Text Available Aim: Our research investigated the use of human serum (HS as a safe and clinical-grade culture medium, using a new cell-model: hPCy-MSCs. This article is aimed to concretely applicate the concept of “waste-based regenerative dentistry” to translate it in future endo-periodontal applications. Methodology: HPCy-MSCs were cultured in 2 different mediums, both containing α-MEM: the 1st with 10% FBS (Control group, and the 2nd with 10% human serum (Test group.Cell proliferation and stemness assays, gene expression, immunophenotypic analysis and osteogenic differentiation were performed to verify our hypothesis. cDNA samples were amplified with qPCR.Experiments were performed in triplicate and analysed with statistical software. Results: The hPCy-MSCs cultivated in a medium with HS were morphologically similar to those cultivated with FBS, and showed a significantly higher proliferation rate. Von Kossa's staining revealed that osteoblasts from hPCy-MSCs in HS implemented with osteogenic induction factors, showed a better osteogenic activity, also confirmed by a significant upregulation of osteopotin (OPN and matrix extracellular phosphoglycoprotein (MEPE. Conclusions: HPCy-MSCs cultivated in HS showed phenotypic stability and a clear regenerative binding, thus, suggesting these two components as a clinically-grade construct for future endo-periodontal therapies. Riassunto: Obiettivi: La nostra ricerca ha analizzato l’utilizzo del siero umano (HS come mezzo di coltura sicuro e “clinical-grade”, per uso clinico, utilizzando un nuovo modello cellulare: le hPC-MSCs. Questo articolo ha lo scopo di applicare concretamente il concetto di “odontoiatria rigenerativa basata sui rifiuti biologici”, al fine di tradurlo in future applicazioni endo-periodontali. Materiali e metodi: Le HPCy-MSCs sono state coltivate in 2 mezzi di coltura diversi, entrambi contenenti α-MEM: il primo con 10% di FBS (gruppo di controllo e il secondo con il 10% di siero

  11. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  12. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  13. Corrective justice and contract law

    Directory of Open Access Journals (Sweden)

    Martín Hevia

    2010-06-01

    Full Text Available This article suggests that the central aspects of contract law in various jurisdictions can be explained within the idea of corrective justice. The article is divided into three parts. The first part distinguishes between corrective justice and distributive justice. The second part describes contract law. The third part focuses on actions for breach of contract and within that context reflects upon the idea of corrective justice.

  14. Corrective justice and contract law

    OpenAIRE

    Martín Hevia

    2010-01-01

    This article suggests that the central aspects of contract law in various jurisdictions can be explained within the idea of corrective justice. The article is divided into three parts. The first part distinguishes between corrective justice and distributive justice. The second part describes contract law. The third part focuses on actions for breach of contract and within that context reflects upon the idea of corrective justice.

  15. Dermal fillers for facial soft tissue augmentation.

    Science.gov (United States)

    Dastoor, Sarosh F; Misch, Carl E; Wang, Hom-Lay

    2007-01-01

    Nowadays, patients are demanding not only enhancement to their dental (micro) esthetics, but also their overall facial (macro) esthetics. Soft tissue augmentation via dermal filling agents may be used to correct facial defects such as wrinkles caused by age, gravity, and trauma; thin lips; asymmetrical facial appearances; buccal fold depressions; and others. This article will review the pathogenesis of facial wrinkles, history, techniques, materials, complications, and clinical controversies regarding dermal fillers for soft tissue augmentation.

  16. Development of new construction technologies for nuclear power plant

    International Nuclear Information System (INIS)

    Kawamata, Susumu; Itoh, Daisuke; Ichizono, Katsuyuki

    1995-01-01

    In order to proceed rationally with the construction of a nuclear power station, the followings are the subject to solve beside reducing the construction cost: shortening the construction period, improving the quality, and securing safety in the construction work. As a measure to solve the matters, we correctly construct the plant mainly applying 'all-weather proof construction method' and 'pre-assembled large-block construction method'. Furthermore, as the plant construction control system, we perform a construction work applying the design change management system, pre-assessment for safety, and the whole facility check. As a result of our effort, it was attained that when we compare the matured plant with the first unit, the construction cost is reduced by 30%, the construction period is shortened by 12 months, site manpower is decreased by 30%, and the plant had no sudden shutdowns even during the trial operation period. (author)

  17. Soft tissue grafting to improve implant esthetics

    Directory of Open Access Journals (Sweden)

    Moawia M Kassab

    2010-09-01

    Full Text Available Moawia M KassabDivision of Periodontics, Marquette University, School of Dentistry, Milwaukee, WI, USAAbstract: Dental implants are becoming the treatment of choice to replace missing teeth, especially if the adjacent teeth are free of restorations. When minimal bone width is present, implant placement becomes a challenge and often resulting in recession and dehiscence around the implant that leads to subsequent gingival recession. To correct such defect, the author turned to soft tissue autografting and allografting to correct a buccal dehiscence around tooth #24 after a malpositioned implant placed by a different surgeon. A 25-year-old woman presented with the chief complaint of gingival recession and exposure of implant threads around tooth #24. The patient received three soft tissue grafting procedures to augment the gingival tissue. The first surgery included a connective tissue graft to increase the width of the keratinized gingival tissue. The second surgery included the use of autografting (connective tissue graft to coronally position the soft tissue and achieve implant coverage. The third and final surgery included the use of allografting material Alloderm to increase and mask the implant from showing through the gingiva. Healing period was uneventful for the patient. After three surgical procedures, it appears that soft tissue grafting has increased the width and height of the gingiva surrounding the implant. The accomplished thickness of gingival tissue appeared to mask the showing of implant threads through the gingival tissue and allowed for achieving the desired esthetic that the patient desired. The aim of the study is to present a clinical case with soft tissue grafting procedures.Keywords: case report, connective tissue, dental implants, allograft, coronally positioned flap

  18. Constructing Aligned Assessments Using Automated Test Construction

    Science.gov (United States)

    Porter, Andrew; Polikoff, Morgan S.; Barghaus, Katherine M.; Yang, Rui

    2013-01-01

    We describe an innovative automated test construction algorithm for building aligned achievement tests. By incorporating the algorithm into the test construction process, along with other test construction procedures for building reliable and unbiased assessments, the result is much more valid tests than result from current test construction…

  19. Tracer kinetic modelling of receptor data with mathematical metabolite correction

    International Nuclear Information System (INIS)

    Burger, C.; Buck, A.

    1996-01-01

    Quantitation of metabolic processes with dynamic positron emission tomography (PET) and tracer kinetic modelling relies on the time course of authentic ligand in plasma, i.e. the input curve. The determination of the latter often requires the measurement of labelled metabilites, a laborious procedure. In this study we examined the possibility of mathematical metabolite correction, which might obviate the need for actual metabolite measurements. Mathematical metabilite correction was implemented by estimating the input curve together with kinetic tissue parameters. The general feasibility of the approach was evaluated in a Monte Carlo simulation using a two tissue compartment model. The method was then applied to a series of five human carbon-11 iomazenil PET studies. The measured cerebral tissue time-activity curves were fitted with a single tissue compartment model. For mathematical metabolite correction the input curve following the peak was approximated by a sum of three decaying exponentials, the amplitudes and characteristic half-times of which were then estimated by the fitting routine. In the simulation study the parameters used to generate synthetic tissue time-activity curves (K 1 -k 4 ) were refitted with reasonable identifiability when using mathematical metabolite correciton. Absolute quantitation of distribution volumes was found to be possible provided that the metabolite and the kinetic models are adequate. If the kinetic model is oversimplified, the linearity of the correlation between true and estimated distribution volumes is still maintained, although the linear regression becomes dependent on the input curve. These simulation results were confirmed when applying mathematical metabolite correction to the 11 C iomazenil study. Estimates of the distribution volume calculated with a measured input curve were linearly related to the estimates calculated using mathematical metabolite correction with correlation coefficients >0.990. (orig./MG)

  20. Perspectives of construction robots

    Science.gov (United States)

    Stepanov, M. A.; Gridchin, A. M.

