WorldWideScience

Sample records for tir1 auxin receptor

  1. Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons.

    Science.gov (United States)

    Quareshy, Mussa; Uzunova, Veselina; Prusinska, Justyna M; Napier, Richard M

    2017-01-01

    The identification of TIR1 as an auxin receptor combined with advanced biophysical instrumentation has led to the development of real-time activity assays for auxins. Traditionally, molecules have been assessed for auxinic activity using bioassays, and agrochemical compound discovery continues to be based on "spray and pray" technologies. Here, we describe the methodology behind an SPR-based assay that uses TIR1 and related F-box proteins with surface plasmon resonance spectrometry for rapid compound screening. In addition, methods for collecting kinetic binding data and data processing are given so that they may support programs for rational design of novel auxin ligands.

  2. The role of auxin in temperature regulated hypocotyl elongation

    Energy Technology Data Exchange (ETDEWEB)

    Estelle, Mark [Univ. of California, San Diego, CA (United States)

    2015-10-02

    The major goal of this project was to determine how auxin mediates the response of Arabidopsis seedlings to increased ambient temperature. Previous studies have shown that the response is due, in part, to increased auxin biosynthesis via the IPA auxin biosynthetic pathway. This effect is related to increased transcription of genes that encode enzymes in this pathway. However, during the last year we have shown that transcription of key auxin regulated genes increases within minutes of a shift to elevated temperature. This response is probably to rapid to be explained by changes in the levels of auxin biosynthetic enzymes. Interestingly, we have recently discovered that temperature shift is associated with a rapid increase in the level of the auxin co-receptor TIR1. This change appears is the result of increased stability of the protein. At the same time, we have discovered that stability of TIR1 is dependent on the chaperone HSP9o and its co-chaperone SGT1. By using the specific HSP90 inhibitor GDA, we show that HSP90 is required for the temperature dependent change in TIR1 levels. We have also shown that HSP90 and SGT1 interact directly with TIR1. Our results also lead us to propose a new model in which the plant responds rapidly to changes in ambient temperature by directly regulating the TIR1/AFB receptor system, thus modulating the auxin signaling pathway.

  3. Auxin: Harnessing a loose cannon

    NARCIS (Netherlands)

    Weijers, D.

    2015-01-01

    The auxin receptor TIR1 is an F-box protein functioning in a ubiquitin ligase complex to target repressors for degradation. It is itself an unstable protein, but newly identified mutations protect both TIR1 and its substrates from degradation. These mutations could help in identifying the substrates

  4. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn

    2013-11-01

    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  5. Dynamic Modeling of Indole Glucosinolate Hydrolysis and Its Impact on Auxin Signaling

    Directory of Open Access Journals (Sweden)

    Daniel Vik

    2018-04-01

    Full Text Available Plants release chemicals to deter attackers. Arabidopsis thaliana relies on multiple defense compounds, including indol-3-ylmethyl glucosinolate (I3G, which upon hydrolysis initiated by myrosinase enzymes releases a multitude of bioactive compounds, among others, indole-3-acetonitrile and indole-3-acetoisothiocyanate. The highly unstable isothiocyanate rapidly reacts with other molecules. One of the products, indole-3-carbinol, was reported to inhibit auxin signaling through binding to the TIR1 auxin receptor. On the contrary, the nitrile product of I3G hydrolysis can be converted by nitrilase enzymes to form the primary auxin molecule, indole-3-acetic acid, which activates TIR1. This suggests that auxin signaling is subject to both antagonistic and protagonistic effects of I3G hydrolysis upon attack. We hypothesize that I3G hydrolysis and auxin signaling form an incoherent feedforward loop and we build a mathematical model to examine the regulatory network dynamics. We use molecular docking to investigate the possible antagonistic properties of different I3G hydrolysis products by competitive binding to the TIR1 receptor. Our simulations reveal an uncoupling of auxin concentration and signaling, and we determine that enzyme activity and antagonist binding affinity are key parameters for this uncoupling. The molecular docking predicts that several I3G hydrolysis products strongly antagonize auxin signaling. By comparing a tissue disrupting attack – e.g., by chewing insects or necrotrophic pathogens that causes rapid release of I3G hydrolysis products – to sustained cell-autonomous I3G hydrolysis, e.g., upon infection by biotrophic pathogens, we find that each scenario gives rise to distinct auxin signaling dynamics. This suggests that plants have different defense versus growth strategies depending on the nature of the attack.

  6. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development.

    Directory of Open Access Journals (Sweden)

    Lian Jin

    2016-09-01

    Full Text Available The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB protein and an auxin/indole-3-acetic acid (Aux/IAA protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV, a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis.

  7. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop.

    Science.gov (United States)

    Ligerot, Yasmine; de Saint Germain, Alexandre; Waldie, Tanya; Troadec, Christelle; Citerne, Sylvie; Kadakia, Nikita; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Leyser, Ottoline; Estelle, Mark; Debellé, Frédéric; Rameau, Catherine

    2017-12-01

    Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.

  8. Structure and function of the TIR domain from the grape NLR protein RPV1

    Directory of Open Access Journals (Sweden)

    Simon John Williams

    2016-12-01

    Full Text Available The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR domain has been shown to be both necessary and sufficient for defence signalling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signalling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signalling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices (AE interface. This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signalling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signalling.

  9. Multiple functional self-association interfaces in plant TIR domains

    NARCIS (Netherlands)

    Zhang, Xiaoxiao; Bernoux, Maud; Bentham, Adam R; Newman, Toby E; Ve, Thomas; Casey, Lachlan W; Raaymakers, Tom M; Hu, Jian; Croll, Tristan I; Schreiber, Karl J; Staskawicz, Brian J; Anderson, Peter A; Sohn, Kee Hoon; Williams, Simon J; Dodds, Peter N; Kobe, Bostjan

    2017-01-01

    The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding

  10. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction.

    Science.gov (United States)

    Swiderski, Michal R; Birker, Doris; Jones, Jonathan D G

    2009-02-01

    In plants, the TIR (toll interleukin 1 receptor) domain is found almost exclusively in nucleotide-binding (NB) leucine-rich repeat resistance proteins and their truncated homologs, and has been proposed to play a signaling role during resistance responses mediated by TIR containing R proteins. Transient expression in Nicotiana benthamiana leaves of "TIR + 80", the RPS4 truncation without the NB-ARC domain, leads to EDS1-, SGT1-, and HSP90-dependent cell death. Transgenic Arabidopsis plants expressing the RPS4 TIR+80 from either dexamethasone or estradiol-inducible promoters display inducer-dependent cell death. Cell death is also elicited by transient expression of similarly truncated constructs from two other R proteins, RPP1A and At4g19530, but is not elicited by similar constructs representing RPP2A and RPP2B proteins. Site-directed mutagenesis of the RPS4 TIR domain identified many loss-of-function mutations but also revealed several gain-of function substitutions. Lack of cell death induction by the E160A substitution suggests that amino acids outside of the TIR domain contribute to cell death signaling in addition to the TIR domain itself. This is consistent with previous observations that the TIR domain itself is insufficient to induce cell death upon transient expression.

  11. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish.

    NARCIS (Netherlands)

    Meijer, A.H.; Krens, SF Gabby; Rodriguez, IA Medina; He, S; Bitter, W.; Snaar-Jagalska, B Ewa; Spaink, H.P.

    2004-01-01

    The zebrafish genomic sequence database was analysed for the presence of genes encoding members of the Toll-like receptors (TLR) and interleukin receptors (IL-R) and associated adaptor proteins containing a TIR domain. The resulting predictions show the presence of one or more counterparts for the

  12. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    Science.gov (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  13. The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana.

    Science.gov (United States)

    Raya-González, Javier; Pelagio-Flores, Ramón; López-Bucio, José

    2012-09-15

    Jasmonic acid (JA) regulates a broad range of plant defense and developmental responses. COI1 has been recently found to act as JA receptor. In this report, we show that low micromolar concentrations of JA inhibited primary root (PR) growth and promoted lateral root (LR) formation in Arabidopsis wild-type (WT) seedlings. It was observed that the coi1-1 mutant was less sensitive to JA on pericycle cell activation to induce lateral root primordia (LRP) formation and presented alterations in lateral root positioning and lateral root emergence on bends. To investigate JA-auxin interactions important for remodeling of root system (RS) architecture, we tested the expression of auxin-inducible markers DR5:uidA and BA3:uidA in WT and coi1-1 seedlings in response to indole-3-acetic acid (IAA) and JA and analyzed the RS architecture of a suite of auxin-related mutants under JA treatments. We found that JA did not affect DR5:uidA and BA3:uidA expression in WT and coi1-1 seedlings. Our data also showed that PR growth inhibition in response to JA was likely independent of auxin signaling and that the induction of LRP required ARF7, ARF19, SLR, TIR1, AFB2, AFB3 and AXR1 loci. We conclude that JA regulation of postembryonic root development involves both auxin-dependent and independent mechanisms. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway

    Science.gov (United States)

    2014-01-01

    Background Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. Results Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 − Cullin − F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root

  15. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Meenu S Padmanabhan

    2013-03-01

    Full Text Available Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.

  16. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Band, Leah R; Pěnčík, Aleš; Novák, Ondřej; Rashed, Afaf; Holman, Tara; Wilson, Michael H; Voß, Ute; Bishopp, Anthony; King, John R; Ljung, Karin; Bennett, Malcolm J; Owen, Markus R

    2016-09-27

    The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.

  17. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Anna Waldhuber

    2016-02-01

    Full Text Available The TIR-containing protein C (TcpC of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs. Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters.

  18. Auxin apical control of the auxin polar transport and its oscillation - a suggested cellular transduction mechanism

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2014-01-01

    Full Text Available The proposed hypothesis concerns the transduction of auxin molecular signals arriving from the apoplast at the plasma membrane or recognized by the proteineous receptors of the responding cell, to the concentration gradients oscillating in the supracellular space, associated usually with the specific plant growth and differentiation. Acting as an agonist from outside the target cell auxin stimulates in this cell: (1 the liberation of auxin from the cytosolic pool of its conjugates directly into the basipetal efflux; (2 the synthesis of new auxin which restores the cytosolic reserve of auxin conjugates. The functioning of such a system may be effective in a series of processes initiated by the changing concentration of cytosolic calcium. The hypothesis suggests a molecular mechanism for the development and effective operation of the morphogenetic field in the supracellular space of the plant body, such as the field resulting from auxin waves discovered in cambium.

  19. A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling.

    Science.gov (United States)

    Askarian, Fatemeh; van Sorge, Nina M; Sangvik, Maria; Beasley, Federico C; Henriksen, Jørn R; Sollid, Johanna U E; van Strijp, Jos A G; Nizet, Victor; Johannessen, Mona

    2014-01-01

    Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encoding a homologue of the human TIR domain in S. aureus MSSA476 which was named staphylococcal TIR domain protein (TirS). Ectopic expression of TirS in human embryonic kidney, macrophage and keratinocyte cell lines interfered with signaling through TLR2, including MyD88 and TIRAP, NF-κB and/or mitogen-activated protein kinase pathways. Moreover, the presence of TirS reduced the levels of cytokines MCP-1 and G-CSF secreted in response to S. aureus. The effects on NF-κB pathway were confirmed using S. aureus MSSA476 wild type, an isogenic mutant MSSA476ΔtirS, and complemented MSSA476ΔtirS +pTirS in a Transwell system where bacteria and host cells were physically separated. Finally, in a systematic mouse infection model, TirS promoted bacterial accumulation in several organs 4 days postinfection. The results of this study reveal a new S. aureus virulence factor that can interfere with PAMP-induced innate immune signaling in vitro and bacterial survival in vivo. © 2014 S. Karger AG, Basel.

  20. Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Directory of Open Access Journals (Sweden)

    Pedro Jacob Christoffoleti

    2015-08-01

    Full Text Available Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1 alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF activation. As a result mRNA related with Abscisic Acid (ABA and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS, leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A. It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.

  1. Enteropathogenic Escherichia coli translocate Tir and form an intimin-Tir intimate attachment to red blood cell membranes.

    Science.gov (United States)

    Shaw, Robert K; Daniell, Sarah; Frankel, Gad; Knutton, Stuart

    2002-05-01

    Type III secretion allows bacteria to inject effector proteins into host cells. In enteropathogenic Escherichia coli (EPEC) the type III secreted protein, Tir, is translocated to the host-cell plasma membrane where it functions as a receptor for the bacterial adhesin intimin, leading to intimate bacterial attachment and "attaching and effacing" (A/E) lesion formation. To study EPEC type III secretion the interaction of EPEC with monolayers of red blood cells (RBCs) has been exploited and in a recent study [Shaw, R. K., Daniell, S., Ebel, F., Frankel, G. & Knutton, S. (2001 ). Cell Microbiol 3, 213-222] it was shown that EPEC induced haemolysis of RBCs and translocation of EspD, a putative pore-forming type III secreted protein in the RBC membrane. Here it is demonstrated that EPEC are able to translocate and correctly insert Tir into the RBC membrane and produce an intimin-Tir intimate bacterial attachment, identical to that seen in A/E lesions. Following translocation Tir did not undergo any change in apparent molecular mass or become tyrosine-phosphorylated and there was no focusing of RBC cytoskeletal actin beneath intimately adherent bacteria, and no pedestal formation. This study, employing an RBC model of infection, has demonstrated that Tir translocation can be separated from host-cell-mediated Tir modifications; the data show that the EPEC type III protein translocation apparatus is sufficient to deliver and correctly insert Tir into host-cell membranes independent of eukaryotic cell functions.

  2. Maize AUXIN-BINDING PROTEIN 1 and AUXIN-BINDING PROTEIN 4 impact on leaf growth, elongation, and seedling responsiveness to auxin and light

    Czech Academy of Sciences Publication Activity Database

    Jurišić-Knežev, Dejana; Čudejková, Mária; Zalabák, David; Hlobilová, Marta; Rolčík, Jakub; Pěnčík, Aleš; Bergougnoux, Véronique; Fellner, Martin

    2012-01-01

    Roč. 90, č. 10 (2012), s. 990-1006 ISSN 1916-2790 R&D Projects: GA MŠk(CZ) 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin-binding protein * growth Subject RIV: EF - Botanics Impact factor: 1.225, year: 2012

  3. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao

    2012-06-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport1[OPEN

    Science.gov (United States)

    Mason, Michael G.; Beveridge, Christine A.

    2015-01-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background. PMID:26111543

  5. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves A; Cheng, Zhenyu; Bush, Jenifer; Ausubel, Frederick M

    Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.

  6. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector

    Science.gov (United States)

    Caplan, Jeffrey L.; Mamillapalli, Padmavathi; Burch-Smith, Tessa M.; Czymmek, Kirk; Dinesh-Kumar, S.P.

    2008-01-01

    Summary Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50-kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a pre-recognition complex containing the p50 effector and NRIP1. PMID:18267075

  7. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  8. Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy.

    Science.gov (United States)

    Carlsson, Emil; Thwaite, Joanne E; Jenner, Dominic C; Spear, Abigail M; Flick-Smith, Helen; Atkins, Helen S; Byrne, Bernadette; Ding, Jeak Ling

    2016-01-01

    Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence.

  9. What has been seen cannot be unseen-detecting auxin in vivo

    Czech Academy of Sciences Publication Activity Database

    Pařízková, Barbora; Pernisová, M.; Novák, Ondřej

    2017-01-01

    Roč. 18, č. 12 (2017), č. článku 2736. E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA16-01137S Institutional support: RVO:61389030 Keywords : Auxin * Auxin distribution * Auxin signalling * Auxin transport * Direct visualization * Indirect visualization * Receptor * Sensor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.226, year: 2016

  10. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato.

    Science.gov (United States)

    Deng, Kexuan; Dong, Pan; Wang, Wanjing; Feng, Li; Xiong, Fangjie; Wang, Kai; Zhang, Shumin; Feng, Shun; Wang, Bangjun; Zhang, Jiankui; Ren, Maozhi

    2017-01-01

    In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis . The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 ( ScFKBP12 ) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3 , and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1 . Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.

  11. Functional Characterization of PaLAX1, a Putative Auxin Permease, in Heterologous Plant Systems1[W][OA

    Science.gov (United States)

    Hoyerová, Klára; Perry, Lucie; Hand, Paul; Laňková, Martina; Kocábek, Tomáš; May, Sean; Kottová, Jana; Pačes, Jan; Napier, Richard; Zažímalová, Eva

    2008-01-01

    We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants. PMID:18184737

  12. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.

    Science.gov (United States)

    Kong, Que; Ma, Wei; Yang, Haibing; Ma, Guojie; Mantyla, Jenny J; Benning, Christoph

    2017-07-20

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms1

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu

    2016-01-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  14. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    Science.gov (United States)

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  15. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    Science.gov (United States)

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  16. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.

    Science.gov (United States)

    Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao

    2015-08-01

    Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns

    Directory of Open Access Journals (Sweden)

    Wan Hongjian

    2012-09-01

    Full Text Available Abstract Background Pepper (Capsicum annuum L. is one of the most important vegetable crops worldwide. However, its yield and fruit quality can be severely threatened by several pathogens. The plant nucleotide-binding site (NBS-leucine-rich repeat (LRR gene family is the largest class of known disease resistance genes (R genes effective against such pathogens. Therefore, the isolation and identification of such R gene homologues from pepper will provide a critical foundation for improving disease resistance breeding programs. Results A total of 78 R gene analogues (CaRGAs were identified in pepper by degenerate PCR amplification and database mining. Phylogenetic tree analysis of the deduced amino acid sequences for 51 of these CaRGAs with typically conserved motifs ( P-loop, kinase-2 and GLPL along with some known R genes from Arabidopsis and tomato grouped these CaRGAs into the non-Toll interleukin-1 receptor (TIR-NBS-LRR (CaRGAs I to IV and TIR-NBS-LRR (CaRGAs V to VII subfamilies. The presence of consensus motifs (i.e. P-loop, kinase-2 and hydrophobic domain is typical of the non-TIR- and TIR-NBS-LRR gene subfamilies. This finding further supports the view that both subfamilies are widely distributed in dicot species. Functional divergence analysis provided strong statistical evidence of altered selective constraints during protein evolution between the two subfamilies. Thirteen critical amino acid sites involved in this divergence were also identified using DIVERGE version 2 software. Analyses of non-synonymous and synonymous substitutions per site showed that purifying selection can play a critical role in the evolutionary processes of non-TIR- and TIR-NBS-LRR RGAs in pepper. In addition, four specificity-determining positions were predicted to be responsible for functional specificity. qRT-PCR analysis showed that both salicylic and abscisic acids induce the expression of CaRGA genes, suggesting that they may primarily be involved in

  18. Auxin synthesis gene tms1 driven by tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones.

    Science.gov (United States)

    Kolachevskaya, Oksana O; Sergeeva, Lidiya I; Floková, Kristyna; Getman, Irina A; Lomin, Sergey N; Alekseeva, Valeriya V; Rukavtsova, Elena B; Buryanov, Yaroslav I; Romanov, Georgy A

    2017-03-01

    Ectopic auxin overproduction in transgenic potato leads to enhanced productivity accompanied with concerted and occasional changes in hormonal status, and causing altered response of transformants to exogenous auxin or cytokinin. Previously, we generated potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 driven by tuber-specific patatin gene promoter (B33-promoter). Here, we studied the endogenous hormonal status and the response to exogenous phytohormones in tms1 transformants cultured in vitro. Adding indole-3-acetic acid (IAA) or kinetin to culture medium affected differently tuberization of tms1-transformed and control plants, depending also on sucrose content in the medium. Exogenous phytohormones ceased to stimulate the tuber initiation in transformants at high (5-8%) sucrose concentration, while in control plants the stimulation was observed in all experimental settings. Furthermore, exogenous auxin partly inhibited the tuber initiation, and exogenous cytokinin reduced the average tuber weight in most transformants at high sucrose content. The elevated auxin level in tubers of the transformants was accompanied with a decrease in content of cytokinin bases and their ribosides in tubers and most shoots. No concerted changes in contents of abscisic, jasmonic, salicylic acids and gibberellins in tubers were detected. The data on hormonal status indicated that the enhanced productivity of tms1 transformants was due to auxin and not mediated by other phytohormones. In addition, exogenous cytokinin was shown to upregulate the expression of genes encoding orthologs of auxin receptors. Overall, the results showed that tms1 expression and local increase in IAA level in transformants affect both the balance of endogenous cytokinins and the dynamics of tuberization in response to exogenous hormones (auxin, cytokinin), the latter reaction depending also on the carbohydrate supply. We introduce a basic model for the hormonal network

  19. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  20. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    Science.gov (United States)

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  1. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  2. Forgetting in C. elegans Is Accelerated by Neuronal Communication via the TIR-1/JNK-1 Pathway

    Directory of Open Access Journals (Sweden)

    Akitoshi Inoue

    2013-03-01

    Full Text Available The control of memory retention is important for proper responses to constantly changing environments, but the regulatory mechanisms underlying forgetting have not been fully elucidated. Our genetic analyses in C. elegans revealed that mutants of the TIR-1/JNK-1 pathway exhibited prolonged retention of olfactory adaptation and salt chemotaxis learning. In olfactory adaptation, conditioning induces attenuation of odor-evoked Ca2+ responses in olfactory neurons, and this attenuation is prolonged in the TIR-1/JNK-1-pathway mutant animals. We also found that a pair of neurons in which the pathway functions is required for the acceleration of forgetting, but not for sensation or adaptation, in wild-type animals. In addition, the neurosecretion from these cells is important for the acceleration of forgetting. Therefore, we propose that these neurons accelerate forgetting through the TIR-1/JNK-1 pathway by sending signals that directly or indirectly stimulate forgetting.

  3. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1

    Science.gov (United States)

    Ng, Jason Liang Pin; Hassan, Samira; Truong, Thy T.; Hocart, Charles H.; Laffont, Carole; Frugier, Florian; Mathesius, Ulrike

    2015-01-01

    Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation. PMID:26253705

  4. Molecular modeling of auxin transport inhibitors

    International Nuclear Information System (INIS)

    Gardner, G.; Black-Schaefer, C.; Bures, M.G.

    1990-01-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections

  5. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway.

    Science.gov (United States)

    Mudgil, Yashwanti; Uhrig, Joachm F; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M

    2009-11-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gbetagamma dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single beta (AGB1) or the two gamma (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops.

  6. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  7. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88.

    Science.gov (United States)

    Dunne, Aisling; Ejdeback, Mikael; Ludidi, Phumzile L; O'Neill, Luke A J; Gay, Nicholas J

    2003-10-17

    The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling components. Experimental structures of two Toll/interleukin 1 receptor domains reveal a alpha-beta-fold similar to that of the bacterial chemotaxis protein CheY, and other evidence suggests that the adaptors can make heterotypic interactions with both the receptors and themselves. Here we show that the purified TIR domains of Mal and MyD88 can form stable heterodimers and also that Mal homodimers and oligomers are dissociated in the presence of ATP. To identify structural features that may contribute to the formation of signaling complexes, we produced models of the TIR domains from human Toll-like receptor 4 (TLR4), Mal, and MyD88. We found that although the overall fold is conserved the electrostatic surface potentials are quite distinct. Docking studies of the models suggest that Mal and MyD88 bind to different regions in TLRs 2 and 4, a finding consistent with a cooperative role of the two adaptors in signaling. Mal and MyD88 are predicted to interact at a third non-overlapping site, suggesting that the receptor and adaptors may form heterotetrameric complexes. The theoretical model of the interactions is supported by experimental data from glutathione S-transferase pull-downs and co-immunoprecipitations. Neither theoretical nor experimental data suggest a direct role for the conserved proline in the BB-loop in the association of TLR4, Mal, and MyD88. Finally we show a sequence relationship between the Drosophila protein Tube and Mal that may indicate a functional equivalence of these two adaptors in the Drosophila and vertebrate Toll pathways.

  8. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    Science.gov (United States)

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  9. Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls

    Science.gov (United States)

    Rorabaugh, P. A.; Salisbury, F. B.

    1989-01-01

    Although the Cholodny-Went model of auxin redistribution has been used to explain the transduction phase of gravitropism for over 60 years, problems are apparent, especially with dicot stems. An alternative to an auxin gradient is a physiological gradient in which lower tissues of a horizontal stem become more sensitive than upper tissues to auxin already present. Changes in tissue sensitivity to auxin were tested by immersing marked Glycine max Merrill (soybean) hypocotyl sections in buffered auxin solutions (0, 10(-8) to 10(-2) molar indoleacetic acid) and observing bending and growth of upper and lower surfaces. The two surfaces of horizontal hypocotyl sections responded differently to the same applied auxin stimulus; hypocotyls bent up (lower half grew more) in buffer alone or in low auxin levels, but bent down (upper half grew more) in high auxin. Dose-response curves were evaluated with Michaelis-Menten kinetics, with auxin-receptor binding analogous to enzyme-substrate binding. Vmax for the lower half was usually greater than that for the upper half, which could indicate more binding sites in the lower half. Km of the upper half was always greater than that of the lower half (unmeasurably low), which could indicate that upper-half binding sites had a much lower affinity for auxin than lower-half sites. Dose-response curves were also obtained for sections scrubbed' (cuticle abraded) on top or bottom before immersion in auxin, and gravitropic memory' experiments of L. Brauner and A. Hagar (1958 Planta 51: 115-147) were duplicated. [1-14C]Indoleacetic acid penetration was equal into the two halves, and endogenous plus exogenously supplied (not radiolabeled) free auxin in the two halves (by gas chromatography-selected ion monitoring-mass spectrometry) was also equal. Thus, differential growth occurred without free auxin redistribution, contrary to Cholodny-Went but in agreement with a sensitivity model.

  10. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a G Protein–Mediated Pathway[W

    Science.gov (United States)

    Mudgil, Yashwanti; Uhrig, Joachm F.; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M.

    2009-01-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gβγ dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single β (AGB1) or the two γ (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops. PMID:19948787

  11. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    Science.gov (United States)

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain

    Science.gov (United States)

    Mistry, Pragnesh; Laird, Michelle H. W.; Schwarz, Ryan S.; Greene, Shannon; Dyson, Tristan; Snyder, Greg A.; Xiao, Tsan Sam; Chauhan, Jay; Fletcher, Steven; Toshchakov, Vladimir Y.; MacKerell, Alexander D.; Vogel, Stefanie N.

    2015-01-01

    Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein–protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. PMID:25870276

  13. The PIN1 family gene PvPIN1 is involved in auxin-dependent root emergence and tillering in switchgrass

    Directory of Open Access Journals (Sweden)

    Kaijie Xu

    2016-03-01

    Full Text Available Abstract Switchgrass (Panicum virgatum L.; family Poaceae is a warm-season C4 perennial grass. Tillering plays an important role in determining the morphology of aboveground parts and the final biomass yield of switchgrass. Auxin distribution in plants can affect a variety of important growth and developmental processes, including the regulation of shoot and root branching, plant resistance and biological yield. Auxin transport and gradients in plants are mediated by influx and efflux carriers. PvPIN1, a switchgrass PIN1-like gene that is involved in regulating polar transport, is a putative auxin efflux carrier. Neighbor-joining analysis using sequences deposited in NCBI databases showed that the PvPIN1gene belongs to the PIN1 family and is evolutionarily closer to the Oryza sativa japonica group. Tiller emergence and development was significantly promoted in plants subjected toPvPIN1 RNA interference (RNAi, which yielded a phenotype similar to that of wild-type plants treated with the auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid. A transgenic approach that inducedPvPIN1 gene overexpression or suppression altered tiller number and the shoot/root ratio. These data suggest that PvPIN1plays an important role in auxin-dependent adventitious root emergence and tillering.

  14. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  15. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid.

    Directory of Open Access Journals (Sweden)

    Manuela E Crisan

    Full Text Available p-Aminobenzoic acid (pABA plays important roles in a wide variety of metabolic processes. Herein we report the synthesis, theoretical calculations, crystallographic investigation, and in vitro determination of the biological activity and phytotoxicity of the pABA salt, 2-hydroxyethylammonium p-aminobenzoate (HEA-pABA. The ability of neutral and anionic forms of pABA to interact with TIR1 pocket was investigated by calculation of molecular electrostatic potential maps on the accessible surface area, docking experiments, Molecular Dynamics and Quantum Mechanics/Molecular Mechanics calculations. The docking study of the folate precursor pABA, its anionic form and natural auxin (indole-3-acetic acid, IAA with the auxin receptor TIR1 revealed a similar binding mode in the active site. The phytotoxic evaluation of HEA-pABA, pABA and 2-hydroxyethylamine (HEA was performed on the model plant Arabidopsis thaliana ecotype Col 0 at five different concentrations. HEA-pABA and pABA acted as potential auxin-like regulators of root development in Arabidopsis thaliana (0.1 and 0.2 mM and displayed an agravitropic root response at high concentration (2 mM. This study suggests that HEA-pABA and pABA might be considered as potential new regulators of plant growth.

  16. Regulation of auxin transport during gravitropism

    Science.gov (United States)

    Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.

    Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including

  17. Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates

    Czech Academy of Sciences Publication Activity Database

    Hoyerová, Klára; Hošek, Petr; Quareshy, M.; Li, J.; Klíma, Petr; Kubeš, Martin; Yemm, A. A.; Neve, P.; Tripathi, A.; Bennett, M.J.; Napier, R. M.

    2018-01-01

    Roč. 217, č. 4 (2018), s. 1625-1639 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA16-19557S; GA MŠk LD15137 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : auxin transport * cheminformatics * herbicide * herbicide resistance * molecular field maps * pharmacophore * structure–activity relationship * uptake carrier Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  18. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation

    DEFF Research Database (Denmark)

    Henrichs, Sina; Wang, Bangjun; Fukao, Yoichiro

    2012-01-01

    Polar transport of the plant hormone auxin is controlled by PIN-and ABCB/PGP-efflux catalysts. PIN polarity is regulated by the AGC protein kinase, PINOID (PID), while ABCB activity was shown to be dependent on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Using co-immunoprecipitation (co-I...

  19. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Smith, R. S.; Pešek, Bedřich; Kubeš, Martin; Zažímalová, Eva; Petrášek, Jan; Hoyerová, Klára

    2010-01-01

    Roč. 61, č. 13 (2010), s. 3589-3598 ISSN 0022-0957 R&D Projects: GA AV ČR KJB600380702; GA MŠk(CZ) LC06034 Grant - others:_(CZ) CZ.2.16/3.1.00/21159 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin efflux carrier * auxin influx carrier * auxin transport Subject RIV: EF - Botanics Impact factor: 4.818, year: 2010

  20. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Science.gov (United States)

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Auxin Transporters - Why So Many?

    Czech Academy of Sciences Publication Activity Database

    Zažímalová, Eva; Murphy, A. S.; Yang, H.; Hoyerová, Klára; Hošek, Petr

    2010-01-01

    Roč. 2, č. 3 (2010), s. 1-14 ISSN 1943-0264 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin transporters * auxin carriers * plant development Subject RIV: ED - Physiology Impact factor: 5.371, year: 2010

  2. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  3. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    Science.gov (United States)

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  4. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport

    NARCIS (Netherlands)

    Huang, F.; Kemel Zago, M.; Abas, L.; van Marion, A.; Galván-Ampudia, C.S.; Offringa, R.

    2010-01-01

    Polar cell-to-cell transport of auxin by plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of

  5. Surgical approach to TIR3 cytology class A prospective evaluation.

    Science.gov (United States)

    D'Alessandro, Nicola; Fasano, Giovanni Michele; Gilio, Francesco; Iside, Giovanni; Izzo, Maria Lucia; Loffredo, Andrea; Pinto, Margherita; Tramontano, Salvatore; Tramutola, Giuseppe; Citro, Giuseppe

    2014-01-01

    Fine-needle aspiration (FNA) has proven to be a safe and reliable method of investigation of thyroid lesions. Referencing to European classification, the associated risk of malignancy for TIR3, category reserved for aspirates that contain architectural and/or nuclear atypia, is variable in such studies. Aims of study were evaluating safety of surgical approach, assessing perioperative parameters surgically related, and estimating neoplastic rate for TIR3 group. A prospective evaluation of all TIR3 submitted to thyroidectomy was conducted by assessing histopatohologic results between January 2005 and December 2012, considering two categories, positive (neoplastic) and negative (not neoplastic) group. Intraoperative and complication rate was analyzed on TIR3 population. A total of 1514 total thyroidectomy was performed from 2005 to 2012: a total of 148 cases was considered on TIR3 group. Positive cases amounted to 64 (43.2%), 29 of which were carcinoma (19.6% of total population) and 35 of which were adenoma, while negative cases amounted to 84 (56.8%). Sensitivity and specificity of TIR3 as neoplastic screening was 43.2% and 82.1%. A total of 32 linfectomies was performed (21.6% of group). Positive group presented a significant lower mean age than negative group (42.1 vs 56.2 years) TIR3 group represents a various category, with probably different malignancy risk. Our results and neoplasms rate confirmed that surgical option should be gold standard, in order to define atypical pattern and reduce delayed diagnoses. Choice of a second FNA or a imaging monitoring should be adopted for specific condition. Fine-needle aspiration, Thyroidectomy, TIR3, Thyroid cancer.

