WorldWideScience

Sample records for tissue cellular subcellular

  1. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  2. Sub-cellular force microscopy in single normal and cancer cells.

    Science.gov (United States)

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cellular and subcellular distribution of BSH in human glioblastoma multiforme

    International Nuclear Information System (INIS)

    Neumann, M.; Gabel, D.

    2000-01-01

    The cellular and subcellular distribution of mercaptoundecahydrododecaborate (BSH) in seven glioblastoma multiforme tissue sections of six patients having received BSH prior to surgery was investigated by light, fluorescence and electron microscopy. With use of specific antibodies against BSH its localization could be found in tissue sections predominantly (approx. 90%) in the cytoplasm of GFAP-positive cells of all but one patient. The latter was significantly younger (33 years in contrast of 46-71 (mean 60) years). In none of the tissue sections BSH could be found to a significant amount in the cell nuclei. In contrast, electron microscopy studies show BSH as well associated with the cell membrane as with the chromatin in the nucleus. (author)

  4. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  5. Sub-cellular force microscopy in single normal and cancer cells

    International Nuclear Information System (INIS)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.; Mahmoodi, S.N.; Agah, M.

    2015-01-01

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain

  6. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC imaging method for cadmium ions (Cd2+ was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  7. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    Science.gov (United States)

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  8. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    Science.gov (United States)

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    Science.gov (United States)

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  10. Tissue and subcellular localizations of 3H-cyclosporine A in mice

    International Nuclear Information System (INIS)

    Baeckman, L.; Brandt, I.; Appelkvist, E.-L.; Dallner, G.

    1988-01-01

    The tissue and subcellular localizations of 3 H-cyclosporine A after administration to mice were determined with whole-body autoradiography and scintillation counting of lipid extracts of tissues and subcellular fractions. The radioactivity was widely distributed in the body and the pattern of distribution after oral or parenteral administration was the same, except that tissue levels were generatlly lower after oral administration. Pretreatment of the animals with a diet containing cyclosporine A for 30 days before the injection of radioactive cyclosporine A did not change the pattern of distribution substantially. No significant radioactivity was found in the central nervous system, except for the choroidal plexus and the area postrema region of the brain. In pregnant mice no passage of radioactivity from the placentas to fetuses was observed after a single injection. 3 H-cyclosporine A and/or its metabolites showed a high affinity for the lympho-myeloid tissues, with a marked long-term retention in bone marrow and lymph nodes. There was massive excretion in the intestinal tract after parenteral administration, and the liver, bile, pancreas and salivary glands contained high levels of radioactivity. In the kidney radioactivity was confined to the outer zone of the outer kidney medulla. In liver homogenates no quantitatively significant binding of 3 H-cyclosporine A and/or its metabolites to cellular molecules such as proteins, DNA, phospho- or neutral lipids was found. After lipid extraction with organic solvents, almost all radioactivity was recovered in the organic phase. (author)

  11. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  12. Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Bacquart, Thomas; Deves, Guillaume; Ortega, Richard

    2010-01-01

    Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick-Baez X-ray focusing optics that maintains high flux of incoming radiation (>10 11 ph/s) at micrometric spatial resolution (1.5x4.0 μm 2 ). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10 -15 g detection limit. μ-XANES shows that inorganic arsenite, As(OH) 3 , is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As 2 O 3 . On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH) 3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.

  13. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  14. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yu Lingfeng

    2006-03-01

    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  15. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    Science.gov (United States)

    Finch, Megan L; Passman, Adam M; Strauss, Robyn P; Yeoh, George C; Callus, Bernard A

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  16. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout.

    Science.gov (United States)

    McConnell, Gail; Trägårdh, Johanna; Amor, Rumelo; Dempster, John; Reid, Es; Amos, William Bradshaw

    2016-09-23

    Current optical microscope objectives of low magnification have low numerical aperture and therefore have too little depth resolution and discrimination to perform well in confocal and nonlinear microscopy. This is a serious limitation in important areas, including the phenotypic screening of human genes in transgenic mice by study of embryos undergoing advanced organogenesis. We have built an optical lens system for 3D imaging of objects up to 6 mm wide and 3 mm thick with depth resolution of only a few microns instead of the tens of microns currently attained, allowing sub-cellular detail to be resolved throughout the volume. We present this lens, called the Mesolens, with performance data and images from biological specimens including confocal images of whole fixed and intact fluorescently-stained 12.5-day old mouse embryos.

  17. The effects of γ-ray irradiation on the cellular and subcellular structures of apical meristem in garlic (Allium sativum) and onion (Allium cepal)

    International Nuclear Information System (INIS)

    Xi Yufang; Qian Dongmei; Bian Qijun; Ying Tiejin

    1993-01-01

    Electronic microscopic study revealed that 2 ∼ 30 krads of γ-ray irradiation to garlic and onion could cause various damages to cellular and subcellular structures of the shoot apical meristem. Among the various oganelles, the vacuoles showed the highest radio-sensitivity while mitochondria and nucleus seemed to be most resistant to irradiation. The irradiated cells did not show any visible structural damages until the dormancy ended, suggesting that metabolism played an important role in the structural damages. The study also suggested that even after the irradiation which caused intensive subcellular structural damages, the tissues could survive. However, the potency of mitosis in the apex was lost, resulting in the inhibition of sprouting

  18. Optically-controlled platforms for transfection and single- and sub-cellular surgery

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Casey, Duncan; Glückstad, Jesper

    2015-01-01

    and specificity of optical trapping in conjunction with other modalities to perform single and sub-cellular surgery. These tools form highly tuneable platforms for the delivery or removal of material from cells of interest, but can simultaneously excite fluorescent probes for imaging purposes or plasmonic...... structures for very local heating. We discuss both the history and recent applications of the field, highlighting the key findings and developments over the last 40 years of biophotonics research....

  19. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues.

    Science.gov (United States)

    Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M; Zhou, Xinchun

    2014-10-01

    Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data in benign and malignant tissues from the same organ/tissue were then compared using the Student's t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (in either the nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft

  20. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  1. Subcellular controls of mercury trophic transfer to a marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  2. Subcellular controls of mercury trophic transfer to a marine fish

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2010-01-01

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  3. Imaging of Caenorhabditis elegans samples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Filippidis, G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kouloumentas, C [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kapsokalyvas, D [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Voglis, G [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Tavernarakis, N [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Papazoglou, T G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece)

    2005-08-07

    Two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) are relatively new promising tools for the imaging and mapping of biological structures and processes at the microscopic level. The combination of the two image-contrast modes in a single instrument can provide unique and complementary information concerning the structure and the function of tissues and individual cells. The extended application of this novel, innovative technique by the biological community is limited due to the high price of commercial multiphoton microscopes. In this study, a compact, inexpensive and reliable setup utilizing femtosecond pulses for excitation was developed for the TPEF and SHG imaging of biological samples. Specific cell types of the nematode Caenorhabditis elegans were imaged. Detection of the endogenous structural proteins of the worm, which are responsible for observation of SHG signals, was achieved. Additionally, the binding of different photosensitizers in the HL-60 cell line was investigated, using non-linear microscopy. The sub-cellular localization of photosensitizers of a new generation, very promising for photodynamic therapy (PDT) (Hypericum perforatum L. extracts) was achieved. The sub-cellular localization of these novel photosensitizers was linked with their photodynamic action during PDT, and the possible mechanisms for cell killing have been elucidated.

  4. The cellular and subcellular localization of zinc transporter 7 in the mouse spinal cord

    Science.gov (United States)

    The present work addresses the cellular and subcellular localization of the zinc transporter 7 (ZNT7, SLC30a7) protein and the distribution of zinc ions (Zn2+) in the mouse spinal cord. Our results indicated that the ZNT7 immunoreactive neurons were widely distributed in the Rexed’s laminae of the g...

  5. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    Directory of Open Access Journals (Sweden)

    Evgeny Bychkov

    Full Text Available G protein-coupled receptor kinases (GRKs and arrestins mediate desensitization of G protein-coupled receptors (GPCR. Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  6. Sub-cellular damage by copper in the cnidarian Zoanthus robustus.

    Science.gov (United States)

    Grant, A; Trompf, K; Seung, D; Nivison-Smith, L; Bowcock, H; Kresse, H; Holmes, S; Radford, J; Morrow, P

    2010-09-01

    Sessile organisms may experience chronic exposure to copper that is released into the marine environment from antifoulants and stormwater runoff. We have identified the site of damage caused by copper to the symbiotic cnidarian, Zoanthus robustus (Anthozoa, Hexacorallia). External changes to the zoanthids were apparent when compared with controls. The normally flexible bodies contracted and became rigid. Histological examination of the zoanthid tissue revealed that copper had caused sub-cellular changes to proteins within the extracellular matrix (ECM) of the tubular body. Collagen in the ECM and the internal septa increased in thickness to five and seven times that of controls respectively. The epithelium, which stained for elastin, was also twice as thick and tough to cut, but exposure to copper did not change the total amount of desmosine which is found only in elastin. We conclude that copper stimulated collagen synthesis in the ECM and also caused cross-linking of existing proteins. However, there was no expulsion of the symbiotic algae (Symbiodinium sp.) and no effect on algal pigments or respiration (44, 66 and 110 microg Cu L(-1)). A decrease in net photosynthesis was observed only at the highest copper concentration (156 microg Cu L(-1)). These results show that cnidarians may be more susceptible to damage by copper than their symbiotic algae. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Quantifying the Sub-Cellular Distributions of Gold Nanospheres Uptaken by Cells through Stepwise, Site-Selective Etching.

    Science.gov (United States)

    Xia, Younan; Huo, Da

    2018-04-10

    A quantitative understanding of the sub-cellular distributions of nanoparticles uptaken by cells is important to the development of nanomedicine. With Au nanospheres as a model system, here we demonstrate, for the first time, how to quantify the numbers of nanoparticles bound to plasma membrane, accumulated in cytosol, and entrapped in lysosomes, respectively, through stepwise, site-selective etching. Our results indicate that the chance for nanoparticles to escape from lysosomes is insensitive to the presence of targeting ligand although ligand-receptor binding has been documented as a critical factor in triggering internalization. Furthermore, the presence of serum proteins is shown to facilitate the binding of nanoparticles to plasma membrane lacking the specific receptor. Collectively, these findings confirm the potential of stepwise etching in quantitatively analyzing the sub-cellular distributions of nanoparticles uptaken by cells in an effort to optimize the therapeutic effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  9. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    Science.gov (United States)

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular

  10. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  11. Parasites modify sub-cellular partitioning of metals in the gut of fish

    Energy Technology Data Exchange (ETDEWEB)

    Oyoo-Okoth, Elijah, E-mail: elijaoyoo2009@gmail.com [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Osano, Odipo [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Kraak, Michiel H.S. [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Gichuki, John; Ogwai, Caleb [Kenya Marine and Fisheries Research Institute, P.O. Box 1881, Kisumu (Kenya)

    2012-01-15

    Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria.

  12. X-ray micro-tomography for investigations of brain tissues on cellular level

    Science.gov (United States)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based

  13. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  14. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    International Nuclear Information System (INIS)

    Sappal, Ravinder; Burka, John; Dawson, Susan; Kamunde, Collins

    2009-01-01

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 μg l -1 waterborne Zn, 1500 or 4500 μg g -1 dietary Zn, and a combination of 150 μg l -1 waterborne and 1500 μg g -1 dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways

  15. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder; Burka, John; Dawson, Susan [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Kamunde, Collins [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada)], E-mail: ckamunde@upei.ca

    2009-03-09

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 {mu}g l{sup -1} waterborne Zn, 1500 or 4500 {mu}g g{sup -1} dietary Zn, and a combination of 150 {mu}g l{sup -1} waterborne and 1500 {mu}g g{sup -1} dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways.

  16. Extraction protocol and liquid chromatography/tandem mass spectrometry method for determining micelle-entrapped paclitaxel at the cellular and subcellular levels: Application to a cellular uptake and distribution study.

    Science.gov (United States)

    Zheng, Nan; Lian, Bin; Du, Wenwen; Xu, Guobing; Ji, Jiafu

    2018-01-01

    Paclitaxel-loaded polymeric micelles (PTX-PM) are commonly used as tumor-targeted nanocarriers and display outstanding antitumor features in clinic, but its accumulation and distribution in vitro are lack of investigation. It is probably due to the complex micellar system and its low concentration at the cellular or subcellular levels. In this study, we developed an improved extraction method, which was a combination of mechanical disruption and liquid-liquid extraction (LLE), to extract the total PTX from micelles in the cell lysate and subcellular compartments. An ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) method was optimized to detect the low concentration of PTX at cellular and subcellular levels simultaneously, using docetaxel as internal standard (IS). The method was proved to release PTX totally from micelles (≥95.93%) with a consistent and reproducible extraction recovery (≥75.04%). Good linearity was obtained at concentrations ranging from 0.2 to 20ng/mL. The relative error (RE%) for accuracy varied from 0.68 to 7.56%, and the intra- and inter-precision (relative standard deviation, RSD%) was less than 8.64% and 13.14%, respectively. This method was fully validated and successfully applied to the cellular uptake and distribution study of PTX-loaded PLGA-PEG micelles in human breast cancer cells (MCF-7). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Radioimmunoassay of steroids in homogenates and subcellular fractions of testicular tissue

    International Nuclear Information System (INIS)

    Campo, S.; Nicolau, G.; Pellizari, E.; Rivarola, M.A.

    1977-01-01

    Radioimmunoassays for testosterone (T), dihydrotestosterone (DHT) and 5alpha-androstan-3alpha, 17beta-diol (DIOL) in homogenates of whole testis, interstitial tissue and seminiferous tubules as well as subcellular fractions of the latter were developed. Steroids were extracted with acetone, submitted to several solvent partitions and isolated by a celite: propylene glycol: ethylene glycol column chromatography. Anit-T serum was used for the assay of T and DTH, and a specific anti-Diol serum for DIOL. Subcellular fractions were separated by differential centrifugation. The nuclear fraction was purified by centrifugation in a dense sucrose buffer followed by several washings. Losses were corrected according to recovery of DNA. Optimal conditions for purification of acetone extracts at minimal losses were established. Validation of the method was studied testing linear regression of logit-log transformations of standard curves and parallelism with unknowns. T was the steroid present in higher concentrations in all samples studied. It is concluded that the present method for determination of endogenous androgen concentrations in testicular tissue is valid and might be useful in studing testicular function. (orig.) [de

  18. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    Science.gov (United States)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  19. WE-DE-202-02: Are Track Structure Simulations Truly Needed for Radiobiology at the Cellular and Tissue Levels?

    International Nuclear Information System (INIS)

    Stewart, R.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  20. WE-DE-202-02: Are Track Structure Simulations Truly Needed for Radiobiology at the Cellular and Tissue Levels?

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R. [University of Washington (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  1. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    Science.gov (United States)

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  2. Two-Photon Irradiation of an Intracellular Singlet Oxygen Photosensitizer: Achieving Localized Sub-Cellular Excitation in Spatially-Resolved Experiments

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Breitenbach, Thomas; Redmond, Robert W.

    2010-01-01

    The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defi ned by the dimensions of the laser...

  3. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43.

    Directory of Open Access Journals (Sweden)

    Merlin Nanayakkara

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP gene was identified as strongly associated with CD using genome-wide association studies (GWAS. The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD and controls, without and with treatment with A-gliadin peptide P31-43. We observed a "CD cellular phenotype" in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

  4. Investigation of the subcellular architecture of L7 neurons of Aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns.

    Science.gov (United States)

    Lee, Choong H; Flint, Jeremy J; Hansen, Brian; Blackband, Stephen J

    2015-06-10

    Magnetic resonance microscopy (MRM) is a non-invasive diagnostic tool which is well-suited to directly resolve cellular structures in ex vivo and in vitro tissues without use of exogenous contrast agents. Recent advances in its capability to visualize mammalian cellular structure in intact tissues have reinvigorated analytical interest in aquatic cell models whose previous findings warrant up-to-date validation of subcellular components. Even if the sensitivity of MRM is less than other microscopic technologies, its strength lies in that it relies on the same image contrast mechanisms as clinical MRI which make it a unique tool for improving our ability to interpret human diagnostic imaging through high resolution studies of well-controlled biological model systems. Here, we investigate the subcellular MR signal characteristics of isolated cells of Aplysia californica at an in-plane resolution of 7.8 μm. In addition, direct correlation and positive identification of subcellular architecture in the cells is achieved through well-established histology. We hope this methodology will serve as the groundwork for studying pathophysiological changes through perturbation studies and allow for development of disease-specific cellular modeling tools. Such an approach promises to reveal the MR contrast changes underlying cellular mechanisms in various human diseases, for example in ischemic stroke.

  5. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography.

    Directory of Open Access Journals (Sweden)

    Mustafa Mir

    Full Text Available Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM. In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT, to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner.

  6. Seasonal variations in hepatic Cd and Cu concentrations and in the sub-cellular distribution of these metals in juvenile yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Kraemer, Lisa D.; Campbell, Peter G.C.; Hare, Landis

    2006-01-01

    Temporal fluctuations in metal (Cd and Cu) concentrations were monitored over four months (May to August) in the liver of juvenile yellow perch (Perca flavescens) sampled from four lakes situated along a metal concentration gradient in northwestern Quebec: Lake Opasatica (reference lake, low metal concentrations), Lake Vaudray (moderate metal concentrations) and lakes Osisko and Dufault (high metal levels). The objectives of this study were to determine if hepatic metal concentrations and metal-handling strategies at the sub-cellular level varied seasonally. Our results showed that Cd and Cu concentrations varied most, in both absolute and relative values, in fish with the highest hepatic metal concentrations, whereas fish sampled from the reference lake did not show any significant variation. To examine the sub-cellular partitioning of these two metals, we used a differential centrifugation technique that allowed the separation of cellular debris, metal detoxified fractions (heat-stable proteins such as metallothionein) and metal sensitive fractions (heat-denaturable proteins (HDP) and organelles). Whereas Cd concentrations in organelle and HDP fractions were maintained at low concentrations in perch from Lakes Opasatica and Vaudray, concentrations in these sensitive fractions were higher and more variable in perch from Lakes Dufault and Osisko, suggesting that there may be some liver dysfunction in these two fish populations. Similarly, Cu concentrations in these sensitive fractions were higher and more variable in perch from the two most Cu-contaminated lakes (Dufault and Osisko) than in perch from the other two lakes, suggesting a breakdown of homeostatic control over this metal. These results suggest not only that metal concentrations vary seasonally, but also that concentrations vary most in fish from contaminated sites. Furthermore, at the sub-cellular level, homeostatic control of metal concentrations in metal-sensitive fractions is difficult to maintain in

  7. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  8. Optogenetic Tools for Subcellular Applications in Neuroscience.

    Science.gov (United States)

    Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter

    2017-11-01

    The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High-resolution sub-cellular imaging by correlative NanoSIMS and electron microscopy of amiodarone internalisation by lung macrophages as evidence for drug-induced phospholipidosis.

    Science.gov (United States)

    Jiang, Haibo; Passarelli, Melissa K; Munro, Peter M G; Kilburn, Matt R; West, Andrew; Dollery, Colin T; Gilmore, Ian S; Rakowska, Paulina D

    2017-01-26

    Correlative NanoSIMS and EM imaging of amiodarone-treated macrophages shows the internalisation of the drug at a sub-cellular level and reveals its accumulation within the lysosomes, providing direct evidence for amiodarone-induced phospholipidosis. Chemical fixation using tannic acid effectively seals cellular membranes aiding intracellular retention of diffusible drugs.

  10. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    Science.gov (United States)

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  11. Calculation of neutron radiation energy deposition distribution in subcellular parts of tissue using recombination chamber microdosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    Recombination chamber microdosimetry was used as an instrument for determination of local neutron radiation energy deposition distribution. The method allows to simulate of subcellular regions of tissue of the order of 70 nm in size. The results obtained qualitatively correspond to relationship between biological efficiency and neutron energy, and show regular differences of distributions achieved by the recombination method and distributions measured using tissue equivalent proportional counters (TEPC), which simulates greater tissue regions of 1 μm in size

  12. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    Science.gov (United States)

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  13. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P O

    1964-12-15

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied.

  14. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Wester, P.O.

    1964-12-01

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied

  15. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  16. Preliminary study of selenium and mercury distribution in some porcine tissues and their subcellular fractions by NAA and HG-AFS

    International Nuclear Information System (INIS)

    Jiujiang Zhao; Chunying Chen; Peiqun Zhang; Zhifang Chai

    2004-01-01

    Selenium and mercury distribution in porcine tissues and their subcellular fractions from a mercury-polluted area of Guizhou Province and from a not mercury-exposed area of Beijing in China have been studied with neutron activation analysis and hydride generation-atomic fluorescence spectrometry. Both the selenium and mercury levels are higher in Guizhou porcine tissues and their subcellular fractions than those in Beijing. These two elements are highly enriched in kidney and liver of Guizhou pig, while selenium is only enriched in the kidney of Beijing pig. Exposure of mercury may result in redistribution of Se and Hg in vivo. The Hg/Se molar ratio of the subcellular fractions is very low in the case of relatively low mercury level and gradually reaches to a high constant value with increasing level of mercury, which implies that selenium and mercury may form some special complexes in the organisms. (author)

  17. Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool.

    Science.gov (United States)

    Tserevelakis, George J; Psycharakis, Stylianos; Resan, Bojan; Brunner, Felix; Gavgiotaki, Evagelia; Weingarten, Kurt; Filippidis, George

    2012-02-01

    Femtosecond laser assisted nanosurgery of microscopic biological specimens is a relatively new technique which allows the selective disruption of sub-cellular structures without causing any undesirable damage to the surrounding regions. The targeted structures have to be stained in order to be clearly visualized for the nanosurgery procedure. However, the validation of the final nanosurgery result is difficult, since the targeted structure could be simply photobleached rather than selectively destroyed. This fact comprises a main drawback of this technique. In our study we employed a multimodal system which integrates non-linear imaging modalities with nanosurgery capabilities, for the selective disruption of sub-cellular structures in HeLa cancer cells. Third Harmonic Generation (THG) imaging modality was used as a tool for the identification of structures that were subjected to nanosurgery experiments. No staining of the biological samples was required, since THG is an intrinsic property of matter. Furthermore, cells' viability after nanosurgery processing was verified via Two Photon Excitation Fluorescence (TPEF) measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    2016-06-30

    Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of

  19. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level

    International Nuclear Information System (INIS)

    Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain

    2005-01-01

    The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a

  20. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A; Benabdallah, N; Desbree, A [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France)

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres of unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S

  1. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yun [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: > The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. > The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. > Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  2. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    International Nuclear Information System (INIS)

    Wu Yun; Wang Wenxiong

    2011-01-01

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: → The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. → The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. → Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  3. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    Science.gov (United States)

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  4. Imaging of single cells and tissue using MeV ions

    International Nuclear Information System (INIS)

    Watt, F.; Bettiol, A.A.; Kan, J.A. van; Ynsa, M.D.; Ren Minqin; Rajendran, R.; Cui Huifang; Sheu, F.-S.; Jenner, A.M.

    2009-01-01

    With the attainment of sub-100 nm high energy (MeV) ion beams, comes the opportunity to image cells and tissue at nano-dimensions. The advantage of MeV ion imaging is that the ions will penetrate whole cells, or relatively thick tissue sections, without any significant loss of resolution. In this paper, we demonstrate that whole cells (cultured N2A neuroblastoma cells ATCC) and tissue sections (rabbit pancreas tissue) can be imaged at sub-100 nm resolutions using scanning transmission ion microscopy (STIM), and that sub-cellular structural details can be identified. In addition to STIM imaging we have also demonstrated for the first time, that sub-cellular proton induced fluorescence imaging (on cultured N2A neuroblastoma cells ATCC) can also be carried out at resolutions of 200 nm, compared with 300-400 nm resolutions achieved by conventional optical fluorescence imaging. The combination of both techniques offers a potentially powerful tool in the quest for elucidating cell function, particularly when it should be possible in the near future to image down to sub-50 nm.

  5. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images.

    Science.gov (United States)

    Cornish, Toby C; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K

    2015-01-01

    The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  6. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    Science.gov (United States)

    Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.

    2015-01-01

    Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380

  7. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity, and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent, subcellular site and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissues followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. No evidence was obtained for the production of volatile Cd complexes in tobacco

  8. Characterization of aquaporin 4 protein expression and localization in tissues of the dogfish (Squalus acanthias.

    Directory of Open Access Journals (Sweden)

    Christopher P Cutler

    2012-02-01

    Full Text Available The role of aquaporin water channels in Elasmobanchs such as the dogfish Squalus acanthias is completely unknown. This investigation determines the expression and cellular and sub-cellular localization of AQP4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2. Western blots using the AQP4/1 antibody showed two bands (35.5kDa and 49.5kDa in most tissues similar to mammals. Liver and rectal gland showed further bands. However, unlike in mammals, AQP4 protein was expressed in all tissues including respiratory tract and liver. The AQP4/2 antibody appeared much less specific in blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments. AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the cell including the nucleus. In rectal gland and cardiac stomach AQP4 was localized to secretary tubules but again AQP/1 and AQP/2 showed different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane and sometimes cytoplasmic distribution. Two types of large mitochondria-rich cells are known to exist in elasmobranches, that express either Na,K ATPase or V-type ATPase. Using Na,K-ATPase and V-type ATPase antibodies, AQP4 was colocalized with these proteins using the AQP4/1 antibody. Results show AQP4 is expressed in both (and all branchial Na,K ATPase and V-type ATPase

  9. MECHANISMS OF DAMAGING EFFECT OF MANGENESE IN TOXIC CONCENTRATIONS ON CELLULAR AND SUBCELLULAR LEVELS

    Directory of Open Access Journals (Sweden)

    Goncharenko A. V.

    2012-11-01

    Full Text Available Influence of subtoxic concentration of manganese chloride in dose equal to LD 50 on condition of plasmatic membranes (model: erythrocytes and functional activity of cell power (model: the isolated liver mitochondrion of rats was studied. It was established that manganese chloride in fixed concentration caused authentic augmentation of sorption capacity of erythrocytes towards alcian blue, influenced increasing of their spontaneous haemolysis and activation of peroxide oxidation of lipids. In experiment on the isolated mitochondrion it was proved that manganese chloride caused dissociation of an oxidizing phosphorusling and complete inhibition of respiration in concentrations of 3 and 4,5mM. These dependences testify that subtoxic concentration of manganese can damage the cell energy. Thus, this pilot research indicated damaging effect of manganese on cellular (erythrocytes and subcellular (mitochondrion levels which are realized through external functioning of membrane structures and deprived them from restoration.

  10. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    Science.gov (United States)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, pElevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  11. Role of cellular adhesions in tissue dynamics spectroscopy

    Science.gov (United States)

    Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David

    2014-02-01

    Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.

  12. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    Directory of Open Access Journals (Sweden)

    Toby C Cornish

    2015-01-01

    Full Text Available Background: The human protein atlas (HPA is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10′s of 1000′s of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC and/or smooth muscle cell (SMCs specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  13. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  14. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters

    DEFF Research Database (Denmark)

    Sezgin, Erdinc; Betul Can, Fatma; Schneider, Falk

    2016-01-01

    Cholesterol is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of cholesterol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently...... for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase separated giant unilamellar vesicles (GUVs) and giant plasma membrane vesicles (GPMVs); 2) cellular trafficking, specifically subcellular localization in Niemann-Pick C...... in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent cholesterol analogs in visualizing cellular cholesterol dynamics....

  15. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    Science.gov (United States)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  16. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    Science.gov (United States)

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  17. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-07-23

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... documents issued from the Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and...

  18. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-12-31

    ...] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide... updates on guidance documents issued from the Office of Cellular, Tissue, and Gene Therapies, Center for...

  19. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  20. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2012-10-30

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice AGENCY: Food and Drug... notice of a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee. This meeting was... announced that a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee would be held on...

  1. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  2. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    Science.gov (United States)

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  3. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  4. WE-EF-BRA-02: A Monte Carlo Study of Macroscopic and Microscopic Dose Descriptors for Kilovoltage Cellular Dosimetry

    International Nuclear Information System (INIS)

    Oliver, P; Thomson, R

    2015-01-01

    Purpose: To investigate how doses to cellular (microscopic) targets depend on cell morphology, and how cellular doses relate to doses to bulk tissues and water for 20 to 370 keV photon sources using Monte Carlo (MC) simulations. Methods: Simulation geometries involve cell clusters, single cells, and single nuclear cavities embedded in various healthy and cancerous bulk tissue phantoms. A variety of nucleus and cytoplasm elemental compositions are investigated. Cell and nucleus radii range from 5 to 10 microns and 2 to 9 microns, respectively. Doses to water and bulk tissue cavities are compared to nucleus and cytoplasm doses. Results: Variations in cell dose with simulation geometry are most pronounced for lower energy sources. Nuclear doses are sensitive to the surrounding geometry: the nuclear dose in a multicell model differs from the dose to a cavity of nuclear medium in an otherwise homogeneous bulk tissue phantom by more than 7% at 20 keV. Nuclear doses vary with cell size by up to 20% at 20 keV, with 10% differences persisting up to 90 keV. Bulk tissue and water cavity doses differ from cellular doses by up to 16%. MC results are compared to cavity theory predictions; large and small cavity theories qualitatively predict nuclear doses for energies below and above 50 keV, respectively. Burlin’s (1969) intermediate cavity theory best predicts MC results with an average discrepancy of 4%. Conclusion: Cellular doses vary as a function of source energy, subcellular compartment size, elemental composition, and tissue morphology. Neither water nor bulk tissue is an appropriate surrogate for subcellular targets in radiation dosimetry. The influence of microscopic inhomogeneities in the surrounding environment on the nuclear dose and the importance of the nucleus as a target for radiation-induced cell death emphasizes the potential importance of cellular dosimetry for understanding radiation effects. Funded by the Natural Sciences and Engineering Research Council

  5. Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues.

    Science.gov (United States)

    Panieri, Emiliano; Millia, Carlo; Santoro, Massimo M

    2017-08-01

    Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H 2 O 2 ) levels and glutathione redox potential (E GSH ), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  7. Thyroid states regulate subcellular glucose phosphorylation activity in male mice

    Directory of Open Access Journals (Sweden)

    Flavia Letícia Martins Peçanha

    2017-07-01

    Full Text Available The thyroid hormones (THs, triiodothyronine (T3 and thyroxine (T4, are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 μg/g, i.p. during 21 days mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10, gastrocnemius (369.2% ± 112.4, n = 10 and heart (142.2% ± 13.6, n = 10 muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 μg/g, i.p. did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways.

  8. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent of, subcellular site of and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissue followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. Particulate materials containing other cell components were also labeled. Of the 109 Cd supplied to plants, 2 to 10% was recovered in both cytosol preparations and in particulate materials. Cytosol contained proteinaceous--Cd complexes, free metal and low molecular weight Cd complexes. Labeling of protoplasts gave similar results. No evidence was obtained for the production of volatile Cd complexes in tobacco

  9. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-21

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... June 29, 2011, the committee will discuss cellular and gene therapy products for the treatment of...