    2018-03-01

    This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.

  1. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  2. The correction of electron lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  3. The correction of electron lens aberrations

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    2015-01-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies

  4. Extensive characterization and comparison of endothelial cells derived from dermis and adipose tissue : Potential use in tissue engineering

    NARCIS (Netherlands)

    Monsuur, H.N.; Weijers, E.M.; Niessen, F.B.; Gefen, A.; Koolwijk, P.; Gibbs, S.; van den Broek, L.J.

    2016-01-01

    Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells

  5. Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation

    International Nuclear Information System (INIS)

    Alber, G.; Mussinger, M.; Beth, Th.; Charnes, Ch.; Delgado, A.; Grassl, M.

    2003-01-01

    The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical information about which qubit has emitted spontaneously and correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding, and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a quantum memory and Grover's algorithm

  6. Construction completion report

    International Nuclear Information System (INIS)

    1990-01-01

    This Construction Completion Report documents the major construction projects at the Waste Isolation Pilot Plant (WIPP) site and related information on contracts, schedules, and other areas which affected construction. This report is not intended to be an exhaustive detailed analysis of construction, but is a general overview and summary of the WIPP construction. 10 refs., 29 figs

  7. Unpacking Corrections in Mobile Instruction

    DEFF Research Database (Denmark)

    Levin, Lena; Cromdal, Jakob; Broth, Mathias

    2017-01-01

    that the practice of unpacking the local particulars of corrections (i) provides for the instructional character of the interaction, and (ii) is highly sensitive to the relevant physical and mobile contingencies. These findings contribute to the existing literature on the interactional organisation of correction...

  8. Atmospheric correction of satellite data

    Science.gov (United States)

    Shmirko, Konstantin; Bobrikov, Alexey; Pavlov, Andrey

    2015-11-01

    Atmosphere responses for more than 90% of all radiation measured by satellite. Due to this, atmospheric correction plays an important role in separating water leaving radiance from the signal, evaluating concentration of various water pigments (chlorophyll-A, DOM, CDOM, etc). The elimination of atmospheric intrinsic radiance from remote sensing signal referred to as atmospheric correction.

  9. Stress Management in Correctional Recreation.

    Science.gov (United States)

    Card, Jaclyn A.

    Current economic conditions have created additional sources of stress in the correctional setting. Often, recreation professionals employed in these settings also add to inmate stress. One of the major factors limiting stress management in correctional settings is a lack of understanding of the value, importance, and perceived freedom, of leisure.…

  10. Quality assurance during site construction. Pt. 6

    International Nuclear Information System (INIS)

    Schwarz, N.

    1980-01-01

    Scope of 'Site Construction concerning Electrical Equipment' (Installation, erection, commissioning, operation): tasks and organization of Siemens-Field Services Division; organization on site; receiving, incoming inspection and storage of material; installation, erection; (drawings, instructions, documents / execution of installation / personnel qualification). Non conformance and corrective actions; quality records; internal audits. (orig.)

  11. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid.

    Science.gov (United States)

    Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert

    2004-01-01

    This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.

  12. Investigation of accidents within construction zones in Louisiana.

    Science.gov (United States)

    1981-07-01

    This investigation is to analyze construction and maintenance work zone accidents by reviewing accident data to determine if deficiencies exist and recommend possible corrective measures for future traffic control applications. To accomplish this, a ...

  13. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  14. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  15. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  16. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  17. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.

    Science.gov (United States)

    Zhang, Wujie; Choi, Jung K; He, Xiaoming

    2017-02-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.

  18. Bioprinting of skin constructs for wound healing

    OpenAIRE

    He, Peng; Zhao, Junning; Zhang, Jiumeng; Li, Bo; Gou, Zhiyuan; Gou, Maling; Li, Xiaolu

    2018-01-01

    Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivale...

  19. Probabilistic analysis in the life cycle management of construction deficiencies

    International Nuclear Information System (INIS)

    Zebroski, E.; Starr, C.

    1985-01-01

    The author discusses the urgent need for better systems and procedures for evaluating actual or suspected construction deficiencies in nuclear power plants. The following topics of interest are discussed: summary of tools available, use of plant-specific probabilistic risk assessments, general process for the rational management of construction deficiencies, rationales for the timing of required corrective actions, example of deficiency management in France, proposed screening process, deficiencies calling for corrective actions, institutional obstacles, and specific recommendations

  20. An improved machine learning protocol for the identification of correct Sequest search results

    Directory of Open Access Journals (Sweden)

    Lu Hui

    2010-12-01

    Full Text Available Abstract Background Mass spectrometry has become a standard method by which the proteomic profile of cell or tissue samples is characterized. To fully take advantage of tandem mass spectrometry (MS/MS techniques in large scale protein characterization studies robust and consistent data analysis procedures are crucial. In this work we present a machine learning based protocol for the identification of correct peptide-spectrum matches from Sequest database search results, improving on previously published protocols. Results The developed model improves on published machine learning classification procedures by 6% as measured by the area under the ROC curve. Further, we show how the developed model can be presented as an interpretable tree of additive rules, thereby effectively removing the 'black-box' notion often associated with machine learning classifiers, allowing for comparison with expert rule-of-thumb. Finally, a method for extending the developed peptide identification protocol to give probabilistic estimates of the presence of a given protein is proposed and tested. Conclusions We demonstrate the construction of a high accuracy classification model for Sequest search results from MS/MS spectra obtained by using the MALDI ionization. The developed model performs well in identifying correct peptide-spectrum matches and is easily extendable to the protein identification problem. The relative ease with which additional experimental parameters can be incorporated into the classification framework, to give additional discriminatory power, allows for future tailoring of the model to take advantage of information from specific instrument set-ups.

  1. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  2. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  3. Application of polarization OCT in tissue engineering

    Science.gov (United States)

    Yang, Ying; Ahearne, Mark; Bagnaninchi, Pierre O.; Hu, Bin; Hampson, Karen; El Haj, Alicia J.

    2008-02-01

    For tissue engineering of load-bearing tissues, such as bone, tendon, cartilage, and cornea, it is critical to generate a highly organized extracellular matrix. The major component of the matrix in these tissues is collagen, which usually forms a highly hierarchical structure with increasing scale from fibril to fiber bundles. These bundles are ordered into a 3D network to withstand forces such as tensile, compressive or shear. To induce the formation of organized matrix and create a mimic body environment for tissue engineering, in particular, tendon tissue engineering, we have fabricated scaffolds with features to support the formation of uniaxially orientated collagen bundles. In addition, mechanical stimuli were applied to stimulate tissue formation and matrix organization. In parallel, we seek a nondestructive tool to monitor the changes within the constructs in response to these external stimulations. Polarizationsensitive optical coherence tomography (PSOCT) is a non-destructive technique that provides functional imaging, and possesses the ability to assess in depth the organization of tissue. In this way, an engineered tissue construct can be monitored on-line, and correlated with the application of different stimuli by PSOCT. We have constructed a PSOCT using a superluminescent diode (FWHM 52nm) in this study and produced two types of tendon constructs. The matrix structural evolution under different mechanical stimulation has been evaluated by the PSOCT. The results in this study demonstrate that PSOCT was a powerful tool enabling us to monitor non-destructively and real time the progressive changes in matrix organization and assess the impact of various stimuli on tissue orientation and growth.