  6. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  7. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery.

    Science.gov (United States)

    Savaldi-Goldstein, Sigal; Baiga, Thomas J; Pojer, Florence; Dabi, Tsegeye; Butterfield, Cristina; Parry, Geraint; Santner, Aaron; Dharmasiri, Nihal; Tao, Yi; Estelle, Mark; Noel, Joseph P; Chory, Joanne

    2008-09-30

    Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as "proauxins" akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways.

  8. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution.

    Science.gov (United States)

    Giehl, Ricardo F H; Lima, Joni E; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.

  9. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles

    Czech Academy of Sciences Publication Activity Database

    Grones, P.; Chen, X.; Simon, S.; Kaufmann, W.A.; De Rycke, R.; Nodzyński, T.; Zažímalová, Eva; Friml, J.

    2015-01-01

    Roč. 66, č. 16 (2015), s. 5055-5065 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Auxin * ABP1 * Auxin binding Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.677, year: 2015

  10. The diageotropica mutant of tomato lacks high specific activity auxin sites

    International Nuclear Information System (INIS)

    Hicks, G.R.; Lomax, T.L.; Rayle, D.L.

    1989-01-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue 3 H-5N 3 -IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant

  11. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    International Nuclear Information System (INIS)

    Hicks, G.R.; Rayle, D.L.; Jones, A.M.; Lomax, T.L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7- 3 H]IAA([ 3 H]N 3 IAA), in a manner similar to the accumulation of [ 3 H]IAA. The association of the [ 3 H]N 3 IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [ 3 H]N 3 IAA to plasma membrane vesicles prior to exposure to UV light and detected by subsequent NaDodSO 4 /PAGE and fluorography. When the reaction temperature was lowered to -196 degree C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors

  12. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    Science.gov (United States)

    2013-01-01

    Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388

  13. Cytokinins and polar transport of auxin in axillary pea buds

    Directory of Open Access Journals (Sweden)

    Petr Kalousek

    2010-01-01

    Full Text Available The influence of cytokinin on auxin transport during release of axillary buds from apical dominance was studied. Expression of auxin-carrier coding genes PsAUX1 (AUXIN RESISTANT 1 and PsPIN1 (PIN-FORMED 1 was explored in axillary buds of the 2nd node of 7-day pea plants (Pisum sativum L. cv. Vladan after decapitation or after exogenous application of benzyladenine (6-benzylaminopurine onto axillary buds of intact plants. Localization of the PsPIN1 protein, the key factor for polar transport of auxin in axillary buds, was visualised by immunohistochemistry. After exogenous application of cytokinin the expression of PsAUX1 and PsPIN1 rapidly increased with a simultaneous rapid decrease in PsDRM1 and PsAD1 expression – genes related to bud dormancy. The same changes in expression were observed after decapitation, however they were markedly slower. The PsPIN1 auxin efflux carrier in the inhibited axillary buds of intact plants was localised in a non-polar manner. After exogenous application of cytokinin gradual polarisation of the PsPIN1 protein occurred on the basal pole of polar auxin transport competent cells. Despite the fact that direct auxin application to buds of intact plants led to an increase in PsAUX1 and PsPIN1 expression, the buds remained dormant (non-growing what was accompanied by persistent expression of the dormancy markers PsDRM1 and PsAD1. The results indicate a possible effect of cytokinins on biosynthesis, and/or transport of auxin in axillary buds and they highlight the importance of auxin-cytokinin crosstalk in the regulation of bud outgrowth after breaking of apical dominance.

  14. Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin.

    Science.gov (United States)

    Dao, Guo-Hua; Wu, Guang-Xue; Wang, Xiao-Xiong; Zhuang, Lin-Lan; Zhang, Tian-Yuan; Hu, Hong-Ying

    2018-01-01

    Microalgae are potential candidates for the production of valuable products, such as renewable biodiesel, health products and pigments. However, low biomass productivity has restricted their large-scale applications. In this study, the effects of two auxins (one natural type of indole-3-acetic acid (IAA) and the other synthetic type of 2,4-dichlorophenoxyacetic acid (2,4-D)) on the growth and fatty acid methyl esters (FAMEs) production of a freshwater microalgae Scenedesmus sp. LX1 were investigated. Both auxins showed a "low dosage-promotion and high dosage-inhibition" effect on the growth and FAMEs accumulation. The optimum dosage of IAA and 2,4-D were 1mgL -1 and 0.1mgL -1 , respectively. Moreover, the IAA could increase the monounsaturated fatty acid content. The auxins may promote the growth by enhancing the photosynthetic activity through increasing chlorophyll contents. Therefore, auxin significantly enhanced microalgal growth and FAMEs accumulation, and has a potential for application in developing efficient microalgal cultivation. Copyright © 2017. Published by Elsevier Ltd.

  15. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  16. The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Goto, Shingo; Kasai, Kouji; Seki, Hikaru; Suzuki, Masashi; Oka, Atsuhiro; Muranaka, Toshiya; Mano, Yoshihiro

    2009-05-01

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells are rapidly proliferating meristematic cells that require auxin for culture in vitro. We have established several transgenic BY-2 cell lines that carry the T-DNA of Agrobacterium rhizogenes 15834, which harbors an agropine-type root-inducing (Ri) plasmid. Two of these lines, BYHR-3 and BYHR-7, were used to test the role of auxin in the proliferation of plant cells. The lines grew rapidly in Linsmaier-Skoog (LS) medium lacking auxin and other phytohormones. The TR-DNA, containing the aux1 (tryptophan monooxygenase) and aux2 (indoleacetamide hydrolase) genes, was present in the genomes of both transgenic lines, whereas the TL-DNA, containing the rolA, B, C and D genes, was present in the genome of BYHR-7 but not BYHR-3. Since the introduction of the rolABCD genes alone did not affect the auxin requirement of BY-2 cells, the aux1 and aux2 genes, but not the rolABCD genes, appear to be relevant to the auxin autotrophy of these transgenic lines. Furthermore, the overexpression of aux1 allowed BY-2 cells to grow rapidly in the absence of auxin, suggesting the existence in plant cells of an unidentified gene whose product is functionally equivalent or similar to that of aux2 of the Ri plasmid.

  17. Auxin Response Factors

    NARCIS (Netherlands)

    Roosjen, Mark; Paque, Sébastien; Weijers, Dolf

    2018-01-01

    The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding

  18. Patterning of leaf vein networks by convergent auxin transport pathways.

    Science.gov (United States)

    Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico

    2013-01-01

    The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

  19. Patterning of leaf vein networks by convergent auxin transport pathways.

    Directory of Open Access Journals (Sweden)

    Megan G Sawchuk

    Full Text Available The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM-localized PIN-FORMED1 (PIN1 intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

  20. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill.

    Science.gov (United States)

    Aumond, Márcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, Márcia R; Matsuura, Hélio N; de Costa, Fernanda; Fett-Neto, Arthur G

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.

  1. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill

    Science.gov (United States)

    Aumond, Márcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, Márcia R.; Matsuura, Hélio N.; de Costa, Fernanda; Fett-Neto, Arthur G.

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033

  2. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues

    Czech Academy of Sciences Publication Activity Database

    Simon, Sibu; Kubeš, Martin; Baster, P.; Robert, S.; Dobrev, Petre; Friml, J.; Petrášek, Jan; Zažímalová, Eva

    2013-01-01

    Roč. 200, č. 4 (2013), s. 1034-1048 ISSN 0028-646X R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin analogues * auxin signalling * auxin transport Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.545, year: 2013

  3. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Hsieh

    Full Text Available The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON and AWC(OFF, by inhibiting a calcium-mediated signaling pathway in the future AWC(ON cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON, in which mir-71 is expressed at a higher level than in AWC(OFF. In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  4. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    International Nuclear Information System (INIS)

    Goldsmith, M.H.M.

    1986-01-01

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs

  5. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  6. Wounding of Arabidopsis leaves induces indole-3-carbinol-dependent autophagy in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Chamovitz, Daniel A

    2017-09-01

    In cruciferous plants insect attack or physical damage induce the synthesis of the glucosinolate breakdown product indole-3-carbinol, which plays a key role in the defense against attackers. Indole-3-carbinol also affects plant growth and development, acting as an auxin antagonist by binding to the TIR1 auxin receptor. Other potential functions of indole-3-carbinol and the underlying mechanisms in plant biology are unknown. Here we show that an indole-3-carbinol-dependent signal induces specific autophagy in root cells. Leaf treatment with exogenous indole-3-carbinol or leaf-wounding induced autophagy and inhibited auxin response in the root. This induction is lost in glucosinolate-defective mutants, indicating that the effect of indole-3-carbinol is transported in the plants. Thus, indole-3-carbinol is not only a defensive metabolite that repels insects, but is also involved in long-distance communication regulating growth and development in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Landsat 8 Operational Land Imager (OLI)_Thermal Infared Sensor (TIRS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract:The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are instruments onboard the Landsat 8 satellite, which was launched in February of...

  8. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    Science.gov (United States)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  9. PHyTIR - A Prototype Thermal Infrared Radiometer

    Science.gov (United States)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum

  10. Localized Iron Supply Triggers Lateral Root Elongation in Arabidopsis by Altering the AUX1-Mediated Auxin Distribution[C][W][OA

    Science.gov (United States)

    Giehl, Ricardo F.H.; Lima, Joni E.; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation. PMID:22234997

  11. ASTER L2 Surface Radiance TIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Radiance TIR is an on-demand product generated using the five thermal infra-red (TIR) Bands (acquired either during the day or night time)...

  12. Overexpression of the Auxin Binding PROTEIN1 Modulates PIN-Dependent Auxin Transport in Tobacco Cells

    Czech Academy of Sciences Publication Activity Database

    Čovanová, Milada; Sauer, M.; Rychtář, J.; Friml, J.; Petrášek, Jan; Zažímalová, Eva

    2013-01-01

    Roč. 8, č. 7 (2013) E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GPP501/12/P951 Institutional research plan: CEZ:AV0Z50380511 Keywords : ZEA - MAYS -L * PLANT HORMONE AUXIN * MEMBRANE H+-ATPASE Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  13. GOSAT TIR spectral validation with High/Low temperature target using Aircraft base-FTS S-HIS

    Science.gov (United States)

    Kataoka, F.; Knuteson, R.; Taylor, J. K.; Kuze, A.; Shiomi, K.; Suto, H.; Yoshida, J.

    2017-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009. The GOSAT is equipped with TANSO-FTS (Fourier-Transform Spectrometer), which observe reflected solar radiation from the Earth's surface with shortwave infrared (SWIR) band and thermal emission from the Earth's surface and atmosphere with thermal infrared (TIR) band. The TIR band cover wide spectral range (650 - 1800 [cm-1]) with a high spectral resolution (0.2 [cm-1]). The TIR spectral information provide vertical distribution of CO2 and CH4. GOSAT has been operation more than eight years. In this long operation, GOSAT had experienced two big accidents; Rotation of one of the solar paddles stopped and sudden TANSO-FTS operation stop in May 2014 and cryocooler shutdown and restart in August - September 2015. These events affected the operation condition of the TIR photo-conductive (PC)-MCT detector. FTS technology using multiplex wide spectra needs wide dynamic range. PC detector has nonlinearity. Its correction needs accurate estimation of time-dependent offset. In current TIR Level 1B product version (V201), the non-photon level offset (Vdc_offset) estimated from on-orbit deep space calibration data and pre-launch background radiation model. But the background radiation and detector temperature have changed after cryocooler shutdown events. These changes are too small to detect from onboard temperature sensors. The next TIR Level 1B product uses cross calibration data together with deep space calibration data and instrument radiation model has been updated. This work describes the evaluation of new TIR Level 1B spectral quality with aircraft-based FTS; Scanning High-resolution Interferometer Sounder (S-HIS). The S-HIS mounted on the high-altitude ER-2 aircraft and flew at about 20km altitude. Because the observation geometry of GOSAT and S-HIS are quite different, we used the double difference method using atmospheric transfer model. GOSAT TIR band cover wide dynamic range, so we check

  14. Onset of cell division in maize germination: action of auxins

    International Nuclear Information System (INIS)

    de Jimenez, E.S.; Baiza, A.; Aguilar, R.

    1987-01-01

    Seed germination implies metabolic reactivation, synthesis of macromolecules and onset of cell division. During maize germination, meristematic tissues of embryos re-initiate cell division asynchronically. Since auxins are known to stimulate cell division, they asked how auxins might regulate cell cycle re-initiation. Embryonic tissues were incubated with and without auxins. A pulse of either 3 H-thymidine or 32 P-ortophosphate was given to the tissues. Mitotic indexes were determined and % of labeled mitotic cells recorded. Results indicated that meristematic cells re-initiate cell division either from G 1 or G 2 phases. Auxin stimulated differentially the cell division process of these cells. 32 P incorporation into cytoplasmic or nucleic histones was measured. Auxins stimulated this incorporation. Active turnover of histone phosphorylation occurred simultaneously to the cell division process. It is suggested that auxins might regulate the cell cycle by phosphorylation-dephosphorylation of histones

  15. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  16. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    Directory of Open Access Journals (Sweden)

    Jiayin Li

    Full Text Available Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene.

  17. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2010-01-01

    , cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower

  19. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants

    Czech Academy of Sciences Publication Activity Database

    Barbez, E.; Kubeš, Martin; Rolčík, Jakub; Béziat, Ch.; Pěnčík, Aleš; Wang, B.; Rosquete, M. R.; Zhu, J.; Dobrev, Petre; Lee, Y.; Zažímalová, Eva; Petrášek, Jan; Geisler, M.; Friml, J.; Kleine-Vehn, J.

    2012-01-01

    Roč. 485, č. 7396 (2012), s. 119-124 ISSN 0028-0836 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin homeostasis * PILS (PIN-likes) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 38.597, year: 2012

  20. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  1. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis

    DEFF Research Database (Denmark)

    Fei, Qionghui; Wei, Shaodong; Zhou, Zhaoyang

    2017-01-01

    Key message: A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). Abstract: The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change......-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved...... in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant...

  2. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis.

    Science.gov (United States)

    Yu, Qinqin; Zhang, Ying; Wang, Juan; Yan, Xu; Wang, Chao; Xu, Jian; Pan, Jianwei

    2016-01-04

    The establishment of auxin maxima by PIN-FORMED 3 (PIN3)- and AUXIN RESISTANT 1/LIKE AUX1 (LAX) 3 (AUX1/LAX3)-mediated auxin transport is essential for hook formation in Arabidopsis hypocotyls. Until now, however, the underlying regulatory mechanism has remained poorly understood. Here, we show that loss of function of clathrin light chain CLC2 and CLC3 genes enhanced auxin maxima and thereby hook curvature, alleviated the inhibitory effect of auxin overproduction on auxin maxima and hook curvature, and delayed blue light-stimulated auxin maxima reduction and hook opening. Moreover, pharmacological experiments revealed that auxin maxima formation and hook curvature in clc2 clc3 were sensitive to auxin efflux inhibitors 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid but not to the auxin influx inhibitor 1-naphthoxyacetic acid. Live-cell imaging analysis further uncovered that loss of CLC2 and CLC3 function impaired PIN3 endocytosis and promoted its lateralization in the cortical cells but did not affect AUX1 localization. Taken together, these results suggest that clathrin regulates auxin maxima and thereby hook formation through modulating PIN3 localization and auxin efflux, providing a novel mechanism that integrates developmental signals and environmental cues to regulate plant skotomorphogenesis and photomorphogenesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Yi-Li Li

    2017-11-01

    Full Text Available The phytohormone auxin regulates various developmental programs in plants, including cell growth, cell division and cell differentiation. The auxin efflux carriers are essential for the auxin transport. To show an involvement of auxin transporters in the coordination of fruit development in bitter gourd, a juicy fruit, we isolated novel cDNAs (referred as McPIN encoding putative auxin efflux carriers, including McPIN1, McPIN2 (allele of McPIN1 and McPIN3, from developing fruits of bitter gourd. Both McPIN1 and McPIN3 genes possess six exons and five introns. Hydropathy analysis revealed that both polypeptides have two hydrophobic regions with five transmembrane segments and a predominantly hydrophilic core. Phylogenetic analyses revealed that McPIN1 shared the highest homology to the group of Arabidopsis, cucumber and tomato PIN1, while McPIN3 belonged to another group, including Arabidopsis and tomato PIN3 as well as PIN4. This suggests different roles for McPIN1 and McPIN3 in auxin transport involved in the fruit development of bitter gourd. Maximum mRNA levels for both genes were detected in staminate and pistillate flowers. McPIN1 is expressed in a particular period of early fruit development but McPIN3 continues to be expressed until the last stage of fruit ripening. Moreover, these two genes are auxin-inducible and qualified as early auxin-response genes. Their expression patterns suggest that these two auxin transporter genes play a pivotal role in fruit setting and development.

  4. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  5. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2013-01-01

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd 2+ ) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd 2+ concentration and rescued Cd 2+ -induced chlorosis in Arabidopsis thaliana. Under Cd 2+ stress conditions, NAA increased Cd 2+ retention in the roots and most Cd 2+ in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd 2+ , whereas it significantly increased the content of hemicellulose 1 and the amount of Cd 2+ retained in it. There were highly significant correlations between Cd 2+ concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd 2+ or NAA + Cd 2+ treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd 2+ in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd 2+ toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd 2+ fixation in the root, thus reducing the translocation of Cd 2+ from roots to shoots

  6. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    Science.gov (United States)

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  7. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Directory of Open Access Journals (Sweden)

    Wim Grunewald

    2009-01-01

    Full Text Available Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  8. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Science.gov (United States)

    Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve

    2009-01-01

    Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  9. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution.

    Directory of Open Access Journals (Sweden)

    Ora Hazak

    2010-01-01

    Full Text Available Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polarity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning.

  10. A recovery principle provides insight into auxin pattern control in the Arabidopsis root

    Science.gov (United States)

    Moore, Simon; Liu, Junli; Zhang, Xiaoxian; Lindsey, Keith

    2017-01-01

    Regulated auxin patterning provides a key mechanism for controlling root growth and development. We have developed a data-driven mechanistic model using realistic root geometry and formulated a principle to theoretically investigate quantitative auxin pattern recovery following auxin transport perturbation. This principle reveals that auxin patterning is potentially controlled by multiple combinations of interlinked levels and localisation of influx and efflux carriers. We demonstrate that (1) when efflux carriers maintain polarity but change levels, maintaining the same auxin pattern requires non-uniform and polar distribution of influx carriers; (2) the emergence of the same auxin pattern, from different levels of influx carriers with the same nonpolar localisation, requires simultaneous modulation of efflux carrier level and polarity; and (3) multiple patterns of influx and efflux carriers for maintaining an auxin pattern do not have spatially proportional correlation. This reveals that auxin pattern formation requires coordination between influx and efflux carriers. We further show that the model makes various predictions that can be experimentally validated. PMID:28220889

  11. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. WHEN STRESS AND DEVELOPMENT GO HAND IN HAND: MAIN HORMONAL CONTROLS OF ADVENTITIOUS ROOTING IN CUTTINGS

    Directory of Open Access Journals (Sweden)

    Cibele Tesser Da Costa

    2013-05-01

    Full Text Available Adventitious rooting (AR is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: a induction, with a requirement for higher auxin concentration; b formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced cytokinin concentration in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 and ABP1. A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins needed for root tissue differentiation.

  13. Auxin binding proteins ABP1 and ABP4 are involved in the light- and auxin-induced down-regulation of phytochrome gene PHYB in maize (Zea mays L.) mesocotyl

    Czech Academy of Sciences Publication Activity Database

    Bořucká, Jana; Fellner, Martin

    2012-01-01

    Roč. 68, č. 3 (2012), s. 503-509 ISSN 0167-6903 R&D Projects: GA MŠk 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin binding protein * ABP1 * ABP4 Subject RIV: EF - Botanics Impact factor: 1.670, year: 2012

  14. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  15. Tir8/Sigirr prevents murine lupus by suppressing the immunostimulatory effects of lupus autoantigens

    Science.gov (United States)

    Lech, Maciej; Kulkarni, Onkar P.; Pfeiffer, Stephanie; Savarese, Emina; Krug, Anne; Garlanda, Cecilia; Mantovani, Alberto; Anders, Hans-Joachim

    2008-01-01

    The Sigirr gene (also known as Tir8) encodes for an orphan receptor of the Toll-like receptor (TLR)/interleukin 1 receptor family that inhibits TLR-mediated pathogen recognition in dendritic cells. Here, we show that Sigirr also inhibits the activation of dendritic cells and B cells upon exposure to RNA and DNA lupus autoantigens. To evaluate the functional role of Sigirr in the pathogenesis of systemic lupus erythematosus (SLE), we generated Sigirr-deficient C57BL/6-lpr/lpr mice. These mice developed a progressive lymphoproliferative syndrome followed by severe autoimmune lung disease and lupus nephritis within 6 mo of age as compared with the minor abnormalities observed in C57BL/6-lpr/lpr mice. Lack of Sigirr was associated with enhanced activation of dendritic cells and increased expression of multiple proinflammatory and antiapoptotic mediators. In the absence of Sigirr, CD4 T cell numbers were increased and CD4+CD25+ T cell numbers were reduced. Furthermore, lack of Sigirr enhanced the activation and proliferation of B cells, including the production of autoantibodies against multiple nuclear lupus autoantigens. These data identify Sigirr as a novel SLE susceptibility gene in mice. PMID:18644972

  16. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings.

    Science.gov (United States)

    da Costa, Cibele T; de Almeida, Márcia R; Ruedell, Carolina M; Schwambach, Joseli; Maraschin, Felipe S; Fett-Neto, Arthur G

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  17. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-02-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.

  18. Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Péret, Benjamin; Porco, Silvana; Sairanen, Ilkka; Ljung, Karin; Bennett, Malcolm; King, John

    2015-02-07

    Emergence of new lateral roots from within the primary root in Arabidopsis has been shown to be regulated by the phytohormone auxin, via the expression of the auxin influx carrier LAX3, mediated by the ARF7/19 IAA14 signalling module (Swarup et al., 2008). A single cell model of the LAX3 and IAA14 auxin response was formulated and used to demonstrate that hysteresis and bistability may explain the experimentally observed 'all-or-nothing' LAX3 spatial expression pattern in cortical cells containing a gradient of auxin concentrations. The model was tested further by using a parameter fitting algorithm to match model output with qRT-PCR mRNA expression data following exogenous auxin treatment. It was found that the model is able to show good agreement with the data, but only when the exogenous auxin signal is degraded over time, at a rate higher than that measured in the experimental medium, suggesting the triggering of an endogenous auxin homeostasis mechanism. Testing the model over a more physiologically relevant range of extracellular auxin shows bistability and hysteresis still occur when using the optimised parameters, providing the rate of LAX3 active auxin transport is sufficiently high relative to passive diffusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  20. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  1. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  2. Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation

    Directory of Open Access Journals (Sweden)

    Jason L. P. Ng

    2018-02-01

    Full Text Available Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early stages of indeterminate and determinate nodule development in the model legumes Medicago truncatula and Lotus japonicus, respectively, to investigate whether differences in auxin transport control could explain the differences in the location of cortical cell divisions. While auxin responses were activated in dividing cortical cells during nodulation of both nodule types, auxin (indole-3-acetic acid content at the nodule initiation site was transiently increased in M. truncatula, but transiently reduced in L. japonicus. Root acropetal auxin transport was reduced in M. truncatula at the very start of nodule initiation, in contrast to a prolonged increase in acropetal auxin transport in L. japonicus. The auxin transport inhibitors 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid (NPA only induced pseudonodules in legume species forming indeterminate nodules, but failed to elicit such structures in a range of species forming determinate nodules. The development of these pseudonodules in M. truncatula exhibited increased auxin responses in a small primordium formed from the pericycle, endodermis, and inner cortex, similar to rhizobia-induced nodule primordia. In contrast, a diffuse cortical auxin response and no associated cortical cell divisions were found in L. japonicus. Collectively, we hypothesize that a step of acropetal auxin transport inhibition is unique to the process of indeterminate nodule development, leading to auxin responses in pericycle, endodermis, and inner cortex cells, while increased auxin responses in outer cortex cells likely

  3. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2

    Directory of Open Access Journals (Sweden)

    Min Ni

    2017-11-01

    Full Text Available S-nitrosoglutathione reductase (GSNOR1 is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.

  4. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport

    Science.gov (United States)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  5. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis.

    Science.gov (United States)

    Nacry, Philippe; Canivenc, Geneviève; Muller, Bertrand; Azmi, Abdelkrim; Van Onckelen, Harry; Rossignol, Michel; Doumas, Patrick

    2005-08-01

    The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates

  6. [Aerobic methylobacteria are capable of synthesizing auxins].

    Science.gov (United States)

    Ivanova, E G; Doronina, N V; Trotsenko, Iu A

    2001-01-01

    Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3-100 micrograms/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism, Methylobacterium mesophilicum and Aminobacter aminovorans. The production of auxins by methylobacteria was stimulated by the addition of tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.

  7. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders

    Directory of Open Access Journals (Sweden)

    Tarr D Ellen K

    2009-09-01

    Full Text Available Abstract Background Plant resistance (R gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS and C-terminal leucine-rich repeat (LRR domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp., a gymnosperm (C. revoluta and a eudicot (C. canephora. We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales. Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids.

  8. Crystal Structure and Regulation of the Citrus Pol III Repressor MAF1 by Auxin and Phosphorylation.

    Science.gov (United States)

    Soprano, Adriana Santos; Giuseppe, Priscila Oliveira de; Shimo, Hugo Massayoshi; Lima, Tatiani Brenelli; Batista, Fernanda Aparecida Heleno; Righetto, Germanna Lima; Pereira, José Geraldo de Carvalho; Granato, Daniela Campos; Nascimento, Andrey Fabricio Ziem; Gozzo, Fabio Cesar; de Oliveira, Paulo Sérgio Lopes; Figueira, Ana Carolina Migliorini; Smetana, Juliana Helena Costa; Paes Leme, Adriana Franco; Murakami, Mario Tyago; Benedetti, Celso Eduardo

    2017-09-05

    MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sites and regulation of auxin biosynthesis in Arabidopsis roots.

    Science.gov (United States)

    Ljung, Karin; Hull, Anna K; Celenza, John; Yamada, Masashi; Estelle, Mark; Normanly, Jennifer; Sandberg, Göran

    2005-04-01

    Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.

  10. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana.

    Science.gov (United States)

    Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O'Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June

    2015-07-01

    In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening.

    Science.gov (United States)

    Böttcher, Christine; Keyzers, Robert A; Boss, Paul K; Davies, Christopher

    2010-08-01

    In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.

  12. Phyllotaxis involves auxin drainage through leaf primordia

    DEFF Research Database (Denmark)

    Deb, Yamini; Marti, Dominik; Frenz, Martin

    2015-01-01

    The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport...... of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis...

  13. The Role of Auxin in Cell Wall Expansion.

    Science.gov (United States)

    Majda, Mateusz; Robert, Stéphanie

    2018-03-22

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

  14. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin.

    Science.gov (United States)

    Ishibashi, Misaki; Yoshikawa, Hiroki; Uno, Yuichi

    2017-06-02

    Strawberry fruit contain the allergenic Fra a proteins, members of the pathogenesis-related 10 protein family that causes oral allergic syndrome symptoms. Fra a proteins are involved in the flavonoid biosynthesis pathway, which might be important for color development in fruits. Auxin is an important plant hormone in strawberry fruit that controls fruit fleshiness and ripening. In this study, we treated strawberry fruits with exogenous auxin or auxin inhibitors at pre- and post-harvest stages, and analyzed Fra a transcriptional and translational expression levels during fruit development by real-time PCR and immunoblotting. Pre-harvest treatment with 1-naphthaleneacetic acid (NAA) alone did not affect Fra a expression, but applied in conjunction with achene removal NAA promoted fruit pigmentation and Fra a protein accumulation. The response was developmental stage-specific: Fra a 1 was highly expressed in immature fruit, whereas Fra a 2 was expressed in young to ripe fruit. In post-harvest treatments, auxin did not contribute to Fra a induction. Auxin inhibitors delayed fruit ripening; as a result, they seemed to influence Fra a 1 expression. Thus, Fra a expression was not directly regulated by auxin, but might be associated with the ripening process and/or external factors in a paralog-specific manner.

  15. Pengaruh penambahan auxin terhadap pertunasan dan perakaran kopi arabika perbanyakan Somatic Embryogenesis (The effects of shooting and rooting of arabica coffee propagation through Embryogenesis Somatic auxin uses.

    Directory of Open Access Journals (Sweden)

    Rina Arimarsetiowati

    2012-08-01

    Full Text Available Plantlet that has developed shoots and roots will have a high level adaptation in the field. The objective of this experiment was to improve the ability of planlet in shooting and rooting so that it is ready for acclimatization in the field. The increase ability in shooting and rooting of the planlet were conducted by adding various types of auxin in the media. The arabica coffee embryo of clone AS 2K which has entered the phase of the cotyledons was transfered into the treatment media containing half-strength of MS (Murashige & Skoog macro and micro nutrient, vitamin B5, 30 g/L glucose, 100 ml/L coconut water, 50 mg/L AgNO3 added with the combination of IAA, IBA and NAA. The research was conducted by using completely randomized design with seven combined treatment i.e. 0.1 mg/L IBA, 0.1 mg/L NAA, 0.1 mg/L IAA; 0 , 1 mg/L IBA + 0.1 mg/L NAA, 0.1 mg/L IBA + 0.1 mg/L IAA, 0.1 mg/L NAA + 0.1 mg/L IAA; without auxin. There were 12 replications in every treatment and each replication consisted of five cotyledonary embryos. The parameters of observation were the root length, leaf number, leaf area, stem diameter, and height of plantlets. The observations were conducted in eighth weeks after cotyledonary embryo had shoots. The results showed that in the number of leaves and height of planlet parameters, the treatment without auxin was the best result compared to planlet with auxin addition. The addition of auxin varians and their combination did not significantly influent leaf area, root length and stem diameter parameters. The medium tested was optimum for the growth of shoots and roots of AS 2K arabica coffee.

  16. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    Science.gov (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  17. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Simon, S.; Skůpa, Petr; Viaene, T.; Zwiewka, M.; Tejos, R.; Klíma, Petr; Čarná, Mária; Rolčík, J.; De Rycke, R.; Moreno, I.; Dobrev, Petre; Orellana, A.; Zažímalová, Eva; Friml, J.

    2016-01-01

    Roč. 211, č. 1 (2016), s. 65-74 ISSN 0028-646X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GA16-10948S Institutional support: RVO:61389030 Keywords : auxin * endoplasmic reticulum (ER) * lateral root Subject RIV: ED - Physiology Impact factor: 7.330, year: 2016

  18. Comprehensive analysis of the soybean (Glycine max GmLAX auxin transporter gene family

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-03-01

    Full Text Available The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plants via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTANT 1 ⁄ LIKE AUX1 (AUX⁄LAX auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA. In this study, genome-wide comprehensive analysis of the soybean AUX⁄LAX (GmLAX gene family, including phylogenic relationships, chromosome localization, and gene structure, were carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.

  19. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    Science.gov (United States)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  20. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells

    Czech Academy of Sciences Publication Activity Database

    Seifertová, Daniela; Skůpa, Petr; Rychtář, J.; Laňková, Martina; Pařezová, Markéta; Dobrev, Petre; Hoyerová, Klára; Petrášek, Jan; Zažímalová, Eva

    2014-01-01

    Roč. 171, č. 6 (2014), s. 429-437 ISSN 0176-1617 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : Auxin influx * Auxin efflux * Auxin metabolic profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.557, year: 2014

  1. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses.