  10. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    Science.gov (United States)

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs

  11. Combined phase and X-Ray fluorescence imaging at the sub-cellular level

    International Nuclear Information System (INIS)

    Kosior, Ewelina

    2013-01-01

    This work presents some recent developments in the field of hard X-ray imaging applied to biomedical research. As the discipline is evolving quickly, new questions appear and the list of needs becomes bigger. Some of them are dealt with in this manuscript. It has been shown that the ID22NI beamline of the ESRF can serve as a proper experimental setup to investigate diverse aspects of cellular research. Together with its high spatial resolution, high flux and high energy range the experimental setup provides bigger field of view, is less sensitive to radiation damages (while taking phase contrast images) and suits well chemical analysis with emphasis on endogenous metals (Zn, Fe, Mn) but also with a possibility for exogenous one's like these found in nanoparticles (Au, Pt, Ag) study. Two synchrotron-based imaging techniques, fluorescence and phase contrast imaging were used in this research project. They were correlated with each other on a number of biological cases, from bacteria E.coli to various cells (HEK 293, PC12, MRC5VA, red blood cells). The explorations made in the chapter 5 allowed preparation of more established and detailed analysis, described in the next chapter where both techniques, X-ray fluorescence and phase contrast imaging, were exploited in order to access absolute metal projected mass fraction in a whole cell. The final image presents for the first time true quantitative information at the sub-cellular level, not biased by the cell thickness. Thus for the first time a fluorescence map serves as a complete quantitative image of a cell without any risk of misinterpretation. Once both maps are divided by each other pixel by pixel (fluorescence map divided by the phase map) they present a complete and final result of the metal (Zn in this work) projected mass fraction in ppm of dry weight. For the purpose of this calculation the analysis was extended to calibration (non-biological) samples. Polystyrene spheres of a known diameter and known

  12. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?

    Science.gov (United States)

    Domenech, Maribella; Polo-Corrales, Lilliana; Ramirez-Vick, Jaime E; Freytes, Donald O

    2016-12-01

    Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.

  13. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    Science.gov (United States)

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  14. Dual-channel (green and red) fluorescence microendoscope with subcellular resolution

    Science.gov (United States)

    de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.

    2018-02-01

    Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.

  15. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Science.gov (United States)

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  16. Effects of tritiated water ingestion on mice: II. Damage at cellular vis-a-vis subcellular level monitored up to four generations

    International Nuclear Information System (INIS)

    Srivastava, P.N.; Sharan, R.N.; Pozzi, L.

    1983-01-01

    Damage at cellular level is measured using colony forming units in spleen (CFU-S) technique while that at subcellular level by DNA unwinding technique. The damage is monitored up to four generations in Swiss albino mice. The results show drastically reduced colony forming ability in mice bone marrow cells (BMC). On plotting survival fractions (percent of control) for BMC against generations of mice, the plateau is found around 50% survival. The role of DNA in colony forming ability of BMC is tested. The results indicate that, at least, initial impairment of colony ability is not DNA dependent but related to some other factor(s)

  17. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    Science.gov (United States)

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  18. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...

  19. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    KAUST Repository

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  20. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  1. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  2. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  3. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of...

  4. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  5. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  6. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Kumar, P R Anil; Varma, H K; Kumary, T V

    2007-01-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function

  7. Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy

    Science.gov (United States)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy-combined with cell fractionation-to accurately measure PSDs over a wide size range: from 10 nm to 3000nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.

  8. A new method of high-speed cellular protein separation and insight into subcellular compartmentalization of proteins.

    Science.gov (United States)

    Png, Evelyn; Lan, WanWen; Lazaroo, Melisa; Chen, Silin; Zhou, Lei; Tong, Louis

    2011-05-01

    Transglutaminase (TGM)-2 is a ubiquitous protein with important cellular functions such as regulation of cytoskeleton, cell adhesion, apoptosis, energy metabolism, and stress signaling. We identified several proteins that may interact with TGM-2 through a discovery-based proteomics method via pull down of flag-tagged TGM-2 peptide fragments. The distribution of these potential binding partners of TGM-2 was studied in subcellular fractions separated by density using novel high-speed centricollation technology. Centricollation is a compressed air-driven, low-temperature stepwise ultracentrifugation procedure where low extraction volumes can be processed in a relatively short time in non-denaturing separation conditions with high recovery yield. The fractions were characterized by immunoblots against known organelle markers. The changes in the concentrations of the binding partners were studied in cells expressing short hairpin RNA against TGM-2 (shTG). Desmin, mitochondrial intramembrane cleaving protease (PARL), protein tyrosine kinase (NTRK3), and serine protease (PRSS3) were found to be less concentrated in the 8.5%, 10%, 15%, and 20% sucrose fractions (SFs) from the lysate of shTG cells. The Golgi-associated protein (GOLGA2) was predominantly localized in 15% SF fraction, and in shTG, this shifted to predominantly in the 8.5% SF and showed larger aggregations in the cytosol of cells on immunofluorescent staining compared to control. Based on the relative concentrations of these proteins, we propose how trafficking of such proteins between cellular compartments can occur to regulate cell function. Centricollation is useful for elucidating biological function at the molecular level, especially when combined with traditional cell biology techniques.

  9. Copper and zinc contamination in oysters: subcellular distribution and detoxification.

    Science.gov (United States)

    Wang, Wen-Xiong; Yang, Yubo; Guo, Xiaoyu; He, Mei; Guo, Feng; Ke, Caihuan

    2011-08-01

    Metal pollution levels in estuarine and coastal environments have been widely reported, but few documented reports exist of severe contamination in specific environments. Here, we report on a metal-contaminated estuary in Fujian Province, China, in which blue oysters (Crassostrea hongkongensis) and green oysters (Crassostrea angulata) were discovered to be contaminated with Cu and other metals. Extraordinarily high metal concentrations were found in the oysters collected from the estuary. Comparison with historical data suggests that the estuary has recently been contaminated with Cr, Cu, Ni, and Zn. Metal concentrations in blue oysters were as high as 1.4 and 2.4% of whole-body tissue dry wt for Cu and Zn, respectively. Cellular debris was the main subcellular fraction binding the metals, but metal-rich granules were important for Cr, Ni, and Pb. With increasing Cu accumulation, its partitioning into the cytosolic proteins decreased. In contrast, metallothionein-like proteins increased their importance in binding with Zn as tissue concentrations of Zn increased. In the most severely contaminated oysters, only a negligible fraction of their Cu and Zn was bound with the metal-sensitive fraction, which may explain the survival of oysters in such contaminated environments. Copyright © 2011 SETAC.

  10. Plasma effects on subcellular structures

    International Nuclear Information System (INIS)

    Gweon, Bomi; Kim, Dan Bee; Jung, Heesoo; Choe, Wonho; Kim, Daeyeon; Shin, Jennifer H.

    2010-01-01

    Atmospheric pressure helium plasma treated human hepatocytes exhibit distinctive zones of necrotic and live cells separated by a void. We propose that plasma induced necrosis is attributed to plasma species such as oxygen radicals, charged particles, metastables and/or severe disruption of charged cytoskeletal proteins. Interestingly, uncharged cytoskeletal intermediate filaments are only minimally disturbed by plasma, elucidating the possibility of plasma induced electrostatic effects selectively destroying charged proteins. These bona fide plasma effects, which inflict alterations in specific subcellular structures leading to necrosis and cellular detachment, were not observed by application of helium flow or electric field alone.

  11. Subcellular metabolic contrast in living tissue using dynamic full field OCT (D-FFOCT) (Conference Presentation)

    Science.gov (United States)

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, Claude A.

    2016-03-01

    Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the fix and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterer clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and could lead to better medical diagnosis.

  12. Abnormal subcellular distribution of GLUT4 protein in obese and insulin-treated diabetic female dogs

    Directory of Open Access Journals (Sweden)

    A.M. Vargas

    2004-07-01

    Full Text Available The GLUT4 transporter plays a key role in insulin-induced glucose uptake, which is impaired in insulin resistance. The objective of the present study was to investigate the tissue content and the subcellular distribution of GLUT4 protein in 4- to 12-year-old control, obese and insulin-treated diabetic mongrel female dogs (4 animals per group. The parametrial white adipose tissue was sampled and processed to obtain both plasma membrane and microsome subcellular fractions for GLUT4 analysis by Western blotting. There was no significant difference in glycemia and insulinemia between control and obese animals. Diabetic dogs showed hyperglycemia (369.9 ± 89.9 mg/dl. Compared to control, the plasma membrane GLUT4, reported per g tissue, was reduced by 55% (P < 0.01 in obese dogs, and increased by 30% (P < 0.05 in diabetic dogs, and the microsomal GLUT4 was increased by ~45% (P < 0.001 in both obese and diabetic animals. Considering the sum of GLUT4 measured in plasma membrane and microsome as total cellular GLUT4, percent GLUT4 present in plasma membrane was reduced by ~65% (P < 0.001 in obese compared to control and diabetic animals. Since insulin stimulates GLUT4 translocation to the plasma membrane, percent GLUT4 in plasma membrane was divided by the insulinemia at the time of tissue removal and was found to be reduced by 75% (P < 0.01 in obese compared to control dogs. We conclude that the insulin-stimulated translocation of GLUT4 to the cell surface is reduced in obese female dogs. This probably contributes to insulin resistance, which plays an important role in glucose homeostasis in dogs.

  13. Automated and Adaptable Quantification of Cellular Alignment from Microscopic Images for Tissue Engineering Applications

    Science.gov (United States)

    Xu, Feng; Beyazoglu, Turker; Hefner, Evan; Gurkan, Umut Atakan

    2011-01-01

    Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R2=0.92). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization. PMID:21370940

  14. Subcellular partitioning kinetics, metallothionein response and oxidative damage in the marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Thiago Lopes [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, Tânia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo (Norway); Durigon, Emerson Giuliani [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, Maria João, E-mail: mbebian@ualg.pt [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2016-06-01

    The environmental health impact of metal-based nanomaterials is of emerging concern, but their metabolism and detoxification pathways in marine bioindicator species remain unclear. This study investigated the role of subcellular partitioning kinetics, metallothioneins (MTs) response and oxidative damage (lipid peroxidation – LPO) in the marine mussel Mytilus galloprovincialis exposed to CdTe quantum dots (QDs) in comparison with its dissolved counterpart. Mussels were exposed to QDs and dissolved Cd for 21 days at 10 μg Cd L{sup −1} followed by a 50 days depuration. Higher Cd concentrations were detected in fractions containing mitochondria, nucleus and lysosomes, suggesting potential subcellular targets of QDs toxicity in mussel tissues. Tissue specific metabolism patterns were observed in mussels exposed to both Cd forms. Although MT levels were directly associated with Cd in both forms, QDs subcellular partitioning is linked to biologically active metal (BAM), but no increase in LPO occurred, while in the case of dissolved Cd levels are in the biologically detoxified metal (BDM) form, indicating nano-specific effects. Mussel gills showed lower detoxification capability of QDs, while the digestive gland is the major tissue for storage and detoxification of both Cd forms. Both mussel tissues were unable to completely eliminate the Cd accumulated in the QDs form (estimated half-life time > 50 days), highlighting the potential source of Cd and QDs toxicity for human and environmental health. Results indicate tissue specific metabolism patterns and nano-specific effects in marine mussel exposed to QDs. - Highlights: • Subcellular partitioning and MT response are Cd form, tissue and time dependent. • Tissue specific metabolism of Cd-based quantum dots (QDs) in marine mussels. • QDs are slower biologically detoxified when compared to dissolved Cd. • Subcellular partitioning and biomarker responses indicate nano-specific effects. • Subcellular

  15. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    Science.gov (United States)

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  17. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thit, Amalie, E-mail: athitj@ruc.dk [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Ramskov, Tina, E-mail: tramskov@hotmail.com [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Croteau, Marie-Noële, E-mail: mcroteau@usgs.gov [Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Selck, Henriette [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark)

    2016-11-15

    Highlights: • L. variegatus was exposed to sediment spiked with either aqueous Cu or nanoparticulate CuO. • Both aqueous and nanoparticulate Cu were marginally accumulated by L. variegatus. • Elimination of Cu accumulated from both forms was limited. • The subcellular distribution of accumulated Cu varied between Cu forms. • The use of a tracer, greater exposure concentration and duration are recommended. - Abstract: The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched {sup 65}Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus

  18. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  19. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue

    NARCIS (Netherlands)

    Schafer, M.J.; White, T.A.; Evans, G.; Tonne, J.M.; Verzosa, G.C.; Stout, M.B.; Mazula, D.L.; Palmer, A.K.; Baker, D.J.; Jensen, M.D.; Torbenson, M.S.; Miller, J.D.; Ikeda, Y.; Tchkonia, T.; Deursen, J.M.A. van; Kirkland, J.L.; LeBrasseur, N.K.

    2016-01-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the

  20. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts

    Science.gov (United States)

    Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita

    2017-12-01

    Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.

  1. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    Science.gov (United States)

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  2. Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity

    Directory of Open Access Journals (Sweden)

    Lewis Victoria

    2012-04-01

    Full Text Available Abstract Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres conformers of the normal cellular prion protein (PrPC, with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels.

  3. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    Science.gov (United States)

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  4. MNK1 expression increases during cellular senescence and modulates the subcellular localization of hnRNP A1

    International Nuclear Information System (INIS)

    Ziaei, Samira; Shimada, Naoko; Kucharavy, Herman; Hubbard, Karen

    2012-01-01

    Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA-binding protein that modulates splice site usage, polyadenylation, and cleavage efficiency. This protein has also been implicated in mRNA stability and transport from the nucleus. We have previously demonstrated that hnRNP A1 had diminished protein levels and showed cytoplasmic accumulation in senescent human diploid fibroblasts. Furthermore, we have shown that inhibition of p38 MAPK, a key regulator of cellular senescence, elevated hnRNP A1 protein levels and inhibited hnRNP A1 cytoplasmic localization. In this study, we have explored the possible involvement of MNK1, one of the downstream effector of p38 MAPK, in the regulation of hnRNP A1. We have demonstrated that pharmacological inhibition of MNK1 by CGP 57380 decreased the phosphorylation levels of hnRNP A1 in young and senescent fibroblast cells and blocked the cytoplasmic accumulation of hnRNP A1 in senescent cells. In addition, MNK1 formed a complex with hnRNP A1 in vivo. The expression levels of MNK1, phospho-MNK1, and phospho-eIF4E proteins were found to be elevated in senescent cells. These data suggest that MNK1 regulates the phosphorylation and the subcellular distribution of hnRNP A1 and that MNK1 may play a role in the induction of senescence. -- Highlights: ► MNK1 and not MAPKAPK2 phosphorylates hnRNP A1. ► MNK1 has elevated levels in senescent cells, this has not been reported previously. ► MNK1 activity induces cytoplasmic accumulation of hnRNP A1 in senescent cells. ► Altered cytoplasmic localization of hnRNP A1 may alter gene expression patterns. ► Our studies may increase our understanding of RNA metabolism during cellular aging.

  5. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle.

    Science.gov (United States)

    Peterson, Soren J; Krasnow, Mark A

    2015-01-15

    To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Simulation of electrochemical processes in cardiac tissue based on cellular automaton

    International Nuclear Information System (INIS)

    Avdeev, S A; Bogatov, N M

    2014-01-01

    A new class of cellular automata using special accumulative function for nonuniformity distribution is presented. Usage of this automata type for simulation of excitable media applied to electrochemical processes in human cardiac tissue is shown

  7. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  8. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.

    Science.gov (United States)

    Kartasalo, Kimmo; Pölönen, Risto-Pekka; Ojala, Marisa; Rasku, Jyrki; Lekkala, Jukka; Aalto-Setälä, Katriina; Kallio, Pasi

    2015-10-26

    Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least partly on manual operation. We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated general good agreement between computational and manual results while also revealing notable expert-to-expert variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to demonstrate the software in an actual experiment and observed changes in cellular orientation in response to stretching. CytoSpectre, a versatile, easy

  9. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  10. Adaptation of the deoxyglucose method for use at cellular level: histological processing of the central nervous system for high resolution radio-autography

    International Nuclear Information System (INIS)

    Des Rosiers, M.H.; Descarries, Laurent

    1978-01-01

    Vascular perfusion of all products required for primary fixation, postfixation, dehydration and embedding of nervous tissue in Epon permits radio-autographic detection of radioactivity accumulated in the central nervous system after intravenous injection of [ 3 H]deoxyglucose. This histological technique should allow application of the deoxyglucose method at cellular if not subcellular level, since a high proportion of the tracer appears to be retained in situ in specimens adequately preserved for light and electron microscope radio-autography [fr

  11. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    Science.gov (United States)

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  13. Investigation of tissue cellularity at the tip of the core biopsy needle with optical coherence tomography.

    Science.gov (United States)

    Iftimia, Nicusor; Park, Jesung; Maguluri, Gopi; Krishnamurthy, Savitri; McWatters, Amanda; Sabir, Sharjeel H

    2018-02-01

    We report the development and the pre-clinical testing of a new technology based on optical coherence tomography (OCT) for investigating tissue composition at the tip of the core biopsy needle. While ultrasound, computed tomography, and magnetic resonance imaging are routinely used to guide needle placement within a tumor, they still do not provide the resolution needed to investigate tissue cellularity (ratio between viable tumor and benign stroma) at the needle tip prior to taking a biopsy core. High resolution OCT imaging, however, can be used to investigate tissue morphology at the micron scale, and thus to determine if the biopsy core would likely have the expected composition. Therefore, we implemented this capability within a custom-made biopsy gun and evaluated its capability for a correct estimation of tumor tissue cellularity. A pilot study on a rabbit model of soft tissue cancer has shown the capability of this technique to provide correct evaluation of tumor tissue cellularity in over 85% of the cases. These initial results indicate the potential benefit of the OCT-based approach for improving the success of the core biopsy procedures.

  14. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    Science.gov (United States)

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with

  15. Subcellular localization of the delayed rectifier K(+) channels KCNQ1 and ERG1 in the rat heart

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Borger; Møller, Morten; Knaus, Hans-Günther

    2003-01-01

    In the heart, several K(+) channels are responsible for the repolarization of the cardiac action potential, including transient outward and delayed rectifier K(+) currents. In the present study, the cellular and subcellular localization of the two delayed rectifier K(+) channels, KCNQ1 and ether...

  16. The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer

    International Nuclear Information System (INIS)

    Akkiprik, Mustafa; Hu, Limei; Sahin, Aysegul; Hao, Xishan; Zhang, Wei

    2009-01-01

    Insulin-like growth factor binding protein 5 (IGFBP5) has been shown to be associated with breast cancer metastasis in clinical marker studies. However, a major difficulty in understanding how IGFBP5 functions in this capacity is the paradoxical observation that ectopic overexpression of IGFBP5 in breast cancer cell lines results in suppressed cellular proliferation. In cancer tissues, IGFBP5 resides mainly in the cytoplasm; however, in transfected cells, IGFBP5 is mainly located in the nucleus. We hypothesized that subcellular localization of IGFBP5 affects its functions in host cells. To test this hypothesis, we generated wild-type and mutant IGFBP5 expression constructs. The mutation occurs within the nuclear localization sequence (NLS) of the protein and is generated by site-directed mutagenesis using the wild-type IGFBP5 expression construct as a template. Next, we transfected each expression construct into MDA-MB-435 breast cancer cells to establish stable clones overexpressing either wild-type or mutant IGFBP5. Functional analysis revealed that cells overexpressing wild-type IGFBP5 had significantly lower cell growth rate and motility than the vector-transfected cells, whereas cells overexpressing mutant IGFBP5 demonstrated a significantly higher ability to proliferate and migrate. To illustrate the subcellular localization of the proteins, we generated wild-type and mutant IGFBP5-pDsRed fluorescence fusion constructs. Fluorescence microscopy imaging revealed that mutation of the NLS in IGFBP5 switched the accumulation of IGFBP5 from the nucleus to the cytoplasm of the protein. Together, these findings imply that the mutant form of IGFBP5 increases proliferation and motility of breast cancer cells and that mutation of the NLS in IGFBP5 results in localization of IGFBP5 in the cytoplasm, suggesting that subcellular localization of IGFBP5 affects its cell growth and migration functions in the breast cancer cells

  17. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  18. The incorporation of labelled amino acids into the subcellular fractions of the rabbit brain

    International Nuclear Information System (INIS)

    Ogrodnik, W.

    1980-01-01

    Radioactive amino acids were injected into the fourth ventriculum of adult rabbits. After 3, 6 and 13 hours the animals were killed and tissue subcellular fractions were prepared from their brains. Nucleic acids were extracted and quantitatively determined from nucleic, myelin, mitochondrial, microsomal and cytoplasmic fractions. The radioactivity was determined in the protein and nucleic acid fractions. It was found out that the incorporation of radioactive amino acids increased in relation to time. In the analyzed subcellular fractions a very rapid incorporation of glutamic acid and leucine into cytoplasmic proteins was observed. The chromatographic analysis of the nucleic acids showed that radioactivity in the nucleic acid fractions depended on a radioactive protein contamination. Radioactive aminoacyl-tRNA was not found in the nucleic acid fractions, extracted from different subcellular fractions. (author)

  19. Cellular vs. organ approaches to dose estimates

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.; Sastry, K.S.R.

    1986-01-01

    The cellular distribution of tissue-incorporated radionuclides has generally been neglected in the dosimetry of internal emitters. Traditional dosimetry assumes homogeneous distribution of radionuclides in organs of interest, while presuming that the ranges of particulate radiations are large relative to typical cell diameters. The macroscopic distribution of dose thus calculated has generally served as a sufficient approximation for the energy deposited within radiosensitive sites. However, with the increasing utilization of intracellular agents, such as thallium-201, it has become necessary to examine the microscopic distribution of energy at the cellular level. This is particularly important in the instance of radionuclides that decay by electron capture or by internal conversion with the release of Auger and Coster-Kronig electrons. In many instances, these electrons are released as a dense shower of low-energy particles with ranges of subcellular dimensions. The high electron density in the immediate vicinity of the decaying atom produces a focal deposition of energy that far exceeds the average dose taken over several cell diameters. These studies point out the increasing need to take into account the microscopic distribution of dose on the cellular level as radionuclides distributed in cells become more commonplace, especially if the decay involves electron capture or internal conversion. As radiotracers are developed for the measurement of intracellular functions these factors should be given greater consideration. 16 references, 5 figures, 5 tables

  20. Zn subcellular distribution in liver of goldfish (carassius auratus with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification.

    Directory of Open Access Journals (Sweden)

    Wenhong Fan

    Full Text Available Zinc Oxide Nanoparticles (ZnO NPs have attracted increasing concerns because of their widespread use and toxic potential. In this study, Zn accumulations in different tissues (gills, liver, muscle, and gut of goldfish (Carassius auratus after exposure to ZnO NPs were studied in comparison with bulk ZnO and Zn(2+. And the technique of subcellular partitioning was firstly used on the liver of goldfish to study the hepatic accumulation of ZnO NPs. The results showed that at sublethal Zn concentration (2 mg/L, bioaccumulation in goldfish was tissue-specific and dependent on the exposure materials. Compared with Zn(2+, the particles of bulk ZnO and the ZnO NPs appeared to aggregate in the environmentally contacted tissues (gills and gut, rather than transport to the internal tissues (liver and muscle. The subcellular distributions of liver differed for the three exposure treatments. After ZnO NPs exposure, Zn percentage in metal-rich granule (MRG increased significantly, and after Zn(2+ exposure, it increased significantly in the organelles. Metallothionein-like proteins (MTLP were the main target for Zn(2+, while MRG played dominant role for ZnO NPs. The different results of subcellular distributions revealed that metal detoxification mechanisms of liver for ZnO NPs, bulk ZnO, and Zn(2+ were different. Overall, subcellular partitioning provided an interesting start to better understanding of the toxicity of nano- and conventional materials.

  1. Intracellular delivery of nanomaterials for sub-cellular imaging and tracking of biomolecules

    Science.gov (United States)

    Medepalli, Krishna Kiran

    Nanomaterials have many intriguing applications in biology and medicine. Unique properties such as enhanced electrical properties, increased chemical reactivity and resistance to degradation, novel optical properties and comparable size to that of biological systems have led to their use in various biomedical applications. The most important applications of nanomaterials for medicine are in drug delivery and imaging. This research focuses on utilizing the biocompatibility of single walled Carbon nanotubes (SWCNTs) and optical properties colloidal quantum dots (QDs) for cellular drug delivery and imaging of biomolecules. The first part of this research deals with single walled carbon nanotubes which are excellent candidates for targeted drug delivery applications due their unique structural and functional properties. However, prior to their use in therapeutics, their biocompatibility needs to be thoroughly investigated. The objectives of this research were to establish the biocompatibility of SWCNTs and demonstrate their use as drug delivery carriers into cells. Blood, a living tissue, is chosen as the biological system as it contains various cells which can potentially interact with SWCNTs during the delivery mechanism. The interactions of these cells in the blood (specifically white blood cells or leukocytes) with the SWCNTs provide vital information regarding the immune response of the host to the nanotubes. This research investigates the immune response of white blood cells due to SWCNTs via (a) direct interaction---presence of nanotubes in the blood and, (b) indirect interaction---presentation of nanotubes by antigen-presenting-cells to white blood cells. These two interactions recreate the innate and adaptive immune responses occurring in the body to any foreign substance. SWCNTs are functionalized with single stranded DNA (ss-DNA), which serves as a dispersant of nanotubes as well as a backbone for further attachment of other biomolecules of interest

  2. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Raimundo, J. [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia, 1449-006 Lisbon (Portugal)], E-mail: jraimundo@ipimar.pt; Vale, C. [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia, 1449-006 Lisbon (Portugal); Duarte, R.; Moura, I. [REQUIMTE - CQFB, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, Qta Torre, 2829-516 Monte da Caparica (Portugal)

    2008-02-15

    Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment.

  3. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal)

    International Nuclear Information System (INIS)

    Raimundo, J.; Vale, C.; Duarte, R.; Moura, I.

    2008-01-01

    Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment

  4. In vivo cellular imaging with microscopes enabled by MEMS scanners

    Science.gov (United States)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  5. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Chou

    Full Text Available One of the fundamental goals in proteomics and cell biology is to identify the functions of proteins in various cellular organelles and pathways. Information of subcellular locations of proteins can provide useful insights for revealing their functions and understanding how they interact with each other in cellular network systems. Most of the existing methods in predicting plant protein subcellular localization can only cover three or four location sites, and none of them can be used to deal with multiplex plant proteins that can simultaneously exist at two, or move between, two or more different location sits. Actually, such multiplex proteins might have special biological functions worthy of particular notice. The present study was devoted to improve the existing plant protein subcellular location predictors from the aforementioned two aspects. A new predictor called "Plant-mPLoc" is developed by integrating the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify plant proteins among the following 12 location sites: (1 cell membrane, (2 cell wall, (3 chloroplast, (4 cytoplasm, (5 endoplasmic reticulum, (6 extracellular, (7 Golgi apparatus, (8 mitochondrion, (9 nucleus, (10 peroxisome, (11 plastid, and (12 vacuole. Compared with the existing methods for predicting plant protein subcellular localization, the new predictor is much more powerful and flexible. Particularly, it also has the capacity to deal with multiple-location proteins, which is beyond the reach of any existing predictors specialized for identifying plant protein subcellular localization. As a user-friendly web-server, Plant-mPLoc is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to

  6. Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses

    International Nuclear Information System (INIS)

    Perceval, Olivier; Couillard, Yves; Pinel-Alloul, Bernadette; Giguere, Anik; Campbell, Peter G.C.

    2004-01-01

    The use of biomarkers to assess the impacts of contaminants on aquatic ecosystems has noticeably increased over the past few years. Few of these studies, however, have contributed to the prediction of ecologically significant effects (i.e., at the population or community levels). The present field study was designed to evaluate the potential of metallothionein (MT) and sub-cellular metal partitioning measurements for predicting toxic effects at higher levels of the biological organization in freshwater bivalves (Pyganodon grandis) chronically exposed to Cd. For that purpose, we quantitatively sampled P. grandis populations in the littoral zone of nine lakes on the Precambrian Canadian Shield during two consecutive summers (1998 and 1999); lakes were characterized by contrasting Cd levels but similar trophic status. We tested relationships between the population status of P. grandis (i.e., growth parameters, density, biomass, secondary production, turnover ratio and cumulative fecundity) and (i) ambient Cd concentrations, (ii) sub-organismal responses (MT concentrations in the gill cytosol of individuals and Cd concentrations in three metal-ligand pools identified as M-HMW, the high molecular weight pool, M-MT, the metallothionein-like pool and M-LMW, the low molecular weight pool) and (iii) ecological confounding factors (food resources, presence of host fishes for the obligatory parasitic larval stage of P. grandis). Our results show that littoral density, live weight, dry viscera biomass, production and cumulative fecundity decreased with increasing concentrations of the free-cadmium ion in the environment (Pearson's r ranging from -0.63 to -0.78). On the other hand, theoretical maximum shell lengths (L ∞ ) in our populations were related to both the dissolved Ca concentration and food quality (sestonic C and N concentrations). Overall, Cd concentrations in the gill cytosolic HMW pool of the individual molluscs were the biomarker response that was most

  7. Tissue distribution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus

    International Nuclear Information System (INIS)

    Correa, Jose Dias; Ramos da Silva, Miguel; Bastos da Silva, Antonio Carlos; Araujo de Lima, Silene Maria; Malm, Olaf; Allodi, Silvana

    2005-01-01

    The essential trace elements Cr and Mn are toxic at high concentrations and information about low concentration is insufficient in the literature. In polluted mangroves, the crab Ucides cordatus can represent a useful tool to assess information on the potential impact of trace elements like Cr and Mn on the environment, since this species is comestible and thus, commercially negotiated. Therefore, U. cordatus crabs were exposed in vivo to different concentrations of Cr and Mn solved in seawater and had their tissue distribution and subcellular deposits evaluated. The gill, hepatopancreas and muscle concentrations were determined by atomic absorption spectroscopy and the results showed that Cr and Mn presented the highest values in the gills rather than in the hepatopancreas and muscular tissue. Electron microscopy and analytical X-ray microanalysis revealed Cr precipitates on the gill surface, co-localized with epiphyte bacteria. In addition, since Cr and Mn did not equally accumulate in most of the tissues studied, glycemic rate of animals, which received injections of extracts of eyestalks of the contaminated crabs, were measured in order to evaluate whether the studied concentrations of Cr and Mn could produce any metabolic alteration. The results indicated that extracts of the eyestalks of crabs submitted to Cr and Mn salts and injected into normal crabs markedly influenced crustacean hyperglycemic hormone synthesis and/or release. The results are discussed with respect to sensitivity of the employed methods and the possible significance of the concentrations of Cr and Mn in the organisms

  8. Dosimetric characterization of radionuclides for systemic tumor therapy: Influence of particle range, photon emission, and subcellular distribution

    International Nuclear Information System (INIS)

    Uusijaervi, Helena; Bernhardt, Peter; Ericsson, Thomas; Forssell-Aronsson, Eva

    2006-01-01

    Various radionuclides have been proposed for systemic tumor therapy. However, in most dosimetric analysis of proposed radionuclides the charged particles are taken into consideration while the potential photons are ignored. The photons will cause undesirable irradiation of normal tissue, and increase the probability of toxicity in, e.g., the bone marrow. The aim of this study was to investigate the dosimetric properties according to particle range, photon emission, and subcellular radionuclide distribution, of a selection of radionuclides used or proposed for radionuclide therapy, and to investigate the possibility of dividing radionuclides into groups according to their dosimetric properties. The absorbed dose rate to the tumors divided by the absorbed dose rate to the normal tissue (TND) was estimated for different tumor sizes in a mathematical model of the human body. The body was simulated as a 70-kg ellipsoid and the tumors as spheres of different sizes (1 ng-100 g). The radionuclides were either assumed to be uniformly distributed throughout the entire tumor and normal tissue, or located in the nucleus or the cytoplasm of the tumor cells and on the cell membrane of the normal cells. Fifty-nine radionuclides were studied together with monoenergetic electrons, positrons, and alpha particles. The tumor and normal tissue were assumed to be of water density. The activity concentration ratio between the tumor and normal tissue was assumed to be 25. The radionuclides emitting low-energy electrons combined with a low photon contribution, and the alpha emitters showed high TND values for most tumor sizes. Electrons with higher energy gave reduced TND values for small tumors, while a higher photon contribution reduced the TND values for large tumors. Radionuclides with high photon contributions showed low TND value for all tumor sizes studied. The radionuclides studied could be divided into four main groups according to their TND values: beta emitters, Auger electron

  9. Effects of copper on the sabellid polychaete, Eudistylia vancouveri. II. copper accumulation and tissue injury in the branchial crown

    Energy Technology Data Exchange (ETDEWEB)

    Young, J S [Pacific Northwest Lab., Sequim, WA; Adee, R R; Piscopo, I; Buschbom, R L

    1981-01-01

    Copper in seawater caused injury to the radioles (gills) of the sabellid polychaete, Eudistylia vancouveri. Light and electron microscopy showed the loss of cellular adhesion and the structural derangement that lead to cell necrosis and death. The progression of injury was related to the uptake of copper into the tissues. Copper was found by X-ray microanalysis to be localized subcellularly in membrane-bound vesicles that are similar to lysosomes. Cell breakdown may result from lysosmal labilization.