  4. Ready to Use Tissue Construct for Military Bone & Cartilage Trauma

    Science.gov (United States)

    2013-10-01

    CONTRACTING ORGANIZATION : Columbia University in the City of New York New York, NY 10032 REPORT DATE: October 2013 TYPE OF REPORT: Annual... ORGANIZATION NAME(S) AND ADDRESS(ES) Trustees of Columbia University in the City of New York AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...base plate for implantation was designed. Scaffolds were fabricated from a polycaprolactone hydroxyapatite polymer (PCL-HA) using a 3D bioprinter

  5. Linear network error correction coding

    CERN Document Server

    Guang, Xuan

    2014-01-01

    There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an

  6. Mixed Connective Tissue Disease

    Science.gov (United States)

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  7. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  8. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  9. Correction for polychromatic aberration in computed tomography images

    International Nuclear Information System (INIS)

    Naparstek, A.

    1979-01-01

    A method and apparatus for correcting a computed tomography image for polychromatic aberration caused by the non-linear interaction (i.e. the energy dependent attenuation characteristics) of different body constituents, such as bone and soft tissue, with a polychromatic X-ray beam are described in detail. An initial image is conventionally computed from path measurements made as source and detector assembly scan a body section. In the improvement, each image element of the initial computed image representing attenuation is recorded in a store and is compared with two thresholds, one representing bone and the other soft tissue. Depending on the element value relative to the thresholds, a proportion of the respective constituent is allocated to that element location and corresponding bone and soft tissue projections are determined and stored. An error projection generator calculates projections of polychromatic aberration errors in the raw image data from recalled bone and tissue projections using a multidimensional polynomial function which approximates the non-linear interaction involved. After filtering, these are supplied to an image reconstruction computer to compute image element correction values which are subtracted from raw image element values to provide a corrected reconstructed image for display. (author)

  10. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  11. Segmentation-free empirical beam hardening correction for CT.

    Science.gov (United States)

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-01

    The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed

  12. PET measurements of cerebral metabolism corrected for CSF contributions

    International Nuclear Information System (INIS)

    Chawluk, J.; Alavi, A.; Dann, R.; Kushner, M.J.; Hurtig, H.; Zimmerman, R.A.; Reivich, M.

    1984-01-01

    Thirty-three subjects have been studied with PET and anatomic imaging (proton-NMR and/or CT) in order to determine the effect of cerebral atrophy on calculations of metabolic rates. Subgroups of neurologic disease investigated include stroke, brain tumor, epilepsy, psychosis, and dementia. Anatomic images were digitized through a Vidicon camera and analyzed volumetrically. Relative areas for ventricles, sulci, and brain tissue were calculated. Preliminary analysis suggests that ventricular volumes as determined by NMR and CT are similar, while sulcal volumes are larger on NMR scans. Metabolic rates (18F-FDG) were calculated before and after correction for CSF spaces, with initial focus upon dementia and normal aging. Correction for atrophy led to a greater increase (%) in global metabolic rates in demented individuals (18.2 +- 5.3) compared to elderly controls (8.3 +- 3.0,p < .05). A trend towards significantly lower glucose metabolism in demented subjects before CSF correction was not seen following correction for atrophy. These data suggest that volumetric analysis of NMR images may more accurately reflect the degree of cerebral atrophy, since NMR does not suffer from beam hardening artifact due to bone-parenchyma juxtapositions. Furthermore, appropriate correction for CSF spaces should be employed if current resolution PET scanners are to accurately measure residual brain tissue metabolism in various pathological states

  13. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  14. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  15. Automatic computation of radiative corrections

    International Nuclear Information System (INIS)

    Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Nakazawa, N.; Kaneko, T.

    1997-01-01

    Automated systems are reviewed focusing on their general structure and requirement specific to the calculation of radiative corrections. Detailed description of the system and its performance is presented taking GRACE as a concrete example. (author)

  16. Publisher Correction: On our bookshelf

    Science.gov (United States)

    Karouzos, Marios

    2018-03-01

    In the version of this Books and Arts originally published, the book title Spectroscopy for Amateur Astronomy was incorrect; it should have read Spectroscopy for Amateur Astronomers. This has now been corrected.

  17. Correcting AUC for Measurement Error.

    Science.gov (United States)

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  18. Libertarian Anarchism Is Apodictically Correct

    OpenAIRE

    Redford, James

    2011-01-01

    James Redford, "Libertarian Anarchism Is Apodictically Correct", Social Science Research Network (SSRN), Dec. 15, 2011, 9 pp., doi:10.2139/ssrn.1972733. ABSTRACT: It is shown that libertarian anarchism (i.e., consistent liberalism) is unavoidably true.

  19. Error correcting coding for OTN

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Pedersen, Lars A.

    2010-01-01

    Forward error correction codes for 100 Gb/s optical transmission are currently receiving much attention from transport network operators and technology providers. We discuss the performance of hard decision decoding using product type codes that cover a single OTN frame or a small number...... of such frames. In particular we argue that a three-error correcting BCH is the best choice for the component code in such systems....

  20. Spelling Correction in User Interfaces.

    Science.gov (United States)

    1982-12-20

    conventional typescript -oriented command language, where most com- mands consist of a verb followed by a sequence of arguments. Most user terminals are...and explanations. not part of the typescripts . 2 SPFE.LING CORRLC1iON IN USR IN"RFAC’S 2. Design Issues We were prompted to look for a new correction...remaining 73% led us to wonder what other mechanisms might permit further corrections while retaining the typescript -style interface. Most of the other

  1. Tissue dose in thorotrast patients

    International Nuclear Information System (INIS)

    Kaul, A.; Noffz, W.

    1978-01-01

    Absorbed doses to the liver, spleen, red marrow, lungs, kidneys, and to various parts of bone tissue were calculated for long-term burdens of intravascularly injected Thorotrast. The estimates were performed for typical injection levels of 10, 30, 50 and 100 ml, based upon best estimates of 232 Th tissue distribution, and steady state activity ratios between the subsequent daughters. Correcting for the α-particle self absorption within Thorotrast aggregates, the mean α-dose to a standard 70-kg man at 30 yr after the injection 0f 25 ml of Thorotrast is 750 rad to the liver, 2100 rad to the spleen, 270 rad to the red marrow, 60-620 rad in various parts of the lung, and 13 rad to the kidneys. Dose rates to various parts of bone tissue (bone surface, compact, and cancellous bone) were estimated by applying the ICRP model on alkaline earth metabolism to the continuous translocation of thorium daughters to bone and to the formation of thorium daughters by decay within bone tissue. The average dose to calcified bone from translocated 224 Ra with its daughters is 18 rad at 30 yr after the injection of 25 ml of Thorotrast. Considering the Spiess-Mays risk coefficient of 0.9-1.7% bone sarcoma/ 100 rad of average skeletal dose from 224 Ra and its daughters, the induction of 1.6-3.1 bone sarcomas per 1000 Thorotrast patients is predicted. (author)

  2. Partial Volume Effects correction in emission tomography

    International Nuclear Information System (INIS)