    Science.gov (United States)

    Raya-González, Javier; López-Bucio, Jesús Salvador; Prado-Rodríguez, José Carlos; Ruiz-Herrera, León Francisco; Guevara-García, Ángel Arturo; López-Bucio, José

    2017-09-01

    Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.

  2. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis

    Science.gov (United States)

    Brown, D. E.; Rashotte, A. M.; Murphy, A. S.; Normanly, J.; Tague, B. W.; Peer, W. A.; Taiz, L.; Muday, G. K.

    2001-01-01

    Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.

  3. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  4. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence.

    Science.gov (United States)

    Kumpf, Robert P; Shi, Chun-Lin; Larrieu, Antoine; Stø, Ida Myhrer; Butenko, Melinka A; Péret, Benjamin; Riiser, Even Sannes; Bennett, Malcolm J; Aalen, Reidunn B

    2013-03-26

    Throughout their life cycle, plants produce new organs, such as leaves, flowers, and lateral roots. Organs that have served their purpose may be shed after breakdown of primary cell walls between adjacent cell files at the site of detachment. In Arabidopsis, floral organs abscise after pollination, and this cell separation event is controlled by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Emergence of new lateral root primordia, initiated deep inside the root under the influence of auxin, is similarly dependent on cell wall dissolution between cells in the overlaying endodermal, cortical, and epidermal tissues. Here we show that this process requires IDA, HAE, and HSL2. Mutation in these genes constrains the passage of the growing lateral root primordia through the overlaying layers, resulting in altered shapes of the lateral root primordia and of the overlaying cells. The HAE and HSL2 receptors are redundant in function during floral organ abscission, but during lateral root emergence they are differentially involved in regulating cell wall remodeling genes. In the root, IDA is strongly auxin-inducible and dependent on key regulators of lateral root emergence--the auxin influx carrier LIKE AUX1-3 and AUXIN RESPONSE FACTOR7. The expression levels of the receptor genes are only transiently induced by auxin, suggesting they are limiting factors for cell separation. We conclude that elements of the same cell separation signaling module have been adapted to function in different developmental programs.

  5. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  6. Cell wall pH and auxin transport velocity

    Science.gov (United States)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  7. Auxin transport in the evolution of branching forms.

    Science.gov (United States)

    Harrison, C Jill

    2017-07-01

    Contents 545 I. 545 II. 546 III. 546 IV. 548 V. 548 VI. 549 VII. 549 Acknowledgements 549 References 549 SUMMARY: Branching is one of the most striking aspects of land plant architecture, affecting resource acquisition and yield. Polar auxin transport by PIN proteins is a primary determinant of flowering plant branching patterns regulating both branch initiation and branch outgrowth. Several lines of experimental evidence suggest that PIN-mediated polar auxin transport is a conserved regulator of branching in vascular plant sporophytes. However, the mechanisms of branching and auxin transport and relationships between the two are not well known outside the flowering plants, and the paradigm for PIN-regulated branching in flowering plants does not fit bryophyte gametophytes. The evidence reviewed here suggests that divergent auxin transport routes contributed to the diversification of branching forms in distinct land plant lineages. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes

    KAUST Repository

    Zhao, Huayan

    2015-08-13

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  9. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes

    KAUST Repository

    Zhao, Huayan; Lü , Shiyou; Li, Ruixi; Chen, Tao; Zhang, Huoming; Cui, Peng; Ding, Feng; Liu, Pei; Wang, Guangchao; Xia, Yiji; Running, Mark P.; Xiong, Liming

    2015-01-01

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  10. Use of the Vis-SWIR to Aid Atmospheric Correction of Multispectral and Hyperspectral Thermal Infrared (TIR) Imagery: The TIR Model

    National Research Council Canada - National Science Library

    Gruninger, John; Fox, Marsha; Lee, Jamine; Ratkowski, Anthony J; Hoke, Michael L

    2006-01-01

    The atmospheric correction of thermal infrared (TIR) imagery involves the combined tasks of separation of atmospheric transmittance, downwelling flux and upwelling radiance from the surface material spectral emissivity and temperature...

  11. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  12. Venemaa keelab osa kaupade sisseveo TIR-märkmiku katte all / Lauri Lusti

    Index Scriptorium Estoniae

    Lusti, Lauri

    1997-01-01

    1998. aastast rakendab Venemaa olulisi piiranguid seoses TIR-süsteemi kasutamisega kauba sisseveol. Lisatud Vene Föderatsiooni Riikliku Tollikomitee käskkiri 22. augustist 1997 nr. 513 "TIR-karneti kasutamine mõne kategooria kaupade veoks"

  13. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling.

    NARCIS (Netherlands)

    Nagpal, K.; Plantinga, T.S.; Wong, J.; Monks, B.G.; Gay, N.J.; Netea, M.G.; Fitzgerald, K.A.; Golenbock, D.

    2009-01-01

    The adapter protein MyD88 adapter-like (Mal), encoded by TIR-domain containing adapter protein (Tirap) (MIM 606252), is the most polymorphic of the five adapter proteins involved in Toll-like receptor signaling, harboring eight non-synonymous single nucleotide polymorphisms in its coding region. We

  14. AUXIN BINDING PROTEIN 4 is involved in the Ca2+/auxin-regulated expression of ZCAX3 gene in maize (Zea mays)

    Czech Academy of Sciences Publication Activity Database

    Jurišić-Knežev, Dejana; Bergougnoux, Véronique; Milde, D.; Fellner, Martin

    2014-01-01

    Roč. 92, č. 5 (2014), s. 332-339 ISSN 1916-2790 R&D Projects: GA MŠk 1P05ME792 Institutional support: RVO:61389030 Keywords : auxin-binding protein * ABP4 * AtCAX1 Subject RIV: EF - Botanics Impact factor: 1.278, year: 2014

  15. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae1[OPEN

    Science.gov (United States)

    McAdam, Scott A.M.; McAdam, Erin L.

    2015-01-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. PMID:25971549

  16. Morphophysiology, Phenotypic and Molecular Diversity of Auxin-induced Passiflora mucronata Lam. (Passifloraceae).

    Science.gov (United States)

    França, Juliany M; Venial, Lucimara R; Costa, Eloá B; Schmildt, Edilson R; Schmildt, Omar; Bernardes, Paula M; Tatagiba, Sandro D; Lopes, José C; Ferreira, Marcia F S; Alexandre, Rodrigo S

    2018-01-01

    Genetic diversity allows identification of potential intraspecific genotypes in the genus Passiflora. The objective of this study was to examine the morphological and genetic diversity of auxin-induced Passiflora mucronata. The experiments were arranged in a complete randomized block design, with a 9 x 2 factorial arrangement (nine genotypes x presence and absence of auxin, indole-3-butyric acid (IBA)), with four replicates of 16 cuttings. The rooting and vegetative growth responses were variable. Genotype 5 was more responsive in the absence of IBA and genotypes 3, 8 and 9 were more responsive in the presence of IBA. Auxin increased rooting rate and percentage, reducing the average time of root protrusion in eight days. IBA also contributed to increase photosynthesis and dry root and shoot mass in 55.55 and 44.44% of the genotypes, respectively. The highest relative contribution to phenotypic diversity in the absence of auxin was rate (38.75%) and percentage (20.27%) of rooting, whereas in the presence of auxin was stomatal conductance (23.19%) and root dry mass (20.91%). Similarity was found for phenotypic and molecular divergence in the presence of IBA, in which genotypes 1 and 6; genotypes 5, 8 and 9; and genotype 3 were clustered in distinct groups.

  17. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

    International Nuclear Information System (INIS)

    Beffa, R.; Martin, H.V.; Pilet, P.E.

    1990-01-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl 2 and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [ 3 H]indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol

  18. Points of regulation for auxin action

    Czech Academy of Sciences Publication Activity Database

    Zažímalová, Eva; Napier, R. M.

    2003-01-01

    Roč. 21, č. 7 (2003), s. 625-634 ISSN 0721-7714 R&D Projects: GA MŠk LN00A081 Grant - others:EU INCO COPERNICUS(XE) ERBIC15 CT98 0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : Plant hormone * Homeostasis * Auxin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.423, year: 2003

  19. Misexpression of AtTX12 encoding a Toll/interleukin-1 receptor domain induces growth defects and expression of defense-related genes partially independently of EDS1 in Arabidopsis.

    Science.gov (United States)

    Song, Sang-Kee

    2016-12-01

    In this study, a tissue-specific GAL4/UAS activation tagging system was used for the characterization of genes which could induce lethality when ubiquitously expressed. A dominant mutant exhibiting stunted growth was isolated and named defective root development 1-D (drd1-D). The T-DNA tag was located within the promoter region of AtTX12, which is predicted to encode a truncated nucleotide-binding leucinerich repeat (NLR) protein, containing a Toll/interleukin-1 receptor (TIR) domain. The transcript levels of AtTX12 and defense-related genes were elevated in drd1-D, and the misexpression of AtTX12 recapitulated the drd1-D phenotypes. In the presence of ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), a key transducer of signals triggered by TIR-type NLRs, a low-level of AtTX12 misexpression induced strong defective phenotypes including seedling lethality whereas, in the absence of EDS1, a high-level of AtTX12 misexpression induced weak growth defects like dwarfism, suggesting that AtTX12 might function mainly in an EDS1-dependent and partially in an EDS1-independent manner. [BMB Reports 2016; 49(12): 693-698].

  20. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.

  1. Phosphorylation of ribosomal proteins induced by auxins in maize embryonic tissues

    International Nuclear Information System (INIS)

    Perez, L.; Aguilar, R.; Mendez, A.P.; de Jimenez, E.S.

    1990-01-01

    The effect of auxin on ribosomal protein phosphorylation of germinating maize (Zea mays) tissues was investigated. Two-dimensional gel electrophoresis and autoradiography of [ 32 P] ribosomal protein patterns for natural and synthetic auxin-treated tissues were performed. Both the rate of 32 P incorporation and the electrophoretic patterns were dependent on 32 P pulse length, suggesting that active protein phosphorylation-dephosphorylation occurred in small and large subunit proteins, in control as well as in auxin-treated tissues. The effect of ribosomal protein phosphorylation on in vitro translation was tested. Measurements of poly(U) translation rates as a function of ribosome concentration provided apparent K m values significantly different for auxin-treated and nontreated tissues. These findings suggest that auxin might exert some kind of translational control by regulating the phosphorylated status of ribosomal proteins

  2. Multi-layer Retrievals of Greenhouse Gases from a Combined Use of GOSAT TANSO-FTS SWIR and TIR

    Science.gov (United States)

    Kikuchi, N.; Kuze, A.; Kataoka, F.; Shiomi, K.; Hashimoto, M.; Suto, H.; Knuteson, R. O.; Iraci, L. T.; Yates, E. L.; Gore, W.; Tanaka, T.; Yokota, T.

    2016-12-01

    The TANSO-FTS sensor onboard GOSAT has three frequency bands in the shortwave infrared (SWIR) and the fourth band in the thermal infrared (TIR). Observations of high-resolution spectra of reflected sunlight in the SWIR are extensively utilized to retrieve column-averaged concentrations of the major greenhouse gases such as carbon dioxide (XCO2) and methane (XCH4). Although global XCO2 and XCH4 distribution retrieved from SWIR data can reduce the uncertainty in the current knowledge about sources and sinks of these gases, information on the vertical profiles would be more useful to constrain the surface flux and also to identify the local emission sources. Based on the degrees of freedom for signal, Kulawik et al. (2016, IWGGMS-12 presentation) shows that 2-layer information on the concentration of CO2 can be extracted from TANSO-FTS SWIR measurements, and the retrieval error is predicted to be about 5 ppm in the lower troposphere. In this study, we present multi-layer retrievals of CO2 and CH4 from a combined use of measurements of TANSO-FTS SWIR and TIR. We selected GOSAT observations at Railroad Valley Playa in Nevada, USA, which is a vicarious calibration site for TANSO-FTS, as we have various ancillary data including atmospheric temperature and humidity taken by a radiosonde, surface temperature, and surface emissivity with a ground based FTS. All of these data are useful especially for retrievals using TIR spectra. Currently, we use the 700-800 cm-1 and 1200-1300 cm-1 TIR windows for CO2 and CH4 retrievals, respectively, in addition to the SWIR bands. We found that by adding TIR windows, 3-layer information can be extracted, and the predicted retrieval error in the CO2 concentration was reduced about 1 ppm in the lower troposphere. We expect that the retrieval error could be further reduced by optimizing TIR windows and by reducing systematic forward model errors.

  3. Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization

    Directory of Open Access Journals (Sweden)

    Emma Larsson

    2017-10-01

    Full Text Available The plant hormone auxin is a vital component for plant reproduction as it regulates the development of both male and female reproductive organs, including ovules and gynoecia. Furthermore, auxin plays important roles in the development and growth of seeds and fruits. Auxin responses can be detected in ovules shortly after fertilization, and it has been suggested that this accumulation is a prerequisite for the developmental reprogramming of the ovules to seeds, and of the gynoecium to a fruit. However, the roles of auxin at the final stages of ovule development, and the sources of auxin leading to the observed responses in ovules after fertilization have remained elusive. Here we have characterized the auxin readout in Arabidopsis ovules, at the pre-anthesis, anthesis and in the immediate post-fertilization stages, using the R2D2 auxin sensor. In addition we have mapped the expression of auxin biosynthesis and conjugation genes, as well as that of auxin transporting proteins, during the same developmental stages. These analyses reveal specific spatiotemporal patterns of the different auxin homeostasis regulators. Auxin biosynthesis genes and auxin transport proteins define a pre-patterning of vascular cell identity in the pre-anthesis funiculus. Furthermore, our data suggests that auxin efflux from the ovule is restricted in an anther-dependent manner, presumably to synchronize reproductive organ development and thereby optimizing the chances of successful fertilization. Finally, de novo auxin biosynthesis together with reduced auxin conjugation and transport result in an enhanced auxin readout throughout the sporophytic tissues of the ovules soon after fertilization. Together, our results suggest a sophisticated set of regulatory cascades that allow successful fertilization and the subsequent transition of the female reproductive structures into seeds and fruits.

  4. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    Science.gov (United States)

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  5. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells

    Science.gov (United States)

    Baluska, F.; Barlow, P. W.; Volkmann, D.

    1996-01-01

    The inhibitory action of 0.1 microM auxin (IAA) on maize root growth was closely associated with a rapid and complete disintegration of the microtubular (MT) cytoskeleton, as visualized by indirect immunofluorescence of tubulin, throughout the growth region. After 30 min of this treatment, only fluorescent spots were present in root cells, accumulating either around nuclei or along cell walls. Six h later, in addition to some background fluorescence, dense but partially oriented oblique or longitudinal arrays of cortical MTs (CMTs) were found in most growing cells of the root apex. After 24 h of treatment, maize roots had adapted to the auxin, as inferred from the slowly recovering elongation rate and from the reassembly of a dense and well-ordered MT cytoskeleton which showed only slight deviations from that of the control root cells. Taxol pretreatment (100 microM, 24 h) prevented not only the rapid auxin-mediated disintegration of the MT cytoskeleton but also a reorientation of the CMT arrays, from transversal to longitudinal. The only tissue to show MTs in their cells throughout the auxin treatment was the epidermis. Significant resistance of transverse CMT arrays in these cells towards auxin was confirmed using a higher auxin concentration (100 microM, 24 h). The latter auxin dose also revealed inter-tissue-specific responses to auxin: outer cortical cell files reoriented their CMTs from the transversal to longitudinal orientation, whereas inner cortical cell files lost their MTs. This high auxin-mediated response, associated with the swelling of root apices, was abolished with the pretreatment of maize root with taxol.

  6. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins.

    Directory of Open Access Journals (Sweden)

    Ricardo Núñez Miguel

    2007-08-01

    Full Text Available The Toll-like receptor 4 (TLR4 is a class I transmembrane receptor expressed on the surface of immune system cells. TLR4 is activated by exposure to lipopolysaccharides derived from the outer membrane of Gram negative bacteria and forms part of the innate immune response in mammals. Like other class 1 receptors, TLR4 is activated by ligand induced dimerization, and recent studies suggest that this causes concerted conformational changes in the receptor leading to self association of the cytoplasmic Toll/Interleukin 1 receptor (TIR signalling domain. This homodimerization event is proposed to provide a new scaffold that is able to bind downstream signalling adaptor proteins. TLR4 uses two different sets of adaptors; TRAM and TRIF, and Mal and MyD88. These adaptor pairs couple two distinct signalling pathways leading to the activation of interferon response factor 3 (IRF-3 and nuclear factor kappaB (NFkappaB respectively. In this paper we have generated a structural model of the TLR4 TIR dimer and used molecular docking to probe for potential sites of interaction between the receptor homodimer and the adaptor molecules. Remarkably, both the Mal and TRAM adaptors are strongly predicted to bind at two symmetry-related sites at the homodimer interface. This model of TLR4 activation is supported by extensive functional studies involving site directed mutagenesis, inhibition by cell permeable peptides and stable protein phosphorylation of receptor and adaptor TIR domains. Our results also suggest a molecular mechanism for two recent findings, the caspase 1 dependence of Mal signalling and the protective effects conferred by the Mal polymorphism Ser180Leu.

  7. Auxin transport at cellular level: new insights supported by mathematical modelling

    Czech Academy of Sciences Publication Activity Database

    Hošek, Petr; Kubeš, Martin; Laňková, Martina; Dobrev, Petre; Klíma, Petr; Kohoutová, M.; Petrášek, Jan; Hoyerová, Klára; Jiřina, M.; Zažímalová, Eva

    2012-01-01

    Roč. 63, č. 10 (2012), s. 3815-3827 ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LC06034; GA ČR GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin metabolism * auxin transport * auxin transport inhibitors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.242, year: 2012

  8. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers.

    Science.gov (United States)

    Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M

    2015-03-01

    Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR

  9. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    Full Text Available Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.. To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  10. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Science.gov (United States)

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  12. Auxin Response Factors (ARFs are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Sarah Bouzroud

    Full Text Available Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA, ethylene and salicylic acid (SA are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic

  13. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  14. Sensory role of actin in auxin-dependent responses of tobacco BY-2.

    Science.gov (United States)

    Huang, Xiang; Maisch, Jan; Nick, Peter

    2017-11-01

    Polar auxin transport depends on the polar localization of auxin-efflux carriers. The cycling of these carriers between cell interior and plasma membrane depends on actin. The dynamic of actin not only affects auxin transport, but also changes the auxin-responsiveness. To study the potential link between auxin responsiveness and actin dynamics, we investigated developmental responses of the non-transformed BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cell line and the transgenic BY-2 strain GF11 (stably transformed BY-2 cells with a GFP-fimbrin actin-binding domain 2 construct). The developmental process was divided into three distinct stages: cell cycling, cell elongation and file disintegration. Several phenotypes were measured to monitor the cellular responses to different concentrations of exogenous natural auxin (Indole-3-acetic acid, IAA). We found that auxin stimulated and prolonged the mitotic activity, and delayed the exit from the proliferation phase. However, both responses were suppressed in the GF11 line. At the stationary phase of the cultivation cycle, auxin strongly accelerated the cell file disintegration. Interestingly, it was not suppressed but progressed to a more complete disintegration in the GF11 line. During the cultivation cycle, we also followed the organization of actin in the GF11 line and did not detect any significant difference in actin organization from untreated control or exogenous IAA treatment. Therefore, our findings indicate that the specific differences observed in the GF11 line must be linked with a function of actin that is not structural. It means that there is a sensory role of actin for auxin signaling. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties.

    Science.gov (United States)

    Hu, Yuming; Depaepe, Thomas; Smet, Dajo; Hoyerova, Klara; Klíma, Petr; Cuypers, Ann; Cutler, Sean; Buyst, Dieter; Morreel, Kris; Boerjan, Wout; Martins, José; Petrášek, Jan; Vandenbussche, Filip; Van Der Straeten, Dominique

    2017-07-10

    The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance.

    Science.gov (United States)

    Cline, Morris G; Oh, Choonseok

    2006-10-01

    Evidence from pea rms1, Arabidopsis max4 and petunia dad1 mutant studies suggest an unidentified carotenoid-derived/plastid-produced branching inhibitor which moves acropetally from the roots to the shoots and interacts with auxin in the control of apical dominance. Since the plant hormone, abscisic acid (ABA), known to inhibit some growth processes, is also carotenoid derived/plastid produced, and because there has been indirect evidence for its involvement with branching, a re-examination of the role of ABA in apical dominance is timely. Even though it has been determined that ABA probably is not the second messenger for auxin in apical dominance and is not the above-mentioned unidentified branching inhibitor, the similarity of their derivation suggests possible relationships and/or interactions. The classic Thimann-Skoog auxin replacement test for apical dominance with auxin [0.5 % naphthalene acetic acid (NAA)] applied both apically and basally was combined in similar treatments with 1 % ABA in Ipomoea nil (Japanese Morning Glory), Solanum lycopersicum (Better Boy tomato) and Helianthus annuus (Mammoth Grey-striped Sunflower). Auxin, apically applied to the cut stem surface of decapitated shoots, strongly restored apical dominance in all three species, whereas the similar treatment with ABA did not. However, when ABA was applied basally, i.e. below the lateral bud of interest, there was a significant moderate repression of its outgrowth in Ipomoea and Solanum. There was also some additive repression when apical auxin and basal ABA treatments were combined in Ipomoea. The finding that basally applied ABA is able partially to restore apical dominance via acropetal transport up the shoot suggests possible interactions between ABA, auxin and the unidentified carotenoid-derived branching inhibitor that justify further investigation.

  17. Functional Characterization of PaLAX1, a Putative Auxin Permease, in Heterologous Plant Systems

    Czech Academy of Sciences Publication Activity Database

    Hoyerová, Klára; Perry, Lucie; Hand, P.; Laňková, Martina; Kocábek, Tomáš; May, S.; Kottová, Jana; Pačes, Jan; Napier, R.; Zažímalová, Eva

    2008-01-01

    Roč. 146, č. 3 (2008), s. 1128-1141 ISSN 0032-0889 R&D Projects: GA ČR GP206/02/P106; GA ČR GA206/02/0967; GA AV ČR IAB6038203; GA AV ČR IAA6038303; GA AV ČR KJB600380702; GA MŠk(CZ) LC06034; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50510513; CEZ:AV0Z50520514 Keywords : Plant hormones * auxin influx carrier * AUX1 * Arabidopsis * tobacco Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.110, year: 2008

  18. Reduced expression of AtNUP62 nucleoporin gene affects auxin response in Arabidopsis

    DEFF Research Database (Denmark)

    Boeglin, Martin; Fuglsang, Anja Thoe; Luu, Doan Trung

    2016-01-01

    seedlings and at the adult stage in stipules of cauline leaves. The atnup62-1 mutant, harbouring a T-DNA insertion in intron 5, was identified as a knock-down mutant. It displayed developmental phenotypes that suggested defects in auxin transport or responsiveness. Atnup62 mutant plantlets were found...... to be hypersensitive to auxin, at the cotyledon and root levels. The phenotype of the AtNUP62-GFP overexpressing line further supported the existence of a link between AtNUP62 and auxin signalling. Furthermore, the atnup62 mutation led to an increase in the activity of the DR5 auxin-responsive promoter, and suppressed...

  19. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots

    Science.gov (United States)

    Hasenstein, K. H.; Blancaflor, E. B.; Lee, J. S.

    1999-01-01

    The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.

  20. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  1. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  2. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  3. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio

    OpenAIRE

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-01-01

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represse...

  4. Auxins in defense strategies

    Czech Academy of Sciences Publication Activity Database

    Čarná, Mária; Repka, V.; Skůpa, Petr; Šturdík, E.

    2014-01-01

    Roč. 69, č. 10 (2014), s. 1255-1263 ISSN 0006-3088 R&D Projects: GA TA ČR TA01011802 Institutional support: RVO:61389030 Keywords : auxin * defense responses * JA Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.827, year: 2014

  5. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    Science.gov (United States)

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  6. Influence of time of auxin application on wheat haploid embrio formation

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2005-01-01

    Full Text Available A hybrid interspecies zygote appears after crosses between wheat and maize Zygote derived after usual self-fertilization in wheat is dividing by mitotic divisions into embryo. However, interspecies zygote aborts soon. Auxin treatment is widely used to promote its development. Growth hormones auxins have stimulative ortoxic effects on plant tissue sin relation to its concentration and the time of application. In this paper the effect of time of auxin dicamba application on embryo in wheat x maize crosses was investigated. Chromosomes of pollen donor parent are eliminated quickly in cells of such embryos and they become haploid. It was concluded that for the production of haploid embryos the best time for auxin application is one day after pollination with maize.

  7. Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis

    DEFF Research Database (Denmark)

    Elhiti, Mohamed; Hebelstrup, Kim; Wang, Aiming

    2013-01-01

    Suppression of the Arabidopsis GLB2, a type-2 nonsymbiotic hemoglobin, enhances somatic embryogenesis by increasing auxin production. In the glb2 knock-out line (GLB2 -/-) polarization of PIN1 proteins and auxin maxima occurred at the base of the cotyledons of the zygotic explants, which are the ...

  8. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments.

    Science.gov (United States)

    Morohashi, Keita; Okamoto, Miki; Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Kobayashi, Akie; Takahashi, Hideyuki

    2017-09-01

    Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    Science.gov (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  10. Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.

    Science.gov (United States)

    Shen, S C; Chang, S J; Yeh, C Y; Teng, P C

    2013-11-04

    In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.

  11. Effect of auxins and associated biochemical changes during clonal propagation of the biofuel plant - Jatropha curcas

    Energy Technology Data Exchange (ETDEWEB)

    Kochhar, Sunita; Singh, S.P.; Kochhar, V.K. [National Botanical Research Institute, Lucknow 226001 (India)

    2008-12-15

    Rooting and sprouting behaviour of stem cuttings of biofuel plant Jatropha curcas and their performance under field conditions have been studied in relation to auxin application. Pretreatment with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) increased both the rooting and sprouting. Sprouting of buds on the cuttings preceded rooting. The rooting and sprouting in J. curcas was more with IBA than NAA. The endogenous auxin contents were found to increase almost 15 days prior to rooting, indicating that mobilization of auxin rather than the absolute contents of auxin may be involved in root initiation. Indole acetic acid oxidase (IAA-oxidase) seems to be involved for triggering and initiating the roots/root primordia, whereas peroxidase is involved in both root initiation and the elongation processes as supported by the peroxidase and IAA-oxidase isoenzyme analysis in the cuttings. The clonally propagated plants (cutting-raised plants) performed better in the field as compared to those raised from the seeds. The plants produced from auxin-treated cuttings produced fruits and seeds in the same year as compared to the plants raised from seeds or from untreated or control cuttings that did not produce any seeds in 1 year of this study. Jatropha plants in general produce seeds after 2-3 years. (author)

  12. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    Science.gov (United States)

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  13. [Identification of an auxin response factor-like protein cDNA from mango cotyledon section].

    Science.gov (United States)

    Xiao, Jie-Ning; Huang, Xue-Lin; Huang, Xia; Li, Xiao-Ju

    2004-01-01

    Auxin-responsive elements (AuxRE) interact with a new class of plant-specific transcription factors, auxin response factors (ARFs). Some of ARFs have been shown to repress or activate expression of genes with an AuxRE promotor element. In Arabidopsis, ARFs play important roles in early embryo development and vascular strand formation (ARF5), floral patterning (ARF3) and photo- and gravitropic responses (ARF7). Two cut surfaces (distal and proximal) of mango (Mangifera indica L. var. Zi-Hua) cotyledon showed different patterns of adventitious root formation, with only the proximal cut surface, but not the distal one, could be induced to form the roots. Thus, the mango cotyledon is a good system for studying adventitious root formation. A cDNA fragment homologous to the Arabidopsis auxin response factor-like protein and relates to adventitious root formation from the cut sections were isolated using suppressive subtractive hybridization (SSH). Two cDNA clones, designated as MiARF1 (mango auxin response factor 1 gene, GenBank accession number AY255705) and MiARF2 (mango auxin response factor 2 gene, GenBank accession number is AY300808), were identified by 3'RACE. MiARF1, 3 272bp long, contains an open reading frame (ORF) of 2 523bp, 5'UTR of 285bp and 3'UTR of 464bp, MiARF2, 1 474bp long, contains an ORF of 981bp, 5' UTR of 285bp and 3'UTR of 208bp. The deduced MiARF1 and MiARF2 are homologues of auxin response factor (ARF) family of transcriptional regulators, and show high similarity to ARF of Arabidopsis in conserved domains. The motifs of MiARF1 EL-WHACAGPL in DBD (DNA binding domain) and GDDPW in IV domain are identical to that of ARF-like protein of Arabidopsis. MiARF2 is identical to MiARF1 in a large part of DBD, but lacks a carboxyl-terminal domain containing conserved motifs III and IV. Virtual Northern blot showed that the expression of MiARF2 was high in rooting tissue of cultured cotyledon sections but low in non-rooting tissue, and the MiARF1 was

  14. SpecTIR and SEBASS analysis of the National Mining District, Humboldt County, Nevada

    Science.gov (United States)

    Morken, Todd O.

    The purpose of this study was to evaluate the minerals and materials that could be uniquely identified and mapped from measurements made with airborne hyperspectral SpecTIR VNIR/SWIR and SEBASS TIR sensors over areas in the National Mining District. SpecTIR Corporation and Aerospace Corporation acquired Hyperspectral measurements on June 26, 2008 using their ProSpecTIR and SEBASS sensors respectively. In addition the effects of vegetation, elevation, the atmosphere on spectral measurements were evaluated to determine their impact upon the data analysis and target identification. The National Mining District is located approximately 75 miles northeast of Winnemucca, Nevada at the northern end of the Santa Rosa Mountains. Precious metal mining has been dormant in this area since the 1940's, however with increased metal prices over the last decade economic interest in the region has increased substantially. Buckskin Mountain has a preserved alteration assemblage that is exposed in topographically steep terrain, ideal for exploring what hydrothermal alteration products can be identified and mapped in these datasets. These Visible Near Infrared (VNIR), Short Wave Infrared (SWIR), and Long Wave Infrared (LWIR) hyperspectral datasets were used to identify and map kaolinite, alunite, quartz, opal, and illite/muscovite, all of which are useful exploration target identifiers and can indicate regions of alteration. These mapping results were then combined with and compared to other geospatial data in a geographic information systems (GIS) database. The TIR hyperspectral data provided significant additional information that can benefit geologic exploration and demonstrated its usefulness as an additional tool for geological exploration.

  15. In-silico identification and phylogenetic analysis of auxin efflux ...

    African Journals Online (AJOL)

    ufuoma

    2014-01-08

    Jan 8, 2014 ... PIN proteins of Arabidopsis viz., PIN1,PIN4 and PIN7 show plasma membrane .... The central hydrophilic loop is dynamic in nature and differs from each other in terms ... research of this plant at the molecular level. Auxin efflux.

  16. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    International Nuclear Information System (INIS)

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: 1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive 36 Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. 2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. 3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.)

  17. Inter-regulation of the unfolded protein response and auxin signaling

    Czech Academy of Sciences Publication Activity Database

    Chen, Y.N.; Aung, K.; Rolčík, Jakub; Walicki, K.; Friml, J.; Brandizzi, F.

    2014-01-01

    Roč. 77, č. 1 (2014), s. 97-107 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : endoplasmic reticulum stress * unfolded protein response * auxin response Subject RIV: ED - Physiology Impact factor: 5.972, year: 2014

  18. Effects of auxin and copper on growth of saffron

    Directory of Open Access Journals (Sweden)

    Mozafar Sharifi

    2014-03-01

    Full Text Available Saffron is known as one of the most common spices and medicinal plant in the world. Little information is available on the effects of copper and growth regulators on morphological characteristics of saffron. The aim of this study was to evaluate the influence of different concentrations of copper and auxin on morphological properties of root and leaf of saffron. This study was arranged as a factorial experiment in greenhouse condition and in hydroponic system. Copper was used in copper sulfate (CuSO4 form (0, 0.02, 0.1 and 0.2 mg/L and auxin in naphthalene acetic acid (NAA form (0, 1 and 2 g/L. Results showed that interaction of Naphthalene acetic acid 1 g/L and copper sulfate 0.1 mg/L increased root number, as well as root and leaf dry weight. Furthermore, naphthalene acetic acid 1 and 2 g/L in most treatments reduced the number of buds. Copper concentration of corm was increased in 0.2 mg/L copper sulfate.