  10. Diffusion-weighted imaging for the cellularity assessment and matrix characterization of soft tissue tumour.

    Science.gov (United States)

    Robba, Tiziana; Chianca, Vito; Albano, Domenico; Clementi, Valeria; Piana, Raimondo; Linari, Alessandra; Comandone, Alessandro; Regis, Guido; Stratta, Maurizio; Faletti, Carlo; Borrè, Alda

    2017-11-01

    To evaluate whether apparent diffusion coefficient (ADC) of diffusion-weighted imaging (DWI) is able to investigate the histological features of soft tissue tumours. We reviewed MRIs of soft tissue tumours performed from 2012 to 2015 to calculate the average ADCs. We included 46 patients (27 male; mean age: 57 years, range 12-85 years) with histologically proven soft tissue tumours (10 benign, 2 intermediate 34 malignant) grouped into eight tumour type classes. An experienced pathologist assigned a semi-quantitative cellularity score (very high, high, medium and low) and tumour grading. The t test, ANOVA and linear regression were used to correlate ADC with clinicopathological data. Approximate receiver operating characteristic curves were created to predict possible uses of ADC to differentiate benign from malignant tumours. There was a significant difference (p < 0.01) in ADCs between these three groups excluding myxoid sarcomas. A significant difference was also evident between the tumour type classes (p < 0.001), grade II and III myxoid lesions (p < 0.05), tumour grading classes (p < 0.001) and cellularity scores classes (p < 0.001), with the lowest ADCs in the very high cellularity. While the linear regression analysis showed a significant relationship between ADC and tumour cellularity (r = 0.590, p ≤ 0.05) and grading (r = 0.437, p ≤ 0.05), no significant relationship was found with age, gender, tumour size and histological subtype. An optimal cut-off ADC value of 1.45 × 10 -3 mm 2 /s with 76.8% accuracy was found to differentiate benign from malignant tumours. DWI may offer adjunctive information about soft tissue tumours, but its clinical role is still to be defined.

  11. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2003-12-01

    Full Text Available Abstract Background Little is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively. Results We investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin. Conclusions Our results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The

  12. Differential uptake and oxidative stress response in zebrafish fed a single dose of the principal copper and zinc enriched sub-cellular fractions of Gammarus pulex

    International Nuclear Information System (INIS)

    Khan, Farhan R.; Bury, Nicolas R.; Hogstrand, Christer

    2010-01-01

    The sub-cellular compartmentalisation of trace metals and its effect on trophic transfer and toxicity in the aquatic food chain has been a subject of growing interest. In the present study, the crustacean Gammarus pulex was exposed to either 11 μg Cu l -1 , added solely as the enriched stable isotope 65 Cu, or 660 μg Zn l -1 , radiolabeled with 2MBq 65 Zn, for 16 days. Post-exposure the heat stable cytosol containing metallothionein-like proteins (MTLP) and a combined granular and exoskeletal (MRG + exo) fractions were isolated by differential centrifugation, incorporated into gelatin and fed to zebrafish as a single meal. Assimilation efficiency (AE) and intestinal lipid peroxidation, as malondialdehyde (MDA) were measured. There was a significant difference (p 65 Cu, although the results pointed towards greater bioavailability of the MTLP fraction compared to MRG + exo during the slow elimination phase (24-72 h) these results were not significant (p = 0.155). Neither zinc feed provoked a lipid peroxidation response in the intestinal tissue of zebrafish compared to control fish (gelatin fed), but both 65 Cu labeled feeds did. The greater effect was exerted by the MRG + exo (2.96 ± 0.29 nmol MDA mg protein -1 ) feed which three-fold greater than control (p -1 , p 109 Cd labeled G. pulex fractions were fed to zebrafish. Thus it appears that when a metal (Cu or Cd) has the potential to cause cytotoxicity via lipid peroxidation, a feed consisting of a largely unavailable fraction (MRG + exo) causes a greater intestinal stress response than the more bioavailable (MTLP) feed.

  13. Cellular and tissue expression of DAPIT, a phylogenetically conserved peptide

    Directory of Open Access Journals (Sweden)

    H. Kontro

    2012-05-01

    Full Text Available DAPIT (Diabetes Associated Protein in Insulin-sensitive Tissues is a small, phylogenetically conserved, 58 amino acid peptide that was previously shown to be down-regulated at mRNA level in insulin-sensitive tissues of type 1 diabetes rats. In this study we characterize a custom made antibody against DAPIT and confirm the mitochondrial presence of DAPIT on cellular level. We also show that DAPIT is localized in lysosomes of HUVEC and HEK 293T cells. In addition, we describe the histological expression of DAPIT in several tissues of rat and man and show that it is highly expressed especially in cells with high aerobic metabolism and epithelial cells related to active transport of nutrients and ions. We propose that DAPIT, in addition to indicated subunit of mitochondrial F-ATPase, is also a subunit of lysosomal V-ATPase suggesting that it is a common component in different proton pumps.

  14. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation.

    Science.gov (United States)

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. © 2016 Neve et al.; Published by Cold Spring Harbor Laboratory Press.

  15. CellMap visualizes protein-protein interactions and subcellular localization

    Science.gov (United States)

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  16. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  17. An improved procedure for subcellular spatial alignment during live-cell CLEM.

    Directory of Open Access Journals (Sweden)

    Benjamin S Padman

    Full Text Available Live-cell correlative light and electron microscopy (CLEM offers unique insights into the ultrastructure of dynamic cellular processes. A critical and technically challenging part of CLEM is the 3-dimensional relocation of the intracellular region of interest during sample processing. We have developed a simple CLEM procedure that uses toner particles from a laser printer as orientation marks. This facilitates easy tracking of a region of interest even by eye throughout the whole procedure. Combined with subcellular fluorescence markers for the plasma membrane and nucleus, the toner particles allow for precise subcellular spatial alignment of the optical and electron microscopy data sets. The toner-based reference grid is printed and transferred onto a polymer film using a standard office printer and laminator. We have also designed a polymer film holder that is compatible with most inverted microscopes, and have validated our strategy by following the ultrastructure of mitochondria that were selectively photo-irradiated during live-cell microscopy. In summary, our inexpensive and robust CLEM procedure simplifies optical imaging, without limiting the choice of optical microscope.

  18. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  19. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    International Nuclear Information System (INIS)

    Subhash, Chandra

    2008-01-01

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  20. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions

    Directory of Open Access Journals (Sweden)

    Loewe Axel

    2015-09-01

    Full Text Available Vernakalant is a new antiarrhythmic agent for the treatment of atrial fibrillation. While it has proven to be effective in a large share of patients in clinical studies, its underlying mode of action is not fully understood. In this work, we aim to link experimental data from the subcellular, tissue, and system level using an in-silico approach. A Hill’s equation-based drug model was extended to cover the frequency dependence of sodium channel block. Two model variants were investigated: M1 based on subcellular data and M2 based on tissue level data. 6 action potential (AP markers were evaluated regarding their dose, frequency and substrate dependence. M1 comprising potassium, sodium, and calcium channel block reproduced the reported prolongation of the refractory period. M2 not including the effects on potassium channels reproduced reported AP morphology changes on the other hand. The experimentally observed increase of ERP accompanied by a shortening of APD90 was not reproduced. Thus, explanations for the drug-induced changes are provided while none of the models can explain the effects in their entirety. These results foster the understanding of vernakalant’s cellular mode of action and point out relevant gaps in our current knowledge to be addressed in future in-silico and experimental research on this aspiring antiarrhythmic agent.

  1. A positional code and anisotropic forces control tissue remodeling in Drosophila

    Science.gov (United States)

    Zallen, Jennifer

    A major challenge in developmental biology is to understand how tissue-scale changes in organism structure arise from events that occur on a cellular and molecular level. We are using cell biological, biophysical, and quantitative live-embryo imaging approaches to understand how genes encode the forces that shape tissues, and to identify the mechanisms that modulate cell behavior in response to local forces. In many animals, the elongated head-to-tail body axis is achieved by rapid and coordinated movements of hundreds of cells. We found that in the fruit fly, these cell movements are regulated by subcellular asymmetries in the localization of proteins that generate contractile and adhesive forces between cells. Asymmetries in the force-generating machinery are in turn controlled by a positional code of spatial information provided by an ancient family of Toll-related receptors that are widely used for pathogen recognition by the innate immune system. I will describe how this spatial system systematically orients local cell movements and collective rosette-like clusters in the Drosophila embryo. Rosettes have now also been shown to shape the body axis in chicks, frogs, and mice, demonstrating that rosette behaviors are a general mechanism linking cellular asymmetry to tissue reorganization.

  2. Cellular and molecular screening of connective tissue dysplasia in adolescent athletes (pilot study

    Directory of Open Access Journals (Sweden)

    M. V. Dvornichenko

    2017-01-01

    Full Text Available The purpose of the study is to evaluate the cellular and molecular parameters of bone remodeling in the blood as potential markers of undifferentiated forms of connective tissue dysplasiaMaterials and methods. The structural and functional status of cellular elements of in vitro culturing of mononuclear leukocytes of peripheral blood in adolescent athletes connected with phenotypic manifestations of undifferentiated connective tissue dysplasia (UCTD were investigated. 25 pupils of sport schools from 10–14 years old (main disciplines: figure skating, gymnastics, athletics were examined with the help of express analysis. The average age of the examined adolescents was (12,0 ± 1,7 years. Clinical examination of adolescents allowed ranking the UCTD signs on a scale of 4–11,5 points.Results. A comparison of questionnaire survey results and an evaluation of bone remodeling distant markers allowed the revelation of 2 groups in the distribution of adolescent athletes: those with minimal signs of UCTD (scores lesser than 7 points – 10 pupils, and those with expressed UCTD phenotype (scores are equal or more than 7 points –15 pupils. Significant statistical decrease in the content of collagen type I degradation products (CrossLaps (by 80% and ionized calcium (by 5% has been determined in the peripheral blood of adolescent athletes with expressed UCTD phenotype. In conditions of short-term 72-h cultivation of mononuclear leukocytes in the presence of a 3D matrix imitating the properties of the mineral substance of the regenerating bone tissue, morphofunctional features of cellular reaction in adolescent athletes with clinical manifestations of UCTD, as well the heterogeneity of the cell population associated with the appearance of cells with an osteoblast-like phenotype in the blood have been revealed. The results of investigation propose the use of distant cellular and molecular parameters of bone remodeling to screen the mechanisms and dynamics

  3. Organ accumulation and subcellular location of Cicer arietinum ST1 protein.

    Science.gov (United States)

    Albornos, Lucía; Cabrera, Javier; Hernández-Nistal, Josefina; Martín, Ignacio; Labrador, Emilia; Dopico, Berta

    2014-07-01

    The ST (ShooT Specific) proteins are a new family of proteins characterized by a signal peptide, tandem repeats of 25/26 amino acids, and a domain of unknown function (DUF2775), whose presence is limited to a few families of dicotyledonous plants, mainly Fabaceae and Asteraceae. Their function remains unknown, although involvement in plant growth, fruit morphogenesis or in biotic and abiotic interactions have been suggested. This work is focused on ST1, a Cicer arietinum ST protein. We established the protein accumulation in different tissues and organs of chickpea seedlings and plants and its subcellular localization, which could indicate the possible function of ST1. The raising of specific antibodies against ST1 protein revealed that its accumulation in epicotyls and radicles was related to their elongation rate. Its pattern of tissue location in cotyledons during seed formation and early seed germination, as well as its localization in the perivascular fibres of epicotyls and radicles, indicated a possible involvement in seed germination and seedling growth. ST1 protein appears both inside the cell and in the cell wall. This double subcellular localization was found in every organ in which the ST1 protein was detected: seeds, cotyledons and seedling epicotyls and radicles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Subcellular distribution of zinc in the benign and malignant human prostate

    International Nuclear Information System (INIS)

    Leake, A.; Chrisholm, G.D.; Busuttil, A.; Habib, F.K

    1984-01-01

    The subcellular distribution of zinc and its interaction with androgens has been examined in the benign and malignant human prostate. Endogenously, most of the zinc was associated with the nuclear fraction but signigicant concentrations were also found in the cytosol. Furthermore, the epithelium contained more zinc than that found in either the stroma or the intact gland. Zinc concentrations were lower in the subcellular fractions of the cancerous tissue when compared to hyperplastic specimens. In vitro uptake of zinc into prostatic homogenates was rapid and at equilibrium the binding was stable for both the 4degC and the 37degC incubations. At low zinc concentrations (<5mM) the uptake was higher in the nucleus, whereas at higher concentraions, the cancerous tissue exhibited a greater capacity for the metal which was predominantly retained by the cytosol. Our data suggest the presence of a saturable zinc retention mechanism in the nucleus. The zinc uptake was found to be independent of any added androgen. In contrast, the total androgen uptake by the prostate was significantly enhanced by the addition of zinc. This effect was not due to increases in the nuclear and cytosolic receptor binding since zinc inhibited the binding of the androgen to these receptors. (author)

  5. The cellular distribution of histone H5 in embryonic and adult tissues of Xenopus laevis and chicken

    NARCIS (Netherlands)

    Moorman, A. F.; de Boer, P. A.; Lamers, W. H.; Charles, R.

    1986-01-01

    The cellular distribution of histone H5 in embryonic and adult tissues of Xenopus laevis and chicken has been established with monoclonal antibodies to histone H5. Both in Xenopus and in chicken, the protein has presumably a more widespread cellular distribution than hitherto expected but is absent

  6. Changes in Subcellular Distribution of n-Octanoyl or n-Decanoyl Ghrelin in Ghrelin-Producing Cells

    OpenAIRE

    Nishi, Yoshihiro; Mifune, Hiroharu; Yabuki, Akira; Tajiri, Yuji; Hirata, Rumiko; Tanaka, Eiichiro; Hosoda, Hiroshi; Kangawa, Kenji; Kojima, Masayasu

    2013-01-01

    Background: The enzyme ghrelin O-acyltransferase (GOAT) catalyzes the acylation of ghrelin. The molecular form of GOAT, together with its reaction in vitro, has been reported previously. However, the sub-cellular processes governing the acylation of ghrelin remain to be elucidated.Methods: Double immunoelectron microscopy was used to examine changes in the relative proportions of secretory granules containing n-octanoyl ghrelin (C8-ghrelin) or n-decanoyl ghrelin (C10-ghrelin) in ghrelin-pro...

  7. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  8. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy.

    Science.gov (United States)

    Nie, Y T; Wu, Y; Fu, F M; Lian, Y E; Zhuo, S M; Wang, C; Chen, J X

    2015-04-01

    Multiphoton microscopy has become a novel biological imaging technique that allows cellular and subcellular microstructure imaging based on two-photon excited fluorescence and second harmonic generation. In this work, we used multiphoton microscopy to obtain the high-contrast images of human normal breast tissue and two main histologic types of fibroadenoma (intracanalicular, pericanalicular). Moreover, quantitative image analysis was performed to characterize the changes of collagen morphology (collagen content, collagen orientation). The results show that multiphoton microscopy combined with quantitative method has the ability to identify the characteristics of fibroadenoma including changes of the duct architecture and collagen morphology in stroma. With the advancement of multiphoton microscopy, we believe that the technique has great potential to be a real-time histopathological diagnostic tool for intraoperative detection of fibroadenoma in the future. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. Metabolism of polybrominated diphenyl ethers and tetrabromobisphenol A by fish liver subcellular fractions in vitro.

    Science.gov (United States)

    Shen, Mengnan; Cheng, Jie; Wu, Ruohan; Zhang, Shenghu; Mao, Liang; Gao, Shixiang

    2012-06-15

    Polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA) are two major flame retardants that accumulate in fish tissues and are potentially toxic. Their debrominated and oxidated derivatives were also reported in fish tissues although the sources of theses derivatives were unidentified. Our study was to determine whether PBDEs and TBBPA could be metabolized by fish liver subcellular fractions in vitro and to identify what types of metabolites were formed. Liver microsomes and S9 fractions of crucian carp (Carassius auratus) were exposed to 4,4'-dibromodiphenyl ether (BDE 15), 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) or TBBPA solutions for 4h. Exposure of liver subcellular fractions to BDE 15 resulted in the formation of bromophenol and two monohydroxylated dibromodiphenyl ether metabolites. Neither in microsomes nor in S9 studies has revealed the presence of hydroxylated metabolites with BDE 47 exposure which indicated that the oxidation reactions in vitro were hindered by the increased number of bromine substituents on the PBDEs. TBBPA underwent an oxidative cleavage near the central carbon of the molecule, which led to the production of 2,6-dibromo-4-isopropyl-phenol and three unidentified metabolites. Another metabolite of TBBPA characterized as a hexa-brominated compound with three aromatic rings was also found in the liver subcellular fractions. These results suggest that the biotransformation of BDE 15 and TBBPA in fish liver is mediated by cytochrome P450 (CYP450) enzymes, as revealed by the formation of hydroxylated metabolites and oxidative bond cleavage products. Moreover, further studies on the identification of specific CYP450 isozymes involved in the biotransformation revealed that CYP1A was the major enzyme responsible for the biotransformation of BDE 15 and TBBPA in fish liver subcellular fractions and CYP3A4 also played a major role in metabolism of TBBPA. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Subcellular localization of ammonium transporters in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Davis Carter T

    2008-12-01

    Full Text Available Abstract Background With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. Results Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. Conclusion Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not

  11. Review of Research Projects on Qualitative and Quantitative Effects of Radiation on Haematopoietic Tissue in Man and Experimental Animal

    Energy Technology Data Exchange (ETDEWEB)

    Hilberg, A. W. [Division of Radiological Health, Department of Health, Education and Welfare, Rockville, MD (United States)

    1967-07-15

    By way of introduction to a review of Research Projects of the Division of Radiological Health concerned with effects of radiation on the haematopoietic tissue in man and the experimental animal, I should like first to discuss briefly the organization of research. Our research is organized into three major disciplines: (1) Epidemiology, (2) Radiation biology, and (3) Environmental sciences. Briefly, epidemiology is concerned with studies, of populations and effects of radiation in.man; radiation biology is concerned with effects in the experimental animal under controlled situations and also concerned with basic research in cellular and sub-cellular effects; and environmental science is concerned with transport mechanisms in the biosphere and how these mechanisms may operate and be interrupted to reduce radiation hazard to man.

  12. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model

    International Nuclear Information System (INIS)

    Barbosa, Carlos R Hall

    2003-01-01

    We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models

  13. The connection between cellular mechanoregulation and tissue patterns during bone healing.

    Science.gov (United States)

    Repp, Felix; Vetter, Andreas; Duda, Georg N; Weinkamer, Richard

    2015-09-01

    The formation of different tissues in the callus during secondary bone healing is at least partly influenced by mechanical stimuli. We use computer simulations to test the consequences of different hypotheses of the mechanoregulation at the cellular level on the patterns of tissues formed during healing. The computational study is based on an experiment on sheep, where after a tibial osteotomy, histological sections were harvested at different time points. In the simulations, we used a recently proposed basic phenomenological model, which allows ossification to occur either via endochondral or intramembranous ossification, but tries otherwise to employ a minimal number of simulation parameters. The model was extended to consider also the possibility of bone resorption and consequently allowing a description of the full healing progression till the restoration of the cortex. Specifically, we investigated how three changes in the mechanoregulation influence the resulting tissue patterns: (1) a time delay between stimulation of the cell and the formation of the tissue, (2) a variable mechanosensitivity of the cells, and (3) an independence of long time intervals of the soft tissue maturation from the mechanical stimulus. For all three scenarios, our simulations do not show qualitative differences in the time development of the tissue patterns. Largest differences were observed in the intermediate phases of healing in the amount and location of the cartilage. Interestingly, the course of healing was virtually unaltered in case of scenario (3) where tissue maturation proceeded independent of mechanical stimulation.

  14. Effect of surgical stress on nuclear and mitochondrial DNA

    Indian Academy of Sciences (India)

    Surgical resection at any location in the body leads to stress response with cellular and subcellular change, leading to tissue damage. The intestine is extremely sensitive to surgical stress with consequent postoperative complications. It has been suggested that the increase of reactive oxygen species as subcellular ...

  15. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells

    Science.gov (United States)

    Lake, Michael P.; Bouchard, Louis-S.

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging. PMID:28636640

  16. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Michael P Lake

    Full Text Available Transmission electron microscopy (TEM can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.

  17. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells.

    Science.gov (United States)

    Lake, Michael P; Bouchard, Louis-S

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.

  18. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  19. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  20. Internalization and Subcellular Trafficking of Poly-l-lysine Dendrimers Are Impacted by the Site of Fluorophore Conjugation.

    Science.gov (United States)

    Avaritt, Brittany R; Swaan, Peter W

    2015-06-01

    Internalization and intracellular trafficking of dendrimer-drug conjugates play an important role in achieving successful drug delivery. In this study, we aimed to elucidate the endocytosis mechanisms and subcellular localization of poly-l-lysine (PLL) dendrimers in Caco-2 cells. We also investigated the impact of fluorophore conjugation on cytotoxicity, uptake, and transepithelial transport. Oregon green 514 (OG) was conjugated to PLL G3 at either the dendrimer periphery or the core. Chemical inhibitors of clathrin-, caveolin-, cholesterol-, and dynamin-mediated endocytosis pathways and macropinocytosis were employed to establish internalization mechanisms, while colocalization with subcellular markers was used to determine dendrimer trafficking. Cell viability, internalization, and uptake were all influenced by the site of fluorophore conjugation. Uptake was found to be highly dependent on cholesterol- and dynamin-mediated endocytosis as well as macropinocytosis. Dendrimers were trafficked to endosomes and lysosomes, and subcellular localization was impacted by the fluorophore conjugation site. The results of this study indicate that PLL dendrimers exploit multiple pathways for cellular entry, and internalization and trafficking can be impacted by conjugation. Therefore, design of dendrimer-drug conjugates requires careful consideration to achieve successful drug delivery.

  1. Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2

    Directory of Open Access Journals (Sweden)

    Samuel K. Campos

    2017-12-01

    Full Text Available Since 2012, our understanding of human papillomavirus (HPV subcellular trafficking has undergone a drastic paradigm shift. Work from multiple laboratories has revealed that HPV has evolved a unique means to deliver its viral genome (vDNA to the cell nucleus, relying on myriad host cell proteins and processes. The major breakthrough finding from these recent endeavors has been the realization of L2-dependent utilization of cellular sorting factors for the retrograde transport of vDNA away from degradative endo/lysosomal compartments to the Golgi, prior to mitosis-dependent nuclear accumulation of L2/vDNA. An overview of current models of HPV entry, subcellular trafficking, and the role of L2 during initial infection is provided below, highlighting unresolved questions and gaps in knowledge.

  2. Maternal nicotine exposure during pregnancy and developtnent ...

    African Journals Online (AJOL)

    cellular, sub-cellular, and molecular remodellings. The developmental .... tissue fibres occur in me septa of the control lungs and. 'these are more ... Smoking causes several cell types, known to .... Respiration 1970; 27: suppl 41-. 50. . 29.

  3. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs.

    Science.gov (United States)

    Di Corato, Riccardo; Gazeau, Florence; Le Visage, Catherine; Fayol, Delphine; Levitz, Pierre; Lux, François; Letourneur, Didier; Luciani, Nathalie; Tillement, Olivier; Wilhelm, Claire

    2013-09-24

    Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth. Two contrast agents, based on iron oxide and gadolinium oxide rigid nanoplatforms, were used to "tattoo" endothelial cells and stem cells, respectively, with no impact on cell functions, including their capacity for differentiation. The labeled cells' contrast properties were optimized for simultaneous MRI detection: endothelial cells and stem cells seeded together in a polysaccharide-based scaffold material for tissue engineering appeared respectively in black and white and could be tracked, at the cellular level, both in vitro and in vivo. In addition, endothelial cells labeled with iron oxide nanoparticles could be remotely manipulated by applying a magnetic field, allowing the creation of vessel substitutes with in-depth detection of individual cellular components.

  4. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues.

    Science.gov (United States)

    Nguyen, Q T; Jacobsen, T D; Chahine, N O

    2017-11-13

    Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations.

  5. An experimental study of americium-241 biokinetics in the Lobster Homarus Gammarus. Analysis of the accumulation/storage and detoxification processes at the subcellular level

    International Nuclear Information System (INIS)

    Paquet, F.

    1993-01-01

    An experimental study of americium-241 kinetics has been conducted in the lobster Homarus gammmarus. The investigations were conducted at all the levels from the whole body to the subcellular and molecular levels. The animals were contaminated by a single or chronic ingestion of 241 Am labelled mussels. Assessments of accumulation, elimination and distribution of the radionuclide were established on organisms kept in the laboratory; they made it possible to demonstrate the importance of the digestive gland in the radionuclide transfer pathways. The preliminary results led to structural then ultrastructural investigations of the digestive gland in association with radioautographic studies and cellular extractions methods. Four cellular types were demonstrated, only two of them being implied in the radionuclide retention, the former being responsible for americium intake and the latter for its long-term retention. By means of biochemical techniques, subcellular accumulation was studied and the organelles implied in the nuclide retention were specified. Finally, a method of cellular nuclei dissociation was developed; it made it possible to analyse the molecular nature of americium ligands and to demonstrate the function of the protein nuclear matrix in the nuclide retention

  6. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis

    DEFF Research Database (Denmark)

    Li, Jing; Kristiansen, Kim A.; Hansen, Bjarne Gram

    2011-01-01

    the side chain modifications take place despite their importance. Hence, the spatial expression pattern of FMO(GS-OX1-5) genes in Arabidopsis was investigated by expressing green fluorescent protein (GFP) and β-glucuronidase (GUS) fusion genes controlled by FMO(GS-OX1-5) promoters. The cellular...

  7. Scavenging capacity of medicinal plants against free radical-induced cellular damage by radiation and photoactivation

    Energy Technology Data Exchange (ETDEWEB)

    Gadkar, Shalaka [Ruia College, Mumbai (India); Mohan, H [Chemistry Group, Bhabha Atomic Research Centre, Mumbai (India); Kamat, J P [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai (India)

    2004-01-01

    The scavenging capacity of medicinal plants. Andrographis paniculata (Ap) and Swertia chirata (Sc) was examined against cellular damage, induced by radiation and photo-activation in sub-cellular membranes. The results demonstrated significant radical scavenging capacity of the extracts. The rate constants as evaluated by deoxyribose degradation studies and the pulse radiolysis studies carried in presence of ABTS radical well supported the antioxidant properties of the extracts. (author)

  8. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures.

    Science.gov (United States)

    Xu, Min; Wu, Tao T; Qu, Jianan Y

    2008-01-01

    A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.

  9. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiaoping; Dou Changming [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen Yingxu, E-mail: yingxu_chen@hotmail.com [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen Xincai; Shi Jiyan; Yu Mingge; Xu Jie [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China)

    2011-02-15

    Phytolacca americana L. (pokeweed) is a promising species for Cd phytoextraction with large biomass and fast growth rate. To further understand the mechanisms involved in Cd tolerance and detoxification, the present study investigated subcellular distribution and chemical forms of Cd in pokeweed. Subcellular fractionation of Cd-containing tissues indicated that both in root and leaves, the majority of the element was located in soluble fraction and cell walls. Meanwhile, Cd taken up by pokeweed existed in different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 80% ethanol in roots, followed by 1 M NaCl, d-H{sub 2}O and 2% HAc, while in leaves and stems, most of the Cd was extracted by 1 M NaCl, and the subdominant amount of Cd was extracted by 80% ethanol. It could be suggested that Cd compartmentation with organo-ligands in vacuole or integrated with pectates and proteins in cell wall might be responsible for the adaptation of pokeweed to Cd stress.

  10. A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry

    Science.gov (United States)

    Oliver, P. A. K.; Thomson, Rowan M.

    2017-02-01

    This work investigates how doses to cellular targets depend on cell morphology, as well as relations between cellular doses and doses to bulk tissues and water. Multicellular models of five healthy and cancerous soft tissues are developed based on typical values of cell compartment sizes, elemental compositions and number densities found in the literature. Cells are modelled as two concentric spheres with nucleus and cytoplasm compartments. Monte Carlo simulations are used to calculate the absorbed dose to the nucleus and cytoplasm for incident photon energies of 20-370 keV, relevant for brachytherapy, diagnostic radiology, and out-of-field radiation in higher-energy external beam radiotherapy. Simulations involving cell clusters, single cells and single nuclear cavities are carried out for cell radii between 5 and 10~μ m, and nuclear radii between 2 and 9~μ m. Seven nucleus and cytoplasm elemental compositions representative of animal cells are considered. The presence of a cytoplasm, extracellular matrix and surrounding cells can affect the nuclear dose by up to 13 % . Differences in cell and nucleus size can affect dose to the nucleus (cytoplasm) of the central cell in a cluster of 13 cells by up to 13 % (8 % ). Furthermore, the results of this study demonstrate that neither water nor bulk tissue are reliable substitutes for subcellular targets for incident photon energies  <50 keV: nuclear (cytoplasm) doses differ from dose-to-medium by up to 32 % (18 % ), and from dose-to-water by up to 21 % (8 % ). The largest differences between dose descriptors are seen for the lowest incident photon energies; differences are less than 3 % for energies ≥slant 90 keV. The sensitivity of results with regard to the parameters of the microscopic tissue structure model and cell model geometry, and the importance of the nucleus and cytoplasm as targets for radiation-induced cell death emphasize the importance of accurate models for cellular dosimetry studies.

  11. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-08-22

    One of the fundamental goals in cellular biochemistry is to identify the functions of proteins in the context of compartments that organize them in the cellular environment. To realize this, it is indispensable to develop an automated method for fast and accurate identification of the subcellular locations of uncharacterized proteins. The current study is focused on plant protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most of the existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex protein is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mPlant" by extracting the optimal GO (Gene Ontology) information into the Chou's general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on the same stringent benchmark dataset indicated that the proposed pLoc-mPlant predictor is remarkably superior to iLoc-Plant, the state-of-the-art method for predicting plant protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at , by which users can easily get their desired results without the need to go through the complicated mathematics involved.