    Le Pogam, Adrien

    2010-01-01

    Partial Volume Effects (PVE) designates the blur commonly found in nuclear medicine images and this PhD work is dedicated to their correction with the objectives of qualitative and quantitative improvement of such images. PVE arise from the limited spatial resolution of functional imaging with either Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT). They can be defined as a signal loss in tissues of size similar to the Full Width at Half Maximum (FWHM) of the PSF of the imaging device. In addition, PVE induce activity cross contamination between adjacent structures with different tracer uptakes. This can lead to under or over estimation of the real activity of such analyzed regions. Various methodologies currently exist to compensate or even correct for PVE and they may be classified depending on their place in the processing chain: either before, during or after the image reconstruction process, as well as their dependency on co-registered anatomical images with higher spatial resolution, for instance Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel-based and post-reconstruction approach was chosen for this work to avoid regions of interest definition and dependency on proprietary reconstruction developed by each manufacturer, in order to improve the PVE correction. Two different contributions were carried out in this work: the first one is based on a multi-resolution methodology in the wavelet domain using the higher resolution details of a co-registered anatomical image associated to the functional dataset to correct. The second one is the improvement of iterative deconvolution based methodologies by using tools such as directional wavelets and curvelets extensions. These various developed approaches were applied and validated using synthetic, simulated and clinical images, for instance with neurology and oncology applications in mind. Finally, as currently available PET/CT scanners incorporate more

  3. Quantum error correction for beginners

    International Nuclear Information System (INIS)

    Devitt, Simon J; Nemoto, Kae; Munro, William J

    2013-01-01

    Quantum error correction (QEC) and fault-tolerant quantum computation represent one of the most vital theoretical aspects of quantum information processing. It was well known from the early developments of this exciting field that the fragility of coherent quantum systems would be a catastrophic obstacle to the development of large-scale quantum computers. The introduction of quantum error correction in 1995 showed that active techniques could be employed to mitigate this fatal problem. However, quantum error correction and fault-tolerant computation is now a much larger field and many new codes, techniques, and methodologies have been developed to implement error correction for large-scale quantum algorithms. In response, we have attempted to summarize the basic aspects of quantum error correction and fault-tolerance, not as a detailed guide, but rather as a basic introduction. The development in this area has been so pronounced that many in the field of quantum information, specifically researchers who are new to quantum information or people focused on the many other important issues in quantum computation, have found it difficult to keep up with the general formalisms and methodologies employed in this area. Rather than introducing these concepts from a rigorous mathematical and computer science framework, we instead examine error correction and fault-tolerance largely through detailed examples, which are more relevant to experimentalists today and in the near future. (review article)

  4. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  5. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Yoshida, Eiji; Kershaw, Jeff; Shiraishi, Takahiro; Suga, Mikio; Ikoma, Yoko; Obata, Takayuki; Ito, Hiroshi; Yamaya, Taiga

    2014-01-01

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  6. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Hiroshi, E-mail: kwgc@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki, E-mail: yhirano@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kershaw, Jeff, E-mail: len@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shiraishi, Takahiro, E-mail: tshira@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Suga, Mikio, E-mail: mikio.suga@faculty.chiba-u.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Engineering of Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ikoma, Yoko, E-mail: ikoma@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Obata, Takayuki, E-mail: t_obata@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ito, Hiroshi, E-mail: hito@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga, E-mail: taiga@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2014-01-11

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  7. Correction of the closed orbit and vertical dispersion and the tuning and field correction system in ISABELLE

    International Nuclear Information System (INIS)

    Parzen, G.

    1979-01-01

    Each ring in ISABELLE will have 10 separately powered systematic field correction coils to make required corrections which are the same in corresponding magnets around the ring. These corrections include changing the ν-value, shaping the working line in ν-space, correction of field errors due to iron saturation effects, the conductor arrangements, the construction of the coil ends, diamagnetic effects in the superconductor and to rate-dependent induced currents. The twelve insertion quadrupoles in the insertion surrounding each crossing point will each have a quadrupole trim coil. The closed orbit will be controlled by a system of 84 horizontal dipole coils and 90 vertical dipole coils in each ring, each coil being separately powered. This system of dipole coils will also be used to correct the vertical dispersion at the crossing points. Two families of skew quadrupoles per ring will be provided for correction of the coupling between the horizontal and vertical motions. Although there will be 258 separately powered correction coils in each ring

  8. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  9. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules

    OpenAIRE

    Zhang, Wujie; Choi, Jung K.; He, Xiaoming

    2017-01-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. ...

  10. Multifocal multiphoton microscopy with adaptive optical correction

    Science.gov (United States)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  11. Tissue engineered tumor models.

    Science.gov (United States)

    Ingram, M; Techy, G B; Ward, B R; Imam, S A; Atkinson, R; Ho, H; Taylor, C R

    2010-08-01

    Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.

  12. Correct Bayesian and frequentist intervals are similar

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1986-01-01

    This paper argues that Bayesians and frequentists will normally reach numerically similar conclusions, when dealing with vague data or sparse data. It is shown that both statistical methodologies can deal reasonably with vague data. With sparse data, in many important practical cases Bayesian interval estimates and frequentist confidence intervals are approximately equal, although with discrete data the frequentist intervals are somewhat longer. This is not to say that the two methodologies are equally easy to use: The construction of a frequentist confidence interval may require new theoretical development. Bayesians methods typically require numerical integration, perhaps over many variables. Also, Bayesian can easily fall into the trap of over-optimism about their amount of prior knowledge. But in cases where both intervals are found correctly, the two intervals are usually not very different. (orig.)

  13. On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data

    Science.gov (United States)

    Huang, Chengcheng; Zheng, Xiaogu; Tait, Andrew; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Li, Tao; Wang, Zhonglei

    2014-01-01

    Partial thin-plate smoothing spline model is used to construct the trend surface.Correction of the spline estimated trend surface is often necessary in practice.Cressman weight is modified and applied in residual correction.The modified Cressman weight performs better than Cressman weight.A method for estimating the error covariance matrix of gridded field is provided.

  14. Coupling and Vertical Dispersion Correction in the SPS

    CERN Document Server

    Aiba, M; Franchi, A; Tomas, R; Vanbavinckhove, G

    2010-01-01

    Consolidation of the coupling correction scheme in the LHC is challenged by a missing skew quadrupole family in Sector 3-4 at the start-up in 2009-2010. Simultaneous coupling and vertical dispersion correction using vertical orbit bumps at the sextupoles, was studied by analyzing turn-byturn data. This scheme was tested in the CERN SPS where the optical structure of arc cells is quite similar to the LHC. In the SPS, horizontal and vertical beam positions are measured separately with single plane BPMs, thus a technique to construct ”pseudo double plane BPM” is also discussed.

  15. Gauge threshold corrections for local orientifolds

    International Nuclear Information System (INIS)

    Conlon, Joseph P.; Palti, Eran

    2009-01-01

    We study gauge threshold corrections for systems of fractional branes at local orientifold singularities and compare with the general Kaplunovsky-Louis expression for locally supersymmetric N = 1 gauge theories. We focus on branes at orientifolds of the C 3 /Z 4 , C 3 /Z 6 and C 3 /Z 6 ' singularities. We provide a CFT construction of these theories and compute the threshold corrections. Gauge coupling running undergoes two phases: one phase running from the bulk winding scale to the string scale, and a second phase running from the string scale to the infrared. The first phase is associated to the contribution of N = 2 sectors to the IR β functions and the second phase to the contribution of both N = 1 and N = 2 sectors. In contrast, naive application of the Kaplunovsky-Louis formula gives single running from the bulk winding mode scale. The discrepancy is resolved through 1-loop non-universality of the holomorphic gauge couplings at the singularity, induced by a 1-loop redefinition of the twisted blow-up moduli which couple differently to different gauge nodes. We also study the physics of anomalous and non-anomalous U(1)s and give a CFT description of how masses for non-anomalous U(1)s depend on the global properties of cycles.