  19. The effect of NGATHA altered activity in auxin signaling pathways within the Arabidopsis gynoecium

    Directory of Open Access Journals (Sweden)

    Irene eMartinez-Fernandez

    2014-05-01

    Full Text Available The four NGATHA genes (NGA form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium.We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin transport. Finally, protein accumulation in pistils of several ARFs was differentially affected by nga mutations or NGA overexpression, suggesting that these accumulation patterns depend not only on auxin distribution but could be also regulated by transcriptional networks involving NGA factors.

  20. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  1. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses.

    Science.gov (United States)

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-05-04

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs , including DnARF1 , DnARF4 , and DnARF6 , were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1 , DnARF4 , and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale . To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.

  3. Impact of line parameter database and continuum absorption on GOSAT TIR methane retrieval

    Science.gov (United States)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2017-12-01

    The current methane retrieval algorithm (V1) at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν 4 band from the thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) uses LBLRTM V12.1 with AER V3.1 line database and MT CKD 2.5.2 continuum absorption model to calculate optical depth. Since line parameter databases have been updated and the continuum absorption may have large uncertainty, the purpose of this study is to assess the impact on {CH}4 retrieval from the choice of line parameter databases and the uncertainty of continuum absorption. We retrieved {CH}4 profiles with replacement of line parameter database from AER V3.1 to AER v1.0, HITRAN 2004, HITRAN 2008, AER V3.2, or HITRAN 2012 (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005), we assumed 10% larger continuum absorption coefficients and 50% larger temperature dependent coefficient of continuum absorption based on the report by Paynter and Ramaswamy (2014). We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference from HIPPO observation of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN 2004, HITRAN 2008, and HITRAN 2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Maximum {CH}4 retrieval differences were -0.4 ppbv at the layer of 314 hPa when we used 10% larger absorption coefficients of {H}2O foreign continuum. Comparing AER V3.2 case to HITRAN 2008 case, the line coupling effect reduced difference by 8.0 ppbv. Line coupling effects were important for GOSAT TIR {CH}4 retrieval. Effects from the uncertainty of continuum absorption were negligible small for GOSAT TIR CH4 retrieval.

  4. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  5. Effects of Weathering on TIR Spectra and Rock Classification

    Science.gov (United States)

    McDowell, M. L.; Hamilton, V. E.; Riley, D.

    2006-03-01

    Changes in mineralogy due to weathering are detectable in the TIR and cause misclassification of rock types. We survey samples over a range of lithologies and attempt to provide a method of correction for rock identification from weathered spectra.

  6. Identifying Pre-Seismic TIR Anomalies: A Long Term (2004-2015) Of RST Analysis Over Turkish Area

    Science.gov (United States)

    Perrone, A.; Tramutoli, V.; Corrado, A.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.

    2017-12-01

    Since eighties, fluctuations of Earth's thermally emitted radiation, measured by satellite sensors operating in the thermal infrared (TIR) spectral range (i.e. 10-12 µm), have been associated with the complex process of preparation of earthquakes. Several theories have been proposed to explain their origin and their space-time evolution. In this paper, the Earth's emitted radiation in the Thermal Infra-Red spectral region is considered for its possible correlation with M≥4 earthquakes occurred in Turkey in between 2004 and 2015. Robust Satellite Technique (RST) and RETIRA (Robust Estimator of TIR Anomalies) index were used to preliminarily define, and then to identify, Significant Sequences of TIR Anomalies (SSTAs) in the period 1 April 2004- 31 October 2015 (12 years) of daily TIR images acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite. The performed analysis shows that more than 67% of all identified SSTAs occur in the pre-fixed space-time window around the occurrence time and location of earthquakes (M≥4), with a false positive rate smaller than 33%. Moreover, Molchan error diagram analysis gave a clear indication of non-casualty of such a correlation, in comparison with the random guess function. Notwithstanding the huge amount of missed events due to frequent space/time data gaps produced by the presence of clouds over the scene the achieved results, and particularly the low rate of false positives registered on a so long testing period, seems sufficient (at least) to qualify TIR anomalies (identified by RST approach and RETIRA index) among the parameters to be considered in the framework of a multi-parametric approach to time-Dependent Assessment of Seismic Hazard (t-DASH).

  7. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis.

    Science.gov (United States)

    Hayes, Scott; Sharma, Ashutosh; Fraser, Donald P; Trevisan, Martine; Cragg-Barber, C Kester; Tavridou, Eleni; Fankhauser, Christian; Jenkins, Gareth I; Franklin, Keara A

    2017-01-09

    Small increases in ambient temperature can elicit striking effects on plant architecture, collectively termed thermomorphogenesis [1]. In Arabidopsis thaliana, these include marked stem elongation and leaf elevation, responses that have been predicted to enhance leaf cooling [2-5]. Thermomorphogenesis requires increased auxin biosynthesis, mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) [6-8], and enhanced stability of the auxin co-receptor TIR1, involving HEAT SHOCK PROTEIN 90 (HSP90) [9]. High-temperature-mediated hypocotyl elongation additionally involves localized changes in auxin metabolism, mediated by the indole-3-acetic acid (IAA)-amido synthetase Gretchen Hagen 3 (GH3).17 [10]. Here we show that ultraviolet-B light (UV-B) perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) [11] strongly attenuates thermomorphogenesis via multiple mechanisms inhibiting PIF4 activity. Suppression of thermomorphogenesis involves UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated repression of PIF4 transcript accumulation, reducing PIF4 abundance. UV-B also stabilizes the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1), which can bind to and inhibit PIF4 function. Collectively, our results demonstrate complex crosstalk between UV-B and high-temperature signaling. As plants grown in sunlight would most likely experience concomitant elevations in UV-B and ambient temperature, elucidating how these pathways are integrated is of key importance to the understanding of plant development in natural environments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm

    Directory of Open Access Journals (Sweden)

    Offer Rozenstein

    2014-03-01

    Full Text Available Land surface temperature (LST is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS. This paper presents an adjustment of the split window algorithm (SWA for TIRS that uses atmospheric transmittance and land surface emissivity (LSE as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS.

  10. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta

    2013-01-01

    Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding pro...

  11. Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.) 1

    Science.gov (United States)

    Elliott, Malcolm C.; Stowe, Bruce B.

    1971-01-01

    Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins. PMID:16657624

  12. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.

    OpenAIRE

    Ding Zhaojun; Galván-Ampudia Carlos S; Demarsy Emilie; Langowski Lukasz; Kleine-Vehn Jürgen; Fan Yuanwei; Morita Miyo T; Tasaka Masao; Fankhauser Christian; Offringa Remko; Friml Jirí

    2011-01-01

    Phototropism is an adaptation response through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells resulting in changes in auxin distribution and d...

  13. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    Science.gov (United States)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  14. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control.

    Science.gov (United States)

    Devoghalaere, Fanny; Doucen, Thomas; Guitton, Baptiste; Keeling, Jeannette; Payne, Wendy; Ling, Toby John; Ross, John James; Hallett, Ian Charles; Gunaseelan, Kularajathevan; Dayatilake, G A; Diak, Robert; Breen, Ken C; Tustin, D Stuart; Costes, Evelyne; Chagné, David; Schaffer, Robert James; David, Karine Myriam

    2012-01-13

    Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.

  15. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death

    NARCIS (Netherlands)

    Maekawa, T.; Cheng, W.; Spiridon, L.N.; Töller, A.; Lukasik, E.; Saijo, Y.; Liu, P.; Shen, Q.H.; Micluta, M.A.; Somssich, I.E.; Takken, F.L.W.; Petrescu, A.J.; Chai, J.; Schulze-Lefert, P.

    2011-01-01

    Plants and animals have evolved structurally related innate immune sensors, designated NLRs, to detect intracellular nonself molecules. NLRs are modular, consisting of N-terminal coiled-coil (CC) or TOLL/interleukin-1 receptor (TIR) domains, a central nucleotide-binding (NB) domain, and C-terminal

  16. Simulation of organ patterning on the floral meristem using a polar auxin transport model.

    Directory of Open Access Journals (Sweden)

    Simon van Mourik

    Full Text Available An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.

  17. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-06-01

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Do Phytotropins Inhibit Auxin Efflux by Impairing Vesicle Traffic?

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Černá, A.; Schwarzerová, K.; Elčkner, Miroslav; Morris, David; Zažímalová, Eva

    2003-01-01

    Roč. 131, č. 1 (2003), s. 254-263 ISSN 0032-0889 R&D Projects: GA MŠk LN00A081 Grant - others:EU INCO COPERNICUS(XE) ERBIC15 CT98 0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : 1-N-naphthylphthalamic acid * BY-2 tobacco * auxin efflux Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.634, year: 2003

  19. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  20. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  1. The role of auxins in somatic embryogenesis of Abies alba

    Czech Academy of Sciences Publication Activity Database

    Vondráková, Zuzana; Eliášová, Kateřina; Fischerová, Lucie; Vágner, Martin

    2011-01-01

    Roč. 6, č. 4 (2011), s. 587-596 ISSN 1895-104X R&D Projects: GA MŠk OC 158 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin inhibitor * Fir * Phytohormone Subject RIV: EF - Botanics Impact factor: 1.000, year: 2011

  2. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    Czech Academy of Sciences Publication Activity Database

    Barbez, E.; Laňková, Martina; Pařezová, Markéta; Maizel, A.; Zažímalová, Eva; Petrášek, Jan; Friml, J.; Kleine-Vehn, J.

    2013-01-01

    Roč. 13, FEB 4 (2013) ISSN 1471-2229 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GAP305/11/2476 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin homeostasis * DR5 * Auxin carrier Subject RIV: ED - Physiology Impact factor: 3.942, year: 2013

  3. High-resolution gulf water skin temperature estimation using TIR/ASTER

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; ManiMurali, R.; Mahender, K.

    to separate geomorphic features. It is demonstrated that high resolution water skin temperature of small water bodies can be determined correctly, economically and less laboriously using space-based TIR/ASTER and that estimated temperature can be effectively...

  4. Changes in auxin activity in tumourous and normal tobacco calluses treated with morphactin IT 3233

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available The addition of morphactin IT 3233 in 1-40 mg/dm3 concentrations to the medium inhibited the growth in vitro of normal and tumourous tobacco calluses. The auxin activity (estimated by the Avena coleoptile straight growth test of the acid ether extracts from these tissues increased. The activity of zone I (Rf 0.2-0.4, 0.5, solvent system: butanol:water:ammonia 10:10:1 in normal tissues increased more intensively than that of zone II (Rf 0.6-0.8, 0.9. In tumourous tissues, however, these changes were smaller and they concerned merely zone I of auxin activity (Rf 0.0-0.5. It seems that the mechanism of morphactin activity in both kinds of tissue is different. It may be supposed that the excessive accumulation of auxins induces growth inhibition of tissues. A previously found increase in the activity of IAA-oxidase influenced by morphactin might be considered as an adaptation to a higher level of IAA.

  5. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays

    Science.gov (United States)

    Young, L. M.; Evans, M. L.; Hertel, R.

    1990-01-01

    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  6. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin

    Directory of Open Access Journals (Sweden)

    Siva K. Malka

    2017-12-01

    Full Text Available Glucosinolates (GLS are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase, and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx and indole-3-acetonitrile (IAN. IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.

  7. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components.

    Science.gov (United States)

    Nodzyński, Tomasz; Vanneste, Steffen; Zwiewka, Marta; Pernisová, Markéta; Hejátko, Jan; Friml, Jiří

    2016-11-07

    Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis

    DEFF Research Database (Denmark)

    Geldner, Niko; Richter, Sandra; Vieten, Anne

    2004-01-01

    The Arabidopsis GNOM gene encodes an ARF GDP/GTP exchange factor involved in embryonic axis formation and polar localisation of the auxin efflux regulator PIN1. To examine whether GNOM also plays a role in post-embryonic development and to clarify its involvement in auxin transport, we have...

  9. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in arabidopsis

    NARCIS (Netherlands)

    Simonini, Sara; Deb, Joyita; Moubayidin, Laila; Stephenson, Pauline; Valluru, Manoj; Freire-Rios, Alejandra; Sorefan, Karim; Weijers, Dolf; Friml, Jiří; Østergaard, Lars

    2016-01-01

    Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant’s life cycle. Auxin signaling occurs through

  10. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    Science.gov (United States)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  11. 5'-azido-N-1-naphthylphthalamic acid, a photolabile analog of the auxin transport inhibitor, N-1-naphthylphthalamic acid: synthesis and binding properties

    International Nuclear Information System (INIS)

    Voet, J.G.; Howley, K.; Shumsky, J.S.

    1987-01-01

    The polar transport of the plant growth regulator, auxin (indole-3-acetic acid, IAAH), is thought to involve the participation of several proteins in the plasma membrane, including a specific, saturable, voltage independent H + /IAA - efflux carrier located preferentially at the basal end of each cell. Auxin transport is specifically inhibited by the herbicide, N-1-naphthylphthalamic acid (NPA), which binds specifically to a protein in the plasma membrane, thought to be either the IAA - efflux carrier or an allosteric effector protein. They have synthesized and characterized a photolabile analog of NPA, 5'-azido-N-1-naphthylphthalamic acid (Az-NPA). This potential photoaffinity label for the NPA binding protein competes with 3 H-NPA for binding sites on Curcurbita pepo L. (zucchini) stem cell membranes with K/sub j/ = 1.5 x 10 -7 M. The K/sub i/ for NPA under these conditions is 2 x 10 -8 M, indicating that the affinity of Az-NPA for the membranes is only 7.5 fold lower than NPA. While the binding of 4.6 x 10 -6 M Az-NPA to NPA binding sites is reversible in the dark, exposure to light results in a 30% loss in 3 H-NPA binding ability. Pretreatment with 10 -4 M NPA protects the membranes against photodestruction of 3 H-NPA binding sites by Az-NPA, supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment

  12. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost

    Energy Technology Data Exchange (ETDEWEB)

    Scaglia, Barbara, E-mail: barbara.scaglia@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira [Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos (Brazil); Tambone, Fulvia [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Adani, Fabrizio, E-mail: fabrizio.adani@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy)

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100–6000 mg carbon L{sup −1}. {sup 13}C CPMAS-NMR and GC–MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS {sup 13}CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R{sup 2} = − 0.85; p < 0.01, n = 6). - Highlights: • Vermicomposting converts waste into organic fertilizer. • Vermicomposts can have biostimulating effect for the presence of hormone-like molecules. • Auxine-like activity was associated to the vermicompost humic acid fraction (HA). • HA carboxylic acids and amino acids, were reported to act as auxin-like molecules. • A linear regression was found between molecules and auxin-like activity.

  13. The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice

    Directory of Open Access Journals (Sweden)

    Huwei Sun

    2017-12-01

    Full Text Available Fe deficiency (-Fe is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA and NO levels in roots, and the responses of root growth in rice to different levels of Fe supply were investigated using wild type (WT, ospin1b and osnia2 mutants. -Fe promoted LR formation but inhibited seminal root elongation. IAA levels, [3H] IAA transport, and expression levels of PIN1a-c genes in roots were reduced under -Fe, suggesting that polar auxin transport from shoots to roots was decreased. Application of IAA to -Fe seedlings restored seminal root length, but not LR density, to levels similar to those under normal Fe (+Fe, and the seminal root length was shorter in two ospin1b mutants relative to WT under +Fe, but not under -Fe, confirming that auxin transport participates in -Fe-inhibited seminal root elongation. Moreover, -Fe-induced LR density and -Fe-inhibited seminal root elongation paralleled NO production in roots. Interestingly, similar NO accumulation and responses of LR density and root elongation were observed in osnia2 mutants compared to WT, and the higher expression of NOA gene under -Fe, suggesting that -Fe-induced NO was generated via the NO synthase-like pathway rather than the nitrate reductase pathway. However, IAA could restore the functions of NO in inhibiting seminal root elongation, but did not replace the role of NO-induced LR formation under -Fe. Overall, our findings suggested that NO functions downstream of auxin in regulating LR formation; NO-inhibited seminal root elongation by decreasing meristem activity in root tips under -Fe, with the involvement of auxin.

  14. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development

    Czech Academy of Sciences Publication Activity Database

    Nordström, A.; Tarkowski, Petr; Tarkowská, Danuše; Norbaek, R.; Astot, C.; Doležal, Karel; Sandberg, G.

    2004-01-01

    Roč. 101, č. 21 (2004), s. 8039-8044 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z5038910 Keywords : Arabidopsis * auxin * cytokinin * biosynthesis Subject RIV: EF - Botanics Impact factor: 10.452, year: 2004

  15. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inê s CR; Willige, Bjö rn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  16. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  17. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays

    Science.gov (United States)

    Lee, J. S.; Evans, M. L.

    1990-01-01

    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  18. A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN)

    Science.gov (United States)

    Hernández-Hernández, Valeria; Barrio, Rafael A.; Benítez, Mariana; Nakayama, Naomi; Romero-Arias, José Roberto; Villarreal, Carlos

    2018-05-01

    Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.

  19. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber.

    Science.gov (United States)

    Singh, Bir; Cheek, Hannah D; Haigler, Candace H

    2009-07-01

    Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.

  20. Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2014-07-01

    Full Text Available Effects of auxin polar transport inhibitors, 2,3,5-triio-dobenzoic acid (TIBA, 1-N-naphthylphthalamic acid (NPA and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456, as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport.

  1. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  2. Development of Erect Leaves in a Modern Maize Hybrid is Associated with Reduced Responsiveness to Auxin and Light of Young Seedlings in vitro

    Czech Academy of Sciences Publication Activity Database

    Fellner, Martin; Ford, E.D.; Van Volkenburgh, E.

    2006-01-01

    Roč. 1, č. 4 (2006), s. 201-211 ISSN 1559-2316 R&D Projects: GA MŠk 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin-binding protein * growth * leaf angle * light * maize Subject RIV: EF - Botanics

  3. The allelochemical MDCA inhibits lignification and affects auxin homeostasis

    Czech Academy of Sciences Publication Activity Database

    Steenackers, W.; Cesarino, I.; Klíma, Petr; Quareshy, M.; Vanholme, R.; Corneillie, S.; Kumpf, R. P.; Van De Wouwer, D.; Ljung, K.; Goeminne, G.; Novák, Ondřej; Zažímalová, Eva; Napier, R.; Boerjan, W.; Vanholme, B.

    2016-01-01

    Roč. 172, č. 2 (2016), s. 874-888 ISSN 0032-0889 R&D Projects: GA ČR(CZ) GA16-10948S; GA MŠk(CZ) LO1204 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : auxin biosynthesis * lignification * Asparagus officinalis Subject RIV: ED - Physiology Impact factor: 6.456, year: 2016

  4. Robust Satellite Techniques analysis of ten years (2004-2013) of MSG/SEVIRI TIR radiances over Greece region

    Science.gov (United States)

    Genzano, N.; Eleftheriou, A.; Filizzola, C.; Paciello, R.; Pergola, N.; Vallianatos, F.; Tramutoli, V.

    2014-12-01

    Space-time fluctuations of Earth's emitted Thermal InfraRed (TIR) radiation have been observed from satellite months to weeks before earthquakes occurrence. Among the different approach proposed to discern transient anomalous signals possibly associated to seismic activity from normal TIR signal fluctuations (i.e. related to the change of natural factor and/or observation conditions), since 2001 the Robust Satellite Techniques (RST) were used to investigate tens of earthquakes with a wide range of magnitudes (from 4.0 to 7.9) occurred in different continents and in various geo-tectonic setting (e.g. Athens earthquake, 7 September 1999; Abruzzo earthquake, 6 April 2009, etc.).The RST approach gives a statistically - based definition of "TIR anomalies" and offers a suitable method for their identification even in very different local (e.g. related to atmosphere and/or surface) and observational (e.g. related to time/season, but also to solar and satellite zenithal angles) conditions. It has been always carried out by using a validation/confutation approach, to verify the presence/absence of anomalous space-time TIR transients in the presence/absence of seismic activity.In this paper, the RST approach is extensively implemented on 10 years of TIR satellite records collected by the geostationary satellite sensor MSG/SEVIRI over the Greece region. The results of the analysis performed to investigate possible correlations (within predefined space-time windows) of anomalous TIR transients with time and place of occurrence of earthquakes with M>4 will be discussed in terms of reliability and effectiveness also in the perspective of a time-Dependent Assessment of Seismic Hazard (t-DASH) system.

  5. Auxin-induced modifications of cell wall polysaccharides in cat coleoptile segments. Effect of galactose

    International Nuclear Information System (INIS)

    Yamamoto, R.; Masuda, Y.

    1984-01-01

    Galactose inhibits auxin-induced cell elongation in oat coleoptile segments. Cell elongation induced by exogenously applied auxin is controlled by factors such as auxin uptake, cell wall loosening, osmotic concentration of sap and hydraulic conductivity. However, galactose does not have any effect on these factors. The results discussed in this paper led to the conclusion that galactose does not affect cell wall loosening which controls rapid growth, but inhibits cell wall synthesis which is required to maintain long-term growth

  6. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo

    2015-05-01

    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  7. Influence of External Nitrogen on Nitrogenase Enzyme Activity and Auxin Production in Herbaspirillum seropedicae (Z78).

    Science.gov (United States)

    Yin, Tan Tzy; Pin, Ui Li; Ghazali, Amir Hamzah Ahmad

    2015-04-01

    The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.

  8. Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick.

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2014-01-01

    Full Text Available Research concerning the influence of auxins and cytokinins on the content of carotenoids in Chlorella pyrenoidosa (Chlorophyceae has been conducted. The strongest stimulating effect on carotenoids content in Ch. pyrenoidosa biomass was exerted by cytokinins (N-6-benzylaminopurine and N-6-furfurylaminopurine and allantoin, weaker by auxins and their chemical analogues, and the weakest by tryptamine and 2,4-dichlorophenoxyacetic acid compared to the control. Under the influence of cytokinins the content of α- and β-carotene have been stimulated several times stronger than by auxins, and especially 2,4- dichlorophenoxyacetic acid and tryptamine. However, oxygen-rich xanthophylls content was most strongly reduced by cytokinins (60-70% in relation to the control in the 20 day lasting of Ch. pyrenoidosa cultivation, similarly to auxins: 1-naphthaleneacetic acid, indole-3-butyric acid, 2,4- dichlorophenoxyacetic acid.

  9. Effects of auxins and cytokinins on tomato callus from anthers

    Directory of Open Access Journals (Sweden)

    Janina H. Rogozińska

    2015-01-01

    Full Text Available An investigation was carried out on growth substance requirements of tomato callus derived from anthers for culture in vitro. Linsmaier and Skoog (1965 medium was used with various levels of auxins (IAA and NAA and cytokinins (K and BAP. The results show that cytokinin is an absolute requirement for callus growth irrespective of the auxin level. The optimum concentration of auxin in combination with cytokinin was found to be 5 μM of NAA or 25 μM of IAA, with 5 μM of K or BAP. Callus growth on media with NAA and cytokinin was superior to that on IAA, amounting to 6.05 g per piece on medium with 5 μM of NAA and BAP. Tissues grown on this medium have the highest water content. At the onset of culture the tissue is characterized by weak growth and attains its maximal increase in fresh weight after 6 weeks.

  10. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  11. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  12. Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling.

    Science.gov (United States)

    Muñoz-Parra, Edith; Pelagio-Flores, Ramón; Raya-González, Javier; Salmerón-Barrera, Guadalupe; Ruiz-Herrera, León Francisco; Valencia-Cantero, Eduardo; López-Bucio, José

    2017-09-01

    Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition. © 2017 John Wiley & Sons Ltd.

  13. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    Science.gov (United States)

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  14. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin.

    Science.gov (United States)

    Rietveld, P L; Wilkinson, C; Franssen, H M; Balk, P A; van der Plas, L H; Weisbeek, P J; Douwe de Boer, A

    2000-03-01

    Tulip (Tulipa gesneriana L.) is a bulbous plant species that requires a period of low temperature for proper growth and flowering. The mechanism of sensing the low temperature period is unknown. The study presented in this paper shows that the essential developmental change in tulip bulbs during cold treatment is an increase in sensitivity to the phytohormone auxin. This is demonstrated using a model system consisting of isolated internodes grown on tissue culture medium containing different combinations of the phytohormones auxin and gibberellin. Using mathematical modelling, equations taken from the field of enzyme kinetics were fitted through the data. By doing so it became apparent that longer periods of low temperature resulted in an increased maximum response at a lower auxin concentration. Besides the cold treatment, gibberellin also enhances the response to auxin in the internodes in this in vitro system. A working model describing the relationship between the cold requirement, gibberellin action and auxin sensitivity is put forward. Possible analogies with other cold-requiring processes such as vernalization and stratification, and the interaction of auxin and gibberellin in the stalk elongation process in other plant species are discussed.

  15. Comparison of auxin activty in tumourous and normal callus cultures from sunflower and tobacco plants

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available In normal and tumourous calluses of sunflower and tobacco the level of extractable auxins was determined by Avena coleoptile straight growth test. Auxin activity was detected practically in two zones: I - at position with Rf 0.2-0.4 and II - at position with Rf 0.6-0.9. The tumour tissues of sunflower and tobacco plants, representing different types of neoplastic growth exhibit a 3 times higher auxin activity as compared with that of the corresponding normal tissues. Tobacco tissues, on the other hand, had a higher auxin level than the corresponding sunflower tissues and they exhibited different proportions in the activity of zones I and II, which points to a dominance of genetic regulation of hormone metabolism in these plants.

  16. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  17. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    Science.gov (United States)

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  18. SHI/STY Genes Affect Pre- and Post-meiotic Anther Processes in Auxin Sensing Domains in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Leandro H. Estornell

    2018-02-01

    Full Text Available In flowering plants, mature sperm cells are enclosed in pollen grains formed in structures called anthers. Several cell layers surrounding the central sporogenous cells of the anther are essential for directing the developmental processes that lead to meiosis, pollen formation, and the subsequent pollen release. The specification and function of these tissues are regulated by a large number of genetic factors. Additionally, the plant hormone auxin has previously been shown to play important roles in the later phases of anther development. Using the R2D2 auxin sensor system we here show that auxin is sensed also in the early phases of anther cell layer development, suggesting that spatiotemporal regulation of auxin levels is important for early anther morphogenesis. Members of the SHI/STY transcription factor family acting as direct regulators of YUC auxin biosynthesis genes have previously been demonstrated to affect early anther patterning. Using reporter constructs we show that SHI/STY genes are dynamically active throughout anther development and their expression overlaps with those of three additional downstream targets, PAO5, EOD3 and PGL1. Characterization of anthers carrying mutations in five SHI/STY genes clearly suggests that SHI/STY transcription factors affect anther organ identity. In addition, their activity is important to repress periclinal cell divisions as well as premature entrance into programmed cell death and cell wall lignification, which directly influences the timing of anther dehiscence and the pollen viability. The SHI/STY proteins also prevent premature pollen germination suggesting that they may play a role in the induction or maintenance of pollen dormancy.

  19. Changes in auxin level in the course of growth of a sunflower crown-gall suspension culture

    Directory of Open Access Journals (Sweden)

    Zofia Chirek

    2014-01-01

    Full Text Available The auxin level in the cell mass and culture medium was determined by means of the Avena straight caleoptile test in various periods of the suspension culture cycle of the sunflower crown-gall tumour. The investigations were performed in the course of the zero passage (PO and first one (Pl, differing in their time of duration of maximum growth and its intensity. In both passages the intra- and extra-cellular auxin levels reach values of the same order. At the beginning of the maximal growth phase the activity corresponding to IAA in the cells prevails over that of the other auxin-like compounds. This disproportion diminishes with further development of the culture, and with the beginning of the stationary phase the cellular IAA level is lower than that of the remaining auxin-like compounds. The short phase of maximal growth (PO occurs with an auxin level decreasing in the cell mass and increasing in the medium, and towards the end of the cycle these levels become equal. During the long phase of maximal growth (Pl the total amount of auxins in the cells increases and is 2-3 times higher than in the medium, whereas IAA in the cells remains at a constant level. These results suggest that the participation of IAA in the intracellular pool of auxin-like substances is decisive for the mitotic activity of the cells and maintenance of growth in the culture.

  20. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

    NARCIS (Netherlands)

    Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; Schwab, R.; Weigel, D.; Meyerowitz, E.M.; Luschnig, C.; Offringa, R.; Friml, J.

    2007-01-01

    In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely

  1. An initial assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States

    Science.gov (United States)

    Mishra, Vikalp; Ellenburg, W. Lee; Griffin, Robert E.; Mecikalski, John R.; Cruise, James F.; Hain, Christopher R.; Anderson, Martha C.

    2018-06-01

    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of the SMAP active radar within three months of becoming operational, an intermediate (9-km) and finer (3-km) scale soil moisture product solely from the SMAP mission is no longer possible. Therefore, the focus of this study is a disaggregation of the 36-km resolution SMAP passive-only surface soil moisture (SSM) using the Soil Evaporative Efficiency (SEE) approach to spatial scales of 3-km and 9-km. The SEE was computed using thermal-infrared (TIR) estimation of surface evaporation over Continental U.S. (CONUS). The disaggregation results were compared with the 3 months of SMAP-Active (SMAP-A) and Active/Passive (AP) products, while comparisons with SMAP-Enhanced (SMAP-E), SMAP-Passive (SMAP-P), as well as with more than 180 Soil Climate Analysis Network (SCAN) stations across CONUS were performed for a 19 month period. At the 9-km spatial scale, the TIR-Downscaled data correlated strongly with the SMAP-E SSM both spatially (r = 0.90) and temporally (r = 0.87). In comparison with SCAN observations, overall correlations of 0.49 and 0.47; bias of -0.022 and -0.019 and unbiased RMSD of 0.105 and 0.100 were found for SMAP-E and TIR-Downscaled SSM across the Continental U.S., respectively. At 3-km scale, TIR-Downscaled and SMAP-A had a mean temporal correlation of only 0.27. In terms of gain statistics, the highest percentage of SCAN sites with positive gains (>55%) was observed with the TIR-Downscaled SSM at 9-km. Overall, the TIR-based downscaled SSM showed strong correspondence with SMAP-E; compared to SCAN, and overall both SMAP-E and TIR-Downscaled performed similarly, however, gain statistics show that TIR-Downscaled SSM slightly outperformed SMAP-E.

  2. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    Science.gov (United States)

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity. © 2014 Marine Biological Laboratory.

  3. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kumud Saini

    2017-08-01

    Full Text Available Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS. However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID, a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.

  4. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein.

    Science.gov (United States)

    Michalko, Jaroslav; Glanc, Matouš; Perrot-Rechenmann, Catherine; Friml, Jiří

    2016-01-01

    The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.

  5. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus

    Directory of Open Access Journals (Sweden)

    Nicola eCarraro

    2012-02-01

    Full Text Available Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively, and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also evidence for differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history including both tandem and whole genome duplication as well as probable loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of proteins involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ

  6. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.

    Directory of Open Access Journals (Sweden)

    Szymon Stoma

    2008-10-01

    Full Text Available Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.

  7. Auxin production in the endosperm drives seed coat development in Arabidopsis

    Science.gov (United States)

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  8. H1 antihistamines in allergic rhinitis: The molecular pathways of interleukin and toll - like receptor systems

    Directory of Open Access Journals (Sweden)

    Jonny Karunia Fajar

    2016-03-01

    Full Text Available The complex interaction between inflammatory mediators in allergic rhinitis (AR is determined by the role of genetic polymorphisms, including interleukin (IL and toll-like receptor (TLR genes. This study aimed to discuss the effects of H1-antihistamines on IL and TLR systems. Several ILs involved in AR pathogenesis are: IL-4 (rs2243250, rs1800925, rs1801275, rs2227284, rs2070874, IL-6 (rs1800795, rs1800797, IL-10 (rs1800871, rs1800872, IL-12R (rs438421, IL-13 (rs1800925, rs20541, IL-17 (rs3819024, IL-18 (rs360721, rs360718, rs360717, rs187238, IL-23R (rs7517847, and IL-27 (rs153109, rs17855750. In the IL system, histamines stimulate the IL production in Type 2 helper T (Th2 cells through protein kinase A (PKA, janus kinase-signal transducer and activator of transcription (JAK-STAT pathway, and the activation of H1-histamine receptor and histidine decarboxylase (HDC genes. On contrary, antihistamines down-regulate the H1-histamine receptor gene expression through the transcription suppression of HDC and IL genes and suppress histamine basal signaling through the inverse agonistic activity. TLRs involved in AR pathogenesis are TLR2 (rs4696480, rs3804099, rs5743708, TLR4 (rs4986790, TLR6 (rs2381289, TLR7 (rs179008, rs5935438, TRL8 (rs2407992, rs5741883, rs17256081, rs4830805, rs3788935, rs178998, and TLR10 (rs11466651. In the TLR system, histamines trigger the TLR expression by stimulating interferon-γ (IFN-γ to up-regulate mast cells and by stimulating receptor-interacting protein (RIP to activate IκB kinase-β. Contrastingly, antihistamines suppress TIR-domain-containing adaptor protein inducing IFN-β (TRIF and RIP protein and thus inhibit the expression of TLR. In addition, several studies indicated that H1-antihistamines inhibit the IL and TLR systems indirectly.