  12. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Van Gorp, Hanne; Parthoens, Eef; Lamkanfi, Mohamed

    2018-04-17

    Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of extracellular release of the inflammasome-dependent cytokines interleukin (IL)-1β and IL-18, which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this regulated form of necrosis by cleaving the pyroptosis effector gasdermin D (GSDMD), causing its pore-forming amino-terminal domain to oligomerize and perforate the plasma membrane. However, the subcellular events that precede pyroptotic cell lysis are ill defined. In this study, we triggered primary macrophages to undergo pyroptosis from three inflammasome types and recorded their dynamics and morphology using high-resolution live-cell spinning disk confocal laser microscopy. Based on quantitative analysis of single-cell subcellular events, we propose a model of pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion channels or pores that are more restrictive than recently proposed GSDMD pores, followed by osmotic cell swelling, commitment of mitochondria and other membrane-bound organelles prior to sudden rupture of the plasma membrane and full permeability to intracellular proteins. This study provides a dynamic framework for understanding cellular changes that occur during pyroptosis, and charts a chronological sequence of GSDMD-mediated subcellular events that define pyroptotic cell death at the single-cell level.

  13. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Exposure to cadmium

    International Nuclear Information System (INIS)

    Wang Mengjiao; Wang Wenxiong

    2011-01-01

    The aims of this study were to (1) evaluate the changes in the Cd tolerance of a marine diatom after exposure under different Cd concentrations for various durations and (2) to explore the potential subcellular and biochemical mechanisms underlying these changes. The 72-h toxicity, short-term Cd uptake, subcellular Cd distribution, as well as the synthesis of phytochelatins (PCs) were measured in a marine diatom Thalassiosira nordenskioeldii after exposure to a range of free Cd ion concentrations ([Cd 2+ ], 0.01-84 nM) for 1-15 days. Surprisingly, the diatoms did not acquire higher resistance to Cd after exposure; instead their sensitivity to Cd increased with a higher exposed [Cd 2+ ] and a longer exposure period. The underlying mechanisms could be traced to the responses of Cd cellular accumulation and the intrinsic detoxification ability of the preconditioned diatoms. Generally, exposure to a higher [Cd 2+ ] and for a longer period increased the Cd uptake rate, cellular accumulation, as well as the Cd concentration in metal-sensitive fraction (MSF) in these diatoms. In contrast, although PCs were induced by the environmental Cd stress (with PC 2 being the most affected), the increased intracellular Cd to PC-SH ratio implied that the PCs' detoxification ability had reduced after Cd exposure. All these responses resulted in an elevated Cd sensitivity as exposed [Cd 2+ ] and duration increased. This study shows that the physiological/biochemical and kinetic responses of phytoplankton upon metal exposure deserve further investigation.

  14. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  15. The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. PMID:24093723

  16. Radioimmunoassay for Lys8, Asn9, neurotensin 8-13: tissue and subcellular distribution of immunoreactivity in chickens

    International Nuclear Information System (INIS)

    Carraway, R.E.; Ruane, S.E.; Ritsema, R.S.

    1983-01-01

    A sensitive and specific radioimmunoassay (RIA) for Lys8, Asn9, neurotensin 8-13 (LANT-6) has been developed which utilizes 125I-labeled LANT-6 and rabbit antisera raised towards conjugates of synthetic LANT-6 and bovine thyroglobulin. The antiserum described (TG-22) allows the detection of ca 100 fmol of LANT-6 and crossreacts less than 0.01% with chicken or bovine NT. Dose-response relationships for the native (chicken) and synthetic peptides were indistinguishable. Using this assay the distribution of immunoreactive LANT-6 (iLANT-6) through various tissues of the chicken was studied and compared with that of chicken NT (iNT) determined by RIA. Both iNT and ILANT-6 were found primarily in the brain and gastrointestinal tract, however, their regional distributions were found to differ. Subcellular distribution studies in homogenates of chicken brain indicated that both iNT and iLANT-6 were associated with synaptosome-like and vesicle-like particles. In homogenates of small intestine, pancreas and colon iNT and iLANT-6 appeared to be within osmotically sensitive, sedimentable particles. Analyses using high pressure liquid chromatography established that chicken iLANT-6 co-eluted with the synthetic peptide and that similar substances were present in extracts of rat brain and intestine. These results are consistent with ''messenger' roles for these peptides

  17. Decoding the Divergent Subcellular Location of Two Highly Similar Paralogous LEA Proteins

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Avelange-Macherel

    2018-05-01

    Full Text Available Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement, we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.

  18. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    Science.gov (United States)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  19. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    International Nuclear Information System (INIS)

    Khimchenko, A; Bikis, C; Schulz, G; Hieber, S E; Deyhle, H; Thalmann, P; Müller, B; Zdora, M-C; Zanette, I; Vila-Comamala, J; Schweighauser, G; Hench, J

    2017-01-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers ( Stratum moleculare and Stratum granulosum ), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H and E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology. (paper)

  20. A comparative antibody analysis of Pannexin1 expression in four rat brain regions reveals varying subcellular localizations

    Directory of Open Access Journals (Sweden)

    Angela C Cone

    2013-02-01

    Full Text Available Pannexin1 (Panx1 channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide-field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on

  1. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity

    DEFF Research Database (Denmark)

    Saei, Amir Ata; Yazdani, Mahdieh; Lohse, Samuel E.

    2017-01-01

    can greatly enhance subsequent therapeutic effects of NPs while diminishing their adverse side effects. In this review, we will focus on the effect of surface functionality on the cellular uptake and the transport of NPs by various subcellular processes.......Engineered nanoparticles (NPs) have opened new frontiers in therapeutics and diagnostics in recent years. The surface functionality of these nanoparticles often predominates their interactions with various biological components of human body, and proper selection or control of surface functionality...

  2. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  4. Theoretical aspects of cellular decision-making and information-processing.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2012-01-01

    Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.

  5. Accumulation of fission fragment 147Pm in subcellular level studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1990-11-01

    The subcellular localization of fission fragment 147 Pm in tissue cells by electron microscopic autoradiography was investigated. The early harm of internal contaminated accumulation of 147 Pm appeared in blood cells and endothelium cells, obviously in erythrocytes. Then 147 Pm was selectively deposited in ultrastructure of liver cells. Autoradiographic study demonstrated that dense tracks appeared in mitochondria and lysosome of podal cells within renal corpuscle. In nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule, there are numerous radioactive 149 Pm accumulated. With the prolongation of observing time, 149 Pm was selectively and steadily deposited in subcellular level of organic component bone. The radionuclides could be accumulated in nucleus of osteoclasts and osteoblasts. In organelles, the radionuclides was mainly accumulated in rough endoplasmic reticulum and mitochondria. Autoradiographic tracks of 149 Pm was obviously found to be localized in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum

  6. MEMS capacitive force sensors for cellular and flight biomechanics

    International Nuclear Information System (INIS)

    Sun Yu; Nelson, Bradley J

    2007-01-01

    Microelectromechanical systems (MEMS) are playing increasingly important roles in facilitating biological studies. They are capable of providing not only qualitative but also quantitative information on the cellular, sub-cellular and organism levels, which is instrumental to understanding the fundamental elements of biological systems. MEMS force sensors with their high bandwidth and high sensitivity combined with their small size, in particular, have found a role in this domain, because of the importance of quantifying forces and their effect on the function and morphology of many biological structures. This paper describes our research in the development of MEMS capacitive force sensors that have already demonstrated their effectiveness in the areas of cell mechanics and Drosophila flight dynamics studies. (review article)

  7. Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour.

    Science.gov (United States)

    Bednarska, Agnieszka J; Świątek, Zuzanna

    2016-11-01

    By studying the internal compartmentalization of metals in different subcellular fractions we are able to better understand the mechanisms of metal accumulation in organisms and the transfer of metals through trophic chains. We investigated the internal compartmentalization of cadmium (Cd) and zinc (Zn) in mealworm beetle (Tenebrio molitor) larvae by breeding them in flour contaminated with either Cd at 100, 300 and 600mgkg(-1), or Zn at 1000 and 2000mgkg(-1). We separated the cellular components of the larvae into 3 fractions: the S1 or cytosolic fraction containing organelles, heat-sensitive and heat-stable proteins, the S2 or cellular debris fraction and the G or metal-rich granule fraction. The concentration of Cd and Zn in each fraction was measured at 0, 7, 14 and 21 days of being fed the flour. The concentration of Cd in the flour affected the concentration of Cd measured in each larval subcellular fraction (p≤0.0001), while the concentration of Zn in the flour only affected the Zn concentration in the S2 and G fractions (p≤0.02). Both Cd and Zn concentrations in mealworms remained relatively constant during the exposure (days 7, 14 and 21) in all three fractions, but the Cd concentrations were much higher than those found in larvae before the exposure (day 0). The concentration of Cd in the flour, however, did not affect the percentage of Cd in the S1 fraction. The contribution of Cd in the G fraction to the total Cd amount was similar (30-40%) in all Cd treatments. The percentage of Zn in all three fractions was not affected by the concentration of Zn in the flour and the relative contributions of each subcellular fraction to the total burden of Zn remained generally constant for both control and treated larvae. In general, larvae sequestered approximately 30% of Cd and Zn in the S1 fraction, which is important for the transport of metals to higher trophic levels in a food web. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Uniquely high turnover of nickel in contaminated oysters Crassostrea hongkongensis: Biokinetics and subcellular distribution.

    Science.gov (United States)

    Yin, Qijun; Wang, Wen-Xiong

    2018-01-01

    Despite the environmental concerns regarding nickel (Ni) especially in China, it has received little attention in aquatic animals due to its comparatively weak toxicity. In the present study, we explored the bioaccumulation, biokinetics, and subcellular distribution of Ni in an estuarine oyster Crassostrea hongkongensis. We demonstrated that Ni represented a new pattern of bioaccumulation in oysters characterized by rapid elimination and low dissolved uptake. The waterborne uptake rate constant and dietary assimilation efficiency were 0.036L/g/h and 28%, respectively, and dissolved uptake was the predominant exposure route. The efflux rate constant was positively related to tissue Ni concentration, with the highest efflux of 0.155d -1 . Such high elimination resulted in a high Ni turnover and steady-state condition reached rapidly, as shown with a 4-week waterborne exposure experiment at different Ni concentrations. Ni in oysters was mainly sequestered in metallothionein-like protein (MTLP), metal-rich granule, and cellular debris. MTLP was the most important binding fraction during accumulation and depuration, and played a dynamic role leading to rapid Ni elimination. Pre-exposure to Ni significantly reduced the dissolved uptake, probably accompanied by depressed filtration activity. Overall, the high turnover and regulation of Ni in oysters were achieved by enhanced efflux, suppressed uptake, and sequestration of most Ni into the detoxified pool. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  10. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    International Nuclear Information System (INIS)

    Bhaskar,; Kumari, Neeti; Goyal, Neena

    2012-01-01

    Highlights: ► The study presents cloning and characterization of TCP1γ gene from L. donovani. ► TCP1γ is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. ► LdTCPγ exhibited differential expression in different stages of promastigotes. ► LdTCPγ co-localized with actin, a cytoskeleton protein. ► The data suggests that this gene may have a role in differentiation/biogenesis. ► First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1γ), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1γ of Leishmania donovani (LdTCP1γ), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1γ revealed the presence of all the characteristic features of TCP1γ. However, leishmanial TCP1γ represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1γ exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1γ as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1γ was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1γ with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.

  11. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Science.gov (United States)

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  12. Automated classification of immunostaining patterns in breast tissue from the human protein atlas.

    Science.gov (United States)

    Swamidoss, Issac Niwas; Kårsnäs, Andreas; Uhlmann, Virginie; Ponnusamy, Palanisamy; Kampf, Caroline; Simonsson, Martin; Wählby, Carolina; Strand, Robin

    2013-01-01

    The Human Protein Atlas (HPA) is an effort to map the location of all human proteins (http://www.proteinatlas.org/). It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples. The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM) features, complex wavelet co-occurrence matrix (CWCM) features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM)-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM) and linear discriminant analysis (LDA) classifier). Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue. We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert. Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for quantification of staining patterns in histopathology have many

  13. Automated classification of immunostaining patterns in breast tissue from the human protein Atlas

    Directory of Open Access Journals (Sweden)

    Issac Niwas Swamidoss

    2013-01-01

    Full Text Available Background: The Human Protein Atlas (HPA is an effort to map the location of all human proteins (http://www.proteinatlas.org/. It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples. Materials and Methods: The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM features, complex wavelet co-occurrence matrix (CWCM features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM and linear discriminant analysis (LDA classifier. Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue. Results: We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert. Conclusions: Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for

  14. STUDY OF SUBCELLULAR DISTRIBUTION OF CRYSTALLINE MESO-TETRA(3-PYRIDYLBACTERIOCHLORIN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The results of the study of subcellular distribution of molecular meso-tetra(3-pyridylbacteriochlorin nanocrystals proposed as therapeutic agents for photodynamic therapy are represented in the article. Investigations and measurement of spectroscopic properties of molecular crystals of near-infrared photosensitizer were conducted using special device complex based on fiber-optic spectrometer. Investigation and analysis of the pattern of subcellular accumulation of meso-tetra(3-pyridylbacteriochlorin in molecular (dimethyl sulfoxide (DMSO as solvent and nanocrystalline forms on different cell lines: human monocytes (THP-1, human cervical cancer cells (HeLa and mouse malignant brain tumor cells (glioma C6. The dynamics of subcellylar accumulation of the agent at concentration of 5 and 10 mg/l was assessed with laser microscope-spectrum analyzer and by confocal microscopy. The study showed that in the course of interaction with cell lines molecular nanocrystals of the agent developed ability to fluorescence. Hence, in the cellular environment meso-tetra(3-pyridyl bacteriochlorin nanoparticles became phototoxic giving opportunities for their use for fluorescence diagnosis and photodynamic therapy. Specific role of meso-tetra(3-pyridylbacteriochlorin in the range of photosensitizers is determined by its spectral characteristics, i.e. absorption and fluorescence in near-infrared band, which allows measuring and affecting on deeper layers of biotissue. Thus, the use of meso-tetra(3-pyridylbacteriochlorin nanoparticles as nanophotosensitizers may improve the efficacy of diagnosis and treatment of deep-seated tumors.

  15. Protein subcellular localization prediction using artificial intelligence technology.

    Science.gov (United States)

    Nair, Rajesh; Rost, Burkhard

    2008-01-01

    Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with

  16. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yan [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China); Lv, Liyang [Department of Health, Jinan Military Area Command, Jinan 250022 (China); Du, Juan; Yue, Longtao [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China); Cao, Lili, E-mail: cllly22@163.com [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China)

    2013-09-20

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.

  17. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    International Nuclear Information System (INIS)

    Song, Yan; Lv, Liyang; Du, Juan; Yue, Longtao; Cao, Lili

    2013-01-01

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis

  18. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.).

    Science.gov (United States)

    Ning, Zengping; He, Libin; Xiao, Tangfu; Márton, László

    2015-01-01

    The accumulation of thallium (Tl) in brassicaceous crops is widely known, but both the uptake extents of Tl by the individual cultivars of green cabbage and the distribution of Tl in the tissues of green cabbage are not well understood. Five commonly available cultivars of green cabbage grown in the Tl-spiked pot-culture trials were studied for the uptake extent and subcellular distribution of Tl. The results showed that all the trial cultivars mainly concentrated Tl in the leaves (101∼192 mg/kg, DW) rather than in the roots or stems, with no significant differences among cultivars (p = 0.455). Tl accumulation in the leaves revealed obvious subcellular fractionation: cell cytosol and vacuole > cell wall > cell organelles. The majority (∼ 88%) of leaf-Tl was found to be in the fraction of cytosol and vacuole, which also served as the major storage site for other major elements such as Ca and Mg. This specific subcellular fractionation of Tl appeared to enable green cabbage to avoid Tl damage to its vital organelles and to help green cabbage tolerate and detoxify Tl. This study demonstrated that all the five green cabbage cultivars show a good application potential in the phytoremediation of Tl-contaminated soils.

  19. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells

    OpenAIRE

    Sabina Baghirova; Bryan G. Hughes; Michael J. Hendzel; Richard Schulz

    2015-01-01

    Many types of studies require the localization of a protein to, or isolation of enriched protein from a specific cellular compartment. Many protocols in the literature and from commercially available kits claim to yield pure cellular fractions. However, in our hands, the former often do not work effectively and the latter may be prohibitively expensive if a large number of fractionations are required. Furthermore, the largely proprietary composition of reagents in commercial kits means that t...

  20. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking.

    Science.gov (United States)

    Bridges, Robert J; Bradbury, Neil A

    2018-01-01

    The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.

  1. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  2. Tissue and cellular biomechanics during corneal wound injury and repair.

    Science.gov (United States)

    Raghunathan, Vijay Krishna; Thomasy, Sara M; Strøm, Peter; Yañez-Soto, Bernardo; Garland, Shaun P; Sermeno, Jasmyne; Reilly, Christopher M; Murphy, Christopher J

    2017-08-01

    Corneal wound healing is an enormously complex process that requires the simultaneous cellular integration of multiple soluble biochemical cues, as well as cellular responses to the intrinsic chemistry and biophysical attributes associated with the matrix of the wound space. Here, we document how the biomechanics of the corneal stroma are altered through the course of wound repair following keratoablative procedures in rabbits. Further we documented the influence that substrate stiffness has on stromal cell mechanics. Following corneal epithelial debridement, New Zealand white rabbits underwent phototherapeutic keratectomy (PTK) on the right eye (OD). Wound healing was monitored using advanced imaging modalities. Rabbits were euthanized and corneas were harvested at various time points following PTK. Tissues were characterized for biomechanics with atomic force microscopy and with histology to assess inflammation and fibrosis. Factor analysis was performed to determine any discernable patterns in wound healing parameters. The matrix associated with the wound space was stiffest at 7days post PTK. The greatest number of inflammatory cells were observed 3days after wounding. The highest number of myofibroblasts and the greatest degree of fibrosis occurred 21days after wounding. While all clinical parameters returned to normal values 400days after wounding, the elastic modulus remained greater than pre-surgical values. Factor analysis demonstrated dynamic remodeling of stroma occurs between days 10 and 42 during corneal stromal wound repair. Elastic modulus of the anterior corneal stroma is dramatically altered following PTK and its changes coincide initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Factor analysis demonstrates strongest correlation between elastic modulus, myofibroblasts, fibrosis and stromal haze thickness, and between edema and central corneal

  3. Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during in vitro tissue growth.

    Science.gov (United States)

    Bidan, Cécile M; Kollmannsberger, Philip; Gering, Vanessa; Ehrig, Sebastian; Joly, Pascal; Petersen, Ansgar; Vogel, Viola; Fratzl, Peter; Dunlop, John W C

    2016-05-01

    The complex arrangement of the extracellular matrix (ECM) produced by cells during tissue growth, healing and remodelling is fundamental to tissue function. In connective tissues, it is still unclear how both cells and the ECM become and remain organized over length scales much larger than the distance between neighbouring cells. While cytoskeletal forces are essential for assembly and organization of the early ECM, how these processes lead to a highly organized ECM in tissues such as osteoid is not clear. To clarify the role of cellular tension for the development of these ordered fibril architectures, we used an in vitro model system, where pre-osteoblastic cells produced ECM-rich tissue inside channels with millimetre-sized triangular cross sections in ceramic scaffolds. Our results suggest a mechanical handshake between actively contracting cells and ECM fibrils: the build-up of a long-range organization of cells and the ECM enables a gradual conversion of cell-generated tension to pre-straining the ECM fibrils, which reduces the work cells have to generate to keep mature tissue under tension. © 2016 The Author(s).

  4. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  5. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  6. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population

    Science.gov (United States)

    Vardi, Assaf; Haramaty, Liti; Van Mooy, Benjamin A. S.; Fredricks, Helen F.; Kimmance, Susan A.; Larsen, Aud; Bidle, Kay D.

    2012-01-01

    Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi–EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems. PMID:23134731

  7. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  8. A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.

    Science.gov (United States)

    Cerchiari, Alec E; Garbe, James C; Jee, Noel Y; Todhunter, Michael E; Broaders, Kyle E; Peehl, Donna M; Desai, Tejal A; LaBarge, Mark A; Thomson, Matthew; Gartner, Zev J

    2015-02-17

    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.

  9. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  10. 3D Photo-Fabrication for Tissue Engineering and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rúben F. Pereira

    2015-03-01

    Full Text Available The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.

  11. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    OpenAIRE

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this techn...

  12. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    International Nuclear Information System (INIS)

    Eyckmans, Marleen; Blust, Ronny; De Boeck, Gudrun

    2012-01-01

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 μg/l (0.79 μM) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills and

  13. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    Energy Technology Data Exchange (ETDEWEB)

    Eyckmans, Marleen, E-mail: marleen.eyckmans@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Blust, Ronny; De Boeck, Gudrun [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2012-08-15

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 {mu}g/l (0.79 {mu}M) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills

  14. Subcellular partitioning profiles and metallothionein levels in indigenous clams Moerella iridescens from a metal-impacted coastal bay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zaosheng, E-mail: zswang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Feng, Chenglian; Ye, Chun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Youshao [State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Yan, Changzhou, E-mail: czyan@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); Li, Rui; Yan, Yijun; Chi, Qiaoqiao [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China)

    2016-07-15

    Highlights: • Subcellular partitioning profile of metals were investigated in biomonitor organism. • Cu, Zn and Cd levels in main fraction of HSP increase along accumulation gradients. • Despite MTs as the major binding pool, detoxification of Cd and Pb was incomplete. • Induced MTs were sequentially correlated with Cu, Zn and Cd levels in HSP fraction. • Intracellular metal fates highlighted the metabolic availability within organism. - Abstract: In this study, the effect of environmental metal exposure on the accumulation and subcellular distribution of metals in the digestive gland of clams with special emphasis on metallothioneins (MTs) was investigated. Specimens of indigenous Moerella iridescens were collected from different natural habitats in Maluan Bay (China), characterized by varying levels of metal contamination. The digestive glands were excised, homogenized and six subcellular fractions were separated by differential centrifugation procedures and analyzed for their Cu, Zn, Cd and Pb contents. MTs were quantified independently by spectrophotometric measurements of thiols. Site-specific differences were observed in total metal concentrations in the tissues, correlating well with variable environmental metal concentrations and reflecting the gradient trends in metal contamination. Concentrations of the non-essential Cd and Pb were more responsive to environmental exposure gradients than were tissue concentrations of the essential metals, Cu and Zn. Subcellular partitioning profiles for Cu, Zn and Cd were relatively similar, with the heat-stable protein (HSP) fraction as the dominant metal-binding compartment, whereas for Pb this fraction was much less important. The variations in proportions and concentrations of metals in this fraction along with the metal bioaccumulation gradients suggested that the induced MTs play an important role in metal homeostasis and detoxification for M. iridescens in the metal-contaminated bay. Nevertheless

  15. Nuclear elemental analyses with a cyclotron on biomedical samples

    International Nuclear Information System (INIS)

    Quaedackers, J.A.; Voigt, M.J.A. de; Mutsaers, P.H.A.; Goeij, J.J.M. de; Vusse, G.J. van der

    1999-01-01

    The Eindhoven scanning proton microprobe enables the determination of the ion content of heart tissue on a sub-cellular scale. It is shown that intra-cellular elemental concentrations can be determined. Measurements are carried out for physiological and patho-physiological rat heart muscle tissue. Important alterations in Na and K concentrations are reported as measured with PIXE, RBS and NFS techniques employing a variable energy cyclotron (3-30 MeV). However, quantitative intra-cellular determinations are hampered by the presence of extra-cellular space (ECS). For this purpose, cobaltic ethylene-diamine-tetra-acetic-acid (Co(III)EDTA) was used as an exogenic ECS marker. The intra-cellular ion concentrations of normoxic tissue after correction for the ECS agree well with the literature values

  16. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.

    2008-01-01

    . YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial......YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy...

  17. Mapping brain structure and function: cellular resolution, global perspective.

    Science.gov (United States)

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  18. Cellular- and micro-dosimetry of heterogeneously distributed tritium.

    Science.gov (United States)

    Chao, Tsi-Chian; Wang, Chun-Ching; Li, Junli; Li, Chunyan; Tung, Chuan-Jong

    2012-01-01

    The assessment of radiotoxicity for heterogeneously distributed tritium should be based on the subcellular dose and relative biological effectiveness (RBE) for cell nucleus. In the present work, geometry-dependent absorbed dose and RBE were calculated using Monte Carlo codes for tritium in the cell, cell surface, cytoplasm, or cell nucleus. Penelope (PENetration and Energy LOss of Positrins and Electrons) code was used to calculate the geometry-dependent absorbed dose, lineal energy, and electron fluence spectrum. RBE for the intestinal crypt regeneration was calculated using a lineal energy-dependent biological weighting function. RBE for the induction of DNA double strand breaks was estimated using a nucleotide-level map for clustered DNA lesions of the Monte Carlo damage simulation (MCDS) code. For a typical cell of 10 μm radius and 5 μm nuclear radius, tritium in the cell nucleus resulted in much higher RBE-weighted absorbed dose than tritium distributed uniformly. Conversely, tritium distributed on the cell surface led to trivial RBE-weighted absorbed dose due to irradiation geometry and great attenuation of beta particles in the cytoplasm. For tritium uniformly distributed in the cell, the RBE-weighted absorbed dose was larger compared to tritium uniformly distributed in the tissue. Cellular- and micro-dosimetry models were developed for the assessment of heterogeneously distributed tritium.

  19. Book review of “Imaging in Cellular and Tissue Engineering” edited by Y Hanry Yu and Nur Aida Abdul Rahim

    OpenAIRE

    Brey, Eric Michael

    2014-01-01

    This article is a review of the book “Imaging in Cellular and Tissue Engineering” (ISBN-13: 978-1439848036, $149.95, 298 Pages, 114 Illustrations) edited by Y Hanry Yu and Nur Aida Abdul Rahim published by the CRC Press (Taylor&Francis) in 2013. The contents of the book and its relevance to tissue engineering and regenerative medicine are discussed in this invited review.

  20. Osmotic stress changes the expression and subcellular localization of the Batten disease protein CLN3.

    Directory of Open Access Journals (Sweden)

    Amanda Getty

    Full Text Available Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm, achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm, human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.

  1. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax.

    Science.gov (United States)

    Yamamoto, Keiyu; Ishida, Takaomi; Nakano, Kazumi; Yamagishi, Makoto; Yamochi, Tadanori; Tanaka, Yuetsu; Furukawa, Yoichi; Nakamura, Yusuke; Watanabe, Toshiki

    2011-01-01

    HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus. © 2010 Japanese Cancer Association.

  2. Spatial distribution patterns of energy deposition and cellular radiation effects in lung tissue following simulated exposure to alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.

    1990-01-01

    Randomly oriented sections of rat tissue have been digitised to provide the contours of tissue-air interfaces and the locations of individual cell nuclei in the alveolated region of the lung. Sources of alpha particles with varying irradiation geometries and densities are simulated to compute the resulting random pattern of cellular irradiation, i.e. spatial coordinates, frequency, track length, and energy of traversals by the emitted alpha particles. Probabilities per unit track lengths, derived from experimental data on in vitro cellular inactivation and transformation, are then applied to the results of the alpha exposure simulations to yield an estimate of the number of both dead and viable transformed cells and their spatial distributions. If lung cancer risk is linearly related to the number of transformed cells, the carcinogenic risk for hot particles is always smaller than that for a uniform nuclide distribution of the same activity. (author)

  3. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest.

    Science.gov (United States)

    Sapieha, Przemyslaw; Mallette, Frédérick A

    2018-04-25

    In mitotic cells, cellular senescence is a permanent state of G1 arrest, that may have evolved in parallel to apoptosis, to limit proliferation of damaged cells and oncogenesis. Recent studies have suggested that postmitotic cells are also capable of entering a state of senescence, although the repercussions of postmitotic cellular senescence (PoMiCS) on tissue health and function are currently ill-defined. In tissues made largely of post-mitotic cells, it is evolutionary advantageous to preserve cellular integrity and cellular senescence of post-mitotic cells may prevent stressor-induced tissue degeneration and promote tissue repair. Paradoxically, PoMiCS may also contribute to disease progression through the generation of inflammatory mediators, termed the senescence-associated secretory phenotype. Here, we discuss the potential roles of PoMiCS and propose to enlarge the current definition of cellular senescence to postmitotic terminally differentiated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Advanced Cellular and Biomolecular Imaging at Lehigh University, (PA) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Cassimeris, Lynne, U.

    2010-09-10

    Lehigh University is establishing an interdisciplinary program in high resolution cellular and subcellular biological imaging for a range of applications including improved cancer detection. The completed DOE project added to Lehigh?s bio-imaging infrastructure through acquisition of a new confocal microscope system as well as upgrades to two pieces of existing equipment. Bio-imaging related research at Lehigh was also supported through two seed grants for initiation of new projects.

  5. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.

    Science.gov (United States)

    Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D

    2000-05-01

    The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.

  6. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  7. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution.

    Science.gov (United States)

    Porras, Pablo; McDonagh, Brian; Pedrajas, Jose Rafael; Bárcena, J Antonio; Padilla, C Alicia

    2010-04-01

    We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H(2)O(2) as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  9. See-Through Technology for Biological Tissue: 3-Dimensional Visualization of Macromolecules

    Directory of Open Access Journals (Sweden)

    Eunsoo Lee

    2016-05-01

    Full Text Available Tissue clearing technology is currently one of the fastest growing fields in biomedical sciences. Tissue clearing techniques have become a powerful approach to understand further the structural information of intact biological tissues. Moreover, technological improvements in tissue clearing and optics allowed the visualization of neural network in the whole brain tissue with subcellular resolution. Here, we described an overview of various tissue-clearing techniques, with focus on the tissue-hydrogel mediated clearing methods, and discussed the main advantages and limitations of transparent tissue for clinical diagnosis.

  10. Biosynthetic hydrogels--studies on chemical and physical characteristics on long-term cellular response for tissue engineering.

    Science.gov (United States)

    Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2014-07-01

    Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering. © 2013 Wiley Periodicals, Inc.

  11. Cellular distribution of inorganic mercury and its relation to cytotoxicity in bovine kidney cell cultures

    International Nuclear Information System (INIS)

    Bracken, W.M.; Sharma, R.P.; Bourcier, D.R.

    1984-01-01

    A bovine kidney cell culture system was used to assess what relationship mercuric chloride (HgCl 2 ) uptake and subcellular distribution had to cytotoxicity. Twenty-four-hour incubations with 0.05-50 μM HgCl 2 elicited a concentration-related cytotoxicity. Cellular accumulation of 203 Hg was also concentration-related, with 1.0 nmol/10 6 cells at the IC50. Measurement of Hg uptake over the 24-h exposure period revealed a multiphasic process. Peak accumulation was attained by 1 h and was followed by extrusion and plateauing of intracellular Hg levels. Least-squares regression analysis of the cytotoxicity and cellular uptake data indicated a potential relationship between the Hg uptake and cytotoxicity. However, the subcellular distribution of Hg was not concentration-related. Mitochondria and soluble protein fractions accounted for greater than 65% of the cell-associated Hg at all concentrations. The remaining Hg was distributed between the microsomal (6-10%) and nuclear and cell debris (11-22%) fractions at all concentrations tested. Less than 20% of the total cell-associated Hg was bound with metallothionein-like protein. 31 references, 4 figures, 3 tables

  12. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  13. Towards a comprehensive understanding of emerging dynamics and function of pancreatic islets: A complex network approach. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Loppini, Alessandro

    2018-03-01

    Complex network theory represents a comprehensive mathematical framework to investigate biological systems, ranging from sub-cellular and cellular scales up to large-scale networks describing species interactions and ecological systems. In their exhaustive and comprehensive work [1], Gosak et al. discuss several scenarios in which the network approach was able to uncover general properties and underlying mechanisms of cells organization and regulation, tissue functions and cell/tissue failure in pathology, by the study of chemical reaction networks, structural networks and functional connectivities.

  14. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint".