  16. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  17. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  18. Field nonuniformity correction for quantitative analysis of digitized mammograms

    International Nuclear Information System (INIS)

    Pawluczyk, Olga; Yaffe, Martin J.

    2001-01-01

    Several factors, including the heel effect, variation in distance from the x-ray source to points in the image and path obliquity contribute to the signal nonuniformity of mammograms. To best use digitized mammograms for quantitative image analysis, these field non-uniformities must be corrected. An empirically based correction method, which uses a bowl-shaped calibration phantom, has been developed. Due to the annular spherical shape of the phantom, its attenuation is constant over the entire image. Remaining nonuniformities are due only to the heel and inverse square effects as well as the variable path through the beam filter, compression plate and image receptor. In logarithmic space, a normalized image of the phantom can be added to mammograms to correct for these effects. Then, an analytical correction for path obliquity in the breast can be applied to the images. It was found that the correction causes the errors associated with field nonuniformity to be reduced from 14% to 2% for a 4 cm block of material corresponding to a combination of 50% fibroglandular and 50% fatty breast tissue. A repeatability study has been conducted to show that in regions as far as 20 cm away from the chest wall, variations due to imaging conditions and phantom alignment contribute to <2% of overall corrected signal

  19. Corrections.

    Science.gov (United States)

    1994-05-27

    In "Women in Science: Some Books of the Year" (11 March, p. 1458) the name of the senior editor of second edition of The History of Women and Science, Health, and Technology should have been given as Phyllis Holman Weisbard, and the name of the editor of the first edition should have been given as Susan Searing. Also, the statement that the author of A Matter of Choices: Memoirs of a Female Physicist, Fay Ajzenberg-Selove, is now retired was incorrect.

  20. Corrections.

    Science.gov (United States)

    2016-02-01

    In the October In Our Unit article by Cooper et al, “Against All Odds: Preventing Pressure Ulcers in High-Risk Cardiac Surgery Patients” (Crit Care Nurse. 2015;35[5]:76–82), there was an error in the reference citation on page 82. At the top of that page, reference 18 cited on the second line should be reference 23, which also should be added to the References list: 23. AHRQ website. Prevention and treatment program integrates actionable reports into practice, significantly reducing pressure ulcers in nursing home residents. November 2008. https://innovations.ahrq.gov/profiles/prevention-and-treatment-program-integrates-actionable-reports-practice-significantly. Accessed November 18, 2015

  1. Correction.

    Science.gov (United States)

    2015-06-01

    Gillon R. Defending the four principles approach as a good basis for good medical practice and therefore for good medical ethics. J Med Ethics 2015;41:111–6. The author misrepresented Beauchamp and Childress when he wrote: ‘My own view (unlike Beauchamp and Childress who explicitly state that they make no such claim ( p. 421)1, is that all moral agents whether or not they are doctors or otherwise involved in healthcare have these prima facie moral obligations; but in the context of answering the question ‘what is it to do good medical ethics ?’ my claim is limited to the ethical obligations of doctors’. The author intended and should have written the following: ‘My own view, unlike Beauchamp and Childress who explicitly state that they make no such claim (p.421)1 is that these four prima facie principles can provide a basic moral framework not only for medical ethics but for ethics in general’.

  2. Correction.

    Science.gov (United States)

    2015-03-01

    In the January 2015 issue of Cyberpsychology, Behavior, and Social Networking (vol. 18, no. 1, pp. 3–7), the article "Individual Differences in Cyber Security Behaviors: An Examination of Who Is Sharing Passwords." by Prof. Monica Whitty et al., has an error in wording in the abstract. The sentence in question was originally printed as: Contrary to our hypotheses, we found older people and individuals who score high on self-monitoring were more likely to share passwords. It should read: Contrary to our hypotheses, we found younger people and individuals who score high on self-monitoring were more likely to share passwords. The authors wish to apologize for the error.

  3. Correction

    CERN Multimedia

    2007-01-01

    From left to right: Luis, Carmen, Mario, Christian and José listening to speeches by theorists Alvaro De Rújula and Luis Alvarez-Gaumé (right) at their farewell gathering on 15 May.We unfortunately cut out a part of the "Word of thanks" from the team retiring from Restaurant No. 1. The complete message is published below: Dear friends, You are the true "nucleus" of CERN. Every member of this extraordinary human mosaic will always remain in our affections and in our thoughts. We have all been very touched by your spontaneous generosity. Arrivederci, Mario Au revoir,Christian Hasta Siempre Carmen, José and Luis PS: Lots of love to the theory team and to the hidden organisers. So long!

  4. Correction

    Science.gov (United States)

    2014-01-01

    In the meeting report "Strategies to observe and understand processes and drivers in the biogeosphere," published in the 14 January 2014 issue of Eos (95(2), 16, doi:10.1002/2014EO020004), an incorrect affiliation was listed for one coauthor. Michael Young is with the University of Texas at Austin.

  5. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  6. Universality of quantum gravity corrections.

    Science.gov (United States)

    Das, Saurya; Vagenas, Elias C

    2008-11-28

    We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.

  7. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  8. 77 FR 43018 - Updating OSHA Construction Standards Based on National Consensus Standards; Head Protection...

    Science.gov (United States)

    2012-07-23

    .... OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Construction Standards Based on National Consensus... Health Administration (OSHA), Department of Labor. ACTION: Notice of proposed rulemaking; correction. SUMMARY: OSHA is correcting a notice of proposed rulemaking (NPRM) with regard to the construction...

  9. SELF CORRECTION WORKS BETTER THAN TEACHER CORRECTION IN EFL SETTING

    Directory of Open Access Journals (Sweden)

    Azizollah Dabaghi

    2012-11-01

    Full Text Available Learning a foreign language takes place step by step, during which mistakes are to be expected in all stages of learning. EFL learners are usually afraid of making mistakes which prevents them from being receptive and responsive. Overcoming fear of mistakes depends on the way mistakes are rectified. It is believed that autonomy and learner-centeredness suggest that in some settings learner's self-correction of mistakes might be more beneficial for language learning than teacher's correction. This assumption has been the subject of debates for some time. Some researchers believe that correction whether that of teacher's or on behalf of learners is effective in showing them how their current interlanguage differs from the target (Long &Robinson, 1998. Others suggest that correcting the students whether directly or through recasts are ambiguous and may be perceived by the learner as confirmation of meaning rather than feedback on form (Lyster, 1998a. This study is intended to investigate the effects of correction on Iranian intermediate EFL learners' writing composition in Payam Noor University. For this purpose, 90 English majoring students, studying at Isfahan Payam Noor University were invited to participate at the experiment. They all received a sample of TOFEL test and a total number of 60 participants whose scores were within the range of one standard deviation below and above the mean were divided into two equal groups; experimental and control. The experimental group went through some correction during the experiment while the control group remained intact and the ordinary processes of teaching went on. Each group received twelve sessions of two hour classes every week on advanced writing course in which some activities of Modern English (II were selected. Then after the treatment both groups received an immediate test as post-test and the experimental group took the second post-test as the delayed recall test with the same design as the

  10. Effects of ionization chamber construction on dose measurements in a heterogeneity

    International Nuclear Information System (INIS)

    Mauceri, T.; Kase, K.