  9. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    Science.gov (United States)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  10. The acropetal effects of indole-3-acetic acid in isolated shoot segments of Acer pseudoplatanus L. II. Possible regulation by a vectorial fieid of auxin waves

    Directory of Open Access Journals (Sweden)

    Jacek A. Adamczyk

    2014-01-01

    Full Text Available The acropetal effects of auxin on elongation of axillary buds and on modulation of the wave-like pattern of basipetal efflux of natural auxin to agar from Acer pseudoplatanus L. shoots were studied. When synthetic IAA was applied to cut surfaces of one of two branches the elongation growth of buds situated on the opposite branch was retarded, suggesting regulation independent of the direct action of the molecules of the applied IAA. Oscillations in basipetal transport of natural auxin along the stem segments were observed corroborating the results of other authors using different tree species. Apical application of synthetic IAA for 1 hour to the lateral branch caused a phase shift of the wave-like pattern of basipetal efflux of natural auxin, when the stem segment above the treated branch was sectioned. The same effect was observed evoked by the laterally growing branch which is interpreted as an effect of natural auxin produced by the actively growing shoot. These modulations could be propagated acropetally at a rate excluding direct action of auxin molecules at the sites of measurement. The results seem to corroborate the hypothesis suggesting that auxin is involved in acropetal regulation of shoot apex growth through its effect upon modulation of the vectorial field which arises when the auxin-waves translocate in cambium.

  11. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development.

    Science.gov (United States)

    Lee, Chris; Chronis, Demosthenis; Kenning, Charlotte; Peret, Benjamin; Hewezi, Tarek; Davis, Eric L; Baum, Thomas J; Hussey, Richard; Bennett, Malcolm; Mitchum, Melissa G

    2011-02-01

    Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.

  12. Identification and expression analysis of primary auxin-responsive ...

    Indian Academy of Sciences (India)

    2013-12-09

    Dec 9, 2013 ... Previous research has demonstrated that auxin induces and regulates the .... three main-stem nodes stage seedlings were prepared for the. IAA treatment ... For semi- quantitative RT-PCR analysis, first-strand cDNA was syn-.

  13. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Irani, N. G.; Di Rubbo, S.; Mylle, E.; Van den Begin, J.; Schneider-Pizon, J.; Hniličková, Jaroslava; Šíša, Miroslav; Buyst, D.; Vilarrasa-Blasi, J.; Szatmári, A. M.; Van Damme, D.; Mishev, K.; Codreanu, M. C.; Kohout, Ladislav; Strnad, Miroslav; Cano-Delgado, A. I.; Friml, J.; Madder, A.; Russinova, E.

    2012-01-01

    Roč. 8, č. 6 (2012), s. 583-589 ISSN 1552-4450 R&D Projects: GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : receptor kinase BRI1 * steroid-binding protein-1 * plant-cells * brassinosteroid biosynthesis * dependent endocytosis * auxin transport * Arabidopsis Subject RIV: CC - Organic Chemistry Impact factor: 12.948, year: 2012

  14. Impact of line parameter database, continuum absorption, full grind configuration, and L1B update on GOSAT TIR methane retrieval

    Science.gov (United States)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2016-12-01

    The thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) observes CH4 profile at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν4 band. The current retrieval algorithm (V1.0) uses LBLRTM V12.1 with AER V3.1 line database to calculate optical depth. LBLRTM V12.1 include MT_CKD 2.5.2 model to calculate continuum absorption. The continuum absorption has large uncertainty, especially temperature dependent coefficient, between BPS model and MT_CKD model in the wavenumber region of 1210-1250 cm-1(Paynter and Ramaswamy, 2014). The purpose of this study is to assess the impact on CH4 retrieval from the line parameter databases and the uncertainty of continuum absorption. We used AER v1.0 database, HITRAN2004 database, HITRAN2008 database, AER V3.2 database, and HITRAN2012 database (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005). AER V1.0 database is based on HITRAN2000. The CH4 line parameters of AER V3.1 and V3.2 databases are developed from HITRAN2008 including updates until May 2009 with line mixing parameters. We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN2004, HITRAN2008, and HITRAN2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Compare AER V3.2 case to HITRAN2008 case, the line coupling effect reduced difference by 8.0 ppbv. Median values of Residual difference from HITRAN2008 to AER V1.0, HITRAN2004, AER V3.2, and HITRAN2012 were 0.6 K, 0.1 K, -0.08 K, and 0.08 K, respectively, while median values of transmittance difference were less than 0.0003 and transmittance differences have small wavenumber dependence. We also discuss the retrieval error from the uncertainty of the continuum absorption, the test of full grid

  15. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes.

    Directory of Open Access Journals (Sweden)

    Yunsheng Wang

    Full Text Available In this study, we identified and compared nucleotide-binding site (NBS domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China. Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention.

  16. Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy.

    Science.gov (United States)

    Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel

    2017-10-01

    The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.

  17. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis

    Science.gov (United States)

    Robles, Linda M.; Deslauriers, Stephen D.; Alvarez, Ashley A.; Larsen, Paul B.

    2012-01-01

    As part of a continuing effort to elucidate mechanisms that regulate the magnitude of ethylene signalling, an Arabidopsis mutant with an enhanced ethylene response was identified. Subsequent characterization of this loss-of-function mutant revealed severe hypocotyl shortening in the presence of saturating ethylene along with increased expression in leaves of a subset of ethylene-responsive genes. It was subsequently determined by map-based cloning that the mutant (sar1-7) represents a loss-of-function mutation in the previously described nucleoporin AtNUP160 (At1g33410, SAR1). In support of previously reported results, the sar1-7 mutant partially restored auxin responsiveness to roots of an rce1 loss-of-function mutant, indicating that AtNUP160/SAR1 is required for proper expression of factors responsible for the repression of auxin signalling. Analysis of arf7-1/sar1-7 and arf19-1/sar1-7 double mutants revealed that mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype, suggesting that ARF7- and ARF19-mediated auxin signalling is responsible for regulating the magnitude of and/or competence for the ethylene response in Arabidopsis etiolated hypocotyls. Consistent with this, addition of auxin to ethylene-treated seedlings resulted in severe hypocotyl shortening, reminiscent of that seen for other eer (enhanced ethylene response) mutants, suggesting that auxin functions in part synergistically with ethylene to control hypocotyl elongation and other ethylene-dependent phenomena. PMID:22238449

  18. The microRNA390/TRANS ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway.

    Science.gov (United States)

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-05-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-acting small interference RNAs (tasiRNAs) and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was significantly inhibited by the presence of salt, and transcript abundance was dramatically decreased in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interference ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNAi lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  19. Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport1

    Science.gov (United States)

    Clay, Nicole K.; Nelson, Timothy

    2005-01-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process. PMID:15894745

  20. Computational Modeling of Auxin: A Foundation for Plant Engineering.

    Science.gov (United States)

    Morales-Tapia, Alejandro; Cruz-Ramírez, Alfredo

    2016-01-01

    Since the development of agriculture, humans have relied on the cultivation of plants to satisfy our increasing demand for food, natural products, and other raw materials. As we understand more about plant development, we can better manipulate plants to fulfill our particular needs. Auxins are a class of simple metabolites that coordinate many developmental activities like growth and the appearance of functional structures in plants. Computational modeling of auxin has proven to be an excellent tool in elucidating many mechanisms that underlie these developmental events. Due to the complexity of these mechanisms, current modeling efforts are concerned only with single phenomena focused on narrow spatial and developmental contexts; but a general model of plant development could be assembled by integrating the insights from all of them. In this perspective, we summarize the current collection of auxin-driven computational models, focusing on how they could come together into a single model for plant development. A model of this nature would allow researchers to test hypotheses in silico and yield accurate predictions about the behavior of a plant under a given set of physical and biochemical constraints. It would also provide a solid foundation toward the establishment of plant engineering, a proposed discipline intended to enable the design and production of plants that exhibit an arbitrarily defined set of features.

  1. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2014-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the 125 iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer 125 I-GLP-1(7-36)amide. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist 125 I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer 125 I-GLP-1(7-36)amide. For comparison, 125 I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with 125 I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  2. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im; Murphy, Angus S.; Baek, Dongwon; Lee, Shin-Woo; Yun, Dae-Jin; Bressan, Ray A.; Narasimhan, Meena L.

    2011-01-01

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical

  3. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  4. Autoradiographic studies with the 14C-IAA in relation to synergism between auxin and non-auxin chemicals in the rooting of bean (Phaseolus vulgaris L.) cuttings

    International Nuclear Information System (INIS)

    Chaudhury, K.G.; Basu, R.N.

    1980-01-01

    Indole and α-naphthol significantly synergized the IAA-induced rooting of P. vulqaris cuttings. The pattern of incorporation of radiocarbon of IAA-I- 14 C and IAA-2- 14 C supplied to the base of the cuttings was, however, not altered by the synergists and the same radioactive metabolites were located on the radioautograms of ethanolic extracts of the hypocotyls of cuttings under the different treatments. The results thereby discount the possibility of formation of bioactive complexes between auxins and synergists as the mechanism of synergism in rooting. The synergists, however, influenced the extent of incorporation of radiocarbon of the labelled auxin molecules into some of the radioactive metabolites. (auth.)

  5. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  6. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism.

    Directory of Open Access Journals (Sweden)

    Graeme Mitchison

    2015-10-01

    Full Text Available Auxin underlies many processes in plant development and physiology, and this makes it of prime importance to understand its movements through plant tissues. In stems and coleoptiles, classic experiments showed that the peak region of a pulse of radio-labelled auxin moves at a roughly constant velocity down a stem or coleoptile segment. As the pulse moves it becomes broader, at a roughly constant rate. It is shown here that this 'spreading rate' is larger than can be accounted for by a single channel model, but can be explained by coupling of channels with differing polar transport rates. An extreme case is where strongly polar channels are coupled to completely apolar channels, in which case auxin in the apolar part is 'dragged along' by the polar part in a somewhat diffuse distribution. The behaviour of this model is explored, together with others that can account for the experimentally observed spreading rates. It is also shown that saturation of carriers involved in lateral transport can explain the characteristic shape of pulses that result from uptake of large amounts of auxin.

  7. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Drdová, Edita; Synek, Lukáš; Pečenková, Tamara; Hála, Michal; Kulich, I.; Fowler, J.E.; Murphy, A.S.; Žárský, Viktor

    2013-01-01

    Roč. 73, č. 5 (2013), s. 709-719 ISSN 0960-7412 R&D Projects: GA ČR GPP501/11/P853; GA ČR(CZ) GAP305/11/1629; GA MŠk(CZ) LC06034; GA AV ČR KJB600380802 Grant - others:GA MŠk(CZ) ME10033 Institutional research plan: CEZ:AV0Z50380511 Keywords : exocyst * polar auxin transport * PIN recycling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.815, year: 2013

  8. Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings

    Science.gov (United States)

    Toyota, Masatsugu; Furuichi, Takuya; Tatsumi, Hitoshi

    2008-01-01

    Plants regulate their growth and morphogenesis in response to gravity field, known as gravitropism. In the early process of gravitropism, changes in the gravity vector (gravistimulation) are transduced into certain intracellular signals, termed gravity perception. The plant hormone auxin is not only a crucial factor to represent gravitropism but also a potential signaling molecule for gravity perception. Another strong candidate for the signaling molecule is calcium ion of which cytoplasmic concentration ([Ca2+]c) is known to increase in response to gravistimulation. However, relationship between these two factors, say which is in the first place, has been controversial. This issue is addressed here mainly based on recent progress including our latest studies. Gravistimulation by turning plants 180° induced a two-peaked [Ca2+]c-increase lasting for several minutes in Arabidopsis seedlings expressing apoaequorin; only the second peak was sensitive to the gravistimulation. Peak amplitudes of the [Ca2+]c-increase were attenuated by the 10 µM auxin transport inhibitor (TIBA) and vesicle trafficking inhibitor (BFA), whereas the onset time and rate of rise of the second peak were not significantly altered. This result indicates that polar auxin transport is not involved in the initial phase of the second [Ca2+]c-increase. It is likely that the gravi-induced [Ca2+]c-increase constitutes an upstream event of the auxin transport, but may positively be modulated by auxin since its peak amplitude is attenuated by the inhibition of auxin transport. PMID:19513245

  9. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  10. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    Science.gov (United States)

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants.

    Science.gov (United States)

    Pashkovskiy, Pavel P; Kartashov, Alexander V; Zlobin, Ilya E; Pogosyan, Sergei I; Kuznetsov, Vladimir V

    2016-07-01

    The effect of blue LED (450 nm) on the photomorphogenesis of Arabidopsis thaliana Col-0 plants and the transcript levels of several genes, including miRNAs, photoreceptors and auxin response factors (ARF) was investigated. It was observed that blue light accelerated the generative development, reduced the rosette leaf number, significantly reduced the leaf area, dry biomass and led to the disruption of conductive tissue formation. The blue LED differentially influenced the transcript levels of several phytochromes (PHY a, b, c, d, and e), cryptochromes (CRY 1 and 2) and phototropins (PHOT 1 and 2). At the same time, the blue LED significantly increased miR167 expression compared to a fluorescent lamp or white LEDs. This increase likely resulted in the enhanced transcription of the auxin response factor genes ARF4 and ARF8, which are regulated by this miRNA. These findings support the hypothesis that the effects of blue light on A. thaliana are mediated by auxin signalling pathway involving miRNA-dependent regulation of ARF gene expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. In-silico identification and phylogenetic analysis of auxin efflux ...

    African Journals Online (AJOL)

    The phytohormone auxin is crucial for plant growth and development. ... genome, which are similar in number with that of monocotyledonous plant Oryza sativa. ... are much closer to Sorghum bicolor and O. sativa PIN genes of the grass family.

  13. Simulació d'un tir parabòlic amb un applet de física

    OpenAIRE

    Fàbregas Cuadrada, Josep Manel

    2016-01-01

    Aquest projecte té un vessant clarament pedagògica, en un intent d'apropar l'ensenyament a l'aula a partir de la informàtica en les seves infinites aplicacions. En particular l'assignatura que es pretén portar a l'aula des de la informàtica és la Física. I de forma més concreta un tema anomenat cinemàtica, i amb més precisió el 'tir parabòlic'. L'objectiu principal ha estat crear un applet de simulació d'un tir parabòlic, per tal de poder ser observat i descrit a classe. I per facilitar als a...

  14. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II) ions in the organization of model lipid membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Sroka, Aleksandra; Jabłońska, Klaudia

    2016-07-01

    Auxins are successfully used to improve phytoextraction efficiency of metal ions from the contaminated environment, however, the mechanism of their activity in this field is not explained. Auxins are known to exert various biochemical alterations in the plant membranes and cells, but their activity involves also direct interactions with lipids leading to changes in membrane organization. Following the suggestion that the auxins-induced modifications in membrane properties alleviate toxic effect of metal ions in this paper we have undertaken the comparative studies on the effect of metal ions and metal ions/auxins mixtures on model membrane systems. The experiments were done on lipid monolayers differing in their composition spread on water subphase and on Pb(2+), Indole-3-acetic acid (IAA), 1-Naphthaleneacetic acid (NAA) and Pb(2+)/IAA and Pb(2+)/NAA water solutions. The analysis of the collected data suggests that metal ions and auxins can change fluidity of the lipid systems and weaken the interactions between monolayer components. This manifested in the increase of the mean area per molecule and the excess area per molecule values for the films on Pb(2+), auxins as well as Pb(2+)/auxin solutions as compared to the values on pure water subphase. However, the presence of auxin in the mixture with lead(II) ions makes the alterations induced by sole metal ions weaker. This effect was more pronounced for the membranes of a higher packing. Thus it was proposed that auxins may enhance phytoextraction of metal ions by weakening their destabilizing effect on membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence.

    Science.gov (United States)

    Péret, Benjamin; Middleton, Alistair M; French, Andrew P; Larrieu, Antoine; Bishopp, Anthony; Njo, Maria; Wells, Darren M; Porco, Silvana; Mellor, Nathan; Band, Leah R; Casimiro, Ilda; Kleine-Vehn, Jürgen; Vanneste, Steffen; Sairanen, Ilkka; Mallet, Romain; Sandberg, Göran; Ljung, Karin; Beeckman, Tom; Benkova, Eva; Friml, Jiří; Kramer, Eric; King, John R; De Smet, Ive; Pridmore, Tony; Owen, Markus; Bennett, Malcolm J

    2013-10-22

    In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required--later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.

  16. Modulation of IL-33/ST2-TIR and TLR signalling pathway by fingolimod and analogues in immune cells.

    Science.gov (United States)

    Rüger, K; Ottenlinger, F; Schröder, M; Zivković, A; Stark, H; Pfeilschifter, J M; Radeke, H H

    2014-12-01

    For the immune modulatory drug fingolimod (FTY720), lymphocyte sequestration has been extensively studied and accepted as mode of action. Further, direct effects on immune cell signalling are incompletely understood. Herein, we used the parent drug and newly synthesized analogues to investigate their effects on dendritic cell (DC) calcium signalling and on Th1, Th2 and Th17 responses. DC calcium signalling was determined with a single cell-based confocal assay and IL-33/ST2-TIR Th2-like response with ST2-transduced EL4-6.1 thymoma cells. The Th1/Th17 responses were examined with a LPS/TLR-enhanced antigen presentation assay with OVA-TCRtg CD4 and CD8 spleen cells. Our results revealed a comparable influence of fingolimod and S1P on intracellular calcium level in DC, while an oxy-derivative of fingolimod exhibited an EC50 of 3.3 nm, being 14 times more potent than FTY720-P. The IL-33/ST2-TIR Th2-like response in ST2-EL4 cells was inhibited by fingolimod and analogues at varying degrees. Using the OVA-TCRtg LPS/TLR-enhanced spleen cell assay, we found that fingolimod inhibited both IL-17 and IFN-γ production. In contrast, fingolimod phosphate failed to decrease Th1 cytokines. Interestingly, the effects of the parent compound fingolimod were modulated by the PP2A inhibitor okadaic acid, thus suggesting PP2A as relevant intracellular target. These studies describe detailed immune-modulating properties of fingolimod, including interference with a prototypical Th2 response via IL-33/ST2-TIR. Moreover, differential effects of fingolimod versus its phosphorylated derivative on TLR-activated and antigen-dependent Th1 activation suggest PP2A as an additional target of fingolimod immune therapy. Together with the analogues tested, these data may guide the development of more specific fingolimod derivatives. © 2014 John Wiley & Sons Ltd.

  17. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biochemical activity of auxins in dependence of their structures in Wolffia arrhiza (L. Wimm.

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2011-01-01

    Full Text Available Wolffia arrhiza (L. Wimm. (Lemnaceae as a mixotrophic plant reacts considerably weaker to used auxins with different chemical structures than typical photosynthetic vascular plants and algae especially from Chlorophyta. Among used auxin compounds, the highest stimulative activity on W. arrhiza growth and biochemical parameters which were analysed in biomass, can be attributed to phenylacetic acid (PAA, a somewhat smaller to indole-3-acetic acid (IAA and the smallest to 2-naphthaleneacetic acid (NAA used in optimal concentration of 10-6 M, in comparison with the control culture, devoid of exogenous auxins. The investigated auxins, especially PAA and IAA, were found to have the most powerful stimulative activity (prevailingly between the 10th and the 15th day of cultivation on the content of reducing sugars between 127 and 169%, chlorophyll a and b from 117 to 125%, total carotenoids from 115 to 132% and net photosynthetic rate from 127 to 144% in comparison with the control culture, which was treated as 100% for reference. However, the content of water-soluble proteins as well as nucleic acids (DNA and RNA in the biomass of W. arrhiza was less effectively stimulated, hardly from 110 to 116% when compared to the control culture (100%.

  19. Agrobacterium T-DNA-encoded protein Atu6002 interferes with the host auxin response

    Science.gov (United States)

    Lacroix, Benoît; Gizatullina, Diana I.; Babst, Benjamin A.; Gifford, Andrew N.; Citovsky, Vitaly

    2013-01-01

    Summary Several genes in the Agrobacterium tumefaciens transferred (T) DNA encode proteins that are involved in developmental alterations leading to the formation of tumors in infected plants. We investigated the role of the protein encoded by the Atu6002 gene, the function of which is completely unknown. The Atu6002 expression occurs in Agrobacterium-induced tumors, and is also activated upon activation of plant cell division by growth hormones. Within the expressing plant cells, the Atu6002 protein is targeted to the plasma membrane. Interestingly, constitutive ectopic expression of Atu6002 in transgenic tobacco plants lead to a severe developmental phenotype characterized by stunted growth, shorter internodes, lanceolate leaves, increased branching, and modified flower morphology. These Atu6002-expressing plants also displayed impaired response to auxin. However, auxin cellular uptake and polar transport were not significantly inhibited in these plants, suggesting that Atu6002 interferes with auxin perception or signaling pathways. PMID:24128370

  20. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.; Jé gu, Teddy; Latrasse, David; Romero-Barrios, Natali; Christ, Auré lie; Benhamed, Moussa; Crespi, Martí n D.

    2014-01-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  1. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors.

    Science.gov (United States)

    Suzuki, Hiroyoshi; Yokokura, Junpei; Ito, Tsukasa; Arai, Ryoma; Yokoyama, Chiaki; Toshima, Hiroaki; Nagata, Shinji; Asami, Tadao; Suzuki, Yoshihito

    2014-10-01

    Insect galls are abnormal plant tissues induced by galling insects. The galls are used for food and habitation, and the phytohormone auxin, produced by the insects, may be involved in their formation. We found that the silkworm, a non-galling insect, also produces an active form of auxin, indole-3-acetic acid (IAA), by de novo synthesis from tryptophan (Trp). A detailed metabolic analysis of IAA using IAA synthetic enzymes from silkworms indicated an IAA biosynthetic pathway composed of a three-step conversion: Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA, of which the first step is limiting IAA production. This pathway was shown to also operate in gall-inducing sawfly. Screening of a chemical library identified two compounds that showed strong inhibitory activities on the conversion step IAAld → IAA. The inhibitors can be efficiently used to demonstrate the importance of insect-synthesized auxin in gall formation in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  3. Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

    Science.gov (United States)

    Yu, Hong; Soler, Marçal; Mila, Isabelle; San Clemente, Hélène; Savelli, Bruno; Dunand, Christophe; Paiva, Jorge A. P.; Myburg, Alexander A.; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2014-01-01

    Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation. PMID:25269088

  4. Genome-wide characterization and expression profiling of the AUXIN RESPONSE FACTOR (ARF gene family in Eucalyptus grandis.

    Directory of Open Access Journals (Sweden)

    Hong Yu

    Full Text Available Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation.

  5. Effect of benzyladenine (BA on auxin-induced stem elongation and thickening in tulip (Tulipa gesneriana L.

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2016-03-01

    Full Text Available It is well known that stem elongation in tulip is induced by the auxin produced in the leaves and gynoecium. Excision of the flower bud and all the leaves in an early stage of tulip growth resulted in almost total inhibition of stem growth, but the inhibition was completely recovered by the exogenous application of auxin to the place from which the flower bud had been removed. Hormonal control of stem thickening in tulip is much less known. Additional application of benzyladenine (BA to the tulip stem by soaking a cotton wick wrapped around all the internodes only slightly inhibited stem growth induced by IAA at a concentration of 0.1 and 2.0%, but substantially stimulated the thickening of all the internodes. The treatment of the tulip stem with benzyladenine enabled direct contact of the cytokinin with the epidermis, which is an important factor in stem elongation. The experiment conducted in field conditions also showed that BA only slightly inhibited the elongation of the fourth internode induced by IAA, but stimulated the thickening of that internode. IAA applied at a concentration of 2.0% stimulated ethylene production to a much higher extent than IAA at a concentration of 0.1%, and BA affected the auxin-induced ethylene production only to a small extent. Metabolic significance of these findings is discussed.

  6. Lateral root formation and the multiple roles of auxin

    NARCIS (Netherlands)

    Du, Yujuan; Scheres, Ben

    2018-01-01

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles

  7. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature

    Czech Academy of Sciences Publication Activity Database

    Stirk, W. A.; Arthur, G. D.; Lourens, A. F.; Novák, Ondřej; Strnad, Miroslav; van Staden, J.

    2004-01-01

    Roč. 16, č. 1 (2004), s. 31-39 ISSN 0022-3646 R&D Projects: GA ČR GA522/03/0323 Institutional research plan: CEZ:AV0Z5038910 Keywords : accelerated storage * auxins * cytokinins Subject RIV: EF - Botanics Impact factor: 2.490, year: 2004

  8. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player?

    Science.gov (United States)

    Ilina, Elena L; Kiryushkin, Alexey S; Semenova, Victoria A; Demchenko, Nikolay P; Pawlowski, Katharina; Demchenko, Kirill N

    2018-04-19

    In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.

  9. Isolation and screening of rhizobia for auxin biosynthesis and growth promotion of mung bean (Vigna radiata L. seedlings under axenic conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq Anjum, Zahir Ahmad Zahir, Muhammad Arshad and Muhammad Ashraf

    2011-04-01

    Full Text Available A series of screening experiments to evaluate the effectiveness of rhizobia for producing auxins and improvegrowth and nodulation of mungbean (Vigna radiata L. were carried out under axenic conditions. Forty fouriolatess of rhizobia were isolated using standard procedures. Auxin biosynthesis by these rhizobial isolates wasdetermined in the absence and presence of L-Trp, a physiological precursor of auxins. Rhizobial isolates variedwidely in auxins biosynthesis capabilities. On the basis of auxins biosynthesis, a pouch experiment was conductedfor screening thirty four efficient isolates of rhizobia for the growth promotion of mung bean. Results of pouch studyshowed that inoculation with selected rhizobial isolates increased the root /shoot length, fresh, and dry shoot weightof mung bean up to 33, 59, 71, 148, 107 and 188%, respectively, over untreated control. Further studies are neededunder glasshouse and field conditions for confirmation of these results.

  10. Phloem development in nematode-induced feeding sites: The implications of auxin and cytokinin

    Directory of Open Access Journals (Sweden)

    Birgit eAbsmanner

    2013-07-01

    Full Text Available Sedentary plant parasitic nematodes such as root-knot nematodes and cyst nematodes induce giant cells or syncytia, respectively, in their host plant’s roots. These highly specialized structures serve as feeding sites from which exclusively the nematodes withdraw nutrients. While giant cells are symplastically isolated and obtain assimilates by transporter-mediated processes syncytia are massively connected to the phloem by plasmodesmata. To support the feeding sites and the nematode during their development, phloem is induced around syncytia and giant cells. In the case of syncytia the unloading phloem consists of sieve elements and companion cells and in the case of root knots it consists exclusively of sieve elements. We applied immunohistochemistry to identify the cells within the developing phloem that responded to auxin and cytokinin. Both feeding sites themselves did not respond to either hormone. We were able to show that in root knots an auxin response precedes the differentiation of these auxin responsive cells into phloem elements. This process appears to be independent of B-type Arabidopsis response regulators. Using additional markers for tissue identity we provide evidence that around giant cells protophloem is formed and proliferates dramatically. In contrast, the phloem around syncytia responded to both hormones. The presence of companion cells as well as hormone-responsive sieve elements suggests that metaphloem development occurs. The implication of auxin and cytokinin in the further development of the metaphloem is discussed.

  11. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    Science.gov (United States)

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Auxin uptake, transport and accumulation in relation to rooting and ageing of mung bean cuttings

    International Nuclear Information System (INIS)

    Jarvis, B.C.; Shaheed, A.I.

    1986-01-01

    The rooting response of mung bean cuttings (Phaseolus aureus Roxb. cv. Berkin) to indoleacetic acid (IAA) progressively declined when they were aged in water prior to auxin treatment. With increased duration of the ageing period the uptake of basally-supplied auxin by cuttings decreased. This correlated with diminished transpiration. Notwithstanding this decline in the uptake of IAA, a decreasing proportion of the acquired auxin was transported acropetally out of the hypocotyl with increasing age of the cuttings. Recovery of 14 C from cuttings 24 h after the foliar application of 14 C-IAA declined with increasing age of the cuttings. Furthermore, the total amount of radioactivity recovered in the hypocotyl diminished as a function of the increasing age of cuttings, as did the proportion of radioactivity located in the hypocotyl. (author)

  13. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2018-04-01

    Full Text Available Small auxin-upregulated RNAs (SAURs are genes regulated by auxin and environmental factors. In this study, we identified a SAUR gene in wheat, TaSAUR75. Under salt stress, TaSAUR75 is downregulated in wheat roots. Subcellular localization revealed that TaSAUR75 was localized in both the cytoplasm and nucleus. Overexpression of TaSAUR75 increased drought and salt tolerance in Arabidopsis. Transgenic lines showed higher root length and survival rate and higher expression of some stress-responsive genes than control plants under salt and drought stress. Less H2O2 accumulated in transgenic lines than in control plants under drought stress. Our findings reveal a positive regulatory role of the auxin-responsive gene TaSAUR75 in plant responses to drought and salt stress and provide a candidate gene for improvement of abiotic stress tolerance in crop breeding.

  14. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene.

    Science.gov (United States)

    Kulka, Richard G

    2008-01-01

    Epiphyllous plantlets develop on leaves of Bryophyllum marnierianum when they are excised from the plant. Shortly after leaf excision, plantlet shoots develop from primordia located near the leaf margin. After the shoots have enlarged for several days, roots appear at their base. In this investigation, factors regulating plantlet root development were studied. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) abolished root formation without markedly affecting shoot growth. This suggested that auxin transport from the plantlet shoot induces root development. Excision of plantlet apical buds inhibits root development. Application of indole-3-acetic acid (IAA) in lanolin at the site of the apical buds restores root outgrowth. Naphthalene acetic acid (NAA), a synthetic auxin, reverses TIBA inhibition of plantlet root emergence on leaf explants. Both of these observations support the hypothesis that auxin, produced by the plantlet, induces root development. Exogenous ethylene causes precocious root development several days before that of a control without hormone. Ethylene treatment cannot bypass the TIBA block of root formation. Therefore, ethylene does not act downstream of auxin in root induction. However, ethylene amplifies the effects of low concentrations of NAA, which in the absence of ethylene do not induce roots. Ag(2)S(2)O(3), an ethylene blocker, and CoCl(2), an ethylene synthesis inhibitor, do not abolish plantlet root development. It is therefore unlikely that ethylene is essential for root formation. Taken together, the experiments suggest that roots develop when auxin transport from the shoot reaches a certain threshold. Ethylene may augment this effect by lowering the threshold and may come into play when the parent leaf senesces.

  15. Carbon monoxide interacts with auxin and nitric oxide to cope with iron deficiency in Arabidopsis

    Science.gov (United States)

    To clarify the roles of CO, NO and auxin in the plant response to iron deficiency and to establish how the signaling molecules interact to enhance Fe acquisition, we conducted physiological, genetic, and molecular analyses that compared the responses of various Arabidopsis mutants, including hy1 (CO...

  16. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress.

  17. Why plants need more than one type of auxin

    Czech Academy of Sciences Publication Activity Database

    Simon, Sibu; Petrášek, Jan

    2011-01-01

    Roč. 180, č. 3 (2011), s. 454-460 ISSN 0168-9452 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin * IAA * 4-Cl-IAA * IBA * PAA Subject RIV: ED - Physiology Impact factor: 2.945, year: 2011

  18. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants.