    Science.gov (United States)

    Abramczyk, Halina; Brozek-Pluska, Beata; Krzesniak, Marta; Kopec, Monika; Morawiec-Sztandera, Alina

    2014-08-14

    Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mapping the subcellular distribution of biomolecules at the ultrastructural level by ion microscopy.

    Science.gov (United States)

    Galle, P; Escaig, F; Dantin, F; Zhang, L

    1996-05-01

    Analytical ion microscopy, a method proposed and developed in 1960 by Casting and Slodzian at the Orsay University (France), makes it possible to obtain easily and rapidly analytical images representing the distribution in a tissue section of elements or isotopes (beginning from the three isotopes of hydrogen until to transuranic elements), even when these elements or isotopes are at a trace concentration of 1 ppm or less. This method has been applied to study the subcellular distribution of different varieties of biomolecules. The subcellular location of these molecules can be easily determined when the molecules contain in their structures a specific atom such as fluorine, iodine, bromine or platinum, what is the case of many pharmaceutical drugs. In this situation, the distribution of these specific atoms can be considered as representative of the distribution of the corresponding molecule. In other cases, the molecules must be labelled with an isotope which may be either radioactive or stable. Recent developments in ion microscopy allow the obtention of their chemical images at ultra structural level. In this paper we present the results obtained with the prototype of a new Scanning Ion Microscope used for the study of the intracellular distribution of different varieties of molecules: glucocorticoids, estrogens, pharmaceutical drugs and pyrimidine analogues.

  16. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    OpenAIRE

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occur...

  17. Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins.

    Science.gov (United States)

    Hannoush, Rami N; Arenas-Ramirez, Natalia

    2009-07-17

    Fatty acylation or lipid modification of proteins controls their cellular activation and diverse roles in physiology. It mediates protein-protein and protein-membrane interactions and plays an important role in regulating cellular signaling pathways. Currently, there is need for visualizing lipid modifications of proteins in cells. Herein we report novel chemical probes based on omega-alkynyl fatty acids for biochemical detection and cellular imaging of lipid-modified proteins. Our study shows that omega-alkynyl fatty acids of varying chain length are metabolically incorporated onto cellular proteins. Using fluorescence imaging, we describe the subcellular distribution of lipid-modified proteins across a panel of different mammalian cell lines and during cell division. Our results demonstrate that this methodology is a useful diagnostic tool for analyzing the lipid content of cellular proteins and for studying the dynamic behavior of lipid-modified proteins in various disease or physiological states.

  18. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    Science.gov (United States)

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198

  19. Cellular control of connective tissue matrix tension.

    Science.gov (United States)

    Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K

    2013-08-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.

  20. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.

    Science.gov (United States)

    Chung, C A; Lin, Tze-Hung; Chen, Shih-Di; Huang, Hsing-I

    2010-01-21

    Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.

  1. Experimental study of Americium-241 biokinetics in Homarus Gammarus lobster. Analysis of the accumulation and detoxication mechanisms at the sub-cellular level

    International Nuclear Information System (INIS)

    Paquet, F.

    1991-12-01

    The Americium 241 radioelement accumulation and elimination rate and mechanisms in the lobster organism have been experimentally studied; incorporation and detoxification capacities of each organ are evaluated. The existence of various biological compartments is shown; the major role of the digestive gland in accumulation of the radioelement, its distribution towards the various organs, and its resorption is comprehensively described, with an analysis at the subcellular and molecular levels. 401 p., 65 fig., 43 tab., 428 ref

  2. Neptunium 237 behaviour in subcellular fractions of rat kidneys

    International Nuclear Information System (INIS)

    Kreslov, V.V.; Maksutova, A.Ya.; Mushkacheva, G.S.

    1978-01-01

    Subcellular distribution of intravenously injected (1 and 0.5 μCi/rat) neptunium nitrate (5- and 6-valent) in kidneys of rat males and females has been investigated. It has been shown that the radionuclide was unevenly distributed within the cell. As early as 24 hours after administration, about 50 per cent of neptunium were concentrated in the mitochondrial fraction. The data are presented on variations in neptunium behaviour within subcellular fractions of rat kidneys depending on the sex of animals, valency and dose of the isotope

  3. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    Science.gov (United States)

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Dynamic full field OCT: metabolic contrast at subcellular level (Conference Presentation)

    Science.gov (United States)

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, Claude A.

    2016-03-01

    Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the still and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterers clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and for better medical diagnosis.

  5. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    Science.gov (United States)

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  6. Biomechanics of cellular solids.

    Science.gov (United States)

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  7. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    Science.gov (United States)

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  8. Algorithm for cellular reprogramming.

    Science.gov (United States)

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.

  9. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  10. Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM)

    Science.gov (United States)

    Wallace, W.G.; Luoma, S.N.

    2003-01-01

    This paper examines how the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis may affect the trophic transfer of metal to predators. Results show that the partitioning of metals to organelles, 'enzymes' and metallothioneins (MT) comprise a subcellular compartment containing trophically available metal (TAM; i.e. metal trophically available to predators), and that because this partitioning varies with species, animal size and metal, TAM is similarly influenced. Clams from San Francisco Bay, California, were exposed for 14 d to 3.5 ??g 1-1 Cd and 20.5 ??g 1-1 Zn, including 109Cd and 65Zn as radiotracers, and were used in feeding experiments with grass shrimp Palaemon macrodatylus, or used to investigate the subcellular partitioning of metal. Grass shrimp fed Cd-contaminated P. amurensis absorbed ???60% of ingested Cd, which was in accordance with the partitioning of Cd to the bivalve's TAM compartment (i.e. Cd associated with organelles, 'enzymes' and MT); a similar relationship was found in previous studies with grass shrimp fed Cd-contaminated oligochaetes. Thus, TAM may be used as a tool to predict the trophic transfer of at least Cd. Subcellular fractionation revealed that ???34% of both the Cd and Zn accumulated by M. balthica was associated with TAM, while partitioning to TAM in P. amurensis was metal-dependent (???60% for TAM-Cd%, ???73% for TAM-Zn%). The greater TAM-Cd% of P. amurensis than M. balthica is due to preferential binding of Cd to MT and 'enzymes', while enhanced TAM-Zn% of P. amurensis results from a greater binding of Zn to organelles. TAM for most species-metal combinations was size-dependent, decreasing with increased clam size. Based on field data, it is estimated that of the 2 bivalves, P. amurensis poses the greater threat of Cd exposure to predators because of higher tissue concentrations and greater partitioning as TAM; exposure of Zn to predators would be similar between these species.

  11. Subcellular sites for bacterial protein export

    NARCIS (Netherlands)

    Campo, Nathalie; Tjalsma, Harold; Buist, Girbe; Stepniak, Dariusz; Meijer, Michel; Veenhuis, Marten; Westermann, Martin; Müller, Jörg P.; Bron, Sierd; Kok, Jan; Kuipers, Oscar P.; Jongbloed, Jan D.H.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  12. Subcellular sites for bacterial protein export.

    NARCIS (Netherlands)

    Campo, N.; Tjalsma, H.; Buist, G.; Stepniak, D.; Meijer, M.; Veenhuis, M.; Westermann, M.; Muller, J.P.; Bron, S.; Kok, J.; Kuipers, O.P.; Jongbloed, J.D.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  13. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  14. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    Science.gov (United States)

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  15. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  16. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  17. Co(III)EDTA as extra-cellular marker in μPIXE-analysis of rat cardiomyocytes

    International Nuclear Information System (INIS)

    Quaedackers, J.A.; Queens, R.M.G.J.; Mutsaers, P.H.A.; Voigt, M.J.A. de; Vusse, G.J. van der

    1998-01-01

    In previous studies no clear difference was found between the intra- and extra-cellular compartment in nuclear microprobe elemental distribution maps of freeze-dried cryo sections of heart tissue. Probably due to artefacts during the preparation of these samples, the intra-cellular and the extra-cellular content of elements are mixed up. In this article a method, using NaCo(III)EDTA as an extra-cellular marker, was applied to deconvolute the total ion content in an extra- and intra-cellular contribution. This method was both applied to normoxic heart tissue and low-flow ischemic heart tissue. Intra-cellular ion concentrations calculated from the corrected ion contents of the normoxic tissue agrees well with literature values. Moreover a clear elevation of the intra-cellular sodium and chlorine concentration was found in low-flow ischemic tissue. (orig.)

  18. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.

    Science.gov (United States)

    DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari

    2012-03-09

    Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).

  19. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators.

    Science.gov (United States)

    Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François

    2017-07-27

    Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila . These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.

  20. Radiation damage on sub-cellular scales: beyond DNA

    International Nuclear Information System (INIS)

    Byrne, H L; McNamara, A L; Domanova, W; Kuncic, Z; Guatelli, S

    2013-01-01

    This study investigates a model cell as a target for low-dose radiation using Monte Carlo simulations. Mono-energetic electrons and photons are used with initial energies between 10 and 50 keV, relevant to out-of-field radiotherapy scenarios where modern treatment modalities expose relatively large amounts of healthy tissue to low-dose radiation, and also to microbeam cell irradiation studies which show the importance of the cytoplasm as a radiation target. The relative proportions of number of ionizations and total energy deposit in the nucleus and cytoplasm are calculated. We show that for a macroscopic dose of no more than 1 Gy only a few hundred ionizations occur in the nucleus volume whereas the number of ionizations in the cytoplasm is over a magnitude larger. We find that the cell geometry can have an appreciable effect on the energy deposit in the cell and can cause a nonlinear increase in energy deposit with cytoplasm density. We also show that changing the nucleus volume has negligible effect on the total energy deposit but alters the relative proportion deposited in the nucleus and cytoplasm; the nucleus volume must increase to approximately the same volume as the cytoplasm before the energy deposit in the nucleus matches that in the cytoplasm. Additionally we find that energy deposited by electrons is generally insensitive to spatial variations in chemical composition, which can be attributed to negligible differences in electron stopping power for cytoplasm and nucleus materials. On the other hand, we find that chemical composition can affect energy deposited by photons due to non-negligible differences in attenuation coefficients. These results are of relevance in considering radiation effects in healthy cells, which tend to have smaller nuclei. Our results further show that the cytoplasm and organelles residing therein can be important targets for low-dose radiation damage in healthy cells and warrant investigation as much as the conventional focus

  1. ClubSub-P: Cluster-based subcellular localization prediction for Gram-negative bacteria and Archaea.

    Directory of Open Access Journals (Sweden)

    Nagarajan eParamasivam

    2011-11-01

    Full Text Available The subcellular localization of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned subcellular localizations. This and other problems in subcellular localization prediction, such as the relatively high false positive and false negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing subcellular localization prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false positive and false negative predictions. ClubSub-P can assign the subcellular localization of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the subcellular localization prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/

  2. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    Directory of Open Access Journals (Sweden)

    Miguel A. Ibeas

    2017-12-01

    Full Text Available Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds.

  3. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  4. Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering.

    Science.gov (United States)

    Thayer, Patrick S; Dimling, Anna F; Plessl, Daniel S; Hahn, Mariah R; Guelcher, Scott A; Dahlgren, Linda A; Goldstein, Aaron S

    2014-01-13

    Electrospun meshes suffer from poor cell infiltration and limited thickness, which restrict their use to thin tissue applications. Herein, we demonstrate two complementary processes to overcome these limitations and achieve elastomeric composites that may be suitable for ligament repair. First, C3H10T1/2 mesenchymal stem cells were incorporated into electrospun meshes using a hybrid electrospinning/electrospraying process. Second, electrospun meshes were rolled and formed into composites with an interpenetrating polyethylene glycol (PEG) hydrogel network. Stiffer composites were formed from poly(lactic-co-glycolic acid) (PLGA) meshes, while softer and more elastic composites were formed from poly(ester-urethane urea) (PEUUR) meshes. As-spun PLGA and PEUUR rolled meshes had tensile moduli of 19.2 ± 1.9 and 0.86 ± 0.34 MPa, respectively, which changed to 11.6 ± 4.8 and 1.05 ± 0.39 MPa with the incorporation of a PEG hydrogel phase. In addition, cyclic tensile testing indicated that PEUUR-based composites deformed elastically to at least 10%. Finally, C3H10T1/2 cells incorporated into electrospun meshes survived the addition of the PEG phase and remained viable for up to 5 days. These results indicate that the fabricated cellularized composites are support cyclic mechanical conditioning, and have potential application in ligament repair.

  5. Tissue distribution and subcellular localizations determine in vivo functional relationship among prostasin, matriptase, HAI-1, and HAI-2 in human skin.

    Science.gov (United States)

    Lee, Shiao-Pieng; Kao, Chen-Yu; Chang, Shun-Cheng; Chiu, Yi-Lin; Chen, Yen-Ju; Chen, Ming-Hsing G; Chang, Chun-Chia; Lin, Yu-Wen; Chiang, Chien-Ping; Wang, Jehng-Kang; Lin, Chen-Yong; Johnson, Michael D

    2018-01-01

    The membrane-bound serine proteases prostasin and matriptase and the Kunitz-type protease inhibitors HAI-1 and HAI-2 are all expressed in human skin and may form a tightly regulated proteolysis network, contributing to skin pathophysiology. Evidence from other systems, however, suggests that the relationship between matriptase and prostasin and between the proteases and the inhibitors can be context-dependent. In this study the in vivo zymogen activation and protease inhibition status of matriptase and prostasin were investigated in the human skin. Immunohistochemistry detected high levels of activated prostasin in the granular layer, but only low levels of activated matriptase restricted to the basal layer. Immunoblot analysis of foreskin lysates confirmed this in vivo zymogen activation status and further revealed that HAI-1 but not HAI-2 is the prominent inhibitor for prostasin and matriptase in skin. The zymogen activation status and location of the proteases does not support a close functional relation between matriptase and prostasin in the human skin. The limited role for HAI-2 in the inhibition of matriptase and prostasin is the result of its primarily intracellular localization in basal and spinous layer keratinocytes, which probably prevents the Kunitz inhibitor from interacting with active prostasin or matriptase. In contrast, the cell surface expression of HAI-1 in all viable epidermal layers renders it an effective regulator for matriptase and prostasin. Collectively, our study suggests the importance of tissue distribution and subcellular localization in the functional relationship between proteases and protease inhibitors.

  6. METABOLIC MAPPING BY ENZYME HISTOCHEMISTRY IN LIVING ANIMALS, TISSUES AND CELLS

    NARCIS (Netherlands)

    van Noorden, C. J. F.

    2009-01-01

    Imaging of reporter molecules such as fluorescent proteins in intact animals, tissue and cells has become an indispensable tool in cell biology Imaging activity of enzymes, which is called metabolic mapping, provides information on subcellular localisation in combination with function of the enzymes

  7. Cellular immunotherapy for soft tissue sarcomas

    Science.gov (United States)

    Finkelstein, Steven Eric; Fishman, Mayer; Conley, Anthony P.; Gabrilovich, Dmitry; Antonia, Scott; Chiappori, Alberto

    2015-01-01

    SUMMARY Soft tissue sarcomas are rare neoplasms, with approximately 9,000 new cases in the United States every year. Unfortunately, there is little progress in the treatment of metastatic soft tissue sarcomas in the past two decades beyond the standard approaches of surgery, chemotherapy, and radiation. Immunotherapy is a modality complementary to conventional therapy,. It is appealing because functional anti-tumor activity could affect both local-regional and systemic disease and act over a prolonged period of time. In this report, we review immunotherapeutic investigative strategies being developed, including several tumor vaccine, antigen vaccine, and dendritic cell vaccine strategies. PMID:22401634

  8. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2006-06-01

    Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  9. Cellular signaling identifiability analysis: a case study.

    Science.gov (United States)

    Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo

    2010-05-21

    Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk.

    Science.gov (United States)

    Schott, Micah B; Gonowolo, Faith; Maliske, Benjamin; Grove, Bryon

    2016-04-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  11. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca2+/PKA crosstalk

    Science.gov (United States)

    Schott, Micah; Gonowolo, Faith; Maliske, Ben; Grove, Bryon

    2016-01-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca2+]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium “switch” that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca2+ and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca2+/PKA crosstalk was not observed in cells expressing a gravin mutant that resists calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca2+ and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  12. Mathematical modeling of the glucose-insulin system

    DEFF Research Database (Denmark)

    Palumbo, Pasquale; Ditlevsen, Susanne; Bertuzzi, Alessandro

    2013-01-01

    of pancreatic insulin production, with a oarser/finer level of detail ranging over cellular and subcellular scales, to short-term organ/tissue models accounting for the intra-venous and the oral glucose tolerance tests as well as for the euglycemic hyperinsulinemic clamp, to total-body, long-term diabetes...

  13. Sensing Phosphatidylserine in Cellular Membranes

    Directory of Open Access Journals (Sweden)

    Jason G. Kay

    2011-01-01

    Full Text Available Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  14. Ultrastructural observations of target-organs of the crayfish Orconectes limosus exposed to metallic pollutants: application to uranium

    International Nuclear Information System (INIS)

    Grasset, G.; Simon, O.; Floriani, M.

    2004-01-01

    Using electron microscopy associated with energy dispersive X-ray microanalysis (EDAXTEM), ultrastructure and elemental analysis in subcellular micro-localization can bring understanding to both metabolic cycle of a metallic pollutant and its potential effects at the subcellular scale. The approach consists in comparing both structures and micro-localization in various tissues/organs ultrathin sections (70-140 nm thickness) obtained from control organisms (i.e. not exposed to a given metal) and exposed organisms. However, the observations of ultrastructural effects of metal exposure involved robust comparison to reference subcellular and cellular organization. Consequently, preliminary developments presented in this poster have been performed from the non-contaminated freshwater crayfish Orconectes limosus (adult at inter-moult state). Studies of ultrastructural images and elemental composition of subcellular mineral deposits were carried out on target organs of uranium accumulation such as the digestive gland, the gills, the intestine and the antennal gland, organs participating in the detoxification, primary accumulation and depuration mechanisms. Observations indicated cell-specific architecture (identification of main organelles, frequency, length of cells), the range of natural variation of the cell organisation between individuals and identification of cellular types. Information will allow then to focus on these identified specific organization after metallic exposure. These ultrastructural observations performed on reference organisms constitute necessarily a first set of data for the cellular metallic effects analysis. (author)

  15. Subcellular localization of cadmium in hyperaccumulator Populus ...

    African Journals Online (AJOL)

    In this study, subcellular localization of cadmium in hyperaccumulator grey poplar (Populus × canescens) was investigated by the transmission electron microscopy (TEM) method. Young Populus × canescens were grown and hydroponic experiments were conducted under four Cd2+ concentrations (10, 30, 50, and 70 μM) ...

  16. Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station

    Science.gov (United States)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy

  17. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Vaddepalli, Prasad; Fulton, Lynette; Wieland, Jennifer; Wassmer, Katrin; Schaeffer, Milena; Ranf, Stefanie; Schneitz, Kay

    2017-06-15

    Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig -like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro , cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  18. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization.

    Science.gov (United States)

    Smolders, R; Bervoets, L; De Coen, W; Blust, R

    2004-05-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels.

  19. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev

    International Nuclear Information System (INIS)

    Fang Jianhua; Kubota, Satoshi; Yang Bin; Zhou Naiming; Zhang Hui; Godbout, Roseline; Pomerantz, Roger J.

    2004-01-01

    HIV-1 Rev escorts unspliced viral mRNAs out of the nucleus of infected cells, which allows formation of infectious HIV-1 virions. We have identified a putative DEAD box (Asp-Glu-Ala-Asp) RNA helicase, DDX1, as a cellular co-factor of Rev, through yeast and mammalian two-hybrid systems using the N-terminal motif of Rev as 'bait'. DDX1 is not a functional homolog of HIV-1 Rev, but down-regulation of DDX1 resulted in an alternative splicing pattern of Rev-responsive element (RRE)-containing mRNA, and attenuation of Gag p24 antigen production from HLfb rev(-) cells rescued by exogenous Rev. Co-transfection of a DDX1 expression vector with HIV-1 significantly increased viral production. DDX1 binding to Rev, as well as to the RRE, strongly suggest that DDX1 affects Rev function through the Rev-RRE axis. Moreover, down-regulation of DDX1 altered the steady state subcellular distribution of Rev, from nuclear/nucleolar to cytoplasmic dominance. These findings indicate that DDX1 is a critical cellular co-factor for Rev function, which maintains the proper subcellular distribution of this lentiviral regulatory protein. Therefore, alterations in DDX1-Rev interactions could induce HIV-1 persistence and targeting DDX1 may lead to rationally designed and novel anti-HIV-1 strategies and therapeutics

  20. Label-free in vivo in situ diagnostic imaging by cellular metabolism quantification with a flexible multiphoton endomicroscope (Conference Presentation)

    Science.gov (United States)

    Leclerc, Pierre; Hage, Charles-Henri; Fabert, Marc; Brevier, Julien; O'Connor, Rodney P.; Bardet-Coste, Sylvia M.; Habert, Rémi; Braud, Flavie; Kudlinski, Alexandre; Louradour, Frederic

    2017-02-01

    Multiphoton microscopy is a cutting edge imaging modality leading to increasing advances in biology and also in the clinical field. To use it at its full potential and at the very heart of clinical practice, there have been several developments of fiber-based multiphoton microendoscopes. The application for those probes is now limited by few major restrictions, such as the difficulty to collect autofluorescence signals from tissues and cells theses being inherently weak (e.g. the ones from intracellular NADH or FAD metabolites). This limitation reduces the usefulness of microendoscopy in general, effectively restraining it to morphological imaging modality requiring staining of the tissues. Our aim is to go beyond this limitation, showing for the first time label-free cellular metabolism monitoring, in vivo in situ in real time. The experimental setup is an upgrade of a recently published one (Ducourthial et.al, Scientific Reports, 2016) where femtosecond pulse fiber delivery is further optimized thank's to a new transmissive-GRISM-based pulse stretcher permitting high energy throughput and wide bandwidth. This device allows fast sequential operation with two different excitation wavelengths for efficient two-photon excited NADH and FAD autofluorescence endoscopic detection (i.e. 860 nm for FAD and 760 nm for NADH), enabling cellular optical redox ratio quantification at 8 frames/s. The obtained results on cell models in vitro and also on animal models in vivo (e.g. neurons of a living mouse) prove that we accurately assess the level of NADH and FAD at subcellular resolution through a 3-meters-long fiber with our miniaturized probe (O.D. =2.2 mm).

  1. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were

  2. Cellular oncogene expression following exposure of mice to γ-rays

    International Nuclear Information System (INIS)

    Anderson, A.; Woloschak, G.E.

    1991-01-01

    We examined the effects of total body exposure of BCF1 mice to γ-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to γ-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis

  3. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    Science.gov (United States)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. New insights into the cellular makeup and progenitor potential of palatal connective tissues.

    Science.gov (United States)

    Pall, Emoke; Cenariu, Mihai; Kasaj, Adrian; Florea, Adrian; Soancă, Andrada; Roman, Alexandra; Georgiu, Carmen

    2017-12-01

    The present study investigated the regenerative potential of connective tissues harvested from two palatal areas widely used as donor sites for muco-gingival surgical approaches. Connective tissue grafts (CTGs) were obtained by de-epithelialisation of a free gingival graft (deCTG) and by a split flap approach from a previous donor site (reCTG). Two types of mesenchymal stem cell (MSCs) were isolated and were named de-epithelialised MSCs (deMSCs) and re-entry MSCs (reMSCs). The cells were characterised and cellular functionality was investigated. CTGs were evaluated using immunohistochemical and ultrastructural approaches. No significant differences were observed regarding the frequency of colony-forming unit- fibroblasts, migration potential, and population doubling time between the two cell lines (p > 0.05). Both cell lines showed positivity for CD105, CD73, CD90, and CD44 and negative expression for CD34/45, CD14, CD79a, and HLA-DR. MSCs from both cell lines successfully differentiated into osteogenic, adipogenic, and chondrogenic lineages. Cells expressing antigens characteristic of CD34+ stromal cells (CD34+, αSMA-, CD31-) were traced in both CTGs. Ultrastructural analysis highlighted the presence of putative progenitors, namely fibroblasts,-in the pericapillary regions and in remote regions of the lamina propria- and pericytes-surrounding the capillaries. This study provides supplementary arguments for the use of CTG grafts in clinical practice due to the presence of putative progenitor cell. However, results were inconclusive regarding clinical decision-making to determine optimal harvesting area. Prior harvesting in the donor area did not appear to alter the regenerative capabilities of the connective tissue. © 2017 Wiley Periodicals, Inc.

  5. Ultradian metronome: timekeeper for orchestration of cellular coherence.

    Science.gov (United States)

    Lloyd, David; Murray, Douglas B

    2005-07-01

    Dynamic intracellular spatial and temporal organization emerges from spontaneous synchronization of a massive array of weakly coupled oscillators; the majority of subcellular processes are implicated in this integrated expression of cellular physiology. Evidence for this view comes mainly from studies of Saccharomyces cerevisiae growing in self-synchronized continuous cultures, in which a temperature-compensated ultradian clock (period of approximately 40 min) couples fermentation with redox state in addition to the transcriptome and cell-division-cycle progression. Functions for ultradian clocks have also been determined in other yeasts (e.g. Schizosaccharomyces pombe and Candida utilis), seven protists (e.g. Acanthamoeba castellanii and Paramecium tetraurelia), as well as cultured mammalian cells. We suggest that ultradian timekeeping is a basic universal necessity for coordinated intracellular coherence.

  6. Calcium movements and the cellular basis of gravitropism

    Science.gov (United States)

    Roux, S. J.; Biro, R. L.; Hale, C. C.

    An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.

  7. Radiation risk of tissue late effects, a net consequence of probabilities of various cellular responses

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1991-01-01

    Late effects from the exposure to low doses of ionizing radiation are hardly or not at all observed in man mainly due to the low values of risk coefficients that preclude statistical analyses of data from populations that are exposed to doses less than 0.2 Gy. In order to arrive at an assessment of potential risk from radiation exposure in the low dose range, the microdosimetry approach is essential. In the low dose range, ionizing radiation generates particle tracks, mainly electrons, which are distributed rather heterogeneously within the exposed tissue. Taking the individual cell as the elemental unit of life, observations and calculations of cellular responses to being hit by energy depositions events from low LET type are analysed. It emerges that besides the probability of a hit cell to sustain a detrimental effect with the consequense of malignant transformation there are probabilities of various adaptive responses that equipp the hit cell with a benefit. On the one hand, an improvement of cellular radical detoxification was observed in mouse bone marrow cells; another adaptive response pertaining to improved DNA repair, was reported for human lymphocytes. The improved radical detoxification in mouse bone marrow cells lasts for a period of 5-10 hours and improved DNA repair in human lymphocytes was seen for some 60 hours following acute irradiation. It is speculated that improved radical detoxification and improved DNA repair may reduce the probability of spontaneous carcinogenesis. Thus it is proposed to weigh the probability of detriment for a hit cell within a multicellular system against the probability of benefit through adaptive responses in other hit cells in the same system per radiation exposure. In doing this, the net effect of low doses of low LET radiation in tissue with individual cells being hit by energy deposition events could be zero or even beneficial. (orig./MG)

  8. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  9. Studies on cellular distribution of elements in human hepatocellular carcinoma samples by molecular activation analysis

    International Nuclear Information System (INIS)

    Deng Guilong; Chen Chunying; Zhang Peiqun; Zhao Jiujiang; Chai Zhifang

    2005-01-01

    The distribution patterns of 17 elements in the subcellular fractions of nuclei, mitochondria, lysosome, microsome and cytosol of human hepatocellular carcinoma (HCC) and normal liver samples were investigated by using molecular activation analysis (MAA) and differential centrifugation. Their significant difference was checked by the Studient's t-test. These elements exhibit inhomogeneous distributions in each subcellular fraction. Some elements have no significant difference between hepatocellular carcinoma and normal liver samples. However, the concentrations of Br, Ca, Cd and Cs are significantly higher in each component of hepatocarcinoma than in normal liver. The content of Fe in microsome of HCC is significantly lower, almost half of normal liver samples, but higher in other subcellular fractions than in those of normal tissues. The rare earth elements of La and Ce have the patterns similar to Fe. The concentrations of Sb and Zn in nuclei of HCC are obviously lower (P<0.05, P<0.05). The contents of K and Na are higher in cytosol of HCC (P<0.05). The distributions of Ba and Rb show no significant difference between two groups. The relationships of Fe, Cd and K with HCC were also discussed. The levels of some elements in subcellular fractions of tumor were quite different from those of normal liver, which suggested that trace elements might play important roles in the occurrence and development of hepatocellular carcinoma. (authors)

  10. Studies on cellular distribution of elements in human hepatocellular carcinoma samples by molecular activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guilong, Deng [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics, Key Laboratory of Nuclear Analytical Techniques; Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang Univ., Hangzhou (China); Chunying, Chen; Peiqun, Zhang; Jiujiang, Zhao; Zhifang, Chai [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics, Key Laboratory of Nuclear Analytical Techniques; Yingbin, Liu; Jianwei, Wang; Bin, Xu; Shuyou, Peng [Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang Univ., Hangzhou (China)

    2005-07-15

    The distribution patterns of 17 elements in the subcellular fractions of nuclei, mitochondria, lysosome, microsome and cytosol of human hepatocellular carcinoma (HCC) and normal liver samples were investigated by using molecular activation analysis (MAA) and differential centrifugation. Their significant difference was checked by the Studient's t-test. These elements exhibit inhomogeneous distributions in each subcellular fraction. Some elements have no significant difference between hepatocellular carcinoma and normal liver samples. However, the concentrations of Br, Ca, Cd and Cs are significantly higher in each component of hepatocarcinoma than in normal liver. The content of Fe in microsome of HCC is significantly lower, almost half of normal liver samples, but higher in other subcellular fractions than in those of normal tissues. The rare earth elements of La and Ce have the patterns similar to Fe. The concentrations of Sb and Zn in nuclei of HCC are obviously lower (P<0.05, P<0.05). The contents of K and Na are higher in cytosol of HCC (P<0.05). The distributions of Ba and Rb show no significant difference between two groups. The relationships of Fe, Cd and K with HCC were also discussed. The levels of some elements in subcellular fractions of tumor were quite different from those of normal liver, which suggested that trace elements might play important roles in the occurrence and development of hepatocellular carcinoma. (authors)

  11. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization

    International Nuclear Information System (INIS)

    Smolders, R.; Bervoets, L.; Coen, W. de; Blust, R.

    2004-01-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels. - Exposure of zebra mussels along a pollution gradient has adverse effects on the cellular energy allocation, and results can be linked with higher levels of biological organization

  12. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization

    Energy Technology Data Exchange (ETDEWEB)

    Smolders, R.; Bervoets, L.; Coen, W. de; Blust, R

    2004-05-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels. - Exposure of zebra mussels along a pollution gradient has adverse effects on the cellular energy allocation, and results can be linked with higher levels of biological organization.

  13. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Tanel Pärnamaa

    2017-05-01

    Full Text Available High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.

  14. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning.

    Science.gov (United States)

    Pärnamaa, Tanel; Parts, Leopold

    2017-05-05

    High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy. Copyright © 2017 Parnamaa and Parts.

  15. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne.