    1987-01-01

    Traditionally, measurements have been made in heterogeneous phantoms to determine the factors which should be applied to dose calculations, when calculating a dose to a heterogeneous medium. Almost all measurements have relied on relatively thin-walled ion chambers, with no attempt to match ion chamber wall material to the measuring medium. The recent AAPM dosimetry protocol has established that a mismatch between ion chamber wall and phantom material can have an effect on dose measurement. To investigate the affect of this mismatch of ion chamber wall material to phantom material, two parallel-plate ion chambers were constructed. One ion chamber from solid water, for measurements in a solid water phantom and the other from plastic lung material, for measurements in a plastic lung material phantom. Correction factors measured by matching ion chamber to media were compared to correction factors measured by using a thin-walled cavity ion chamber with no regard for matching wall and media for cobalt-60, 6-, 10- and 20-MV photon beams. The results demonstrated that the matching of ion chamber to measuring media can be ignored, provided that a small, approximately tissue-equivalent, thin-walled ion chamber is used for measuring the correction factors

  11. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  12. Self-correcting Multigrid Solver

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2004-01-01

    A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work

  13. Brane cosmology with curvature corrections

    International Nuclear Information System (INIS)

    Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios

    2003-01-01

    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)

  14. Tissue and Organ 3D Bioprinting.

    Science.gov (United States)

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  15. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    Science.gov (United States)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  16. The volume of fluid injected into the tissue expander and the tissue expansion

    Directory of Open Access Journals (Sweden)

    Mahmood Omranifard

    2014-01-01

    Full Text Available Background: Replacement of the lost tissue is the major concerns of the plastic surgeons. Expanded area should be coherent with the surrounding tissue. Tissue expansion technique is the reforming methods the skin tissue scarcities. Several methods for tissue expansion are available; including usage of silicon balloon and injecting fluid into the tissue expander. Materials and Methods: In a clinical trial study, 35 patients, with burn scars, in the face, skull and neck area were studied. We provided a tissue expander device with capacities of 125, 250 and 350cc. Fluid was injected inside the device, 3 consecutive weeks with 1-week interval. After 3 months the device was set out and the tissue expansion was measured using a transparent board and the results were analyzed. Multiple regression was done by SPSS 20 to analyze the data. Results: Regression model showed Skin expansion was positively correlated with the volume of the injected fluid. For each centimeter square of skin expansion, about 6-8 ml of fluid must be injected. Conclusion: Correction of skin defects resulting from burning scar is possible using tissue expanders. The tissue expansion is correlated with the amount of the injected fluid.

  17. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  18. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  19. Construction project management handbook.

    Science.gov (United States)

    2012-03-01

    The purpose of the FTA Construction Project Management Handbook is to provide guidelines for use by public transit agencies (Agen-cies) undertaking substantial construction projects, either for the first time or with little prior experience with cons...

  20. Visualization of construction engineering

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun

    2000-01-01

    It is required for nuclear power plant construction to reduce construction cost and shorten construction period. An early and accurate construction planning including schedule coordination among the companies has recently become more important and it is possible to obtain necessary information for construction planning in early stage. In this situation, we have been developing a visualization system for construction engineering for nuclear power plants. This system has an interface with the existing Plant Layout 3D-CAD system and consists of three sub systems: (1) Scheduling and simulation system, (2) Yard planning system and (3) Scaffolding planning system. This paper describes overview of this system. This visualization system is very helpful for construction engineers to easily understand situation and environment around installation area, to easily plan a work sequence and confirm the planned schedule, and it is also effective for customers and workers to understand the planning. As a result, this visualization system enables safety and high quality construction. (author)

  1. Construction Sector (NAICS 23)

    Science.gov (United States)

    Find environmental regulatory information for the construction sector, including the construction of buildings or engineering projects. This includes RCRA information for hazardous waste, refrigeration compliance, asbestos, effluent guidelines & lead laws

  2. Organizational Behaviour in Construction

    DEFF Research Database (Denmark)

    Kreiner, Kristian

    2013-01-01

    Review of: Organizational Behaviour in Construction / Anthony Walker (Wiley-Blackwell,2011 336 pp)......Review of: Organizational Behaviour in Construction / Anthony Walker (Wiley-Blackwell,2011 336 pp)...

  3. USAID Construction Assessment

    Data.gov (United States)

    US Agency for International Development — The USAID construction assessment is a survey of the character, scope, value and management of construction activities supported by USAID during the period from June...

  4. Validating MEDIQUAL Constructs

    Science.gov (United States)

    Lee, Sang-Gun; Min, Jae H.

    In this paper, we validate MEDIQUAL constructs through the different media users in help desk service. In previous research, only two end-users' constructs were used: assurance and responsiveness. In this paper, we extend MEDIQUAL constructs to include reliability, empathy, assurance, tangibles, and responsiveness, which are based on the SERVQUAL theory. The results suggest that: 1) five MEDIQUAL constructs are validated through the factor analysis. That is, importance of the constructs have relatively high correlations between measures of the same construct using different methods and low correlations between measures of the constructs that are expected to differ; and 2) five MEDIQUAL constructs are statistically significant on media users' satisfaction in help desk service by regression analysis.

  5. Attenuation correction for the NIH ATLAS small animal PET scanner

    CERN Document Server

    Yao, Rutao; Liow, JeihSan; Seidel, Jurgen

    2003-01-01

    We evaluated two methods of attenuation correction for the NIH ATLAS small animal PET scanner: 1) a CT-based method that derives 511 keV attenuation coefficients (mu) by extrapolation from spatially registered CT images; and 2) an analytic method based on the body outline of emission images and an empirical mu. A specially fabricated attenuation calibration phantom with cylindrical inserts that mimic different body tissues was used to derive the relationship to convert CT values to (I for PET. The methods were applied to three test data sets: 1) a uniform cylinder phantom, 2) the attenuation calibration phantom, and 3) a mouse injected with left bracket **1**8F right bracket FDG. The CT-based attenuation correction factors were larger in non-uniform regions of the imaging subject, e.g. mouse head, than the analytic method. The two methods had similar correction factors for regions with uniform density and detectable emission source distributions.

  6. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  7. Heterotic string construction

    International Nuclear Information System (INIS)

    Schellekens, A.N.

    1989-01-01

    In this paper an elementary introduction to the principles of four-dimensional string construction will be given. Although the emphasis is on lattice constructions, almost all results have further, and often quite straightforward generalizations to other constructions. Since heterotic strings look phenomenologically more promising than type-II theories the authors only consider the former, although everything can easily be generalized to type-II theories. Some additional aspects of lattice constructions are discussed, and an extensive review can be found

  8. Safety in construction industry

    International Nuclear Information System (INIS)

    Khan, A.M.

    1979-01-01

    Causative factors of accidents in construction industry in the context of experience of construction work of the Rajasthan Atomic Power Project are enumerated. The aspect of accident cost - direct and indirect - is discussed briefly. Setting up of a safety set-up at construction sites is emphasized and principles which should guide the accident prevention programme are spelt out. (M.G.B.)

  9. Dosimetric evaluation in heterogeneous tissue of anterior electron beam irradiation for treatment of retinoblastoma

    International Nuclear Information System (INIS)

    Kirsner, S.M.; Hogstrom, K.R.; Kurup, R.G.; Moyers, M.F.

    1987-01-01

    A dosimetric study of anterior electron beam irradiation for treatment of retinoblastoma was performed to evaluate the influence of tissue heterogeneities on the dose distribution within the eye and the accuracy of the dose calculated by a pencil beam algorithm. Film measurements were made in a variety of polystyrene phantoms and in a removable polystyrene eye incorporated into a tissue substitute phantom constructed from a human skull. Measurements in polystyrene phantoms were used to demonstrate the algorithm's ability to predict the effect of a lens block placed in the beam, as well as the eye's irregular surface shape. The eye phantom was used to measure dose distributions within the eye in both the sagittal and transverse planes in order to test the algorithm's ability to predict the dose distribution when bony heterogeneities are present. Results show (1) that previous treatment planning conclusions based on flat, uniform phantoms for central-axis depth dose are adequate; (2) that a three-dimensional heterogeneity correction is required for accurate dose calculations; and (3) that if only a two-dimensional heterogeneity correction is used in calculating the dose, it is more accurate for the sagittal than the transverse plane

  10. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  11. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  12. A Generalized Correction for Attenuation.