    Science.gov (United States)

    Dory, Magdalena; Hatzimasoura, Elizabeth; Kállai, Brigitta M; Nagy, Szilvia K; Jäger, Katalin; Darula, Zsuzsanna; Nádai, Tímea V; Mészáros, Tamás; López-Juez, Enrique; Barnabás, Beáta; Palme, Klaus; Bögre, László; Ditengou, Franck A; Dóczi, Róbert

    2018-01-01

    Plant growth flexibly adapts to environmental conditions, implying cross-talk between environmental signalling and developmental regulation. Here, we show that the PIN auxin efflux carrier family possesses three highly conserved putative mitogen-activated protein kinase (MAPK) sites adjacent to the phosphorylation sites of the well-characterised AGC kinase PINOID, which regulates the polar localisation of PINs and directional auxin transport, thereby underpinning organ growth. The conserved sites of PIN1 are phosphorylated in vitro by two environmentally activated MAPKs, MPK4 and MPK6. In contrast to AGC kinases, MAPK-mediated phosphorylation of PIN1 at adjacent sites leads to a partial loss of the plasma membrane localisation of PIN1. MAPK-mediated modulation of PIN trafficking may participate in environmental adjustment of plant growth. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  19. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  20. The combination effect of auxin and cytokinin on in vitro callus formation of Physalis angulata L. - A medicinal plant

    Science.gov (United States)

    Mastuti, Retno; Munawarti, Aminatun; Firdiana, Elok Rifqi

    2017-11-01

    Physalis angulata L. (Ciplukan) is one member of Solanaceae that has a potential as herbal medicine. This plant grows wild in the crop fields, forest edges, etc. However, ciplukan is increasingly difficult to find recently. In vitro callus is an alternative source to produce secondary metabolite production as well as to regenerate plants through indirect organogenesis. This study aims to identify the response of hypocotyl explants on in vitro callus formation induced by a combination of auxin and cytokinins. Two types of cytokinins, Kinetin and BAP (0.5 ppm) were combined with three types of auxin, i.e. 2.4-D, IBA and IAA, at three concentrations 0.5, 1.0 and 1.5 ppm. In all combinations of cytokinin and auxin, 50-100% of hypocotyl explants derived from in vitro seedling were able to produce callus either in a compact or watery friable texture. In MS medium supplemented with 2.4-D, callus FW (fresh weight) began to decline in the fourth week after culture. Callus FW that increased until 5 weeks of culture was obtained in medium IAA 0.5 + Kin 0.5, IBA 1.0 + Kin 0.5 and IBA 1 + BA 0.5. Almost all calli induced on a medium + Kinetin also produced roots. While medium + BAP was able to induce shoots regeneration.

  1. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae.

    Science.gov (United States)

    Lam, Hong Kiat; McAdam, Scott A M; McAdam, Erin L; Ross, John J

    2015-07-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.

    Science.gov (United States)

    Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong

    2012-03-01

    Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.

  3. Freeform TIR collimators for the removal of angular color variation in white LED spotlights

    NARCIS (Netherlands)

    Prins, C.R.; Schneider, C.; IJzerman, W.L.; Tukker, T.W.; Thije Boonkkamp, ten J.H.M.; Winston, R.; Gordon, J.

    2013-01-01

    Angular color variation in white, phosphor-converted LEDs causes undesirable yellow rings in the beams of spotlights. We developed an inverse method to design TIR collimators that remove the angular color variation for point light sources and significantly reduce color variation for extended light

  4. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1980-01-01

    to small volumes and chromatographed in CHCl3 or CCl4 solvent systems separating the chlorinated auxin from indoleacetonitrile and the methyl or ethyl esters of indoleacetic acid. Colour reaction was carried out with some of the Salkowski FeCl3 sprays of which Ehmann's FeCl3/dimethylaminobenzaldehyde......One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...

  5. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis

    Czech Academy of Sciences Publication Activity Database

    Kubeš, Martin; Yang, H.; Richter, G.L.; Cheng, Y.; Młodzińska, E.; Wang, X.; Blakeslee, J.J.; Carraro, N.; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Ann Peer, W.; Murphy, A. S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 640-654 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin transporters * ATP-binding cassette B4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.582, year: 2012

  6. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes.

    Science.gov (United States)

    Ziliotto, Fiorenza; Corso, Massimiliano; Rizzini, Fabio Massimo; Rasori, Angela; Botton, Alessandro; Bonghi, Claudio

    2012-10-09

    Auxins act as repressors of ripening inception in grape (véraison), while ethylene and abscisic acid (ABA) play a positive role as inducers of the syndrome. Despite the increasing amount of information made available on this topic, the complex network of interactions among these hormones remains elusive. In order to shed light on these aspects, a holistic approach was adopted to evaluate, at the transcriptomic level, the crosstalk between hormones in grape berries, whose ripening progression was delayed by applying naphtalenacetic acid (NAA) one week before véraison. The NAA treatment caused significant changes in the transcription rate of about 1,500 genes, indicating that auxin delayed grape berry ripening also at the transcriptional level, along with the recovery of a steady state of its intracellular concentration. Hormone indices analysis carried out with the HORMONOMETER tool suggests that biologically active concentrations of auxins were achieved throughout a homeostatic recovery. This occurred within 7 days after the treatment, during which the physiological response was mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) and action (IAA4- and IAA31-like). A strong antagonistic effect between auxin and ethylene was also observed, along with a substantial 'synergism' between auxins and ABA, although to a lesser extent. This study suggests that, in presence of altered levels of auxins, the crosstalk between hormones involves diverse mechanisms, acting at both the hormone response and biosynthesis levels, creating a complex response network.

  7. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation.

    Science.gov (United States)

    Nguyen, Hoai Nguyen; Kim, Jun Hyeok; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung

    2013-10-01

    Our results showed the histone deacetylase inhibitors (HDIs) control root development in Arabidopsis via regulation of PIN1 degradation. Epigenetic regulation plays a crucial role in the expression of many genes in response to exogenous or endogenous signals in plants as well as other organisms. One of epigenetic mechanisms is modifications of histone, such as acetylation and deacetylation, are catalyzed by histone acetyltransferase (HAT) and histone deacetylase (HDAC), respectively. The Arabidopsis HDACs, HDA6, and HDA19, were reported to function in physiological processes, including embryo development, abiotic stress response, and flowering. In this study, we demonstrated that histone deacetylase inhibitors (HDIs) inhibit primary root elongation and lateral root emergence. In response to HDIs treatment, the PIN1 protein was almost abolished in the root tip. However, the PIN1 gene did not show decreased expression in the presence of HDIs, whereas IAA genes exhibited increases in transcript levels. In contrast, we observed a stable level of gene expression of stress markers (KIN1 and COR15A) and a cell division marker (CYCB1). Taken together, these results suggest that epigenetic regulation may control auxin-mediated root development through the 26S proteasome-mediated degradation of PIN1 protein.

  8. Role of Auxin and Microclimate on the Success of Rooted Cuttings of Cocoa

    Directory of Open Access Journals (Sweden)

    Adi Prawoto

    2007-05-01

    Full Text Available In Indonesia, cocoa reproduction by cuttings is undeveloped yet because the available technology is more expensive than the other clonal reproduction methods. The success of cocoa cuttings is influenced by genetic and environmental factors. The purpose of this research is to study effect of endogenous auxin content, effects of light intensity and exogenous auxin application, on the rooted cuttings. The 2 nd research purpose is to study effects of PVP (Polyvinylpyrrolidon and IBA (β-indole-butyric acid, clones, and microclimate. The experiment was conducted in Kaliwining Experimental Station of Indonesian Coffee and Cocoa Research Institute in Jember (45 m a.s.l. and D rainfall type according to Schmidt Ferguson. The design for the 1 st experiment was splitsplit plot, replicated three times. The main plot was light intensity inside the roof, i.e.15%, 30%, and 45% to direct sun radiation. The sub plot was cocoa clones, i.e. DR 2 and ICS 13, and the sub-sub plot was IBA concentration, i.e. 0 ppm, 1500 ppm, 3000 ppm and 4500 ppm. The 2 nd experiment was designed factorial 3 x 3 of CRD, replicated 3 times. Clones of KW 163, KW 162 and KW 165, and IBA at 0, 3000, and 6000 ppm were the factors. In the same time, effect of IBA 6000 ppm, PVP 6000 ppm IBA+PVP 6000 ppm, and control were observed using KW 165 clone, and designed in complete randomized design (CRD, replicated 3 times. The result showed that auxin content of ICS 13 was higher than DR 2 (62.67 ppm vs 40.90 ppm so that gave higher rooted cuttings and more root number. Exogenous application of IBA improved auxin content of the cutting materials and promoted root growth. The optimum IBA concentration for root number was 3500 ppm. Light intensity of 45% improved number of rooted cuttings three times compared to 15%, however compared to the 2 nd research, percentage of rooted cuttings was still very low. Cocoa cutting method to gain rooted cuttings 80—90% has been obtained. The method was using

  9. Signal Diversity of Receptor for Advanced Glycation End Products.

    Science.gov (United States)

    Sakaguchi, Masakiyo; Kinoshita, Rie; Putranto, Endy Widya; Ruma, I Made Winarsa; Sumardika, I Wayan; Youyi, Chen; Tomonobu, Naoko; Yamamoto, Ken-Ichi; Murata, Hitoshi

    2017-12-01

    The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE's cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE's cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE's signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts.

  10. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    Science.gov (United States)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  11. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    Science.gov (United States)

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  12. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  13. effects of different concentrations of auxins on rooting and root

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The effect of auxins and their different concentrations on rooting and root ... primary root length and the longest primary root was recorded with the ... ceuticals, lubricants, foods, electrical insulators, .... stem cuttings of jojoba treated with IBA and NAA, .... increasing cell division and enlargement at each.

  14. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in Cabernet Sauvignon berries

    Directory of Open Access Journals (Sweden)

    Massimiliano eCorso

    2016-02-01

    Full Text Available In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigour. This study investigates the effect of M4 on Cabernet Sauvignon (CS berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behaviour of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  15. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

    Science.gov (United States)

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  16. Bulletins Aperçu sur l'adaptation : enseignements tirés de la ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    21 avr. 2016 ... Les bulletins Aperçu sur l'adaptation sont neuf études de cas issues de sept projets soutenus par le programme Adaptation aux changements climatiques en Afrique. Chaque bulletin présente les enseignements tirés de travaux de recherche exécutés avec la participation active de collectivités menacées ...

  17. Auxin inhibits endocytosis and promotes its own efflux from cells

    Czech Academy of Sciences Publication Activity Database

    Paciorek, T.; Zažímalová, Eva; Ruthardt, N.; Petrášek, Jan; Stierhof, Y. D.; Kleine-Vehn, J.; Morris, David; Emans, N.; Jürgens, G.; Geldner, N.; Friml, J.

    2005-01-01

    Roč. 435, č. 7046 (2005), s. 1251-1256 ISSN 0028-0836 R&D Projects: GA AV ČR IAA6038303 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phytohormones * polar auxin transport * plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.273, year: 2005

  18. Effects of auxins on in vitro reserve compounds of Phalaenopsis ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... division rate, which is related to auxin induction of cell proliferation (Hartig and ..... to support plant respiration and growth through the night, and several projects ... Four basic carbon partitioning strategies may occur in CAM species: ME ... their cellular and temporal expression patterns must be defined.

  19. A novel role for the TIR domain in association with pathogen-derived elicitors.

    Directory of Open Access Journals (Sweden)

    Tessa M Burch-Smith

    2007-03-01

    Full Text Available Plant innate immunity is mediated by Resistance (R proteins, which bear a striking resemblance to animal molecules of similar function. Tobacco N is a TIR-NB-LRR R gene that confers resistance to Tobacco mosaic virus, specifically the p50 helicase domain. An intriguing question is how plant R proteins recognize the presence of pathogen-derived Avirulence (Avr elicitor proteins. We have used biochemical cell fraction and immunoprecipitation in addition to confocal fluorescence microscopy of living tissue to examine the association between N and p50. Surprisingly, both N and p50 are cytoplasmic and nuclear proteins, and N's nuclear localization is required for its function. We also demonstrate an in planta association between N and p50. Further, we show that N's TIR domain is critical for this association, and indeed, it alone can associate with p50. Our results differ from current models for plant innate immunity that propose detection is mediated solely through the LRR domains of these molecules. The data we present support an intricate process of pathogen elicitor recognition by R proteins involving multiple subcellular compartments and the formation of multiple protein complexes.

  20. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus

    Directory of Open Access Journals (Sweden)

    Hongtao Cheng

    2017-05-01

    Full Text Available Oilseed rape (Brassica napus L. is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions. However, the mechanisms underlying the regulation of branch angle are still largely not understood. Two oilseed rape lines with significantly different branch angles were used to conduct RNA- and miRNA-profiling at two developmental stages, identifying differential expression of a large number of genes involved in auxin- and brassinosteroid (BR-related pathways. Many auxin response genes, including AUX1, IAA, GH3, and ARF, were enriched in the compact line. However, a number of genes involved in BR signaling transduction and biosynthesis were down-regulated. Differentially expressed miRNAs included those involved in auxin signaling transduction. Expression patterns of most target genes were fine-tuned by related miRNAs, such as miR156, miR172, and miR319. Some miRNAs were found to be differentially expressed at both developmental stages, including three miR827 members. Our results provide insight that auxin- and BR-signaling may play a pivotal role in branch angle regulation.

  1. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth

    NARCIS (Netherlands)

    Ivanchenko, Maria G.; den Os, Desiree; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednarova, Andrea; Krishnan, Natraj

    2013-01-01

    The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Wild-type and

  2. Auxin is required for pollination-induced ovary growth in Dendrobium orchids

    NARCIS (Netherlands)

    Ketsa, S.; Wisutiamonkul, A.; Doorn, van W.G.

    2006-01-01

    In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist ¿-(p-chlorophenoxy)

  3. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  4. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.

    Science.gov (United States)

    Palovaara, Joakim; Hallberg, Henrik; Stasolla, Claudio; Luit, Bert; Hakman, Inger

    2010-04-01

    In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.

  5. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    Science.gov (United States)

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA

    Czech Academy of Sciences Publication Activity Database

    Brcko, A.; Pěnčík, Aleš; Magnus, V.; Prebeg, T.; Mlinaric, S.; Antunovic, J.; Lepeduš, H.; Cesar, V.; Strnad, Miroslav; Rolčík, Jakub; Salopek-Sondi, B.

    2012-01-01

    Roč. 31, č. 1 (2012), s. 63-78 ISSN 0721-7595 R&D Projects: GA AV ČR KAN200380801 Keywords : Auxin * Indole-3-acetic acid * Amide conjugates * Christmas rose * Helleborus niger L. * Flower and fruit development * Perianth greening * Peduncle elongation * Vascular system Subject RIV: EF - Botanics Impact factor: 1.990, year: 2012

  7. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus

    2012-01-01

    , the glucagon receptor, and the receptors for parathyroid hormone (PTHR1 and PTHR2). The dysregulation of several family B1 receptors is involved in diseases, such as diabetes, chronic inflammation, and osteoporosis which underlines the pathophysiological importance of this GPCR subfamily. In spite of this......, investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality......The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades...

  8. Control of cytokinin and auxin homeostasis in cyanobacteria and algae

    Czech Academy of Sciences Publication Activity Database

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre; Přibyl, Pavel; Šimura, J.; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    Roč. 119, č. 1 (2017), s. 151-166 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : solid-phase extraction * performance liquid-chromatography * yucca flavin monooxygenases * tandem mass-spectrometry * abscisic-acid * arabidopsis-thaliana * indole-3-acetic-acid iaa * endogenous cytokinins * chlorella-vulgaris * phenylacetic acid * Cytokinin * auxin * cyanobacteria * algae * metabolism * cytokinin oxidase/dehydrogenase * cytokinin 2-methylthioderivatives * trans-zeatin * indole-3-acetic acid * tRNA Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  9. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    Science.gov (United States)

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Isatin as an auxin source favoring floral and vegetative shoot regeneration from calli produced by thin layer explants of tomato pedicel

    Science.gov (United States)

    Applewhite, P. B.; K-Sawhney, R.; Galston, A. W.

    1994-01-01

    Thin layer explants taken from the pedicels and peduncles of flowering tomato plants yielded calli with great organogenetic potential. Of the 15 cultivars tested, 7 regenerated roots, shoots and eventually entire fruit-bearing plants. Calli grown on modified Murashige-Skoog medium responded to varied auxins and cytokinins with different morphogenetic patterns. Thus, naphthaleneacetic acid yielded root-producing calli, while the auxin precursor isatin (indole 2,3-dione) caused the production of calli with vegetative and floral shoots, rarely yielding roots. This may be related to isatin's slow, steady conversion to an active auxin (Plant Physiol 41:1485-1488, 1966) in contrast with naphthaleneacetic acid's immediate presentation of a high level of active auxin. The highest incidence of vegetative shoot (100%) and flower (50%) formation was obtained with 10 micromoles isatin and 3 micromoles zeatin. A few of the flowers developed into ripe fruits. The high frequency of induction of vegetative shoots and flowers before roots with isatin suggests its utility in micropropagation from plant tissue cultures.

  12. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Böttcher, Kerstin; Chaudhry, Amarjit; Kroemer, Heyo K; Schuetz, Erin G; Kim, Richard B

    2010-11-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is a liver-enriched transporter involved in the hepatocellular uptake of many endogenous molecules and several structurally divergent drugs in clinical use. Although OATP1B1 coding region polymorphisms are known to make an impact on substrate drug disposition in humans, little is known regarding the mechanisms underlying the transcriptional regulation of this transporter. In this study, we note that messenger RNA (mRNA) expression of OATP1B1 in a large human liver bank exhibited marked interindividual variability that was not associated with coding region polymorphisms. Accordingly, we hypothesized that such variability in expression is reflective of nuclear receptor-mediated transcriptional regulation of this transporter. We tested prototypical ligands for the nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), liver X receptor (LXR) α, and farnesoid X receptor (FXR) in a human hepatoma-derived cell line and noted induction of OATP1B1 mRNA when the cells were treated with LXRα or FXR ligands. To confirm a direct role for LXRα and FXR to OATP1B1 expression, we performed detailed promoter analysis and cell-based reporter gene assays resulting in the identification of two functional FXR response elements and one LXRα response element. The direct interaction between nuclear receptors with the identified response elements was assessed using chromatin immunoprecipitation assays. Using isolated primary human hepatocytes, we show that LXRα or FXR agonists, but not PXR or CAR agonists, are capable of OATP1B1 induction. We note that OATP1B1 transcriptional regulation is under dual nuclear receptor control through the oxysterol sensing LXRα and the bile acid sensor FXR. Accordingly, the interplay between OATP1B1 and nuclear receptors may play an important and heretofore unrecognized role during cholestasis, drug-induced liver injury, and OATP1B1 induction-related drug interactions.

  13. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  14. Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil

    Czech Academy of Sciences Publication Activity Database

    Yokoya, N. S.; Stirk, W. A.; van Staden, J.; Novák, Ondřej; Turečková, Veronika; Pěnčík, Aleš; Strnad, Miroslav

    2010-01-01

    Roč. 46, č. 6 (2010), s. 1198-1205 ISSN 0022-3646 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : ENDOGENOUS * CYTOKININS * AUXINS * ABSCISIC ACID * RED * ALGAE * BRAZIL Subject RIV: EF - Botanics Impact factor: 2.239, year: 2010

  15. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum.

    Science.gov (United States)

    Wu, Jian; Wang, Feiyan; Cheng, Lin; Kong, Fuling; Peng, Zhen; Liu, Songyu; Yu, Xiaolin; Lu, Gang

    2011-11-01

    Auxin response factors (ARFs) encode transcriptional factors that bind specifically to the TGTCTC-containing auxin response elements found in the promoters of primary/early auxin response genes that regulate plant development. In this study, investigation of the tomato genome revealed 21 putative functional ARF genes (SlARFs), a number comparable to that found in Arabidopsis (23) and rice (25). The full cDNA sequences of 15 novel SlARFs were isolated and delineated by sequencing of PCR products. A comprehensive genome-wide analysis of this gene family is presented, including the gene structures, chromosome locations, phylogeny, and conserved motifs. In addition, a comparative analysis between ARF family genes in tomato and maize was performed. A phylogenetic tree generated from alignments of the full-length protein sequences of 21 OsARFs, 23 AtARFs, 31 ZmARFs, and 21 SlARFs revealed that these ARFs were clustered into four major groups. However, we could not find homologous genes in rice, maize, or tomato with AtARF12-15 and AtARF20-23. The expression patterns of tomato ARF genes were analyzed by quantitative real-time PCR. Our comparative analysis will help to define possible functions for many of these newly isolated ARF-family genes in plant development.

  16. Effect of auxin on xylem tracheids differentiation in decapitated stems of Pinus silvestris L. and its interaction with some vitamins and growth regulators

    Directory of Open Access Journals (Sweden)

    T. J. Wodzicki

    2015-01-01

    Full Text Available The effects of several vitamins and substances known as important agents in regulation of cell metabolism upon secondary xylem differentiation were studied in interaction with auxin (IAA as applied in lanoline to decapitated stems of 5-year-old Pinus silvestris trees in early and late-summer. Tested substances were: gibberellic acid, kinetin, nicotinic acid, thiamine, pyridoxine, calcium panthotenate, choline chloride, riboflavin, inositol, ascorbic acid, vitamin, A (alcohol, vitamin A (ester, saponin. None of the effects of these substances appeared significant enough to indicate the involvement in the seasonal variation of the response of cambium or differentiating tracheids to auxin. However, several effects, especially those of inositol, vitamin A and pyridoxine upon cambial xylem production and further stages of tracheid differentiation were observed. Auxin (IAA affected cambial activity and subsequent differentiation of tracheids during the earliest stages of cell ontogenesis. At these stages auxin treatment induced quantitative expression of the developmental processes involving radial growth and secondary wall formation by tracheids. In this respect, auxin did not affect cells advanced in differentiation, however, it proved to be an essential factor in the completion of the full cycle of tracheid ontogenesis.

  17. Evolution and structural diversification of PILS putative auxin carriers in plants

    Czech Academy of Sciences Publication Activity Database

    Feraru, E.; Vosolsobě, S.; Feraru, M.; Petrášek, Jan; Kleine-Vehn, J.

    2012-01-01

    Roč. 3, č. 227 (2012) ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP305/11/2476 Institutional support: RVO:61389030 Keywords : PILS proteins * auxin * evolution Subject RIV: EB - Genetics ; Molecular Biology http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470039/pdf/fpls-03-00227.pdf

  18. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    Science.gov (United States)

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  19. Transcriptomic and Hormonal Analyses Reveal that YUC-Mediated Auxin Biogenesis Is Involved in Shoot Regeneration from Rhizome in Cymbidium.

    Science.gov (United States)

    Liu, Yang; Zhang, Hai-Liang; Guo, He-Rong; Xie, Li; Zeng, Rui-Zhen; Zhang, Xiang-Qian; Zhang, Zhi-Sheng

    2017-01-01

    Cymbidium , one of the most important orchid genera in horticulture, can be classified into epiphytic and terrestrial species. Generally, epiphytic Cymbidium seedlings can be easily propagated by tissue culture, but terrestrial seedlings are difficult to propagate. To date, the molecular mechanisms underlying the differences in the ease with which terrestrial and epiphytic cymbidiums can be propagated are largely unknown. Using RNA-sequencing, quantitative reverse transcription PCR and enzyme-linked immunosorbent assay, Cymbidium 'Xiaofeng' (CXF), which can be efficiently micropropagated, and terrestrial Cymbidium sinense 'Qijianbaimo' (CSQ), which has a low regeneration ability, were used to explore the molecular mechanisms underlying the micropropagation ability of Cymbidium species. To this end, 447 million clean short reads were generated, and 31,264 annotated unigenes were obtained from 10 cDNA libraries. A total of 1,290 differentially expressed genes (DEGs) were identified between CXF and CSQ during shoot induction. Gene ontology (GO) enrichment analysis indicated that the DEGs were significantly enriched in auxin pathway-related GO terms. Further analysis demonstrated that YUC and GH3 family genes, which play crucial roles in the regulation of auxin/IAA (indole-3-acetic acid) metabolism, acted quickly in response to shoot induction culture in vitro and were closely correlated with variation in shoot regeneration between CXF and CSQ. In addition, the study showed that IAA accumulated rapidly and significantly during shoot induction in CXF compared to that in CSQ; in contrast, no significant changes in other hormones were observed between CXF and CSQ. Furthermore, shoot regeneration in CXF was inhibited by a yucasin-auxin biosynthesis inhibitor, indicating that increased IAA level is required for high-frequency shoot regeneration in CXF. In conclusion, our study revealed that YUC-mediated auxin biogenesis is involved in shoot regeneration from rhizome in

  20. Transcriptomic and Hormonal Analyses Reveal that YUC-Mediated Auxin Biogenesis Is Involved in Shoot Regeneration from Rhizome in Cymbidium

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-10-01

    Full Text Available Cymbidium, one of the most important orchid genera in horticulture, can be classified into epiphytic and terrestrial species. Generally, epiphytic Cymbidium seedlings can be easily propagated by tissue culture, but terrestrial seedlings are difficult to propagate. To date, the molecular mechanisms underlying the differences in the ease with which terrestrial and epiphytic cymbidiums can be propagated are largely unknown. Using RNA-sequencing, quantitative reverse transcription PCR and enzyme-linked immunosorbent assay, Cymbidium ‘Xiaofeng’ (CXF, which can be efficiently micropropagated, and terrestrial Cymbidium sinense ‘Qijianbaimo’ (CSQ, which has a low regeneration ability, were used to explore the molecular mechanisms underlying the micropropagation ability of Cymbidium species. To this end, 447 million clean short reads were generated, and 31,264 annotated unigenes were obtained from 10 cDNA libraries. A total of 1,290 differentially expressed genes (DEGs were identified between CXF and CSQ during shoot induction. Gene ontology (GO enrichment analysis indicated that the DEGs were significantly enriched in auxin pathway-related GO terms. Further analysis demonstrated that YUC and GH3 family genes, which play crucial roles in the regulation of auxin/IAA (indole-3-acetic acid metabolism, acted quickly in response to shoot induction culture in vitro and were closely correlated with variation in shoot regeneration between CXF and CSQ. In addition, the study showed that IAA accumulated rapidly and significantly during shoot induction in CXF compared to that in CSQ; in contrast, no significant changes in other hormones were observed between CXF and CSQ. Furthermore, shoot regeneration in CXF was inhibited by a yucasin-auxin biosynthesis inhibitor, indicating that increased IAA level is required for high-frequency shoot regeneration in CXF. In conclusion, our study revealed that YUC-mediated auxin biogenesis is involved in shoot

  1. Homologous histamine H1 receptor desensitization results in reduction of H1 receptor agonist efficacy

    NARCIS (Netherlands)

    Leurs, R; Smit, M J; Bast, A; Timmerman, H

    1991-01-01

    Prolonged exposure of the guinea-pig intestinal longitudinal smooth muscle to histamine caused homologous desensitization of the H1 receptor, which led to reduced H1 receptor-mediated production of [3H]inositol phosphates as well as to reduced H1 agonist-induced contractions. [3H]Mepyramine binding

  2. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  3. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

    Science.gov (United States)

    Zhao, Lan-Xue; Ge, Yan-Hui; Xiong, Cai-Hong; Tang, Ling; Yan, Ying-Hui; Law, Ping-Yee; Qiu, Yu; Chen, Hong-Zhuan

    2018-03-06

    M1 muscarinic acetylcholine receptors (M1 mAChRs) are the most abundant muscarinic receptors in the hippocampus and have been shown to have procognitive effects. AMPA receptors (AMPARs), an important subtype of ionotropic glutamate receptors, are key components in neurocognitive networks. However, the role of AMPARs in procognitive effects of M1 mAChRs and how M1 mAChRs affect the function of AMPARs remain poorly understood. Here, we found that basal expression of GluA1, a subunit of AMPARs, and its phosphorylation at Ser845 were maintained by M1 mAChR activity. Activation of M1 mAChRs promoted membrane insertion of GluA1, especially to postsynaptic densities. Impairment of hippocampus-dependent learning and memory by antagonism of M1 mAChRs paralleled the reduction of GluA1 expression, and improvement of learning and memory by activation of M1 mAChRs was accompanied by the synaptic insertion of GluA1 and its increased phosphorylation at Ser845. Furthermore, abrogation of phosphorylation of Ser845 residue of GluA1 ablated M1 mAChR-mediated improvement of learning and memory. Taken together, these results show a functional correlation of M1 mAChRs and GluA1 and the essential role of GluA1 in M1 mAChR-mediated cognitive improvement.-Zhao, L.-X., Ge, Y.-H., Xiong, C.-H., Tang, L., Yan, Y.-H., Law, P.-Y., Qiu, Y., Chen, H.-Z. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

  4. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk.In this work, we investigated the molecular effects of exogenous phyto-hormones to photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of some (IAA or most (GA photoreceptor genes is down regulated by these hormones.Our results highlight the presence of molecular relationships among cryptochrome 1a protein, hormones, and photoreceptors' gene expression in tomato, suggesting that manipulation of cryptochromes could represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive mechanism.

  5. Psychopharmacology of 5-HT1A receptors

    International Nuclear Information System (INIS)

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  6. PIN proteins perform a rate-limiting function in cellular auxin efflux

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Mravec, J.; Bouchard, R.; Blakeslee, J.J.; Abas, M.; Seifertová, Daniela; Wisniewska, J.; Tadele, Z.; Kubeš, Martin; Čovanová, Milada; Dhonukshe, P.; Skůpa, Petr; Benková, E.; Perry, Lucie; Křeček, Pavel; Lee, O.R.; Fink, G.R.; Geisler, M.; Murphy, A.S.; Luschnig, C.; Zažímalová, Eva; Friml, J.

    2006-01-01

    Roč. 312, č. 5775 (2006), s. 914-918 ISSN 0036-8075 R&D Projects: GA AV ČR IAA6038303; GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin transport * PIN proteins * PGP transporters * MDR Subject RIV: ED - Physiology Impact factor: 30.028, year: 2006

  7. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity

    Directory of Open Access Journals (Sweden)

    Katharina eHeidrich

    2013-10-01

    Full Text Available In plant effector-triggered immunity (ETI, intracellular nucleotide binding-leucine rich repeat (NLR receptors are activated by specific pathogen effectors. The Arabidopsis TIR (Toll Interleukin1 receptor domain-NLR (denoted TNL gene pair, RPS4 and RRS1, confers resistance to Pseudomonas syringae pv tomato (Pst strain DC3000 expressing the Type III-secreted effector, AvrRps4. Nuclear accumulation of AvrRps4, RPS4 and the TNL resistance regulator EDS1 is necessary for ETI. RRS1 possesses a C-terminal ‘WRKY’ transcription factor DNA binding domain suggesting that important RPS4/RRS1 recognition and/or resistance signaling events occur at the nuclear chromatin. In Arabidopsis accession Ws-0, the RPS4Ws/RRS1Ws allelic pair governs resistance to Pst/AvrRps4 accompanied by host programmed cell death (pcd. In accession Col-0, RPS4Col/RRS1Col effectively limits Pst/AvrRps4 growth without pcd. Constitutive expression of HA-StrepII tagged RPS4Col (in a 35S:RPS4-HS line confers temperature conditioned EDS1-dependent auto-immunity. Here we show that a high (28oC, non-permissive to moderate (19oC, permissive temperature shift of 35S:RPS4-HS plants can be used to follow defense-related transcriptional dynamics without a pathogen effector trigger. By comparing responses of 35S:RPS4-HS with 35S:RPS4-HS rrs1-11 and 35S:RPS4-HS eds1-2 mutants, we establish that RPS4Col auto-immunity depends entirely on EDS1 and partially on RRS1Col. Examination of gene expression microarray data over 24h after temperature shift reveals a mainly quantitative RRS1Col contribution to up- or down-regulation of a small subset of RPS4Col-reprogrammed, EDS1-dependent genes. We find significant over-representation of WRKY transcription factor binding W-box cis-elements within the promoters of these genes. Our data show that RRS1Col contributes to temperature-conditioned RPS4Col auto-immunity and are consistent with activated RPS4Col engaging RRS1Col for resistance signaling.