    Science.gov (United States)

    He, Shanying; Wu, Qiuling; He, Zhenli

    2013-11-01

    The effects of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6) and EDTA, either alone or in combination applied to original soil or lead (Pb) spiked soil on Pb phytoextraction, subcellular distribution and chemical forms in Lolium perenne were studied. EDTA addition alone significantly reduced plant biomass though it increased Pb accumulation (PDA-6 alone increased both plant biomass and Pb accumulation (PDA-6 being the most effective. DA-6 combined with EDTA compensated the adverse effect of the latter on plant growth, and resulted in a synergistic effect on Pb uptake and translocation, with the maximum accumulation occurring in the EDTA+10μM DA-6 treatment. At the subcellular level, about 35-66% of Pb was distributed in cell wall and 21-42% in soluble fraction, with a minority present in cellular organelles fraction. EDTA addition alone increased the proportion of Pb in soluble and cellular organelles fraction, while DA-6 detoxified Pb in plant by storing additional Pb in cell wall, and 10μM DA-6 was the most effective. Of the total Pb in plant shoot, 27-52% was NaCl extractable, 22-47% HAc extractable, followed by other fractions. Contrary to EDTA, DA-6 significantly decreased Pb migration in plant. These results suggest that Pb fixation by pectates and proteins in cell wall and compartmentalization by vacuole might be responsible for Pb detoxification in plant, and the combined use of EDTA and 10μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Pb contaminated soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Osteochondral Biopsy Analysis Demonstrates That BST-CarGel Treatment Improves Structural and Cellular Characteristics of Cartilage Repair Tissue Compared With Microfracture

    Science.gov (United States)

    Méthot, Stéphane; Changoor, Adele; Tran-Khanh, Nicolas; Hoemann, Caroline D.; Stanish, William D.; Restrepo, Alberto; Shive, Matthew S.; Buschmann, Michael D.

    2016-01-01

    Objective The efficacy and safety of BST-CarGel, a chitosan-based medical device for cartilage repair, was compared with microfracture alone at 1 year during a multicenter randomized controlled trial (RCT) in the knee. The quality of repair tissue of osteochondral biopsies collected from a subset of patients was compared using blinded histological assessments. Methods The international RCT evaluated repair tissue quantity and quality by 3-dimensional quantitative magnetic resonance imaging as co-primary endpoints at 12 months. At an average of 13 months posttreatment, 21/41 BST-CarGel and 17/39 microfracture patients underwent elective second look arthroscopies as a tertiary endpoint, during which ICRS (International Cartilage Repair Society) macroscopic scoring was carried out, and osteochondral biopsies were collected. Stained histological sections were evaluated by blinded readers using ICRS I and II histological scoring systems. Collagen organization was evaluated using a polarized light microscopy score. Results BST-CarGel treatment resulted in significantly better ICRS macroscopic scores (P = 0.0002) compared with microfracture alone, indicating better filling, integration, and tissue appearance. Histologically, BST-CarGel resulted in a significant improvement of structural parameters—Surface Architecture (P = 0.007) and Surface/Superficial Assessment (P = 0.042)—as well as cellular parameters—Cell Viability (P = 0.006) and Cell Distribution (P = 0.032). No histological parameters were significantly better for the microfracture group. BST-CarGel treatment also resulted in a more organized repair tissue with collagen stratification more similar to native hyaline cartilage, as measured by polarized light microscopy scoring (P = 0.0003). Conclusion Multiple and independent analyses in this biopsy substudy demonstrated that BST-CarGel treatment results in improved structural and cellular characteristics of repair tissue at 1 year posttreatment compared with

  17. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    Science.gov (United States)

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  18. Expression and subcellular localization of antiporter regulating ...

    African Journals Online (AJOL)

    We examined the expression and subcellular localization of antiporter regulating protein OsARP in a submergence tolerant rice (Oryza sativa L.) cultivar FR13A. In the public databases, this protein was designated as putative Os02g0465900 protein. The cDNA containing the full-length sequence of OsARP gene was ...

  19. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.

    Science.gov (United States)

    Garcia, I; Rodgers, M; Pepin, R; Hsieh, T F; Matringe, M

    1999-04-01

    4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

  20. Subcellular distribution of styrene oxide in rat liver

    International Nuclear Information System (INIS)

    Pacifici, G.M.; Cuoci, L.; Rane, A.

    1984-01-01

    The subcellular distribution of ( 3 H)-styrene-7,8-oxide was studied in the rat liver. The compound was added to liver homogenate to give a final concentration of 2 X 10(-5); 2 X 10(-4) and 2 X 10(-3) M. Subcellular fractions were obtained by differential centrifugation. Most of styrene oxide (59-88%) was associated with the cytosolic fraction. Less than 15 percent of the compound was retrieved in each of the nuclear, mitochondrial and microsomal fractions. A considerable percentage of radioactivity was found unextractable with the organic solvents, suggesting that styrene oxide reacted with the endogenous compounds. The intracellular distribution of this epoxide was also studied in the perfused rat liver. Comparable results with those previously described were obtained. The binding of styrene oxide to the cytosolic protein was investigated by equilibrium dialysis and ultrafiltration. Only a small percentage of the compound was bound to protein

  1. Differences in metal sequestration between zebra mussels from clean and polluted field locations.

    Science.gov (United States)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  2. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    International Nuclear Information System (INIS)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-01-01

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  3. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    Energy Technology Data Exchange (ETDEWEB)

    Voets, Judith [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Redeker, Erik Steen [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Institute for Materials Research, Chemistry Division, Hasselt University, Agoralaan Building D G1-36, B 3590 Diepenbeek (Belgium); Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: Lieven.bervoets@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  4. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

    Directory of Open Access Journals (Sweden)

    Daniel P Riordan

    Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

  5. Predicting Subcellular Localization of Proteins by Bioinformatic Algorithms

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2015-01-01

    was used. Various statistical and machine learning algorithms are used with all three approaches, and various measures and standards are employed when reporting the performances of the developed methods. This chapter presents a number of available methods for prediction of sorting signals and subcellular...

  6. Tip chip : Subcellular sampling from single cancer cells

    NARCIS (Netherlands)

    Quist, Jos; Sarajlic, Edin; Lai, Stanley C.S.; Lemay, Serge G.

    2016-01-01

    To analyze the molecular content of single cells, cell lysis is typically required, yielding a snapshot of cell behavior only. To follow complex molecular profiles over time, subcellular sampling methods potentially can be used, but to date these methods involve laborious offline analysis. Here we

  7. Evaluation and comparison of mammalian subcellular localization prediction methods

    Directory of Open Access Journals (Sweden)

    Fink J Lynn

    2006-12-01

    Full Text Available Abstract Background Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER, peroxisome, and lysosome. The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE

  8. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  9. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Kamunde, Collins; MacPhail, Ruth

    2011-01-01

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal–metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67–83%; Cu, 68–79% and Zn, 60–76

  10. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada); MacPhail, Ruth [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)

    2011-10-15

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal-metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing ({mu}g/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67-83%; Cu, 68-79% and Zn, 60-76%. Taken

  11. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  12. Mapping the Subcellular Proteome of Shewanella oneidensis MR-1 using Sarkosyl-based fractionation and LC-MS/MS protein identification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Romine, Margaret F.; Schepmoes, Athena A.; Smith, Richard D.; Lipton, Mary S.

    2010-07-19

    A simple and effective subcellular proteomic method for fractionation and analysis of gram-negative bacterial cytoplasm, periplasm, inner, and outer membranes was applied to Shewanella oneidensis to gain insight into its subcellular architecture. A combination of differential centrifugation, Sarkosyl solubilization, and osmotic lysis was used to prepare subcellular fractions. Global differences in protein fractions were observed by SDS PAGE and heme staining, and tryptic peptides were analyzed using high-resolution LC-MS/MS. Compared to crude cell lysates, the fractionation method achieved a significant enrichment (average ~2-fold) in proteins predicted to be localized to each subcellular fraction. Compared to other detergent, organic solvent, and density-based methods previously reported, Sarkosyl most effectively facilitated separation of the inner and outer membranes and was amenable to mass spectrometry, making this procedure ideal for probing the subcellular proteome of gram-negative bacteria via LC-MS/MS. With 40% of the observable proteome represented, this study has provided extensive information on both subcellular architecture and relative abundance of proteins in S. oneidensis and provides a foundation for future work on subcellular organization and protein-membrane interactions in other gram-negative bacteria.

  13. Prediction of protein subcellular localization using support vector machine with the choice of proper kernel

    Directory of Open Access Journals (Sweden)

    Al Mehedi Hasan

    2017-07-01

    Full Text Available The prediction of subcellular locations of proteins can provide useful hints for revealing their functions as well as for understanding the mechanisms of some diseases and, finally, for developing novel drugs. As the number of newly discovered proteins has been growing exponentially, laboratory-based experiments to determine the location of an uncharacterized protein in a living cell have become both expensive and time-consuming. Consequently, to tackle these challenges, computational methods are being developed as an alternative to help biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging problem, particularly when query proteins may have multi-label characteristics, i.e. their simultaneous existence in more than one subcellular location, or if they move between two or more different subcellular locations as well. At this point, to get rid of this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM has been employed to provide potential solutions for problems connected with the prediction of protein subcellular localization. However, the practicability of SVM is affected by difficulties in selecting its appropriate kernel as well as in selecting the parameters of that selected kernel. The literature survey has shown that most researchers apply the radial basis function (RBF kernel to build a SVM based subcellular localization prediction system. Surprisingly, there are still many other kernel functions which have not yet been applied in the prediction of protein subcellular localization. However, the nature of this classification problem requires the application of different kernels for SVM to ensure an optimal result. From this viewpoint, this paper presents the work to apply different kernels for SVM in protein

  14. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    International Nuclear Information System (INIS)

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  15. An experimental study of americium-241 biokinetics in the Lobster Homarus Gammarus. Analysis of the accumulation/storage and detoxification processes at the subcellular level; Etude experimentale des biocinetiques de l`americium-241 chez le homard homarus gammarus. Analyse des mecanismes d`accumulation et de detoxication au niveau subcellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Paquet, F

    1993-01-01

    An experimental study of americium-241 kinetics has been conducted in the lobster Homarus gammmarus. The investigations were conducted at all the levels from the whole body to the subcellular and molecular levels. The animals were contaminated by a single or chronic ingestion of {sup 241} Am labelled mussels. Assessments of accumulation, elimination and distribution of the radionuclide were established on organisms kept in the laboratory; they made it possible to demonstrate the importance of the digestive gland in the radionuclide transfer pathways. The preliminary results led to structural then ultrastructural investigations of the digestive gland in association with radioautographic studies and cellular extractions methods. Four cellular types were demonstrated, only two of them being implied in the radionuclide retention, the former being responsible for americium intake and the latter for its long-term retention. By means of biochemical techniques, subcellular accumulation was studied and the organelles implied in the nuclide retention were specified. Finally, a method of cellular nuclei dissociation was developed; it made it possible to analyse the molecular nature of americium ligands and to demonstrate the function of the protein nuclear matrix in the nuclide retention.

  16. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  17. Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos.

    Science.gov (United States)

    Carjuzaa, P; Castellión, M; Distéfano, A J; del Vas, M; Maldonado, S

    2008-01-01

    The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250 mm of annual rain and a minimum temperature of -1 degrees C. Cultivar Baer La Unión grows at sea-level regions of central Chile and is adapted to more humid conditions (800 to 1500 mm of annual rain), fertile soils, and temperatures above 5 degrees C. Western blot analysis of embryo tissues from plants growing under controlled greenhouse conditions clearly revealed the presence of several dehydrin bands (at molecular masses of approximately 30, 32, 50, and 55 kDa), which were common to both cultivars, although the amount of the 30 and 32 kDa bands differed. Nevertheless, when grains originated from their respective natural environments, three extra bands (at molecular masses of approximately 34, 38, and 40 kDa), which were hardly visible in Sajama, and another weak band (at a molecular mass of approximately 28 kDa) were evident in Baer La Unión. In situ immunolocalization microscopy detected dehydrin-like proteins in all axis and cotyledon tissues. At the subcellular level, dehydrins were detected in the plasma membrane, cytoplasm and nucleus. In the cytoplasm, dehydrins were found associated with mitochondria, rough endoplasmic reticulum cisternae, and proplastid membranes. The presence of dehydrins was also recognized in the matrix of protein bodies. In the nucleus, dehydrins were associated with the euchromatin. Upon examining dehydrin composition and subcellular localization in two quinoa cultivars belonging to highly contrasting environments, we conclude that most dehydrins detected here were constitutive components of the quinoa seed developmental program, but some of them (specially the 34, 38, and 40 kDa bands) may reflect quantitative molecular differences

  18. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    Science.gov (United States)

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

    Science.gov (United States)

    Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F

    2014-03-01

    Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

  20. Fast subcellular localization by cascaded fusion of signal-based and homology-based methods

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2011-10-01

    Full Text Available Abstract Background The functions of proteins are closely related to their subcellular locations. In the post-genomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means. Results This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by a cascaded fusion of cleavage site prediction and profile alignment. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor using the information in their N-terminal shorting signals. Then, the sequences are truncated at the cleavage site positions, and the shortened sequences are passed to PSI-BLAST for computing their profiles. Subcellular localization are subsequently predicted by a profile-to-profile alignment support-vector-machine (SVM classifier. To further reduce the training and recognition time of the classifier, the SVM classifier is replaced by a new kernel method based on the perturbational discriminant analysis (PDA. Conclusions Experimental results on a new dataset based on Swiss-Prot Release 57.5 show that the method can make use of the best property of signal- and homology-based approaches and can attain an accuracy comparable to that achieved by using full-length sequences. Analysis of profile-alignment score matrices suggest that both profile creation time and profile alignment time can be reduced without significant reduction in subcellular localization accuracy. It was found that PDA enjoys a short training time as compared to the conventional SVM. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.

  1. Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

    DEFF Research Database (Denmark)

    Købler, Carsten; Poulsen, Sarah S.; Saber, Anne T.

    2015-01-01

    Background and Methods Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice...... of cellular interactions in lung tissue, with the longer and thicker CNTs resulting inmore severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP)....

  2. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions.

    Science.gov (United States)

    He, Yupeng; Nie, Enguang; Li, Chengming; Ye, Qingfu; Wang, Haiyan

    2017-01-01

    The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using 14 C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of 14 C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of 14 C-TCS content in the roots was 94.3%-99.0% of the added 14 C-TCS, and the concentrations in roots were 2-3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 10 2 -2.6 × 10 3  mL g -1 ), concentration (0.58-4.47 μg g -1 ), and percentage (30%-61%) of 14 C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Miles Miller

    Full Text Available Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism, demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in

  4. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Science.gov (United States)

    Miller, Miles; Hafner, Marc; Sontag, Eduardo; Davidsohn, Noah; Subramanian, Sairam; Purnick, Priscilla E M; Lauffenburger, Douglas; Weiss, Ron

    2012-01-01

    Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and

  5. Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues

    KAUST Repository

    Davit, Y.

    2013-04-30

    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to continuum methods based on partial differential equations, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for noncrystalline materials, it may still be used as a first-order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to two-dimensional cellular-scale models by assessing the mechanical behavior of model biological tissues, including crystalline (honeycomb) and noncrystalline reference states. The numerical procedure involves applying an affine deformation to the boundary cells and computing the quasistatic position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For center-based cell models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based cell models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete and continuous modeling, adaptation of atom-to-continuum techniques to biological

  6. Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations

    Science.gov (United States)

    Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.

    2018-03-01

    Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.

  7. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    Directory of Open Access Journals (Sweden)

    Maritess Gay Asumen

    2010-07-01

    Full Text Available Maritess Gay Asumen1, Tochukwu V Ifeacho2, Luke Cockerham3, Christina Pfandl4, Nathan R Wall31Touro University’s College of Osteopathic Medicine, Vallejo, CA, USA; 2University of Southern California, Los Angeles, CA, USA; 3Center for Health Disparities Research and Molecular Medicine, Loma Linda University, CA, USA; 4Green Mountain Antibodies, Burlington, VT, USAAbstract: Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light- initiated DNA damage and that its distribution may be responsible for its multifunctionality.Keywords: survivin, PIK kinases, ATM, ATR, DNA-PK

  8. Cellular phones were found to pose no health risks

    International Nuclear Information System (INIS)

    Puranen, L.

    1997-01-01

    A cellular phone emits radiation very close to a person's head. Any harmful effects that might arise from the use of cellular phones are being studied carefully, but so far no health risks have been determined. However, the phones may interfere with the operation of electrical devices located close-by, such as a cardiac pacemaker. The biological effects of the microwaves emitted by cellular phones might be based on the resultant higher temperatures in the tissues of the head. Since, even in the worst cases, a cellular phone cannot raise the temperature of tissues by more than some tenths of a degree, no health risks based on thermal effects can be attributed to the use of a cellular phone. No reliable theory has been presented for the non-thermal effects of microwaves. Such effects may exist, however. The studies conducted so far have been unable to show that these effects might be harmful to human health. (orig.)

  9. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  10. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  11. Subcellular distribution of curium in beagle liver

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Grube, B.J.; Atherton, D.R.; Taylor, G.N.; Stevens, W.

    1976-01-01

    The subcellular distribution of curium ( 243 244 Cm) was studied in canine liver from 2 hr to 47 days after injection of 3 μCi 243 244 Cm/kg of body weight. The pattern of distribution for Cm was similar to other trivalent actinide elements studied previously (Am, Cf). Initially (2 hr), most of the nuclide was found in the cytosol and at least 90 percent was protein bound. About 70 percent of the Cm was bound to ferritin, approximately 5 percent was associated with a protein of MW approximately 200,000, and approximately 25 percent was found in the low-molecular-weight region (approximately 5000). The decrease in the Cm content of cytosol, nuclei, and microsomes coincided with an increase in the amount associated with mitochondria and lysosomes. The concentration of the Cm in the mitochondrial fraction was higher than it was in the lysosomal fraction at each time studied. In the mitochondrial fraction approximately 30 percent of the Cm was bound to membranous or granular material, and 70 percent was found in the soluble fraction. The Cm concentration initially associated with cell nuclei was high but had diminished to 20 percent of the 2 hr concentration by 20 days post injection (PI). The subcellular distribution of Cm in the liver of a dog which had received the same dose and was terminated because of severe liver damage was studied at 384 days PI. The liver weighed 130 g and contained approximately 30 percent of the injected Cm. In contrast, a normal liver weighs 280 g and at 2 hr PI contains approximately 40 percent of the injected dose. The subcellular distribution of Cm in this severely damaged liver differed from the pattern observed at earlier times after injection. The relative concentration of Cm in the cytosol was doubled; it was higher in the nuclei-debris fraction; and it was lower in the mitochondrial and lysosomal fractions when compared to earlier times

  12. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules

    Science.gov (United States)

    Skolnick, Jeffrey

    2016-09-01

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes.

  13. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healty and demyelinated CNS tissue

    OpenAIRE

    Praet, J.; SANTERMANS, Eva; Reekmans, K.; de Vocht, N.; Le Blon, D.; Hoornaert, C.; Daans, J.; Goossens, H.; Berneman, Z.; HENS, Niel; Van der Linden, A.; Ponsaerts, P.

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and cult...

  14. Nutrition and tissue regeneration from irradiated places: a study of cellular nutrition for the place submitted to radiotherapy

    International Nuclear Information System (INIS)

    Furtunato, Clayton R.V.; Romano, Déborah R.A.

    2017-01-01

    This paper presents a physico-chemical study of the interaction of radiation with skin by ionizing radiation, presenting the hazards caused by the process. Throughout the work it is shown the importance of cellular nutrition during the period of radiotherapeutic treatment, besides having updated data on the application of natural substances for the regeneration of the place submitted to the treatment. Cancer is a problem of public health and according to data provided by the National Cancer Institute José Alencar Gomes da Silva (INCA), 420,310 new cases were registered in Brazil in 2016, of which 214,350 are among women (primary location 'breast') and 205,960 among male (primary location 'prostate'). Despite advances in technology, the hazards caused by ionizing radiation in contact with the skin are high degree of aggressiveness. Therefore, there is great importance in developing scientific studies in order to evaluate and minimize its damages during its application for radiotherapeutic purposes. The use of Aloe Vera (extracted from the slug) on the irradiated site is easily found among people undergoing radiation therapy. How is it about a stimulator of cellular and healing multiplication favors the tissue regeneration, becoming important its application, due to the radiodermatitis that appear during the treatment. Thus, the objective of this work is to present a bibliographic study of the mechanisms related to the interaction of radiation with matter, as well as the beneficial effects of the substance on irradiated living tissue and to expose such data in graph and tables to quantify its use

  15. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    Science.gov (United States)

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  16. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    Science.gov (United States)

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    Science.gov (United States)

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  18. Diversity and subcellular distribution of archaeal secreted proteins

    Directory of Open Access Journals (Sweden)

    Mechthild ePohlschroder

    2012-07-01

    Full Text Available Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell-wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as archaeal kingdom-specific pathways. A more comprehensive understanding of the transport pathways and post-translational modifications of secreted archaeal proteins will also generate invaluable insights that will facilitate the identification of commercially valuable archaeal enzymes and the development of heterologous systems in which to efficiently express them.

  19. Diversity and subcellular distribution of archaeal secreted proteins.

    Science.gov (United States)

    Szabo, Zalan; Pohlschroder, Mechthild

    2012-01-01

    Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis, and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat) pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as phyla-specific pathways among the archaea. A more comprehensive understanding of the transport pathways used and post-translational modifications of secreted archaeal proteins will also facilitate the identification and heterologous expression of commercially valuable archaeal enzymes.

  20. Automated imaging of cellular spheroids with selective plane illumination microscopy on a chip (Conference Presentation)

    Science.gov (United States)

    Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto

    2017-02-01

    Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.

  1. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  2. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    Science.gov (United States)

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  4. DeepLoc: prediction of protein subcellular localization using deep learning

    DEFF Research Database (Denmark)

    Almagro Armenteros, Jose Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2017-01-01

    The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from...... knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict...... current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc . Example code is available at https://github.com/JJAlmagro/subcellular_localization . The dataset is available at http...

  5. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  6. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  7. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells

    International Nuclear Information System (INIS)

    Clarke, J.T.; Cook, H.W.; Spence, M.W.

    1985-01-01

    To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-[1- 3 H]galactose or [ 3 H]GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellular membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous [ 3 H]GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid

  8. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Chattopadhyay, Niladri; Kwon, Yongkyu Luke [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lechtman, Eli [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Reilly, Raymond M. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4 (Canada)

    2013-11-15

    Purpose: The authors’ aims were to model how various factors influence radiation dose enhancement by gold nanoparticles (AuNPs) and to propose a new modeling approach to the dose enhancement factor (DEF).Methods: The authors used Monte Carlo N-particle (MCNP 5) computer code to simulate photon and electron transport in cells. The authors modeled human breast cancer cells as a single cell, a monolayer, or a cluster of cells. Different numbers of 5, 30, or 50 nm AuNPs were placed in the extracellular space, on the cell surface, in the cytoplasm, or in the nucleus. Photon sources examined in the simulation included nine monoenergetic x-rays (10–100 keV), an x-ray beam (100 kVp), and {sup 125}I and {sup 103}Pd brachytherapy seeds. Both nuclear and cellular dose enhancement factors (NDEFs, CDEFs) were calculated. The ability of these metrics to predict the experimental DEF based on the clonogenic survival of MDA-MB-361 human breast cancer cells exposed to AuNPs and x-rays were compared.Results: NDEFs show a strong dependence on photon energies with peaks at 15, 30/40, and 90 keV. Cell model and subcellular location of AuNPs influence the peak position and value of NDEF. NDEFs decrease in the order of AuNPs in the nucleus, cytoplasm, cell membrane, and extracellular space. NDEFs also decrease in the order of AuNPs in a cell cluster, monolayer, and single cell if the photon energy is larger than 20 keV. NDEFs depend linearly on the number of AuNPs per cell. Similar trends were observed for CDEFs. NDEFs using the monolayer cell model were more predictive than either single cell or cluster cell models of the DEFs experimentally derived from the clonogenic survival of cells cultured as a monolayer. The amount of AuNPs required to double the prescribed dose in terms of mg Au/g tissue decreases as the size of AuNPs increases, especially when AuNPs are in the nucleus and the cytoplasm. For 40 keV x-rays and a cluster of cells, to double the prescribed x-ray dose (NDEF = 2

  10. Variation in tissue outcome of ovine and human engineered heart valve constructs : relevance for tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.; Driessen - Mol, A.; Grootzwagers, L.G.M.; Soekhradj - Soechit, R.S.; Riem Vis, P.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    AIM: Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and

  11. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    Science.gov (United States)

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Hematopoietic stem cell origin of connective tissues.

    Science.gov (United States)

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications. Copyright 2010 ISEH - Society for Hematology and Stem Cells. All rights reserved.

  13. Ultrastructural and cellular damage to rat lung with x-rays: a search for target cell in lung tissue

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, I

    1975-03-01

    Radiation effects on the peripheral alveoli of conventional rats were examined by means of electron microscopy. The right hemithorax alone was exposed to various single doses of x rays. The initial cellular lesions selectively involved the cytoplasms of alveolar capillary endothelial (Ed) and type 1 epithelial (Ep 1) cells in a dose-dependent fashion, where the major alterations were multifocal vacuolations and swellings. These lesions became visible as early as 1 hr after 1000 R (the assumed mean lethal dose for Ed cells) and more. However, progenitor Ep 2 cells exhibited no obvious cytoplasmic lesions by the doses below 2000 R, indicating that Ep 2 cells are more resistant to x rays. With time following 1000 R, the capillary Ed blebbing abruptly developed in various forms from the sites presumably other than the Ed junctions. The Ed blebs and interstitial edema progressed until about 2 weeks without recovery, while some signs of cellular recovery were recognized in Ep 1 cells during this period. The observations after a long period of 6 months following 1000 R showed that the typical pulmonary fibrotic changes were initiated in the interstitium perhaps around unrepaired capillaries. Further, inflammatory reaction characterized by massive cellular infiltations was superimposed on developing pulmonary fibrosis. Considering the current knowledge about the cell sensitivity and renewal in stable tissues, the present results imply that capillary Ed cell is the primary target for the radiation lesion leading to the secondary pulmonary alterations.

  14. Subcellular location of the enzymes of purine breakdown in the yeast Candida famata grown on uric acid

    NARCIS (Netherlands)

    Large, Peter J.; Waterham, Hans R.; Veenhuis, Marten

    1990-01-01

    The subcellular location of the enzymes of purine breakdown in the yeast Candida famata, which grows on uric acid as sole carbon and nitrogen source, has been examined by subcellular fractionation methods. Uricase was confirmed as being peroxisomal, but the other three enzymes, allantoinase,

  15. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  16. Compensative-rehabilitative responses of blood-forming tissue cells after chronic irradiation.; Kompensatorno-vosstanovitel`nye reaktsii kletok krovetvornoj tkani pri khronicheskom obluchenii.

    Energy Technology Data Exchange (ETDEWEB)

    Nosova, L I; Ryasenko, V I [Yinstitut Zoologyiyi, Natsyional` na Akademyiya Nauk Ukrayini, Kyiv (Ukraine); [Nauchno-Proizvodstvennoe Ob` ` edinenie Pripyat` , Chernobyl (Ukraine)

    1994-12-31

    The bone marrow eosinophils of minks and wild rats subjected to chronical irradiation are able of secreting a peroxidase system obtained by neutrophils. As a result heterophilic granulocytes appear in the peripheral blood. Intercellular transgranulation, emperiopolesis into megakaryocytes and eosinophils as peroxidase donors for neutrophils are regarded as cellular and subcellular adaptations in the mammalian bone marrow after irradiation.

  17. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising

    Science.gov (United States)

    Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-01-01

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research. PMID:29296195

  18. Point process models for localization and interdependence of punctate cellular structures.

    Science.gov (United States)

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures.

  19. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    Science.gov (United States)

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; Milani, Pascale; Berquand, Alexandre; Boudaoud, Arezki; Hamant, Olivier; Jönsson, Henrik; Meyerowitz, Elliot M

    2014-01-01

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI: http://dx.doi.org/10.7554/eLife.01967.001 PMID:24740969

  20. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  1. Mechanotransduction mechanisms in growing spherically structured tissues

    Science.gov (United States)

    Littlejohns, Euan; Dunlop, Carina M.

    2018-04-01

    There is increasing experimental interest in mechanotransduction in multi-cellular tissues as opposed to single cells. This is driven by a growing awareness of the importance of physiologically relevant three-dimensional culture and of cell–cell and cell–gel interactions in directing growth and development. The paradigm biophysical technique for investigating tissue level mechanobiology in this context is to grow model tissues in artificial gels with well-defined mechanical properties. These studies often indicate that the stiffness of the encapsulating gel can significantly alter cellular behaviours. We demonstrate here potential mechanisms linking tissue growth with stiffness-mediated mechanotransduction. We show how tissue growth in gel systems generates points at which there is a significant qualitative change in the cellular stress and strain experienced. We show analytically how these potential switching points depend on the mechanical properties of the constraining gel and predict when they will occur. Significantly, we identify distinct mechanisms that act separately in each of the stress and strain fields at different times. These observations suggest growth as a potential physical mechanism coupling gel stiffness with cellular mechanotransduction in three-dimensional tissues. We additionally show that non-proliferating areas, in the case that the constraining gel is soft compared with the tissue, will expand and contract passively as a result of growth. Central compartment size is thus seen to not be a reliable indicator on its own for growth initiation or active behaviour.

  2. Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence.

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R; Householder, Lara A; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2016-01-01

    Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of

  3. High-speed imaging and small-scale explosive characterization techniques to understand effects of primary blast-induced injury on nerve cell structure and function

    Science.gov (United States)

    Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.

    2018-01-01

    Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.

  4. Subcellular localization of anthracyclines in cultured rat cardiomyoblasts as possible predictors of cardiotoxicity.

    Science.gov (United States)

    Studzian, Kazimierz; Kik, Krzysztof; Lukawska, Malgorzata; Oszczapowicz, Irena; Strek, Malgorzata; Szmigiero, Leszek

    2015-10-01

    In this study, we compared the cellular uptake, intracellular localization and cytotoxicity of two groups of anthracycline derivatives in cultured H9c2(2-1) rat cardiomyoblasts. The first group consisted of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N = CH-N<) at the C-3' position with a morpholine (DOXM) or a hexamethyleneimine (DOXH) ring. The second group consisted of daunorubicin (DRB) and its derivatives containing a morpholine (DRBM) or a hexamethyleneimine (DRBH) ring. DOXH and DRBH were taken up by cardiomyoblasts more efficiently than estimated for other tested anthracyclines. The cellular uptakes of DOXM and DRBM were reduced compared to those of the parent compounds. Applied structural modifications of DOX and DRB influenced the subcellular localization of the tested derivatives. DOX and DOXH were localized primarily in nuclei, whereas the other anthracyclines were found in the nuclei and cytoplasm. The percentages of the compounds that accumulated in the nuclei were 80.2 and 54.2 % for DOX and DOXH, respectively. The lowest nuclear accumulation values were observed for DRBM (19.9 %), DRBH (21.9 %) and DOXM (23.7 %). The ability of anthracyclines to accumulate in the nuclei correlated with their DNA binding constants (r = 0.858, P = 0.029). A correlation was found between the accumulation of the tested anthracyclines in the nuclei of cardiomyoblasts and their cardiotoxicity in vivo, which was observed in our previous study. We suggest that cytotoxicity and the anthracycline accumulation level in the nuclei of cultured cardiomyoblasts could be used for early prediction of their cardiotoxicity.

  5. Cellular automaton modeling of biological pattern formation characterization, examples, and analysis

    CERN Document Server

    Deutsch, Andreas

    2017-01-01

    This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In ...

  6. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  7. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    Science.gov (United States)

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  8. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review.

    Science.gov (United States)

    Savio, Gianpaolo; Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  9. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    DEFF Research Database (Denmark)

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate

    2012-01-01

    ,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals...

  10. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Science.gov (United States)

    Mueller, Jenna L; Harmany, Zachary T; Mito, Jeffrey K; Kennedy, Stephanie A; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G; Willett, Rebecca M; Brown, J Quincy; Ramanujam, Nimmi

    2013-01-01

    To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  11. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts.