    Science.gov (United States)

    Petersen, Anne C.; Bock, R. Darrell

    Use of the usual bivariate correction for attenuation with more than two variables presents two statistical problems. This pairwise method may produce a covariance matrix which is not at least positive semi-definite, and the bivariate procedure does not consider the possible influences of correlated errors among the variables. The method described…

  13. Entropic corrections to Newton's law

    International Nuclear Information System (INIS)

    Setare, M R; Momeni, D; Myrzakulov, R

    2012-01-01

    In this short paper, we calculate separately the generalized uncertainty principle (GUP) and self-gravitational corrections to Newton's gravitational formula. We show that for a complete description of the GUP and self-gravity effects, both the temperature and entropy must be modified. (paper)

  14. 'Correction of unrealizable service choreographies’

    NARCIS (Netherlands)

    Mancioppi, M.

    2015-01-01

    This thesis is devoted to the detection and correction of design flaws affecting service choreographies. Service choreographies are models that specify how software services are composed in a decentralized, message-driven fashion. In particular, this work focuses on flaws that compromise the

  15. Multilingual text induced spelling correction

    NARCIS (Netherlands)

    Reynaert, M.W.C.

    2004-01-01

    We present TISC, a multilingual, language-independent and context-sensitive spelling checking and correction system designed to facilitate the automatic removal of non-word spelling errors in large corpora. Its lexicon is derived from raw text corpora, without supervision, and contains word unigrams

  16. The correct "ball bearings" data.

    Science.gov (United States)

    Caroni, C

    2002-12-01

    The famous data on fatigue failure times of ball bearings have been quoted incorrectly from Lieblein and Zelen's original paper. The correct data include censored values, as well as non-fatigue failures that must be handled appropriately. They could be described by a mixture of Weibull distributions, corresponding to different modes of failure.

  17. Interaction and self-correction

    DEFF Research Database (Denmark)

    Satne, Glenda Lucila

    2014-01-01

    and acquisition. I then criticize two models that have been dominant in thinking about conceptual competence, the interpretationist and the causalist models. Both fail to meet NC, by failing to account for the abilities involved in conceptual self-correction. I then offer an alternative account of self...

  18. CORRECTIVE ACTION IN CAR MANUFACTURING

    Directory of Open Access Journals (Sweden)

    H. Rohne

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: In this paper the important .issues involved in successfully implementing corrective action systems in quality management are discussed. The work is based on experience in implementing and operating such a system in an automotive manufacturing enterprise in South Africa. The core of a corrective action system is good documentation, supported by a computerised information system. Secondly, a systematic problem solving methodology is essential to resolve the quality related problems identified by the system. In the following paragraphs the general corrective action process is discussed and the elements of a corrective action system are identified, followed by a more detailed discussion of each element. Finally specific results from the application are discussed.

    AFRIKAANSE OPSOMMING: Belangrike oorwegings by die suksesvolle implementering van korrektiewe aksie stelsels in gehaltebestuur word in hierdie artikel bespreek. Die werk is gebaseer op ondervinding in die implementering en bedryf van so 'n stelsel by 'n motorvervaardiger in Suid Afrika. Die kern van 'n korrektiewe aksie stelsel is goeie dokumentering, gesteun deur 'n gerekenariseerde inligtingstelsel. Tweedens is 'n sistematiese probleemoplossings rnetodologie nodig om die gehalte verwante probleme wat die stelsel identifiseer aan te spreek. In die volgende paragrawe word die algemene korrektiewe aksie proses bespreek en die elemente van die korrektiewe aksie stelsel geidentifiseer. Elke element word dan in meer besonderhede bespreek. Ten slotte word spesifieke resultate van die toepassing kortliks behandel.

  19. Rank error-correcting pairs

    DEFF Research Database (Denmark)

    Martinez Peñas, Umberto; Pellikaan, Ruud

    2017-01-01

    Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...

  20. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 413: Clean Slate II Plutonium Dispersion (TTR) Tonopah Test Range, Nevada. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-05-01

    This Corrective Action Decision Document/Corrective Action Plan provides the rationale and supporting information for the selection and implementation of corrective actions at Corrective Action Unit (CAU) 413, Clean Slate II Plutonium Dispersion (TTR). CAU 413 is located on the Tonopah Test Range and includes one corrective action site, TA-23-02CS. CAU 413 consists of the release of radionuclides to the surface and shallow subsurface from the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. The CSII test was a non-nuclear detonation of a nuclear device located inside a concrete bunker covered with 2 feet of soil. To facilitate site investigation and the evaluation of data quality objectives decisions, the releases at CAU 413 were divided into seven study groups: 1 Undisturbed Areas 2 Disturbed Areas 3 Sedimentation Areas 4 Former Staging Area 5 Buried Debris 6 Potential Source Material 7 Soil Mounds Corrective action investigation (CAI) activities, as set forth in the CAU 413 Corrective Action Investigation Plan, were performed from June 2015 through May 2016. Radionuclides detected in samples collected during the CAI were used to estimate total effective dose using the Construction Worker exposure scenario. Corrective action was required for areas where total effective dose exceeded, or was assumed to exceed, the radiological final action level (FAL) of 25 millirem per year. The results of the CAI and the assumptions made in the data quality objectives resulted in the following conclusions: The FAL is exceeded in surface soil in SG1, Undisturbed Areas; The FAL is assumed to be exceeded in SG5, Buried Debris, where contaminated debris and soil were buried after the CSII test; The FAL is not exceeded at SG2, SG3, SG4, SG6, or SG7. Because the FAL is exceeded at CAU 413, corrective action is required and corrective action alternatives (CAAs) must be evaluated. For CAU 413, three CAAs were evaluated: no further action, clean closure, and

  1. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  2. Corrective Action Plan for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-05-01

    This Corrective Action Plan (CAP) has been prepared for the Roller Coaster RADSAFE Area Corrective Action Unit 407 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved Corrective Action Alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The Constituents of Concern (COCs) identified during the site characterization include plutonium, uranium, and americium. No other COCS were identified. The following closure actions will be implemented under this plan: (1) Remove and dispose of surface soils which are over three times background for the area. Soils identified for removal will be disposed of at an approved disposal facility. Excavated areas will be backfilled with clean borrow soil fi-om a nearby location. (2) An engineered cover will be constructed over the waste disposal pit area where subsurface COCS will remain. (3) Upon completion of the closure and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site. Barbed wire fencing will be installed along the perimeter of this unit. Post closure monitoring will consist of site inspections to determine the condition of the engineered cover. Any identified maintenance and repair requirements will be remedied within 90 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP.

  3. Data-driven motion correction in brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.W.

    2002-01-01

    Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of the reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Digital and physical phantom validation was performed to investigate this approach. Noisy projection data simulating at least one fully 3D patient head movement during acquisition were constructed by projecting the digital Huffman brain phantom at various orientations. Motion correction was applied to the reconstructed studies. The importance of including attenuation effects in the estimation of motion and the need for implementing an iterated correction were assessed in the process. Correction success was assessed visually for artifact reduction, and quantitatively using a mean square difference (MSD) measure. Physical Huffman phantom studies with deliberate movements introduced during the acquisition were also acquired and motion corrected. Effective artifact reduction in the simulated corrupt studies was achieved by motion correction. Typically the MSD ratio between the corrected and reference studies compared to the corrupted and reference studies was > 2. Motion correction could be achieved without inclusion of attenuation effects in the motion estimation stage, providing simpler implementation and greater efficiency. Moreover the additional improvement with multiple iterations of the approach was small. Improvement was also observed in the physical phantom data, though the technique appeared limited here by an object symmetry. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  4. On special training for correct deposition of semen.