  8. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  9. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    Science.gov (United States)

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  10. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development

    OpenAIRE

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-01-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stre...

  11. [Auxin synthesis by the higher fungus Lentinus edodes (Berk.) Sing in the presence of low concentrations of indole compounds].

    Science.gov (United States)

    Tsivileva, O M; Loshchinina, E A; Makarov, O E; Nikitina, V E

    2012-01-01

    The auxin formation in a submerged culture of the xylotrophic basidiomycete Lentinus edodes (Berk.) Sing (Lentinula edodes (Berk.) Pegler) (shiitake) is studied. Biologically active substances of an indole nature are identified, "the effect of small doses" of which lies in not only the stimulation of growth of the mycelium (indole-3-acetic acid, 2 x 10(-7)-2 x 10(-4) g/l), but also in the induction of tryptophan-independent paths of auxin biosynthesis. The above-mentioned path is realized in the presence of exogenous indole (1 x 10(-3)-1 x 10(-4) g/l), as well as while inducing the biosynthesis of indole-3-acetic acid by its microadditives (1 x 10(-5)-1 x 10(-8) g/l), and is accompanied by the formation of anthranilic acid (up to 1.5 mg/l). Induction of the generative development stage ofshiitake by indole derivatives is revealed. It was found that among the studied compounds only indoleacetamide at a concentration of an order of x 10(-4) g/l in the culture fluid of L. edodes had a pronounced stimulatory effect on the formation of shiitake's brown mycelial film.

  12. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.

    Science.gov (United States)

    Chen, Jingxin; Mao, Linchun; Lu, Wenjing; Ying, Tiejin; Luo, Zisheng

    2016-01-01

    Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit. The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17% of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones' signaling pathways and thus might be the cross-talk points of both hormones.

  13. Determination of HIV-1 co-receptor usage.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly the β-chemokine receptor 5 (CCR5) and the α-chemokine receptor 4 (CXCR4). Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. In this chapter, methods to determine the co-receptor usage of HIV-1 variants are described.

  14. Auxin and plant morphogenesis - a model of regulation

    Directory of Open Access Journals (Sweden)

    Stefan Zajączkowski

    2015-01-01

    Full Text Available In the presented model cells of the plant body form a spatial medium in which three-dimensional morphogenic waves of auxin are propagated. Points in the same phase of oscillation form isophasic surfaces and the vectors of wave propagation form a three-dimensional vector field. The vectors in the case of local inhomogeneities of the medium deviate from organ polarity, providing positional information recognized by cells. Models of functioning of such a supracellular oscillatory system in regulation of tissue differentiation, tropic responses and plant form are discussed.

  15. Auxin-BR Interaction Regulates Plant Growth and Development

    Science.gov (United States)

    Tian, Huiyu; Lv, Bingsheng; Ding, Tingting; Bai, Mingyi; Ding, Zhaojun

    2018-01-01

    Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones. PMID:29403511

  16. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Sofiya Fedosyuk

    2016-12-01

    Full Text Available Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83 structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240, we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.

  17. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy

  18. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    Science.gov (United States)

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Evaluation of Relationship Between Auxin and Cytokinine Hormones on Yield and Yield Components of Maize under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    A Mahrokh

    2016-10-01

    , Karaj, Iran, in 2013. Indole-3-butyric acid and N6-benzyladenin were used as auxin and cytokinin hormones, respectively. Concentration of auxine and cytokinine hormones were 10 and 50 mg per liter, respectively. Harvesting was done from 4.5 m2 at field maturity stage with 14 % grain moisture for estimating grain yield and yield components. SAS software (version 9.1 was used for statistical analysis. Traits means were compared by Duncan's multiple range tests in 5% probably level. Results and Discussion Drought stress effect was significant (P≤0.01 for ear number per plant, row/ear, grain number per m2, 1000 kernels weight and grain yield and it wasn’t significant for kernels/row. Spraying cytokinine hormone was significant (P≤0.01 on ear number per plant, row/ear, grain number per m2 and it was also (P≤0.05 significant for 1000 kernels weight but it wasn’t significant for kernels/row and grain yield. Spraying auxine hormone was significant (P≤0.01 for1000 kernels weight and grain yield and it wasn’t significant forother yield components. The maximum yield was obtained 12.80 and 12.24 tons per hectare in non-stress environment and using auxin hormone in silk emergence stage, respectively. Grain yield was decreased 49.21% under reproductive drought stress and grain yield difference between non drought stress and vegetative drought stress was not significant. Spraying cytokinine hormone increased ear number by 10% in V8-V10 stage. The maximum row/ear was 16.16 kernels per row which was obtained by spraying cytokinine hormone in V8-V10 stage. Spraying cytokinine hormone increased grain number per m2 up to 20.75% in V8-V10 stage but it decreased 1000 kernels weight up to 13.76% in the same stage. The maximum 1000 kernels weight was 313.87 gr that was obtained by spraying auxine hormone in silk emergence stage. Spraying auxine hormone increased grain yield up to 23.38% in silk emergence stage. Conclusions Based on the results of this experiment, maize was

  20. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  1. Influence of the origin of stem cutting, season of collection and auxin ...

    African Journals Online (AJOL)

    Influence of the origin of stem cutting, season of collection and auxin application on the vegetative propagation of African Sandalwood ( Osyris lanceolata ) in Tanzania: scientific paper. ... The high nutrition status and low nitrogen content of basal portions may play a role in enhancing their performance. Thus when raising O.

  2. Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15

    Directory of Open Access Journals (Sweden)

    Jinlan Wang

    2016-05-01

    Full Text Available Toll-like receptors (TLRs play important role in the innate immune system. TLR15 is reported to have a unique role in defense against pathogens, but its structural and evolution characterizations are still poorly understood. In this study, we identified 57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into an individual clade and was closely related to family 1 on the phylogenetic tree. Unlike the TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain had a highly evolutionarily conserved region on the convex surface of LRR11 module, which is probably involved in TLR15 activation process. Furthermore, the protein–protein docking analysis indicated that TLR15 TIR domains have the potential to form homodimers, the predicted interaction interface of TIR dimer was formed mainly by residues from the BB-loops and αC-helixes. Although TLR15 mainly underwent purifying selection, we detected 27 sites under positive selection for TLR15, 24 of which are located on its ectodomain. Our observations suggest the structural features of TLR15 which may be relevant to its function, but which requires further experimental validation.

  3. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    Science.gov (United States)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  4. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    Science.gov (United States)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  5. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  6. Lateral root formation and the multiple roles of auxin.

    Science.gov (United States)

    Du, Yujuan; Scheres, Ben

    2018-01-04

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  8. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja

    2015-01-01

    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes......, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress...

  9. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Pěnčík, Aleš; Casanova-Sáez, R.; Pilařová, V.; Žukauskaitė, Asta; Pinto, R.; Micol, J.L.; Ljung, K.; Novák, Ondřej

    2018-01-01

    Roč. 69, č. 10 (2018), s. 2569-2579 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GJ17-21581Y Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * auxin * metabolite profiling * multivariate data analysis * mutant * screening Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  10. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  11. Neurokinin-1 receptor activation in globus pallidus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2009-10-01

    Full Text Available The undecapeptide substance P has been demonstrated to modulate neuronal activity in a number of brain regions by acting on neurokinin-1 receptors. Anatomical studies revealed a moderate level of neurokinin-1 receptor in rat globus pallidus. To determine the electrophysiological effects of neurokinin-1 receptor activation in globus pallidus, whole-cell patch-clamp recordings were performed in the present study. Under current-clamp recordings, neurokinin-1 receptor agonist, [Sar9, Met(O211] substance P (SM-SP at 1 μM, depolarized globus pallidus neurons and increased their firing rate. Consistently, SM-SP induced an inward current under voltage-clamp recording. The depolarization evoked by SM-SP persisted in the presence of tetrodotoxin, glutamate and GABA receptor antagonists, indicating its direct postsynaptic effects. The neurokinin-1 receptor antagonist, SR140333B, could block SM-SP-induced depolarization. Further experiments showed that suppression of potassium conductance was the predominant ionic mechanism of SM-SP-induced depolarization. To determine if neurokinin-1 receptor activation exerts any effects on GABAergic and glutamatergic neurotransmission, the action of SM-SP on synaptic currents was studied. SM-SP significantly increased the frequency of spontaneous inhibitory postsynaptic currents, but only induced a transient increase in the frequency of miniature inhibitory postsynaptic currents. No change was observed in both spontaneous and miniature excitatory postsynaptic currents. Based on the direct excitatory effects of SM-SP on pallidal neurons, we hypothesize that neurokinin-1 receptor activation in globus pallidus may be involved in the beneficial effect of substance P in Parkinson’s disease.

  12. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation.

    Science.gov (United States)

    Dominov, J A; Stenzler, L; Lee, S; Schwarz, J J; Leisner, S; Howell, S H

    1992-01-01

    Both cytokinin (N6-benzyladenine [BA]) and auxin (2,4-dichlorophenoxyacetic acid [2,4-D]) stimulate the accumulation of an mRNA, represented by the cDNA pLS216, in Nicotiana plumbaginifolia suspension culture cells. The kinetics of RNA accumulation were different for the two hormones; however, the response to both was transient, and the magnitude of the response was dose dependent. Runoff transcription experiments demonstrated that the transient appearance of the RNA could be accounted for by feedback regulation of transcription and not by the induction of an RNA degradation system. The feedback mechanism appeared to desensitize the cells to further exposure of the hormone. In particular, cells became refractory to the subsequent addition of 2,4-D after the initial RNA accumulation response subsided. A very different response was observed when the second hormone was added to cells that had been desensitized to the first hormone. Under such conditions, BA produced a heightened response in cells desensitized to 2,4-D and vice versa. These findings support a model in which cytokinin further enhances the auxin response or prevents its feedback inhibition. The hormone-induced RNA accumulation was blocked by the protein kinase inhibitor staurosporin. On the other hand, the protein phosphatase inhibitor okadaic acid stimulated expression, and, in particular, okadaic acid was able to stimulate RNA accumulation in cells desensitized to auxin. This suggests that hormone activation involves phosphorylation of critical proteins on the hormone signaling pathway, whereas feedback inhibition may involve dephosphorylation of these proteins. The sequence of pLS216 is similar to genes in other plants that are stimulated by multiple agonists such as auxins, elicitors, and heavy metals, and to the gene encoding the stringent starvation protein in Escherichia coli. It is proposed that this gene family in various plants be called multiple stimulus response (msr) genes. PMID:1498603

  13. Psychopharmacology of 5-HT{sub 1A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, Philip J

    2000-07-01

    Serotonin{sub 1A} (5-HT{sub 1A}) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT{sub 1A} receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT{sub 1A} receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT{sub 1A} receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT{sub 1A} receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT{sub 1A} receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT{sub 1A} autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT{sub 1A} receptor antagonists.

  14. Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marie; Motyka, Václav; Dobrev, Petre; Malbeck, Jiří; Gaudinová, Alena

    2005-01-01

    Roč. 56, č. 421 (2005), s. 2877-2883 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * auxin * cytokinin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.336, year: 2005

  15. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.

    Science.gov (United States)

    Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation ( Dianthus caryophyllus ) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, "2101-02 MFR" and "2003 R 8", as well as in the reference cultivar "Master". We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the "2003 R 8" cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of "2003 R 8". Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  16. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin.

    Science.gov (United States)

    Schepetilnikov, Mikhail; Makarian, Joelle; Srour, Ola; Geldreich, Angèle; Yang, Zhenbiao; Chicher, Johana; Hammann, Philippe; Ryabova, Lyubov A

    2017-04-03

    Target of rapamycin (TOR) promotes reinitiation at upstream ORFs (uORFs) in genes that play important roles in stem cell regulation and organogenesis in plants. Here, we report that the small GTPase ROP2, if activated by the phytohormone auxin, promotes activation of TOR, and thus translation reinitiation of uORF-containing mRNAs. Plants with high levels of active ROP2, including those expressing constitutively active ROP2 (CA-ROP2), contain high levels of active TOR ROP2 physically interacts with and, when GTP-bound, activates TOR in vitro TOR activation in response to auxin is abolished in ROP-deficient rop2 rop6 ROP4 RNAi plants. GFP-TOR can associate with endosome-like structures in ROP2-overexpressing plants, indicating that endosomes mediate ROP2 effects on TOR activation. CA-ROP2 is efficient in loading uORF-containing mRNAs onto polysomes and stimulates translation in protoplasts, and both processes are sensitive to TOR inhibitor AZD-8055. TOR inactivation abolishes ROP2 regulation of translation reinitiation, but not its effects on cytoskeleton or intracellular trafficking. These findings imply a mode of translation control whereby, as an upstream effector of TOR, ROP2 coordinates TOR function in translation reinitiation pathways in response to auxin. © 2017 The Authors.

  17. Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis

    Czech Academy of Sciences Publication Activity Database

    Stirk, W.A.; Novák, Ondřej; Hradecká, Veronika; Pěnčík, Aleš; Rolčík, Jakub; Strnad, Miroslav; van Staden, J.

    2009-01-01

    Roč. 44, č. 2 (2009), s. 231-240 ISSN 0967-0262 R&D Projects: GA ČR GA206/05/0894 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * auxins * cytokinins Subject RIV: BO - Biophysics Impact factor: 1.556, year: 2009 www.informaworld.com/smpp/content~content=a911046981

  18. Study of Cytokinin and Auxin Hormones and Planting Pattern Effects on Yield and Yield Components of Grain Maize (Zea mays L. under Saline Conditions

    Directory of Open Access Journals (Sweden)

    D Davani

    2016-07-01

    concentration of 50 and 10 g. l-1, respectively. All morphological and yield component traits measured on 10 randomly selected plants of each plot. Yield was measured in 9 m2 for each treatment. Data analyzed using the SAS (Ver.9.1 and comparing of the means was conducted using Duncan’s multiple range test. Results and Discussion Results showed that the planting pattern had a significant effect on plant height, ear (cob length, ear diameter, kernel row number, per ear, kernel number per row, 1000- kernel weight, biological yield, grain yield and harvest index. The highest and the lowest yield obtained through furrow planting and conventional planting, respectively. Applying furrow planting, resulted in water use improvement and reducing side effects of saline soils Cytokinin application in V8- V10 stage produced the highest plant height and row number per ear and the highest 1000- kernel weight and harvest index was belong to the application of cytokinin in V8- V10 stage. The maximum kernel number per row was obtained without cytokinin. Auxin effect on 1000- kernel weight, biological yield, grain yield and harvest index were significant (p≤0.01. The highest grain yield by a mean of 6.57 tons.ha-1 produced by time of auxin foliar-applied in the silking stage. It has been found that both auxin and cytokinin may have a role in mediating cell division in the endosperm during the grain-filling stage. Therefore, these hormones might regulate the grain capacity (sink size for the accumulation of carbohydrates. It has been found that IAA actively participated in the mobilization and accumulation of carbohydrates in seeds. Auxin and cytokinins hormones are also thought to be involved in regulating the sink strength either by mediating the division and enlargement of endosperm cells or by controlling the import of assimilates to the sink. Conclusions The results indicated that the foliar application of cytokinine and auxin hormones counteracted some of the salt induced adverse

  19. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    Science.gov (United States)

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  20. CRF1 receptor-deficiency increases cocaine reward.

    Science.gov (United States)

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response.

    Science.gov (United States)

    Rodrigues, Carolina M; de Souza, Alessandra A; Takita, Marco A; Kishi, Luciano T; Machado, Marcos A

    2013-10-03

    Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen.

  2. TRAM is involved in IL-18 signaling and functions as a sorting adaptor for MyD88.

    Directory of Open Access Journals (Sweden)

    Hidenori Ohnishi

    Full Text Available MyD88, a Toll/interleukin-1 receptor homology (TIR domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.

  3. α1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens.

    Science.gov (United States)

    Mitrano, Darlene A; Jackson, Kelsey; Finley, Samantha; Seeley, Allison

    2018-02-10

    The α1-adrenergic receptors1ARs) have been implicated in numerous actions of the brain, including attention and wakefulness. Additionally, they have been identified as contributing to disorders of the brain, such as drug addiction, and recent work has shown a role of these receptors in relapse to psychostimulants. While some functionality is known, the actual subcellular localization of the subtypes of the α1ARs remains to be elucidated. Further, their anatomical relationship to receptors for other neurotransmitters, such as dopamine (DA), remains unclear. Therefore, using immunohistochemistry and electron microscopy techniques, this study describes the subcellular localization of the α1b-adrenergic receptor1bAR), the subtype most tied to relapse behaviors, as well as its relationship to the D1-dopamine receptor (D1R) in both the shell and core of the rat nucleus accumbens (NAc). Overall, α1bARs were found in unmyelinated axons and axon terminals with some labeling in dendrites. In accordance with other studies of the striatum, the D1R was found mainly in dendrites and spines; therefore, colocalization of the D1R with the α1bAR was rare postsynaptically. However, in the NAc shell, when the receptors were co-expressed in the same neuronal elements there was a trend for both receptors to be found on the plasma membrane, as opposed to the intracellular compartment. This study provides valuable anatomical information about the α1bAR and its relationship to the D1R and the regulation of DA and norepinephrine (NE) neurotransmission in the brain which have been examined previously. Published by Elsevier Ltd.

  4. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  5. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    Science.gov (United States)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  6. Both nuclear and cytoplasmic components are defective in oocytes of the B6.Y(TIR) sex-reversed female mouse.

    Science.gov (United States)

    Amleh, A; Smith, L; Chen, H; Taketo, T

    2000-03-15

    In the mammalian gonadal primordium, activation of the Sry gene on the Y chromosome initiates a cascade of genetic events leading to testicular organization whereas its absence results in ovarian differentiation. An exception occurs when the Y chromosome of Mus musculus domesticus from Tirano, Italy (Y(TIR)), is placed on the C57BL/6J (B6) genetic background. The B6.Y(TIR) progeny develop only ovaries or ovotestes despite Sry transcription in fetal life. Consequently, the XY offspring with bilateral ovaries develop into apparently normal females, but their eggs fail to develop after fertilization. Our previous studies have shown that the primary cause of infertility can be attributed to oocytes rather than their surrounding somatic cells in the XY ovary. This study attempted to identify the defects in oocytes from the B6.Y(TIR) female mouse. We examined the developmental potential of embryos from XY and XX females after exchanging their nuclear components by microsurgery following in vitro maturation and fertilization. The results suggest that both nuclear and cytoplasmic components are defective in oocytes from XY females. In the XY fetal ovary, most germ cells entered meiosis and their autosomes appeared to synapse normally while the X and Y chromosomes remained unpaired during meiotic prophase. This lack of X-Y pairing probably caused aneuploidy in some secondary oocytes following in vitro maturation. However, normal numbers of chromosomes in the rest of the secondary oocytes indicate that aneuploidy alone can not explain the nuclear defect in oocytes. Copyright 2000 Academic Press.

  7. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  8. Influence of auxins combinations on accumulation of reserpine in the callus of Rauvolfia tetraphylla L.

    Science.gov (United States)

    Anitha, S; Kumari, B D Ranjitha

    2007-11-01

    Reserpine is a monoterpene indole alkaloid used to treat hypertension because of its hypotensive property and psychiatric disorders because of its tranquilizing effect. Protocol has been standardized to enhance the synthesis of reserpine in leaf derived calli of Rauvolfia tetraphylla L. by adjusting the auxins combinations in the medium consisting of MS nutrient salts and B5 vitamins. Auxins such as naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were used in 1-5 microM concentration along with 9 microM concentration of 2,4 dichlorophenoxy acetic acid (2,4-D), which was found suitable for callus induction. The combination of (2,4-D) with NAA had been proved to accumulate maximum amount of reserpine followed by 2,4-D with IBA. The IAA with 2,4-D combination yielded very less amount of reserpine than the other combinations and 9 microM 2,4-D alone. The results suggest that there may be synergetic effect of NAA with 2,4-D and IBA with 2,4-D for increase in the biomass and reserpine accumulation and antagonistic effect of IAA with 2,4-D for the above said factors in the callus.

  9. Assessment of water vapor content from MIVIS TIR data

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2006-06-01

    Full Text Available The main objective of land remotely sensed images is to derive biological, chemical and physical parameters by inverting sample sets of spectral data. For the above aim hyperspectral scanners on airborne platform are a powerful remote sensing instrument for both research and environmental applications because of their spectral resolution and the high operability of the platform. Fine spectral information by MIVIS (airborne hyperspectral scanner operating in 102 channels ranging from VIS to TIR allows researchers to characterize atmospheric parameters and their effects on measured data which produce undesirable features on surface spectral signatures. These effects can be estimated (and remotely sensed radiances corrected if atmospheric spectral transmittance is known at each image pixel. Usually ground-based punctual observations (atmospheric sounding balloons, sun photometers, etc. are used to estimate the main physical parameters (like water vapor and temperature profiles which permit us to estimate atmospheric spectral transmittance by using suitable radiative transfer model and a specific (often too strong assumption which enable atmospheric properties measured only in very few points to be extended to the whole image. Several atmospheric gases produce observable absorption features, but only water vapor strongly varies in time and space. In this work the authors customize a self-sufficient «split-window technique» to derive (at each image pixel atmospheric total columnar water vapor content (TWVC using only MIVIS data collected by the fourth MIVIS spectrometer (Thermal Infrared band. MIVIS radiances have been simulated by means of MODTRAN4 radiative transfer code and the coefficients of linear regression to estimate TWVC from «split-windows» MIVIS radiances, based on 450 atmospheric water vapor profiles obtained by radiosonde data provided by NOAANESDIS. The method has been applied to produce maps describing the spatial variability of

  10. P2X1 receptors and the endothelium

    Directory of Open Access Journals (Sweden)

    LS Harrington

    2005-03-01

    Full Text Available Adenosine triphosphate (ATP is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.

  11. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  12. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ding, Yuanhao; Ma, Yizan; Liu, Nian; Xu, Jiao; Hu, Qin; Li, Yaoyao; Wu, Yuanlong; Xie, Sai; Zhu, Longfu; Min, Ling; Zhang, Xianlong

    2017-09-01

    Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele; Byrne, Helen; King, John; Bennett, Malcolm

    2013-01-01

    these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation

  14. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D.

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Kaselytė, Greta; Okockytė, Vaiva; Žukauskaitė, Justina; Žvingila, Donatas; Rančelis, Vytautas

    2015-03-01

    Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite

  15. Essais de prolifération et d'enracinement de matériel issu de rajeunissement par bouturage d'oliviers adultes (Olea europaea L. et de germination in vitro : effets de cytokinine et d'auxines

    Directory of Open Access Journals (Sweden)

    Walali Loudiyi D

    2005-01-01

    Full Text Available Proliferation and rooting of juvenile and adult olive explants (Olea europaea L.: effects of cytokinin and auxins. The micropropagation trials conducted concerned juvenile and adult material from the ‘Moroccan Picholine’ olive cultivar. Zeatin, added to the proliferation medium, was tested at 0, 1, 5, 10 et 20 mg/l. Root induction was performed on media contaning IAA, IBA or NAA tested at 0, 0.5, 1, 2 et 4 mg/l. A significant (P<0.001 interaction exists between the explant type and the cytokinine concentration on one hand and the type and concentration of auxin on the other hand. The highest bud sprouting and shoot development were obtained on medium supplemented with 5 mg/l zeatin. For economical reasons, satisfying results can be obtained with only 1 mg/l. Rooting of microcuttings reached 100% when NAA, which proved to be the best auxin for root induction, was used at 1 mg/l. No rooting was observed in the case of adult plant material. Further investigations are being undertaken to improve the reactivity of this recalcitrant type of material.

  16. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development

    Czech Academy of Sciences Publication Activity Database

    Kuhn, B.M.; Errafi, S.; Bucher, R.; Dobrev, Petre; Geisler, M.; Bigler, L.; Zažímalová, Eva; Ringli, Ch.

    2016-01-01

    Roč. 291, č. 10 (2016), s. 5385-5395 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * auxin * flavonoid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.125, year: 2016

  17. Computer modeling of Cannabinoid receptor type 1

    Directory of Open Access Journals (Sweden)

    Sapundzhi Fatima

    2018-01-01

    Full Text Available Cannabinoid receptors are important class of receptors as they are involved in various physiological processes such as appetite, pain-sensation, mood, and memory. It is important to design receptor-selective ligands in order to treat a particular disorder. The aim of the present study is to model the structure of cannabinoid receptor CB1 and to perform docking between obtained models and known ligands. Two models of CBR1 were prepared with two different methods (Modeller of Chimera and MOE. They were used for docking with GOLD 5.2. It was established a high correlation between inhibitory constant Ki of CB1 cannabinoid ligands and the ChemScore scoring function of GOLD, which concerns both models. This suggests that the models of the CB1 receptors obtained could be used for docking studies and in further investigation and design of new potential, selective and active cannabinoids with the desired effects.

  18. Syntheses of 7-Substituted α-Cyperone Derivatives for Selective Sigma-1 Receptor over Cannabinoid-1 Receptor Binding Affinities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juyoung; Shin, Younggyun; Yoon, Sunghwa [Ajou Univ., Suwon (Korea, Republic of); Kim, Keewon; Kwon, Youngbae [ChonBuk National Univ., Jeonju (Korea, Republic of)

    2013-11-15

    We have successfully synthesized seven α-cyperone derivatives and found that the presence of a hydrogen bond donor/acceptor groups at the C7 position of α-cyperone significantly affects specificity and potency of CB{sub 1} receptor binding affinity over sigma-1 receptor binding affinity. In particular, the presence of the amino moiety at the C7 position of α-cyperone is beneficial for binding to sigmia-1 receptor. The molecular mechanism of compound 8 involved in the high binding affinity to sigma-1 receptor is under investigation. We first synthesized α-cyperone 1 by following the previously reported synthetic routes.15-19 In brief, azeotropic imination of (+)-dihydrocarvone and (R)-(+)-1-phenylethylamine followed by alkylation with a slight excess of ethyl vinyl ketone (EVK) in THF at 40 .deg. C produced the Micheal adduct. The resulting adduct was hydrolyzed and then treated with sodium methoxide at room temperature to give an easily separable mixture of α-cyperone 1 and its side product. Flash chromatography resulted in pure α-cyperone 1 in a 30% yield from (+)-dihydrocarvone.

  19. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    Science.gov (United States)

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  20. Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.).

    Science.gov (United States)

    Elliott, M C; Stowe, B B

    1971-03-01

    Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins.

  1. Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC

    International Nuclear Information System (INIS)

    Nick, P.; Yatou, O.; Furuya, M.; Lambert, A.M.

    1994-01-01

    Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the anti microtubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation. (author)

  2. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings

    Directory of Open Access Journals (Sweden)

    Antonio Cano

    2018-04-01

    Full Text Available Commercial carnation (Dianthus caryophyllus cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR formation in two carnation cultivars with contrasting rooting performance, “2101–02 MFR” and “2003 R 8”, as well as in the reference cultivar “Master”. We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the “2003 R 8” cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of “2003 R 8”. Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  3. Serotonin type-1A receptor imaging in depression

    International Nuclear Information System (INIS)

    Drevets, Wayne C.; Frank, Ellen; Price, Julie C.; Kupfer, David J.; Greer, Phil J.; Mathis, Chester

    2000-01-01

    Regional 5-hydroxytryptamine 1A (5-HT 1A ) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl- 11 C]WAY-100635 {[ 11 C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide}. The mean 5-HT 1A receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT 1A receptor BP are consistent with in vivo evidence that 5-HT 1A receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT 1A receptor expression in primary mood disorders

  4. Knocking down expression of the auxin-amidohydrolase IAR3 alters defense responses in Solanaceae family plants

    Czech Academy of Sciences Publication Activity Database

    D'Ippolito, S.; Vaňková, Radomíra; Joosten, M.H.A.J.; Casalongue, C.A.; Fiol, D.F.

    2016-01-01

    Roč. 253, DEC (2016), s. 31-39 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : Auxin * Biotic stress * Cladosporium fulvum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.437, year: 2016

  5. Auxin Does Not Alter the Permeability of Pea Segments to Tritium-labeled Water.

    Science.gov (United States)

    Dowler, M J; Rayle, D L

    1974-02-01

    The possibility of an auxin effect on the permeability of pea (Pisum sativum L. ev. Alaska) segments to tritium-labeled water has been investigated by three separate laboratories, and the combined results are presented. We were unable to obtain any indication of a rapid effect of indoleacetic acid on the efflux of (3)HHO when pea segments previously "loaded" for 90 minutes with (3)HHO were transferred to unlabeled aqueous medium with indoleacetic acid. We were able to confirm that segments pretreated with (3)HHO plus indoleacetic acid for 60 to 90 minutes can show an enhanced (3)HHO release as compared with minus indoleacetic acid controls. However, this phenomenon appears to be due to an increased uptake of (3)HHO during the prolonged indoleacetic acid pretreatment, and therefore we conclude that auxin does not alter the permeability of pea segments to (3)HHO in either short term or long term tests. We confirm previous reports that the uptake of (3)HHO in pea segments proceeds largely through the cut surfaces, and that the cuticle is a potent barrier to (3)HHO flux.

  6. Serotonin type-1A receptor imaging in depression

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. E-mail: drevets@pet.upmc.edu; Frank, Ellen; Price, Julie C.; Kupfer, David J.; Greer, Phil J.; Mathis, Chester

    2000-07-01

    Regional 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl-{sup 11}C]WAY-100635 {l_brace}[{sup 11}C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide{r_brace}. The mean 5-HT{sub 1A} receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT{sub 1A} receptor BP are consistent with in vivo evidence that 5-HT{sub 1A} receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT{sub 1A} receptor expression in primary mood disorders.

  7. Molecular and functional characterization of Toll-like receptor (Tlr)1 and Tlr2 in common carp (Cyprinus carpio).

    Science.gov (United States)

    Fink, Inge R; Pietretti, Danilo; Voogdt, Carlos G P; Westphal, Adrie H; Savelkoul, Huub F J; Forlenza, Maria; Wiegertjes, Geert F

    2016-09-01

    Toll-like receptors (TLRs) are fundamental components of innate immunity that play significant roles in the defence against pathogen invasion. In this study, we present the molecular characterization of the full-length coding sequence of tlr1, tlr2a and tlr2b from common carp (Cyprinus carpio). Each is encoded within a single exon and contains a conserved number of leucine-rich repeats, a transmembrane region and an intracellular TIR domain for signalling. Indeed, sequence, phylogenetic and synteny analysis of carp tlr1, tlr2a and tlr2b support that these genes are orthologues of mammalian TLR1 and TLR2. The tlr genes are expressed in various immune organs and cell types. Furthermore, the carp sequences exhibited a good three-dimensional fit with the heterodimer structure of human TLR1-TLR2, including the potential to bind to the ligand Pam3CSK4. This supports the possible formation of carp Tlr1-Tlr2 heterodimers. However, we were unable to demonstrate Tlr1/Tlr2-mediated ligand binding in transfected cell lines through NF-κB activation, despite showing the expression and co-localization of Tlr1 and Tlr2. We discuss possible limitations when studying ligand-specific activation of NF-κB after expression of Tlr1 and/or Tlr2 in human but also fish cell lines and we propose alternative future strategies for studying ligand-binding properties of fish Tlrs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  9. Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Arnau Busquets Garcia

    2016-05-01

    Full Text Available The endocannabinoid system (ECS is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids, and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB1. In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells and intracellular compartments (e.g., mitochondria. Interestingly, cellular and molecular effects are differentially mediated by CB1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons. Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.

  10. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    Science.gov (United States)

    Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Effect Of IGF-1 On Expression Of Gh Receptor, IGF-1, IGF-1 ...

    African Journals Online (AJOL)

    ... and the skin expression of growth hormone receptor (GHR), insulin-like growth factor1 (IGF-1), insulin-like growth factor receptor (IGF- R), KAP3.2 and KAP6-1 mRNA were measured by RT-PCR. The results indicated that IGF-1 could degrade GHR gene expression, have no effect of IGF-1 and IGF-1R gene expression, ...