    Science.gov (United States)

    Liwak-Muir, Urszula; Mamady, Hapsatou; Naas, Turaya; Wylie, Quinlan; McBride, Skye; Lines, Matthew; Michaud, Jean; Baird, Stephen D; Chakraborty, Pranesh K; Holcik, Martin

    2016-06-18

    SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known. We show that the disease causing mutations in patient-derived fibroblasts do not affect subcellular localization of TRNT1 and show no gross morphological differences when compared to control cells. Analysis of cellular respiration and oxidative phosphorylation (OXPHOS) complexes demonstrates that both basal and maximal respiration rates are decreased in patient cells, which may be attributed to an observed decrease in the abundance of select proteins of the OXPHOS complexes. Our data provides further insight into cellular pathophysiology of SIFD.

  12. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  13. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gotoh, Eiko; Kawamata, Natsuko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Uchihara, Yoshie [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Iwanari, Hiroko [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sugiyama, Akira; Kawamura, Takeshi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Mochizuki, Yasuhiro [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Tanaka, Toshiya [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sakai, Juro [Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Hamakubo, Takao [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); and others

    2015-10-02

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  14. Distribution of physostigmine and metabolites in brain subcellular fractions of the rat

    International Nuclear Information System (INIS)

    King, B.F.; Somani, S.M.

    1987-01-01

    The distribution of 3 H-physostigmine (Phy) has been studied in the rat brain subcellular fractions at various time intervals following i.v. injection. 3 H-Phy or its metabolites rapidly accumulate into the cytoplasm of cells and penetrates the intracellular compartments. Kinetic studies of the subcellular distribution of radioactivity (RA) per gm of rat brain following i.v. injection of 3 H-Phy show peak concentrations at 30 min in all subcellular fractions with the exception of mitochondria. In the mitochondrial fraction the RA levels continue to rise from 4682 +/- 875 DPM/gm at 5 min to 27,474 +/- 2825 DPM/gm at 60 min (P < .05). The cytosol contains the highest RA: 223,341 +/- 21,044 DPM/gm at 30 min which declined to 53,475 +/- 3756 DPM/gm at 60 min. RA in synaptosome, microsomes and myelin increases from 5 to 30 min, and declines at 60 min. In vitro studies did not show a greater uptake of RA by the mitochondrial or synaptosomal fractions. The finding of relatively high concentrations of RA in the mitochondrial fraction at 60 min increases the likelihood that Phy or its metabolites could interfere with the physiological function of the organelle. 21 references, 1 figure, 2 tables

  15. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    International Nuclear Information System (INIS)

    Tachibana, Keisuke; Gotoh, Eiko; Kawamata, Natsuko; Ishimoto, Kenji; Uchihara, Yoshie; Iwanari, Hiroko; Sugiyama, Akira; Kawamura, Takeshi; Mochizuki, Yasuhiro; Tanaka, Toshiya; Sakai, Juro; Hamakubo, Takao; Kodama, Tatsuhiko

    2015-01-01

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  16. The Role of Low-Level Laser in Periodontal Surgeries

    Science.gov (United States)

    Sobouti, Farhad; Khatami, Maziar; Heydari, Mohaddase; Barati, Maryam

    2015-01-01

    Treatment protocols with low-level Laser (also called ‘soft laser therapy) have been used in health care systems for more than three decades. Bearing in mind the suitable sub-cellular absorption and the cellular-vascular impacts, low-level laser may be a treatment of choice for soft tissues. Low-level lasers have played crucial and colorful roles in performing periodontal surgeries. Their anti-inflammatory and painless effects have been variously reported in in-vitro studies. In this present review article, searches have been made in Pub Med, Google Scholar, and Science Direct, focusing on the studies which included low-level lasers, flap-periodontal surgeries, gingivectomy, and periodontal graft. The present study has sought to review the cellular impacts of low-level lasers and its role on reducing pain and inflammation following soft tissue surgical treatments. PMID:25987968

  17. Cellular Angiofibroma of the Prostate: A Rare Tumor in an Unusual Location

    Directory of Open Access Journals (Sweden)

    Inez Wyn

    2014-01-01

    Full Text Available We report the unusual occurrence of a cellular angiofibroma in prostatic tissue. In this case, a 84-year-old man presented in the emergency room with urinary retention. Ultrasound revealed an enlarged prostate, which was suggestive for benign prostatic hyperplasia. The patient was treated with a Millin retropubic prostatectomy. Macroscopically the prostate contained multiple circumscribed nodules. Microscopic examination of the tumor showed the appearance of cellular angiofibroma, consisting of bland spindle cells and prominent, hyalinized vessels. The diagnosis was supported by FISH, which revealed monoallelic loss of RB1/13q14 region, as seen in spindle cell lipoma, (extra- mammary myofibroblastoma, and cellular angiofibroma. Cellular angiofibromas are rare, benign soft tissue tumours and were never reported in the prostatic gland.

  18. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2009-09-01

    Full Text Available Abstract Background Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

  19. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Directory of Open Access Journals (Sweden)

    Gianpaolo Savio

    2018-01-01

    Full Text Available Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  20. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Science.gov (United States)

    Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626

  1. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process.

    Science.gov (United States)

    Espina, Virginia; Edmiston, Kirsten H; Heiby, Michael; Pierobon, Mariaelena; Sciro, Manuela; Merritt, Barbara; Banks, Stacey; Deng, Jianghong; VanMeter, Amy J; Geho, David H; Pastore, Lucia; Sennesh, Joel; Petricoin, Emanuel F; Liotta, Lance A

    2008-10-01

    Little is known about the preanalytical fluctuations of phosphoproteins during tissue procurement for molecular profiling. This information is crucial to establish guidelines for the reliable measurement of these analytes. To develop phosphoprotein profiles of tissue subjected to the trauma of excision, we measured the fidelity of 53 signal pathway phosphoproteins over time in tissue specimens procured in a community clinical practice. This information provides strategies for potential surrogate markers of stability and the design of phosphoprotein preservative/fixation solutions. Eleven different specimen collection time course experiments revealed augmentation (+/-20% from the time 0 sample) of signal pathway phosphoprotein levels as well as decreases over time independent of tissue type, post-translational modification, and protein subcellular location (tissues included breast, colon, lung, ovary, and uterus (endometrium/myometrium) and metastatic melanoma). Comparison across tissue specimens showed an >20% decrease of protein kinase B (AKT) Ser-473 (p 20% increases within 90-min postprocurement. Endothelial nitric-oxide synthase Ser-1177 did not change over the time period evaluated with breast or leiomyoma tissue. Treatment with phosphatase or kinase inhibitors alone revealed that tissue kinase pathways are active ex vivo. Combinations of kinase and phosphatase inhibitors appeared to stabilize proteins that exhibited increases in the presence of phosphatase inhibitors alone (ATF-2 Thr-71, SAPK/JNK Thr-183/Tyr-185, STAT1 Tyr-701, JAK1 Tyr-1022/1023, and PAK1/PAK2 Ser-199/204/192/197). This time course study 1) establishes the dynamic nature of specific phosphoproteins in excised tissue, 2) demonstrates augmented phosphorylation in the presence of phosphatase inhibitors, 3) shows that kinase inhibitors block the upsurge in phosphorylation of phosphoproteins, 4) provides a rational strategy for room temperature preservation of proteins, and 5) constitutes a

  2. A microfluidic-enabled mechanical microcompressor for the immobilization of live single- and multi-cellular specimens.

    Science.gov (United States)

    Yan, Yingjun; Jiang, Liwei; Aufderheide, Karl J; Wright, Gus A; Terekhov, Alexander; Costa, Lino; Qin, Kevin; McCleery, W Tyler; Fellenstein, John J; Ustione, Alessandro; Robertson, J Brian; Johnson, Carl Hirschie; Piston, David W; Hutson, M Shane; Wikswo, John P; Hofmeister, William; Janetopoulos, Chris

    2014-02-01

    A microcompressor is a precision mechanical device that flattens and immobilizes living cells and small organisms for optical microscopy, allowing enhanced visualization of sub-cellular structures and organelles. We have developed an easily fabricated device, which can be equipped with microfluidics, permitting the addition of media or chemicals during observation. This device can be used on both upright and inverted microscopes. The apparatus permits micrometer precision flattening for nondestructive immobilization of specimens as small as a bacterium, while also accommodating larger specimens, such as Caenorhabditis elegans, for long-term observations. The compressor mount is removable and allows easy specimen addition and recovery for later observation. Several customized specimen beds can be incorporated into the base. To demonstrate the capabilities of the device, we have imaged numerous cellular events in several protozoan species, in yeast cells, and in Drosophila melanogaster embryos. We have been able to document previously unreported events, and also perform photobleaching experiments, in conjugating Tetrahymena thermophila.

  3. Cellular proliferation and regeneration following tissue damage. Progress report. [Eyes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.V.

    1976-10-01

    Results are reported from a study of wound healing in tissues of the eye, particularly lens, cornea, and surrounding tissues. The reactions of these tissues to mechanical injuries, as well as injuries induced by chemotoxic agents were studied. It is postulated that a better understanding of the basic reactions of the eye to injurious agents may be of importance in the evaluation of potential environmental hazards.

  4. Characterization of estrogen receptors alpha and beta in uterine leiomyoma cells.

    Science.gov (United States)

    Valladares, Francisco; Frías, Ignacio; Báez, Delia; García, Candelaria; López, Francisco J; Fraser, James D; Rodríguez, Yurena; Reyes, Ricardo; Díaz-Flores, Lucio; Bello, Aixa R

    2006-12-01

    Cellular and subcellular localization of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) in uterine leiomyomas. Retrospective study. University of La Laguna (ULL) and Canary University Hospital (HUC). Premenopausal and postmenopausal women with uterine leiomyomas. Hysterectomy and myomectomy. Estrogen receptor alpha was only present in smooth muscle cells with variation in the subcellular location in different leiomyomas. Estrogen receptor beta was widely distributed in smooth muscle, endothelial, and connective tissue cells with nuclear location in all cases studied; variations were only found in the muscle cells for this receptor. Estrogens operate in leiomyoma smooth muscle cells through different receptors, alpha and beta. However they only act through the ERbeta in endothelial and connective cells.

  5. Cellular composition of granulomatous lesions in gut-associated lymphoid tissues of goats during the first year after experimental infection with Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Krüger, C; Köhler, H; Liebler-Tenorio, E M

    2015-01-15

    Mycobacterium avium subsp. paratuberculosis (MAP) causes lesions in naturally and experimentally infected ruminants which greatly differ in severity, cellular composition and number of mycobacteria. Morphologically distinct lesions are already found during the clinically inapparent phase of infection. The complex local host response and number of MAP were characterized at the initial sites of lesions, organized gut-associated lymphoid tissue, in experimentally infected goats. Tissues were collected at 3, 6, 9 and 12 month post-inoculation (mpi) from goat kids that had orally received 10 times 10mg of bacterial wet mass of MAP (JII-1961). The cellular composition of lesions in Peyer's patches in the jejunum and next to the ileocecal valve was evaluated in 21 MAP-inoculated goats, where lesions were compared with unaltered tissue of six control goats. CD68+, CD4+, CD8+, γδ T lymphocytes, B lymphocytes and plasma cells, MHC class II+ and CD25+ cells were demonstrated by immunohistochemistry in serial cryostat sections. At 3 mpi, extensive granulomatous infiltrates predominated, consisting of numerous epitheloid cells admixed with many CD4 and γδ T lymphocytes. Only single MAP were detected. This indicates a strong cellular immune reaction able to control MAP infection. γδ T lymphocytes were markedly increased in this type of lesion which may reflect their important role early in the pathogenesis of paratuberculosis. At 9 and 12 mpi, divergent lesions were observed which may reflect different outcomes of host-pathogen interactions. In five goats, minimal granulomatous lesions were surrounded by extensive lymphoplasmacytic infiltrates and no MAP were detected by immunohistochemistry. This was interpreted as effective host response that was able to eliminate MAP locally. In three goats, decreased numbers of lymphocytes, but extensive granulomatous infiltrates with numerous epitheloid cells containing increased numbers of mycobacteria were seen. This shift of the

  6. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  7. Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker.

    Science.gov (United States)

    Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry

    2010-10-01

    Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications. 2010 Elsevier Ltd. All rights reserved.

  8. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model.

    Directory of Open Access Journals (Sweden)

    Yookyung Jung

    Full Text Available Peripheral nerve injury (PNI, a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout

  9. Nuclear import and export signals are essential for proper cellular trafficking and function of ZIC3.

    Science.gov (United States)

    Bedard, James E J; Purnell, Jennifer D; Ware, Stephanie M

    2007-01-15

    Missense, frameshift and nonsense mutations in the zinc finger transcription factor ZIC3 cause heterotaxy as well as isolated congenital heart disease. Previously, we developed transactivation and subcellular localization assays to test the function of ZIC3 point mutations. Aberrant cytoplasmic localization suggested that the pathogenesis of ZIC3 mutations results, at least in part, from failure of appropriate cellular trafficking. To further investigate this hypothesis, the nucleocytoplasmic shuttling properties of ZIC3 have been examined. Subcellular localization assays designed to span the entire open-reading frame of wild-type and mutant ZIC3 proteins identified the presence of nucleocytoplasmic transport signals. ZIC3 domain mapping indicates that a relatively large region containing the zinc finger binding sites and a known GLI interacting domain is required for transport to the nucleus. Site-directed mutagenesis of critical residues within two putative nuclear localization signals (NLSs) leads to loss of nuclear localization. No further decrease was observed when both NLS sites were mutated, suggesting that mutation of either NLS site is sufficient for loss of importin-mediated nuclear localization. Additionally, we identify a cryptic CRM-1-dependent nuclear export signal (NES) within ZIC3, and identify a mutation within this region in a patient with heterotaxy. These results provide the first evidence that control of cellular trafficking of ZIC3 is critical for function and suggest a possible mechanism for transcriptional control during left-right patterning. Identification of mutations in mapped NLS or NES domains in heterotaxy patients demonstrates the functional importance of these domains in cardiac morphogenesis and allows for integration of structural analysis with developmental function.

  10. Cellular therapies: Day by day, all the way.

    Science.gov (United States)

    Atilla, Erden; Kilic, Pelin; Gurman, Gunhan

    2018-04-18

    Tremendous effort and knowledge have elucidated a new era of 'cellular therapy,' also called "live" or "living" drugs. There are currently thousands of active clinical trials that are ongoing, seeking hope for incurable conditions thanks to the increased accessibility and reliability of gene editing and cellular reprogramming. Accomplishments in various adoptive T cell immunotherapies and chimeric antigen receptor (CART) T cell therapies oriented researchers to the field. Cellular therapies are believed to be the next generation of curative therapeutics in many ways, the classification and nomenclature for these applications have not yet reached a consensus. Trends in recent years are moving towards making tissues and cell processes only in centers with production permits. It is quite promising that competent authorities have increased licensing activities of tissue and cell establishments in their countries, under good practice (GxP) rules, and preclinical and clinical trials involving cell-based therapies have led to significant investments. Despite the initiatives undertaken and the large budgets that have been allocated, only limited success has been achieved in cellular therapy compared to conventional drug development. Cost, and cost effectiveness, are important issues for these novel therapies to meet unmet clinical needs, and there are still many scientific, translational, commercializational, and ethical questions that do not have answers. The main objectives of this review is to underline the current position of cellular therapies in research, highlight the timely topic of immunotherapy and chimeric antigen receptor (CAR) T-cell treatment, and compile information related to regulations and marketing of cellular therapeutic approaches worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses.

    Science.gov (United States)

    Andre, Jane; Charnock, John; Stürzenbaum, Stephen R; Kille, Peter; Morgan, A John; Hodson, Mark E

    2009-09-01

    Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27,000 mg kg(-1) and 200 to 34,000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect theirinnate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.

  12. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Science.gov (United States)

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  13. A hormone pulse induces transient changes in the subcellular distribution and leads to a lysosomal accumulation of the estradiol receptor alpha in target tissues.

    Science.gov (United States)

    Qualmann, B; Kessels, M M; Thole, H H; Sierralta, W D

    2000-06-01

    An intrauterine pulse-stimulation with estradiol induced changes in the subcellular localization of estrogen receptor alpha in porcine endometrium, as detected with F(ab') fragments of various anti-receptor antibodies covalently linked to nanogold. The low-sterically hindered immunoreagents--recognizing different epitopes within the hormone binding domain--allowed for an efficient immunolabeling of estradiol receptor alpha, detecting it both in the cytoplasm and the nucleus of nonstimulated epithelium cells. In the cytoplasm, the receptor often seemed to be associated with actin filaments and the endoplasmatic reticulum. After the stimulation with estradiol, a predominantly nuclear localization and a labeling of nucleoli was observed. Our immunoelectron microscopy study demonstrates a localization of the receptor in cytoplasmic organelles that increased after the hormone pulse. These organelles exhibited the morphological properties of lysosomes and relocated to the perinuclear area. In analogous cytoplasmic organelles, the presence of cathepsin D was detected via indirect immunogold labeling, justifying their classification as lysosomes. Quantitative examinations revealed that not only the number of lysosomes in the proximity of the nucleus but also their immunostaining for estradiol receptor alpha increased significantly after the hormone pulse. Thus, estradiol induces both the rapid shift of receptor into the nucleus, a slower perinuclear accumulation of lysosomes and an increase of lysosomal ERalpha-immunoreactivity. These results suggest a role for lysosomes in the degradation of receptor shuttling out of the nucleus. This could serve as termination of the estradiol receptor alpha-dependent activation of target cells. This hypothesis is strengthened by the fact that the receptor content in uterine tissue declined drastically few hours after the hormone pulse.

  14. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve.

    Science.gov (United States)

    Straka, Frantisek; Schornik, David; Masin, Jaroslav; Filova, Elena; Mirejovsky, Tomas; Burdikova, Zuzana; Svindrych, Zdenek; Chlup, Hynek; Horny, Lukas; Daniel, Matej; Machac, Jiri; Skibová, Jelena; Pirk, Jan; Bacakova, Lucie

    2018-04-01

    The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.

  15. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Jenna L Mueller

    Full Text Available To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features.TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA and the circle transform (CT was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma.Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity. For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach.The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  16. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  17. Application of spectral hole burning to the study of in vitro cellular systems

    Energy Technology Data Exchange (ETDEWEB)

    Milanovich, Nebojsa [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe model systems. Appendix A describes the uptake and subcellular distribution of APT in MCF-10F and MCF-7 cells and Appendix B compares the hole burning characteristics of APT in cells when the cells are in suspension and when they are examined while adhering to a glass coverslip. Appendix C presents preliminary results for a novel probe molecule, referred to as a molecular thumbtack, designed by the authors for use in future hole burning applications to cellular systems.

  18. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers

    Directory of Open Access Journals (Sweden)

    Abhishek Mahajan

    2016-01-01

    Conclusion: Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future.

  19. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2013-11-25

    ...] Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products... Assessment of Investigational Cellular and Gene Therapy Products'' dated November 2013. The guidance document... products reviewed by the Office of Cellular, Tissue and Gene Therapies (OCTGT). The product areas covered...

  20. Mapping organism expression levels at cellular resolution in developing Drosophila

    Science.gov (United States)

    Knowles, David W.; Keranen, Soile; Biggin, Mark D.; Sudar, Damir

    2002-05-01

    The development of an animal embryo is orchestrated by a network of genetically determined, temporal and spatial gene expression patterns that determine the animals final form. To understand such networks, we are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within pregastrula Drosophila. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy. Innovative steps have been made which allow the DNA-image to be automatically segmented to produce a morphological mask of the individual nuclear boundaries. For each stage of development an average morphology is chosen to which images from different embryo are compared. The morphological mask is then used to quantify gene-product on a per nuclei basis. What results is an atlas of the relative amount of the specific gene product expressed within the nucleus of every cell in the embryo at the various stages of development. We are creating a quantitative database of transcription factor and target gene expression patterns in wild-type and factor mutant embryos with single cell resolution. Our goal is to uncover the rules determining how patterns of gene expression are generated.

  1. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    Science.gov (United States)

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography

    Science.gov (United States)

    Brooksby, Ben; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Srinivasan, Subhadra; Kogel, Christine; Tosteson, Tor D.; Weaver, John; Poplack, Steven P.; Paulsen, Keith D.

    2006-06-01

    Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images. hemoglobin | magnetic resonance imaging | water | fat | oxygen saturation

  3. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  4. Distribution of essential trace elements in animals. Manganese and vanadium ion

    International Nuclear Information System (INIS)

    Sakurai, Hiromu; Nishida, Mikio; Koyama, Mutsuo; Takada, Jitsuya.

    1994-01-01

    We determined the tissue and subcellular distributions of Mn(II) by ESR and of total Mn by neutron activation analysis combined with chemical separation. Mn(II) contents of the thyroid, hypophysis, adrenal, pancreas, liver and kidney, tissues were low. In animals treated with Mn(II)Cl, the total Mn content of all tissues increased, but the Mn(II) content remained low. In subcellular distribution, the total Mn content was high in nuclear and mitochondrial fractions of liver and kidney, and in the microsomal and supernatant fractions of the pancreas. The ratio of Mn(II) to total Mn was relatively high in microsomes of the liver and kidney of control rats, and in the nuclear fraction of pancreas of Mn-treated rats. Partially purified liver and mitochondria were found to contain high level of Mn than the crude compartments, indicating that Mn is tightly bound in each cellular compartment. Distribution of Mn in organs and subcellular fractions of rats was investigated. Treatment of STZ resulted in unchanged Mn levels in most organs. Mn content, however, was decreased in the liver mitochondrial fraction and increased in supernatant fraction. Mn levels in both the liver and kidney of rats treated with cisplatin were increased after 7 days of drug administration. The distribution of vanadyl(+4) species estimated by ESR, and total V, determined by neutron activation analysis, were examined in organs and subcellular fractions of the liver of rats treated with vanadyl sulfate or sodium vanadate(+5). Both V compounds distributed in a similar manner in the following order; kidney>serum>liver≅blood>pancreas>testis>lung≅spleen. The ratio of vanadyl ion to total V in a whole homogenate was almost the same after the both treatments, but the ratios in subcellular fractions varies depending on the V compound and the fraction. Approximately 30-70% of the vanadium was reduced to vanadyl form in the subcellular fractions of the liver. (J.P.N.)

  5. Quantitative and subcellular localization analysis of the nuclear isoform dUTP pyrophosphatase in alkylating agent-induced cell responses

    International Nuclear Information System (INIS)

    Hu, Xiaolan; Yu, Yingnian; Li, Qian; Wu, Danxiao; Tan, Zhengning; Wang, Cheng; Wang, Jvping; Wu, Meiping

    2011-01-01

    Highlights: → MNNG-induced appearance of DUT-N in the extracellular fluid has cellular specificity. → MNNG alters the subcellular distribution of DUT-N in human cells in different ways. → DUT-N may be a potential biomarker to assess the risk of alkylating agents exposure. -- Abstract: Our previous proteome analysis showed that the nuclear isoform of dUTP pyrophosphatase (DUT-N) was identified in the culture medium of human amnion FL cells after exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). These results suggest that DUT-N may be a potential early biomarker to assess the risk of alkylating agents exposure. DUT-N is one of the two isoforms of deoxyuridine triphosphate nucleotidohydrolase (dUTPase). Our current knowledge of DUT-N expression in human cells is very limited. In the current study, we first investigated the appearance of DUT-N in the culture medium of different human cell lines in response to a low concentration of MNNG exposure. We verified that the MNNG-induced appearance of DUT-N in the extracellular environment is cell-specific. Western blot analysis confirmed that the intracellular DUT-N changes responded to MNNG in a concentration-dependent and cell-specific manner. Furthermore, subcellular fraction experiments showed that 0.25 μM MNNG treatment dramatically increased the DUT-N expression levels in the cytoplasmic extracts prepared from both FL and HepG2 cells, increased DUT-N levels in nuclear extracts prepared from HepG2 cells, and decreased DUT-N levels in nuclear extracts from FL cells. Morphological studies using immunofluorescence showed that a low concentration of MNNG could alter the distribution of DUT-N in FL and HepG2 cells in different ways. Taken together, these studies indicate a role of DUT-N in alkylating agent-induced cell responses.

  6. The influence of Cellular Interactions in Tissue Engineering for Cartilage Repair

    NARCIS (Netherlands)

    Hendriks, J.A.A.

    2006-01-01

    Tissues are complex 3-dimensional structures with a highly organized architecture made up of cells and matrix. The cells and matrix in a tissue are continuously interacting with each other and (cells from) their surrounding tissues to maintain their form and function. Interactions of cells with

  7. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2012-11-29

    ...] Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products,'' dated November... Evaluation (CBER), Office of Cellular, Tissue, and Gene Therapies (OCTGT). The product areas covered by this...

  8. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.; Deatherage, Brooke L.; Champion, Boyd L.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2012-06-01

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.

  9. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Directory of Open Access Journals (Sweden)

    Masaki Iwata

    cellular dynamics of living wing tissues in butterflies.

  10. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Science.gov (United States)

    Iwata, Masaki; Ohno, Yoshikazu; Otaki, Joji M

    2014-01-01

    Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living

  11. A Multiscale Computational Model of the Response of Swine Epidermis After Acute Irradiation

    Science.gov (United States)

    Hu, Shaowen; Cucinotta, Francis A.

    2012-01-01

    Radiation exposure from Solar Particle Events can lead to very high skin dose for astronauts on exploration missions outside the protection of the Earth s magnetic field [1]. Assessing the detrimental effects to human skin under such adverse conditions could be predicted by conducting territorial experiments on animal models. In this study we apply a computational approach to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis [2]. Incorporating experimentally measured histological and cell kinetic parameters into a multiscale tissue modeling framework, we obtain results of population kinetics and proliferation index comparable to unirradiated and acutely irradiated swine experiments [3]. It is noted the basal cell doubling time is 10 to 16 days in the intact population, but drops to 13.6 hr in the regenerating populations surviving irradiation. This complex 30-fold variation is proposed to be attributed to the shortening of the G1 phase duration. We investigate this radiation induced effect by considering at the sub-cellular level the expression and signaling of TGF-beta, as it is recognized as a key regulatory factor of tissue formation and wound healing [4]. This integrated model will allow us to test the validity of various basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and should lead to a fuller understanding of the pathophysiological effects of ionizing radiation on the skin.

  12. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    Science.gov (United States)

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. LocTree3 prediction of localization

    DEFF Research Database (Denmark)

    Goldberg, T.; Hecht, M.; Hamp, T.

    2014-01-01

    The prediction of protein sub-cellular localization is an important step toward elucidating protein function. For each query protein sequence, LocTree2 applies machine learning (profile kernel SVM) to predict the native sub-cellular localization in 18 classes for eukaryotes, in six for bacteria a...

  14. ngLOC: software and web server for predicting protein subcellular localization in prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    King Brian R

    2012-07-01

    Full Text Available Abstract Background Understanding protein subcellular localization is a necessary component toward understanding the overall function of a protein. Numerous computational methods have been published over the past decade, with varying degrees of success. Despite the large number of published methods in this area, only a small fraction of them are available for researchers to use in their own studies. Of those that are available, many are limited by predicting only a small number of organelles in the cell. Additionally, the majority of methods predict only a single location for a sequence, even though it is known that a large fraction of the proteins in eukaryotic species shuttle between locations to carry out their function. Findings We present a software package and a web server for predicting the subcellular localization of protein sequences based on the ngLOC method. ngLOC is an n-gram-based Bayesian classifier that predicts subcellular localization of proteins both in prokaryotes and eukaryotes. The overall prediction accuracy varies from 89.8% to 91.4% across species. This program can predict 11 distinct locations each in plant and animal species. ngLOC also predicts 4 and 5 distinct locations on gram-positive and gram-negative bacterial datasets, respectively. Conclusions ngLOC is a generic method that can be trained by data from a variety of species or classes for predicting protein subcellular localization. The standalone software is freely available for academic use under GNU GPL, and the ngLOC web server is also accessible at http://ngloc.unmc.edu.

  15. Evaluation on subcellular partitioning and biodynamics of pulse copper toxicity in tilapia reveals impacts of a major environmental disturbance.

    Science.gov (United States)

    Ju, Yun-Ru; Yang, Ying-Fei; Tsai, Jeng-Wei; Cheng, Yi-Hsien; Chen, Wei-Yu; Liao, Chung-Min

    2017-07-01

    Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.

  16. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications.

    Science.gov (United States)

    Gupta, Sweta K; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2013-10-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H&E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Majority of cellular fatty acid acylated proteins are localized to the cytoplasmic surface of the plasma membrane

    International Nuclear Information System (INIS)

    Wilcox, C.A.; Olson, E.N.

    1987-01-01

    The BC 2 Hl muscle cell line was previously reported to contain a broad array of fatty acid acylated proteins. Palmitate was shown to be attached to membrane proteins posttranslationally through thiol ester linkages, whereas myristate was attached cotranslationally, or within seconds thereafter, to soluble and membrane-bound proteins through amide linkages. The temporal and subcellular differences between palmitate and myristate acylation suggested that these two classes of acyl proteins might follow different intracellular pathways to distinct subcellular membrane systems or organelles. In this study, the authors examined the subcellular localization of the major fatty acylated proteins in BC 4 Hl cells. Palmitate-containing proteins were localized to the plasma membrane, but only a subset of myristate-containing proteins was localized to this membrane fraction. The majority of acyl proteins were nonglycosylated and resistant to digestion with extracellular proteases, suggesting that they were not exposed to the external surface of the plasma membrane. Many proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins face the cytoplasm. Two-dimensional gel electrophoresis of proteins labeled with [ 3 H]palmitate and [ 3 H]myristate revealed that individual proteins were modified by only one of the two fatty acids and did not undergo both N-linked myristylation and ester-linked palmitylation. Together, these results suggest that the majority of cellular acyl proteins are routed to the cytoplasmic surface of the plasma membrane, and they raise the possibility that fatty acid acylation may play a role in intracellular sorting of nontransmembranous, nonglycosylated membrane proteins

  18. Time-dependent subcellular distribution and effects of carbon nanotubes in lungs of mice.

    Directory of Open Access Journals (Sweden)

    Carsten Købler

    Full Text Available Pulmonary deposited carbon nanotubes (CNTs are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm and tangled, and two longer (4 μm and 5.7 μm and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM 1, 3 and 28 days after instillation.TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia.Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP.

  19. The role of mechanical loading in ligament tissue engineering.

    Science.gov (United States)

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  20. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  1. 21 CFR 1271.150 - Current good tissue practice requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Current good tissue practice requirements. 1271... HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.150 Current good tissue practice requirements. (a) General. This subpart D and subpart C of this part set...

  2. Subcellular localization of class I histone deacetylases in the developing Xenopus tectum

    Directory of Open Access Journals (Sweden)

    Xia eGuo

    2016-01-01

    Full Text Available Histone deacetylases (HDACs are thought to localize in the nucleus to regulate gene transcription and play pivotal roles in neurogenesis, apoptosis and plasticity. However, the subcellular distribution of class I HDACs in the developing brain remains unclear. Here, we show that HDAC1 and HDAC2 are located in both the mitochondria and the nucleus in the Xenopus laevis stage 34 tectum and are mainly restricted to the nucleus following further brain development. HDAC3 is widely present in the mitochondria, nucleus and cytoplasm during early tectal development and is mainly distributed in the nucleus in stage 45 tectum. In contrast, HDAC8 is broadly located in the mitochondria, nucleus and cytoplasm during tectal development. These data demonstrate that HDAC1, HDAC2 and HDAC3 are transiently localized in the mitochondria and that the subcellular distribution of class I HDACs in the Xenopus tectum is heterogeneous. Furthermore, we observed that spherical mitochondria accumulate in the cytoplasm at earlier stages, whereas elongated mitochondria are evenly distributed in the tectum at later stages. The activity of histone acetylation (H4K12 remains low in mitochondria during tectal development. Pharmacological blockades of HDACs using a broad spectrum HDAC inhibitor of Trichostatin A (TSA or specific class I HDAC inhibitors of MS-275 and MGCD0103 decrease the number of mitochondria in the tectum at stage 34. These findings highlight a link between the subcellular distribution of class I HDACs and mitochondrial dynamics in the developing optic tectum of Xenopus laevis.