    Science.gov (United States)

    Dyrendahl, I

    1980-11-01

    The semen volume used in AI has been reduced during recent years from 1.0-1.2 ml with fluid semen to 0.5 ml with medium straws and to 0.25 ml with ministraws. According correct deposition has become more important. Low fertility results attained by some technicians is often due to failure of precision in deposition. A special insemination syringe "Romeo" has been constructed in order to observe and correct this factor in the field work. The syringe can be fixed in the cervix after it is placed in the supposedly correct position. An instructor can then check the position, and there can be a dialogue about mistakes between instructor and technician. The instrument can also be used in the same way for training on slaughter animals of technicians who have repeatedly placed the brand mark of the ordinary searing syringe wrongly.

  5. Correcting for particle counting bias error in turbulent flow

    Science.gov (United States)

    Edwards, R. V.; Baratuci, W.

    1985-01-01

    An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed.

  6. NP-hardness of decoding quantum error-correction codes

    Science.gov (United States)

    Hsieh, Min-Hsiu; Le Gall, François

    2011-05-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  7. NP-hardness of decoding quantum error-correction codes

    International Nuclear Information System (INIS)

    Hsieh, Min-Hsiu; Le Gall, Francois

    2011-01-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  8. Moduli evolution in the presence of thermal corrections

    International Nuclear Information System (INIS)

    Barreiro, Tiago; Carlos, Beatriz de; Copeland, Edmund J.; Nunes, Nelson J.

    2008-01-01

    We study the effect of thermal corrections on the evolution of moduli in effective supergravity models. This is motivated by previous results in the literature suggesting that these corrections could alter and even erase the presence of a minimum in the zero temperature potential, something that would have disastrous consequences in these particular models. We show that, in a representative sample of flux compactification constructions, this need not be the case, although we find that the inclusion of thermal corrections can dramatically decrease the region of initial conditions for which the moduli are stabilized. Moreover, the bounds on the reheating temperature coming from demanding that the full, finite temperature potential, has a minimum can be considerably relaxed given the slow pace at which the evolution proceeds.

  9. Hydrodynamic Limit with Geometric Correction of Stationary Boltzmann Equation

    OpenAIRE

    Wu, Lei

    2014-01-01

    We consider the hydrodynamic limit of a stationary Boltzmann equation in a unit plate with in-flow boundary. We prove the solution can be approximated in $L^{\\infty}$ by the sum of interior solution which satisfies steady incompressible Navier-Stokes-Fourier system, and boundary layer with geometric correction. Also, we construct a counterexample to the classical theory which states the behavior of solution near boundary can be described by the Knudsen layer derived from the Milne problem.

  10. Sustainable construction: construction and demolition waste reconsidered.

    Science.gov (United States)

    del Río Merino, Mercedes; Izquierdo Gracia, Pilar; Weis Azevedo, Isabel Salto

    2010-02-01

    Construction activity in Europe has increased substantially in the past decade. Likewise, there has also been a commensurate rise in the generation of construction and demolition waste (C&DW). This, together with the fact that in many European countries the rate of recycling and reuse of C&DW is still quite low has engendered a serious environmental problem and a motivation to develop strategies and management plans to solve it. Due to its composition, there is a significant potential to reuse and/or recycle C&DW, and thereby, contribute to improving the sustainability of construction and development, but practical procedures are not yet widely known or practiced in the construction industry. This article (a) summarizes the different applications that are presently practiced to optimize the recovery and/or application of C&DW for reuse, and (b) proposes various measures and strategies to improve the processing of this waste. The authors suggest that to enhance environmental effectiveness, a conscious and comprehensive C&DW management plan should be implemented in each jurisdiction. More precisely, this study presents a holistic approach towards C&DW management, through which environmental benefits can be achieved through the application of new construction methods that can contribute to sustainable growth.

  11. TPX tokamak construction management

    International Nuclear Information System (INIS)

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-01-01

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly

  12. Towards green construction

    International Nuclear Information System (INIS)

    Bajracharya, Bijaya B.; Shrestha, Prasanna M.

    2000-01-01

    Sustainability is the key to any development works. In the operation phase, hydro power is the most sustainable form of energy. However construction activities for the same power station are usually far from being green. The popular myth is that construction activity converts green into grey. Despite this popular myth, construction of a hydro power project in Nepal has made the project area greener than earlier during the construction phase itself. Choice of construction technology, appropriate level of environmental impact assessment, monitoring of environmental parameters along side the construction progress followed by mitigation at the right time; launching community development programmes side by side, having environmental specification in contractual documents and self-reliance to fulfill environmental obligations by contractors itself are the key factors in the environmental management within the construction activities. The main conclusions in the paper is the need to change the way to think about the project constraints

  13. How engineering facilitates construction

    International Nuclear Information System (INIS)

    Bailey, D.T.

    1976-01-01

    During a recent survey, construction personnel at jobsites were asked, ''what are the ten most unwanted construction problems.'' One reoccurring answer was design/construction incompatibility. In fact, many designs were impractical from a construction point of view. The reasons for this problem can be identified: Once construction begins, engineering is under intense pressure to issue new drawings to allow work to progress according to schedule. Other reasons may be the relative inexperience of the design personnel in construction, changes in design criteria and delays in receipt of supplier or client information. A description is presented of ways to solve this problem by obtaining construction expertise and input into the various phases and products of the engineering work

  14. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  15. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    Plant tissue culture is a technique of culturing plant cells, tissues and organs on ... working methods (Box 2) and discovery of the need for B vita- mins and auxins for ... Kotte (Germany) reported some success with growing isolated root tips.

  16. Breast reconstruction - natural tissue

    Science.gov (United States)

    ... flap; TRAM; Latissimus muscle flap with a breast implant; DIEP flap; DIEAP flap; Gluteal free flap; Transverse upper gracilis flap; TUG; Mastectomy - breast reconstruction with natural tissue; Breast cancer - breast reconstruction with natural tissue

  17. FRD tissue archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The fishery genetics tissue collection has over 80,000 tissues stored in 95% ethanol representing fishes and invertebrates collected globally but with a focus on the...

  18. Tissue banking in australia.

    Science.gov (United States)

    Ireland, Lynette; McKelvie, Helen

    2003-01-01

    The legal structure for the regulation of tissue banking has existed for many years. In Australia, the donation of human tissue is regulated by legislation in each of the eight States and Territories. These substantially uniform Acts were passed in the late 1970's and early 1980's, based on model legislation and underpinned by the concept of consensual giving. However, it was not until the early 1990's that tissue banking came under the notice of regulatory authorities. Since then the Australian Government has moved quickly to oversee the tissue banking sector in Australia. Banked human tissue has been deemed to be a therapeutic good under the Therapeutic Goods Act 1989, and tissue banks are required to be licensed by the Therapeutic Goods Administration and are audited for compliance with the Code of Good Manufacturing Practice- Human Blood and Tissues. In addition, tissue banks must comply with a myriad of other standards, guidelines and recommendations.

  19. Breast Cancer Tissue Repository

    National Research Council Canada - National Science Library

    Iglehart, J

    1997-01-01

    The Breast Tissue Repository at Duke enters its fourth year of finding. The purpose of the Repository at Duke is to provide substantial quantities of frozen tissue for explorative molecular studies...

  20. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and