  12. Ophthalmic antihistamines and H1-H4 receptors.

    Science.gov (United States)

    Wade, Laurie; Bielory, Leonard; Rudner, Shara

    2012-10-01

    Antihistamines exert pharmacologic effects by binding to four histamine receptors (H1-H4) at different affinities, producing variable effects depending on the receptor they predominantly bind to. This review's purpose is to determine the relative potency of antihistamines by comparing their binding affinities to these receptors. Studies on binding affinities of antihistamines to histamine receptors were reviewed and the dissociation constant for inhibitor binding (Ki) analyzed to determine the most and least potent antihistamine for each receptor. We retrieved the binding affinities for nineteen antihistamines. For H1 receptors, pyrilamine exhibited the highest affinity (Ki = 0.8 nM), and thioperamide the lowest (Ki = 280, 000 nM). For H2 receptors, ranitidine exhibited the highest affinity (Ki = 187 nM), and olopatadine the lowest (Ki = 100 ,000 nM). For the recently discovered H3 and H4 receptors, thioperamide exhibited the highest affinity (Ki = 1.1 nM), and olopatadine exhibited the lowest (Ki = 79 ,400 nM), to H3. Data on binding affinities to the H4 receptor exist for: ketotifen, pheniramine, ranitidine, cimetidine and thioperamide. Of these, thioperamide exhibited the highest affinity (Ki = 27 nM), whereas cimetidine and ranitidine exhibited the lowest affinity (Ki = >10, 000 nM) for H4 receptors. This review summarizes the relative potency of antihistamines based on their binding affinities to the four histamine receptors. Although data on binding affinities of antihistamines to the H4 receptor are sparse, it is apparent that further research on these histamine subtypes may open new venues for more direct treatment with a higher therapeutic efficacy on allergic disorders including those affecting the ocular surface.

  13. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers.

    Science.gov (United States)

    Harding, Peter J; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H; Smith, Eleanor; Armitage, Judith P; Watts, Anthony

    2009-02-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.

  14. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense)

    KAUST Repository

    Anderson, James V.

    2012-05-13

    Abstract Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ∼65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ∼2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth. ©Springer-Verlag (outside the USA) 2012.

  15. β-arrestins negatively control human adrenomedullin type 1-receptor internalization.

    Science.gov (United States)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Sekiguchi, Toshio; Danfeng, Jiang; Murakami, Manabu; Hattori, Yuichi; Kato, Johji

    2017-05-27

    Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM 1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM 1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β 2 -adrenergic receptor (β 2 -AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [ 125 I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM 1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM 1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM 1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β 2 -AR. Thus, both β-arrs negatively control AM 1 receptor internalization, which depends on the C-tail of CLR. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems

    Science.gov (United States)

    Knöller, Anne Sophie; Richards, Elizabeth L.; Peer, Wendy Ann; Murphy, Angus S.

    2010-01-01

    Dwarfism traits in Zea mays are regulated by multiple factors including the hormone auxin. Dwarf brachytic2 (br2) mutants harbour lesions in the gene encoding an orthologue of Arabidopsis thaliana ABCB1 which functions in auxin efflux out of meristematic regions in the shoot and root. br2 mesocotyls and coleoptiles exhibit reduced auxin transport. However, the dwarf stature of br2 derives from shortened lower internodes whilst the upper portion of the plant is completely normal. As such, it is counter-intuitive to attribute br2 dwarfism exclusively to reduced auxin export out of the shoot apex. Arabidopsis abcb1 mutants exhibit only minor reductions in auxin transport and plant height unless combined with mutations in the ABCB19 auxin transporter. Phylogenetic modelling analysis excludes the possibility that BR2 is more closely related to ABCB19 which has three more closely related orthologues in maize. BR2 is expressed in nodal meristems, and analyses of auxin transport and content indicate that BR2 function in these grass-specific tissues is analogous to ABCB1 function in the shoot and root apex of Arabidopsis. These results indicate that ABCB1/BR2 function is conserved between dicots and monocots, but also suggests that this function must be understood in the context of the segmental organization of grass plants. PMID:20581123

  17. The influence of auxins on the biosynthesis of isoprene derivatives in callus cultures of Vaccinium corymbosum var. bluecrop.

    Science.gov (United States)

    Migas, Piotr; Luczkiewicz, Maria; Cisowski, Wojciech

    2006-01-01

    Callus cultures of Vaccinium corymbosum var. bluecrop were optimized for their isoprene derivatives production by supplementing Schenk-Hildebrandt (SH) medium with constant concentration of kinetin (2.32 microM) and two different amounts of selected auxins. Every auxin, except for IBA, used in 10-time higher concentration (2,4D, NAA, IAA, NOA) stimulated biosynthesis of beta-sitosterol and inhibited triterpene synthesis. Quantitative analysis of isoprene derivatives in callus biomass collected on the 25th day of the experiment proved that the analyzed callus of Vaccinium corymbosum var. bluecrop synthesized the highest amount of isoprene derivatives after subculturing on SH medium modified with 22.6 microM of 2,4D and 2.32 microM of kinetin.

  18. Receptor binding radiotracers for the angiotensin II receptor: radioiodinated [Sar1, Ile8]angiotensin II

    International Nuclear Information System (INIS)

    Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D.

    1994-01-01

    The potential for imaging the angiotensin II receptor was evaluated using the radioiodinated peptide antagonist [ 125 I][Sar 1 , Ile 8 ]angiotensin II. The radioligand provides a receptor-mediated signal in several tissues in rat (kidneys, adrenal and liver). The receptor-mediated signal of 3% ID/g kidney cortex should be sufficient to permit imaging, at least via SPECT. The radiotracer is sensitive to reductions in receptor concentration and can be used to define in vivo dose-occupancy curves of angiotensin II receptor ligands. Receptor-mediated images of [ 123 I][Sar 1 , Ile 8 ]angiotensin II were obtained in the rat kidney and Rhesus monkey liver. (author)

  19. β-arrestins negatively control human adrenomedullin type 1-receptor internalization

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Sekiguchi, Toshio; Danfeng, Jiang; Murakami, Manabu; Hattori, Yuichi; Kato, Johji

    2017-01-01

    Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM 1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM 1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β 2 -adrenergic receptor (β 2 -AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [ 125 I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM 1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM 1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM 1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β 2 -AR. Thus, both β-arrs negatively control AM 1 receptor internalization, which depends on the C-tail of CLR. - Highlights: • We found that β-arrestins 1 and 2 negatively control agonist-induced GPCR internalization. • β-arrestins 1 and 2 significantly inhibits the AM

  20. The non-biphenyl-tetrazole angiotensin AT1 receptor antagonist eprosartan is a unique and robust inverse agonist of the active state of the AT1 receptor.

    Science.gov (United States)

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2018-03-23

    Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT 1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT 1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT 1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT 1 receptors is necessary. To identify the robust inverse agonist for active state of AT 1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT 1 receptors and active-state N111G mutant AT 1 receptors. Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT 1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT 1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT 1 receptors compared with the ground-state WT-AT 1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT 1 receptors. In contrast, interactions between eprosartan and N111G-AT 1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT 1 receptor activation are warranted. © 2018 The British Pharmacological Society.

  1. Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2.

    Science.gov (United States)

    De Henau, Olivier; Degroot, Gaetan-Nagim; Imbault, Virginie; Robert, Virginie; De Poorter, Cédric; Mcheik, Saria; Galés, Céline; Parmentier, Marc; Springael, Jean-Yves

    2016-01-01

    Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties.

  2. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport.

    Science.gov (United States)

    Clay, Nicole K; Nelson, Timothy

    2005-06-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.

  3. Evaluation of auxin and thiamine interaction effect on PAL activity and phenolic compounds content in vegetative growth stage of soybean plants

    Directory of Open Access Journals (Sweden)

    nazi nadernejad

    2017-08-01

    Full Text Available Soybean (Glycin max L. is one of the most important oily seeds in the world. This plant is rich in protein and unsaturated fats, and plays a significant role in human health with phenolic compounds and flavonoids. Indole Butyric Acid (IBA is a plant growth regulator that plays a key role in producing phenolic compounds and increasing the antioxidant capacity of the plant. Thiamine is one of the important vitamins in strengthening the immune system and increasing the resistance to environmental stresses in the plant's growth stages. Regarding the effect of hormone auxin and thiamine on the production of phenolic compounds as one of the antioxidant compounds in growth stages, the aim of this study was to investigate the effect of the two compounds in two stages of soybean growth and compare their effect on phenolic compounds changes in order to Detecting higher antioxidant capacity in environmental stress tolerance. For this purpose, the DPX cultivar of soybean seeds were prepared from Dezful Agriculture Research Center and planted in perlite containing flowers. The plants were planted under factorial design under IBA treatments with three concentrations of 0, 10 and 50 and thiamine with three concentrations of 0, 50 and 200. Extraction and evaluation of phenolic compounds, anthocyanins and pigments in leaves were performed. Data were analyzed using Duncan's test at a significant level of 5%. The results showed that the combined use of auxin and thiamine increased the carotenoid content in both phases and caused a significant increase in phenolic content. Application of auxin alone reduced auxin and thiamine the anthocyanin content significantly in both phases, but did not have a significant effect on phenolic content. The results showed that the PAL activity of the phenolic and anthocyanin content increased significantly in the 9-leaf stage compared to 3-leaf. Generally, the results showed that interaction effect between auxin and thiamine on

  4. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    Science.gov (United States)

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  5. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  6. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Maqshoof Ahmad

    2013-12-01

    Full Text Available Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  7. Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis

    Czech Academy of Sciences Publication Activity Database

    Šimura, Jan; Spíchal, Lukáš; Adamec, Lubomír; Pěnčík, A.; Rolčík, Jakub; Novák, Ondřej; Strnad, Miroslav

    2016-01-01

    Roč. 117, č. 6 (2016), s. 1037-1044 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : Auxin * Aldrovanda vesiculosa * cytokinin Subject RIV: EF - Botanics Impact factor: 4.041, year: 2016

  8. The contribution of Landsat 8 TIRS sensor data to the identification of plastic covered vineyards

    Science.gov (United States)

    Novelli, Antonio; Tarantino, Eufemia

    2015-06-01

    Plastic covering is a common practice in agricultural fields. From an agronomic point of view, plastic coverings offer many advantages against unfavourable growing conditions. This explains their widespread utilization with consequent positive impact on local economy. On the other hand, plasticulture raises both environmental and landscape issues. In the Apulia Region (Italy) the wide implementation of such practice generally relates to vineyard cultivation. Continuous vineyard protection has resulted in negative effects on the hydrogeological balance of soils, causing a deep modification of the traditional rural landscape and therefore affecting its quality. To guarantee both the protection of local economy as well as the preservation of local environment and landscape features, a detailed site mapping of the areas involved is necessary. Indeed, the quantification of this phenomenon is essential in the periodic updating of the existing land use database and in the development of local policies. In this study we evaluate the potential of the novel Thermal Infrared Sensor bands (TIRS) provided by the LANDSAT 8 mission in plasticulture discrimination. Using the evident anomaly retrieved in the study area on the Quality Assessment (QA) band, a fast procedure involving TIRS data was developed, proposing a new index (Plastic Surface Index- PSI) able to emphasize plasticulture. For the aim of this study, two different acquisition dates on a test area in the Apulia region (Italy) were analyzed, one in the growing season with high plastic covering density and one in the post-harvest period with low plastic cover density.

  9. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  10. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    Science.gov (United States)

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  11. Persistence of auxinic herbicides applied on pasture and toxicity for succeeding crops

    Directory of Open Access Journals (Sweden)

    ARNON H.C. ANÉSIO

    2018-04-01

    Full Text Available ABSTRACT The aim of this work was to determine the persistence of auxinic herbicides applied on tropical pasture and toxicity for succeeding crops. The herbicides were applied in an area of dystrophic red‒yellow latosol with pasture infested of weeds. At 40, 80, and 280 days after application of herbicide, the soil samples were collected at depths of 0 to 20 cm. Soil with residues of 2,4-D, 2,4-D + picloram, triclopyr, and a soil without herbicide application were analyzed with six replicates. Seven crops were cultivated in these soils: cucumber (Cucumis sativus L., velvet bean [Mucuna pruriens (L. DC.], pigeon pea [Cajanus cajan (L. Millsp.], alfalfa (Medicago sativa L., lablab bean [Lablab purpureus (L. Sweet], corn (Zea mays L., and sorghum [Sorghum bicolor (L. Moench]. The plants of cucumber, pigeon pea, and alfalfa were the most susceptible to the auxinic herbicide residues. However, the lablab bean was the only one among the dicot evaluated that showed tolerance to the 2,4-D + picloram residual when cultivated in soils at 280 days after application of herbicide. Corn and sorghum showed lower chlorophyll content in soils with 2,4-D + picloram residual up to 80 days after application of herbicide.

  12. Role of chloride ions in the promotion of auxin-induced growth of maize coleoptile segments.

    Science.gov (United States)

    Burdach, Zbigniew; Kurtyka, Renata; Siemieniuk, Agnieszka; Karcz, Waldemar

    2014-10-01

    The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth. Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed. Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ~30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and proton extrusion were also determined. TEA

  13. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes.

    Science.gov (United States)

    Holalu, Srinidhi V; Finlayson, Scott A

    2017-02-01

    Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  15. 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Andrea Kreidenweiss

    Full Text Available Analysis of gene function in Plasmodium falciparum, the most important human malaria parasite, is restricted by the lack of robust and simple reverse genetic tools. Approaches to manipulate protein levels post-translationally are powerful tools to study protein-off effects especially in the haploid malaria parasite where genetic knockouts of essential genes are lethal. We investigated if the auxin-inducible degron system is functional in P. falciparum and found that degron-tagged yellow fluorescent protein levels were efficiently reduced upon addition of auxin which otherwise had no effect on parasite viability. The genetic components required in this conditional approach were co-expressed in P. falciparum by applying the small peptide 2A. 2A is a self-processing peptide from Foot-And-Mouth Disease virus that allows the whole conditional system to be accommodated on a single plasmid vector and ensures stoichiometric expression levels.

  16. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Directory of Open Access Journals (Sweden)

    Ana V García

    2010-07-01

    Full Text Available An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1. In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  17. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  18. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    International Nuclear Information System (INIS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-01-01

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q max ) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q max of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation

  19. Sigma-1 receptor: The novel intracellular target of neuropsychotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Teruo Hayashi

    2015-01-01

    Full Text Available Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane. In specific types of neurons (e.g., those at the spinal cord, sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions.

  20. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  1. Endogenous auxin regulates the sensitivity of Dendrobium (cv. Miss Teen) flower pedicel abscission to ethylene

    NARCIS (Netherlands)

    Rungruchkanont, K.; Ketsa, S.; Chatchawankanphanich, O.; Doorn, van W.G.

    2007-01-01

    Dendrobium flower buds and flowers have an abscission zone at the base of the pedicel (flower stalk). Ethylene treatment of cv. Miss Teen inflorescences induced high rates of abscission in flower buds but did not affect abscission once the flowers had opened. It is not known if auxin is a regulator

  2. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  3. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  4. Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings

    Czech Academy of Sciences Publication Activity Database

    Blagoeva, Elitsa; Dobrev, Petre; Malbeck, Jiří; Motyka, Václav; Gaudinová, Alena; Vaňková, Radomíra

    2004-01-01

    Roč. 44, č. 1 (2004), s. 15-23 ISSN 0167-6903 R&D Projects: GA ČR GA522/99/1130; GA AV ČR IAA6038002; GA MŠk LN00A081; GA MŠk ME 505 Institutional research plan: CEZ:AV0Z5038910 Keywords : Auxin * Cytokinin * Cytokinin oxidase/dehydrogenase Subject RIV: GE - Plant Breeding Impact factor: 0.693, year: 2004

  5. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    Science.gov (United States)

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  6. Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs.

    Science.gov (United States)

    Schneider, E A; Kazakoff, C W; Wightman, F

    1985-08-01

    Qualitative analysis by gas chromatography-mass spectrometry (GC-MS) of the auxins present in the root, cotyledons and epicotyl of 3-dold etiolated pea (Pisum sativum L., cv. Alaska) seedlings has shown that all three organs contain phenylacetic acid (PAA), 3-indoleacetic acid (IAA) and 4-chloro-3-indoleacetic acid (4Cl-IAA). In addition, 3-indolepropionic acid (IPA) was present in the root and 3-indolebutyric acid (IBA) was detected in both root and epicotyl. Phenylacetic acid, IAA and IPA were measured quantitatively in the three organs by GC-MS-single ion monitoring, using deuterated internal standards. Levels of IAA were found to range from 13 to 115 pmol g(-1) FW, while amounts of PAA were considerably higher (347-451 pmol g(-1) FW) and the level of IPA was quite low (5 pmol g(-1) FW). On a molar basis the PAA:IAA ratio in the whole seedling was approx. 15:1.

  7. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2011-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist 125 I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic β-cells and mouse insulinomas, but it does not label human pancreatic β-cells and insulinomas. High affinity displacement (IC 50 approximately 2 nM) is observed in mouse β-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist 125 I-GLP-1(7-36)amide intensively labels mouse pancreatic β-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  8. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  9. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  10. Microglia P2Y13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y1 Receptors

    Directory of Open Access Journals (Sweden)

    Clara Quintas

    2018-05-01

    Full Text Available Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia. The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM and of the selective P2Y12 antagonist AR-C66096 (0.1 μM, suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in

  11. Immuno-localization of galanin receptor-1 (GALR1) in rat brain

    International Nuclear Information System (INIS)

    Larm, J.M.; Gundlach, A.L.

    2002-01-01

    Full text: Galanin is expressed in discrete areas throughout the central nervous system and has several putative physiological actions including effects on hormone secretion, reproduction and cognition, via actions at multiple G-protein-coupled receptors. Currently, three galanin receptors - GalR1, -R2, -R3 - have been identified that differ in pharmacology, signalling and distribution. The distribution of [ 125 I]-galanin binding sites presumably represents multiple receptors and so the precise regional and cellular localization of each receptor subtype is unknown. This study examined the distribution in rat brain of GalR1 receptors by immunohistochemistry, using polyclonal antibodies raised against short peptide sequences from the third intracellular loop and the proximal C-terminal. Adult rats were deeply anaesthetized (pentobarbitone 60 mg/kg, ip.) and perfusion-fixed with 4% paraformaldehyde. Specific GalR1 immunoreactivity (IR) was detected in neurons in various brain regions including cells within the olfactory bulb, piriform cortex, dorsomedial thalamus, hypothalamus (PVN, SON, ARC), midbrain/pons (intense staining in ventrolateral/medial PAG) and medulla. The localization pattern was qualitatively similar with both antisera and was consistent with that observed for GalR1 mRNA in normal rat brain. Recent evidence also reveals that GalR1- mRNA and -IR levels are coordinately altered after neuronal stimulation. These studies demonstrate a method for the identification of GalR1-containing cells that should assist in better differentiating the phenotype of galanin-receptive neurons. Copyright (2002) Australian Neuroscience Society

  12. Click chemistry-based tracking reveals putative cell wall-located auxin binding sites in expanding cells

    Czech Academy of Sciences Publication Activity Database

    Mravec, J.; Kračun, S. K.; Zemlyanskaya, E.; Rydahl, M. G.; Guo, X.; Pičmanová, M.; Sørensen, K.; Růžička, Kamil; Willats, W.G.T.

    2017-01-01

    Roč. 7, NOV 22 (2017), č. článku 15988. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:61389030 Keywords : MEMBRANE H+-ATPASE * BIOLOGICAL-ACTIVITY * AZIDO AUXINS Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.259, year: 2016

  13. Regulation of 1,25-dihydroxyvitamin D, receptors by [3H]-1,25-dihydroxyvitamin D3 in cultured cells (T-47D): evidence for receptor upregulation

    International Nuclear Information System (INIS)

    Reinhardt, T.A.; Horst, R.L.

    1986-01-01

    The authors examined the effect of 1,25-(OH) 2 D 3 on receptor concentration in cultured cells (T-47D). Two days prior to experiment, cells were fed with RPMI 1640 + 10% serum and 24-32 hours prior to experiment the media was replaced with RPMI 1640 + 25 mM Hepes + 1% serum. [ 3 H]-1,25-(OH) 2 D 3 +/- 100-fold molar excess cold hormone was used to treat the cells. Occupied receptors were measured in freshly prepared cytosols. Total receptors were measured following a 16-hour incubation of cytosols in the presence of 0.6 nM [ 3 H]-1,25-(OH) 2 D 3 +/- 100-fold molar excess of cold hormone at 4 0 C. Treatment of cell cultures for 16-18 hours with 0.5-1.0 nM [ 3 H]-1,25-(OH) 2 D 3 resulted in a 30-40% receptor occupancy by the hormone and a 2- to 3-fold increase in total cell receptor as compared to vehicle-treated controls. Time course studies showed a rapid increase in total receptors up to 16 hours post-treatment in the face of declining receptor occupancy. Actinomycin D blocked the [ 3 H]-1,25-(OH) 2 D 3 -dependent rise in cell receptor. The physiological significance of this receptor upregulation is not known nor is it known whether upregulation results from synthesis of new receptors and/or is the result of the activation of preformed receptors by a inducible activator protein

  14. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlović, I.; Pěnčík, Aleš; Novák, Ondřej; Vujčić, V.; Radić Brkanac, S.; Lepeduš, H.; Strnad, Miroslav; Salopek-Sondi, B.

    2018-01-01

    Roč. 125, APR (2018), s. 74-84 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA17-06613S Institutional support: RVO:61389030 Keywords : Auxin metabolism * Brassica rapa ssp. pekinensis * Growth inhibition * Principal component analysis * Reactive oxygen species * Short-term salinity stress * Stress hormones Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.724, year: 2016

  15. Development of radiolabeled probes directed against sigma-1 receptors

    International Nuclear Information System (INIS)

    Ogawa, Kazuma; Masuda, Ryohei; Shiba, Kazuhiro

    2017-01-01

    It has been reported that sigma-1 receptors regulate the release of signaling substances in the central nervous systems and are related to various diseases, such as schizophrenia, stress disorders, dementia, amyotrophic lateral sclerosis (ALS), and cancer. If the quantification of the sigma-1 receptors is possible, the pathophysiology, the stage, and the early detection of the diseases could be understandable. Molecular imaging using Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) and radioactive probes makes noninvasive quantification of the in vivo metabolism and function possible. Currently, only nuclear medicine diagnosis using PET or SPECT can quantify the sigma-1 receptors. Therefore, there is great expectation for the development of molecular probes to image the sigma-1 receptors specifically. In this paper, we introduce our research on the development of radiohalogen-labeled molecular probes directed against the sigma-1 receptors. (author)

  16. Interaction between retinoid acid receptor-related orphan receptor alpha (RORA and neuropeptide S receptor 1 (NPSR1 in asthma.

    Directory of Open Access Journals (Sweden)

    Nathalie Acevedo

    Full Text Available Retinoid acid receptor-related Orphan Receptor Alpha (RORA was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs in the vicinity of the asthma-associated SNP (rs11071559 and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1, has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children and the European cross-sectional PARSIFAL study (1120 children. Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively, and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.

  17. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Directory of Open Access Journals (Sweden)

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  19. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  20. AMP Is an Adenosine A1 Receptor Agonist*

    Science.gov (United States)

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  1. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Science.gov (United States)

    2010-06-17

    Sciences, Bethesda, MD, ...... 14. ABSTRACT Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is...parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of...Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum Carmenza Spadafora1,2,3, Gordon A. Awandare4

  2. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney

    DEFF Research Database (Denmark)

    Kassmann, M.; Harteneck, C.; Zhu, Z.

    2013-01-01

    Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neuro...... pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.......-activated potassium channels and promote vasodilation. The TRPV receptors can also form heteromers that exhibit unique conductance and gating properties, further increasing their spatio-functional diversity. This review summarizes data on electrophysiological properties of TRPV1/4 and their modulation by endogenous...

  3. Effects of auxin and misting on the rooting of herbaceous and hardwood cuttings from the fig tree Efeitos de auxina e nebulização no enraizamento de estacas herbáceas e lenhosas de figueira

    Directory of Open Access Journals (Sweden)

    Cleiton Mateus Sousa

    2013-06-01

    Full Text Available Propagation of the fig tree predominately uses hardwood cuttings obtained from pruning stock plants. With a view to optimising fig tree propagation, the effects of auxin and misting on the rooting of herbaceous and hardwood cuttings from the fig tree were evaluated. An experiment was set up in a 2x2x2 factorial design, with two types of cuttings (softwood and hardwood, two levels of auxin (0 and 1000 mg L-1 indolbutyric acid and two environments (with and without misting. Thirty days after starting the experiment, rooting, root length, sprouting and losses were all evaluated. The interaction of the type of cutting and the auxin was significant for rooting, sprouting, root length and cutting loss. Misting did not affect the variables analysed. In the absence of auxin, there was no difference between the type of cutting for rooting, length of root and sprouting, while the application of auxin (1,000 mg L-1 produced a reduction in these variables. The production of fig tree seedlings can be made from either softwood or hardwood cuttings and does not require the use of auxin or misting.A propagação da figueira predomina com o uso de estacas lenhosas obtidas após a poda de plantas matrizes. Visando otimizar a propagação da figueira, avaliou-se os efeitos da auxina e da nebulização no enraizamento de estacas herbáceas e lenhosas de figueira. Foi implantado um experimento em fatorial 2x2x2, sendo dois tipos de estacas (herbáceas e lenhosas, dois níveis de auxina (0 e 1.000 mg L-1 de ácido indolbultírico e dois ambientes (com ou sem nebulização. Aos 30 dias após a implantação do experimento, avaliou-se o enraizamento, comprimento da radícula, brotação e perdas. A interação do tipo de estaca e auxina foi significativa para enraizamento, brotação, comprimento da radícula e perdas de estacas. A nebulização não interferiu nas variáveis analisadas. Na ausência de auxina não houve diferença entre os tipos de estacas para o

  4. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-01-01

    Highlights: • OX 1 and OX 2 orexin and CB 1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX 1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB 1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX 1 , OX 2 and CB 1 receptors, C-terminally fused with either Renilla luciferase or GFP 2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB 1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP 2 to CB 1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX 1 –OX 2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB 1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations

  5. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    DEFF Research Database (Denmark)

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...... velocity or the uptake. No effect on acropetal transport was observed. The data have been used to discuss the similarities in effects of abscisic acid and visible radiation and a hypothesis is proposed to explain the phenomena of phototropism....

  6. Sensing of Blood Pressure Increase by Transient Receptor Potential Vanilloid 1 Receptors on Baroreceptors

    OpenAIRE

    Sun, Hao; Li, De-Pei; Chen, Shao-Rui; Hittelman, Walter N.; Pan, Hui-Lin

    2009-01-01

    The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling...

  7. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Bern (Switzerland)

    2011-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist {sup 125}I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic {beta}-cells and mouse insulinomas, but it does not label human pancreatic {beta}-cells and insulinomas. High affinity displacement (IC{sub 50} approximately 2 nM) is observed in mouse {beta}-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist {sup 125}I-GLP-1(7-36)amide intensively labels mouse pancreatic {beta}-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  8. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Science.gov (United States)

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  9. Over-expression of KdSOC1 gene affected plantlet morphogenesis in Kalanchoe daigremontiana.

    Science.gov (United States)

    Zhu, Chen; Wang, Li; Chen, Jinhua; Liu, Chenglan; Zeng, Huiming; Wang, Huafang

    2017-07-17

    Kalanchoe daigremontiana reproduces asexually by producing plantlets along the leaf margin. The aim of this study was to identify the function of the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 gene in Kalanchoe daigremontiana (KdSOC1) during plantlet morphogenesis. In this study, KdSOC1 gene expression was detected at stem cell niche during in vitro somatic embryogenesis and plantlet morphogenesis. Disrupting endogenous auxin transportation suppressed the KdSOC1 gene response. Knockdown of the KdSOC1 gene caused a defect in cotyledon formation during the early heart stage of somatic embryogenesis. Over-expression (OE) of the KdSOC1 gene resulted in asymmetric plantlet distribution, a reduced number of plantlets, thicker leaves, and thicker vascular fibers. Higher KdPIN1 gene expression and auxin content were found in OE plant compared to those of wild-type plant leaves, which indicated possible KdSOC1 gene role in affecting auxin distribution and accumulation. KdSOC1 gene OE in DR5-GUS Arabidopsis reporting lines resulted in an abnormal auxin response pattern during different stages of somatic embryogenesis. In summary, the KdSOC1 gene OE might alter auxin distribution and accumulation along leaf margin to initiate plantlet formation and distribution, which is crucial for plasticity during plantlet formation under various environmental conditions.

  10. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    Science.gov (United States)

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  11. Identification of a truncated splice variant of IL-18 receptor alpha in the human and rat, with evidence of wider evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Chris S. Booker

    2014-09-01

    Full Text Available Interleukin-18 (IL-18 is a pro-inflammatory cytokine which stimulates activation of the nuclear factor kappa beta (NF-κB pathway via interaction with the IL-18 receptor. The receptor itself is formed from a dimer of two subunits, with the ligand-binding IL-18Rα subunit being encoded by the IL18R1 gene. A splice variant of murine IL18r1, which has been previously described, is formed by transcription of an unspliced intron (forming a ‘type II’ IL18r1 transcript and is predicted to encode a receptor with a truncated intracellular domain lacking the capacity to generate downstream signalling. In order to examine the relevance of this finding to human IL-18 function, we assessed the presence of a homologous transcript by reverse transcription-polymerase chain reaction (RT-PCR in the human and rat as another common laboratory animal. We present evidence for type II IL18R1 transcripts in both species. While the mouse and rat transcripts are predicted to encode a truncated receptor with a novel 5 amino acid C-terminal domain, the human sequence is predicted to encode a truncated protein with a novel 22 amino acid sequence bearing resemblance to the ‘Box 1’ motif of the Toll/interleukin-1 receptor (TIR domain, in a similar fashion to the inhibitory interleukin-1 receptor 2. Given that transcripts from these three species are all formed by inclusion of homologous unspliced intronic regions, an analysis of homologous introns across a wider array of 33 species with available IL18R1 gene records was performed, which suggests similar transcripts may encode truncated type II IL-18Rα subunits in other species. This splice variant may represent a conserved evolutionary mechanism for regulating IL-18 activity.

  12. Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The glucagon-like peptide-1 (GLP-1 receptor is one of the best validated therapeutic targets for the treatment of type 2 diabetes mellitus (T2DM. Over several years, the accumulation of basic, translational, and clinical research helped define the physiologic roles of GLP-1 and its receptor in regulating glucose homeostasis and energy metabolism. These efforts provided much of the foundation for pharmaceutical development of the GLP-1 receptor peptide agonists, exenatide and liraglutide, as novel medicines for patients suffering from T2DM. Now, much attention is focused on better understanding the molecular mechanisms involved in ligand induced signaling of the GLP-1 receptor. For example, advancements in biophysical and structural biology techniques are being applied in attempts to more precisely determine ligand binding and receptor occupancy characteristics at the atomic level. These efforts should better inform three-dimensional modeling of the GLP-1 receptor that will help inspire more rational approaches to identify and optimize small molecule agonists or allosteric modulators targeting the GLP-1 receptor. This article reviews GLP-1 receptor physiology with an emphasis on GLP-1 induced signaling mechanisms in order to highlight new molecular strategies that help determine desired pharmacologic characteristics for guiding development of future nonpeptide GLP-1 receptor activators.

  13. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    Science.gov (United States)

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  15. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    Science.gov (United States)

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  16. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects

    Directory of Open Access Journals (Sweden)

    Christian eWaeber

    2011-02-01

    Full Text Available Receptors for sphingosine-1-phosphate (S1P have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444, used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  17. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signalling.

    Directory of Open Access Journals (Sweden)

    Javier eCabrera

    2014-03-01

    Full Text Available Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs in their hosts, termed syncytia and giant cells (GCs for cyst and root-knot nematodes, respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC characteristics. Regulatory signals for TC differentiation are not still well known. The two-component signalling system (2CS and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Additionally, transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of cell wall ingrowths is described for most of them. Thus we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.

  18. Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor

    NARCIS (Netherlands)

    van Loenen, Pieter B.; de Graaf, Chris; Verzijl, Dennis; Leurs, Rob; Rognan, Didier; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2011-01-01

    The sphingosine-1-phosphate type 1 (S1P(1)) receptor is a new target in the treatment of auto-immune diseases as evidenced by the recent approval of FTY720 (Fingolimod). The ligand-binding pocket of the S1P(1) receptor has been generally characterised but detailed insight into ligand-specific

  19. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    DEFF Research Database (Denmark)

    Jen, Angela; Parkyn, Celia J; Mootoosamy, Roy C

    2010-01-01

    For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low......-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor...... both prion and LRP1 biology....

  20. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.