  3. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  4. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    Science.gov (United States)

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  5. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  6. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis

    NARCIS (Netherlands)

    Ayer, A.; Fellermeier, S.; Fife, C.; Li, S.S.; Smits, G.; Meyer, A.J.; Dawes, I.W.; Perrone, G.G.

    2012-01-01

    Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a

  7. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms

    Science.gov (United States)

    Sipieter, François; Cappe, Benjamin; Gonzalez Pisfil, Mariano; Spriet, Corentin; Bodart, Jean-François; Cailliau-Maggio, Katia; Vandenabeele, Peter; Héliot, Laurent; Riquet, Franck B.

    2015-01-01

    Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues. PMID:26517832

  8. Retroperitoneal Cellular Angiofibroma: A Rare Gynecological Entity

    Directory of Open Access Journals (Sweden)

    Ana Brandão

    2017-12-01

    Full Text Available Cellular angiofibroma is a mesenchymal tumor, described in 1997, without gender preference, that usually appears at age 40. The vulvovaginal area is the most common site in women, mimicking vulvar benign tumors, like Bartholin gland cyst. However, there are a few described cases of a deep or extra-pelvic angiofibroma. Excision is the treatment of choice and the recurrence rate appears to be low. We present the case of a woman with a heterogeneous tumor in the right adnexial region. At the surgery, a retroperitoneal tumor was excised and the histopathological tissue analysis revealed a cellular angiofibroma.

  9. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors.

    Directory of Open Access Journals (Sweden)

    David Shlensky

    Full Text Available Coactivator-associated arginine methyltransferase 1 (CARM1 is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL and truncated CARM1 (CARM1ΔE15. CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models.To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors.Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement.The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens.

  10. Cellular dosimetry for radon progeny alpha particles in bronchial tissue

    International Nuclear Information System (INIS)

    Mohamed, A.; Hofmann, W.; Balashazy, I.

    1996-01-01

    Inhaled radon progeny are deposited in different regions of the human bronchial tree as functions of particle size and flow rate. Following deposition and mucociliary clearance, the sensitive bronchial basal and secretory cells are irradiated by two different alpha particle sources: (i) radon progeny in the sol and/or gel phase of the mucous layer, and (ii) radon progeny within the bronchial epithelium. In the case of internally deposited radionuclides, direct measurement of the energy absorbed from the ionizing radiation emitted by the decaying radionuclides is rarely, if ever, possible. Therefore, one must rely on dosimetric models to obtain estimates of the spatial and temporal patterns of energy deposition in tissues and organs of the body. When the radionuclide is uniformly distributed throughout the volume of a tissue of homogeneous composition and when the size of the tissue is large compared to the range of the particulate emissions of the radionuclide, then the dose rate within the tissue is also uniform and the calculation of absorbed dose can proceed without complication. However, if non-uniformities in the spatial and temporal distributions of the radionuclide are coupled with heterogeneous tissue composition, then the calculation of absorbed dose becomes complex and uncertain. Such is the case with the dosimetry of inhaled radon and radon progeny in the respiratory tract. There are increasing demands to obtain a definitive explanation of the role of alpha particles emitted from radon daughters in the induction of lung cancer. Various authors have attempted to evaluate the dose to the bronchial region of the respiratory tract due to the inhalation of radon daughters

  11. Multi-label learning with fuzzy hypergraph regularization for protein subcellular location prediction.

    Science.gov (United States)

    Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei

    2014-12-01

    Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.

  12. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  13. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    Science.gov (United States)

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  14. Subcellular distribution of 111In and 169Yb in tumor and liver

    International Nuclear Information System (INIS)

    Ando, A.; Ando, I.; Takeshita, M.; Hiraki, T.; Hisada, K.

    1981-01-01

    Subcellular distribution of 111 In and 169 Yb was quantitatively determined to evaluate the role of the lysosome in accumulation of these nuclides in malignant tumor tissue and in the liver using three different tumor models and the host liver. In Yoshida sarcoma and Ehrlich tumor, most of the radioactivity of these nuclides was localized in the supernatant fraction, and only a small amount of radioactivity was localized in the mitochondrial fraction, which contains lysosomes. In the liver, most of the radioactivity was concentrated in the mitochondrial fraction. The radioactivity of this fraction increased with time after the administration of these nuclides and reached approximately 50% of the total radioactivity within 24 h. In the case of hepatoma AH109A, radioactivity of the mitochondrial fraction increased with time after administration, and about 30% of the total radioactivity was concentrated in this fraction after 24 h. It is concluded that the lysosome does not play a major role in the tumor concentration of these nuclides, although it may play an important role in their liver concentration. In the case of hepatoma AH109A, it is pressumed that lysosome plays a considerably important role in the tumor concentration of these nuclides, hepatoma AH109A possessing some residual features of the liver. (orig.)

  15. Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Megan Casco

    2017-01-01

    Full Text Available Nanotechnologies have been integrated into drug delivery, and non-invasive imaging applications, into nanostructured scaffolds for the manipulation of cells. The objective of this work was to determine how the physico-chemical properties of magnetic nanoparticles (MNPs and their spatial distribution into cellular spheroids stimulated cells to produce an extracellular matrix (ECM. The MNP concentration (0.03 mg/mL, 0.1 mg/mL and 0.3 mg/mL, type (magnetoferritin, shape (nanorod—85 nm × 425 nm and incorporation method were studied to determine each of their effects on the specific stimulation of four ECM proteins (collagen I, collagen IV, elastin and fibronectin in primary rat aortic smooth muscle cell. Results demonstrated that as MNP concentration increased there was up to a 6.32-fold increase in collagen production over no MNP samples. Semi-quantitative Immunohistochemistry (IHC results demonstrated that MNP type had the greatest influence on elastin production with a 56.28% positive area stain compared to controls and MNP shape favored elastin stimulation with a 50.19% positive area stain. Finally, there are no adverse effects of MNPs on cellular contractile ability. This study provides insight on the stimulation of ECM production in cells and tissues, which is important because it plays a critical role in regulating cellular functions.

  16. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  17. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    International Nuclear Information System (INIS)

    Gupta, Sweta K.; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2013-01-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering

  18. Atomic force microscopic neutron-induced alpha-autoradiography for boron imaging in detailed cellular histology

    International Nuclear Information System (INIS)

    Amemiya, K.; Takahashi, H.; Fujita, K.; Nakazawa, M.; Yanagie, H.; Eriguchi, M.; Nakagawa, Y.; Sakurai, Y.

    2006-01-01

    The information on subcellular microdistribution of 10 B compounds a cell is significant to evaluate the efficacy of boron neutron capture therapy (BNCT) because the damage brought by the released alpha/lithium particles is highly localized along their path, and radiation sensitivity is quite different among each cell organelles. In neutron-induced alpha-autoradiography (NIAR) technique, 10 B can be measured as tracks for the energetic charged particles from 10 B(n, alpha) 7 Li reactions in solid state track detectors. To perform the NIAR at intracellular structure level for research of 10 B uptake and/or microdosimetry in BNCT, we have developed high-resolution NIAR method with an atomic force microscope (AFM). AFM has been used for analyses of biological specimens such as proteins, DNAs and surface of living cells have, however, intracellular detailed histology of cells has been hardly resolved with AFM since flat surface of sectioned tissue has quite less topographical contrast among each organelle. In our new sample preparation method using UV processing, materials that absorb UV in a semi-thin section are selectively eroded and vaporized by UV exposure, and then fine relief for cellular organelles such as mitochondria, endoplasmic reticulum, filament structure and so on reveals on flat surface of the section, which can be observed with an AFM. The imaging resolution was comparable to TEM imaging of cells. This new method provides fast and cost-effective observation of histological sections with an AFM. Combining this method with NIAR technique, intracellular boron mapping would be possible. (author)

  19. Dynamic neuroanatomy at subcellular resolution in the zebrafish.

    Science.gov (United States)

    Faucherre, Adèle; López-Schier, Hernán

    2014-01-01

    Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.

  20. Early subcellular partitioning of cadmium in gill and liver of rainbow trout (Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)], E-mail: ckamunde@upei.ca

    2009-03-09

    Non-essential metals such as cadmium (Cd) accumulated in animal cells are envisaged to partition into potentially metal-sensitive compartments when detoxification capacity is exceeded. An understanding of intracellular metal partitioning is therefore important in delineation of the toxicologically relevant metal fraction for accurate tissue residue-based assessment of toxicity. In the present study, the early intracellular Cd accumulation was studied to test the prediction that it conforms to the spillover model of metal toxicity. Juvenile rainbow trout (10-15 g) were exposed for 96 h to three doses of cadmium (5, 25 and 50 {mu}g/l) and a control (nominal 0 {mu}g/l Cd) in hard water followed by measurement of the changes in intracellular Cd concentrations in the gill and liver, and carcass calcium (Ca) levels. There were dose-dependent increases in Cd concentration in both organs but the accumulation pattern over time was linear in the liver and biphasic in the gill. The Cd accumulation was associated with carcass Ca loss after 48 h. Comparatively, the gill accumulated 2-4x more Cd than the liver and generally the subcellular compartments reflected the organ-level patterns of accumulation. For the gill the rank of Cd accumulation in subcellular fractions was: heat-stable proteins (HSP) > heat-labile proteins (HLP) > nuclei > microsomes-lysosomes (ML) {>=} mitochondria > resistant fraction while for the liver it was HSP > HLP > ML > mitochondria > nuclei > resistant fraction. Contrary to the spillover hypothesis there was no exposure concentration or internal accumulation at which Cd was not found in potentially metal-sensitive compartments. The proportion of Cd bound to the metabolically active pool (MAP) increased while that bound to the metabolically detoxified pool (MDP) decreased in gills of Cd-exposed fish but remained unchanged in the liver. Because the Cd concentration increased in all subcellular compartments while their contribution to the total increased

  1. Early subcellular partitioning of cadmium in gill and liver of rainbow trout (Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure

    International Nuclear Information System (INIS)

    Kamunde, Collins

    2009-01-01

    Non-essential metals such as cadmium (Cd) accumulated in animal cells are envisaged to partition into potentially metal-sensitive compartments when detoxification capacity is exceeded. An understanding of intracellular metal partitioning is therefore important in delineation of the toxicologically relevant metal fraction for accurate tissue residue-based assessment of toxicity. In the present study, the early intracellular Cd accumulation was studied to test the prediction that it conforms to the spillover model of metal toxicity. Juvenile rainbow trout (10-15 g) were exposed for 96 h to three doses of cadmium (5, 25 and 50 μg/l) and a control (nominal 0 μg/l Cd) in hard water followed by measurement of the changes in intracellular Cd concentrations in the gill and liver, and carcass calcium (Ca) levels. There were dose-dependent increases in Cd concentration in both organs but the accumulation pattern over time was linear in the liver and biphasic in the gill. The Cd accumulation was associated with carcass Ca loss after 48 h. Comparatively, the gill accumulated 2-4x more Cd than the liver and generally the subcellular compartments reflected the organ-level patterns of accumulation. For the gill the rank of Cd accumulation in subcellular fractions was: heat-stable proteins (HSP) > heat-labile proteins (HLP) > nuclei > microsomes-lysosomes (ML) ≥ mitochondria > resistant fraction while for the liver it was HSP > HLP > ML > mitochondria > nuclei > resistant fraction. Contrary to the spillover hypothesis there was no exposure concentration or internal accumulation at which Cd was not found in potentially metal-sensitive compartments. The proportion of Cd bound to the metabolically active pool (MAP) increased while that bound to the metabolically detoxified pool (MDP) decreased in gills of Cd-exposed fish but remained unchanged in the liver. Because the Cd concentration increased in all subcellular compartments while their contribution to the total increased

  2. Retention and subcellular distribution of 67Ga in normal organs

    International Nuclear Information System (INIS)

    Ando, A.; Ando, I.; Hiraki, T.

    1986-01-01

    Using normal rats, retention values and subcellular distribution of 67 Ga in each organ were investigated. At 10 min after administration of 67 Ga-citrate the retention value of 67 Ga in blood was 6.77% dose/g, and this value decreased with time. The values for skeletal muscle, lung, pancreas, adrenal, heart muscle, brain, small intestine, large intestine and spinal cord were the highest at 10 min after administration, and they decreased with time. Conversely this value in bone increased until 10 days after injection. But in the liver, kidney, and stomach, these values increased with time after administration and were highest 24 h or 48 h after injection. After that, they decreased with time. The value in spleen reached a plateau 48 h after administration, and hardly varied for 10 days. From the results of subcellular fractionation, it was deduced that lysosome plays quite an important role in the concentration of 67 Ga in small intestine, stomach, lung, kidney and pancreas; a lesser role in its concentration in heart muscle, and hardly any role in the 67 Ga accumulation in skeletal muscle. In spleen, the contents in nuclear, mitochrondrial, microsomal, and supernatant fractions all contributed to the accumulation of 67 Ga. (orig.) [de

  3. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    -specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection.

  4. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  5. WE-DE-202-00: Connecting Radiation Physics with Computational Biology

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  6. WE-DE-202-00: Connecting Radiation Physics with Computational Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  7. WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J. [Massachusetts General Hospital (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  8. WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations

    International Nuclear Information System (INIS)

    Schuemann, J.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  9. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  10. The cellular basis of skin injury after cytotoxic insult

    International Nuclear Information System (INIS)

    Potten, C.S.

    1986-01-01

    It is concluded that although the major target in terms of radiation damage is undoubtedly the epidermis, the skin is a complex tissue made up of many inter-dependent components each of which may constitute an important secondary target. Damage to each component has been considered at the cellular level. The precise inter-relationships and interdependencies remain somewhat obscure. Even within one site, the epidermis, a comprehensive cellular explanation of the various post-irradiation changes is difficult. Substantial bibliography. (UK)

  11. Subcellular Localization of Cadmium in Chlorella vulgaris Beijerinck Strain Bt-09

    Directory of Open Access Journals (Sweden)

    P.B. Lintongan

    2004-06-01

    Full Text Available Growth response curves of Chlorella vulgaris Beijerinck strain Bt-09 to sublethal concentrations of cadmium were evaluated. The growth responses of this microalgal isolate was determined through analysis of chlorophyll a levels. Cadmium was effectively taken up by the cells as determined by Flame Atomic Absorption Spectrophotometry (F-AAS. Subcellular fractionation was undertaken to locate sites that accumulate cadmium.

  12. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Thakur, Ashish; Pennisi, Christian Pablo

    2017-01-01

    , mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle......Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs...

  13. Determination of subcellular compartment sizes for estimating dose variations in radiotherapy

    International Nuclear Information System (INIS)

    Poole, Christopher M.; Ahnesjo, Anders; Enger, Shirin A.

    2015-01-01

    The variation in specific energy absorbed to different cell compartments caused by variations in size and chemical composition is poorly investigated in radiotherapy. The aim of this study was to develop an algorithm to derive cell and cell nuclei size distributions from 2D histology samples, and build 3D cellular geometries to provide Monte Carlo (MC)-based dose calculation engines with a morphologically relevant input geometry. Stained and unstained regions of the histology samples are segmented using a Gaussian mixture model, and individual cell nuclei are identified via thresholding. Delaunay triangulation is applied to determine the distribution of distances between the centroids of nearest neighbour cells. A pouring simulation is used to build a 3D virtual tissue sample, with cell radii randomised according to the cell size distribution determined from the histology samples. A slice with the same thickness as the histology sample is cut through the 3D data and characterised in the same way as the measured histology. The comparison between this virtual slice and the measured histology is used to adjust the initial cell size distribution into the pouring simulation. This iterative approach of a pouring simulation with adjustments guided by comparison is continued until an input cell size distribution is found that yields a distribution in the sliced geometry that agrees with the measured histology samples. The thus obtained morphologically realistic 3D cellular geometry can be used as input to MC-based dose calculation programs for studies of dose response due to variations in morphology and size of tumour/healthy tissue cells/nuclei, and extracellular material. (authors)

  14. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy

    Institute of Scientific and Technical Information of China (English)

    Martin Goetz; Beena Memadathil; Stefan Biesterfeld; Constantin Schneider; Sebastian Gregor; Peter R Galle; Markus F Neurath; Ralf Kiesslich

    2007-01-01

    AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents.METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation.Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm)were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle,stable contact. Tissue specimens were sampled for histopathological correlation.RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice.Real time microscopic imaging with the confocal minimicroscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging.CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures.The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients.

  15. Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.

    2007-01-01

    A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines w...

  16. Combined effects of gamma irradiation and cadmium on cellular and population-level endpoints of the micro-alga Pseudokirchneriella subcapitata

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, C. [Stockholm University (Sweden); Abdul Meseh, D.; Alasawi, H.; Qiang, M.; Nascimento, F. [Dept of Ecology, Environment and Plant Sciences (Sweden)

    2014-07-01

    A major challenge in evaluating the risks of radiation to organisms is that radioactive substances often co-occur with other contaminants in the environment. The combined effects of multiple contaminants is poorly understood, particularly where radiation is involved, but mixture toxicity can give rise to synergistic, antagonistic or additive effects. The challenge of understanding mixture toxicity in a radiation context is the focus of one of the work packages of the STAR EU Network of Excellence in Radioecology, of which this study is a part. This paper presents results from an experiment where the green micro-alga Pseudokirchneriella subcapitata was exposed to both acute external gamma irradiation and the toxic metal cadmium (Cd) (over 72 hours); the experiment had a fully factorial design with 4 gamma doses and 4 Cd concentrations. The endpoints measured were chosen to reflect subcellular, cellular and population-level effects: antioxidant enzyme expression; membrane damage; protein, vitamin and pigment content of the cells; individual cell biomass and growth; population growth (biomass per ml and cells per ml). Preliminary results suggest effects of both Cd and gamma on some of the cellular and subcellular endpoints such as thiamine (vitamin B1) and chlorophyll concentrations in the cells, and individual cell biomass. In some cases interactive effects of the combined Cd and gamma treatments were seen, and these appeared to be dose level dependent. This lack of a consistent pattern of interactive mixture toxicity effects across the endpoints measured means that such effects would be very hard to predict in a risk assessment context. The lack of measurable effects at the population level was probably due to the short experimental duration (72 hours). Other experiments in our research group on the same micro-alga species that have looked at longer term effects (weeks) have shown that effects may not manifest themselves until at least a week after an acute gamma

  17. Analysis of potato virus X replicase and TGBp3 subcellular locations

    International Nuclear Information System (INIS)

    Bamunusinghe, Devinka; Hemenway, Cynthia L.; Nelson, Richard S.; Sanderfoot, Anton A.; Ye, Chang M.; Silva, Muniwarage A.T.; Payton, M.; Verchot-Lubicz, Jeanmarie

    2009-01-01

    Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER at the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.

  18. Study of subcellular distribution of /sup 67/Ga in tumor and liver

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Takeshita, M; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Ando, T; Hisada, K

    1977-02-01

    The following animals and transplanted tumors were used: rats implanted with Yoshida sarcoma and hepatoma AH109A, and mice implanted with Ehrlich tumor. /sup 67/Ga-citrate was injected into the rats intravenously and into the mice intraperitoneally. Ten minutes to 48 hours after the administration of /sup 67/Ga-citrate, the animals were sacrificed, and the tumor tissues and liver were excised. Subcellular fractionation of tumor tissues and livers was carried out according to the method of Hogeboom and Schneider. Radioactivity of each fraction was counted with a well type scintillation counter, and the protein of each fraction was measured according to Lowry's method. In Yoshida sarcoma and Ehrlich tumor, most of the radioactivity was localized in the supernatant fraction, and a small amount of radioactivity was localized in the mitochondrial fraction (lysosome contains in this fraction). But in the liver, most of the radioactivity was concentrated in the mitochondrial fraction, and the radioactivity of this fraction was increased with the passage of time after administration. Twenty-four hours later, about 50% of the total radioactivity was accumulated in this fraction. In the case of hepatoma AH109A, radioactivity of the mitochondrial fraction was increased with the passage of time after administration, and about 30% of total activity was concentrated in this fraction at 24 hours after administration. From these results it is concluded that the lysosome does not play an important role in the concentration of /sup 67/Ga in the tumor, but that the lysosome plays an important role in the concentration of /sup 67/Ga in the liver. In the case of hepatoma AH109A, it is presumed that the lysosome plays a very important role in the concentration of /sup 67/Ga in the tumor, hepatoma AH109A having some nature of liver.

  19. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

    DEFF Research Database (Denmark)

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert

    2013-01-01

    in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase......Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown...... to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map...

  20. Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices

    Science.gov (United States)

    Ventura, Anthony P.

    Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.

  1. Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues.

    Science.gov (United States)

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  2. Serial section scanning electron microscopy (S3EM on silicon wafers for ultra-structural volume imaging of cells and tissues.

    Directory of Open Access Journals (Sweden)

    Heinz Horstmann

    Full Text Available High resolution, three-dimensional (3D representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM, complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3EM, for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  3. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  4. Active Cellular Mechanics and its Consequences for Animal Development

    Science.gov (United States)

    Noll, Nicholas B.

    A central goal of developmental biology is to understand how an organism shapes itself, a process referred to as morphogenesis. While the molecular components critical to determining the initial body plan have been well characterized, the control of the subsequent dynamics of cellular rearrangements which ultimately shape the organism are far less understood. A major roadblock to a more complete picture of morphogenesis is the inability to measure tissue-scale mechanics throughout development and thus answer fundamental questions: How is the mechanical state of the cell regulated by local protein expression and global pattering? In what way does stress feedback onto the larger developmental program? In this dissertation, we begin to approach these questions through the introduction and analysis of a multi-scale model of epithelial mechanics which explicitly connects cytoskeletal protein activity to tissue-level stress. In Chapter 2, we introduce the discrete Active Tension Network (ATN) model of cellular mechanics. ATNs are tissues that satisfy two primary assumptions: that the mechanical balance of cells is dominated by cortical tension and that myosin actively remodels the actin cytoskeleton in a stress-dependent manner. Remarkably, the interplay of these features allows for angle-preserving, i.e. 'isogonal', dilations or contractions of local cell geometry that do not generate stress. Asymptotically this model is stabilized provided there is mechanical feedback on expression of myosin within the cell; we take this to be a strong prediction to be tested. The ATN model exposes a fundamental connection between equilibrium cell geometry and its underlying force network. In Chapter 3, we relax the tension-net approximation and demonstrate that at equilibrium, epithelial tissues with non-uniform pressure have non-trivial geometric constraints that imply the network is described by a weighted `dual' triangulation. We show that the dual triangulation encodes all

  5. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou's PseAAC.

    Science.gov (United States)

    Pacharawongsakda, Eakasit; Theeramunkong, Thanaruk

    2013-12-01

    Predicting protein subcellular location is one of major challenges in Bioinformatics area since such knowledge helps us understand protein functions and enables us to select the targeted proteins during drug discovery process. While many computational techniques have been proposed to improve predictive performance for protein subcellular location, they have several shortcomings. In this work, we propose a method to solve three main issues in such techniques; i) manipulation of multiplex proteins which may exist or move between multiple cellular compartments, ii) handling of high dimensionality in input and output spaces and iii) requirement of sufficient labeled data for model training. Towards these issues, this work presents a new computational method for predicting proteins which have either single or multiple locations. The proposed technique, namely iFLAST-CORE, incorporates the dimensionality reduction in the feature and label spaces with co-training paradigm for semi-supervised multi-label classification. For this purpose, the Singular Value Decomposition (SVD) is applied to transform the high-dimensional feature space and label space into the lower-dimensional spaces. After that, due to limitation of labeled data, the co-training regression makes use of unlabeled data by predicting the target values in the lower-dimensional spaces of unlabeled data. In the last step, the component of SVD is used to project labels in the lower-dimensional space back to those in the original space and an adaptive threshold is used to map a numeric value to a binary value for label determination. A set of experiments on viral proteins and gram-negative bacterial proteins evidence that our proposed method improve the classification performance in terms of various evaluation metrics such as Aiming (or Precision), Coverage (or Recall) and macro F-measure, compared to the traditional method that uses only labeled data.

  6. Cadmium Disrupts Subcellular Organelles, Including Chloroplasts, Resulting in Melatonin Induction in Plants

    Directory of Open Access Journals (Sweden)

    Hyoung-Yool Lee

    2017-10-01

    Full Text Available Cadmium is a well-known elicitor of melatonin synthesis in plants, including rice. However, the mechanisms by which cadmium induces melatonin induction remain elusive. To investigate whether cadmium influences physical integrities in subcellular organelles, we treated tobacco leaves with either CdCl2 or AlCl3 and monitored the structures of subcellular organelles—such as chloroplasts, mitochondria, and the endoplasmic reticulum (ER—using confocal microscopic analysis. Unlike AlCl3 treatment, CdCl2 (0.5 mM treatment significantly disrupted chloroplasts, mitochondria, and ER. In theory, the disruption of chloroplasts enabled chloroplast-expressed serotonin N-acetyltransferase (SNAT to encounter serotonin in the cytoplasm, leading to the synthesis of N-acetylserotonin followed by melatonin synthesis. In fact, the disruption of chloroplasts by cadmium, not by aluminum, gave rise to a huge induction of melatonin in rice leaves, which suggests that cadmium-treated chloroplast disruption plays an important role in inducing melatonin in plants by removing physical barriers, such as chloroplast double membranes, allowing SNAT to gain access to the serotonin substrate enriched in the cytoplasm.

  7. Radiation effect of radioiodide therapy on the hypophyseal and hypothalamic feedback control centers for thyroid function studied by dry-mount autoradiography. Final technical report

    International Nuclear Information System (INIS)

    Stumpf, W.E.

    1972-01-01

    Results are reported from studies in rats on the effects of β radiation from therapeutic doses of 131 I on the physiology of the pituitary gland and on brain structures considered thyroid hormone control areas. Iodine-125-labeled triiodothyronine and thyroxine and autoradiographic techniques were used to determine the cellular and subcellular localization of thyroid hormones in the brain tissues of untreated and thyroidectomized animals. The results suggest that thyroid hormones act on all neurons throughout the mature brain. (U.S.)

  8. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  9. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers

    NARCIS (Netherlands)

    Chang, Y.; Li, X.; Zhang, L.; Xia, L.; Liu, Xiaomin; Li, C.; Zhang, Y.; Tu, L.; Xue, B.; Zhao, H.; Zhang, H.; Kong, X.

    2017-01-01

    Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory

  10. Focus small to find big - the microbeam story.

    Science.gov (United States)

    Wu, Jinhua; Hei, Tom K

    2017-08-29

    Even though the first ultraviolet microbeam was described by S. Tschachotin back in 1912, the development of sophisticated micro-irradiation facilities only began to flourish in the late 1980s. In this article, we highlight significant microbeam experiments, describe the latest microbeam irradiator configurations and critical discoveries made by using the microbeam apparatus. Modern radiological microbeams facilities are capable of producing a beam size of a few micrometers, or even tens of nanometers in size, and can deposit radiation with high precision within a cellular target. In the past three decades, a variety of microbeams has been developed to deliver a range of radiations including charged particles, X-rays, and electrons. Despite the original intention for their development to measure the effects of a single radiation track, the ability to target radiation with microbeams at sub-cellular targets has been extensively used to investigate radiation-induced biological responses within cells. Studies conducted using microbeams to target specific cells in a tissue have elucidated bystander responses, and further studies have shown reactive oxygen species (ROS) and reactive nitrogen species (RNS) play critical roles in the process. The radiation-induced abscopal effect, which has a profound impact on cancer radiotherapy, further reaffirmed the importance of bystander effects. Finally, by targeting sub-cellular compartments with a microbeam, we have reported cytoplasmic-specific biological responses. Despite the common dogma that nuclear DNA is the primary target for radiation-induced cell death and carcinogenesis, studies conducted using microbeam suggested that targeted cytoplasmic irradiation induces mitochondrial dysfunction, cellular stress, and genomic instability. A more recent development in microbeam technology includes application of mouse models to visualize in vivo DNA double-strand breaks. Microbeams are making important contributions towards our

  11. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Science.gov (United States)

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  12. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    Science.gov (United States)

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  13. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  14. Applications of multiphoton microscopy in the field of colorectal cancer

    Science.gov (United States)

    Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin

    2018-06-01

    Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.

  15. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Directory of Open Access Journals (Sweden)

    Tomohisa Mori

    Full Text Available The membrane of the endoplasmic reticulum (ER of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  16. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Science.gov (United States)

    Mori, Tomohisa; Hayashi, Teruo; Hayashi, Eri; Su, Tsung-Ping

    2013-01-01

    The membrane of the endoplasmic reticulum (ER) of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R) in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  17. A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2013-12-01

    Full Text Available During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the participation of chemical compounds as substrates and products in these reactions. Although several of these comprehensive networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the integration of experimental data is still challenging. Particularly the analysis of subcellular organization of plant cells limits the understanding of regulatory instances in these metabolic networks in vivo. In this study, we develop an approach for the functional integration of experimental high-throughput data into such large-scale networks. We present a subcellular metabolic network model comprising 524 metabolic intermediates and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions with the subcellular metabolic network model for the inverse calculation of the biochemical Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation involving a covariance matrix. In this way, differential strategies of metabolite compartmentation and involved reactions were identified in the accessions when exposed to low temperature.

  18. Pulp and periodontal tissue repair - regeneration or tissue metaplasia after dental trauma. A review

    DEFF Research Database (Denmark)

    Andreasen, Jens O

    2012-01-01

    Healing subsequent to dental trauma is known to be very complex, a result explained by the variability of the types of dental trauma (six luxations, nine fracture types, and their combinations). On top of that, at least 16 different cellular systems get involved in more severe trauma types each o...... of tissue replaces the injured). In this study, a review is given of the impact of trauma to various dental tissues such as alveolar bone, periodontal ligament, cementum, Hertvigs epithelial root sheath, and the pulp....... of them with a different potential for healing with repair, i.e. (re-establishment of tissue continuity without functional restitution) and regeneration (where the injured or lost tissue is replaced with new tissue with identical tissue anatomy and function) and finally metaplasia (where a new type...

  19. High resolution alpha-autoradiography for measurement of 10B distribution in subcellular scale using CR-39 and AFM

    International Nuclear Information System (INIS)

    Amemiya, K.; Takahashi, H.; Yasuda, N.

    2000-01-01

    In order to measure 10 B distribution in tumor tissues for BNCT at subcellular scale, we have developed a new method for high resolution alpha-autoradiography using contact X-ray microscopy technique with CR-39 plastic track detectors. Sliced sections of boron-injected brain tumors in rats were mounted on CR-39 and irradiated with thermal neutrons at KUR. Then the samples were exposed to soft X-rays from a laser plasma source. After etching the CR-39 in NaOH solution for a short time (1-5 min.), transmission X-ray image of tumor cells appeared as relief on CR-39 surface, and could be observed with the atomic force microscopy (AFM). Very small etch pits of about 100 nm in diameter corresponding to particle tracks from 10 B(n, α) 7 Li reactions were also observed in the image simultaneously. This method provides an accurate distribution of 10 B inside the cell. (author)

  20. Cellular mechanics and motility

    Science.gov (United States)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in